
SoftwareX 10 (2019) 100275

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

OptFROG—Analytic signal spectrogramswith optimized
time–frequency resolution
O. Melchert a,b,c,∗, B. Roth b,c, U. Morgner a,b, A. Demircan a,b,c

a Institute of Quantum Optics (IQO), Leibniz Universität Hannover, 30167 Hannover, Germany
b Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
c Hannover Centre for Optical Technologies (HOT), 30167 Hannover, Germany

a r t i c l e i n f o

Article history:
Received 10 April 2019
Received in revised form 27 June 2019
Accepted 27 June 2019

Keywords:
Spectrogram
Short-time Fourier analysis
Analytic signal
Optics
Ultrashort pulse propagation

a b s t r a c t

A Python package for the calculation of spectrograms with optimized time and frequency resolution
for application in the analysis of numerical simulations on ultrashort pulse propagation is presented.
Gabor’s uncertainty principle prevents both resolutions from being optimal simultaneously for a given
window function employed in the underlying short-time Fourier analysis. Our aim is to yield a time–
frequency representation of the input signal with marginals that represent the original intensities per
unit time and frequency similarly well. As a use-case, we demonstrate the implemented functionality
for the analysis of simulations on ultrashort pulse propagation in a nonlinear waveguide.
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1. Motivation and significance

The spectrogram provides a particular time–frequency repre-
sentation of signals that vary in time (for example, see [1]). It
represents an essential tool in the analysis of the characteristics
of ultrashort optical pulses. Spectrograms are employed in the
analysis of data retrieved from experiments [2–5], where it is
referred to as frequency resolved optical gating (FROG) analy-
sis, and numerical simulations [6–8], carried out to complement
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experiments and to provide a basis for the interpretation of the
observed effects. This highlights the relevance of signal process-
ing in the field of nonlinear optics and demonstrates the need to
be able to compute such spectrograms in the first place. Here, we
consider the issue of obtaining optimal time–frequency represen-
tations of signals for the interpretation of numerical experiments
on ultrashort pulse propagation in nonlinear waveguides.

In principle, a spectrogram measures the properties of the
signal under scrutiny as well as those of a user-specified win-
dow function for localizing parts of the signal during analysis.
Exhibiting features of both, the interpretation of the spectrogram
is strongly affected by the particular function used for windowing.
Different window functions estimate different signal properties,
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e.g., if a given function achieves a good approximation of the in-
tensities per unit time of the underlying signal, its approximation
of the intensities per unit frequency might be bad. Consequently,
the spectrogram might suffer from distortion yielding an un-
reasonable characterization of the time–frequency features of
the signal under scrutiny. The usual approach for deciding on a
particular window function is by trial-and-error and guided by
the liking and experience of the individual.

Here we present a software tool, called OptFROG, that aims at
minimizing the mismatch between the signals actual intensities
per unit time and frequency and their corresponding estimates
obtained from the spectrogram. Within OptFROG, the latter is
constructed for a user-supplied, parameterized window function.
The resulting spectrograms are ‘‘optimal’’ in the sense that their
visual inspection exhibits a minimal amount of distortion and
thus allow for a reliable interpretation of the time–frequency
composition of the input signal. Such an approach was previously
shown to result in a reasonable characterization of the underlying
time–frequency features [9]. It is further independent of the expe-
rience of the individual user and thus yields reproducible results.
To demonstrate the advantage of our approach we address the
highly complex propagation dynamics given by the supercon-
tinuum generation process [10], which requires a sophisticated
choice of a parameter setting used for signal windowing [6].

2. Software description

OptFROG facilitates the construction of spectrograms for the
real-valued optical field E(t), included in the analytic signal (AS)
E(t) [11]. In the Fourier domain, the angular frequency compo-
nents of both are related via Ê(ω) = [1+sgn(ω)] Ê(ω) [12]. Due to
its one-sided spectral definition the time-domain representation
of the AS is complex. Its definition further implies the relation
E(t) = Re[E(t)] (for example, see [12]). The construction of an AS
spectrogram relies on the repeated calculation of the spectrum of
the modified signal E(t)h(t−τ ) at different delay times τ in terms
of the short-time Fourier transform

Sτ (ω) =
1

√
2π

∫
E(t)h(t − τ ) exp{−iωt} dt, (1)

wherein h(t) specifies a narrow window function centered at
t = 0 and decaying to zero for increasing |t|. The latter allows
to selectively filter parts of the AS and to estimate its local
frequency content. Scanning over a range of delay times then
yields the spectrogram as PS(τ , ω) = |Sτ (ω)|2, providing a joint
time–frequency distribution of both, the AS and the window
function [13]. For assessing the approximation quality of PS , we
utilize its time and frequency marginals

P1(τ ) =

∫
PS(τ , ω) dω, and (2)

P2(ω) =

∫
PS(τ , ω) dτ . (3)

Note that in the limit where h(t) approaches a delta function, the
time marginal will approach the intensity per unit time |E(t)|2

but the frequency marginal will represent the intensity per unit
frequency |Ê(ω)|2 only poorly. As a result, time resolution will
be good and frequency resolution will be bad, see the discussion
in Section 3 below. The time–frequency uncertainty principle
prevents both resolutions from being optimal simultaneously [1].

The aim of the presented package is to obtain a time–frequency
representation of the input signal for which the integrated ab-
solute error (IAE) between its normalized marginals and the
original intensities per unit time and frequency are minimal.
We consider a single parameter window function h(t, σ ), e.g.

a Gaussian function with mean t and root-mean-square (rms)
width σ , and solve for

σ ⋆
= arg min

σ
Q (σ , α) (4)

wherein the objective function Q is defined by

Q (σ , α) ≡ (1 + α)IAE1 + (1 − α)IAE2 (5)

with the integrated absolute errors

IAE1 ≡

∫ ⏐⏐⏐⏐⏐|E(τ )|2 −
P(σ )
1 (τ )
ES

⏐⏐⏐⏐⏐ dτ , (6)

IAE2 ≡

∫ ⏐⏐⏐⏐⏐|Ê(ω)|2 −
P(σ )
2 (ω)
ES

⏐⏐⏐⏐⏐ dω. (7)

Above, the underlying spectrogram is computed via h(t, σ ), in-
dicated by the superscript σ on the marginals, and we assume
normalization to

∫
|E(t)|2 dt = 1 and a total signal energy

ES =
∫∫

PS(τ , ω) dτ dω in terms of the spectrogram. For a
good agreement of the marginals and the original intensities,
the objective function Q assumes a small value. The additional
parameter α might be adjusted to give more weight to fre-
quency resolution (α < 0) or time resolution (α > 0) if
appropriate. The particular choice α = 0 yields a balanced
time–frequency representation, see the example provided in Sec-
tion 3. The optimized spectrogram is then computed by using
h(t) ≡ h(t, σ ⋆) for windowing. For the minimization of the scalar
function Q (σ , α) in the variable σ , the scipy native function
scipy.optimize.minimize_scalar is employed in bounded
mode. As reasonable bounds the values σmin = 0 and σmax =

T/100, with T specifying the full temporal period of the under-
lying signal, are considered. The algorithm then proceeds to find
a local minimum σmin < σ ⋆ < σmax of Q . For all of our use-
cases, including more intricate propagation scenarios than those
presented here, this resulted in a satisfactory performance.

2.1. Software architecture

OptFROG, following the naming convention [14] for Python
packages implemented as optfrog, uses the Python program-
ming language [15] and depends on the functionality of numpy
and scipy [16]. It further follows a procedural programming
paradigm.

2.2. Software functionalities

The current version of optfrog comprises five software units
having the subsequent responsibilities:

vanillaFrog Compute a standard spectrogram PS(τ , ω) for the
normalized time-domain analytic signal for a particular
window function h(t, σ ).

optFrog Compute a time–frequency resolution optimized spec-
trogram for the normalized time-domain analytic signal
using the window function h(t, σ ⋆) that minimizes the
total IAE of both marginals.

timeMarginal Compute the marginal distribution in time P1
based on the spectrogram.

frequencyMarginal Compute the marginal distribution in fre-
quency P2 based on the spectrogram.

totalEnergy Compute the total energy ES provided by the spec-
trogram approximation of the time–frequency characteris-
tics of the signal.

For a more detailed description of function parameters and
return values we refer to the documentation provided within the
code [17].
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Fig. 1. Evolution of the analytic signal for a t0 = 7 fs soliton pulse of order
Ns = 8 and center frequency ω = 1.7 rad/fs. (a-1) Normalized squared modulus
at propagation distance z = 0.11m, and, (a-2) full evolution in the time
domain. (b-1) Normalized squared modulus spectrum at z = 0.11m, and, (b-2)
propagation characteristics.

2.3. Sample code snippet

In our research work we use optfrog mainly in script mode.
An exemplary data postprocessing script, reproducing Fig. 4 dis-
cussed in Section 3 below, is shown in listing 1. Therein, after
importing the functionality of numpy, optfrog, and a custom
figure generating routine in lines 1–3, the location of the input
data (line 5) and filter options for the spectrogram output-data
(lines 6p) are specified. Note that the user defined window func-
tion (lines 9p) does not need to be normalized. After loading the
input data (lines 12p) the routine optFrog is used to compute an
optimized spectrogram in line 15. Finally, a visual account of the
latter is prepared by the routine spectrogramFigure in line 17.

Listing 1: Exemplary Python script using optfrog for the calcu-
lation of a time–frequency resolution optimized spectrogram.
1 import numpy as np

from optfrog import optFrog
3 from figure import spectrogramFigure

5 fName = ’./data/exampleData_pulsePropagation.npz’
tPars = (-500.0, 5800.0, 10)

7 wPars = ( 0.75, 3.25, 3)

9 def wFunc(s0):
r e tu rn lambda x: np.exp(-x**2/2/s0/s0)

11
data = np.load(fName)

13 t, Et = data[’t’], data[’Et’]

15 res = optFrog(t,Et,wFunc,tLim=tPars,wLim=wPars)

17 spectrogramFigure((t,Et),res)

3. Illustrative examples

So as to demonstrate the functionality of optfrog we con-
sider the supercontinuum generation process in nonlinear fibers,

Fig. 2. Analytic signal spectrograms allowing for the time–frequency character-
ization of a real optical field obtained from the numerical propagation of an
ultrashort pulse in an ESM photonic crystal fiber. (a-1) vanillaFrog-trace for
a Gaussian window function with rms-width σ = 10 fs and close-up views of
an interacting dispersive wave (a-2) and soliton (a-3) (dashed boxes in (a-1)).
(b-2) vanillaFrog-trace for σ = 140 fs and close-ups (b-2) and (b-3) as in (a).
(c-1) Balanced optFrog-trace for σ ⋆

= 39.1 fs and close-ups (c-2) and (c-3) as
in (a).

a scheme commonly used nowadays. It provides an example
where the complex temporal and spectral evolution cannot eas-
ily be resolved, in both, theory and experiment. This results in
difficulties to characterize the time–frequency relationships as
a plethora of different optical effects are involved [10,18]. An
example is shown in Fig. 1, exemplifying the numerical propaga-
tion of a short and intense few-cycle optical pulse in presence of
the refractive index profile of an ‘‘endlessly single mode’’ (ESM)
photonic crystal fiber [19,20]. The underlying unidirectional prop-
agation model includes the Kerr effect and a delayed Raman
response of Hollenbeck–Cantrell type [21]. For the preparation of
the initial condition we considered a single soliton with duration
t0 = 7 fs, i.e. approximately 3.8 cycles, and soliton order Ns = 8,
prepared at a center frequency ω = 1.7 rad/fs. See Refs. [22,23]
for a detailed account of the propagation model and Ref. [24]
for a more thorough discussion of the particular problem setup.
Note that the chosen parameters relate to values in regions that
are very demanding with respect to an adequate post processing,
e.g., features have to be resolved that allow for a correct inter-
pretation of the complicated correlation of time and frequency
dynamics.

In Fig. 2 we illustrate such an example at a certain propagation
distance (z = 0.12m; cf. Fig. 1). The time–frequency character-
istics are illustrated by using a Gaussian window function h(t, σ )
centered at t = 0 and having rms-width σ . Note that the delay
time τ has to be interpreted as being relative to the origin of
a co-moving frame of reference in which the soliton is initially
at rest. Figs. 2(a-1,b-1) demonstrate an inevitable drawback of a
trial-and-error choice of a window function used for calculating
a spectrogram. As discussed earlier, the properties of the win-
dow implies a trade-off in resolution that might be achieved.
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Fig. 3. Assessment of the approximation quality. (a) Comparison of the squared
magnitude analytic signal to time marginals obtained from vanillaFrog-traces
using rms-width σ = 10 fs (black dashed line), σ = 140 fs (black solid line), and
the optFrog-trace (σ ⋆

= 39.1 fs; red solid line). (b) Comparison of the squared
magnitude analytic signal spectrum to the obtained frequency marginal.

I.e., if the user opts for a window function that is either too
wide or too narrow in comparison to the signal features in the
time domain, only one marginal will approximate its underlying
original intensity well and, as a result, the spectrogram will ap-
pear distorted. This is shown in Fig. 2(a-1), where vanillaFrog
trace using σ = 10 fs yields a good time resolution and a
bad frequency resolution. Conversely, as evident from Fig. 2(b-
1), a vanillaFrog trace using σ = 140 fs exhibits a good
frequency resolution but a bad time resolution. To highlight the
difficulties for the post-processing we present close-up views
on two selected parts of the full spectrogram. In case of, say,
Figs. 2(a-3,b-3), typical challenges for pulse characterization are
given. It is clear that by using a too narrow window function
(e.g. σ = 10 fs), the good time-resolution yielding 55 fs comes
at the expense of a bad frequency-resolution. The converse holds
while opting for a too wide window function. This problem gets
exceedingly difficult when we are faced with the characterization
of pulse interaction processes as shown in Figs. 2(a-2,b-2). In
this regard we emphasized the interaction between a soliton
and a dispersive wave, demonstrating a temporal reflection in
the vicinity of an optical event horizon [25], indicated by the
dashed white boxes in Fig. 2. By visual inspection of the close-
up views the conflicting appearance is immediate, demonstrating
that interpretation cannot be obtained by any empirical approach.

In contrast, if the IAEs of both marginals are minimized si-
multaneously by aid of a numerical algorithm, both marginals of
the optimized spectrogram are found to approximate the origi-
nal intensities per unit time and frequency similarly well. Con-
sequently, the resulting spectrogram provides a most reason-
able time–frequency representation of the underlying signal. To
demonstrate this, the balanced (α = 0) optFrog trace for the
optimized window function, obtained for σ ⋆

= 39.1 fs with Q =

0.39, is shown in Fig. 2(c-1). As evident from the close-up views
(subfigures (a-2), (b-2), and (c-2)), a reliable time–frequency res-
olution is a prerequisite for recognizing the small scale features,
e.g. given by nodal points in the spectrogram due to interference
of incoming and reflected dispersive wave components, caused
by the interaction mechanism.

A direct comparison of the time- and frequency-marginals,
where the former is restricted to the delay range in which the
abovementioned interaction between the soliton and dispersive

Fig. 4. Analytic signal spectrogram obtained using the balanced optFrog-trace
for σ ⋆

= 39.1 fs.

wave prevails, is provided by Fig. 3. So as to qualify the approx-
imation quality of either spectrogram, considering an exemplary
pulse characterization: the time-domain pulse FWHM varies from
281 fs to 55 fs for σ decreasing from 140 fs to 10 fs, respectively.
Further, the FWHM estimate of the spectral range relating to the
soliton part of the signal results in the corresponding estimates
0.048 rad/fs and 0.18 rad/fs. Comparing these values to the actual
pulse width and spectral range (50 fs, 0.046 rad/fs) indicates that
either the time-marginal or the frequency-marginal provides a
bad match. In contrast, the presented optimization scheme yields
85 fs and 0.066 rad/fs, adequately resolving both values. As men-
tioned above, the width of the Gaussian window function results
in σ ⋆

= 39.1 fs. Considering a function of sech-squared type,
resembling the intensity profile of a soliton, the optimization
procedure yields σ ⋆

= 51 fs in well agreement with the width
of the propagating soliton.

Finally, a summarizing figure of the balanced optFrog trace
obtained using the code listing discussed in subsection is shown
in Fig. 4.

4. Impact

Computing reliable spectrograms represents an integral part
in the analysis of the characteristics of ultrashort optical pulses.
The open-source Python package optfrog performs the nontriv-
ial task of computing such spectrograms with optimized time–
frequency resolution. It is based on a computational approach
to parameter optimization in opposition to common trial-and-
error approaches, helping to save time and effort, and yielding
reproducible results. The package is aimed at researchers in the
field of ultrashort pulse propagation and related disciplines where
signal analysis in terms of short-time Fourier transforms is of
relevance. As independent software postprocessing tool it is ide-
ally suited for the analysis of output data obtained by existing
pulse propagation codes, as, e.g., the open source LaserFOAM
(Python) [26] and gnlse (Matlab) [27] solver for the generalized
nonlinear Schrödinger equation.

5. Conclusions

The optfrog Python package provides easy-to-use tools that
yield a time–frequency representation of a real valued input
signal and allows one to quantify how well the resulting spectro-
gram approximates the signal under scrutiny for a user supplied
window function.
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We have shown how optfrog can be used to calculate an-
alytic signal based spectrograms that are optimal in the sense
that their visual inspection exhibits a minimal amount of dis-
tortion, giving a reliable interpretation of the time–frequency
composition of the input signal.

The optfrog software tool, including scripts that implement
the exemplary use-cases illustrated in Section 3, is available for
download and installation under Ref. [17].
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