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Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source
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Einstein-Podolsky-Rosen (EPR) entanglement is a criterion that is more demanding than just certifying
entanglement. We theoretically and experimentally analyze the low-resource generation of bipartite continuous-
variable entanglement, as realized by mixing a squeezed mode with a vacuum mode at a balanced beam splitter,
i.e., the generation of so-called vacuum-class entanglement. We find that in order to observe EPR entanglement
the total optical loss must be smaller than 33.3 %. However, arbitrarily strong EPR entanglement is generally
possible with this scheme. We realize continuous-wave squeezed light at 1550 nm with up to 9.9 dB of nonclassical
noise reduction, which is the highest value at a telecom wavelength so far. Using two phase-controlled balanced
homodyne detectors we observe an EPR covariance product of 0.502 ± 0.006 < 1, where 1 is the critical value.
We discuss the feasibility of strong Gaussian entanglement and its application for quantum key distribution in a
short-distance fiber network.
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I. INTRODUCTION

In this paper we explore entanglement in the quadrature
measurements on a pair of laser beams. This is a concrete
realization of the system considered in 1935 by Einstein,
Podolsky, and Rosen (EPR) [1]: a two-mode system with
a canonical pair of continuous variables measured on each
side, in an overall Gaussian state. It might appear that this
system was ill chosen for the investigation of nonclassical
features of quantum mechanics. After all, in this situation the
Wigner function immediately provides a classical probabilistic
model for all measurements involved, and hence no Bell
inequality can be violated in this setup. Nevertheless, EPR
established some nonclassical features in such a state, for
which a quantitative criterion was proposed by Reid [2]. Her
criterion,“EPR entanglement,” captures a distinction, which
is meaningful also in a broader context and has been called
“steering” [3], after another term used by Schrödinger. For our
paper it is important that this criterion is more demanding than
just establishing entanglement [4]. Moreover, it is applicable
without an assumption about the Gaussian nature of the
state.

II. BACKGROUND

Following Reid, we call a state EPR entangled if

VarA|B(X̂A,X̂B) VarA|B(P̂A,P̂B) < 1, (1)

where X̂ and P̂ are the amplitude quadrature (position)
and phase quadrature (momentum) operators, respectively,
and VarA|B denote conditional variances. These are de-
fined as VarA|B(X̂A,X̂B) = ming Var(X̂A − gX̂B), where the
parameter g is varied to minimize the variance of the
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discrepancy of the measured and the inferred outcomes of
the measurement.

EPR entangled states were, e.g., generated in [5–9] by
type II parametric down-conversion, in [10,11] by type I
parametric down-conversion, and in [12] by the optical Kerr
effect. In all these experiments the nonclassical resource
of the EPR entanglement generation could be described by
the interference of two squeezed modes. In the case of
type I parametric down-conversion, two squeezed modes
were generated in two independent nonlinear cavities and
subsequently overlapped on a balanced beam splitter.

In [13,14] it was theoretically shown that an entangled state
is generated from a pure single squeezed mode for any nonzero
squeezing. EPR entanglement from a single squeezed mode
was theoretically analyzed in [15]. However, experimental
imperfections such as optical loss were not considered in these
works and so far EPR entanglement from a single squeezed
mode has not been experimentally demonstrated.

Here we report on the generation of EPR entanglement from
the interference of a squeezed mode with a vacuum mode,
which we call v-class entanglement [16]. For pure v-class
entanglement the variance product (1) is given by

4

2 + Varasqz + Varsqz
< 1, (2)

where Var(a)sqz describes the variance of the (anti)squeezed
quadrature of the pure state normalized to the vacuum noise
variance. With sufficiently high squeezing this can become
arbitrarily small, while the entanglement, as measured by the
entropy of a subsystem, diverges. Since just a single squeezed
mode is required as the input beam of a balanced beam splitter,
the experimental setup is less involved compared to previous
experiments. We observe a significant EPR entanglement
yielding a value of 0.502 ± 0.006 according to Eq. (1) and
discuss the influence of optical loss on our setting.
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For the symmetric situation, i.e., with two equally squeezed
states as inputs to a balanced beam splitter (so-called s-class
entanglement [16]), it is known that EPR entanglement can
only be observed if the total optical loss on the state is smaller
than 50%, as experimentally demonstrated in Ref. [10]. In
the case of v-class entanglement and under the assumption of
symmetric optical loss, EPR entanglement is observed if

(1 − Varsqz)2(1 − µ)

(
1

3
− µ

)
> 0. (3)

Here µ describes the total optical loss of the initially pure
state. This condition shows that the restriction on the optical
loss for v-class entanglement is more severe than for s-class
entanglement. The loss on v-class entangled states has to
be smaller than 33.3% in order to be able to observe EPR
entanglement. In contrast “inseparability” is present in this
scheme for any loss < 100%.

III. DEMONSTRATION OF EPR ENTANGLEMENT

Figure 1 shows a schematic of the experimental setup.
The quadrature amplitudes of both output beams of the
50 : 50 entanglement beam splitter were detected by means
of balanced homodyne detectors (Alice and Bob) consisting
of two high quantum efficiency (>95%) InGaAs photodiodes
(PDs) each. The phases of the local oscillators of the homodyne
detectors were locked either to the amplitude or to the
phase quadrature of the field. The outcomes were recorded
simultaneously by a data acquisition system at a sample rate
of 500 kHz. For this purpose the signals were mixed down
at a frequency of 5 MHz using a double balanced mixer
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FIG. 1. (Color online) Schematic of the experiment. A
continuous-wave laser beam at 1550 nm (red) was frequency doubled
(yellow) and used to produce squeezed light at the fundamental
wavelength via type I parametric down-conversion. A balanced beam
splitter subsequently mixed the squeezed light with a vacuum mode.
Amplitude and phase quadrature amplitude measurements on the
output beams by means of balanced homodyne detectors proved EPR
entanglement among them. PD: photodiode.

and a low-pass filter at 35 kHz which served also as an
antialiasing filter for the 16 bit data acquisition system. For
each measurement 5 × 106 data points were sampled.

The squeezed light was produced by type I parametric
down-conversion in a periodically poled potassium titanyl
phosphate (PPKTP) crystal. One end face of the 9.3 mm long
crystal was curved with a radius of curvature of 12 mm forming
a half-monolithic cavity together with an external coupling
mirror with a radius of curvature of 25 mm. The curved end
face of the crystal had a high-reflectivity coating for both the
fundamental at 1550 nm and the pump at 775 nm, whereas
the other end face was coated antireflective. The coupling
mirror had a reflectivity of R = 90% for the fundamental and
R = 20% for the pump and could be actuated by means of a
piezoelectric transducer (PZT) to keep the cavity on resonance.
The crystal was temperature controlled to 35 ◦C to achieve
phase matching.

The main laser source of the experiment was a 1 W fiber
laser at 1550 nm. Its beam served as pump for a second
harmonic generation, made of PPKTP as well, to generate the
775 nm pump beam required for the squeezed-light source.
A small fraction of the main laser beam was filtered by a
mode-cleaning ring cavity with a finesse of about 300 and
served as the homodyne detector local oscillators.

Figure 2 presents a characterization of our squeezed-light
source. For this measurement the entanglement beam splitter
was removed and the squeezed field directly characterized by
balanced homodyne detection. The graph shows the variance
of the squeezed and antisqueezed quadrature relative to the
vacuum noise versus the pump power for the nonlinear process,
given in decibels. For a pump power of 325 mW we observed
9.9 dB of squeezing and 18.4 dB of antisqueezing. To the
best of our knowledge this is the highest squeezing value ever
observed at a wavelength of 1550 nm [17,18]. Squeezing levels
larger than 10 dB were observed in Refs. [19–21] at 1064 nm.
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FIG. 2. (Color online) Characterization of our squeezed-light
laser at a sideband frequency of 5 MHz. Shown are the vacuum-
noise-normalized squeezed and antisqueezed quadrature variances
for several light powers of the pump field. The variances were
measured by a balanced homodyne detector and averaged ten times.
The detector’s dark noise was at −22 dB and therefore irrelevant, and
not subtracted from the data. The solid lines show a model for our
data according to Eq. (4).
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FIG. 3. (Color online) Typical time series of measured quadrature
amplitude data. The first row shows the voltages measured by Alice’s
and Bob’s homodyne detector for a vacuum-state input, whereas the
lower two are for a v-class entangled state and its amplitude (X)
and phase quadrature (P ), respectively. The gray areas indicate the
standard deviation of the vacuum noise for a single mode.

The solid lines in the figure represent a theoretical model. The
squeezed (sqz) and antisqueezed (asqz) quadrature variances
of the field can be described as a function of pump power P

by [22]

Varsqz,asqz = 1 ± ηγ
4
√

P/Pth

(1 ∓ √
P/Pth)2 + 4K(f )2

, (4)

where η is the detection efficiency and γ the escape efficiency
of the nonlinear cavity. Pth is the threshold power and K(f ) =
2πf/κ the ratio between Fourier frequency f = 5 MHz and
the cavity decay rate κ = (T + L)c/l with the output coupler
transmission T , the intracavity loss L, the speed of light in
vacuum c, and the cavity round trip length l = 79.8 mm. The
model fits best with a total optical loss of 1 − ηγ = 0.09, a
threshold power of Pth = 445 mW, and T + L = 0.105.

The EPR entanglement of the two light fields A and B
produced by a single squeezed field overlapped with a vacuum
mode was characterized by two homodyne detectors, i.e.,
the two observers Alice and Bob. They simultaneously took
either amplitude quadrature or phase quadrature data. Typical
data are shown in Fig. 3. For the measurement in the first
row the output of the squeezed-light source was blocked and
only vacuum noise was present at both receivers. Hence the
difference (and the sum, not shown) shows a standard deviation
that is a factor of

√
2 above the vacuum noise. The lower two

rows show the measurements on a v-class entangled state. The
amplitude quadrature data as well as the phase quadrature data
taken at Alice’s and Bob’s sites show correlations. It is clearly
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FIG. 4. (Color online) Conditional variances for amplitude and
phase quadratures and the EPR criterion calculated from the measured
data. The dashed lines represent the theoretical model given by
Eq. (4); the solid lines represent the model with additional excess
noise. Both models coincide for the conditional variance of the
amplitude quadrature.

visible that the fluctuations in the right panels are less than
those in the left panels.

Figure 4 shows the conditional variances and their product
for the EPR criterion according to Eq. (1). In general, the
roles of Alice and Bob are not interconvertible; i.e., EPR
entanglement is not a symmetric quantity. Experimentally
we found only minor differences in the phase quadrature,
which probably originated in asymmetric optical loss. The
differences for the EPR entanglement and the X quadrature
measurements would not be visible in the figure, so only one
direction is plotted. Our best value for the EPR criterion is
0.502 ± 0.006 and was achieved for a pump power of 225 mW.
Here we found an entanglement of formation of 1.16 [23].
Given the fact that we used just a single squeezed mode,
our result is quite remarkable. To the best of our knowledge
only one work reported a stronger EPR entanglement [8],
however, based on type II parametric down-conversion and
therefore an equivalent of two squeezed input modes. The
dashed lines in Fig. 4 represent the predictions from Eq. (4). We
observe a considerable difference in the experimental data at
higher pump powers. Comparing the data with different noise
simulations we can identify excess noise in the (antisqueezed)
phase quadrature as the main noise source, shown as a solid line
in Fig. 4. This excess noise probably arose due to the nonlinear
response of the detectors at high pump powers. Effects of phase
noise were only observed marginally and therefore omitted.

IV. DISCUSSION AND OUTLOOK

The high strength of the entanglement generated from just
a single squeezed field at 1550 nm is an encouraging result.
By replacing the vacuum mode in our setup with a second
squeezed mode the entanglement strength will further increase
considerably. Without additional loss, this would lead to an
EPR value of around Var2

A|B = (0.2)2 = 0.04.
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In the present work we have shown that balanced homodyne
detectors can be locked to a certain quadrature phase precisely
enough to measure a conditional variance of just 0.2, see
lower trace in Fig. 4. Furthermore, we have also shown that
the spatial mode of our entangled field can be aligned to
spatially filtered local oscillators in the fundamental Gaussian
TEM00 mode with a visibility of 99.5%. From this result we
infer that a similar high visibility will be achieved between
two squeezed modes as required to generate the envisaged
extremely low conditional variance products. In a previous
experiment a continuous-wave squeezed field at 1550 nm was
coupled into an optical fiber, transmitted, and finally coupled
out again in order to measure its nonclassical properties [18].
This shows that one is able to overcome coupling losses and so
fiber-based distribution of squeezing is feasible for distances
of several kilometers. Furthermore, the result can directly
be transferred to the distribution of Gaussian quadrature

entanglement as analyzed here. A possible application is Gaus-
sian quantum key distribution (see, e.g., [24] and references
therein).

Simulations show that by replacing the vacuum input with
a second squeezed state, key rates around one bit per time bin
will be possible. Since squeezed fields with bandwidths above
100 MHz have already been demonstrated [20] quantum key
distribution with rates in the 100 Mbit/s regime should be
possible with two-mode squeezed states.
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