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Quantifying quantummechanical uncertainty is vital for the increasing number of experiments that reach
the uncertainty limited regime. We present a method for computing tight variance uncertainty relations, i.e.,
the optimal state-independent lower bound for the sum of the variances for any set of two or more
measurements. The bounds come with a guaranteed error estimate, so results of preassigned accuracy
can be obtained straightforwardly. Our method also works for postive-operator-valued measurements.
Therefore, it can be used for detecting entanglement in noisy environments, even in cases where
conventional spin squeezing criteria fail because of detector noise.
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Introduction.—Uncertainty relations quantitatively
express a phenomenon which is ubiquitous in quantum
mechanics: Given two observables A and B, it is usually
impossible to prepare a state such that the respective
outcome distributions of these observables are both sharp.
Of course, for the best known example of this, the position
and momentum observables, the relation is in every text-
book. It was first established by Kennard [1], who turned
Heisenberg’s heuristic ideas [2] into a quantitative state-
ment. In particular, it was his idea to consider the variances
[3] of momentum and position in the state ρ as the
mathematical expression of sharpness. Kennard’s relation
Δ2

ρðPÞΔ2
ρðQÞ ≥ ℏ2=4 is tight; i.e., the constant on the right-

hand side is the best possible because it is attained for
Gaussian pure states.
The aim of our Letter is to provide an efficient method to

obtain the best possible bounds for any given pair of
measurements A, B. This is of direct use in the increasing
number of experiments that reach the uncertainty-limited
regime. A particular application is the certification of
entanglement via steering inequalities [4–6]. In such
applications, even if one does not necessarily need an
optimal bound, it is crucial to have a correct one, i.e., a
bound valid for all states. Any algorithm based on
computing the uncertainties “for sufficiently many states”
will fail to guarantee this correctness. In particular, in high-
dimensional Hilbert spaces, typical states will not have
uncertainties near the boundary, so it is actually hard to
explore the set of uncertainty pairs (Δ2

ρðAÞ;Δ2
ρðBÞ) “from

within.” Our method uses instead an “outer” approxima-
tion, which has the virtue that in every step it provides a
correct bound. The bound is iteratively improved, converg-
ing to the optimal one. This feature sets our method apart
from several recent works, in which ad hoc methods were
used to provide uncertainty bounds. The problem of getting
optimal uncertainty bounds becomes more difficult as the
dimension d of the Hilbert space increases. Indeed, naively
it would seem to be a search problem on the 2d − 2
dimensional manifold of pure states, which in bad cases

might scale exponentially with d. However, we can do
much better. We reformulate the problem as a geometric
problem in three dimensions, namely, of getting a sequence
of outer polyhedral approximation of a certain convex set;
see Fig. 1. Any such approximation gives a valid uncer-
tainty bound. In the iteration step, i.e., for computing a
tighter approximation, one has to compute the lowest
eigenvalue of a certain Hermitian combination of the
operators A and B. Those eigenvalue problems now
determine the scaling of our method as a function of
dimension, which will be a low order polynomial in d.
Moreover, if additional information is available about A
and B, for example, if they are both sparse in the same
basis, eigenvalue computations can be speeded up consid-
erably, and our method will speed up by the same factor.
Tight uncertainty bounds have only been obtained for a

few specific pairs of observables. One example is angular
momentum measurement, where bounds for two or three

FIG. 1. Minimizing the sum of the variances of two observables
A and B can be expressed entirely in terms of the set C of possible
triples ðhAiρ; hBiρ; hA2 þ B2iρÞ (red solid convex body), namely,
as finding that vertical displacement of the surface z ¼ x2 þ y2

(green paraboloid) which just touches C from below. We
successively approximate C by polytopes (blue edges, boxed
vertices) from the outside, and perform the minimization on this
polytope. This gives a converging sequence of correct state-
independent uncertainty relations.
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orthogonal spin components [4,7,8] are known. In those
cases symmetry crucially helps to reduce the problem.
Other examples are qubits [9], for which the low dimension
allows an analytical solution.
There are also variants, in which the sharpness of a

distribution is measured by other quantities than the usual
variance [10–13], for instance, entropies [14–25] and its
generalization tomajorization uncertainty relations [26–28],
or where more than two observables are considered simul-
taneously [29–31]. However, in none of those cases a
general method for obtaining optimal bounds in known.
Methods.—Linear state independent bounds: Since we

are interested in state-independent bounds [32] we have no
use for the often-cited general relation by Robertson [33] (and
its improvements [34]), which have a state-dependent expres-
sion like hi½A;B�i2ρ, or similar, on the right-hand side. Indeed,
any relation of product form Δ2

ρðAÞΔ2
ρðBÞ ≥ c is useless for

state-independent relations in the finite dimension: A and B
have discrete eigenvalues, so the trivial c ¼ 0 is the best
possible bound. We therefore consider bounds of the form

Δ2
ρðAÞ þ Δ2

ρðBÞ ≥ c: ð1Þ

Here, c is the largest constant for which the above holds on any
quantumstateρ.SinceourmethodhandlesarbitraryA andBwe
can also admit factors here, i.e., inequalities of the form
λΔ2

ρðAÞ þ μΔ2
ρðBÞ ≥ cðλ; μÞ. Each of these constrains the

set of uncertainty pairs (Δ2
ρðAÞ;Δ2

ρðBÞ) to a half-plane, and
together they outline the uncertainty set (or, more precisely its
“lower convex hull,” see Fig. 4 and Refs. [7,9,35]).
To see the connection to eigenvalue problems, we write

the optimal constant in Eq. (1) as

c ¼ min
ρ

min
a;b

hðA − a1Þ2 þ ðB − b1Þ2iρ: ð2Þ

Here we just wrote the variance as the minimal quadratic
deviation, using that the minimum with respect to a is
attained at the expectation a ¼ hAiρ. On the other hand, if
we fix a and b, the minimization with respect to ρ is exactly
the ground state problem for the operator in parentheses.
This suggested our previous ansatz [7], which we call the
seesaw algorithm: One alternatingly minimizes with respect
to ρ and ða; bÞ. In many practical cases this converges
quickly, and with the safeguard of trying out several initial
values it seems fairly reliable. However, in general the
method of alternating minimization may easily fail to find
the global minimum, and there is no proof of convergence.
Intermediate results of the seesaw algorithm give an upper
bound on c, but as an upper bound on a lower bound this is
useless for applications. Moreover, there are indications that
the seesaw algorithm actually may get trapped.
Geometry of outer approximations.—In contrast, the

method described in this Letter is an outer method, in
which all intermediate steps give valid lower and upper
bounds on c. Its geometric core is the joint numerical range

C ¼ fðhAiρ; hBiρ; hA2 þ B2iρÞjρ ∈ SðHÞg; ð3Þ

where SðHÞ denotes the state space, i.e., the set of density
operators. Notice first that this set contains all the infor-
mation necessary to compute c from Eq. (2). With the
quadratic functional μðxÞ ≔ z − x2 − y2 of x ¼ ðx; y; zÞ ∈
R3 we find

c ¼ min
ρ∈SðHÞ

Δ2
ρðAÞ þ Δ2

ρðBÞ ¼ min
x∈C

μðxÞ: ð4Þ

Now the set C is clearly convex and compact, because the
state space SðHÞ has these properties, and they are
preserved by the map taking ρ to the tuple of expectations.
The set C is, therefore, completely described by the linear
inequalities it satisfies. To get such inequalities, let r ¼
ðr1; r2; r3Þ be a real vector, and consider HðrÞ ¼ r1Aþ
r2Bþ r3ðA2 þ B2Þ. Let hðrÞ denote the smallest eigen-
value of this operator. Then, for any state ρ, and, hence, the
corresponding tuple x ∈ C of expectations:

r · x ¼ hHðrÞiρ ≥ hðrÞ: ð5Þ

Now letR ⊂ R3 be any finite set of vectors, and consider
the polytope PðRÞ of those points x, which just satisfy the
inequalities (5) with r ∈ R. Since these vectors satisfy
fewer constraints than C, we have C ⊂ PðRÞ; i.e., this is an
outer approximation of C. Denote by EðRÞ the set of
extreme points of PðRÞ, which is also finite. Then

c ≥ min
x∈PðRÞ

μðxÞ ¼ min
x∈EðRÞ

μðxÞ ≕c−ðRÞ: ð6Þ

Here we have used, first, that the minimum over a larger set
is smaller, and, second, that the functional μ is concave, so
that the minimum over a compact convex set is attained at
an extreme point. Hence, for every finite set R of
directions, we get a lower bound on c, which is computed
as a finite minimum over EðRÞ. On the other hand, for each
r ∈ R we get a point x�ðrÞ, with equality in Eq. (5). Then

FIG. 2. Two dimensional sketch of geometry and the basic
algorithm: The set C (red) with its outer approximation PðRÞ
(blue and blue dashed lines) and the extremal points EðRÞ (white
squares). By adding the direction r0, the polyhedral approxima-
tion is refined and the lower bound c−ðRÞ is improved from μðv�Þ
(dashed green parabola) to μðv��Þ (green parabola).
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c ≤ min
r∈R

μðx�ðrÞÞ ≕cþðRÞ: ð7Þ

So for every set R, this procedure estimates the optimal
constant c up to a precision ε ¼ cþðRÞ − c−ðRÞ.
Basic algorithm.—The idea of the algorithm is now to let

the setR grow step by step, which shrinks PðRÞ, so c−ðRÞ
increases and cþðRÞ decreases (see Figs. 2 and 3). The
algorithm terminates when ε is below the target accuracy.
Apart from the set R it is useful to keep track of the

polytope PðRÞ in the form of a list of vertices EðRÞ and
edges. To arrive at the next approximation R0 ¼ R∪fr0g:
(1) Determine a vertex v� ∈ EðRÞ at which μ becomes
minimal, and set

r0 ¼ ∇μjv� : ð8Þ

(2) Solve the minimum-eigenvalue problem for Hðr0Þ. This
provides the bound hðr0Þ for the new inequality (5), and an
expectation tuple x� corresponding to the ground state.
(3) Compute μðx�Þ and update cþðR0Þ, if this is smaller
than the current value. (4) Take the new inequality (5), and
compute the intersections with all current edges of PðRÞ.
This will give some new extreme points for EðR0Þ, and
corresponding edges. (5) Evaluate μ on the new extreme
points in EðR0Þ and update c−ðR0Þ. Terminate if cþðR0Þ −
c−ðR0Þ is as small as desired. Otherwise go to step 1.

All these steps except the choice in step 1 are dictated by
the geometry of outer approximation. The rationale of the
choice (8) (apart from its flavor of gradient search) is that,
whenever possible, it will eliminate the vertex v� from
PðR0Þ, and thus strictly increase c−ðRÞ, unless there are
other vertices with the same value of μ, which have first to
be eliminated in a similar manner. A proof of this statement
is provided in the Supplemental Material [36]. As an
application of our method, we derived the uncertainty
relations for two nonorthogonal spin components; see
the Supplemental Material [36].
Generalization to POVMs.—Our method can be applied

with minimal modifications to generalized measurements,
i.e., observables given by positive operator valued mea-
sures (POVMs). In general, a POVM measurement A is
described by its outcomes faig and corresponding effects
fEig [37,38], where the probability of obtaining the out-
come ai ∈ R is given by trðρEiÞ. The moments of an
outcome distribution are then given by the expectations of
the moment operators AðnÞ ¼ P

iðaiÞnEi. The only differ-
ence from the “standard” projection valued case is that the
identity AðnÞ ¼ ðAð1ÞÞn no longer holds. But this is not
required for our method.
We therefore only need to express variances as

Δ2
ρðAÞ ¼ hAð2Þiρ − hAð1Þi2ρ, and replace in Eq. (3) and the

definition of HðrÞ: A2 by Að2Þ, A by Að1Þ, and analogously
for B.
Application to entanglement detection.—In Refs. [4,5], it

was shown that every state-independent uncertainty rela-
tion like Eq. (4) yields a nonlinear entanglement witness,
when applied to local measurements in a bipartition. Here
the following scenario is considered: Two parties, Alice and
Bob, can perform local measurements A1, A2 such as B1,
B2, on an unknown quantum state ρ. Their goal is to decide
if ρ is entangled or not. For this, they measure the “sum
observables” M1, M2, given by

Mi ¼ Ai ⊗ 1þ 1 ⊗ Bi: ð9Þ

In the POVM case this is generalized to measuring Ai on
Alice’s side, Bi on Bob’s, and adding the outcomes, which
results in

Mð1Þ
i ¼ Að1Þ

i ⊗ 1þ 1 ⊗ Bð1Þ
i ; ð10Þ

Mð2Þ
i ¼ Að2Þ

i ⊗ 1þ 2Að1Þ
i ⊗ Bð1Þ

i þ 1 ⊗ Bð2Þ
i : ð11Þ

Now if ρ ¼ ρA ⊗ ρB is uncorrelated, variances just add up,
so

Δ2
ρðM1Þ þ Δ2

ρðM2Þ ≥ cA þ cB; ð12Þ

where cA and cB are the optimal uncertainty constants for
the observable pairs ðA1; A2Þ and ðB1; B2Þ, respectively.
Since the variance is concave, this inequality holds also for

FIG. 3. Improving the outer approximation of C (red convex
body) by adding more directions to the set R. Every direction
r ∈ R gives a face of PðRÞ (blue polytope). New directions are
chosen such that the vertex with the lowest value of μ will be cut
off. Example generated from randomly chosen A; B ∈ R10×10.
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all convex combinations of uncorrelated states, i.e., for all
separable states [4].
Hence, if Eq. (12) is violated, ρ must be entangled. Of

course, there is also an uncertainty bound cM for the
observable pair ðM1;M2Þ. So the interesting range allowing
the conclusion “ρ is entangled” is marked by

cA þ cB > Δ2
ρðM1Þ þ Δ2

ρðM2Þ ≥ cM: ð13Þ

For angular momentum measurements, Eq. (12) is a
spin-squeezing [39] criterion. As such, it requires the same
experimental data as other spin-squeezing criteria, see
Refs. [40,41], namely, only a measurement of first and
second moments of the total angular momentum. In
contrast to entanglement criteria based on tomography,
these are advantageous in typical experimental implemen-
tation. A popular example are collective spins of many
particle systems [42], where measurements on BECs were
performed.
We further sharpen this criterion by applying it to the

observable pairs ðμA1; λA2Þ and ðμB1; λB2Þ. In this way we
get two convex regions of pairs (Δ2

ρðM1Þ;Δ2
ρðM2Þ):

A larger one containing the pairs achievable with arbitrary
states, given by the bounds of the type cM, and a smaller
one attainable by separable states, given by the bounds of
the type cA þ cB. As Fig. 4 shows, this increases the
parameter range for which entanglement can be certified.
The linear uncertainty bound with equal weights as a
function of the local noise, evaluated for measurementsM1

and M2 on separable and entangled states is shown in the
Supplemental Material [36].
Entanglement detection with noisy detectors.—The gen-

eralization to POVMs increases the possibilities for entan-
glement detection. Suppose for the sake of discussion that

before hitting the detector each subsystem goes through a
known noisy channel. This typically increases variance
[43], so traditional spin squeezing inequalities would often
fail to detect entanglement. Indeed the state after the action
of the noisy channels may well fail to be entangled. On the
other hand, we might be interested in the presence of
entanglement before the action of the noise. This is the
appropriate view when the noise is inherent in the detection
process. The noise is thus applied in the Heisenberg picture,
turning even a standard projection valued measurement into
a proper POVM. This might easily find entanglement,
which would go undetected by a direct application of the
spin squeezing criterion.
These possibilities are shown in Fig. 4 by superimposing

the entanglement detection regions for three different
noise levels of a partially depolarizing channel ρ ↦
ð1 − αÞρþ αρ0, where ρ0 ∝ 1 is the maximally mixed
state, and α is a noise parameter. Increasing α shifts the
diagram towards larger variances, but even for a modest
noise level of α ¼ 0.2 the entanglement detection region
lies entirely in the region where traditional spin squeezing
(corresponding to α ¼ 0) would never find any entan-
glement.
Conclusions and outlook.—We provided an algorithm

for determining the optimal uncertainty bounds for two
arbitrary observables. The precision of the bound is
controlled as a duality gap, so terminating the iteration
at any step gives a certified lower uncertainty bound
together with an error estimate.
The method can, in principle, be extended to more

observables, or to variances based not on quadratic but
higher order deviations. However, this would increase the
dimension of the geometric problem. Thus, at every new
approximation step one has to determine the intersection of
the polytope with the new supporting hyperplane. This
requires a better bookkeeping of the topological structure of
the polytopes, and a local version of the vertex enumeration
problem [44].
The inequalities derived here have an immediate appli-

cation to entanglement detection by generalized spin
squeezing criteria. The possibility to use arbitrary observ-
ables (rather than orthogonal angular momentum compo-
nents) greatly increases the versatility of this method.
It is an apparently open problem how strong the method

becomes with arbitrary Ai, Bj, i.e., is every entangled state
violating a local uncertainty relation. The problem has been
studied carefully for orthogonal spin components [5,6], but
we do not know of a characterization of the (un-)detectable,
possibly entangled states.
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FIG. 4. Uncertainty regions for entangled and separable states.
Superposition of the graphs for different noise levels α: green ¼ 0,
blue ¼ 0.2, red ¼ 0.5. In this examplewe consider local measure-
ments of orthogonal spin-1 components, i.e., Mi ¼ LA

i þ LB
i .
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