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Abstract

Tensor network states (TNS) are states of quantum lattice systems given by a network of
parameter tensors that, when contracted, produces a state in which entanglement is lim-
ited by the dimensions of the tensors. In one-dimensional systems they have revolutionised
numerical methods in the form of the density matrix renormalisation group (DMRG) and
variational matrix product state (MPS) methods. In this thesis, we use MPS together with
variational methods exploiting the MPS tangent space, to numerically study a selection of
quantum lattice systems in one spatial dimension. Obtaining MPS ground states through-
out the parameter space of the system in question, we produce approximate phase diagrams
(phase diagram “sketches”) for the interacting Majorana fermion chain, which describes the
edge of a weak topological insulator, as well as three instances of the anisotropic next-
nearest-neighbour clock (ANNNC) model, which has a description in terms of parafermions
(generalised Majorana fermions) and may be implemented in mesoscopic devices involving
a fractional topological insulator. We find incommensurate floating phases and probable
Berezinskii-Kosterlitz-Thouless transitions in most of these systems, with an unexpected
commensurate gapless phase appearing in one of the ANNNC instances. Overall, we find
that computing approximate phase diagrams in a systematic way using MPS techniques is
an efficient way of characterising one-dimensional models, including their gapless phases.
We also study the one-dimensional O(N) quantum rotor model for the abelian case of O(2),
which represents a limiting case of the ANNNC model, and the nonabelian case of O(4),
which is known to related to nonabelian lattice gauge theory. Indeed, we formulate the
rotor model as a lattice gauge theory on a “Hawaiian earring” graph, using graph manipu-
lation moves to relate it to gauge theories on a cylinder graph. We compare our numerical
results for the mass gap and beta functions of the rotor model to known exact results for the
weak-coupling regime, finding good agreement. We conclude that TNS methods can deliver
accurate results in the case of continuous local degrees of freedom described by compact
groups, where we employ a cutoff in terms of the Fourier modes of the group to obtain a
finite effective Hilbert space. However, our results also indicate that the computational ef-
fort is likely to increase considerably as the continuum limit of such models are approached.
This is not only due to increasing entanglement, but also due to the relevance of higher
Fourier modes.

Keywords: Quantum lattice systems, tensor network states, nonabelian gauge theory.
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Kurzzusammenfassung auf Deutsch

Tensornetzwerkzustédnde (TNS) sind Zustédnde von Quantengittersystemen, die die Form ei-
nes aus Tensoren bestehenden Netzwerks annehmen. Hierbei beschreibt das Netzwerk, wie
die Tensoren miteinander kontrahiert werden miissen um einen Zustand zu ergeben. Eine be-
sondere Eigenschaft dieser Zustédnde ist, dass die Verschrénkung durch die Dimensionen der
Tensoren nach oben begrenzt ist. In einer Raumdimension haben TNS-Methoden numeri-
sche Studien revolutioniert, vor allem in der Gestalt der Dichtematrix-renormierungsgruppe
(DMRG) und verschiedener Variationsmethoden fiir Matrixproduktzustande (MPS). In die-
ser Arbeit werden MPS-Variationsmethoden verwendet, die den Tangentialraum von MPS
ausnutzen, um eine Auswahl eindimensionaler Quantengittersysteme numerisch zu unter-
suchen. Im ersten Teil werden mithilfe von MPS-Grundzustinden aus dem Parameterraum
des Modells approximierte Phasendiagramme erstellt. Untersucht wird eine Kette wech-
selwirkender Majorana-Fermionen, welche den Rand eines schwachen topologischen Iso-
lators modelliert, sowie drei Varianten des anisotropischen Uhrmodells mit Ubernéchste-
Nachbar-Wechselwirkung (ANNNC-Modell). Letzteres kann durch Parafermionen beschrie-
ben werden und besitzt eine mesoskopische Implementierung mittels eines gebrochenzahli-
gen topologischen Isolators. Es werden nicht-kommensurable «schwimmende» Phasen und
Berezinskii-Kosterlitz-Thouless-Ubergiinge in den meisten Modellen entdeckt, sowie eine un-
erwartete kommensurable kritische Phase in einer Instanz des ANNNC-Modells. Insgesamt
wird festgestellt, dass das Skizzieren von Phasendiagrammen mittels MPS-Methoden fiir die
Charakterisierung eindimensionaler Systeme, inklusive kritischer Phasen, sehr gut geeignet
ist. Im zweiten Teil wird das eindimensionale O(N)-Modell untersucht; zum einen im abel-
schen Fall von O(2), welches einen limitierenden Fall des ANNNC-Modells darstellt, und
zum anderen nicht-abelschen Fall von O(4), der mit der nicht-abelschen Gittereichtheorie
verwandt ist. In der Tat kann das O(4)-Modell als Gittereichtheorie auf einem «hawaiischen
Ohrring-Graphen» identifiziert werden. Ferner kann es, mithilfe von Operationen, die den
Graphen umformen, mit der Gittereichtheorie eines Zylinders in Verbindung gebracht wer-
den. Die numerischen Ergebnisse fiir die Masse der ersten Anregung und die Beta-Funktion
werden bei schwacher Kopplung mit bekannten exakten Ergebnissen verglichen. Dadurch
wird gezeigt, dass die TNS-Methoden sogar im Fall von kompakten kontinuierlichen lokalen
Freiheitsgraden akkurate Werte liefern kdnnen. Um die Dimensionen des lokalen Raums auf
eine endliche Zahl zu verkleinern, erweist sich die Beschrinkung der verfiigbaren Fourier-
moden als sinnvoll. Allerdings deuten die in dieser Arbeit vorgestellten Ergebnissen an, dass
der Rechenaufwand bei solchen Modellen in der Ndhe des Kontinuumslimes deutlich steigen
wird — nicht nur wegen steigender Verschriankung, sondern auch aufgrund der steigenden
Bedeutung von héheren Fouriermoden.

Schlagworte: Quantengittersysteme, Tensornetzwerkzustdnde, nicht-abelsche Eichtheorie.
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Introduction

In recent decades, highly general techniques have arisen in condensed matter physics and
quantum information that open up whole new avenues of numerical and analytical invest-
igation. These techniques exploit tensor network states (TNS), which are efficient rep-
resentations of quantum-lattice-system states with limited entanglement. The best-known
numerical application of TNS is the density-matrix renormalisation group (DMRG) [1],
which can be viewed [2] as a variational algorithm applied to a type of one-dimensional
TNS known as matrix product states (MPS) [3-5]. DMRG and MPS methods have been
extremely successful in condensed matter physics [2], where they are used to obtain accurate
information, often at only modest computational cost, about ground states and low-lying
excited states of one-dimensional quantum lattice models. There are also methods for the
simulation of real-time dynamics [2, 6], where TNS methods have an inherent advantage
over commonly-employed Monte Carlo methods, in that they are free of the sign problem
[7]. See the introduction to Chapter 1 for more details on DMRG and MPS, especially with
regard to numerical methods.

On the analytical side, MPS have been used to completely classify gapped phases in
one-dimensional systems [8], whereas a variety of two-dimensional TNS, for example pro-
jected entangled pair states (PEPS) [9, 10] and the two-dimensional multiscale entanglement
renormalisation ansatz (MERA) [11, 12], have been constructed that represent exotic phases
of matter, such as phases with topological order [13-15]. A connection has even been pro-
posed between the ADS/CFT correspondence result in gravity [16] and MERA-like tensor
networks [17]. On a related note, there have also been efforts, increasing recently in intens-
ity, to transfer the successes of TNS in condensed matter physics to quantum field theory,
particularly with an eye towards simulating nonabelian gauge theory [18-27].

In this thesis, we apply variational MPS tangent-space techniques to examine the phase-
structure of a number of related one-dimensional quantum lattice systems. We study the
interacting Majorana fermion chain, or “Kitaev edge”, the axial next-nearest neighbour
clock (ANNNC) model, and the abelian O(2) and nonabelian O(4) quantum rotor mod-
els. The interacting Majorana chain is a very interesting system from a condensed-matter
perspective, since it models the edge of a weak topological insulator [28-35]. It is also
closely related to the ANNNC model which, as a generalised clock model [36, 37], has an
interpretation in terms of generalised Majorana fermions known as parafermions [38]. The
clock model degrees of freedom are planar spins that can point in p different directions,
generalising the two “up” and “down” directions of Ising spins. Because of this, the clock
and ANNNC models can also be interpreted as discretised O(2) rotor models [37], with
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the limit p — oo of a continuum of spin orientations resulting in the full O(2) group of
rotations. We study the rotor models primarily because of their connection to lattice gauge
theories [39], which can be described in terms of the same local degrees of freedom. The
key difference between the rotor models and lattice gauge theories is the addition of a local
gauge symmetry condition for physicality in the latter case. Despite this difference, how-
ever, the physics of the nonabelian rotor model is analogous to that of nonabelian lattice
gauge theory in that both models appear to have a spectral gap for all nonzero values of the
coupling strength and exhibit a “crossover” regime where weak-coupling behaviour abruptly
takes over from strong-coupling behaviour without the occurrence of a phase transition [40].

Each model studied poses its own challenges to TNS techniques. As we show in
Chapter 4, the interacting Majorana chain, or “Kitaev edge”, contains multiple gapless
(critical) phases related to its lying on a self-dual line within a broader space of theor-
ies. We locate a second-order transition between two gapless phases, identifying the central
charges of each using finite-entanglement scaling [41, 42]. One of the phases features incom-
mensurate order, which manifests itself in modulations of the order-parameter correlation
functions, where the ratio of modulation period to lattice spacing can take on irrational
values.

The ANNNC model of Chapter 5, in the p = 2 case of two spin positions, is a well-
known prototypical example of incommensurate order [43]. At higher p we find it exhibits a
rich phase structure, featuring commensurate-incommensurate transitions and Berezinskii-
Kosterlitz-Thouless transitions, as well as a “disorder line” that marks the border of a
region of incommensurate modulations, but is not a phase transition in the usual sense.
The ANNNC model also possesses, for p = 3, a classically frustrated ground state (for zero
external field), immediately adjacent to an apparently critical phase at small nonzero field
strength. This phase may be a quantum spin liquid [44].

The rotor models of Chapter 7 feature an infinite-dimensional Hilbert space at each
lattice site. For the purposes of MPS numerics, this space must be reduced (cut off) in a way
that preserves the relevant physics. Particularly in the nonabelian case, this is nontrivial.
We use the generalised Fourier modes of the rotation group as a basis, implementing a
cutoff while maintaining rotation-invariance by restricting the available modes. Even with
a cutoff, the local Hilbert space dimension remains large, requiring specific optimisations
to achieve computational efficiency. Another challenge relevant for lattice quantum field
theories is that of taking a continuum limit, which corresponds to approaching a critical
point of the lattice model while maintaining accuracy [45]. We approach the continuum
limit of the rotor model in our study, which requires a generous Fourier-mode cutoff and
also a large MPS bond-dimension.

This thesis is organised as follows. In Chapter 1 we introduce block-uniform MPS
alongside some necessary fundamentals concerning quantum lattice systems, before detailing
the improvements made, as part of the work presented in this thesis, to the author’s evoMPS
software package [46], which implements a number of variational algorithms for MPS. We
introduce and discuss phase transitions in Chapter 2, defining key concepts, including the
types of phase transition that are encountered in later chapters, as well as setting out the
scheme of approximate phase-diagram “sketching” using MPS, which we employ in our
numerical studies. In Chapter 3, in preparation for our investigations of the Kitaev edge



and ANNNC models, we then review the “second quantisation” formulation of systems of
identical particles and define Majorana fermions and parafermions, motivating them via
simple condensed matter models in which they describe edge modes. Chapters 4 and 5
document our above-mentioned studies of the interacting Kitaev edge and ANNNC models,
each culminating in phase diagram sketches, which we then discuss. For the ANNNC
model, we also describe a mesoscopic experimental setup that could simulate its physics.
In Chapter 6 we introduce lattice gauge theory, setting out the formal framework needed
for our study of the rotor model. In particular, we discuss the use of “graph-manipulation”
moves in comparing the physics of differently connected spatial graph discretisations of a
gauge theory. Our study of the rotor model follows in Chapter 7, in which we determine
the mass gap and beta functions into the weak-coupling regime from MPS ground states
and excited states. We also examine the excitation spectrum of the nonabelian O(4) rotor
for excitations that are physical under the interpretation of the model as a gauge theory.
Finally, we offer concluding remarks and suggestions for further work.






Chapter 1

Block-uniform matrix product
states

1.1 Introduction

Matrix product states (MPS) are tensor network states (TNS) for one-dimensional quantum
lattice, or many-body, systems [3-5]. MPS represent a parametrisation of a quantum lattice-
system Hilbert space with the key property that, for a finite number of parameters per lattice
site, the entanglement of an MPS is restricted. MPS provide efficient representations of a
huge range of physically relevant states, in particular of ground states of local Hamiltonians
with a spectral gap, which have finite correlation length [47] and finite entanglement entropy
for regions of arbitrary size [48, 49]. In these cases, assuming translation invariance, the
number of parameters required for a representation of a given accuracy remains finite even as
the system size N is taken to infinity [50, 51]. Furthermore, low-lying excited states can also
be approximated well for a wide range of local Hamiltonians [52]. Even in critical systems,
where the correlation length and the half-system entanglement entropy diverge [53], ground
states can be approximated with an accuracy that scales polynomially in the number of
parameters [54, 55].

In the form of the density matrix renormalisation group (DMRG) algorithms [1, 56],
which are equivalent to variational methods applied to MPS [2], MPS methods have proved
extremely successful in investigating one-dimensional condensed matter models, where their
only bias as a class of states comes from the entanglement restriction, which can be adjusted
as needed by changing the bond dimension D, where the number of parameters in the MPS
representation scales as O(D?). There are too many results based on DMRG and MPS
to list them here. Two recent results on which the author collaborated are a study of a
one-dimensional chain of anyons [57] and the development of an MPS ensemble method for
simulating open systems [58]. Numerical MPS methods have also been successfully applied
to lattice quantum field theories, as detailed in Chapter 7.

There have been many interesting developments in numerical algorithms for MPS since
the arrival of the original DMRG algorithm, including methods for real-time evolution and
the direct treatment of infinite systems [2]. The set of MPS for a given bond dimension can
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also be treated as a variational class and used to implement general variational algorithms
such as the time-dependent variational principle (TDVP) [6, 59], which enables both real-
time and imaginary-time evolution, where the latter can be used to obtain ground states.
The TDVP makes use of the tangent space of an MPS, which also provides a natural
set of ansatz states for low-lying excitations [60-62]. Recently, a number of previously
proposed algorithms have been understood in terms of the TDVP [63], including the DMRG
method, which is related to imaginary-time evolution. For a review of MPS (and other TNS)
techniques, see one or more of [2, 10, 64].

In this chapter we begin with a brief overview of key concepts needed before defining
block uniform MPS, exploring the physical quantities that can be easily extracted. The
block uniform MPS formalism is the author’s generalisation of the uniform MPS formalism
used in [6, 61]. We also describe the variational algorithms used in the numerical studies
of later chapters, which are implemented in the evoMPS software package, developed by
the present author and collaborators and available under an open source licence [46]. These
include the nonlinear conjugate gradient algorithm for energy minimisation [21, 65] and the
tangent space [61, 66] excitations ansatz of [60].

1.2 Quantum lattice systems

Matrix product states (MPS) are states of one-dimensional lattice systems that have a
Hilbert space isomorphic to

N
H =) C, (1.1)
n=1

where d is the dimension of the local Hilbert space at each site n. We sometimes refer to
such systems as spin chains, because one-dimensional systems of spins have this form. Pure
states on H can be written as vectors and have the form

W> = Z Csl,,..,sN’3152 cee 5N>7 (12)
51,00,8N

where ¢, . sy € C are the coefficients in a chosen orthonormal basis

<8182 - SN|t1t2 - tN> = 531151532,52 . 58NtN' (1.3)

1.2.1 Correlations and entanglement

The success of the MPS representation depends on its ability to capture states accurately
using a limited amount of entanglement. The key tools we use to investigate the entangle-
ment properties of MPS are connected correlation functions, the Schmidt decomposition,
and the von Neumann entropy, or entanglement entropy, which we briefly define here. For
more details see, for example [67].

Entanglement is responsible for all correlations in pure quantum states. We define
the spatial connected correlation function (which we sometimes abbreviate to “correlation
function”) for operators X,, and Y}, to be

Cxy (n,d) = (X Yisa) — (X0) (Ysa), (14)
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where n labels a lattice site at which the operator X, or Y,, is localised and d is the distance
in lattice sites. We take X, and Y,, to be local in the sense that they have nontrivial support
on a finite interval of the spin chain starting at site n. The angle brackets denote the
expectation value for a state |¥): (X,,) = (V| X,,|¥). If the state features no entanglement
between lattice sites, such that there is only one nonzero coefficient ¢,, s, in (1.2), the
correlation function is zero

Cxy (n, d) =" (X)) (Yosa) = (Xn) (Voga) = 0. (1.5)

In this case, the state is called a product state. If multiple cs,, . s, are nonzero, there is
entanglement in the system with respect to some bipartite decomposition of the Hilbert
space in terms of lattice sites.

We now investigate bipartite decompositions. We can always decompose the Hilbert
space (1.1) of a lattice system into two subsystems A and B such that

H=Ha®Hp. (1.6)

The Schmidt decomposition expresses any pure state |¥) € H in the form

X
0) =D Aalvd) ® [¥3), (1.7)

a=1

where the Schmidt vectors [1%) and %) are orthonormal bases for the subspaces of H 4 and
Hp where the state has support. The \,, which must satisfy >X_; A2 = 1 for normalised
|W), are called Schmidt coefficients and the number of Schmidt coefficients x needed to
represent the state in the form (1.7) is called the Schmidt rank. If x = 1 the decomposition
is trivial and there is no entanglement between subsystems A and B.

The von Neumann entropy or entanglement entropy is defined for mized states p, which
are positive semi-definite Hermitian operators on H satisfying tr(p) = 1 when normalised,
as

S(p) = —tr(plogp), (1.8)

where we use, unless otherwise stated, the base-two logarithm (in this case the matrix
logarithm). The entropy is maximised for the mazimally-mized state p = dim(H) " Tdim(20)s
where we find S = log(dim(#)). The entropy can also be written in terms of the eigenvalues
Yo Of p as

S(p) = _Z’Ya 1og Yo, (1.9)

such that pure states p = |¥)(¥|, which have a single nonzero eigenvalue v; = 1, have
S = 0. Despite the pure state of the entire system having zero entropy, the entropy of the
reduced state on a subsystem H 4 is generally nonzero. The reduced state is given by

pa=trp(p) =Y (La® @3] p (La ® [F)), (1.10)
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where |¢)%) is an orthonormal basis for the subspace of Hp on which p has nontrivial
support. Inserting the pure state p = |U)(¥|, and using the Schmidt vectors [/%) from the
A, B Schmidt decomposition (1.7) as a basis for the support of p on Hp, we find

X
S(pa) ==Y Aalog A, (1.11)
a=1

such that the reduced state on A has nonzero entropy if, and only if, x > 1. We will often
refer to the half-chain entanglement entropy, which is (1.11) with the subsystem A equal

to one half of the system: Hy = ®;}1Vfl ce.

1.3 Block-uniform matrix product states

Matrix product states (MPS) are states of one-dimensional lattice systems in which the
coefficients for the terms of the state, in a chosen basis, are “generated” by a product of
matrices, with one matrix assigned to each basis element at each site. Here, we restrict
ourselves to states of infinite systems that are invariant under translations of L sites. They
live in the Hilbert space (1.1) of an infinite one-dimensional system (N — 00). These states,
which we call block-uniform MPS, are defined as

d—1 +o00
WAl =S ol | TT A7 V5. A5 | vgls), (1.12)
s=0

nN=—00

where A7 is a D x D complex matrix of parameters, D is the bond dimension, and s is
shorthand for s_oo ... 80 51 ...S+00. Each s, runs from 0 to d—1 and enumerates the chosen
orthonormal basis elements |0)...|d — 1) on each site n in the spin chain. The boundary
vectors vy, vr drop out of calculations as long as correlations decay to zero over an infinite
distance, since the bulk is then completely decoupled from the infinitely distant boundaries.
We will shortly see how to ensure this is the case.

Note that we may think of the d matrices Aj belonging to each site as a three-dimensional
tensor Ag, with dx D x D complex entries. Each Ay thus has a physical index s,, of dimension
d in addition to the two matrix indices of dimension D, which we will sometimes refer to
as virtual or bond indices. It is often convenient to represent the state (1.12) as a tensor

network
wial) = G- AH A A AH A} A, (1.13)

where the indices of the tensors A; are represented as “legs” and we use dashed lines to
represent tensors we have left out for brevity. The two horizontal legs of each Aj represent
the virtual indices, whereas the vertical leg represents the physical index. Connecting a
leg from one tensor to a leg of another tensor sets the corresponding indices to be equal
and sums over their value, hence the horizontal connections in (1.13) represent the matrix
multiplication in (1.12). In the language of tensors, summing over a pair of indices to
produce a new tensor is called contraction. The tensor network itself represents a tensor
formed by carrying out the contractions indicated by connecting legs. The vertical indices
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in (1.13) are left dangling (uncontracted): They represent the basis elements for each site
in the Hilbert space. The sum over s, in (1.12) simply assigns the physical indices of the
Ay, to their corresponding basis elements |s;,), so it need not appear in (1.13) as long as we
recall that the vertical indices of the Ay “live” in the Hilbert space.

Note that we can always obtain a fully translation-invariant MPS (L = 1) from an MPS
with L > 1 by combining L physical sites, each with Hilbert space C?, into a single effective
site with Hilbert space (C?)®L = C?". We call this operation blocking.

1.3.1 Computing the norm

Let us use the tensor network notation to help us calculate the norm of the state (1.13).
Since we use an orthonormal physical basis, (U[A]|W¥[A]) contains only a single sum over
the physical indices s,. This means we may simply connect the physical legs of the bra and
ket states:

: (1.14)

where A;, denotes the complex conjugate. Note that this network is equal to a number,
which corresponds to there being no dangling legs (all legs participate in contractions). In
general, the number of dangling legs gives the number of indices (dimensions) of the tensor
represented by the entire network. An important property of tensor networks is that any
sub-network, formed by cutting along legs, is also a valid expression. The norm (1.14)
contains the part

: (1.15)

where k = 1...L and on the left-hand side we have carried out the contraction of the
physical indices, forming a new four-dimensional tensor Ej. If we interpret the pairs of
D-dimensional indices on the left and right each as single indices of dimension D?, we can
think of Ej, as a D? x D? matrix. This matrix encodes a number of important properties
of the MPS and is called the transfer matriz. We can write it in algebraic form as

Ep =Y A} ® A3, (1.16)

where the tensor product represents the combination of the two horizontal indices on each
side of E} into one. Writing (1.14) using (1.15) we get

Che
(W[A]|T[A]) = ieHel s HeHel BT 7
<4

which we note now consists of an infinite matrix product between the boundary vectors.
By defining the block transfer matrix

(1.17)

Ep = Ey Egy1 - By, (1.18)
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where the sums in the subscripts use modular arithmetic, we can make the product uniform.

For E; with any k =1...L, we find
@1:::::::: (1.19)
+00

= (uL ®UL|< I1 Ek> lvr ® TR),

n=—oo

(P[A]|w[A]) =

which implies conditions for Ej if we want the state to be normalised. Firstly, we need that
the largest eigenvalues of E; have magnitude 1, which we can always achieve by scaling the
Aj. Otherwise, the norm of the infinite matrix product will diverge. In the simplest case
E; has only one nondegenerate eigenvalue of magnitude 1, which must then be equal to 1
due to the form of (1.16)!, and where all other eigenvalues have magnitude smaller than 1.
This implies

r(Ex — |re)(lk]) < 1, (1.20)

where r(X) is the spectral radius of X and |l;) and |ry) are the (normalised) left and right
eigenvectors of Ej corresponding to the eigenvalue 1:

Eplri) = re),  (l[Brx = (Il (1.21)

where we generalise to the block transfer matrix E; with the block starting as sites nk. In
terms of diagrams, this is

CEr-@& FTH-D 12

With these spectral properties we have

Jim (Eg)" |vr ® VR) = |rk) (1.23)
Jim (v, @ vr| (Ep)" = (lkl, (1.24)

or in diagrams

(1.25)

assuming the left and right boundary vectors are not orthogonal to |l;) and |ry), respectively.
This gives us
(WIA]|P[A]) = (lk|re) = 1, (1.26)

Without loss of generality, we may treat the L = 1 case. The transfer matrix E; = E; =: E of can be
written as a single term A ® A acting in an enlarged d>D? x d>D? space, with [A](s,ay.(0.5) = [A'as  Vs.
Furthermore, a matrix of the form A ® A has eigenvalues A\j\z, where the \; are the eigenvalues of A.
Thus eigenvalues come in conjugate pairs and, if an eigenvalue is unique in magnitude, it must be real and
positive. Taken together, these properties imply that if £ = ZS A®* ® As has a unique eigenvalue of largest
magnitude, it must also be real and positive.
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where the boundary vectors no longer appear — they are “decoupled”. If we allow multiple
eigenvalues of magnitude 1, in Eg, or in case the eigenvalue 1 is degenerate, we must include
the boundary vectors, since they will be responsible for choosing which components of the
state are present. Since we will be interested in states with decaying correlations, where the
bulk is not correlated with the boundary in the infinite setting, we stick to the simpler case
of a single, nondegenerate largest eigenvalue. We additionally assume for the remainder that
Ej, has full rank (no zero eigenvalues). Furthermore, we will sometime simplify notation by
taking E = E;.

Note that vectors in the D?-dimensional space in which Ej, acts, such as |lz) and |r),
have a matrix form if we “unravel” the doubled D-dimensional virtual legs

P - A 027

({ad@(Bl)]x) = wap

where |a) and |5) are unit vectors in the D-dimensional virtual space.

1.3.2 Fidelity per site

It will be important, particularly in the context of symmetries, to compute the fidelity
(W[A]|W[A]) of two block-uniform MPS |U[A]) and |V[A]). It is calculated precisely as the
norm (1.19), except that an overlap transfer matrix

Ef=E{.. . B, (1.28)

with

H
Il

(1.29)

takes the place of the usual transfer matrix (1.15), where we have simplified by assuming
both MPS have the same block lengths L = L. In general, the two MPS can have different
block lengths, in which case the overlap transfer matrix has a block length equal to the
lowest common multiple of L and L. )

The result (U[A]|¥[A]) depends on the spectrum of E4. Assuming it has a non-
degenerate largest eigenvalue A\, which we can always make real by multiplying A by
a (nonphysical) phase, we can write

(WA A]) = tim (M), (1.30)

where the result is only well defined if |A;| < 1, which is always the case if [¥[A]) and |¥[A])
are normalised. Given this, if |[\;| = 1, the fidelity is one, otherwise it is zero.

We call |\1| the fidelity per block and |\ |'/F the fidelity per site. With numerically
obtained MPS, the per-site fidelity will never exactly equal one due to limited numerical
precision, such that (¥[A]|¥[A]) = 0. We can still, however, approximately check for fidelity
one by testing if the per-site fidelity is close to one.
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1.3.3 Gauge transformations

Block-uniform matrix product states (1.12) are invariant under transformations of the para-
meters
A} = g1ty AL, (1.31)

where go = g7, and the gi are invertible D x D matrices. It is easy to see that the state
|W[A]) is invariant under this parameter transformation, since it amounts to inserting the
identity matrix between each Ay and Apyq in (1.12). Note that, if we are careful not
to count the trivial gauge transformation g = I, and if we include changes in the norm
Ay + cAy (c € C), there are thus 1+ D? — 1 nonphysical degrees of freedom in each tensor
Ay, which therefore contains

dim(Ay)pnys = D*(d — 1) (1.32)

physical degrees of freedom.

We complete this brief section on gauge transformations by noting how the transfer
matrix eigenvectors |l;) and |ry) transform, which we can see by examining (1.25). We find
for the matrix forms (1.27)

l — 9;1_1 Uk k-1, e = gt e (gt (1.33)

1.3.4 Canonical forms

Using gauge transformations it is always possible to bring an MPS into certain canonical
forms in which there is no remaining gauge freedom. We specify one example here: The
right canonical form is defined by

r, =1 and [lk]a,B = 504,8”]6}(16 (1.34)

for all k, which we can achieve using (1.33) as long as Iy, 7, have full rank (the transformation
gr—1 needed to achieve rp, = 1 is defined up to a unitary factor, which we then use to
diagonalise I, thus fixing the g;_1 needed completely).

A canonical form is useful for numerical computations, since it is well-conditioned: It is
easy to find inverses and roots of 7, [ in the form (1.34).

1.3.5 Expectation values and correlation functions

The spectrum of the transfer matrix carries a lot of information about correlations. To see
this, let us compute a two-point correlation function (1.4) using local operators X,, and Y,,.
Calculating the expectation value of a local operator is almost the same as calculating the
norm. As a tensor network it is

(UIA]| X, |P[A]) = (1.35)




where, instead of just connecting up the bra and ket legs where the operator acts, we must
instead contract with the operator. In this example, X, acts on sites X,,;, and X,,1,+1 and
is represented by a tensor X with four physical legs, corresponding to the Hilbert space
basis elements for two sites. We can write the tensor as

X(s)(uw) = (8,1 Xu, v). (1.36)

Using (1.25) we can simplify (1.35) to

= QHELHD = (lES ), (137)

where we summarise the central part as the two-site operator transfer matriz

Efy= ) (stXu,v) (ALA]) ® (A} A}). (1.38)

s,t,u,v
The generalisation to expectation values of two, separated local operators is straightforward

L+d—-1

(VIA]| Xnr Yor+a|Y[A]) = <lL|Ei(,1 < H Ek:> E}:er, Lide1TL+d+2)s (1.39)
k=2

where we assume Y also acts on two neighbouring sites, and we again use modulo arithmetic
when computing subscript indices for the F.

We now have the ingredients needed to compute (1.4). To simplify the notation, we
switch to a fully translation-invariant setting L. = 1, which we can do without loss of
generality by blocking, as described in Section 1.3. Note that, for L =1, E; = F; = E.
The correlation function then becomes

Cx,y(d)

UEX(E)TIEY |r) — UE [r) (B |r) (1.40)
(UES @ = ) UN(E) T~ YU EY |r),

where for the second line we have used that (I — |r)(l|) is a projector that commutes with
E. Tt projects out any components that would not decay under (E)?~!, since the spectral
radius of (E — |r)(l]) is strictly less than one (1.21). This proves that correlation func-
tions generically decay in uniform MPS. Indeed, they decay exponentially, with asymptotic

behaviour )
Cxy(d) 2 (M) = "%, (1.41)

where A9, which satisfies [Aa] < 1, is an eigenvalue of second-largest magnitude of F,
which corresponds to the slowest-decaying component of (1.40). We therefore find that the
correlation length, the rate of decay of the slowest-decaying correlation function, is given by

§=—In[Ag, (1.42)

which is positive and finite for all MPS, as we have defined them.
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1.3.6 Modulated correlations

We now consider the effects of a nontrivial phase on the larger eigenvalues A9, Az, ... of
E on the correlation function (1.40). Let us take a simple example in which Ay = |\2|e!?,

= |A2le7® and |A,>3] < |A2]. We may then neglect the eigenvalues \,~3 in the
correlation function, which simplifies to

Cxy (d) =Pl UEX [ 96Dy, ) g | + €70 D) (1| | EY 1) (1.43)
+O(|As)),

where [y, and ry,, are the left and right eigenvectors corresponding to the eigenvalue A,
of E, which we assume to be non-degenerate. We see that the correlation function is
modulated with phase ¢. Furthermore, if (I|EX|ry,) (L, |EY |r) = (I|EX|ry, ) (x| EY |1), we
have a purely real modulation

Cx.y (d) ~ 2cos(p(d — 1)) [Ag|? L. (1.44)

Modulated correlation functions like this can occur with arbitrary phase ¢ in systems with
incommensurate order. For more information, see Section 2.2.5.

1.3.7 Schmidt decomposition and half-chain entropy

We have seen that, in an MPS, correlations decay exponentially. Now we further examine
the entanglement structure of an MPS using the Schmidt decomposition (1.7). It is easy
to find an expression for a decomposition of an MPS into two semi-infinite halves. For a
splitting between a site k — 1 and the neighbouring site k we have

Al =Y [WE k) @ [Uh ) (1.45)

S G EE EEE-D

However, this does not yet have the form of the Schmidt decomposition. In the Schmidt
form, if we absorb the Schmidt coefficients into the left and right Schmidt vectors [¢% ;).
we have that |7,Z)§‘(k> form an orthogonal set of states for both X = L and X = R. In this
case the overlap of the [¢)§ ;) with the state

A = (Wil © (whyl) 12[4), (1.46)

is a diagonal matrix containing the squares of the Schmidt coefficients. In general, the
9% ) in (1.45) do not form orthonormal sets and A is not diagonal. We can compute A
with the help of tensor networks as

(1.47)




where in the last step we have “unravelled” the network to show that we may treat the

contraction as matrix multiplication from left to right

k) _

AY) = [ 74 (1.48)

where we have used the matrix forms for |lx) and |rg) from (1.27).

Recalling (1.33), we now see that gauge transformations (1.31) act on A to give

=

®) = gl 1 AW (g, (1.49)

where we can obtain diagonal A using unitary gg_1. This gauge transformation modifies
the vectors |¢§ ;) of (1.45) such that they form orthogonal (but not normalised) sets and
brings the decomposition into Schmidt form, such that (1.46) contains the squares of the
Schmidt coefficients Ay:

(B2 = [AW] . (1.50)

In other words, we can find the squared Schmidt coefficients for a splitting of the chain
into two semi-infinite halves between k — 1 and k by computing the eigenvalues of the
matrix [ rg. This immediately gives us the half-chain entanglement entropy (1.9), since
the squared Schmidt coefficients are the eigenvalues of the reduced density matrix for one
half of the system.

Note that the Schmidt rank of the MPS is less than or equal to the dimension of A,
which is the bond dimension D. In this sense, the bond dimension limits the amount
of entanglement in the state. This implies (see Section 1.2.1) a maximum value for the
half-chain entanglement entropy

Shar < log(D). (1.51)

From these considerations it is also clear that, in the limit D — oo, any block-translation-
invariant pure state in the Hilbert space H can be represented as a block-uniform MPS,
since then the Schmidt rank in unlimited for any bipartite decomposition.

In the case where the state |U[A]) is invariant under a symmetry represented by a
unitary transformation consisting of a product of on-site unitaries

U= 8’5 U, (1.52)

n=—oo

there is a further interesting calculation we can perform using the Schmidt vectors \1/1%7 k)
They can have expectation values under the unitary transformation restricted to half of the
chain (¢% | re Uly% k) other than 1, despite (¥[A][U|V[A]) = 1. Given that we have
already performed the gauge transformation (1.49) needed to obtain the Schmidt form, we
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have

n=~k

, (1.53)

where for the final line we form Aj by contracting Ay with U. We can formulate this
expression in terms of the eigenvector |7') of the overlap transfer matrix (1.28) corresponding
to the eigenvalue of largest magnitude. This eigenvalue has magnitude 1 since we are
assuming (U[A]|U|¥[A]) = 1, such that we can set it to equal 1 by multiplying A, by a
phase. We thus have

<¢Rk|® 2 UlV% 1) _ @ (1.54)

<wR,k|¢R,k> Taa

These expectation values are interesting in the context of analysing the Schmidt decompos-
ition, which can reveal useful information about the state in certain cases. See Section 5.3.3
for more details.

1.3.8 Tangent space

Matrix product states form a differentiable manifold [61, 66]. We can find the tangent space
by taking the derivative with respect to the parameters,

a +o0 d—l T rm—1 s
n—1)L+1 n
S Blles g WAD = 3 el | TT A AL] < (15)
t af klaf m=—o0 =0 [n=—00
S(m— S(m— m
AmDEa | prReneDLak | pemL
+00 s
| .ASL”L] vRls),
Ln=m+1

where we have parameterised the tangent vector using tensors Bjp. In case L = 1 this
simplifies to

ztjz aﬁa At] |\II(A)> (156)

+oo  d-1 m—1 +00
Z szl H AS"] BSm[ H AS”] vR|S).

m=—o00 s=0 n=-—00 n=m-+1
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In the sequel we use the notation

L D
A = b g =——]|W[A]), .
|®[A,B]) =) BZ= [Bil 58[14’;]045’\11[ i (1.57)

k=11t=0 o,8=0

where in diagrams we have

1B[A, B]) = io @——@ (1.58)

with the dashed lines on the left and right representing the terms in square brackets in (1.55).
Due to the linearity of the tangent vectors in the parameters B, they can be added by adding
their parameters
|®[A, B]) + |®[A, B']) = |®[A, B + B']), (1.59)
as long as they belong to the same tangent space.
Tangent vectors are invariant under infinitesimal gauge transformations (1.31). Defining

gr(€) = eF =T+ exy, + O(e?), (1.60)

where x, is an invertible D x D matrix, an infinitesimal transformation is performed by tak-
ing the derivative of the transformed state with respect to e. We find that the infinitesimally
transformed state has the form of a tangent vector

0 - -
5 YA @] W |®[A, B]),  Bi = Az — 2p14g, (1.61)

which implies an additive gauge freedom in the tangent vector representation
|®[A, B + B]) = |®[A, B)), (1.62)

with By as defined in (1.61).
Thanks to this freedom, we can restrict ourselves to parameters B}, that satisfy a gauge-
fizing condition, such as

E*|rps1) = = Vk=1...L, (1.63)

where we have defined a more general transfer matrix Eﬁ. This condition additionally
implies

(@A, B]|W[A]) =0, (1.64)

which is straightforward to see, since every term of (®[A, B]|¥[A]) contains (1.63) for some
value of k. To see that the gauge freedom (1.62), together with (1.64), suffices to implement
(1.63), one can insert an infinitesimal gauge transformation into (1.63), using the freedom
in xj to solve the resulting system of equations. This is always possible if the matrix r; has
full rank. For more details see [6, 21, 59].
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It is possible to construct By, that satisfy (1.63), for example using the parametrisation [6]
_1 _1
Bz(bk> = lk 2 bk Vks Tk-ﬁl’ (1.65)

where by contains the physical parameters and has dimensions D x D(d — 1), representing
the number of physical degrees of freedom per site (1.32), and [V}’],3 contains a basis for
the null space of the matrix

D , (1.66)

where we combine the two legs on the left to make one matrix index, so that

(1.67)

The left leg of the Vi tensor has dimension D(d — 1) to match bg. Inserting (1.65) into
(1.63) we find

(1.68)

due to (1.67).
With gauge fixing (1.63) using the parametrisation (1.65), the overlap of two tangent
vectors has the simple form

L
(@A, BO)|@[A, BW)]) = |Z| Y tr[bfbi], (1.69)
k=1

where |Z| is the cardinality of integers, representing the infinite number of blocks in the
chain. In practise, we scale the by such that tr[b}ibk} = 1 so that the tangent vectors are
normalised up to a factor L|Z|, which is the number of sites in the chain.

1.4 Tangent space methods for MPS

In this section we describe the methods used in this thesis, and implemented in the author’s
software package evoMPS [46], for finding variational ground states and low-lying excited
states using block-uniform MPS. All these methods make use of the tangent space of Section
1.3.8. We also detail some improvements made to the [46] software for the purposes of the
studies in this thesis.
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1.4.1 The effective energy gradient

In order to minimise the energy of an MPS given a Hamiltonian H, we compute the effective
energy gradient
0 (V[AJ[H|W[A])
0[A;Nap (TIA][T[A])
which lives in the tangent space (1.55) at |U[A]). We use the gradient to implement two
different methods in evoMPS:

(1.70)

1. The gradient descent method with small, dynamically adjusted steps and
2. the nonlinear conjugate gradient method [65].

The first method is equivalent to integrating the effective imaginary time evolution of the
MPS and was first described for uniform MPS in [6]. The second method was suggested in
[66] and implemented in evoMPS for [21].

The effective gradient (1.70) can be found by performing the minimisation

min || |24, BO)) — HIW[A]) [ (1.71)

where we use the gauge-fixing parameterisation (1.65). The expression to minimise expands
to

(B[A, B(b)]|®[A, B(b)]) + (P[A]|H|W[A]) — (P[A, B(b)]|H|V[A]) — (V[A]|H|®[A, B(b)])
= 1Z| Y trbbr] — (@A, B0)]|H|T[A]) + ..., (1.72)
k

where we have used (1.69) and in the second line we suppress terms that do not feature bL.

We can find the extrema by taking the derivative with respect to b};. First, however, we
must ensure that we can compute the overlap (®[A, B(b)]|H|¥[A]) efficiently. The precise
form is dependent on the form of the Hamiltonian. For the numerical work of this thesis,
it suffices to treat Hamiltonians consisting of sums of local terms h

+oo
H= > hn, (1.73)

n=—oo

where h acts on r neighbouring sites. We find

L
(@[A, BO)ha|[A]) =121 [<lkrE§,':|Kk+1> (KBt + (LT4)
k=1
k
S A, Bl |,
j=k—r+1

where we use the generalised transfer operator from (1.63), (Kj| and |Kj41) contain the
Hamiltonian terms h,, acting to the left and the right of k, respectively, and H; ;[A, B]
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represents overlapping terms in which h;, which acts on sites j to j +r — 1, acts on the site
k where By is present. The middle term with (K}| is zero since we are using gauge-fixed
tangent vectors that fulfil (1.63).

We define, for Hamiltonian terms h that act on r adjacent sites, the generalised block
transfer matrix

H;[A, Bl = | (1.75)

=)=

where we make the dependence on [A] and [B] explicit to emphasise the B-dependence.
The effective right-side Hamiltonian |K}) is

+o0
|Kk) = (Z(EQ")

n=0

L
Z E1 e Ej_lHj [A]|7’j+r>] s (176)
7j=1

where

(1.77)

Due to the spectral properties of E (see Section 1.3.1), we can write the sum of powers of
Ej in (1.76) as a convergent geometric series plus a projector

+oo +00
> (ER)" =D (= [l (e ) (Br)™ + (1) (7| (1.78)
n=0 n=0

= (L= [l (i) (L= Eg)” + [li) (rel,

where (I — E;)¥ is a pseudo inverse, needed since (I — Ej) does not have full rank. Using
this result in (1.76), we have

L
Egt|Ky) = Egt(I=Ey)" |3 Bi...E; 1 H, [A]\m»] , (1.79)
j=1

where (1.63) allows us to drop some terms.
We therefore see that the expression to minimise in (1.71) can be broken down into
solving

B A k
o7 | Bt )+ 37 (LHGA Bl | =0 (180)
k j=k—r+1

for each k£ = 1... L, which involves only simple linear algebra operations.
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Although matrix multiplication in the D?-dimensional space of the transfer matrices in-
volves O(D®) operations, with matrix-vector multiplication requiring O(D*), we can reduce
the computational cost to O(D?) by contracting the tensor networks involving matrix-vector
multiplication in a different order. For example,

(1.81)

d—1
= > Z csel Bty ) AR LAY (AT (AT,

$1...80=0 t1...t,=0

where we have again used unravelling (1.27). Note that the pseudo-inversion in (1.79)
cannot be reduced to matrix-vector multiplication in its exact form. As such, we must
perform it indirectly, obtaining |K}) as a solution of

L
(T = i) (r (I = Eg) [ Kg) = (T = |le)(rel) Z Ej 1 Hj[A]lrjir) (1.82)

using an iterative solver. Since the right-hand side is constant, the costliest operation
performed for each iteration is the matrix-vector multiplication of Ex with |K}), which we
can do using O(D3) operations after unravelling.

Using the unravelled form, we obtain each remaining term in (1.80) as a trace over a
matrix expression that is linear in bT, resulting in a closed form for the optimal by that
minimise (1.71), thus finally obtaining the effective energy gradient in the MPS tangent
space. For more details see [6, 21, 59, 61].

It is useful for the purposes of energy minimisation to determine the norm of the effective
energy gradient

N

n= ((®[4, B]|®[A, B]))?, (1.83)

where By, are the optimal tangent vector parameters solving the minimisation problem (1.71).
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1.4.2 Improvements for large physical dimensions

In the algorithms of [6, 59, 60] the cost of computations involving the Hamiltonian block
transfer matrix (1.77) scales as O(d?"), where r is the range of the interactions in the
Hamiltonian, which is clear from the unravelled form (1.81). If the local Hilbert space di-
mension d is large, this can be the dominant cost in implementing the algorithm, depending
on the bond dimension D. This is the case in our numerical study of Chapter 7, in which
we use d < b5. However, very often the Hamiltonian has a tensor product decomposition
of the form

M
=Y oM@ (1.84)

m=1

(m)

with a small number of terms M, where o ’ is an on-site operator acting on site n.
Indeed, in Chapter 7 we have M < 4. By exploiting this structure we can reduce the cost
of operations like (1.77) to O(Md?). To see this, we rewrite the unravelled form (1.81) as

: (1.85)

where the horizontal legs on the o operators represent the m index in (1.84). The red
dashed line indicates a new way to decompose this network, given that we can decompose
h. We can compute the marked inner part independently of the outer part with scaling in
M and d of O(Md?), resulting in an M D x D matrix which then forms a component of the
next layer, which we also compute with scaling O(Md?). Computing the entire network
thus scales as O(rMd?). The scaling in D is unchanged.

1.4.3 Energy optimisation: Nonlinear conjugate gradient

As noted in Section 1.4.1, we can use the effective energy gradient (1.70) to implement the
nonlinear conjugate gradient (CG) algorithm [65, 68], which efficiently minimises functions
that are approximately quadratic in their arguments, which is the case for the energy
expectation value near to a minimum, where higher order terms can be neglected.
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We do not present the full details of the algorithm here, for which one can consult for
example [65, 68], as well as [21], which contains an overview of the theory in the appendix.
However, since the publication of [21], the author has made a number of improvements to
the implementation. For that reason, we first summarise the algorithm here. Starting from
some point [W[A](™) the algorithm for the nth step is:

1. Compute the energy gradient as a tangent vector |®[A™), BM™]).
2. Compute the factor

(@A™, BM]|@[A™), BM]) — (D[AM, BO]|9[AM, B 1])

"= 1.
0 (®[An=1) Bn=1]|®[A(n—1) B(n=1)]) (1.86)
3. Calculate the next search direction

4. Use a line-search in « to find the energetic minimum of [W[A™ 4 oC™)]).

5. Move to the new position: A(nH) A,gn) + aC,En).

At the first step n = 1 there is not enough information to complete steps 2 and 3. For this
reason we further define C,gl) = —B,gl).

We now describe the key improvements since [21]. The first is the use of the Polak-
Ribiere form (1.86) for S rather than the Fletcher-Reeves form [68]. This form involves
the term (®[AM™ BM]|®[A™) B(=D]) which involves the tangent vector |®[AM™), B(»=1)])
formed by using the parameters B! determined for the tangent space of the previous
location A1) ag parameters for the new tangent space at A In general, even if B(n—1)
represented a gauge-fixed tangent vector at A1 it does not do so at A™. As such we
must compute the overlap without the simplifications of gauge fixing of B("~1):

(®[A, B]|®[A, B']) (1.88)
L B B +oo k+L

= 123 (BB i) + (B S Be)™ | 3. Baor - BByl |
k=1 m=0 j=k+1

where By, is assumed to be gauge-fixed, while By, is not. As for (1.76) we can replace the
sum to infinity over (Ex,1)™ with a pseudo-inverse term, giving

(@4, Bl|®[A, B]) (1.89)
L kL
=zl (lk\Eg£|7”k+1> + (B (T - B)® | Y Eepr .. EjE /|7“a+1>
k=1 j=k+1

which we can compute efficiently.
Making further use of tangent vector overlaps, we also use the gradient in the search
direction to detect the minimum during the line search of step 4. At each trial value of
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a, we compute the effective energy gradient |®[A(«), B(«)]), where Ag(a) = Aén) + ozC,gn),
and compute its component along the search direction

H'(a) = 8o (V[A()] | H[Y[A()]) = (®[A(a), C™M]|@[A(er), B()]), (1.90)

where we define H(a) = (V[A(a)]|H|V[A(«)]). H'(«) goes to zero at the minimum, as well
as indicating in which direction the minimum lies. To compute the overlap between tangent
vectors, we must again take into account that C'™) will no longer represent a gauge-fixed
tangent vector at point A(«), using (1.89).

Although computing the gradient incurs additional computational costs compared to
just computing the energy expectation value, it enables more reliable convergence of the
line search. For the latter we use Brent’s method [65, 69], a root-finding method imple-
mented in the Scipy [70] software package that combines bisection searching and quadratic
interpolation, to search for a root in the gradient (1.90). Brent’s method depends on brack-
eting the solution: Finding at least one point on either side of it. For bracketing, we first
ensure our starting point o = 0 has negative gradient, taking an initial step o« = ¢ and us-
ing polynomial extrapolation (up to degree 3) based on all collected data points, recursively,
to locate the first point of positive gradient.

During the entire line search process, including initial bracketing, we check the Wolfe
conditions [68] to determine if we have already found a good enough step size such that it
would be beneficial to abort early. The Wolfe conditions are

H(0) + c1aH'(0), (1.91)
coH(0), (1.92)

which ensure that the energy has decreased, and that the gradient has increased, such that
H(c) is minimised “sufficiently”. We follow [68] in using ¢; = 1074 and ¢y = 0.1 for a
line search in the nonlinear conjugate gradient algorithm. Aborting the line search when
the Wolfe conditions are fulfilled brings huge savings in computational efficiency, justifying
computing the gradient at each point. In practise, it is often favourable to abort after the
first step ag, for which we use the successful step length from the previous iteration, as long
as it falls within reasonable bounds.

Throughout the line search process, we also store data about each visited value of «,
including results of iterative parts of the algorithm used to compute the effective gradient
(see Section 1.4.1). We use the latter as initial values for the same iterative parts of the
algorithm when visiting nearby values of a. This provides further efficiency gains.

In theory, the nonlinear conjugate-gradient converges in a few steps along a set of “mutu-
ally conjugate” directions if the function to optimise is quadratic. In practise, higher-order
corrections to the function, limited numerical precision, and early abortion of the line search
due to the Wolfe conditions being satisfied, mean the search directions become less optimal
with each iteration, such that one must eventually discard the previous search direction and
restart the algorithm [65, 68]. We implement a number of triggers for a restart:

1. Value of § becomes very large (5 > 100).

2. Positive energy gradient in line-search direction at oo = 0.
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3. Failure to find a root of the gradient in the line search (including failure to find a valid
bracket).

4. Maximum number of steps (usually 20) since last restart exceeded.

Between restarts we do not restore a canonical form for the MPS (see Section 1.3.4). This is
because restoring a canonical form, which is achieved by means of a gauge transformation,
shifts the parameter space in a way unaccounted for by the CG algorithm. We inevit-
ably drift away from a canonical form since finite steps along tangent-vector directions in
parameter space, such as those performed during the line search, generally include gauge
transformations. This is because even gauge-fixed tangent vector parameters that fulfil
(1.63) only fix the gauge for an infinitesimal step. However, performing a gauge transform-
ation constitutes a “change of basis” in parameter space that damages the approximate
conjugacy between successive search directions in the CG algorithm. Unfortunately, not
restoring a canonical form risks poor conditioning of the I and r; matrices (see Section
1.3.4), such that we must set an upper limit on the number of steps between restarts, when
we may perform gauge transformations without concern, since all data on previous CG
steps is discarded.

As a final note, we find that it is beneficial to precondition the state prior to starting
the CG algorithm. This is especially important when beginning from a random state. To
do this, we perform imaginary time evolution [6] by stepping along the effective energy
gradient up until the norm (1.83) of the gradient has dropped below a certain threshold,
say n < 0.01.

1.4.4 Automatic adjustment of block length

The block length L of a block-uniform MPS is set prior to any variational optimisation —
it is not a free parameter and we must set it prior to, for example, energy minimisation. In
this case, if the block length is not a multiple of the true periodicity of the ground state, one
possible consequence is that the optimisation produces an approximately degenerate largest
eigenvalue of the block transfer matrix E, defined in (1.18). Such a degeneracy represents
infinite-range correlations and invalidates the assumptions we made in Section 1.3.1, such
that we can no longer neglect the infinitely distant boundaries of the system. It happens
when the variational optimisation “tries” to build a superposition of translated states that
restores invariance under translations by the block length L.

Fortunately, it is easy to detect this scenario by tracking the difference between the two
largest eigenvalues of E, increasing the block size if it falls below a threshold. At least
for the case of a Hamiltonian with a spectral gap between the ground state and the first
excited state, this is normally enough to avoid choosing an inappropriate block size. In
gapless phases finite-entanglement effects can cause the true translation-symmetry of the
ground state to be disguised in the effective energy landscape: See Section 2.3.2.
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1.4.5 Excitations

We use the excitations ansatz of [60, 62] to compute low-lying excitations using the MPS
tangent space at the MPS ground state. This means first finding a ground state using, say
the CG algorithm described in Section 1.4.3, then using the tangent vectors (1.57) to rep-
resent small perturbations. Tangent vectors are known to accurately represent excitations
that are not part of a continuous section of the energy spectrum [62].

Here, we briefly sketch the procedure: Having found an MPS ground state |¥[A]), we
can write a variational Hamiltonian, using the tangent vectors as trial states, as a matrix
in terms of the tangent vector parameters as

bTHY = (B[A, B(b)]|H|®[A, B())), (1.93)

where we use the gauge-fixing parameterisation (1.65) to reduce the number of paramet-
ers and to avoid unnecessary calculations. The matrix-vector multiplication Hb' can be
computed using the methods described in Section 1.4.1 with scaling in the bond-dimension
O(D3). From (1.69), we know that the parameters b form an orthonormal basis for the
tangent space. This means we can find variational excited states by applying a standard
eigensolver to H. To do this efficiently, we use a sparse eigensolver such as the Arnoldi
method [70, 71] that requires only matrix-vector multiplication.

Although this excitations ansatz is generally applicable to block-uniform MPS, evoMPS
currently only implements it for L = 1. This is all that is needed for the purposes of this
thesis, and it is always possible, at the cost of increased local Hilbert space dimension, to
use blocking to convert any block-uniform MPS into one with L =1 (see Section 1.3).

1.4.6 GPGPU acceleration of computations

The majority of computational time required to execute algorithms like the CG method of
Section 1.4.3 and the excitations method of Section 1.4.5 is spent performing matrix-matrix
multiplication of D x D matrices, requiring O(D?) floating-point arithmetic operations. This
is the optimal scaling in O(D?), and it is possible because the tensor networks involved in
computing expectation values can be unravelled into a sum over the trace D x D matrix
products, as noted in Section 1.4.1.

In recent years, producers of graphical processing units (GPUs) have produced comput-
ing hardware targeted at highly-parallel computational-science applications. These general-
purpose GPUs (GPGPUs) consist of a large number of simple processing units that can work
on small parts of a computation in parallel [72]. As such, they are well-suited to perform-
ing matrix-multiplication on large matrices. During the research period leading up to this
thesis, the author added GPGPU versions of the iterative parts of the CG and excitations
algorithms to evoMPS [46], which exploit GPGPUs from the manufacturer NVIDIA via the
PyCUDA [73] and scikit-cuda [74] packages for Python. These were particularly useful for
the numerics of Chapter 7, which involved large local Hilbert-space dimensions (d up to 55)
as well as relatively large bond-dimensions D up to 256. The calculations were carried out
on NVIDIA Tesla K20 GPGPU devices [72].
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Chapter 2

Phases and phase transitions

2.1 Introduction

In nature, we find that the properties of substances react largely smoothly to changes in
a control parameter, such as temperature, pressure or magnetic field strength. A heated
gas increases in volume as a smooth, analytic function of the temperature, for example.
However, we also encounter sudden, often dramatic changes in properties, such as when we
reduce the temperature of water to the point where it condenses to form a solid. We call the
regimes of smooth behaviour “phases” and sudden, nonanalytic changes “phase transitions”.
In an ideal setting, phase transitions occur at isolated points or lines in parameter space
where the nonanalyticity is present.

In order to distinguish between phases, it is often possible to define an order parameter,
which is usually a measurable quantity that distinguishes between phases by, for example
taking the value zero in one phase and a nonzero value in another. In the ferromagnetic
transition, for example, the order parameter is the magnetisation [75]. Sometimes, quant-
ities that would be very difficult to measure are used as order parameters if they are easily
accessible in, say, numerical simulations.

In this chapter, we define the types of phase transition that are important for the
systems studied in this thesis, describing their key characteristics. The transitions we
concern ourselves with occur in quantum lattice systems and are all zero-temperature phase
transitions, which in quantum mechanics have a rich theory owing to the possibility of
entanglement in the ground state. We discuss their signatures in terms of quantities that
can be extracted easily from a matrix product state (MPS) representation of the ground
state.

2.2 Types of phase transition

Phase transitions are often divided into two main types: First-order transitions and continu-
ous transitions (which includes Berezinskii-Kosterlitz-Thouless transitions) [75, 76]. Both
involve points of nonanalyticity in a physical quantity as a function of a system parameter
(this means the function cannot be written as a convergent power series at this point).
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Since we are interested in zero-temperature phenomena, we follow [76] and define a phase
transition as a point of nonanalyticity in the ground state energy density of a system as
a function of a control parameter, such as the external magnetic field strength. However,
we also discuss thermal phase transitions briefly in the following, as their physics is often
intimately related to that of zero-temperature transitions.

Note that there are transitions that do not fall into the categories listed here. See for
example [77].

2.2.1 First order

First-order transitions involve a discontinuous change in system properties, such as the
discontinuous change in volume of (uniformly) melting ice [75]. Such transitions can occur
at zero temperature in response to a change in a control parameter, and can occur in finite
or infinite systems. At zero temperature, they result from a level-crossing between the
ground state and the first excited state, which may have different properties to the ground
state [76]. The level crossing results in a discontinuous first derivative of the ground state
energy with respect to the control parameter.

The details of a first-order transition are case-dependent — they are determined by the
particular properties of the states that exchange energy levels. It is usually possible to
determine, for each case, an order parameter that can distinguish between the phases.

2.2.2 Continuous phase transitions

A large number of transitions, called continuous phase transitions, are characterised by
scale-invariant fluctuations [76]. By this we mean that, at length scales significantly larger
than the lattice spacing, correlation functions are invariant under spatial scaling transform-
ations

x = cx, (2.1)

where ¢ is a scaling factor. In all the cases studied here, certain correlation functions (1.4)
at continuous transitions have the asymptotic form

C(z) ~a™", (2.2)

which only changes by a factor under (2.1). This is usually referred to as “power-law” or

“algebraic” decay of correlations. In contrast, if scale-invariance does not hold, correlations
typically decay exponentially )
Cz) ~e ¢, (2.3)

where £ is the correlation length, which represents a natural length scale for the system.
Such a scale does not exist if the system is scale-invariant, where (2.2) implies that the
correlation length diverges

& — 0. (2.4)

This state of affairs is called criticality and the points at which such phase transitions occur
are called critical points. Since they involve correlations, continuous transitions can only
occur either at nonzero temperature, where thermal fluctuations are present, or where the
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spatial degrees of freedom are entangled. Zero-temperature continuous transitions are often
called “quantum phase transitions” since, in this case, if we consider only pure quantum
states, the only available correlations are due to the quantum phenomenon of entanglement.
A well-known example of a thermal continuous transition is the ferromagnetic transition:
At the Curie temperature, fluctuating magnetic domains occur at all length scales and the
magnetic susceptibility diverges.

An analogous quantum phase transition occurs in the one-dimensional transverse field
Ising model

N—-1 N
HIsing =—J Z UZO';+1 —h Z Uﬁ, (25)
n=1 n=1

which is defined for the lattice-system Hilbert space of N qubits H = ®ﬁ:1 C?. The o are
the Pauli operators. At |h|/J =1 the Ising model undergoes a continuous phase transition
between a small h phase and a large h phase. We present more details on the Ising model
and its transition in Section 2.2.3.

Conformal field theories

Often, the physics of a system is not only scale invariant at criticality, but is also invariant
under conformal transformations, which are those that preserve angles locally. The sys-
tem then has a description as a conformal field theory (CFT) [76, 78]. In one-dimensional
quantum, or two-dimensional classical systems, the CFT is a Lorentz-invariant field theory
in two spacetime dimensions. The physics of a 2D CFT is highly constrained by the con-
formal symmetry and a large set of such theories can be classified by a single number known
as the central charge. This can be determined from numerical simulations, for example using
matrix product states, as described in Section 2.3.2.

Conformal field theory allows many properties of low-dimensional continuous phase
transitions to be determined, at least for those transitions that have conformal invari-
ance [78].

Finite systems, the spectral gap, and entanglement

Clearly, due to (2.4) continuous phase transitions can only occur in infinite systems. In finite
systems at zero temperature, they manifest themselves as “avoided” energy level crossings,
where the gap between energy levels goes to zero in the limit of infinite system size [76].
Indeed, in quantum systems, scale-invariance implies the closing of the spectral gap in
the system Hamiltonian, that is, the gap between the ground state and the first excited
state. This is because a nonzero gap would represent a natural energy scale, breaking scale
invariance. In critical systems the spectrum is continuous so that excitations with arbitrarily
small energy are available. The system is then said to be gapless. Regions in which there is
a spectral gap, called gapped phases, have exponentially decaying correlations as in (2.3), as
proven in [47, 79]. Note that these statements refer to the low-energy spectrum of the theory.
In a lattice system, the lattice will break scale-invariance at sufficiently high energies.
Another interesting property of one-dimensional quantum phase transitions described
by 2D CFT’s is that, at the critical point, the entanglement entropy S(L) (defined in (1.8))
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of a region of the system with length L diverges as a function of L [53]. This is in contrast to
gapped phases of one-dimensional systems, where S has been proven to remain finite for a
large class of systems [48, 51]. In gapped phases of systems with more than one dimension,
S(L) generically diverges, although it obeys an “area law” in many cases (see Section 1.2.1).

Universality and the quantum-to-classical mapping

Crucially, the physics of systems in the vicinity of a continuous phase transition tends
to be independent of microscopic details of the model, since it is dominated by scale-
invariant effects, which can only emerge at scales far beyond the lattice spacing. As a
result, transitions in models with very different microscopic details can often be described
by very similar relations — a phenomenon known as universality [76, 78]. For example, the
correlation length might obey a power law

£~ e =AY (2.6)

where ) is some system parameter, the phase transition occurs at the critical point A,
and the critical exponent v is universal, that is, shared by transitions in a large class of
models. Such classes are called universality classes. Universality can be understood in
terms of renormalisation [76, 80|, which we briefly discuss in Section 6.7.3. Note that the
central charge of the CFT describing the phase transition point is, where applicable, also a
universal quantity.

Intriguingly, due to universality, quantum phase transitions often fall into the same
universality classes as thermal continuous phase transitions in classical systems [76]. That
this should be so can be seen by comparing the path-integral expressions for quantum ground
state expectation values with classical partition functions: In a number of cases, the ground
state of a quantum system in d spatial dimensions can be related to a well-understood
classical system in d + 1 spatial dimensions [76]. Roughly speaking, the time dimension of
the quantum system, which is continuous, becomes an additional spatial direction when the
path integral is interpreted as a partition function. By discretising this new dimension, we
obtain a classical lattice system. Since the discretisation constitutes a microscopic change,
it tends to be irrelevant to the long range fluctuations that dominate the physics of the
transition.

A well-known example of this “quantum-to-classical mapping” maps the one-dimensional
quantum Ising model in a transverse field (2.5) to the two-dimensional classical Ising model
[76]. The latter has a thermal continuous phase transition, while the former has a quantum
phase transition as a function of the external field strength. The transverse field of the
quantum system plays an analogous role to the temperature in the classical system, as
both serve to introduce fluctuations in the magnetisation. See [76, 81] for more details on
quantum-to-classical mappings.

2.2.3 Second-order phase transitions

Often, in the context of phase transitions “second-order phase transition” is used as a
synonym for “continuous phase-transition”. In this thesis, we use “second-order” to refer to
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the type of continuous phase transition for which the correlation length £ diverges according
to a power law as in (2.6).

In the thermal case, second-order transitions often involve a divergence in the second
derivative of the free energy density (the specific heat) [75, 78]. In quantum transitions
that are related to classical transitions via a quantum-to-classical mapping, the free energy
density corresponds to the ground state energy density [76]. As such, we expect the second
derivative of the ground state energy density to diverge in these cases. Notably, this does
not occur for the BKT transitions described in Section 2.2.4. We may use the signature of
such a divergence to locate second-order transitions, as described in Section 2.3.

Symmetry breaking, order parameters and Landau theory

Since continuous phase transitions are insensitive to the microscopic details of a system, the
“sudden changes” in system properties associated with them must occur in macroscopic ob-
servable quantities. The best-known examples involve a global symmetry of the system [76],
which is a transformation that acts on the entire system simultaneously, such as “flipping
all spins” in a spin system. Under this symmetry transformation, the physics of one phase,
known as the symmetric phase, is invariant, while that of the other symmetry-broken phase
is not. Such a transition is called a symmetry-breaking transition. The order parameter
for a symmetry-breaking transition involving a global symmetry can be chosen to be local,
meaning that only a small region of the system need be measured to determine the phase.
For example, measuring the magnetisation in a small region is sufficient to determine if
symmetry is broken in a uniform magnetic system.

In case of a quantum system we can represent a symmetry as a unitary operator U = U t
that commutes with the Hamiltonian

[H7 U] = 0. (27)

We ignore for our purposes the possibility of antiunitary symmetries, such as time reversal.
Importantly, that H is invariant under U does not imply that all eigenstates are invariant.
Let us take the one-dimensional quantum Ising model, whose Hamiltonian (2.5) commutes
with a global spin flip

N
U=Q)or. (2.8)
n=1

In the absence of an external field (h = 0), the ferromagnetic nearest-neighbour interaction
n (2.5), —=J Y, 0t0f (with J > 0), leaves two orthogonal possibilities for the ground state

Wy =1...MT...) or [Py =]...4...), (2.9)
where | 1) and | ]) form the orthonormal eigenbasis for ¢*, and it is easy to check that
Higing(h = 0)]1)y,, = —J|¥)4,,. We find that these ground states are not individually
invariant under U

Ulg)r = [¥)y, (2.10)

although the space of ground states is invariant, since the basis states transform into each
other. This degenerate eigenvector subspace is characteristic of a symmetry-broken phase
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and is indeed the only way eigenstates of H can break the symmetry, given (2.7). Note
that the ground-state degeneracy is equal to the dimension of the symmetry group, which
is Zs for a spin-flip, and has dimension 2. This is also a generic feature of symmetry-broken
phases.

In the limit A — oo of infinite field strength, the Ising model has a unique ground state

[y =1 ++4+...), (2.11)

where |+) = %(\ 1) + | 1)) is the eigenstate of o with eigenvalue 1, so that Higing(h —

N
Ulp)y = <®0g>\---+++...>:y¢>+, (2.12)
n=1

which is characteristic of a symmetric phase.

Some kind of phase transition must exist between these two limits, as the ground state
degeneracy can only change discontinuously. Indeed, the Ising model undergoes a second-
order quantum phase transition at the critical point |h|/J =1 [76].

An approximate theory of continuous, symmetry-breaking phase transitions of classical
systems was developed by Landau in the 1930’s [82, 83]. Landau theory has been instru-
mental in understanding this phenomenon, helping to explain universality and successfully
predicting critical exponents in many cases. Many results carry over, via the quantum-to-
classical mapping, to quantum systems. However, the “mean-field” approximation made by
Landau, which ignores fluctuations, can lead to false predictions [76]. Landau theory also
assumes a global symmetry and a local order parameter. At least in the quantum case, not
all symmetry-breaking transitions have corresponding local order parameters. In Chapter
5 we provide examples of systems with nonlocal, string order parameters that are related,
via a unitary duality transformation, to systems with local order parameters that fit the
Landau paradigm.

2.2.4 Berezinskii-Kosterlitz-Thouless transitions

There is another important kind of continuous phase transition, which occurs in one-
dimensional quantum (two-dimensional classical) models with a continuous symmetry. It
has been proven quite generally, that these systems cannot undergo symmetry breaking (a
ground state cannot break the continuous symmetry) in the presence of fluctuations, either
quantum or thermal [84, 85]. However, such systems may still posses a continuous trans-
ition, as discovered by Kosterlitz and Thouless, as well as Berezinskii, in the early 70’s [86,
87]. They found a type of transition in which the correlation length diverges exponentially

as
_ -1/2
£~ exp lb(A)\)‘c) ] (2.13)

where ). marks the phase transition point between a phase with a spectral gap (a “gapped”
phase) and a gapless phase — a phase in which the system remains critical, in the sense
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that the correlation length stays infinite and the spectral gap is always closed. The entirety
of this phase is described by a CFT. We call such a transition a Berezinskii-Kosterlitz-
Thouless (BKT) transition. BKT transitions are also peculiar in that the nonanalyticity
in the ground state energy density is expected to be an essential singularity [87], so that
no derivative of the energy diverges. Hence, BKT transitions are sometimes called “infinite
order”.

A prototypical model with a BKT transition is the 2D classical XY model [88], but there
is also good evidence for its occurrence in the p-clock model (3.46) for p > 5 and it has been
found in other models possessing a U(1) symmetry [76]. We study the 1D quantum versions
of both models, related to the classical models via a quantum-to-classical mapping [76], in
this thesis: The ANNNC model of Chapter 5 is a generalisation of the clock model and the
O(2) rotor model of Chapter 7 is, in its classical variant, equivalent to the XY model.

2.2.5 Incommensurate order

Another interesting type of continuous phase transition, which we encounter in Chapters 5
and 4, is the commensurate-incommensurate (C-IC) transition between phases in which the
order parameter correlation function oscillates in space with a period that is commensurate
with the underlying lattice, and phases in which correlation functions oscillate with a period
that can be incommensurate with the lattice. The term “incommensurate” refers to the
spatial periodicity taking irrational values when expressed as multiples of the lattice spacing
a, implying that the pattern never repeats on a lattice site. For a review of incommensurate
order, see [89].

In the cases we study, the C-IC transition is a second-order quantum phase transition
of a one-dimensional system. It separates a commensurate gapped phase from an incom-
mensurate gapless phase in which the order parameter correlation function takes the form

C(x) ~ z "cos(kz + ¢), (2.14)

where ¢ is a phase shift and the modulation wavevector k varies continuously as a function
of the control parameters, thus also taking on irrational values. This gapless phase is
called a “floating” phase, referring to the intuition that, in such a phase, spatial structures
must be effectively “detached” from the lattice so that they are no longer constrained by its
period. One can imagine these structures “floating above” a lattice potential. It is then also
natural to suppose that the continuum of excitations making up the spectrum corresponds
to arbitrarily-sized translations of these floating spatial structures.

A prototypical model exhibiting a C-IC transition is the axial next-nearest-neighbour
Ising (ANNNI) model (5.5), which is a special case of the “ANNNC” model studied in
Chapter 5. The ANNNI model possesses a gapped incommensurate phase, sometimes called
a liquid phase, adjoining the gapless, floating phase. The transition between these two
phases is a BKT transition [43, 90].
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2.3 Sketching phase diagrams using MPS

Being able to easily obtain an approximate phase diagram for a quantum system is of great
utility. It forms a basis for more detailed investigations of a model, or may be used as a
prediction for experiments. Certain phases of matter are also potentially of great practical
value, such as superconducting phases.

In this section, we discuss our employment of numerical matrix product state (MPS)
methods for “sketching” phase diagrams for one-dimensional quantum systems. This in-
volves computing approximate ground states in block-uniform MPS form, using the vari-
ational method described in Section 1.4.3, along lines in the parameter space of the model in
question. We then examine a number of quantities that are easily obtainable from the MPS
(see Section 1.3), as a function of the parameters, for indications of phase transitions. This
allows us to locate transitions, after which we attempt to characterise the phases found.
We mitigate errors due to finite entanglement effects by looking for consistency between
different transition indicators and plausibility of the emerging phase diagram structure. As
well as line scans, we also make limited use of finite entanglement scaling (FES) to sep-
arate gapped and gapless phases, which further aids consistency checks. We apply these
techniques in Chapters 4, 5 and, to a lesser extent, Chapter 7.

2.3.1 Scanning lines in parameter space

We build up a phase diagram sketch from line scans. That is, we visit, in order, a finite
number of points belonging to an interval of interest along a line in parameter space, finding
an MPS ground state at each point, with a fixed bond-dimension D, and recording the values
of various quantities of interest. In a parameter space with two or more dimensions, we
scan many lines to build up a grid of approximate ground states. We converge each state
past some threshold value of 7, the norm of the effective energy gradient (1.83).

To efficiently find MPS ground states along a line, we make use of the ground ground
state from the previous point as an initial state for the next point along the line. Within a
single phase, this speeds up the scan immensely, since the previous state is usually similar to
the next. However, this recycling of states can also cause hysteresis effects because there are
cases where the previous state is, at least approximately, a stationary point in the effective
energy landscape that is not the ground state. We cannot distinguish such a state from the
ground state because 7 is close to zero in both cases. This is clearly a possibility at a first-
order transition, where ground states and first excited states cross over: When passing the
transition, the previous ground state approximates the new first excited state well, and may
be a local energetic minimum due to finite entanglement effects (see Section 1.4.1). We can
thus end up “stuck” in the excited state until we reach a point where the gradient increases
beyond our convergence threshold. To mitigate hysteresis effects, we scan along lines in
both directions, taking the lowest energy result at each point as the better approximation
to the ground state.

The quantities of interest we record for each ground state are the energy density and
its derivatives with respect to the line parameter, the half-chain entanglement entropy,
the correlation length and, if known, the expectation value and correlation functions of
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order parameters for indications of a phase transition. These tend to exhibit discontinuous
or nonanalytic behaviour near a phase transition in a way that approximates the exact
behaviour of these quantities.

Note that, in fixing the MPS bond dimension D for a line scan, we are neglecting
correlations that may be important for a good approximation to the ground state (see
Section 1.3.7). This is analogous to the mean-field approximation, in which correlations
are also neglected [76]. In the 1D quantum setting, mean-field theory corresponds to using
MPS with D = 1, which prevents any quantum correlations, as implied by (1.51). Since we
generally use 8 < D < 32 for our line scans, our approximate phase diagrams can be much
more accurate than those obtained using mean-field theory. Indeed, in principle we are able
to adjust the amount of entanglement available in the MPS by altering D as needed to
obtain the required level of accuracy. This also opens up the possibility of examining how
quantities scale with D, which can reveal more information about phases than a line scan.
This is known as finite entanglement scaling (FES), and is discussed in Section 2.3.2.

Despite the ability to increase entanglement as needed, it is important for the inter-
pretation of line-scan data to consider what kind of effects a fixed, finite D can have on
the behaviour of quantities near phase transitions. In fact, in uniform MPS at fixed D,
nonanalytic behaviour can occur not only due to the presence of a genuine phase transition
of the system, but also purely as an artifact of finite entanglement. Indeed, such effects can
shift the apparent location of a phase transition away from its physical location in para-
meter space [21, 41] or lead to nonphysical symmetry-breaking in a gapless phase [91-93].
For this reason, we refer to nonanalytic behaviour in finite-D uniform MPS as a pseudo-
transition, which may or may not correspond to a true transition in the model. That finite
entanglement effects can lead to pseudo-transitions seems natural when we consider that
they modify the effective energy landscape — the effective ground state for MPS with a
particular D is generally not the exact ground state, and can differ from it in unexpected
ways. For example, a lower energy state from one symmetry sector may become inaccessible
due to finite entanglement, such that a state with less entanglement from another symmetry
sector is favoured [21]. By using FES together with line scans, looking for consistency of
pseudo-transitions in different physical quantities as well as in the data from neighbour-
ing line scans, and by judging the plausibility of the emerging phase structure on physical
grounds, we hope to avoid being misled by finite entanglement artifacts.

We now describe in more detail the various phase-transition indicators we use to obtain
transition locations from line scans.

Energy density and derivatives

Given that our MPS effective ground states are close to the true ground state, the ground
state energy density (h) is one of the best-approximated quantities available: The energy
converges to the minimum of the finite-D effective energy landscape quadratically in 7, the
norm of the effective energy gradient (see Section 1.4.1), since near the minimum higher
order terms in the Taylor expansion of the energy become irrelevant. This implies that
errors due to poor convergence of the MPS ground state are less important here. The same
is not true, however, for any error due to insufficient entanglement in the approximation.
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First-order phase-transitions can be detected by looking for discontinuities in the first
derivative with respect to the line-scan parameter (see Section 2.2.1), after eliminating
hysteresis effects. The first derivative can be obtained from the state directly due to the
so-called Hellmann-Feynmann theorem (see, for example [94]), which states that d%(iﬁ\H |v)

can be computed as an expectation value of %H for eigenstates [1)) of H, or of the effective,
variational Hamiltonian. Since first-order transitions between gapped phases do not involve
an increase in entanglement near the transition, we can often obtain their location to high
precision using MPS.

Second-order transitions (see Section 2.2.3) can be detected by examining the second
derivative of (h), which we approximate using finite-differences of the first derivative. In
the Ising case, as well as others, this diverges at the transition, and we expect signs of
divergence to show up in finite-D MPS, such as a clear cusp minimum. We confirm this
expectation by testing on models, such as the Ising model or the three-state Potts model
(see Figure 5.7), where the location of a second-order transition is known.

Half-chain entanglement entropy

As described in Section 2.2.2, the half-chain entanglement entropy Spaif is finite in gapped
phases and diverges on approaching criticality. As such, it is a good indicator of phase
transitions involving at least one gapped phase in one-dimensional systems. However, it is
also strongly impacted by the restriction to finite-D MPS (see Section 1.3). Nevertheless,
Shaif Will be small when the exact ground state is close to a product state and large when
the system is critical, as the MPS attempts to approximate a state with Spar — 00. As
such, a finite-D plot of Sy in parameter space provides a useful outline of the possible
location of gapped and gapless regions. Like the second energy derivative, it shows signs of
divergence at a second-order transition between gapped phases, exhibiting a cusp peak in
known cases (for the Potts model, see the p = 3 case of Figure 5.7).

Interestingly, in known cases of BKT transitions from gapped into gapless phases (the
clock model — see Section 5.3.2), we observe that Spai¢ also sometimes shows a peak (see
Figure 5.7). This peak appears to coincide with the (presumably nonphysical) occurrence
of symmetry-breaking.

Correlation length

The correlation length £ is another useful indicator of transitions that is easy to obtain
for a uniform MPS (see Section 1.3.5). We consider its inverse 1/¢, the exact value of
which goes to zero at criticality (see Section 2.2.2). The finite-D MPS approximation
prevents our numerical value of 1/£ from becoming zero but, it tends to show signatures of
nonanalyticity at second-order phase transitions, where it typically hits a cusp minimum
(again, see Figure 5.7).

At BKT transitions 1/¢ is still useful as an indicator of where the gapless phase is located
but, due to its exponential behaviour in the absence of approximations (see Section 2.2.2),
it is less useful for locating the transition point. To fit the expected scaling using numerical
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data in such a way as to obtain a good estimate of the transition location would require
performing FES for a large number of points.

Modulation wavevector

Since we can obtain the wavevector of dominant correlation functions from the MPS transfer
matrix (see Section 1.3.6), we may use the appearance and disappearance of modulations
to indicate a change of phase. At a C-IC transition (see Section 2.2.5) the modulation
wavevector of the order parameter correlation function exhibits a power-law behaviour as
a function of the system parameter [89] which can be observed in the MPS approximation.
For examples of this, see Figures 5.4 and 5.5.

Order parameter

If we know, or can identify, an order parameter for a particular transition, its expectation
value can also be used to locate it. How easy it is to precisely locate the transition depends
to some extent on the order parameter critical exponent [21], but for a phase-diagram sketch
this is less important, where we make use of it together with other indicators in order to
build up evidence for a transition. Since it is typically zero in one phase and nonzero in
another, one does not need excessive precision to distinguish those phases using its MPS
approximation.

2.3.2 Finite Entanglement Scaling (FES)

Finite entanglement scaling describes how physical quantities scale with respect to an “en-
tanglement cutoff”, such as the MPS bond dimension D, which limits the half-chain entropy
as in (1.51). Since the MPS ground state tends towards the true ground state as D — oo,
we expect any physical quantity to tend towards its exact value as we increase D (although
there is also some error from imperfect convergence of the energy minimisation). Further-
more, in the case where the exact ground state is described by a CFT (see Section 2.2.2)
there is a simple prediction for the scaling of the correlation length & and the half-chain
entropy Shar with the bond dimension, which allows us to extract the central charge of the
CFT from a set of ground states with varying D.

The result in question, due to Calabrese and Cardy [53, 95|, is a prediction for the
half-chain entropy “near” a critical point described by a CFT

C
Shalf ~ 6 logé&, (2.15)

where £ is the correlation length and c is the central charge. The underlying assumption is
that the state is sufficiently close to the CFT ground state so that it can still be described
by a relativistic (massive) quantum field theory. It is also assumed that ¢ is large compared
to the lattice spacing a. It is natural to ask whether a uniform MPS approximation to
the ground state fulfils these criteria sufficiently well. Indeed, this relation has recently
been tested with MPS (and DMRG) data [41, 42] on models where the CFT describing the
critical system is known, finding good agreement.
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Since, in the kind of systems we examine, gapless points, lines and phases tend to be
described by a CFT, testing (2.15) is a useful way of checking for gaplessness. In a gapped
phase, both £ and Spar will show saturation as D is increased as they both tend towards
their exact, finite values (see Section 2.2.2) and will fail to obey (2.15). Because (2.15)
can only be fulfilled for arbitrary D if Sya¢ and £ diverge as D — oo, such fulfilment
is a sufficient condition for gaplessness. For this reason, we examine the scaling of Sy
and £ as a function of D at chosen test points in the parameter space of a model. If the
scaling suggests a CF'T description of the system, we count this as evidence that the region
containing that point is gapless. In these cases we also obtain an estimate for the CFT
central charge c. Of course, it is possible that we misidentify a plateau in .S or £ as a sign
of a gapped phase when it is merely an low-D artifact such that CFT scaling is resumed
asymptotically. Such risks always remain when using inexact methods and we can only
attempt to avoid them by testing to sufficiently large values of D, as well as looking for
consistency with other quantities.

Another way in which we use FES is to detect significant D-dependent shifts in the
location of phase transitions. We scan lines in parameter space in at least two bond dimen-
sions with D > 8, going to larger D if we detect a significant shift in a transition. Since we
only attempting to sketch the phase diagram, we are satisfied if the shift drops below a few
percent of the size of the sketched region of parameter space.

Note that we use the dynamical bond-dimension expansion scheme described in [61]
in order to obtain an initial MPS with a larger D from an MPS with a smaller D. This
improves the computational efficiency of calculations with large bond dimensions and also
helps to ensure, in the case of broken symmetries, that we remain in the same degenerate
eigenstate, rather than jumping into another. This is particularly important for broken
translation symmetry and the half-chain entropy: We must take the entropy for a splitting
of the chain at the same location within the translation-invariant block when performing
FES.
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Chapter 3

Majorana fermions and
parafermions

3.1 Introduction

It is usual for quantum lattice systems (see Section 1.2), which consist of distinguishable
parts (localised spins in a magnet, for example), to have modes of excitation that obey the
statistics of identical quantum particles. These quasiparticles may be bosons or fermions,
but there are also other possible emergent degrees of freedom. In this chapter we describe
the emergence of Majorana fermions and their generalisation, parafermions, as edge modes
in simple one-dimensional quantum lattice systems.

In experiment, the first realisations of Majorana and parafermion modes have occurred,
or are likely to occur, in naturally fermionic systems, such as superconducting devices.
Recently, there has been a great deal of interest [96, 97| in realising these exotic fermion-
like degrees of freedom, which is largely due to their potential uses in quantum information
processing [98], where they may prove useful for performing quantum computations. They
could also be used to build quantum memories [99]. In the last few years, there has been
some experimental evidence of the presence of Majorana edge modes in superconducting
wires [100-103] and there are a number of proposals for the isolation of parafermion modes
[104-107] in superconducting systems.

Since Majorana and parafermion modes are expected to occur in superconductors, one
might ask why we approach the subject via spin systems. One simple reason is that spin
systems are easy to treat numerically, for example using the tensor network techniques of
Chapter 1. Indeed, this is what we do in Chapters 4 and 5.

We begin the chapter with a review of the “second-quantisation” description of systems
of identical particles before introducing Majorana fermions and parafermions. We then
show how they emerge as localised degrees of freedom in the Ising model and the clock
model, respectively.
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3.2 Systems of many identical particles

Here we briefly review the theory of bosons and fermions. This section is partly based on
lecture notes by Eduardo Fradkin. For further reference see the (German) lecture notes by
Reinhard Werner as well as [108-110].

Bosons and fermions are two kinds of quantum particle distinguished by their statistics
or, equivalently, the behaviour of the quantum state of many such identical particles under
their exzchange: Bosonic wavefunctions are symmetric under particle exchange and fermionic
wavefunctions are antisymmetric. We may describe a system of many identical particles
using the formalism of “second quantisation”.

Since the particles are assumed to be identical, a physical many-particle state can be
specified by the number of particles occupying each possible single-particle state, where the
single-particle states might be positions in a lattice, or positions and spins for fermionic
particles that have spin (they need not, in a nonrelativistic setting), or Fourier modes, for
example. We will generally refer to single-particle states as modes. We use the notation

[¥) = |m1 n2...nk) (3.1)

to denote a many-particle state in which nj particles occupy the mode |k) and there are K
possible single-particle modes. Many-particle states of the form [¢) are called Fock states
and live in Fock space, which is the Hilbert space built from the direct sum of spaces of each
possible particle number

Fi(H) = é S HEN, (3.2)
N=0

where Sy is the symmetrising (+) or antisymmetrising (-) operator that restricts each N-
particle space H®V to the space of valid bosonic or fermionic states, respectively. The
(anti)symmetrising is with respect to the N factors of H in H®N, each of which represents
one particle. The assignment of a particular factor to each particle constitutes a labelling of
particles, making them distinguishable by their position in the tensor product. This would
result in particle statistics of nonidentical particles. To avoid this, S+ makes the particles
indistinguishable by applying all possible permutations of the tensor factors, creating a
superposition

St([k1) © k) @+~ ® [kn)) = FZ (£1)°4 P kp)) @ [kp) @ -+ @ kpvy), (3:3)

where each |k, ) represents a single particle in mode k,, and we sum over all N! permuta-
tions P of N particles. The function odd(P) is 1 for odd permutations and 0 for even.
Assuming |1),...,|K) form an orthonormal basis, we note that the state is only normalised
if each mode only occurs once (if each particle is in a state orthogonal to the rest). This is
intentional and we will take care of normalisation in the final notation.

The ordering of the |k,) in the state on the left-hand side of (3.3) represents an initial,
unavoidable labelling prior to symmetrisation. This initial labelling is of no consequence for
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Sy, but is a nontrivial choice for S_, where it determines which terms in the sum receive a
minus sign. This is important since it implies for example

Sx(17) @ k) = £5= (k) @ 17)), (3-4)

where j and k can be equal. As such, we must include the choice of initial labelling in the
Fock-state notation of (3.1). To do this, we will define the Fock states to have a particular
choice of initial labelling

1

S+(I1)®™M @ [2)¥" @ .- @ |K)E"E), (3.5)
711! n2! .. .nK!

|7”L1 no.. .nK>

where the additional coefficient ensures the states are normalised for all possible values of
ng, assuming that the modes [1) ... |K) form an orthonormal basis. Since states of differing
overall particle number N are orthogonal by definition (3.2), the Fock states (3.5) themselves
form an orthonormal basis of Fock space:

<n1...nK]m1...mK) :5n1m1~-5nKmK‘ (36)

The full structure of the bosonic and fermionic Fock spaces are captured by creation
and annihilation operators a;r- and a;j. The creation operator adds a new particle, in mode
7 =1...K, to a many-particle state:

af S(lkr) ® [k2) @ -+ @ [kn)) = S (1) ® [k1) @ [ko) @ - @ [kw))- (3.7)

Beginning with the vacuum state of zero particles |2), we can write any (anti)symmetrised
state of IV particles using creation operators

af,al, - af, 1) = Sx(kr) @ [k2) @ - @ k), (3.8)
where the ordering of the a}; now represents the initial labelling choice. Note that the
various k, = 1,..., K can take the same values, for example k1 = ko = 5, in which case

more than one particle in state 5 is created. We can now rewrite (3.5) using the creation
operators

1
|nyng...ng) = TR (aJ{)nl (ag)m . (ak)"K|Q>, (3.9)
which suggests writing the vacuum state as
|2) =101 02...0x). (3.10)

From (3.9) we see that, for a state with particles occupying only one mode j,

allng) = \/nj +1 |nj +1). (3.11)

As for the annihilation operator, from (3.9) and (3.6) we find

(njlaglm;) = \/nj 4+ 1 0n;41,m; = /My Onjm;—1 = /mj{njlm; — 1), (3.12)
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showing that the annihilation operator acts as
ajlm;j) = /mjlm;j — 1), (3.13)
where we see that a; indeed annihilates a particle in state j. We also have the special case
aj’0j> =0, (314)

which is consistent with |0;) being the state containing no particles in state j.

To determine how the creation and annihilation operators act in the general case of
multiple occupied modes, we must first learn how they behave under commutation. Let us
investigate their algebraic properties. We can rewrite (3.4) as

a}ayﬂ) = :l:aLa}\Q), (3.15)

which implies the commutation relations

[a}, aL] = a;az — a,‘;a} =0 for bosons and (3.16)
{a}, aL} = a;aL + ala} =0 for fermions, (3.17)

where the relations for the annihilation operators are obtained by taking the complex con-
jugate. Summarised in words: Bosonic operators commute and fermionic operators anti-
commute. As a direct consequence of (3.17), we find for fermions

a;a} = —a}a} = (a})2 =0, (3.18)

which implies, together with (3.9), that all fermionic states have either zero or one fermion
in any given mode j: n; € {0,1}. This is Pauli’s exclusion principle. Taking the complex
conjugate gives us (aj)2 = 0, implying again that the annihilation operator takes the vacuum
state to zero: (a;)?|1;) = a;|0;) = 0.

We now define the number operator

nj = a}aj, (3.19)

where we use a hat to distinguish the number n; from the operator, which acts on Fock
states as

Ajlng) = mjan — 1;) = njlng), (3.20)
as is easy to verify using (3.11) and (3.13). The number operator can be defined in terms
of a; and a} because we defined them in terms of unnormalised states in (3.7). We can

now easily compute the behaviour of a; and a} under commutation. This is easiest to do
separately for bosons and fermions. For bosonic operators of the same mode we have

ajaling) = (nj +1lng) = (A + 1lny) = (afa; +1)|n;) (3.21)
and for different states

ajaz\njnk) = /njVvn, + 1njng) = aZaj\njnk), (3.22)
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where we use (3.16) for the first equality. Together these imply
[aj,al] = 63 L. (3.23)

In the case of fermions n; € {0,1} and it is easy to just try out the action of operators on
the possible states. First, we have

ajajl0;) = 105), ajallly) =0, aja;[0;) =0, aja;l1;) =]1;),
= {aj,al}|n;) = In;), (3.24)

where we have used (3.18) and the fact that a;|0;) = 0. Using this result and (3.17), we
find

a1a}]0102) =0, a1ab|0115) =0, ayad|1,00) = —[0115), ayal|1i1s) =0, (3.25)
0, 0, 0.

a;a1‘0102> = a£a1|0112> = a£a1\1102> = +‘0112>, a£a1’1112> =

Together these results give us
{aj,al} =6, L. (3.26)

We now have a complete specification of the bosonic and fermionic creation/annihilation
operator algebras. For bosons, (3.16) and (3.23) are the bosonic “canonical commutation
relations” (CCR) while for fermions, the relations (3.17) and (3.26) are known as “canonical
anticommutation relations” (CAR).

3.2.1 Quantum lattice systems and many-particle systems

Perhaps surprisingly, it is generally possible to translate between systems of identical
particles and quantum lattice systems (see Section 1.2). For bosons, this is very straight-
forward since we can simply map single-particle states (modes) to lattice sites, giving the
lattice-site Hilbert space infinite dimensions to allow all possible boson occupation numbers

K

Hup = X C=, (3.27)
k=1

where we take ny.x — 00. Since bosonic creation and annihilation operators for different
modes commute, we can implement them as on-site operators in the lattice system.

In the case of fermions, due to the CAR (3.17) and (3.26), things are not as simple. There
is however a standard way of implementing fermionic creation and annihilation operators
that fulfil the CAR in lattice systems known as the Jordan-Wigner transformation [111].
We describe it using an example in Section 3.3.
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3.2.2 Majorana fermions

We are now in a position to define Majorana fermions. They are named after Ettore
Majorana, who proposed a solution to the Dirac equation in terms of neutral particles that
are their own antiparticles [112]. In particle physics it has been proposed, although not yet
tested conclusively, that neutrinos are Majorana fermions [113]. In this Chapter, we focus
on their emergence in condensed matter systems.

Majorana fermions are fermion-like modes that can be built from normal, “Dirac” fer-
mionic modes. Strictly speaking, they do not themselves have a consistent interpretation as

particles [114] — for example, they lack a number operator — but can nevertheless occur
as emergent degrees of freedom in certain systems, as we show in Section 3.3.
T

We can define Majorana operators in terms of Dirac fermion creators a; and annihilat-
ors aj. For each Dirac fermionic mode, we obtain two Majorana fermionic modes

Vil = CL} + a; (328)
V2 = i(a; — al), (3.29)

where we note that these operators are Hermitian. We can easily check that they obey

{’Ya:a ’Yy} = 25:L‘y]17 (330)

where z and y refer to (j,m) with j = 1,..., K and m = 1,2. Majorana operators thus
describe fermion-like modes, with similar CAR. They even obey something like an exclusion
principle

()% = L. (3.31)

This result, however, also excludes the naive number operator v{y = I. Indeed, as noted
above, there is no appropriate number operator: Majorana fermions should not be thought
of as particles [114]. It is, however, the property (3.31) that leads to Majorana fermions
“being their own antiparticles”: If we imagine for a moment that 'y; actually creates a
particles in mode x, the creation of a further particle in the same mode annihilates the first,
leaving behind the vacuum.

3.2.3 Parafermions

Parafermions are, in a sense, generalisations of Majorana fermions. They have been pro-
posed in the past as possible descriptions of fundamental particles [115], much like Majorana
fermions, but were later rejected for these purposes [116]. They differ from Majorana fer-
mions in that they cannot generally be constructed from Dirac fermions. To define them,
we specify a parafermionic operator algebra (see for example [114])

r,r, =uwlly for z < y, (3.32)
(T,)P =1, (TPt =17, (3.33)
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where
27

w=e'r pE223,4,... (3.34)
and the I';, are not generally Hermitian. For p = 2, we recover the algebra of Majorana
fermions (3.30), (3.31). For higher p, the parafermion exchange relations depend on the
initial labelling, which defines the order of the modes and determines whether z < y. This
property is best understood in terms of the emergence of these particles in spin systems, as
described in Section 3.4.2.

Note that the I" obey a modified “exclusion principle” (3.33), in which p such objects
lead to mutual annihilation. We stress again, however, that the parafermionic operators
defined here do not represent particles, as was the case for Majorana fermions. Indeed, the
connection to systems of particles seems to have disappeared for p > 2, since we can no
longer define parafermion modes in terms of Dirac fermions. Nevertheless, it is possible to
define new varieties of identical quantum particle that can support parafermions, similarly
to how Dirac fermions can support Majorana modes. A proposal for such a parafermionic
Fock space is detailed in [114].

3.3 The Ising model as a Majorana chain

The one-dimensional quantum Ising model (with a transverse field)
N-1 N
HIsing =—J Z UZO'é_,_l —h Z O'ﬁ, (335)
n=1 n=1

where the o are Pauli matrices operating on the site Hilbert spaces H,, = C2, is equivalent
to a one-dimensional model of free, spinless fermions. Indeed, relating it to such a system is
one way of solving the model [117]. That fermions emerge as the natural degrees of freedom
in this spin system can be seen by performing a series of transformations, one of which,
often called a Jordan-Wigner transformation [111], translates between spin operators and
fermionic creation and annihilation operators. Here, we perform a similar transformation,
obtaining a system of Majorana fermions from (3.35) (see for example [118]).

To construct anticommuting operators from the Pauli operators of (3.35), which com-
mute for different sites, we must abandon locality. We define the string operators

n—1
J— X z
Tn,l = (H 0m> o, and Tn,2
m=1

n—1
( H Ufn> Loy = Yn,10., (3.36)
m=1

which, we can easily check, fulfil the CAR relations of Majorana fermions (3.30). We may
thus use (3.36) to rewrite the Ising Hamiltonian (3.35) in terms of Majorana modes:

N-1 N
HIsing =—J Z n,2 Yn+1,1 — h Z Tn,1 Yn,2, (337)
n=1 n=1

where we need only insert (3.36) and recall that (Jﬁ/ “)2 =T to check the equivalence.
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We may construct Dirac fermionic operators from the Majorana operators as

1 .
CIL = 5 (’Yn,l + 1771,2) ’ (338)
for which we can confirm the Dirac fermionic CAR (3.17) and (3.26). If we rewrite (3.37)
in terms of the ¢,, we would find terms like CLCL 41, which creates a “Cooper pair”. Indeed,
(3.37) describes a one-dimensional superconducting system, as studied by Kitaev in [99] in

an attempt to find a system with physical Majorana modes.

3.3.1 Physical relevance of Majorana modes

The Majorana fermion picture of the Ising model (or of the superconducting model studied
in [99]) is interesting, since it gives a new interpretation of the two phases discussed in
Section 2.2.2. For h > J we can neglect the J term in (3.37), and we are left with a sum
over pairs of coupled Majorana modes 7, 17,2, where the pairs are not coupled to each
other. For J > h we can neglect the h term and we see that, on an open, finite chain,
the Majorana modes <11 and yy2 do not appear in the Hamiltonian and, because the
Hamiltonian is quadratic in the other v operators, actually commute with it.

These Majorana modes, located at the edges of the chain, represent a degeneracy in the
entire spectrum of Higng(h = 0), and are hence known as edge zero modes. To see this,
consider that we can build a Dirac fermionic mode from the two Majorana edge modes

1.
Cedges

(Ot i), (339
which can either be occupied or unoccupied. Since this fermion is acted upon trivially
by Higing(h = 0), we can modify its occupation without changing the energy. As such
each energy eigenvalue has an extra twofold degeneracy due to the edge modes. This is a
physical manifestation of Majorana fermions. Indeed, it is possible to show that the zero
modes persist as edge-localised modes at nonzero h [99, 118]. Since this degeneracy involves
a nonlocal fermionic mode, split across two sites that are separated by the length of the
system, it may be robust against local noise (say, a disturbance that affects neighbouring
lattice sites) in an experimental setup. This suggests its use as a storage medium for
quantum information [99].

As noted in the introduction, there is now experimental evidence that Majorana zero
modes exist at the end of superconducting wires [100-103]. There are also various other
proposals for their realisation in superconducting systems [96, 97].

3.4 The clock model and parafermions
One way to generalise the Ising model (3.35) is to introduce additional spin “positions”.
The Ising model can be thought of as a simple magnet in which spins can point either up

or down, and where alignment of spins is energetically favourable. We could alternatively
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allow spins to point in one of p directions within a plane. If the directions are equally
spaced, we can then model a spin as taking values w” in the group of pth roots of unity

{WF| w=€>P peZ k=0...(p—1)}. (3.40)

Such spins are clearly cyclic, in the sense that wP? = w" = 1, and such models are often
called clock models, drawing an analogy with the discrete positions of hours and minutes on
a clock. They have also been called planar (or vector) Potts models [119]. The clock model
has a global Z, symmetry under shifts of the clock position, a reflection of the dependence
of the energy only on the alignment of spins and not on their absolute positions (in the
absence of an external field).

Clock models can also be thought of as discretised O(2) rotor models, which we study
directly in Chapter 7. The rotor allows spins to point in any direction in the plane, which
we can achieve in the clock model by sending p — oc.

We can implement the one-dimensional quantum p—clock model on H = ®£¥:1 CP using
the operators

p—1 p—2
U= Zwk|k‘><k| and V= Z|k‘+1modp)<k‘\, (3.41)
k=0 k=0

where |k) form an orthonormal basis for CP. We note that

UV =wVU and (3.42)
Ur=vr =1 (3.43)

The operator U can be thought of as the clock “position” operator
Ulk) = wk|k), (3.44)
with V shifting the position by one
Vlk) = |k + 1 mod p). (3.45)
Note that, for p = 2 we have U = ¢ and V = o¢%. This suggests the straightforward
generalisation of the Ising Hamiltonian (3.35)
1 [ N1 N
Heook =~ |1 30 UnUbiy + 03 V| + hec., (3.46)
n=1 n=1
which is equal to (3.35) for p = 2. The Hamiltonian is invariant under global shifts

N
Vv

Vi, (3.47)

n=1

corresponding to the promised Z, symmetry.
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3.4.1 Phases of the clock model

The phase diagram of the clock model (3.46) is known to vary quite significantly with p [36,
37]. Note that many known results are for the classical two-dimensional model, which we
may carry over to the quantum one-dimensional case via the quantum-to-classical mapping
(see Section 2.2.2), in which the classical temperature maps onto the field strength. For
all finite p, there is a low field h < J ferromagnetic phase in which spins are aligned with
their neighbours and the Z, symmetry is broken by each of the p ground states (see Section
2.2.2). At sufficiently high field strength h > J the system is in a paramagnetic phase in
which spins are disordered and the Z, symmetry is restored. Between these phases is either
a second-order phase transition at h/J =1 for p < 4 or a critical (gapless) phase bordered
by two continuous transitions, thought to be of the BKT type (see 2.2.2). The critical phase
grows in extent with p, eventually taking up the entire low-field part of the phase diagram
as p — oo and we recover the rotor model [36, 37].

Only the Ising case of p = 2, as well as the p = 4 case, which can be shown to be
equivalent to two decoupled Ising models [36, 37], are exactly solvable. In these cases it
is known that the critical point at |h|/J = 1 is described by a CFT with central charge
¢ =1/2 [78]. The case p = 3 is known as the three-state Potts model. It can be solved at
its critical point h/J = 1, where it is described by a CFT with central charge ¢ = 4/5 [78].
At higher p, the gapless phase is described by a CF'T with ¢ = 1, matching the known value
for the XY model [78].

For higher p, the occurrence of BKT transitions at intermediate field strength makes a
certain amount of intuitive sense: At intermediate field strength fluctuations are strongest
as paramagnetic and ferromagnetic orders compete. One might imagine that they at some
point become strong enough to “smear out” the discrete clock positions into an effective
continuum. This would constitute an emergent O(2) symmetry, making the model behave
like the O(2) rotor model in this regime, which is known to have a BKT transition.

3.4.2 Parafermions in the clock model

It is know that the clock model can be viewed as a system of parafermions [38]. To show this,
we carry out a generalised Jordan-Wigner transformation in a procedure exactly analogous
to that performed on the Ising model in Section 3.3. We first define string operators

n—1
Tpi = <H Vm> U, and Ty
m=1

n—1
(H Vm> UnVi =T Vi, (3.48)
m=1

finding that they obey the parafermionic exchange relations (3.32) and (3.33) from Section
3.2.3. Rewriting (3.46), we get

N-1 N
1
Helock = =5 lJ S @l qTng +h > ThoTan| + hee, (3.49)
n=1

= n=1

where we see that, as for the Ising model in Section 3.3.1, the operators I'1 1 and I'y 2 do
not appear in the Hamiltonian for h = 0 and in fact commute with the remaining terms.
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This means, as in the fermionic case, that the spectrum of H¢joex(h = 0) has zero modes,
which are this time parafermionic.

The question of whether these modes persist for the entire low field phase of the clock
model is harder to answer than in the Ising/Majorana case, since the clock model has
not been solved. Fendley has shown in [118] that the chiral clock model at p = 3, which
introduces an additional phase on the parameters of (3.49), can have robust parafermionic
edge modes. Also, Bondesan and Quella, as well as Motruk et al., have recently presented
classifications of gapped phases of Zj,-symmetric quantum spin chains, including phases
with parafermionic edge zero modes [120, 121].
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Chapter 4

Interacting Majorana chains: The
Kitaev edge

4.1 Introduction

In Chapter 3 the transverse field Ising model was shown to be equivalent to a model of free
Majorana fermions. Physically relevant Majorana modes, like the edge modes discussed
in 3.3, should emerge in superconductors with triplet pairing symmetry or semiconductor
structures brought into tunnelling contact with ordinary “s-wave” superconductors [96, 97].
In the latter case, experimental evidence of the existence of Majorana edge modes in one-
dimensional “wire” structures is amassing [100, 101, 122-124]. One intriguing application
of these “nanowires” [99] is to build a two-dimensional array out of them, as illustrated in
Figure 4.1. In such an array, the Majorana modes localised at the edges of the nanowires

Majorana modes

nanowires
\§ N superconductor

Figure 4.1: Majorana edge modes localised at the ends of semiconducting nanowires in proximity
interaction with a superconductor. The result is a two-dimensional weak topological insulator (TT),
the edge of which is described by a chain of interacting Majorana fermions.

can interact leading to an effective one-dimensional edge theory of the two-dimensional
array, without a spectral gap [125-129]. This is an example of a topological insulator
(TT) [130, 131], which is a system in which the boundary is gapless despite the bulk being
gapped (see Chapter 2). The best known example of a TI is the quantum Hall insulator
[132], which can support fractional charges on its boundary in the presence of interactions
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[133]. In the absence of interactions, possible types of TI have been classified according to
the symmetries they obey [134, 135]. However, investigating the properties of interacting
systems is significantly more difficult [136-141].

An array of nanowires is an clearly anisotropic, with the Majorana edge modes existing
only on the edges perpendicular to the nanowires. Such a system is an example of a “weak”
TT [28-35], in which the gapless edges exist only in the presence of translation symmetry
of the bulk. Given translation invariance in the bulk, the one-dimensional edge theory of
the nanowire array is a translation-invariant theory of Majorana modes, which maps to the
one-dimensional Ising model at its critical point (see Sections 3.3 and 2.2.3). In this chapter,
most of which was published in [142], we use the matrix product state techniques of Chapter
1 to investigate the effects of an additional, translation-invariant interaction term on this
edge theory. We find that the chain remains gapless in the presence of strong attractive
interactions, staying in the same phase as the non-interacting chain, which is described by
an Ising-type CFT with central charge ¢ = 1/2. However, repulsive interactions can “gap
out” the system or place the system in a second gapless phase with incommensurate order,
described by a CFT with central charge ¢ = 3/2.

The numerical results of this chapter were obtained by the author as part of a collab-
oration with Emilio Cobanera, Luis Searba, Ion Cosma Fulga and Carlo W. J. Beenakker.
We note that the same model was simultaneously studied by Rahmani et al. [143, 144],
whose results were obtained using different techniques and serve to confirm our own. The
published numerical study of the present author [142] additionally includes numerics by
Luis Searba for the disordered case in which the parameters of the Hamiltonian are al-
lowed to vary randomly. This constitutes an important check of the effects of statistical
translation-invariance on the interacting weak TT.

4.2 Interacting Kitaev edge model

4.2.1 Majorana fermion Hamiltonian

The translation-invariant chain of Majorana fermions is called the “Kitaev edge” because
it is a natural candidate description (see, for example [129]) of the edge of an array of
Kitaev wires [99] (Majorana chains). We study the interacting Kitaev edge numerically by
mapping it to a spin chain, in the same way as the Kitaev wire is mapped to the Ising model
in Section 3.3. Its Hamiltonian, in terms of Majorana fermions, is

H=— Z QA YsVs+1 — Z K YsVs+17s+27s+35 (4'1)
s s

where {7s,v:} = 204 and 75 = 7/ and s labels the Kitaev wires that make up the 2D array.
With x = 0 we recover the Kitaev wire, or Majorana chain (3.37) of Section 3.3 at its critical
point, placing the system in a gapless phase corresponding to the critical point of the Ising
model (see Section 2.2.3).

We choose the interaction term, governed by k, to be the simplest translation-invariant
interaction term of Majorana modes. If we switch to Dirac fermionic modes

Y2s—1 = C2s + C;g, Iy2s = €5 — Cgs, (4-2)
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for which we must distinguish between odd and even Majorana modes, we find that the
interaction term has the form

— VsVs+17Vs+2Vs+3 = (2n5+1 - 1)(2n8+3 - 1)7 (4'3)

for odd s, where ng = clcs is the number operator, and

— VsVs+17Vs+27s+3 = (Cs - Ci)(2n8+2 - 1)(CS+4 + Ci+4) (44)

for even s. Since we can properly interpret the Dirac fermionic modes as particles (see
Section 3.2.2), the Dirac fermion picture allows us to better interpret the physical processes
involved in the Majorana fermion interaction. We see that (4.3) has the form of a density-
density interaction, such that x > 0 results in a repulsive interaction between Dirac fermions
and k < 0 results in an attractive interaction. The even term (4.4) is required for translation-
invariance in the Majorana picture. Although these Dirac fermions do not directly represent
the microscopic degrees of freedom in a realistic, 2D device, they do represent the emergent
effective modes that are relevant for the interaction in the edge theory. Note that, since we
have translation invariance, we could just as well have chosen the Dirac fermionic modes
such that (4.3) is the even term and (4.4) is the odd term.

4.2.2 Spin Hamiltonian

We now obtain a spin Hamiltonian using a Jordan-Wigner transformation similar to that
used in Section 3.3:

s—1
V2s = H O-;; 0’2» V2s—1 = H O-; 0-;’ (45)
j=1

where we again make a distinction between odd and even Majoranas, which is nonphysical
when the system is translation-invariant. The model (4.1) becomes

- _ T _ 257
H = ZO‘O g; ZOKe 005+1
J J

T T z__Z
+ 2 Fo0f0Ts1+ ) Ke 00T,
j j

(4.6)

where the a, and k, terms originate from the odd terms in (4.1), and the a, and k. terms
come from the even terms in (4.1). We differentiate between the even and odd parameters
in the spin model because it is sometimes useful to understand the translation-invariant
case of ay = ae and Kk, = ke model as a special case within a larger space of theories. The
a terms are exactly the Ising Hamiltonian, as expected from the Kitaev wire case (3.37).
Ignoring the ko term, the full Hamiltonian is the ANNNI model (5.5) discussed in Chapter 5.
The phase diagram of the ANNNI model has been studied in this context before [145, 146],
however the x, term, needed for translation invariance of the physical, Majorana system, is
new and significantly alters the phase diagram.
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4.2.3 Self-duality and symmetries of the model

A translation of one site in terms of Majoranas s — 7s4+1 is, due to (4.5), nontrivial
in terms of spins. Indeed it must transform the odd and even terms of (4.6) into each
other. This translation is a duality transformation [147] that sends ae — @, and ke —
Ko, with the physical case of full translation invariance ke = ko = Kk and qe = ap = «
representing the self-dual point, that is the point invariant under the duality transformation.
The transformation is

j
i [[of j=1...,N, (4.7)
k=1

o =007, j=1,...,N—1, and oy oy,

where we may neglect the boundary terms as they do not affect bulk physics in the thermo-
dynamic limit. In the Ising case of k = 0, this duality is well known. Indeed, it determines
the location of the phase transition (see Section 2.2.3) of the Ising model [148]. This is
because transitions survive the duality transformation, which is unitary, and thus preserves
the spectrum of H. As such, a transition at H (oo, @.) has a companion at H (e, ) SO
that, if the number of transitions is known to be odd, one of them must occur at the self-
dual point H(a, a). In the ANNNI case ke = 0, ko # 0, the duality transformation (4.7) is
the same one discussed in Section 5.2.2, so that ko, = 0, ke # 0 represents the dual ANNNI
model.
There is a further unitary transformation

of o —0f, ol (W, of o (-1, (48)

which flips the sign on «a, as can be seen by applying the transformation to (4.6) or (4.5).
The k interaction term is left invariant. This implies that we may restrict to a > 0, when
determining the phase diagram of the model since, again, phase transitions are preserved
by unitary transformations. To see that the transformation is unitary it suffices to consider
the signs, which leave the Pauli commutation relations [0?, o%] = 2i Y, €0 unchanged.
Another interesting symmetry of the model exists only at &« = 0. Here, the unitary

transformation
Ue= (H U§k> (H Ui:kaka) (4.9)
k

k

acts on the Hamiltonian as U, H(a = 0) Ul = —H(a = 0). A unitary that anticommutes
with H is sometimes called a chiral symmetry [149]. It implies that the spectrum of H(a =
0), which is bounded from below, is symmetric about zero, which in turn implies that any
transition occurring at a = 0, for positive x also occurs at o = 0 for negative k.

4.3 Numerical study

We wish to determine the phase diagram of Kitaev edge model (4.1) by simulating the equi-
valent spin model (4.6), using matrix product states (MPS) (see Chapter 1) and the phase-
diagram-sketching techniques of Section 2.3. In particular we are interested in whether the
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Figure 4.2: The second derivative of the ground state energy E, with respect to . (a): An apparent
second-order transition at ¢ ~ 0.3 marking the upper boundary (in {) of the Ising phase. The
location of the transition does not appear to be dependent on the bond dimension D. (b): Smaller
jumps in the region 1 < ¢ < 6. Although Figure 4.6 provides evidence of a transition ending the
floating phase here, there is no evidence of a second order transition in the energy data. The jumps
may indicate the presence of a higher order singularity, or may be a finite-entanglement artifact.
The second jump occurs at the wavevector locking location of Figure 4.6 (a).

interactions (k # 0) can open up a spectral gap (“gap-out”) the system, or lead us into a
gapless phase that is distinct from the Ising phase of the noninteracting chain.

For most of the numerical study, we restrict to the physically relevant case of the
translation-invariant (self-dual) model. Since we need only treat the o > 0 case (see Section
4.2.3), we can explore the system in terms of the dimensionless parameter

(=#k/a, (4.10)

where the sign on ¢ matches the sign on «.

Before beginning, we can already make some predictions about the phase diagram. For
¢ =0, (4.6) we know we have an Ising critical point, which may be part of a larger Ising
phase unless turning on the interactions immediately destroys it. We may also expect a
floating incommensurate phase (see Section 2.2.5) to be present for ¢ > 0, due to the the
close relationship with the ANNNI model (5.5), which is a prototypical example of a system
with such a phase.

Throughout the present study, we use MPS ground states converged up to n < 1078,
where 7 is the norm of the effective energy gradient vector (1.83).

4.3.1 Ciritical Ising phase

Using initial line scans in (, starting at ( = 0 and with bond-dimensions D = 16 and
D = 24, we find clear indications of a phase transition at ( ~ 0.3, as is apparent from
the second derivative of the ground state energy shown in Figure 4.2 (a). Since the second
derivative appears to diverge, we classify this transition as second order (see Section 2.3).
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We find no evidence of further transitions for —10 < ¢ < 0.3, which includes the critical
Ising point ¢ = 0. We may thus conclude that this entire region constitutes a gapless,
critical Ising phase. We check for CFT scaling (2.15) of £ with S, finding scaling consistent
with the Ising value of the central charge ¢ = 1/2 at several values of ¢ in the region, as
shown in Figure 4.3 (a).

4.3.2 Floating phase

For ¢ > 0.3 we find a second gapless region with a central charge ¢ = 3/2, a somewhat
unusual value (see Figure 4.3 (b)). We also find nontrivial complex phases on the larger
eigenvalues of the MPS transfer matrix, representing modulation wavevectors of connected
correlation functions (see Section 1.3.6). By also examining correlation functions of likely
order parameters, we find that the correlation functions Cy= 5> and Cye 5+ (defined in (1.4)),
shown in Figure 4.5 (a) are both modulated in this region, with the wavevector for o* being
roughly twice that of o*. These wavevectors appear to vary continuously as a function of
¢, starting from zero at ( = 0.3 and ending at a nonzero commensurate value for a larger
value of (. The ¢ = 3/2 phase is thus a floating, incommensurate phase (see Section 2.2.5).
We plot the larger of the two relevant wavevectors, corresponding to the modulation of o*,
in Figure 4.6 (a).

We find the locking location (; > 0.3, at which the wavevector becomes fixed at a
commensurate value, to be highly dependent on the MPS bond dimension D. To de-
termine whether the wavevector locks at finite (; in the exact ground state, we use finite-
entanglement scaling (FES) in attempt to extrapolate the exact result (see Section 2.3.2).
In Figure 4.6 (b), using data from MPS with D up to 256, we extrapolate (; to infinite
bond-dimension, finding {; =~ 5. The locking of the wavevectors likely constitutes a phase
transition out of the ¢ = 3/2 phase. Indeed, Section 4.3.3 provides evidence that the
spectrum is gapped beyond this point. Note that it is possible that the extrapolation is
misleading and that more points would change this picture, so that the exact value of (; is
larger.

Interestingly, the second derivative of the energy, shown in Figure 4.2 (b), is smooth
except for some small jumps, which may be artifacts of finite entanglement. This suggests
that this transition is not second order in our sense (see Section 2.2.3). Since the first
derivative also appears to be continuous, and we do not observe power-law scaling of the
wavevector or the order parameters o® or 0%, we hypothesise that this transition is of higher
order, and is possibly of BKT type.

4.3.3 Gapped anti phase

For ( > 5, we observe a breakdown in CFT scaling of S with £, indicating the appearance
of a spectral gap, this is shown for ¢ = 10 on the left of Figure 4.4 (a). MPS ground states
in this phase have a block size of L = 4, and we find ground state expectation values for o®
and o that oscillate with wavevectors 7w and 7/2, respectively. Corresponding oscillations
in the correlation functions are shown in Figure 4.5 (b). We call this phase an “anti phase”
as 0 has the same up-up-down-down pattern of expectation values as in the anti phase of
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Figure 4.3: Finite entanglement scaling plots showing the entanglement entropy S(D) against the
correlation length &(D) in the regions —10 < ¢ < 0.3 using 16 < D < 96 (a) and 0.3 < ( < 5
using 18 < D < 102 (b). We observe the linear behaviour (2.15) predicted for a CFT, consistent
with central charges of ¢ = 1/2 for ¢ < 0.3 and ¢ = 3/2 for 0.3 < ¢ < 5. These two regions likely
belong to different phases. In the ¢ = 3/2 region, at larger values of ¢ than those plotted, lower bond
dimensions lead to a nonphysical pseudo-transition, such that testing the scaling for these values

becomes more difficult.
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Figure 4.4: Finite entanglement scaling plots of the entanglement entropy S(D) against the correla-
tion length £(D) showing evidence of a spectral gap at (a) ¢ = 10 (18 < D < 128) and (b) { = —oc0
(16 < D < 256). These plots suggest a spectral gap because they show a breakdown of linear CFT
scaling (2.15), with S(D) and £(D) saturating at higher D. The straight lines are least-squares fits

to the plotted data points.
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Figure 4.6: (a): The wavevector associated with the o%-0* correlation function, showing locking at
k = m, which marks the end of the floating phase. We plot the wavevector for several values of the
bond dimension D, showing its strong influence on the locking location ¢;. (b): Extrapolation of (
to infinite D using a maximum D of 256. The results appear to show convergence towards a finite
value of (; =~ 5.
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the ANNNI [43]. This gapped phase extends at least to ¢ = 10, probably to { = 400, as
argued in Section 4.3.5.

4.3.4 Phase diagram

For smaller values of |(|, we now have sufficient data to sketch the phase diagram in Figure
4.7. We have seen that the system remains critical for very strong attractive interactions
¢ < 0, whilst repulsive interactions ¢ > 0 fairly quickly drive a transition into a phase with
¢ = 3/2 and incommensurate structure, which soon ends in a gapped phase.

Ising J| Floating |Anti phase

I
c=10.5 | c=1.5 | gapped
0.3 ¢ 5)
>
Figure 4.7: Numerically obtained phase diagram of the Kitaev edge model at lower interaction
strengths ¢. The transition at ¢ =~ 0.3 appears to be second order in light of the behaviour of the
energy in its vicinity shown in Figure 4.2. The transition at ( ~ 5 seems to be a higher order

transition, possibly of BKT type. The gapped phase likely continues uninterrupted as {( — —+oo,
while there is evidence [144] that the Ising phase ends at { = —250.

4.3.5 Strong interactions

By studying the bare interaction term o« = 0, we can determine the phase at ( = +o00. Due
to the chiral symmetry (4.9) at a = 0, we know that H({ = +00) shares the same spectral
properties as H({ = —o0): In particular, they have the same mass gap. The ( = 400
case has modulations similar to those of the { > 5 anti phase, with the same four-site
periodicity in expectation values, while the ( = —oo case has full translation invariance,
making it computationally easier to reach higher bond dimensions with the latter choice.
We find that both cases exhibit the same kind of breakdown in CFT scaling (see Section
2.3.2) as seen in the anti phase, indicating a gap. We also numerically estimated the mass
gap directly for the more efficient ( = —oo case, using the MPS excitations ansatz described
in Section 1.4.5. An extrapolation to infinite D (see Figure 4.8) leads to a nonzero, albeit
small value, providing more evidence for a spectral gap.

As further confirmation, we also examine the energy landscape for indications of a
second order transition that would indicate criticality. To do this, we leave the self-dual
point, fixing k. = —1 and varying K, about —1 (with o = 0). We indeed find evidence
of a transition, as shown in Figure 4.9, but the discontinuity of the first energy derivative
indicates it to be of the first-order variety, consistent with a spectral gap at the self-dual
point. Interestingly, the second derivative suggests a nearby second order transition, which
could explain why relatively large bond dimensions must be reached before the breakdown
in CF'T scaling becomes apparent.
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We conclude due to the gap and similar ground state structure, that the anti phase
likely extends from ( &~ 5 to { = +o00. That the ( = —oo case is also gapped implies the
presence of a phase transition ending the critical Ising phase at some finite negative value
of ¢. Indeed, the authors of [144], who worked on the same model simultaneously with our
work, locate a transition at very large interaction strength ¢ ~ —250.

4.4 Discussion and conclusions

According to our numerical results, the interacting Kitaev edge remains in the gapless “Ising
critical” phase of the noninteracting system, with central charge ¢ = 1/2, for very strong
attractive interactions { < 0. Eventually, our evidence shows, it must enter a gapped phase,
since the ( = —oo point appears to be gapped. Repulsive interactions ¢ > 0, in contrast,
already introduce a gap at ( & 5, meaning that the 2D nanowire array leaves the weak-TI
phase.

Interestingly, we find a distinct gapless phase with central charge ¢ = 3/2 intervening
between the Ising phase and the gapped phase. The ¢ = 3/2 phase appears to be an
incommensurate floating phase, where the modulated order parameters are ¢® and ¢” in
the spin system. Since o® corresponds to the odd ~95_1 725 interaction in the Majorana
picture, which in terms of our choice (4.2) of Dirac fermions is v25_1 725 = 2ns — I, these
modulated structures can be interpreted as (incommensurate) charge-density waves.

We find that the transition between the floating phase and the gapped antiphase at
¢ ~ 5 undergoes a strong shift in position in the finite-D MPS approximation due to finite
entanglement effects: The value ¢ &~ 5 come from a finite-entanglement scaling (FES) extra-
polation. Although we are confident that the FES results are accurate, it is of course possible
that they are mistaken, perhaps due to imperfect convergence of the MPS ground state.
Also, going to still-higher bond dimensions might uncover further shifts towards higher (.
One intriguing alternative hypothesis is that locking of the incommensurate wavevector
never occurs at finite (, such that the wavevector comes ever-closer to a commensurate
value, never reaching it. Such values of the wavevector, when rational, represent extremely
high correlation-function periodicities, which in turn require very large correlation lengths,
making them difficult to represent in MPS form. For experimental purposes, however, the
distinction is likely to be moot since, as shown in [142], disorder tends to destroy the float-
ing phase, such that its extent will at least be diminished in a real experimental setup.
Furthermore, the finite length of the edge of an experimental device puts an upper limit on
the possible periodicity of correlation functions.

If the floating phase does survive to some extent in experiments, it should be distin-
guishable from the Ising phase via thermal conductivity measurements. This is because the
central charge of the CFT describing the gapless phase determines the thermal conductivity
of the edge [150-153]. The central charge 3/2 of the floating phase is, furthermore, itself
quite interesting. It may result from a sum of the central charges of two decoupled theories:
A fermionic theory with ¢ = 1/2 and a bosonic theory with ¢ = 1 (see [78]). This inter-
pretation would fit the conclusions of [144], in which they find that the gapped antiphase
should be supersymmetric, possessing a bosonic counterpart to fermionic excitations.
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Figure 4.9: Evidence of a first-order transition at the self-dual point k. = kK, = —1 of the pure

interaction term (¢« =0 = { = —o0). (a): Ground-state energy density ey for D = 128, with the
form consistent with a first-order transition. (b): First and second (inset) derivatives of the ground-
state energy density. The first derivative shows a clear jump, indicating a first-order transition,
although the second-derivative shows a strong cusp minimum, which we would otherwise interpret
as indicating a second-order transition. We conclude that the transition is first order, with a nearby
second-order transition.
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Chapter 5

Axial next nearest neighbour clock
model

5.1 Introduction

In this chapter we numerically determine phase diagrams for the axial next-nearest-neighbour
clock (ANNNC) model, a generalisation of the clock model of Chapter 3 including a next-
nearest-neighbour interaction with a ground state that conflicts with that of the nearest-
neighbour term of the clock model, introducing frustration [154] to the system. The case
with p = 2 clock positions is known as the axial next-nearest-neighbour Ising (ANNNI)
model [43] which, in addition to the Ising model phases, possesses a Beresinskii-Kosterlitz-
Thouless (BKT) transition [87] and a floating incommensurate phase [43, 89] in which
correlations are spatially modulated with a modulation wavevector that varies continuously
in parameter space (see Section 2.2.2). Most previous investigations of the ANNNI model
have treated the classical, two-dimensional case, although it has been recently studied in
the one-dimensional quantum setting [90] using DMRG techniques. As such, we skip this
case of the ANNNC model here, focusing on the p > 2 quantum model.

A question one might ask of the p > 2 ANNNC model is how the additional clock
positions alter the phase structure seen in the p = 2 ANNNI case. This is of academic
interest in itself, but also connects to experiment, since it appears possible to implement
a model dual to the ANNNC model, which we refer to as the ANNNC-D model, in the
low-energy physics of a mesoscopic device involving a fractional topological insulator. The
proposed device involves parafermion modes (see Chapter 3) and can simulate the ANNNC
model for even numbers of clock positions p = 2m for integer m. It was devised by Michele
Burrello and Emilio Cobanera, who collaborated with the present author on [155].

An interesting feature of the ANNNC-D model is that the order parameter for the
incommensurate-commensurate transitions, assuming these occur similarly to those of the
ANNNTI case, is a nonlocal string operator. As such, its phases are not characterised by
the Landau theory of phase transitions, which only treats local order parameters (see Sec-
tion 2.2.2).

The numerical study described in this chapter was conducted by the present author as
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part of a collaboration with Emilio Cobanera, Michele Burrello, and Gerardo Ortiz. The
results for p = 6 were published in [155], while the results for p = 3 and p = 5 are planned
for later publication.

5.2 The axial next-nearest-neighbour clock model

The ANNNC model is a generalisation of the clock model (3.46). Its Hamiltonian is

1[N N-1 N-2
Hannne = =5 W Vit d > UL, - A > UiU 5| + hec., (5.1)
=1 =1 =1

where U and V are the operators (3.41) used in defining the clock model, satisfying
UV =wVU and UP = VP =1 for w = €'27/P. Operators on different sites commute

[Uj, Viers] = 0. (5.2)

This model differs from the clock model (3.46) in the additional next-nearest-neighbour
interaction term, parametrised by A. The word “axial” in the name refers to the fact that
the nearest and next-nearest-neighbour terms commute, and can be thought of as classical
spins restricted to a common plane, sharing an “axis”.

Just like the clock model, the ANNNC Hamiltonian (5.1) commutes with the unitary
operator

v=][v, (5.3)

which performs a global shift by one spin position. This represents a Z, symmetry of the
system which may be spontaneously broken. The local order parameter for this symmetry
is

Qv(J,Ah) = <Ui>\IJ(J’A’h) Viel...N, (5.4)

where |¥(J, A, h)) is the ground state of Hannnc(J, A, h).

At A =0, the ANNNC model is just the clock model (3.46) and has an ordered phase
with broken Z, symmetry at low h and a disordered symmetric phase at high h. For p < 4
these are separated by a second order phase transition and a critical point. For p > 5 they
are separated by a critical phase between two BKT transitions. See Section 3.4.1 for details.
Turning on A leads to a richer set of phases.

At h = 0 the ANNNC model consists of commuting terms and is thus purely classical.
Note that, with J > 0 and A > 0, the J term favours aligned nearest-neighbour spins
(ferromagnetic ordering), whereas the A term favours anti-aligned (or anti-aligned as far as
possible in the case of odd p) next-nearest-neighbour spins. Clearly, no single state is the
ground state of both terms taken individually and the terms can be considered as competing
with each other. This is an example of (classical) frustration, which can lead to complicated
spatial structures, or to ground state degeneracies that diverge in the system size [154, 156].
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5.2.1 Incommensurate order

The case p = 2 of the ANNNC model is known as the axial next nearest-neighbour Ising
(ANNNI) model. We may write its Hamiltonian using Pauli matrices as

N N-1 N-2
Hannng = — hZUf—I-JZUfoJFI—AZO'?UfJFQ . (55)
=1 =1 =1

This model has received a lot of attention in the past because it exhibits, despite its sim-
plicity, a rich phase structure including a commensurate-incommensurate transition and a
BKT transition (see Section 2.2.2) as a result of the A interaction, which competes with
the J term. It has mainly been studied in its classical, two-dimensional variant, which
is related to the present one-dimensional quantum model by the quantum classical map-
ping described in Section 2.2.2. For a review of results for the classical ANNNI model,
see [43]. The quantum ANNNI model (5.5) has been studied [90] using DMRG techniques
(see Section 1.3) and is found to have a similar phase diagram to the classical model.

One of the most interesting features of the ANNNI model, expected to carry over to
the more general ANNNC cases, is the presence of incommensurate order, which we define
in Section 2.2.5. In the (14+1)D quantum ANNNI model, the incommensurately modulated
quantity is the order parameter correlation function (see Section 1.2) which, in the ANNNC
model formulation, is

C ot (i, d) = (UU], ) — (UMNUL, o), (5.6)
where the disconnected contributions (U;) are zero if the Z, symmetry is not broken. We
expect to see similar phenomena in the ANNNC model for more general p, since the frus-
tration responsible for the incommensurate order in the ANNNI model is also present for

general p.

5.2.2 Dual nearest-neighbour model

A duality transformation, described for the clock model in [37] and for the ANNNI model
in, for example [89], can also be applied to the ANNNC model (5.1). It is defined by

Uwr [[V; i=1,...,N, (5.7)
j=1
Vi UlUyy, i=1,...,N—1 and Vyw— Uy, (5.8)

where we can easily check that the exchange relation UV = wV U is preserved

(H Vj) UlUin1 = w Ul Ui (H Vj) : (5.9)

j=1 j=1
and the new operators still commute for different sites as the old ones did. We further find
UiT+1Ui — V;T for i =1,..., N — 1 such that, under the transformation, (5.1) becomes
N-1 N—2 h
(JVi + hUUS 1) = A 37 ViViga + 5 Un

i=1 =1

+ h.c, (5.10)

1
Hannnc-D = —5 [
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where we can check that the new Hamiltonian terms obey the same commutation relations as
the old ones. We neglect the boundary term Uy since it is irrelevant in the thermodynamic
limit N — oo. We refer to this model as the dual ANNNC model, or “ANNNC-D”. This
nearest-neighbour model is interesting for two reasons: One is that it can be simulated more
efficiently than the ANNNC model using MPS, where computational cost scales with the
range of the terms in the Hamiltonian. Another is that this model describes the low energy
physics of a potentially realisable mesoscopic device.

A key property of the ANNNC-D model is that the order parameter for the Z, symmetry
of the ANNNC model transforms to the string operator

U= [ V- (5.11)

=1

In the p = 2 ANNNI-D case, the incommensurate quantity of the floating phase is thus

i+d i+d
Copilivd) — ( T[ Vi) - HV HVT (5.12)
Jj=i+1

which consists of expectation values of string operators. The commensurate-incommensurate
transition is thus characterised by a nonlocal order parameter in the ANNNC-D model. This
is interesting because it falls outside the domain of the Landau theory of symmetry-breaking
transitions, which assumes a local order parameter (see Section 2.2.2).

5.2.3 Mesoscopic realisation

While the detailed physics of mesoscopic superconducting devices is beyond the scope of this
thesis, we briefly sketch the principles of such a realisation of the ANNNC-D model (5.10)
for even p, as it represents a connection between the ANNNC model and real systems with
emergent parafermion modes. This proposal is the work of Michele Burrello and Emilio
Cobanera, who collaborated with the present author on [155], and builds on earlier work
on realising parafermionic degrees of freedom [104-107, 157].

A key ingredient is a theoretically predicted, but not yet experimentally observed form of
condensed matter — the fractional topological insulator (FTT) [158]. A topological insulator
is a solid phase with a spectral gap in the bulk, but an effective edge theory that hosts gapless
modes (see also Chapter 4). Its bulk is thus an insulator, while its surface, or edge, is a
conductor. The edge theories of topological insulators can involve exotic modes such as
Majorana fermions [159] or, in the fractional case, parafermions [104] (see Chapter 3).

An FTI may host parafermion zero modes at interfaces produced between regions in
proximity interaction with superconducting islands and regions in contact with insulating
ferromagnets [104, 106], as illustrated in Figure 5.1. By alternating ferromagnets and
superconducting islands, we may engineer two parafermionic modes per island ¢, I'; ; and
I'; 2, which obey the commutation relations of Section 3.2.3, except that we include a factor
iin I'; 2 so that (I'; 2)? = —I. We are limited in this setup to parafermions with an exchange
phase

w=¢em, (5.13)
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Figure 5.1: Sketch (by Michele Burrello) of a proposal for a mesoscopic implementation of the
ANNNC-D model (5.10). The T represent parafermionic modes localised at the interfaces (stars)
between ferromagnets (FM) and superconducting islands (SC) in proximity interaction with a frac-
tional topological insulator (FTI), which supports fractionally charged (e/m for odd m), helical,
gapless edge modes [158]. The SC’s interact with each other via fractional Josephson tunnelling, as
well as via an inter-island capacitance C. They are also coupled via a Josephson junction of strength
ey and a capacitance ¢ to a background superconductor (BSC).

where m is odd, implying even p = 2m in the notation of Section 3.2.3. The odd number
m represents the fractional charge e/m of the edge modes of the FTI, with m =3 (p = 6)
being the first nontrivial case.

The parafermion modes are coupled via a fractional Josephson effect [105, 106] and
receive an energy-level splitting via charging interactions of the islands [157], which are in-
duced by coupling to a background superconductor via (strong) normal Josephson junctions
and via a capacitance. A further capacitative coupling between neighbouring islands leads
to an interaction between all four involved parafermion modes. For further details see [155]
as well as [104, 106]. The effective low-energy Hamiltonian of the resulting system, with
appropriate tuning, is

1 L
Hineso = =5 3 [ NTERY PR v PPEEN o P S TR (5.14)
i=1

where h governs the tunnelling of fractional charges between islands, J the charging of
islands with respect to the background superconductor, and A the inter-island capacitative
interaction. L is the number of superconducting islands in the device. This Hamiltonian is
related to (5.10) via a generalised Jordan-Wigner transformation

i—1

Uy =T [ 15,050, (5.15)
j=1

Vi =T1 Ty, (5.16)

where, for even p, U; and V; are clock operators (3.41).
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5.3 Numerical study

5.3.1 Methods

We sketch phase diagrams as described in Section 2.3, using block-uniform matrix product
states (MPS), with block length L, as a variational class of states and finding effective
ground states using the nonlinear conjugate gradient method. Setting L > 1 is necessary
in this study, which includes antiferromagnet-like phases. We converge MPS ground states
up to an effective energy gradient norm (1.83) of < 107%. For details of the algorithms,
see Section 1.3. Note that the locations of phase transitions determined in this study are
intended as a rough estimate.

We afford particular attention to the modulation wavevectors of correlation functions
(5.6) and (5.12), since these are order parameters for the commensurate-incommensurate
(C-IC) transitions observed in the p = 2 ANNNI model case. The wavevectors can be
determined by fitting correlation functions using

f(d, ko, A, ¢) = Ae™% cos(kod + ¢), (5.17)

where the exponential decay need only be approximately reproduced in order to fit the
wavevector kg accurately. Alternatively, since correlation functions are determined by the
spectrum of the MPS transfer operator, we may obtain the wavevector of the slowest-
decaying correlations from the complex phases of the largest eigenvalues (excluding the
largest, which we require to be equal to one). See Section 1.3 for details.

5.3.2 Phase diagrams

We perform a preliminary scan of the (A, h) plane (with J = 1) in order to determine a
rough phase structure, collecting more data to resolve areas that appear to contain finer
features.

For p = 3,5,6 we generically find that turning on A draws out the clock model critical
point (p = 3) or critical line (p = 5,6) into a line or narrow critical phase, respectively,
which appears to end in a point at a small value of A. After this point new phases open up,
including a gapped commensurate phase at low h (except in the case of p = 3), a critical
phase, and a disordered modulated phase at high h.

The disordered phases at low A also acquires modulated correlation functions of U-Ut
above a certain value of h dependent on A. This line, known as a disorder line [160] coincides
with a cusp maximum in the inverse correlation length ¢!, which we mark on the phase
diagrams despite it not being a phase transition in the normal sense — the MPS ground
state energy remains continuous and there is no indication of a higher order transition,
which are accompanied by long-range correlations.

The structure is broadly similar to that observed for the ANNNI model [90], with the
most significant differences observed for p = 3.
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Phases for p=3

Figure 5.2 represents our estimated phase diagram for the p = 3 case. At A = 0 we
confirm the known clock model phases, finding a symmetry-breaking transition at h = 1
corresponding to the global Zs symmetry with order parameter U for the ANNNC model.
A fit to the finite-entanglement scaling of £ and S at the critical point (using 33 < D < 64)
estimates the central charge to be ¢ = 0.786(7), consistent with the exact result of ¢ = 4/5,
particularly considering that imperfect ground state convergence can alter the estimated c

value.
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Figure 5.2: (a): Phase diagram of the ANNNC(-D) model for p = 3. In the phase diagram, the
black left-facing triangles are local cusp maxima (in the A direction) of the inverse correlation length
1/€ of the ANNNC-D MPS ground state at D = 9. They mark the beginning of modulations in
the correlation functions. The blue dots are cusp maxima (in the h direction) of the entanglement
entropy S of the ANNNC-D MPS ground state at D = 24. The solid lines represent hypothesised
phase transition lines, based on the numerical data. The low h phase for A > 0.5 appears to be
critical with central charge ¢ = 1, separated from the high i phase by a second-order transition. See
the main text for details of the numerical evidence. (b): Order parameter modulation wavevectors
ko along lines of h at selected A > 0.5 for the ANNNC-D model at D = 24. The commensurate
plateaus at kg = 7/2 correspond to the critical ¢ = 1 phase. The wavevector breaks away and begins
to vary at the transition into the disordered modulated phase.

For 0 < A < 0.5 we find clear signatures of a second-order transition line extending the
critical point of the clock model down towards h = 0 at A = 0.5. At fixed D, these include
a cusp maximum in the entanglement entropy S(h) which coincides with a cusp minimum
of the second energy derivative and a cusp minimum of the inverse correlation length £~
We find no evidence of further phase transitions for 0 < A < 0.5: The energy appears
continuous throughout and there are no indications of further higher-order transitions (for
example, S(h) away from the critical point appears to fall off monotonically). See Figure
5.7 for example plots.

For A > 0.5, we also observe a single second-order transition along a line emanating
from the h = 0, A = 0.5 point. In contrast to the A < 0.5 structure, we find the low h phase
to be gapless, with S(D), £(D) scaling consistent with a CFT of central charge ¢ = 1: We
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fitted values at 6 different points A = —2, A =0.1,0.2,...,0.6 (each with 49 different bond-
dimensions in the range 16 < D < 64) with an average result of ¢ = 0.991(5). See Figure
5.8 for plots showing transition indicators. Within this critical phase, MPS correlation
functions are modulated with fixed commensurate wavevector, in contrast to the high A
critical phase of the ANNNI model, in which the wavevector varies continuously. This is
shown in the wavevector plot of Figure 5.2. The high h phase beyond the second-order
transition is the same incommensurate modulated disordered phase observed for A > 0.5
beyond the disorder line.

That the entire low h region appears critical for A > 0.5, and that the critical phase
does not appear to be a floating incommensurate phase, sets the p = 3 case apart not
only from the ANNNI model, but also from the p = 5,6 cases, as shown below. Since this
result appears exceptional, and since we are limited to small block sizes in the uniform MPS
ansatz which may affect the ability to reproduce physical modulation behaviour, we also
perform MPS simulations with open boundary conditions on a finite chain as a cross-check,
using a one-site DMRG method in variational MPS formulation [2] together with imaginary
time evolution [6, 63], both implemented in evoMPS [46], finding an entropy distribution
consistent with a CFT of central charge ¢ = 1, thus confirming the uniform MPS result.
We also perform an extrapolation of 1/£ to infinite D using the uniform MPS data, finding
it to be consistent with 1/¢ — 0. Both results are shown in Figure 5.3.
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Figure 5.3: As further confirmation of the criticality of the low h, high A phase for p = 3, we plot in
(a) the infinite-D linear extrapolation of the inverse correlation length 1/ for three different values
of h at A = 1.5, finding it to be consistent with £ — 0 as D — oo. In (b) we fit the spatially
resolved entanglement entropy S for an open chain using the CFT prediction (2.15), finding it to
be compatible with a CFT of central charge ¢ = 1 for the even and odd sites separately. The open
chain ground state was obtained for D < 256 and a chain length of 400 sites at A = 2, A = 0.1.
Fitted values of ¢ are rounded to 2 decimal places. The x axis is a function of the site number n
given by xz(n) = 1/6log(N /7 sin(nw/N)).
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Phases for p = 5,6

The p = 5 and p = 6 cases are very similar to each other. Like the p = 3 ANNNC model, the
clock model phases persist for A below some small value. The clock model BKT transitions,
however, are difficult to locate precisely since the energy second derivative does not diverge.
BKT transitions are otherwise characterised by exponential scaling of the correlation length
near the phase transition [87], but this is difficult to observe numerically, in this case due to
finite-entanglement corrections. A more precise analysis using finite-entanglement scaling
could be performed at the cost of additional computational time required to obtain data
for many D along a line near the transition. One can also use the scaling of the entropy S
together with the CFT prediction for £ given ¢ = 1 as in [90]. However, since we merely
aim for a rough estimate of the transition location, this would be beyond the scope of this
work. Instead we rely on fixed-D pseudo transitions as evidence which, combined with
finite-entanglement scaling at isolated points to confirm or refute criticality, is enough to
build up a convincing estimate of the phase diagram.
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Figure 5.4: (a): Phase diagram of the ANNNC(-D) model for p = 5. The blue dots and the blue
right-facing triangles are maxima of the entanglement entropy S taken from the ANNNC-D model
at D = 20 and the ordinary ANNNC model at D = 16, respectively. All further data is taken from
the ANNNC-D model at D = 20. The red, up-facing triangles are local minima of the energy second
derivative. The dashed “disorder line” is obtained from local maxima in the inverse correlation
length 1/¢, as in Figure 5.2. The black, right-facing triangles mark discontinuities in the energy, the
signature of a first-order phase transition. The solid lines represent hypothesised phase transition
lines, based on the numerical data. The low h gapped phases are marked with their order parameter
modulation wavevectors kg. Finite-entanglement scaling suggests the regions marked with ¢ = 1
are critical and described by a CFT of central charge ¢ = 1. See the main text for details. (b):
Order parameter modulation wavevectors kg along lines in h at selected A > 0.35, taken from the
ANNNC-D model at D = 20. The plateaus at low h represent the gapped ko = 27/5 phase. The
change in direction of the wavevector away from the commensurate value 27 /5 appears to coincide
with the narrowing of the high A critical phases to a line (or more likely a point, given enough
resolution). This behaviour of the wavevector implies that there is a line of commensurate, locked
modulation running from the kg = 27/5 phase off to h — co. Presumably the pinch point between
the critical phases lies on this line.
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For fixed D, we observe a cusp maximum in S corresponding to a finite-entanglement
pseudo transition, marking one of the borders of a region of flat, and small inverse correlation
length, as shown in Figure 5.7 for A = 0. The region of flat £~! exhibits CFT scaling with
D consistent with a central charge of ¢ = 1, which breaks down for lower and higher h as
expected for the gapped ordered and disordered phases. This is consistent with the clock
model critical phase. For p = 5, we obtain an average ¢ = 1.014(5) with five h values
(0.95 < h <1.05) and 17 < D < 64. For p = 6, a set of five h values (h = 0.9,1.0,...,1.3)
with 16 < D < 64 gives ¢ = 1.006(8).

Interestingly, the maximum in S occurs on the low h side of the critical region for the
ANNNC model, and on the high A side for the ANNNC-D model, such that we can use the
entropy to approximately locate both transitions by simulating both models. We observe
that the cusp maximum in S coincides with global symmetry-breaking, where the order
parameter is U in both the ANNNC model and the ANNNC-D model. Note that the local
maximum in S is a non-physical finite-entanglement effect — the physical value of S must
diverge in the critical phase. It is also difficult to draw conclusions as to the symmetries
of the true ground state in the critical phase from finite-D ground states, since it is also
possible for non-physical symmetry breaking to take place if breaking a physical symmetry
is an economical way of reducing the entanglement needed to approximate the state. This is
more likely to happen if D is significantly lower than needed for an accurate representation
of the state, which is always the case in a critical phase.
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Figure 5.5: (a): Phase diagram of the ANNNC-D model for p = 6. The markers are as in Figure
5.4, except for the addition of the green stars, which represent local maxima of the first derivative of
S(h). All data is from the ANNNC model at either D = 16 or D = 24. See the main text for details.
(b): Order parameter modulation wavevectors from the ANNNC-D model at D = 24. As in Figure
5.4, the crossing of the wavevector lines of the commensurate values 7/3 coincides with a bottleneck
of the high A critical phase(s) in the phase diagram. The bottleneck in the phase diagram does not
appear to shrink to a point (or a line), at least in the finite-D MPS approximation.

For high A we see new gapped phases at low h, as observed for the ANNNI model.
The first of these (in A) is separated from the ordered, ferromagnetic phase by a first order
transition, as indicated by a discontinuous ground state energy. This transition line appears
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to run from A = 0 up to a point where the clock phases all end. For p = 5 there is only
one new gapped phase in the studied region, possessing a commensurate modulation of the
order parameter expectation values with wavevector kg = 27 /5. The modulation pattern is
helical in the complex plane. For p = 6 there is also a helically modulated phase for A < 1,
this time with ko = 7/3, but also an 11| “antiphase” (where 1 represents one of the p spin
directions w* and | represents its conjugate w™*) with kg = 7/2 at A > 1: See Figure 5.6.
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Figure 5.6: Ground state expectation values of the ANNNC order parameter at low field, h = 0.05,
showing no modulation, or commensurate modulation, in the various gapped phases of (a) p = 5
and (b) p = 6. We observe helical modulation for p = 5, A = 1.4 and p = 6, A = 0.7 as well as
“antiphase” modulation for p = 6, A = 1.4. The case A = 0 represents ferromagnetic ordering. Note
that the data is discrete, with data points occurring at the bends in the lines.

At intermediate h we observe critical, floating phases in which the modulation wavevector
of the order-parameter correlator varies continuously. The scaling of S and £ with D is con-
sistent with a central charge ¢ = 1: For p = 5 a set of 8 fitted central charges in the high
A critical region, along the interval 1.3 < A < 2.0 at h = 1.2, (using between 32 and 57
bond dimensions, 16 < D < 80) give ¢ = 1.027(9). An additional fit in the intermediate
critical region at h = 0.66, A = 0.6 (with 25 points in 16 < D < 64) gives ¢ = 1.029(5).
For p = 6 we obtain central charge estimates along the interval 0.8 < A < 1.5 at h = 0.75
using 8 points with at least 32 bond dimensions each (16 < D < 80) finding ¢ = 1.028(7).
A further fit at h = 0.5, A = 0.4 (23 points, 16 < D < 60) gives ¢ = 1.032(5). Note that
the error noted is merely the uncertainty of the least-squares fit and does not include the
error due to imperfect convergence of the approximate MPS ground state.

These phases differ significantly in extent between p = 5 and p = 6, but share an
interesting bottleneck feature, which coincides with a sign flip in kg — ko, within the floating
phase, where kg . is the commensurate wavevector of the low h phase and k£ is the wavevector
in the floating phase for the same value of A. This is clearly visible in the wavevector plots
of Figures 5.4 and 5.5. It is unclear from the data collected, whether the bottleneck is
a narrowing to a point or if the width of the critical phase remains finite. We expect the
former, where the point would be located along a line of “accidentally commensurate” values
of the wavevector connecting the commensurate low h phase with the disordered phase at
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high h. In the p = 6 case of Figure 5.5 the lower h transition becomes less apparent near the
bottleneck, making it more difficult to determine the precise phase diagram in this region.

We classify the low h transition between the commensurate phase(s) and the floating
phase(s) to be second order, as indicated by a strong minimum of the second energy deriv-
ative. The high h transition is less clear, as for the BKT transitions of the clock model.
The energy derivative for constant D does show some discontinuities, from which we take
the one at largest h as a rough indicator of the transition location. This also corresponds
to an increase in £~!. See Figure 5.8. That there must be a transition is clear from the
CFT scaling of S and &, which is present in the proposed critical region, but breaks down
at high h.

5.3.3 CFT scaling dimensions and entanglement spectra

We have determined numerically, with a good degree of confidence, that the floating phases
of the p =5 and p = 6 ANNNC models are described by conformal field theories (CFT’s)
with central charge ¢ = 1. There have been recent attempts to use DMRG/MPS approx-
imate ground states to extract more details. In particular the entanglement spectrum has
been investigated [161, 162] in several one-dimensional models, including the Bose-Hubbard
chain and the XXZ model, which also have phases with ¢ = 1, finding matches of the
entanglement spectrum with the spectrum of the CF'T describing these critical phases.
“Entanglement spectrum” is essentially another name for the singular values, or Schmidt
coefficients, corresponding to a bipartite decomposition of a system. It is defined by

[, = —In()2), (5.18)

where )\, are the Schmidt coefficients for the decomposition [1) = 3", Ao |0%) @ |¢%). The
name comes from its interpretation as the spectrum of an “entanglement Hamiltonian”
given by

pa = e (5.19)

where p4 is the reduced state on part A of the system, which can be diagonalised as
Paf = 5&5)\3- In the case of a CFT, the entanglement Hamiltonian has a simple expression
in terms of the stress-energy tensor (see, for example [163]) and could reveal much about
the CFT in question.

Following the approach of Lauchli in [161], we plot the entanglement spectrum for MPS
approximate ground states from the floating phases of the p = 5 and p = 6 ANNNC models
(5.1), resolving them by the expectation values of the global transformation (5.3) on the
corresponding Schmidt vectors. This symmetry replaces the particle number symmetry of
the Bose-Hubbard model. The expectation values of a global transformation on the Schmidt
vectors can be computed from the block-uniform MPS as described Section 1.3.7. We find
clear evidence of parabolic structures which, in contrast to the Bose-Hubbard case in [161],
appear to wrap around the (finite) spectrum of V. We plot two examples in Figure 5.9,
fitting the lowest-lying points (corresponding to the most significant Schmidt coefficients)
using quadratic functions. We find the lower-lying points are well-described by the quadratic
fits, suggesting that the entanglement spectrum also reflects a ¢ = 1 compactified free boson
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Figure 5.7: Phase transition indicators for the clock model (A = 0). (a) The second derivative of the
energy density, showing a clear signature of a second-order transition for p = 3, but showing mostly
smooth behaviour for the known BKT transition cases of p = 5,6. (b) The inverse correlation length
1/€ suggesting a critical point for p = 3 and showing extended regions of long-range correlations
for p = 5,6, consistent with the critical phases expected. (c) The entanglement entropy .S, showing
a clear cusp maximum for all p. For p = 5,6, we use this pseudo-transition as an estimate of
the location of the high h BKT transition. (d) Entanglement entropy for the ANNNC-D model,

showing a cusp maximum corresponding to the low h transition for the p = 5,6 models. We find the

maxima in the entropy correspond to a symmetry-breaking pseudo-transition in the MPS ground
states, which occurs at the high A transition for the ANNNC model and at the low A transition for
the ANNNC-D case. Note that the symmetry-breaking inside the critical phase may be a finite-

entanglement artifact. Plots (a),(b),(c) use data from D = 16 approximate ground states of the
ANNNC model. Plot (d) uses ANNNC-D data with D = 24 for p = 3,6 and D = 20 for p = 5.
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Figure 5.8: Phase transition indicators with frustration (A = 1.5) from the ANNNC-D model

(except plot (d)). (a) Second derivative of the energy density, showing clear signatures of one
second order transition for p = 3,5,6. For p = 5,6 there are also indications of a second transition
at higher h. This transition may be a higher order one, such as a BKT transition. (b) Inverse
correlation length 1/¢ indicating critical regions for all plotted p. In the case of p = 3, the region
extends down to h = 0, whereas it gives way to a low h region with small correlation lengths for
p = 5,6, suggesting a gapped phase. (c) Entanglement entropy S showing cusp maxima, which
suggests a phase transition. There is a clear signature of a high h transition for p = 5,6. (d) S
for the ANNNC model, showing different cusp maxima, this time suggesting a low h transition for
p =5,6. Combined with (c), we might use this data to estimate the location of the upper and lower
transitions. Plots (a),(b) and (¢) use MPS ground states at D = 24 for p = 3,6 and D = 20 for
p=>5. Plot (d) uses D = 16 for all p.
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Figure 5.9: Entanglement spectra organised by the expectations values of the global symmetry
transformation on the corresponding Schmidt vector e'?e = ([T;2 Vi) r.o. The Schmidt coefficients
are Ao. (@): p=5 D =80, L=1, A=15 h=12. (b): p=6,D =60, L =4, A = 1.5,
h = 1.5. There points are within the floating phases of the p = 5 and p = 6 ANNNC models.
The red and green lines are quadratic fits to the lowest and second-lowest points in each column,
excluding wrapped points. Both clearly exhibit parabolic behaviour of the most significant Schmidt
coefficients, suggesting that the interpretation of [161] can be applied and used to extract the scaling
dimension.

CFT in the ANNNC case. As well as the cases illustrated in Figure 5.9, we also find that
the entanglement spectrum, although it always appears to be symmetric about a certain
angle, does not always have a point at the minimum of the lowest parabola.

We also use the procedure described in [161] to estimate the scaling dimension 7 of the
first non-identity primary field, which determines the exponent of the algebraic decay of
order-parameter correlations. We plot the values of ngg obtained from the entanglement
spectrum alongside 7, the algebraic decay coefficient of the U — UT correlation function,
for p = 5 and p = 6 in Figure 5.10. For these plots, we only make use of data from
entanglement spectra that include among their values the minimum of the parabola of
best fit to the lowest-lying points. We plot nc and 7n¢, p obtained from simulations using
the ANNNC model (5.1) and its dual (5.10) using a fixed bond dimension. We find good
agreement between ngg and the nc p, whereas the nc results are qualitatively similar, but
shifted to higher values. The good agreement in the former case is further evidence that the
entanglement spectrum contains information about the CFT of the critical phase, which
should have the same large-scale behaviour in the ANNNC-D and ANNNC models. The
shift in the nc results may be a result of a more complicated short range entanglement
structure in the ANNNC model compared to the ANNNC-D model, leading to a poorer
approximation of the ground state for a given value of D.
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Figure 5.10: Numerical estimates of the scaling dimension 7 of the first non-identity primary field
of the CFT describing the critical floating phases of the p = 5 and p = 6 ANNNC models. (a):
p=>5,D=20. (b): p=6, D= 24. For comparison, we plot the value obtained from the V-resolved
entanglement spectrum of the ANNNC model 7gg, as well as values obtained as the algebraic decay
exponent for order parameter correlator of the ANNNC model n¢ and of the ANNNC-D model n¢, p.
We observe good quantitative agreement between ngg and 7¢, p within the floating phases, as well
as good qualitative agreement with no. We interpret this result in the main text.

5.4 Discussion and conclusions

We have shown that incommensurate order appears for all studied p as the strength of the
next-nearest-neighbour interaction term in (5.1) is increased. Our approximate phase dia-
grams have a similar form to that of the known p = 2 ANNNI case [90], with the differences
in the cases p = 5 and p = 6 being limited to the size of the floating phase and the form of
the low-field phase(s). Since the p = 6 case is relevant for the experimental setup discussed
in Section 5.2.3, our results lead to a wide range of interesting experimental predictions.
To more precisely determine how the system behaves in experiments, particularly in the
incommensurate phases due to the restrictions on the wavevector imposed by a finite length,
numerical studies on finite systems may be helpful.

Perhaps the most interesting finding in our study is the appearance for p = 3, at A > 0.5,
of a commensurate gapless phase with central charge ¢ = 1 extending all the way down to
the classical h = 0 line. In the other cases studied, as well as in the ANNNI model, the low-h
phase is gapped and the gapless phase(s) at intermediate h are incommensurate floating
phases. In searching for an explanation, we note that the h = 0 ground state of the p = 3
model differs from the p = 2,5,6 cases in an interesting way. In all cases, for small A the
configuration is ferromagnetic and for larger A it becomes energetically more favourable to
build a commensurate, modulated structure. However, despite the possibility of a “helical”
structure as formed for p = 5 and p = 6, an antiphase-type configuration similar to those
of the p = 2 and the high-A p = 6 models, has lower energy. In contrast to p = 2 and
p = 6, however, the antiferromagnetic term (4+U;U ]T + h.c.) has an additional ground state
degeneracy due to p being odd: If we fix spin i to have value 1 then the ground space is

78



spanned by |1);|w); and |1);|w?);. As such, the overall ground state has the form
|to) =|...aabbccdd...), a,b,c,d € {1,w,w?}, (5.20)

where neighbouring pairs differ in spin (a # b, b # ¢, ¢ # d, and so on). The number of
such states grows exponentially with the chain length IV, so that the infinite system has an
infinitely degenerate ground state. This is a typical feature of classically frustrated systems,
and sets the p = 3 case apart from p = 2,5,6, which maintain a small, finite degeneracy
corresponding to a global symmetry at h = 0 for all investigated A. It is possible that the
low-h commensurate gapless phase of the p = 3 model exists as a result of this difference at
h = 0. We may speculate that the gapless phase is a quantum spin liquid (QSL) [44], a type
of phase that can arise when adding quantum fluctuations to a frustrated system. A feature
of QSL states is, however, that the magnetisation vanishes. In our case, the MPS ground
states have a small average magnetisation (U) (where the average is taken over a block of
size L). Nevertheless, this does not rule out the hypothesis, since the symmetry-breaking
may be a nonphysical finite-entanglement effect (see Section 2.3). Indeed, a preliminary
analysis shows that the average magnetisation approaches zero as D increases.

We have also seen that the entanglement spectrum of the ANNNC model in the in-
commensurate floating phase shows structure consistent with a free bosonic CFT [161],
extracting a value for the scaling dimension that shows good agreement with fits to correla-
tion functions. This also constitutes evidence that quantum fluctuations lead to an emergent
U(1) symmetry in critical phases, despite the discrete Z, symmetry of the underlying clock
degrees of freedom [37].
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Chapter 6

Lattice gauge theory

6.1 Introduction

In this chapter we present the tools needed to understand Hamiltonian lattice gauge the-
ory. Beginning with an introduction to gauge theories, we cover some basic group theory
before setting the scene for Hamiltonian lattice gauge theory by describing its Hilbert space
and a number of important operators. We then define the theory, following Kogut and
Susskind [164], ultimately describing how the graph on which a lattice gauge theory is
defined can be manipulated using unitary “parallel transport” operations. The contents of
this chapter is intended to motivate and set up the theory for the study of the nonabelian
quantum rotor model in Chapter 7.

Most of this chapter follows [165], which makes use of the same mathematical framework,
initially developed for that project by Tobias Osborne. A novel addition is the derivation
of important operators in terms of a Fourier basis, which was necessary for the numerical
implementation of Chapter 7. The concepts of manipulating graphs in lattice gauge theory
using parallel transport operations is not new, and is also described in slightly different
language in [166].

6.2 Gauge theories

Gauge theories are quantum field theories whose physics is invariant under under local gauge
transformations. Such theories arise often in physics, and are connected to a relativity
principle: We wish to avoid physical predictions that depend on an arbitrary (local) choice
of reference system: In general relativity, a crucial feature is the invariance of physics under
a local choice of basis for spacetime [167]. Similarly, in a quantum gauge theory the quantum
field has an “internal” degree of freedom whose absolute value at any point in spacetime is
not physically observable, while its changing value along a path in spacetime, for example
around a loop, can be.

Gauge fields are central to the Standard Model of particle physics [81]: Together with
corresponding matter fields, such as the Dirac field of fermions, they are responsible for the
electroweak interaction as well as the strong interaction. Here, the particle excitations of
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the gauge field obey bosonic statistics and are known as gauge bosons, of which the best
known example is the photon, which is the gauge boson of quantum electrodynamics (QED).

Intriguingly, one is forced to include a gauge field with its own dynamics if one wishes
to construct a quantum field theory of matter that is invariant under local transformations.
For example, say we have a complex quantum field ¢(z) whose dynamics are governed by
quadratic terms such as 9 (x)y(x), or 1 (x)0u1)(x), and where all physical observables also
involve quadratic, or even-power terms in the field. Clearly, all physical predictions of this
theory are independent of an overall phase factor

P(x) — eiezﬂ(:):). (6.1)

This is a global transformation (6 is not a function of ). However, we may also consider
theories whose predictions are invariant under local transformations

Y(a) = "D (a). (6.2)

We can think of a local phase shift as a local change of coordinates — we are shifting
the “zero” in our reference system of phases. If we now consider the terms governing the
dynamics of the theory, we quickly find that any derivative terms, such as W@uw(x), will
need to be modified to keep track of these local phase choices, since they will otherwise pick

up a dependence on them from

9@ £ 0. (6.3)

One way to do this is to introduce an extra field A,, whose job it is to translate between
these local “coordinate systems” so that distant phases can be compared properly. If we
require that the new field transform as

A= A, +0,0(x), (6.4)
we can then swap the derivative in the equations of motion for the covariant derivative
D, =0, —iA,(z), (6.5)

giving

(@) Dptp(x) = P(x) [0, — 1Au(2)] P(z), (6.6)
which, a little calculation shows, is invariant under transformations of the field and gauge
field, (6.2) and (6.4). This procedure is well known in differential geometry, in which context
the field A, is called the connection [81]. Now, in addition to restoring gauge invariance,
the gauge field A, can have consequences for the dynamics of the 9 (z) field. Indeed, in
some cases it is “forced”, if we require certain symmetries to be maintained, to have its
own physics [81]! For instance, if we let ¢(z) be the Dirac field of spinors in four spacetime
dimensions, we find that the corresponding gauge field A, cannot be neglected in calculating
physical observables and is thus physically relevant. Further, one of the simplest forms for
the dynamics of A, is equivalent to Maxwell’s equations, where we recognise A, as the
“vector potential” from classical, Lorentz-invariant electrodynamics. The resulting gauge
theory is QED.
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Associated with each gauge theory is a gauge group G describing the local symmetry.
The gauge field takes values in the Lie algebra associated with G. In the case of QED, G
is the group of phases U(1), which is abelian, and whose Lie algebra is the real numbers so
that A, € R. Naturally, one could consider matter fields that transform under the actions
of other groups. Indeed, Yang and Mills generalised gauge theories to nonabelian gauge
groups, such as SU(N) in 1954 [168]. Although these Yang-Mills theories were initially
seen as a curiosity, today they make up the fundamental gauge theories of the Standard
Model, with the abelian theory of QED emerging from the nonabelian electroweak theory,
which has G = SU(2), as a result of symmetry breaking [81].

Importantly, nonabelian gauge theories can exhibit very different physics to abelian
theories like electrodynamics. Crucially for the strong interaction, described by a gauge
theory with G = SU(3), called quantum chromodynamics (QCD) [81, 169], the gauge field
potential for separated charges grows linearly with distance, explaining the confinement
of quarks [170]. Unfortunately, despite its simple formulation and large gauge symmetry
group, Yang-Mills theory has not been exactly solved. Indeed, a prize is available for anyone
who is able to prove rigorously that it has a mass gap [171], which would be the case if it
is confining at all energy scales.

Predictions in Yang-Mills theory can be made using perturbative scattering theory for
high energies, where the effective coupling becomes small (asymptotic freedom), and us-
ing strong coupling expansions together with a lattice discretisation for low energy, long
distance behaviour [45]. It is also possible to perform numerical simulations on the lattice
using Monte Carlo sampling techniques, which has provided excellent confirmation of the
spectrum of light hadrons [172], for example.

Working with the theory on a lattice has the natural advantage of imposing a momentum
cutoff, albeit at the expense of abandoning Lorentz invariance. This is convenient since in a
quantum field theory objects typically become well-defined only with the use of a so-called
reqularisation scheme [80, 81], of which a momentum cutoff is one example. The reason is
that certain integrals representing physical quantities diverge, an obvious risk when they are
carried out over the continuous and infinite space in which a quantum field is supposed to
live. Although a cause for much head-scratching in the early days of quantum field theory,
today this phenomenon is usually seen as an indication that the theory at hand breaks
down at some point, typically as we consider ever higher energies. Such an “ultraviolet”
divergence tells us that our theory cannot describe physics at all energies. However, this
does not prevent it from being a good effective theory at lower energies, and indeed we have
every reason to expect the highly successful quantum field theory of the Standard Model to
break down at sufficiently high energies since gravity, usually neglected in particle physics,
must eventually play a role.

A lattice discretisation not only regularises the theory, it also brings it into a form
convenient for the application of known discrete numerical and analytical methods, such as
those of tensor network states (see Chapter 1). For these reasons, we work in the following
with lattice-discretised Yang-Mills theory. In particular we make space discrete, leaving
time continuous, working with the Hamiltonian formulation due to Kogut and Susskind
[164].

Lattice gauge theory associates a Hilbert space H, a Hamiltonian H, and a subspace
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of physical (gauge invariant) states Hpnys, with a lattice or, more generally, a graph. The
Hilbert space is composed of spaces associated with the edges of the graph

H = ® L*(@), (6.7)

ecE

where L?(G) denotes the space of square-integrable functions of the gauge group G. Before
we examine the Kogut-Susskind Hamiltonian, we review some results of group theory and
set up some useful operators on L?(G).

6.3 Some group theory

A group G is a set of elements g € G together with a product operation, under which the set
is closed, meaning that taking the product of two elements of the set can only ever produce
other elements of the set gh € G Vg, h € G. Groups are also required to have an identity
element I, such that gl = ¢ Vg € G, and an inverse element g~' for each element ¢ such
that gg—! = I. For more, see for example [173].

In the following, we deal with “matrix groups”, which are sets of matrices closed under
the usual matrix multiplication operation. In particular, we consider compact Lie groups
G [174]. A Lie group is a continuous group that is also a differentiable manifold, implying
that one can define a tangent space associated with each element. We focus in particular
on two Lie groups relevant for gauge theories: U(1) and SU(2) [174]. The former may be
defined as

U(l) = {ew

pelo2m}={z|zcC |z =1}, (6.8)

where the first definition is in terms of positions on a unit circle, clarifying why U(1) is
also called the “circle group”, and the second explains the name “U(1)”: It is the group of
1 x 1 unitary matrices. This group is clearly abelian (its elements commute). The simplest
relevant nonabelian group is SU(2), which we define as

SU(2) = {(g j)

This is the group of unitary 2 x 2 matrices with determinant 1. It is interesting to note that
SU(2) is diffeomorphic to the 3-sphere S3 [174], which can be seen in the following way. If
we define a basis for 2 x 2 matrices

10 01 0 —: 1 0
0 1 . 2 . 3 .
T = <O 1) , T =1 <1 O> , T =1 <z 0 ) , and 71° =1 <0 _1> , (6.10)

where we can verify that tr(7#17%) = 26", every 2 x 2 unitary matrix of determinant 1 can

a,B€C,laf + |8 = 1}. (6.9)

be uniquely represented as
= 3
<O‘ _B> =3 n, 7t (6.11)
f =
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by setting
n? = (Re(a),Im(B), —Re(B), Im(a)), (6.12)

where |a|? + |8]? = 1 implies |n|? = 1. In other words, elements of SU(2) are in one-to-
one correspondence with vectors in R* of modulus 1, which lie on the unit hypersphere
of R%. Furthermore, we find that the product SU(2) x SU(2) (also known as Spin(4))
can be mapped to the group SO(4) of rotations in R*. To see this, take any element
g € SU(2), which represents a point on the unit hypersphere, and act on it with an element
(h1,h2) € SU(2) x SU(2) from the left and right

g highyt. (6.13)

This gives us a new element of SU(2), and therefore a new point on the unit hypersphere.
Hence each element of SU(2) x SU(2) is a rotation in R*. However, there are two elements
in SU(2) x SU(2) for each such rotation, since we can do hy — —h; together with ha — —hs
without changing the rotation hy g hy ': SU(2) x SU(2) is the double cover of SO(4) [175].

6.3.1 Irreducible representations and the Peter-Weyl theorem

It is possible to represent a group on different vector spaces with an appropriate choice
of linear operation implementing the group product. We work with compact Lie groups
G, which have nontrivial finite-dimensional matrix representations [174], meaning there are
functions r : G — My, with d finite, such that r(g)r(h) = r(gh) for all g,h € G r(g)
that are not the trivial representation r(g) = I Vg € G. We restrict ourselves to unitary
representations 7(g)rf(g) = 77(g)r(g) = I, which exist for all compact Lie groups [174]. A
representation may be reducible, meaning we can find a basis for the matrices r(g) such
that 7(g) has the same nontrivial block-diagonal structure for all ¢ € G, or it may be
irreducible [174]. An irreducible representation, or irrep, cannot be block-diagonalised in
this way. This implies that any reducible representation can be decomposed into a direct
sum of irreducible representations which can itself be decomposed no further.

Given that all representations can be written in terms of irreps, one might suspect that
the irreps form a useful “basis” for more general purposes. In fact, the Peter-Weyl theorem
[175, 176] tells us that the irreps form an orthonormal basis for square-integrable functions
of G:

G P eV, (6.14)

l€irreps

where V] is a d;-dimensional vector space associated on which the matrix irrep [ acts and V;*
is its dual. Integration over the group G is performed using the left and right translation-
invariant Haar measure dg [175], which is invariant under group multiplication from the left
and right:

/G dg f(g) = /G dg f(gh) = /G dg f(hg). (6.15)

The Peter-Weyl theorem can be stated more precisely as:
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Theorem 6.3.1 (Peter-Weyl). Let G be a compact group. Let the matrix coefficients
be the matrix elements, as functions G — C, of an irreducible finite-dimensional matrix
representation of G in a chosen basis.

1. The set of matriz coefficients of all finite-dimensional irreps is dense in L*(G).

2. Let {t'}; denote a set of mutually inequivalent unitary irreps of G and let {té-k(g)}jk
be the matrix coefficients of irrep I. Then {\/CTlté-k}ljk is an orthonormal basis for
L?(G), where d; is the dimension of irrep t'.

In the case of G = U(1), (6.14) is just the Fourier decomposition of functions on the
circle: All irreps of U(1) are one-dimensional, and a canonical choice is t"(f) = ", for
0 € [—m,m)and n € Z. The irreps of SU(2) are familiar in physics as the set of possible spins
assigned to particles. Spin-0 particles transform under the [ = 0 (trivial) representation of
SU(2), spin-1 under the [ = % irrep, and so on. The Peter-Weyl theorem proves a way of

2
generalising the Fourier series to functions of compact groups.

6.3.2 Lie algebra and generators of a Lie group

Another important property of Lie groups is that they are locally generated by a Lie algebra
[174], which is the tangent space of the group at the identity element. In particular, the
irreducible representation of any element in the matrix Lie groups U(1) and SU(2) can be
written using the matrix exponential [174] as

th( _exp< > 0, Al> (6.16)

where 6, € R and A, are the d; x d; Hermitian generators for irrep I. These satisfy
commutation relations

(AL, M) = {:m7 (6.17)
where f,3, are called the structure constants [174]. In the case of the spin-half represent-
ation of SU(2), the generators are the Pauli matrices A2 = 104 (@ = 1...3) and the

structure constants are fng, = %6(157, where € is the Levi-Civita symbol. In the case of
U(1), the generator of irrep n is the integer n (a 1 x 1 Hermitian matrix): A" = n.

6.4 Bases for L*(G)

The Fourier basis for the Hilbert space L?(G) is invaluable for numerical applications, as
it is countable for compact groups. In the following we use the Dirac bra-ket notation,
denoting Fourier basis elements as

k) = Vdy thy, (6.18)

86



with [ denoting the irrep and j, k referring to a particular matrix element. With this notation
the orthogonality property reads

l’<j/k/’jk>l — 5ll’5jj’5k‘k/' (619)

In the case of G = U(1), where all irreps are one-dimensional, we use a more compact
notation
|n) = t" = e, (6.20)

where (n|m) = dp,,, and we have used n instead of [ to denote the irrep because there is an
irrep for every n € Z. We may also define a “position basis” |g) such that

/dgdh(g\h}z/ dgdhd(g—h) =1, (6.21)
G G

where 6(g — h) is a Dirac delta on G defined such that

/G dg £(9)8(g — h) = F(h). (6.22)

In the sequel, we drop the subscript G on the integration symbol.
The Fourier basis elements can be written in terms of the position basis as

ik = Vi [ dg t4(9) 19 (6.23)

where we can check that, due to the orthogonality of the basis {\/d; ték}ljk,

v {(§'K\jk) = Vdidy /dg th 1 (9) th1.(9) = O8O (6.24)

6.5 Operators on L*(G)

Here we define the operators on L?(G) that are needed to discuss lattice gauge theory. To
implement left and right multiplication, we define unitary rotation operators L and R acting
on the position basis as

Lplg) = |hg) and Rylg) = [gh™'). (6.25)
These fulfil

Ly Rl =0, Li=L,1, Ri=Ryr. Loln=Lgn Reftn=Rp  (6.26)

We also define a position operators ﬂé 1> €ach diagonal in the position basis, with eigenvalues

corresponding to the matrix entry ¢, 7 of the [th irrep of G:

Wik 19) = 5 (9) 19)- (6.27)

Where we do not specify the irrep on objects such as %, and t;,(g), we assume the fun-
damental, or defining irrep of the group. For U(1) this is the n = 1 irrep €' used in (6.8)
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and for SU(2) it is the spin-half representation of 2 x 2 unitary matrices used in (6.9). We
further define U to denote the matrix of operators

PP st [t
W = [y, Gl = [ukj}jk, (6.28)
with standard matrix multiplication implying, for example, that

[U1UQ gk = Z Uy, k' U2 Kk and (6.29)

[u1u2] Z Uy g U2 ks (6.30)

where the counterintuitive ordering of 1ndlces on line two is a consequence of the transpose
in @f. The U operator interacts with rotations as
L; uly,=t(g)u and (6.31)
RIGR,=1t(g "),
where ¢(g) undergoes matrix multiplication with u. Also, we have the identity
[, = Toj, (6.32)

as can be verified by acting on position basis states.
We may define “momentum” operators, corresponding to the generators of the group,
as infinitesimal rotations from the left and right:
. d s
Y Dy =1 deRema
Unless otherwise noted, A\, generate the defining representation of G. With these we can
implement the quadratic Casimir operator

pP= (0n) =) (h)* (6.34)

e «

. d=

PE=i o Lo (6.33)

e=0

We may now compute the commutator for @ ik and p%. We find

T~ 3 d ie
Pat, = l/dg 7 ti(9) € ) (9] (6.35)

e=0

—i [dg Zt ) 1, (g) [ghe )

e=0

d
=~ T~
Ujrke + Ujk DLy

_ l —ieAa
—Zdetm( - ),
= Z {)\l } g Ué'/k + aé’kﬁéa

where we have written out ﬂjk in the position basis and used (6.33) for the first line. We
then exploit the invariance of the Haar measure and apply the product rule. Rearranging,

we have L l l
o Uik | = ol . Y5k :
AT ED R LJ il (6.36)
7
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6.6 Operators in the momentum basis

We can also write the above operators in terms of the momentum basis (6.18). For pZ, pf
and p?, this is relatively straightforward. For p% we have

d ie
oG PEL = /e [ dg dh 5, () tlg) 5Bl g)

. ’ d —ie
— iy [ dg 1, (g) S-th(e )

(6.37)

e=0

e=0

dydy / dg 1,4, (9) Z@tém e ()

e=0

=10 Oprr e i)

!
Zetii

e=0
= O O [)\la]jj/ ;

where we have exploited the invariance of the Haar measure. Similarly,
oKD | = =dw 33 [
In the abelian case of G = U(1) we have the particularly simple form
(n|p*|m) = —(n[p™|m) = 1 Gum. (6.39)
Inserting the more general forms (6.37) and (6.38) into the definition of p* (6.34) yields

<J k/’ ‘]k Zéll’ (5kk/ [ )\l } Zéll/ i [ L::’k’ (6.40)

. (6.38)

where we identify 3", (A}, )? as the Casimir element of the Lie algebra, which is proportional
to the identity for each irrep [. We find

U <] k,’ |jk>l = O 5]] Ok l(l + 1) for G = SU(2)7 (641)

(n|p?|m) = Spm n? for G = U(1), (6.42)

where the SU(2) result comes from Zao‘la)a: [(I +1)I. Similar calculations to that of
(6.37) provide the matrix elements of L and R:

V'K Lk = RV [ dht(h) gh) (6.43)
Jk'rf/dhzt b (1) 1)
= ]k’Zt D) Imk),;

= 6w O th5 (g7,

v (§'K'| Ry k) = S0 tho(g)- (6.44)
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From this it is clear that [p?, Eg] = [p?, ﬁg] = 0, since L and R are block-diagonal and p? is
proportional to the identity in each of the [-blocks.

The position operator ﬂé ;. has a more complicated form in the momentum basis, as we
should expect. Let us first handle the abelian case G = U (1), where we have

@n) = a* / dz 2"|2) (6.45)

where z € C, |z|2 = 1 and dz is the Haar measure. Hence % and @' are ladder operators

<m|ak’n> = 5n+k,ma (6.46)

and F can be read as the kth power of 4.

For the nonabelian group SU(2) the position operator plays an analogous role, however
the raising and lowering rules are more complicated, accounting for example for the higher
dimensionality of the irreps. Proceeding the same way as for U(1), we first examine

Bunl 30 = VL [ dg t54(9) tn(9)19): (6.47)

We note that the RHS has the form of a tensor product of two irreps (V; @ Vi*) @ (Vs @ V™)
which, itself being a (reducible) representation of G, can always be decomposed into a
direct sum of irreps @, (Vy @ Vi*). The coefficients for this decomposition are known
within physics as Clebsch-Gordan (CG) coefficients [174, 177], which we define (ignoring
multiple occurrences of each irrep in a decomposition, which never happens for SU(2)) as

Oy = vl (70 ® In)s) (6.48)

where |j); are the same basis elements for V; used in Theorem 6.3.1 for the definition of té-k.
With the CG coeflicients, we have

Wik =V Y () C’llk,ksm/dgtl,k/ )19) (6.49)

l/ ‘/kl

ll / * l,7k}, .
Z ( ,]sn) Cl,k;s,m‘]/k/>l"

l/ lk/

The CG coefficients, which can be assumed real without loss of generality, can be computed
efficiently for SU(N) [177] For SU(2), and the special case of s = 3, which is the only case

we later implement, C’l is non-zero only for I' =1+ 1/2.

Jil/2m
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6.7 Hamiltonian lattice gauge theory

An elegant discretisation of Yang-Mills theory, with the key feature of maintaining gauge
invariance on the lattice, was provided by Wilson in 1974 [178]. He imagined a lattice where
the vertices represent points in spacetime, but it is equally possible to discretise only space,
keeping time continuous. This was done by Kogut and Susskind [164], who developed
a Hamiltonian, quantum formulation of lattice gauge theory. It is this latter approach
that we follow here, explicitly breaking Lorentz-invariance in order to work directly with a
quantum lattice system.

Figure 6.1: A directed graph. Lattice gauge theory is usually considered on regular lattices, such as
the left part of this graph, but can be formulated on any directed graph, which we may imagine to
be a particular discretisation of spacetime.

In general, we can imagine discretising space by embedding an arbitrary graph in it,
with edges £ and vertices V (see Figure 6.1). The gauge field degrees of freedom in lattice
gauge theory, are assigned to the edges of the graph. This makes sense, because the spatial
gauge connection A;(z) of the continuum theory, which takes values in the Lie algebra of
the gauge group, assigns an element of the gauge group U, € G to any path « in space via
the parallel transporter

U, =Pexp (igg/ dx’; Aj(gg’)> 7 (6.50)
V(@)

where P indicates path ordering of the matrices A;j(2’) in the expanded expression and
go € R is a constant. Since the edges in the graph represent paths between the points in
space corresponding to each vertex, (6.50) gives us an element of the gauge group U,
for each edge e € £ in our graph. The direction of the edge determines the direction in
which the path y(e) along it is traversed. Switching the direction of an edge is the same as
inverting Uy ().

A gauge transformation G assigns an element g € G to each point in space. In the
continuum, it acts on the gauge field as [81]

A3(w) & g(2) " A (w)g(w) + ;Og@:)-laj(m)g(x). (6.51)

From (6.50), path ordering implies that U, — g(%)flUwg(fyf), where v; and vy are the
points at the start and end of the path. We can thus think of a gauge transformation
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as assigning an element g, € G to each vertex v of the graph. This element acts on the
adjoining edge variables U, () as gv_lUv(e) if the e begins on v, and as U, (¢ gy if € ends on
v. We illustrate this in Figure 6.2.

gc@ R E2y
Ulg_l Rl,g

AU 9Us ~ ! 2379
Usg™? Ryg

L «

Figure 6.2: Tlustration of a gauge transformation in lattice gauge theory. A gauge transformation
assigns an element g € G to the vertex v, which acts on the adjoining edges 1...4 by multiplying
from the left or right, depending on whether the edge is directed toward or away from the vertex.
On the left we show the action in terms of classical variables, with the Hilbert space implementation
on the right.

So far we have considered the gauge field in classical terms. We now quantise by as-
signing the Hilbert space L?(G) to each edge of the spatial graph, instead of single gauge
group element, allowing superpositions of gauge field configurations. Kogut and Susskind
determined an appropriate choice of Hamiltonian in [164]. Using the operators defined in
Section 6.5, we define the Kogut-Susskind Hamiltonian as

2
. 2 N
Hgg = % > P - — > Re(tr(ty)), (6.52)
a g%a
ec& peEP

where g is the coupling strength parameter and a is the lattice spacing, which in general
could be different for each edge in the graph. Note that, for a regular lattice, the lattice
spacing appears as an overall factor on H and thus has no effect on the spectrum of the
theory beyond scaling. In the sums, £ is the set of edges of the spatial lattice, or graph, and
P is the set of plaquettes. Plaquettes are two-dimensional surfaces defined by the shortest
closed paths, or loops, along edges. We choose P to be a set of non-overlapping, non-
intersecting surfaces. On a 2D square lattice, for example, the plaquettes are the squares.
We define the plaquette position operator

U, =.. .ﬁ(yﬁ)ﬁ(’y;), (6.53)

where 7, is a directed path around plaquette p and 7, in the nth edge along the path. We
also use the abbreviation

~ __ ~—sign(vp)
() =, (6.54)

where sign(~™) equals 1 if the path « traverses its nth edge in the same direction as the
edge itself, and -1 otherwise. Taking the trace of 1i,, which is performed on the matrix
indices (see (6.28)) so that the result is still an operator, completes a loop of position
observables, called a Wilson loop, around the plaquette. Wilson loops have the property of
being invariant under gauge transformations, as we explain in the following.
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6.7.1 Gauge transformations

Gauge transformations are implemented on the full Hilbert space H = ®.cp L*(G) using
the left and right rotation operators L and R (defined in (6.25)) as illustrated on the right
hand side of Figure 6.2. A general gauge transformation has the form

Glgo) : 1) = [T | TI Zgwie | | TI Rouir | 19, (6.55)

veEV \e€&,y_ fEEuL

where the square brackets in G[g,] indicate dependence on the set of gauge group elements
gy € Gand &,_ C £ and &,4 C & denote the subsets of edges that begin and end on
vertex v, respectively. The invariance of a loop of position operators tr(t,) follows from
(6.31). For example, using (6.31) in (6.53) we see that U, only receives contributions under
a gauge transformation from the U operators at the start and end of the loop and these
contributions cancel under the trace:

ap — t(g)Tpt(g ) (6.56)
= tr(a,) — tr(up,).

As well as Wilson loops, we also know that p? is gauge invariant since it commutes with
all rotations, as shown in Section 6.6. We can thus confirm that the Hamiltonian (6.52) is
invariant under gauge transformations G, which is to say it commutes with the projector
onto the gauge invariant subspace of physical states

ﬁphys = / (H d9v> ﬁg[gv], (6.57)

veY

which applies all possible gauge transformations, where ﬁg[gv] is the unitary implementation
of the gauge transformation G[g,]. We can divide the full Hilbert space into a physical,
gauge-invariant part and a nonphysical part as

H= thys @ Hnonphys, (658)

where ﬁphys projects onto Hphys.

It is interesting to realise that the physical subspace Hppys, in contrast to H, does not
have an obvious tensor product decomposition in terms of the edges of the graph. This is
ultimately due to the nature of local gauge transformations, which affect all edges joined
to a particular vertex. The transformations corresponding to different vertices overlap in
terms of the edges they affect, with the result that applying ﬁphys to some state generally
creates entanglement between the edges. Even if the original state [i)) was a product state
under the decomposition H = ®,c¢ L*(G), the state ﬁphysW) is not in general.

6.7.2 Graph manipulation

The Hilbert space H = @,ce L*(G) in which the Hamiltonian (6.52) acts is clearly de-
pendent only on the number of edges in the graph on which the lattice gauge theory is
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defined. Hpnys, on the other hand, is determined by the gauge transformations, which in
turn depend on the comnectivity of the graph, since they act on edges according to which
vertex they are connected to. Indeed, specifying the set of possible gauge transformations
on H is equivalent to defining the connectivity of the edges in the graph.

In this section we consider unitary transformations

ViH—H (6.59)

that modify the set of gauge transformations, thus changing the connectivity of the graph
and altering the physical subspace

V : Hphys = Hpngs- (6.60)

Such transformations can be used to relate the physics of differently connected graphs. In
Chapter 7, we use them to relate numerical results for a particularly simple graph, for which
the Hamiltonian is easy to implement, to a more complicated graph.

In the following we show how to construct V from simple building blocks, exploring the
transformation of the operators used in the Hamiltonian (6.52) in order to determine how
the physics of one physical subspace translates into another.

Parallel transport and controlled rotations

Graph-manipulating unitaries can be constructed from the quantum analogue of parallel
transport operations. Parallel transport specifies how to compare objects, such as values of
a matter field, at distant points in the presence of a connection such as the gauge connection
[167, 179]. To do this, one must account for the local gauge choices.

The classical parallel transporter in a continuum gauge theory is given by (6.50), which
Wilson used as the basis for his gauge-invariant discretisation. To compare objects at distant
vertices on a graph, we can build a parallel transporter U, for a connecting path v using
the parallel transporters U, of the edges along the path:

: 2 g 1
Uy =...u 0y et (6.61)
where 7" refers to the nth edge in the path and the sign function is defined as for (6.54). U,
is the gauge group element representing the transformation needed to compare an object
at the beginning of v with another object at the end.

In the quantised Hamiltonian theory (6.52), edges can be in superpositions of group ele-
ments and there can be entanglement between different edges. Performing parallel transport
in the quantum setting may be viewed as integrating over the weighted classical configura-
tions in the quantum wavefunction, performing classical parallel transport for each of them.
We can implement this using controlled rotations

CUe = /dg 19)(gle @ Ugt, (6.62)

where ﬁt,g is a representation on a target Hilbert space of a rotation by the element g € G.
If the target system lives in L?(G), we may use Lgy or Rgy;. Which rotation to perform
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is “chosen” by the control system c, which is always an edge of the graph in the case of
parallel transport. Chaining these together along a path we can build up a quantum parallel
transporter, for example
CLyy = [[CLyns, (6.63)
n

with
CLeys = / dg |g)(gle ® Ly and (6.64)
CRey = /dg 19){(gle ® Ry

We began with the claim that these operations can be used to manipulate the connectiv-
ity of the graph on which the lattice gauge theory lives. This is the case if we apply quantum
parallel transport operations with an edge of the graph as the target system, which serves
to transport the edge, or at least one end of it, around the graph!

Quantum parallel transport of edges

That controlled rotations can be used to move edges around the graph can be seen by
examining their action on gauge transformations. First, we derive the action of controlled
rotations on the individual rotation operators L and R that make up the gauge transform-
ations. We find for CL and L

CL(LyeD) = [dglo)n'gl @ L, (6.65)
= /dg [hg){g| © Lg
= (L ® Ly,)CL,
where we have simply used the invariance of the Haar measure. Similarly
(R, @ 1)CL = CL(R, ® Ly), (6.66)
and, since [Lg, Ry] = 0,

CLA® Ry) = (I® Ry)CL. (6.67)

Results for CR are similarly straightforward to derive.
We can already use these results to manipulate a simple section of a graph consisting of

two vertices joined by two edges:

f . (6.68)

An arbitrary gauge transformation has the form

~ ~

Ug(gv,gw) = Lg,;eRg,;e @ Lg,;f R, (6.69)
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with group elements g, and g,, acting at vertices v and w respectively. We now apply CL fren
where f is the control system and e the target. We find, using (6.65), (6.66) and (6.67),
that the gauge transformation transforms as

/\T ~ — ~ ~ ~ ~
CLf,eUg(gv,gw)CLfﬂe = Lg,;eRg,e ® Lg,;f Ry, ;1 (6.70)

which is the gauge transformation we would expect for the graph

f , (6.71)

which results from transporting the beginning of edge e along edge f, as indicated by the
orange dotted arrow. If we wish to transport the end of edge e instead, we need only
replace CL by CR. We see that, as for the gauge transformations, we use L to address the
beginning of an edge and R to address the end.

It should be plain that we can build up unitary operators V that perform more sophist-
icated graph manipulations using the same controlled rotations used here. We can indeed
use them to change the connectivity of graphs, thus changing the physical, gauge-invariant
subspace. However, it is also clear that we cannot change the number of loops in the graph.
This is clear in the above example: Although we can move the loop around, there is no
operation in our repertoire that can open up the single-edge loop remaining, since we can
only parallel transport ends of edges along other edges.

Dangling edges

Another observation we can make from the graph manipulation operations seen so far is
that we cannot disconnected edges from a vertex to create a new, disconnected sub-graph.
This is because we can only move the ends of edges along other edges. That is not, however,
the whole story. Let us consider a graph with a “dangling” edge e

w
“ e L
oy -

v f : (6.72)

in which we only label the vertices v and w shared by e. The vertex w is not shared by any
other edge in the graph. We now consider the effect of gauge transformations acting at w.
Part of the projector onto the physical subspace of this graph is given by

~

Ponysw = [ dg Reyg, (6.73)
where, for any gauge group, we find

Ponysw = [ dg dh [g){h| = [00)0{00]o, (6.74)
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where |00)¢, the equal superposition of all group elements, is the “zero kinetic energy” state
in the Fourier basis: $?|00)g = 0. We must conclude that any dangling edge must, for states
in the physical subspace, be uncorrelated from the rest of the system and occupy the state
|00)o (or simply |0) in the U(1) notation).

These considerations imply that there is a set of equivalent graphs describing the same
physical subspace: Since any dangling edge, having one unshared vertex w, must be in the
state |00)o, and since this state is invariant under all rotations, L or R, the position of the
edge, and the connectivity of the remaining vertex v has no effect on the physical subspace
— the edge can even be completely disconnected from the rest of the graph, with both its
vertices unshared:

w w ,/g/q‘u
N~ NS Gy (6.75)

Note that a dangling edge not only has zero kinetic energy, it also cannot participate in
a plaquette in the Hamiltonian (6.52), since it can only be part of a closed path in a
trivial sense: A closed path that traverses a dangling leg must immediately double back
on itself, leading to .1/ in the plaquette term, which by (6.32) is equal to the identity.
As such, dangling legs are not only fixed in one state, but are completely invisible to the
Kogut-Susskind Hamiltonian. We can thus understand the freedom to move dangling legs
around the graph as being due to their unphysical nature: Moving them does not change
the physical subspace because they are completely nonphysical anyway.

Transformation of Hamiltonian operators

As well as determining the set of gauge transformations, the graph also determines how we
may define the Kogut-Susskind Hamiltonian (6.52) for the system, since it puts constraints
on the possible plaquettes. It would be extremely convenient if the graph manipulation maps
V we can construct between physical subspaces of different graphs would also transform the
Hamiltonian of one system into a natural Hamiltonian for the other, where by “natural”
we mean that the plaquette operators are again mapped to plaquette operators on the
fundamental plaquettes and that the p? operators acting on each edge remain in place.
Unfortunately, only the former is generally the case.

To find the action of graph manipulation on plaquettes, we first examine the action of
controlled rotations on the position operator, finding

—

CL(Wy, ®1) = [ dg lg){g| thi(9) © Ly = (@, ®)CL, and (6.76)
CL' o) = [ dglo)gle 3 thy(e) . L]
5
= S (i @by )OL (6.77)
7
where on the second line we use (6.31). Analogous results exist for CR. We may now again
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consider the example of moving between the graphs

€
“ o “ o
v w v w

f and f , (6.78)
this time transforming the plaquette operator tr(t, }) 2k @}Lk F® Ujkse, we find
=1 ~ AT N ~
CLyg, tr(ueu}) CLy¢. = Z( ik ® H)(u”/ ® Uji) = Z(]I ® Ugr) = tr(de), (6.79)
ii'k k
where we have used (6.32): 3, u Ajkﬁjj/ = [ald]yy = ﬁ5kj/. The transformed operator is

indeed the plaquette of the e loop in the new graph.
The effect of CL on the p pL operator is

CLO®pL) =T p-)CL  and (6.80)

, d
CL(p: 1) = 1/dg 19915 Lesoral g @ Ly (6.81)

. d i€
= 1& /dg le'“‘g)(g| ® Leierag

. d
= 1* /dg Leieka |g> <g’ ® Leieka Lg

= (P ol + Teph)CL,

e=0

where we have utilised the Haar measure as well as the product rule. Similarly

CL R o) = (3ol + Topl)OL. (6.82)
Using the definition of p? from (6.34) we then find
CLI®p*) = (12 p*)CL, (6.83)
CLEP el =@l + Tep® + QZpa®pa and (6.84)
CLlP el =2el + Top® + 23 5t ®ﬁa)0ﬂ, (6.85)

where we use (6.82) for the last line. We see that p? transforms trivially only if it acts
on the target system of the controlled rotation. Otherwise additional coupling terms are
introduced. This also applies to CR for exactly the same reasons.

The p? terms on the edges in the above graph manipulation example transform as

e g = g g S
CL; (P} +D2) CLpe=D2+DF+Dr +2  Pf Do (6.86)
[0

where we have omitted the explicit tensor products. Note that, since the p? terms are
individually gauge invariant, and because graph manipulation maps the physical, gauge-
invariant subspace to a new gauge-invariant subspace, the term 23", ﬁé; 7 ﬁﬁe must also be
gauge invariant, and thus has a purely physical effect.

Thus it is not generally true that the kinetic p? terms of the Hamiltonian (6.52) are left
in place by a unitary mapping to a different graph.

98



Applications

In [165], graph manipulation operations are used to develop an interpolation operation for
lattice gauge theories that adds new edges to the graph, creating a finer discretisation of
space by interpolating the gauge field to build the new plaquettes. New edges are added
by embedding the Hilbert space into a larger one consisting of more edges, putting them in
gauge-invariant states, such as the “dangling edge” state |00)o (see above), that allow them
to be added to the existing graph.

We use graph manipulation in Chapter 7 when considering the (1+1)D quantum rotor
model, which is equivalent to the Kogut-Susskind Hamiltonian (6.52) on a simple kind of
graph, which we then relate to a more complicated one using graph manipulation operations.

6.7.3 Continuum limits and renormalisation

Since lattice gauge theory is intended as a discretisation of a continuum field theory, it
had better be possible to take a continuum limit. However, we have seen that the lattice
spacing parameter a, in the case of a regular lattice graph, goes into the Hamiltonian (6.52)
as an overall factor, making the limit a — 0 taken by adjusting only a trivial. In fact, we
must generally adjust the other parameters of a discretised theory together with the lattice
spacing in order to obtain the correct continuum limit. For more details, see [81]. The
latter part of this discussion is also based on [180].

The operation of obtaining from a given theory, say a quantum field theory, an effective
theory that is accurate only down to a certain minimum length scale, is known as renor-
malisation. In our case, the lattice spacing a represents the choice of minimum length
scale, since the lattice theory can only hope to approximate the continuum field theory at
lengths much greater than a. Equivalently, one can think of the lattice discretisation as
implementing a momentum cutoff, since spatial Fourier modes can only be reproduced up
to a maximum frequency proportional to 1/a.

We wish to find a path of lattice theories that take us to the correct continuum theory
so that we may compute limits of physical quantities. This requires each choice of lattice
theory to represent a renormalised version of the continuum theory and, furthermore, it
requires us to follow a path of lattice theories known as a renormalisation trajectory, or
flow. If we limit our choice of lattice theory to the Kogut-Susskind Hamiltonian (6.52)
on some regular lattice with lattice spacing a, our path is in the parameter space (a,g).
However, intriguingly, in the case where the Kogut-Susskind Hamiltonian has a mass gap,
the lattice spacing a is determined by the choice of g, so that we need only adjust g to some
value g. corresponding to the continuum limit! In fact, this is generally the case for pure
Yang-Mills theory (without matter) with a cutoff [45].

That g determines a for a theory with a mass gap can be seen by considering a nat-
ural length scale or, equivalently, an energy scale in the continuum theory. In a massive
continuum theory the mass gap AFE,. itself provides such an energy scale. In the lattice
discretisation (6.52) the mass gap AFE is proportional to 1/a, so that we may write

AE = §F<g>, (6.87)
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which defines F'(g) to be the mass gap in “lattice energy units” 1/a. If we want to match
up the lattice and continuum theories, we need AFE(a, g) = AE,, where AE, is a constant.
For a path in (a, g) we thus require the mass gap, in physical units, to remain fixed as we

change the lattice spacing

d
—(AE)=0 6.88
da ( ) ? ( )
which requires that g be dependent on a. Indeed, if we can determine F'(g) (for example

numerically) we may find a by rearranging (6.87)

1
~ AE.

which implies that a continuum limit involves the mass gap in lattice units F'(g) vanishing.
In other words, a continuum limit can only be found at a continuous phase transition of the
lattice model (see Chapter 2). This means taking a continuum limit is as straightforward
as adjusting g to some g. with F'(g — g.) — 0. If (6.52) has multiple such limits, we can
choose g. to pick out the desired continuum theory.

We can also determine g as a function of the renormalisation length scale a. In this
context, the flow of g with a is captured by the “beta function”

_ %
B(g) - _a’%v

where the minus sign is added to match the convention of defining the beta function as a
derivative with respect to an energy scale, such as a mass, rather than a length scale, which
has units of inverse energy. In this convention, a positive beta function means the coupling
of the renormalised theory grows as we increase the energy scale at which the theory is
a good approximation. A negative beta function means the coupling of the renormalised
theory must decrease with the renormalisation energy scale or, equivalently, it must increase
with the renormalisation length scale a.

The beta function thus indicates how the effective coupling changes at different length or
energy scales. As an example, it is possible to compute the beta function of certain quantum
field theories in certain regimes perturbatively [81]. It is found that QED has a positive
beta function, meaning that the effective coupling becomes increasingly strong as energy
increases. QCD, on the other hand, has a negative beta function at high energies, meaning
that the effective coupling becomes weaker with increasing energy. This is consistent with
observed “asymptotic freedom” of quarks — the phenomenon of quarks behaving as weakly-
interacting particles at large scattering energies, despite them forming strongly coupled
bound states (hadrons) at low energies.

The zeros of the beta function are also interesting. Substituting (6.87) into (6.88) gives

Blg) = 5,((‘(;)),

which implies that 3(g) goes to zero at a second order phase transition of the lattice model.
This is because F'(g) obeys a power law in the vicinity of such a transition (see Chapter 2)

b(ge — 9)", (6.92)

a F(g), (6.89)

(6.90)

us

(6.91)

QTLQC

F(g)
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which gives us

9—9c g — ge
Blg) "~ —=, (6.93)

which goes to zero at g = ¢.. [(g9.) = 0 implies we have reached a fixed point of the
renormalisation flow, since changing the scale a no longer requires a change in g. This is
consistent with the scale invariance of the lattice system at a critical point g..
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Chapter 7

Lattice gauge theory on an earring
and the O(N) rotor model

7.1 Introduction

In this chapter we present a numerical study using matrix product states (MPS — see
Chapter 1) of the O(2) and O(4) quantum rotor models in one spatial dimension, which
are equivalent in formulation to Hamiltonian lattice gauge theory on a “Hawaiian earring”
graph for the gauge groups U(1) = O(2) and SU(2) (owing to SU(2) x SU(2) being the
double cover of SO(4) — see Section 6.3). The only difference is that some states (but not
the ground state) of the rotor model are excluded from the gauge theory in the nonabelian
SU(2) case as they violate the gauge symmetry, which is a global symmetry for the earring
graph. The nonabelian O(4) rotor has a second connection to lattice gauge theory, in that
its phase diagram is similar to what is expected from (3+1)D nonabelian lattice gauge
theory: They both have a mass gap for all nonzero values of the coupling ¢g. In the gauge
theory, this is consistent with the phenomenon of confinement [170].

We view this study as a proof of principle with regard to the more general application
of tensor network state (TNS) methods to nonabelian gauge theories. As such it builds on
previous work on using TNS to treat quantum field theories, including the use of DMRG
and MPS to obtain ground states and simulate real-time evolution of ¢* theory [19, 21],
the Schwinger model [18, 22-26], SU(2) lattice gauge theory on a line with matter [27],
as well as quasi-one-dimensional abelian gauge theories [20]. There have also been general
proposals for treating lattice gauge theories with continuous gauge groups using higher-
dimensional TNS [165, 181, 182]. Our work is novel in that it numerically treats a nontrivial
nonabelian gauge theory without matter, albeit with global instead of local gauge symmetry.
It also constitutes the first study (to the author’s knowledge) of the full rotor model (rather
than a model whose low-energy physics is approximately equivalent) using MPS or DMRG
techniques. Previous numerical studies have used Monte Carlo simulation of the classical
two-dimensional model, for example [183-187]. Since there are some exact results for the
continuum limit of these models [188], we are also able to check our results to a good level
of satisfaction.
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In the following, we first define the model as a lattice gauge theory on the Hawaiian
earring graph before showing its equivalence to the (141)D quantum rotor model. We also
use the graph manipulation techniques of Section 6.7.2 to show how the model is related
to lattice gauge theory on a cylinder, which has local gauge symmetry in the nonabelian
case. We then summarise some known results for the rotor, both numerical and analytical,
before presenting our MPS study. Using techniques described in Section 1.3, we obtain
approximate ground states using MPS, as well as approximate excited states, allowing us
to compute the mass gap and, in turn, the beta function. We compare these with existing
strong and weak coupling results. Additionally, we identify low-lying excitations of the O(4)
model that are also physical states of the SU(2) Hawaiian earring model (those which are
invariant under gauge transformations).

This chapter represents independent work of the author and was published in [189].

7.2 Theory

7.2.1 Lattice gauge theory on a Hawaiian earring

The Kogut-Susskind Hamiltonian (see Section 6.7) on the “Hawaiian earring” graph is given
by

Hgs(g) = \fag ﬁi - 2g\f Z Re(tr (T, ), (7.1)

k=1

where ¢ is the coupling, a the lattice spacing, and 7 an anisotropy parameter required
to ensure the renormalised theory is Lorentz-invariant in the continuum limit [190]. The
Hilbert space, determined by the graph shown in Figure 7.1, and the operators used are as
defined in Chapter 6. Since the model is effectively one-dimensional, we refer to edges by
number k = 1... N. The p? term is the gauge group “kinetic energy” in L?(G) on a single
edge, while the plaquette term involving U measures the potential energy.

The gauge transformations (see Section 6.7. 1) on the earring graph, which has only one
vertex, act globally on the edges as L R for g € G. The physical Hilbert space Hppys thus
corresponds to the image of the prOJector

N
Pphys = /dg H Lg;k Rg;k ) (72)
k=1

in which the integral is over all gauge transformations. For definitions of the operators used,
see Section 6.5. In the case of an abelian gauge group such as U(1), where Eg = E;, the
projector is trivial and Hpnys = H. For nonabelian groups the gauge symmetric space is
smaller than .
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Figure 7.1: Tlustration of lattice gauge theory (a) on a “Hawaiian earring” and (b) the same theory
visualised differently as living on the surface of a 3D object. The Hamiltonian is the Kogut-Susskind
[164] formulation of lattice gauge theory for a gauge group G — example plaquette operators are
shown in blue. The Hilbert space H (including nonphysical states) is made up of systems living
on the (black) edges Heqge = L*(G). For the gauge groups G = U(1) and G = SU(2) this model
is equivalent to the (141)-dimensional quantum rotor model [76] for the rotation groups O(2) and
O(4), respectively.

7.2.2 Connection to the cylinder

Hamiltonian Yang-Mills theory on a simple cylinder graph, which is illustrated in Figure
7.2 has the Kogut-Susskind Hamiltonian

g . 2

Hics ot@) = Y22 3 58 - 2 S Refin(ayie, ). (7.9
k=1 k=1

where k counts only the loops in the cylinder and k- refers to the connecting edge between

loops k and k + 1. The plaquette operator is also illustrated in Figure 7.2.

Abelian case

The U(1) Hawaiian earring model (7.1) is equivalent to the U(1) cylinder model (7.3).
To see this, we must examine the physical states of the cylinder model, which are those
invariant under its gauge transformations (see Section 6.7.1).

The gauge transformations of the U (1) cylinder act trivially on the loops k for an abelian

group since L,R, =L However, they act nontrivially on the edges ks joining the loops.

We have
N
Ponys, cy1 = H /dgk (Lgk;k ng;k) Lgk;(k—1)>ng;k> ) (7-4)
k=1

where for G = U(1) the term in brackets is trivial as in the earring case (7.2), and we
define Lgly0> =1 and RgN .N. = 1 to account for the lack of joining edges to the left of
loop 1 and the right of loop N. Since the gauge transformations define the connectivity
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Figure 7.2: Lattice gauge theory on a simple cylinder graph. A plaquette operator is illustrated
in blue. The Hilbert space is associated with the graph exactly as in Figure 7.1. As explained in
Section 6.7.1, the graph defines the action of gauge transformations, since these act on the edges
according to which vertices each edge is connected to.

of the graph (see Section 6.7.2), this means the U(1) cylinder is equivalent to the earring
graph, in which the loops are also unaffected by gauge transformations, with the addition
of an extra component: A line consisting of all the joining edges k~, disconnected from
the earring. This is consistent with the Hamiltonian because the connecting edges drop

out of the plaquette terms, which for U(1) have the form Re(akﬂk>ﬂ,t+1ﬂ£>). Since the u

commute and Uy @L =1, only the loop edges remain.

We now consider how gauge transformations restrict physical states on the disconnected
k~ line. For open boundary conditions, gauge transformations can rotate the first or last
edge in the line independently of the rest of the system. The corresponding terms in (7.4),
neglecting the trivial loop terms, are

ﬁphys, cyl,1 = /dgl Rg1;1> and ﬁphys, cyLN — /dgN LgN;(N—1)>) (75)

both of which, as we know from (6.74), project the edge they act on onto the equal super-
position of all gauge group positions, otherwise known as the state of zero kinetic energy.
For U(1) the edges 1> and (N — 1) are thus in the state |0) = [dg |g) for all physical
states, and are therefore decoupled from the rest of the system:

‘w>U(1),Cyl,phys = ‘0>1> ® ’0>(N71)> ® ’w>rest- (76)

They also contribute zero energy, since ?|0) = 0 and we may therefore remove them from
the graph, leaving a shorter line beginning with edge 2~ and ending with (N — 1)~. The
same arguments now apply to these new beginning and end edges so that, by induction, we
find physical states must be of the form

|w>U( ),cyl,phys — <® |O ) ® W} loops (77)

making the disconnected line entirely nonphysical. The remaining physical theory is exactly
that of U(1) gauge theory on the Hawaiian earring graph.
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Note again that the above assumes open boundary conditions, which we restrict to for
the remainder of this chapter. In the case of periodic boundary conditions k; = kn41,
the k< edges still form a disconnected part of the graph and are thus decoupled from the
loops. However, since they themselves then form a loop consisting of many edges, there are
no longer any dangling edges that must be in the |0) state and they can have nontrivial
physics. In fact, such a many-edge loop can be transformed, using the graph-manipulation
moves of Section 6.7.2, into a single-edge loop plus a dangling line, whose edges must again
occupy the |0) state. Any additional multi-edge terms involving p and p* added by the
graph manipulation are therefore trivial as they annihilate all physical states. The single
loop takes part in no plaquettes in the Hamiltonian, and thus occupies a kinetic energy
eigenstate |n) in all eigenstates of the Hamiltonian.

Nonabelian case

The above reasoning relating the cylinder to the earring does not go through for a nonabelian
gauge group. Although in this case dangling edges must also be decoupled in physical states
as described in Section 6.7.2, the nonabelian cylinder does not provide us with any dangling
edges, since gauge transformations on loops do not act trivially and the connecting edges
do not drop out of plaquettes.

Instead we can build a unitary graph-manipulation map V that takes us from the phys-
ical Hilbert space of the earring to that of the cylinder. The first step is to enlarge the
Hilbert space of the earring by adding dangling edges that will become the connecting
edges k- of the cylinder. As shown in Section 6.7.2, we can always add dangling edges
without altering the space of physical states, since they are forced to be in the zero-kinetic-
energy state |00)p (where we now use the nonabelian notation of Section 6.4). We modify
the earring Hamiltonian (7.1) to act on this larger Hilbert space by adding p? terms for the
new edges that annihilate the physical states

N

HKS + dangling = HKS + Zﬁ%>a (78)
k=1

where k- is the dangling edge corresponding to loop k, which will become the edge that
connects loops k and k£ 4 1 in the cylinder.

We can now construct V using the graph manipulation techniques of Section 6.7.2. We
describe the two moves needed in Figure 7.3 and we build the complete map 1% by applying
the moves to each loop and dangling edge pair k, k~ in turn.

That we can map between the two Hilbert spaces does not yet make the physics of
the two models equivalent, however. To determine whether this is true, we must examine
how the Hamiltonian (7.8) transforms under V. As exemplified in Section 6.7.2, plaquette
operators transform as expected (as illustrated in Figure 7.3). The p* terms, however,
behave in a more complicated way: Those acting on the dangling edges in (7.8), because
these edges are the control systems of the controlled rotations in 17, transform nontrivially,
resulting in sums of terms that couple edges locally, such as 3, pE ® pE. This is shown in
Section 6.7.2.
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Figure 7.3: Ilustration of the moves needed to map from the earring graph to the cylinder. We
begin with a dangling edge ¢, where we initially need one per loop, which we integrate into the
existing graph by transporting the beginning of edge a along it. This move, 1 — 2 is implemented
by CL. 4. In 2 — 3 we then move the loop b along the new connecting edge c using CL.,CR..
The blue object illustrates a plaquette operator and shows how it transforms. See Section 6.7.2 for
relevant definitions as well as a simple example.

However, any terms Vﬁi V1in the cylinder arising from a ﬁz> term on a dangling edge of
(7.8) must, taken together, act trivially on the physical subspace. We know this because any
gauge-invariant state must have any dangling edges decoupled and in the rotation-invariant
state |00)g, which has p%|00)¢ = 0 and so for the earring plus dangling edges k-,

ﬁi> W}>phys =0 (7.9)

for 1) phys € Hphys, KS + dangling- It is now easy to see that the terms on the cylinder arising

from the dangling edge terms Vp pk V1 annihilate all physical states and can play no role
in the dynamics, since on the transformed state we have

(‘7 ﬁ%> ‘7T> V‘w>phys =0, (7.10)

where VTV = 1. But this means the resulting cylinder Hamiltonian IA/HKS + danglingVT
contains no ﬁi> that are not cancelled out by (7.10) on the physical subspace: There is
no other way new ﬁi terms could be generated, since the graph manipulation moves of
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Figure 7.3 act trivially on the remaining ﬁz in (7.8) and never produce p? terms when acting
on plaquettes (see Section 6.7.2).

For this reason, the nonabelian earring model is not physically equivalent to the nona-
belian cylinder with its natural Kogut-Susskind Hamiltonian (7.3), but rather to the cylinder
with the earring Hamiltonian (7.1) — which lacks the p?_ terms of (7.3). The latter model
will have different physics to the usual cylinder due to the omission of these terms, since
high kinetic energy is not penalised on the connecting edges.

7.2.3 The quantum rotor model

The Hawaiian earring model (7.1) is known to be equivalent to the O(N) rotor model (see,
for example, [190]) given by

a

N
~ n
Ha(g) = S0y T -
k=1

N}
Qz‘%

n N—-1
> Ak Ak, (7.11)
k=1

where the N-component vector of operators 7 represents a position on the unit sphere in RY
and J? is the corresponding kinetic energy. The 7y - Ng41 term couples nearest-neighbour
rotors, energetically favouring alignment. The rotor model is clearly symmetric under global
rotations, as well as reflections, and thus has the symmetry group O(N). In contrast to the
lattice gauge theory model, there is no notion of nonphysical states in the rotor context,
where all states are considered physical.

The rotor model is equivalent to the lattice gauge theory model (7.1) in the sense
that their Hamiltonians and their (full) Hilbert spaces are equivalent, ignoring additional
restrictions to physical subspaces. As such, in the case where the gauge theory possesses
nonphysical states the physics of the two models need not be equivalent. Nevertheless, the
ground states of the models must be equivalent in the case of continuous gauge groups since
continuous symmetries cannot be spontaneously broken in (1+1)-dimensional systems in
the presence of fluctuations [84, 85], which occur here for any finite value of g since the
order-parameter 1 does not commute with the Hamiltonian due to the J? term. However,
excited states may indeed break the symmetry.

The precise relation between the rotor model (7.11) and the lattice gauge theory model
(7.1) is given by Hkg(g) = Hr(g) for G = SU(2) with N =4 and for G = U(1) with N = 2,
using the relations listed in Table 7.1.

In the case of the O(4) rotor, the equivalence of the models is ultimately due to SU(2) x
SU(2) being the double cover of SO(4), as pointed out in Section 6.3, where the action of
SU(2) x SU(2) is implemented on L?(SU(2)) as (g1, 92) — EQI}ABQQ. Note that reflections
do not play a role in the dynamics of the rotor model, so we may think of the O(4) rotor
as the SO(4) rotor. As a result, the Lie algebra of SO(4) (and of O(4)) is isomorphic
to su(2) x su(2) and the two su(2) factors correspond to are implemented as p% and pZ,
in our formulation (see Section 6.5). The quadratic Casimir operator p? is thus also the
Casimir operator for the rotor j?, up to a factor. The four 7, “position” operators of the
rotor model are related to the lattice SU(2) position operators ﬁzk via the isomorphism

relating SU(2) to the 3-sphere S* from Section 6.3, according to which %tr(T“J’U ) extracts
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O(N) Rotor | KS: G=U(1) KS: G= SU(2)

N 2 4

g 9?2 9*/4

Tt p? 457

i (Re(@y), Im(@))*, | [3 tr(rTa)]"
w=172 pw=0...3

Table 7.1: This table shows how quantities in the rotor model (7.11) must be set to obtain equivalence
to the Kogut-Susskind model (7.1) (Hks(g) = Hgr(g)) for the gauge groups G = U(1) and G =
SU(2). The matrices 7# are defined in (6.10). We choose the numerical factors on the rotor model
operators and parameters to match the usual definitions (see, for example [40]).

the p-component of the vector in R* corresponding to U € SU(2). We may thus define
. %tr(r”ﬁ), (7.12)

where the matrices 7# are defined in (6.10). We can then verify the commutation relations
[191]

[ph, 7] = —% <Z €apy’ + 5a5ﬁ0> , o, B,y=1...3, (7.13)
v

[pk, 7% = %ﬁo‘, a=1...3, and (7.14)

[a*,7% =0, (7.15)

where € is the Levi-Civita symbol. It remains to be shown that the potential terms of Hykg
and Hy are equivalent. Using 4l = Zi:o nHTH we find

tr(pa), ) = > aray () = 28, - A, (7.16)
v
where we have also used that n* is Hermitian.

The relationship between the O(2) rotor and the U(1) lattice gauge theory is simpler,
since the groups are isomorphic: U(1) = SO(2). The kinetic terms are just the same and n
is just the Cartesian vector corresponding to the element of the unit circle in the complex
plane n = (Re(u), Im(u)).

There are at least two broad reasons to study the quantum rotor model in (1+1) dimen-
sions: Its importance in condensed matter physics, and its connection to gauge theories in
higher spatial dimension.

Connections to condensed matter systems

The rotor model is related to a number of more physically motivated models in condensed
matter physics [76], making its physics relevant to the description of a large number of
systems.
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To briefly summarise: For N = 1 the rotor “spins” are restricted to being “up” or “down”
and we recover the Ising model. For N = 2 spins take values on the circle and we have a
quantum (14-1)D model related to the classical XY model via a quantum-classical mapping
(see Chapter 2). The classical XY model is the p — oo limit of the clock models described
in Chapter 3. The O(2) rotor also describes interacting bosons, where the countably infinite
set of Fourier modes of each rotor can be thought of as a boson occupation number and
the alignment term serves as a nearest-neighbour hopping interaction. The N = 3 case
describes the low-energy physics of antiferromagnetic Heisenberg spin ladders, with pairs of
spins mapping onto O(3) rotors.

Connections to gauge theory

The rotor model is connected to gauge theory not only in the formal sense described in
Section 7.2.3, but also in terms of its physics. Although the Hamiltonian (7.1) in (141) di-
mensions possesses a global gauge-group symmetry, rather than a local gauge symmetry,
it nevertheless has a lot in common with Yang-Mills theory on more sophisticated graphs.
Most importantly, the O(N > 2) models are known to possess a single, gapped phase
ending at the weak-coupling limit ¢ — 0 [76]. This is also expected of (3 + 1)D lattice
QCD [170], which at strong coupling is known to be in a massive, confining phase that is
believed to persist into the weak-coupling regime, thus explaining the observed confinement
of quarks. In contrast, the O(2) model has a phase transition (of Berezinskii-Kosterlitz-
Thouless type [87], see Chapter 2) at finite coupling, transitioning into a deconfined, gapless
phase at weaker couplings.

7.2.4 Previous studies

The continuum limit of the rotor models, the so-called O(N) nonlinear sigma model [76],
can be solved using the Bethe ansatz for N > 2 [188]. Continuum limits of quantum lattice
models are taken by moving to a point of diverging lattice correlation length £ — oo (see
Section 6.7.3 and [45]). Since the correlation length is finite for N > 2 at all nonzero values
of the coupling, and only diverges as g — 0, the continuum limit of the quantum rotor model
is also the weak-coupling limit. The Bethe ansatz results for the nonlinear sigma model
thus provide information about the weak-coupling scaling of the quantum rotor model [40].

The lattice O(N) rotor model has also been thoroughly investigated using strong-
coupling expansions [180, 192] of the (14+1)D quantum Hamiltonian model, high-temperature
expansions (for example [193, 194]) and Monte Carlo numerics ([183-187] is an incomplete
selection) of the 2D classical model, as well as using other methods, such as Lanczos diag-
onalisation with finite-size-scaling [195].

So far, however, numerical simulations of the quantum Hamiltonian model have not, to
the best of the author’s knowledge, been performed. In the following section, we fill this
gap using MPS simulations.
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7.3 Numerical methods

We use uniform MPS (see Section 1.3) with local Hilbert space dimension d and bond
dimension D, and with full translation invariance, as our variational class of states. The
continuous position basis |g) of group elements g € G does not lend itself to use with MPS
numerics, for which we require a discrete, finite basis ~ C?. Instead we use the Fourier
basis given by Theorem 6.3.1 (Peter-Weyl) and described in Section 6.4, where we denote
the Fourier modes |jk); for SU(2), with j and k enumerating a basis for the /th irrep, and
In), n € Z for U(1). In the strong coupling regime g2 >> 1, the kinetic p? term of (7.1)
strongly penalises higher irreps, so we can neglect them to good approximation at larger g2.
We expect them to become more relevant as we near the weak coupling regime.

We set d to accommodate the basis states for all irreps up to a cutoff. For U(1), all
irreps are one-dimensional and labelled by n € Z, so a cutoff is defined via |n| < npax,
giving us

d = 2nmax + 1. (7.17)

For SU(2) we must sum up the dimensions of the irreps we wish to include

lmax lmax

d=> dim(V})* = > (20 +1)% (7.18)
=0 =0

where dim(V})? is the number of parameters in the matrices of irrep I, and [ = 0, %, 1, %, 2,...
so that d = 1,5, 14, 30,55, . ... Importantly, truncating the basis at a certain irrep level does
not prevent representation of gauge-invariant states. To see this, observe that the rotations
that implement the gauge transformations L and E, which we express in the Fourier basis
in (6.43) and (6.44) respectively, do not mix irreps.

In this study, we use values of nyax up to 10 and lyax up to 2. The former requires
d = 21, while the latter implies d = 55, which is unusually high for MPS numerics. We use
algorithms with optimisations for high d described in Section 1.4.2, applying the nonlinear
conjugate gradient (CG) method from Section 1.4.3 to obtain ground states. We converge
all states up to an effective energy gradient norm (1.83) of < 1078, We then obtain low-lying
excited states using the method of Section 1.4.5, always operating directly in the space of
infinite, uniform MPS.

7.4 Results of numerical study

In this section we generally use the rotor model parameter g of (7.11) for better comparison
with known results for the rotor model. It is related to g from the lattice gauge theory
Hamiltonian (7.1) by Table 7.1.

7.4.1 Symmetry breaking

Since our choice of truncated basis is most appropriate at strong coupling, we study the
system starting at strong coupling 1/§ — 0 and then approaching weak-coupling as far
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as possible whilst maintaining accuracy. We find, for both the O(2) and the O(4) rotor,
that the MPS approximate ground state, for any fixed, finite D, breaks the global O(N)
symmetry at small values of the coupling §. As function of D, the location gsg of the
symmetry-breaking transition is confined to a relatively narrow region of parameter space,
as shown in Figure 7.4. Since the breaking of a continuous symmetry is forbidden by the
Mermin-Wagner theorem [84, 85], this must be a symptom of finite-entanglement effects
[91-93]: The bond dimension needed to accurately represent the symmetric state must
suddenly grow as we approach weak coupling. It is likely that gsg(D) is also affected by
the irrep truncation, although it is not clear what the effect would be since it is possible to
represent symmetric states regardless of the truncation level. We leave this question to be
treated in future work.

20 [ [ [ [ [ [ 593
1.9 F < -
1.8 —
O
A 1.7 E -
[«
M
1.6 A A U(1) ~ 0(2)
sl © O O SU(2) ~ O0(4)
2o _ gE.p ~ 1.582+£0.005
14 | | | [ [ [ [
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
1/D

Figure 7.4: The location g2 of MPS ground state symmetry-breaking (SB) as a function of the
MPS bond dimension D. We plot g3y for the Kogut-Susskind Hamiltonian rather than the rotor-
model parameter gsp as the scaling then favours plotting the results for G = U(1) (O(2) rotor) and
G = SU(2) (O(4) rotor) on the same axes. Values of g2, were found using bisection up to a precision
in g72 of +£0.005. For G = U(1), g2 tends towards a finite value. This value should correspond
to the location g3 of the BKT transition known to exist for the model [76]. The straight-line
fit shown predicts a transition at ggxr = 1.119 £ 0.004 in terms of the O(2) rotor parameter g.
For G = SU(2), the transition does not converge for the data available. This is consistent with it
occurring at g =g = 0.

The O(2) rotor is known to possess a gapless phase at weak coupling, characterised
by algebraically decaying correlations such that the correlation length is infinite [76]. As
shown in Section 1.3.5, a uniform MPS would require D — oo to accurately represent such
a ground state, thus explaining nonphysical symmetry-breaking in the MPS as an artifact
of the significant approximation coming from working at finite D (see Section 2.3 for more
details).

The existence of a phase transition at finite § also explains the narrowness of the region
where symmetry-breaking begins. We expect the symmetry-breaking location gsg(D) to
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converge to the location of the phase transition as D — oo and indeed this convergence
can be seen in Figure 7.4, where the extrapolated transition point agrees well with known
estimates from strong-coupling expansions of § functions (and less well with results from
other methods) [196]. Despite the impossibility of representing the ground state precisely
in the gapless phase at weak coupling, the scaling of von Neumann entropy and correlation
length in MPS ground states with a range of finite D can be used to estimate the central
charge c of the conformal field theory (CFT) describing the phase (see Section 2.3.2). We fit
data for D = 22,28,34,...,80 at 1/(§v/2) = 0.75,0.8,0.85,0.9 and find ¢ = 0.992 + 0.009,
matching the known result of ¢ = 1 for the 2D classical XY model [78], which is identical
with the 2D classical O(2) rotor.

We now turn to the O(4) rotor, which is known to exist in a single, gapped phase down
to the weak-coupling limit § — 0 [76]. We expect irrep truncation to become increasingly
relevant as we approach weak-coupling due to the occupation of higher irrep modes. We also
expect greater entanglement in the exact ground state at weaker couplings, as the poten-
tial term coupling nearest-neighbour edges begins to dominate, and the lattice correlation
length grows. This is not enough, however, to explain the suddenness of the occurrence
of nonphysical symmetry-breaking. This is likely due to the “crossover” phenomenon, a
property of the O(N > 2) models and of nonabelian gauge theories [45, 197], referring to
persistence of strong-coupling behaviour up to a certain region of parameter space, where
weak-coupling behaviour rapidly takes over. Despite the sudden change, the crossover phe-
nomenon is not a phase transition in the sense of Chapter 2, as it is not accompanied by
nonanalyticities in the ground state energy density. As such, we still expect the nonphys-
ical symmetry-breaking transition to disappear as D — oo, as is indeed consistent with
Figure 7.4.

7.4.2 Mass gap

Our next source of information is the mass gap, calculated using the MPS excitations
ansatz described in Section 1.4.5. As explained in Chapter 2, the mass gap must vanish as
we approach second or first-order transitions. Thus, if the mass gap does not approach zero
in a region of parameter space, a phase transition cannot occur in that region. In the MPS
approximation, the computed mass gap will generally be nonzero even if the true mass gap
vanishes due to finite entanglement effects. However, as for the inverse of the correlation
length (see Section 2.3), we expect signatures of the mass gap’s vanishing to be visible in
the MPS approximation. Furthermore, errors due to finite entanglement should decrease
with D, such that comparing data from MPS with various D is normally sufficient to detect
them. The quantum rotor model mass gap can also be computed using strong-coupling
series expansions [180], which we compare to our numerical results.

We find excellent agreement for both models up to the vicinity of the O(2) phase trans-
ition and the O(4) crossover region. Moving closer, Figure 7.5 shows that the mass gap
descends towards zero at a finite coupling for O(2), whereas for O(4) the log-linear plot shows
linear behaviour, indicating a finite mass gap for all finite couplings. For comparison, we
plot the exact asymptotic weak-coupling scaling for O(4) [188], taking into account speed-
of-light renormalisation effects due to the stark space-time asymmetry of the Hamiltonian
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Figure 7.5: The MPS mass gap for (a) the O(2) rotor and (b) the O(4) rotor for bond dimensions
D and irrep cutoffs in |n| and [ respectively. The strong coupling expansion of [180] is shown (SC),
as is the weak coupling result (WC) for the O(4) case, which is known exactly [188]. In (b), the
curves are adjusted by an anisotropy parameter ,/7 to account for the renormalisation of the speed
of light [190] (for O(2), n is set to one). Near the phase transition for O(2), and as we enter the
weak coupling regime for O(4), finite entanglement effects and, for O(4), irrep cutoff effects become
important.

discretisation [190].

We find very good agreement with the weak-coupling prediction, showing that we are
successfully entering the asymptotic scaling regime. However, we also see from the plot
that finite entanglement effects start to limit the accuracy: The D = 140 curve remains
accurate further into the weak-coupling regime than the D = 91 curve, for fixed lpax = 2.
Furthermore, the irrep truncation level becomes significant: The [, = 2 curve is more
accurate than the ly,x = 3/2 curve for fixed D = 140.

For this particular model, using a symmetric tensor network ansatz [198-200] would
dramatically extend the range of accessible effective bond dimensions and so enable further
penetration into the weak-coupling regime, although it would not allow access to the lowest-
lying, symmetry-breaking excitations of the O(4) model. Further, for a model with truly
local gauge symmetry, methods such as that of [25] are required.

7.4.3 Low-lying excitations

We note in Section 7.2.3 that not all eigenstates of the rotor model (7.11) are physical states
of the corresponding lattice gauge theory (7.1). In the case of the U(1) gauge theory, gauge
transformations are trivial and all eigenstates of the Hamiltonian (7.1) are physical. For
SU(2) this is not the case, and excited states may break the gauge symmetry.

We can test the gauge invariance of excited states by comparing states before and

115



after a gauge transformation using the overlap. To do this, we must use the general form
(D[A, B]|®[A’, B']) = (P[A, B] |l7g(g) |®[A, B]) of the MPS tangent vector overlap. Compared
to (1.89) we must add a second pseudo-inverse term to account for By, as well as By,
not satisfying any gauge fixing conditions for the case of comparing vectors from different
tangent spaces. We must also replace all instances of the transfer matrix Fj by the overlap
transfer matrix Eﬁ;’: , defined in (1.28). The resulting overlap per lattice site is well-defined

as long as (U[A]|P[A']) = (V[A] |ﬁg(g) |W[A]) = 1, which will be the case for a gauge-invariant
ground state |U[A]), and (P[A, B]|¥[A]) = 0, which we ensure by computing the excitations

using the gauge-fixing parameterisation as described in Section 1.4.5.
Normalised states |®) that are not gauge invariant satisfy

(@ Ponys|®) #1 @) ¢ Hphys, (7.19)
with ﬁphys as defined in (7.2), such that, for the SU(2) earring model,
39 € SU(2) : Re((®|Ug(y)| @) <1 @) ¢ Hphys, (7.20)

where ﬁg(g) = Q. Zg;k-ﬁg;k. We can thus detect states that are not gauge invariant by

sampling Re(<<IJ|[7g(g)|<I>>) over gauge transformations, choosing g € SU(2) uniformly with
respect to the Haar measure. In Figure 7.6 we plot such results for the first 100 MPS
tangent-space excitations for a particular value of g, sampling over a number of randomly-
selected gauge transformations. We see that there are clear indications of gauge-invariant
excitations, although the very lowest-lying energies are nonphysical. Indeed, the first gauge-
invariant excitation occurs after three levels of degenerate, nonphysical excitations.

It is important to note that the MPS excitations ansatz does not capture all excited
states — in particular, scattering states are excluded [201]. We expect, however, that the
lowest-lying gauge-invariant excited state is a localised, single particle state, and can thus
be captured by the MPS tangent-space ansatz [62]. If so, the energy relative to the ground
state energy of the first gauge-invariant MPS excitation represents the mass gap of the
SU(2) Hawaiian earring model, which is larger than the O(4) rotor mass gap represented
by the lowest-lying, non-gauge-invariant excitation. In any case, assuming the lowest-lying
O(4) rotor excitation is particle-like, we may take the O(4) rotor mass gap as a lower bound
for the SU(2) Hawaiian earring mass gap.

7.4.4 Beta functions

The beta function captures the rate of change of the coupling parameter g, needed to
approximate the continuum field theory, with the lattice spacing a. See Section 6.7.3 for
more details. In the case of the rotor model which, we have seen, is equivalent to a Kogut-
Susskind lattice gauge theory, we may define the mass gap in “lattice energy units” as

F(9) = 2a(Eq1(9) — Eo(9))/9; (7.21)

where E is the energy of the first excitation and Ej is the ground state energy, which allows
us to write the beta function as

(1 AF@\T
—ﬁ(g)/g(l 2 F(§)> , (7.22)
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Figure 7.6: The real component of the fidelity f per site of MPS excitations |®) under gauge
transformations ﬁg(g), plotted against the excitation energy AE = E,, — E for excitation n, for the
SU(2) Hawaiian earring (O(4) rotor model) at 1/g? = 0.4 (or 1/ = 1.6). We sample over u € SU(2)
uniformly with respect to the Haar measure, averaging the result of 20 samples for this plot. The
ground state is an MPS at D = 30 and we use npy.x = 3 as an irrep cutoff. The first 100 MPS
tangent space excitations are plotted, where two of them (circled in red) appear to be approximately
gauge invariant: They have a fidelity per site close to one and a variance (under the sampling) of
nearly zero, in stark contrast to the other excitations.

where we use the same sign convention as in (6.90). Using our MPS results for the mass
gap, we can thus compute the beta function, using finite differences to find F’(g).

The rotor model beta function can be computed perturbatively in the weak-coupling
limit for O(N > 2), and is given by (see, for example [180, 202])

— B(9) = (N = 2)3%/27 + (N — 2)5° /4n*. (7.23)

In [180], Hamer et al. use strong coupling expansions for F'(§), combined with this perturbation-
theory result, to construct a Padé approximant for the beta function intended to cover the
full range of g. For the O(2), where there is a phase transition at finite g, they rely solely
on the strong coupling expansion for F(g).

We compare our MPS results with the Padé approximants of Hamer et al., as well as
the weak-coupling result for O(4) (7.23), in Figure 7.7, observing excellent agreement at
stronger couplings, with the numerical results deviating from the approximate curve as we
near weak coupling.

In the case of O(2), where §(g) has a zero at the phase transition, the numerical data
appears to predict a higher value for the transition location than the Padé approximant, in
good agreement with our result from Figure 7.4.

The O(4) our data ceases to follow the Padé curve as we enter the crossover region,
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Figure 7.7: Beta functions determined from the MPS mass gap for (a) the O(2) rotor and (b)
the O(4) rotor, together with a Padé approximant based on a strong-coupling expansion and the
weak coupling result (WC) for the nonabelian case [180]. For O(4) it is clear from the D = 140,
Imax = 3/2 curve that the numerical results begin to qualitatively follow the weak coupling behaviour.
However, there are clearly systematic errors present. This is expected because the beta function
involves the numerical derivative of the mass gap, making it sensitive to small inaccuracies due to
finite entanglement and irrep truncation.

but does not succeed in following the weak-coupling result accurately either. This is not
unexpected, as both approximations are likely inaccurate in the crossover region. It is clear
however, that our results ultimately deviate from the exact behaviour, since we see large
variations with D and [lyax, particularly as we near the nonphysical symmetry-breaking
transition, as well as a tendency towards [(g) = 0 at finite values of §. Higher bond
dimensions appear to mitigate this behaviour, suggesting it is largely a finite-entanglement
artifact, which is consistent with Figure 7.4.

That errors are more visible for the § function than for the mass gap is expected since
the numerical derivative amplifies small errors in the mass gap. We would need to reach
higher bond dimensions and irrep cutoffs to achieve accurate results further into the weak-
coupling regime. A further way of reducing noise would be to compute the derivative F’(g)
analytically from the MPS excited state (see Section 2.3.1).

7.5 Discussion of results

We have seen that the two possible sources of error — finite-entanglement effects and local
Fourier basis truncation — become especially important for the accurate reproduction of
the mass gap and the beta function of the nonabelian rotor model. There are some obvious
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ways of improving these results, such as increasing the MPS bond dimension and raising the
irrep cutoff, as well as working with a symmetric MPS ansatz where appropriate to improve
computational efficiency. Note, however, that the latter would not be appropriate for de-
termining the rotor model mass gap, whose lowest-lying excitations break O(N) symmetry
(see Section 7.4.3).

Our numerical study demonstrates that tensor network state (TNS) methods, in this
case uniform MPS, can successfully represent states of the nonabelian quantum rotor model
into the weak-coupling regime. The use of a truncated local basis successfully and efficiently
captures strong-coupling physics, but becomes a more severe limitation at weak couplings
where, additionally, the spatial entanglement grows substantially.

This is promising for TNS approaches to pure nonabelian gauge theory which, as men-
tioned in Section 7.2.3, is believed to possess a very similar phase diagram to the O(N)
rotor models and, on the “Hawaiian earring” graph, is indeed equivalent to the rotor models
studied here. Our study also suggests that high spatial entanglement is a feature of the
theory from the crossover region onward, into weak-coupling. This may pose a challenge
for numerical approaches if it carries over to higher dimensional nonabelian lattice gauge
theory, since large bond dimensions may be needed to access the asymptotic scaling regime.
It is possible that a symmetric TNS ansatz, or a different choice of basis, could be used to
avoid this problem.
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Concluding remarks and future
directions

In Chapters 4 and 5 we have clearly demonstrated the utility of approximate tensor net-
work state (TNS) techniques, in the form of variational algorithms for matrix product
states (MPS), for the determination of phase diagrams of one-dimensional quantum lattice
systems. The phase-diagram “sketching” methods of Chapter 2 allowed us to discover in
Chapter 4 an apparently gapped phase in the interacting Kitaev edge model with repulsive
interactions, as well as a floating incommensurate phase. This constitutes an example of the
effect of interactions on a weak topological insulator that could be realised experimentally
as a 2D array of Kitaev wires. A natural extension of this work would be to use two-
dimensional TNS techniques, such as PEPS [9, 10], to characterise a more realistic model of
the entire 2D setup, rather than just the edge. In Chapter 5 we used phase-diagram sketch-
ing extensively to characterise three different instances of the ANNNC model, finding a rich
variety of phases, including modulated commensurate and floating incommensurate phases.
Of particular interest is the unexpected appearance of a commensurate critical phase of
the p = 3 ANNNC model, occurring at low external field strengths for larger values of
the next-nearest-neighbour interaction strength. This phase may be better understood by
further analytical and numerical analysis of the model. For example, the phase might be
identical with the antiferromagnetic p = 3 clock model, with a connection in the J direction
(strength of the nearest-neighbour coupling), which we have not yet explored.

We might imagine a more general application of phase-diagram sketching with MPS.
At least for one-dimensional systems, they could be used to systematically explore a large
subset of condensed matter models (in particular, those with short-range interactions),
using an automated procedure to build up a higher-dimensional “mother phase diagram”,
with a dimension for each interaction term (chosen from a catalogue of interesting or natural
terms), locating and characterising gapless phases, using finite-entanglement scaling, as well
as gapped phases. One could also extend this idea to higher-dimensional systems, using
other TNS like PEPS [9, 10]. However, unlike MPS, even computing expectation values is
a computationally intensive procedure in these higher-dimensional networks, making such
a project significantly more difficult [203].

In our study of the quantum rotor model in Chapter 7, we have shown that TNS
techniques are applicable to lattice gauge theory even in the case of a nonabelian continuous
gauge group, where we used a movable local basis cutoff, defined in terms of gauge-group
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Fourier modes, to make the local Hilbert space finite-dimensional. In contrast to Chapters 4
and 5, we made heavy use in Chapter 7 of the MPS tangent-space excitations ansatz of [60]
in order to directly determine the mass gap and the beta function, as well as to identify
gauge-invariant excitations of the nonabelian model. Although the rotor model studied does
not have local gauge symmetry, the techniques used should easily extend to the more general
case. Indeed, one logical next step would be to simulate a one-dimensional nonabelian model
with local gauge symmetry, such as the cylinder described in Section 7.2.2. Isolating the
physical states would be more challenging than for the rotor/earring case, where we sampled
over the possible gauge transformations to test invariance of excitations, since the number
of gauge group elements needed to specify a transformation grows linearly with the cylinder
length. Omne might consider constructing the projector onto the physical subspace as a
matrix product operator, as trialled in [57] in the context of anyon chains and proposed for
PEPS in [181, 182] in the context of lattice gauge theory.

The usefulness of the graph-manipulation moves of Chapter 6, introduced for lattice
gauge theory with continuous gauge groups in [165], has not yet been fully explored. It
may be possible to find connections between lattice gauge theories on different graphs that
could then be exploited to make the analytical or numerical treatment of interesting graphs
more convenient. The application proposed in [165] — a scheme using graph manipulation
to move to a finer graph-discretisation in such a way as to approach the continuum limit of
Yang-Mills theory — could also be trialled using MPS simulations of the rotor model. The
author has already begun this work.

Another related line of enquiry would be to investigate the discretisation of the gauge
group in the nonabelian case as an alternative to a Fourier mode cutoff. Much as the
clock model, with its Z, symmetry, becomes the O(2) rotor model as p — 0o, one could
investigate, using discrete nonabelian groups, a limit leading to a nonabelian O(N) rotor
model. This limit could also be taken for the rotor model, or for a lattice gauge theory
with local gauge symmetry, where it may represent a more efficient means of simulating
such models numerically near the weak coupling limit, where the Fourier basis becomes
less helpful. Discrete nonabelian gauge groups, such as the dihedral group Ds, have been
considered in the past in the context of models for quantum computation [204].

As numerical tools for treating quantum lattice systems, it is clear from the success
of the studies of this thesis, and those of other publications, that tensor network states
have the potential to significantly advance our understanding of a wide range of systems
and states. While our studies have been limited to one-dimensional systems using MPS,
other ansatzes like PEPS [9, 10] and the MERA [11, 12] allow the treatment of higher-
dimensional systems, albeit at far higher computational cost. A key challenge to their use
in numerics is the development of scalable, parallel algorithms that allow their use in large
scale computations on super-computer architectures. This is likely to go hand in hand with
developments in the theory of efficient (approximate) tensor network contraction.
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