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Kurzzusammenfassung

Diese Dissertation beinhaltet vier Aufsätze über Zeitreihen mit Langem Gedächtnis. Nach der

Einleitung in Kapitel 1, stellt der erste Aufsatz in Kapitel 2 einen multivariaten Score-artigen

Misspezifikationstest für Prozesse mit Langem Gedächtnis vor. Die Teststatistik basiert auf der

gewichteten Summe der partiellen Ableitungen der multivariaten lokalen Whittle-Likelihood-

Funktion und kann benutzt werden, um zwischen wahrem und scheinbarem Langen Gedächt-

nis zu unterscheiden. Konsistenz beweisen wir insbesondere für die Alternativen stochastischer

Niveauverschiebungen und glatter Trends. Um den Test auf ein fraktional kointegriertes Sy-

stem anwenden zu können, wird die Teststatistik nach der Schätzung der Kointegrationsmatrix

für das linear transformierte System berechnet. Wir zeigen, dass die Grenzverteilung von die-

sem Vorgehen unberührt bleibt. Eine Monte Carlo Analyse zeigt, dass der Test gute Size- und

Power-Eigenschaften in endlichen Stichproben hat. Um die Nützlichkeit des Tests in der Pra-

xis hervorzuheben, wenden wie ihn auf zwei Maße für die Variation von Aktienindizes an - die

log-absolute Rendite und die realisierte Volatilität - und zwar für den S&P 500, den DAX, den

FTSE und den NIKKEI.

In Kapitel 3 schlagen wir eine automatische Modellselektionsprozedur für k-Faktor-Gegenbauer-

Prozesse vor. Die Prozedur basiert auf sequentiellen Tests des Maximums des Periodograms und

semiparametrischen Schätzern der Modellparameter. Als Nebenprodukt führen wir eine genera-

lisierte Version von Walkers
”
Large sample g-test“ ein, die es erlaubt in stationären Prozessen

mit kurzem Gedächtnis auf persistente Periodizität zu testen. Unsere Simulationsstudien zeigen,

dass die Prozedur die korrekte Modellordnung unter verschiedensten Umständen korrekt identi-

fiziert. Eine Anwendung auf kalifornische Stromlast-Daten verdeutlicht den Wert der Prozedur

in empirischen Analysen und liefert neue Erkenntnisse über die Periodizität dieses Prozesses.

Im darauf folgenden Kapitel 4 leite ich das Gedächtnis der Produktzeitreihe xtyt her, wobei xt

und yt stationäre Zeitreihen mit Langem Gedächtnis der Ordnungen dx und dy sind. Besondere

Aufmerksamkeit wird auf quadrierte Reihen gelegt und auf Produkte von Reihen die von einem

gemeinsamen stochastischen Faktor getrieben werden. Es stellt sich heraus, dass das Gedächtnis

von Produkten von Zeitreihen mit von null verschiedenen Mittelwerten vom maximalen Ge-

dächtnis der Faktorreihen bestimmt wird. Dahingegen wird das Gedächtnis reduziert, wenn die

Mittelwerte der Reihen null sind.

Zum Schluss beschäftigt sich Kapitel 5 mit Prognose-Vergleichen mittels des populären Diebold-

Mariano Tests unter Langem Gedächtnis. Es wird gezeigt, dass Langes Gedächtnis von Prognosen

oder der zu prognostizierenden Variablen auf die Prognosefehler-Verlustdifferentiale übertragen

werden kann und dass der konventionelle Diebold-Mariano Test in diesem Fall nicht mehr valide

ist. Zwei robuste Statistiken basierend auf einem Gedächtnis- und Autokorrelations - konsisten-

ten Schätzer und einem erweiterten fixed-b Ansatz werden diskutiert und ihre relative Perfor-

mance wird in einer Monte Carlo Studie evaluiert. Anschließend werden die robusten Statistiken

benutzt, um die relative Prognosegüte aktueller Erweiterungen des heterogenen autoregressiven
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Modells für realisierte Volatilitäten des S&P 500 Index zu evaluieren. Wir kommen zu dem Er-

gebnis, dass sich Prognosen signifikant verbessern, wenn Sprünge im log-Preis-Prozess separat

von kontinuierlichen Komponenten behandelt werden. Im Gegensatz dazu stellt sich heraus, dass

Verbesserungen die durch die Inklusion von implizierter Volatilität erreicht werden insignifikant

sind.

Schlagworte: Langes Gedächtnis · Semiparametrische Schätzung · Zeitreihenanalyse
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Short Summary

This thesis contains four essays on long memory time series. After an introduction in Chapter

1, the first essay in Chapter 2 provides a multivariate score-type misspecification test for long

memory processes. The test statistic is based on the weighted sum of the partial derivatives

of the multivariate local Whittle likelihood function and can be used to distinguish between

true and spurious long memory. In particular, we prove the consistency of our test against

the alternatives of random level shifts or smooth trends. To apply the test to fractionally

cointegrated systems, the test statistic is calculated for the linearly transformed system after

estimating the cointegrating matrix. We show that the limit distribution is asymptotically

unaffected by this procedure. A Monte Carlo analysis shows good finite sample properties of the

test in terms of size and power. To highlight the usefulness of the test in practice, we apply it to

two measures for the variation of stock market indices: the log-absolute returns and log-realized

volatilities of the S&P 500, the DAX, the FTSE, and the NIKKEI.

In Chapter 3, we propose an automatic model order selection procedure for k-factor Gegenbauer

processes. The procedure is based on sequential tests of the maximum of the periodogram and

semiparametric estimators of the model parameters. As a byproduct, we introduce a generalized

version of Walker’s“large sample g-test”that allows to test for persistent periodicity in stationary

short memory processes. Our simulation studies show that the procedure performs well in

identifying the correct model order under various circumstances. An application to electricity

load data from the state of California illustrates its value in empirical analyses and allows new

insights into the periodicity of this process.

In the following Chapter 4, I derive the memory of the product series xtyt, where xt and yt are

stationary long memory time series of orders dx and dy, respectively. Special attention is paid

to the case of squared series and products of series driven by a common stochastic factor. I

find that the memory of products of series with non-zero means is determined by the maximal

memory of the factor series, whereas the memory is reduced, if the series are mean zero.

Finally, Chapter 5 deals with forecast comparisons using the popular Diebold-Mariano test under

long memory. It is shown that long memory can be transmitted from forecasts or the forecast

objective to the forecast error loss differential and that the conventional Diebold-Mariano test

is invalidated under these circumstances. Two robust statistics, based on a memory and auto-

correlation consistent estimator and an extended fixed-bandwidth approach, are discussed and

their relative performance is compared in a Monte Carlo study. The robust statistics are used

to evaluate the forecast performance of recent extensions of the heterogeneous autoregressive

model for the realized volatility of the S&P 500 index. It is found that forecasts improve signif-

icantly if jumps in the log-price process are considered separately from continuous components.

In contrast to that, improvements achieved by the inclusion of implied volatility turn out to be

insignificant.

Keywords: Long Memory · Semiparametric Estimation · Time Series Analysis
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Introduction

In the frequency domain long memory is typically defined by a pole in the spectral density f (λ)

that obeys the power law f (λ) ∼Gλ−2d, as λ→ 0+. Here G is a positive constant, λ denotes the

frequency and d is the memory parameter. Equivalently, long memory time series can also be

characterized by a hyperbolical decay of the autocorrelation function γ(τ) at large lags τ, so that

γ(τ) ∼ G̃τ2d−1, as τ→∞, for another positive constant G̃. In addition to applications to economic

time series such as inflation, unemployment or interest rates, long memory has become a popular

concept for the modelling of financial time series - in particular for volatility processes (cf., e.g.

Deo et al. (2006), Martens et al. (2009) or Chiriac and Voev (2011)).

Parametrically, long memory processes are predominantly modelled by ARFIMA processes in-

troduced in Granger (1980) and Hosking (1981). Here, the time series Xt is given by

φ(L)(1−L)dXt = θ(L)εt,

where −1/2 < d ≤ 1, L is the lag-operator, φ(L) and θ(L) are the usual autoregressive and moving

average lag-polynomials and εt is a mean-zero martingale difference sequence.

Consistent maximum likelihood estimation of the parameters of these processes requires a correct

specification of the ARMA components that is unknown in practice. This is one of the reasons

why semiparametric estimators are widely used. These rely on the spectral definition of long

memory to estimate the parameter d from the periodogram local to the origin and do not require

any specification of the short run dynamics of the process. The most popular ones among these

estimators are the log-periodogram regression of Geweke and Porter-Hudak (1983) and Robinson

(1995b) and the local Whittle estimator of Künsch (1987) and Robinson (1995a). Among these

two, the log-periodogram estimate has the advantage of greater conceptual simplicity, whereas

the local Whittle estimator has a smaller asymptotic variance.

The essays in this thesis address issues in specification testing, model selection and inference

procedures from this semiparametric perspective. The first chapter is concerned with spurious

long memory in multivariate time series. It is well known from the univariate time series lit-

erature that asymptotically hyperbolically decaying autocovariance structures and poles in the

spectrum (similar to those of long memory processes) can be generated by other processes that

feature trends and structural breaks. Examples of this literature include Granger and Ding

(1996), Lobato and Savin (1998), Diebold and Inoue (2001), Granger and Hyung (2004) and

Mikosch and Stărică (2004), among others. Recently, Perron and Qu (2010) showed differences

in the spectral behavior and autocorrelation functions of long memory processes and processes

with low frequency contaminations that cause spurious long memory. These results were used

by Qu (2011) to construct a periodogram based test for the null hypothesis of pure long mem-

ory. According to the simulation results of Leccadito et al. (2015) this is the most powerful test

available in many situations.
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For multivariate time series however, no such methods exist. Chapter 2 therefore introduces

a score-type misspecification test for multivariate systems with long memory, that generalizes

the test of Qu (2011). The test statistic is based on the weighted sum of the partial derivatives

of the multivariate local Whittle likelihood function and can be used to distinguish between

true and spurious long memory. In particular, we prove the consistency of our test against

the alternatives of random level shifts or smooth trends. By choosing the weighting scheme

accordingly, one can either test the complete spectral density matrix for a misspecification local

to the origin, or one can focus on particular rows and columns. For the first weighting scheme we

obtain a pivotal limit distribution, whereas the second weighting scheme can be used to evaluate

which series of the multivariate system might cause a possible rejection. To apply the test to

fractionally cointegrated series, the test statistic is calculated for the linearly transformed system

after estimating the cointegrating matrix. We show that the limit distribution is asymptotically

unaffected by this procedure.

A Monte Carlo analysis is conducted to assess the finite sample properties of the test in various

situations. It is found that it has good size and power properties and that it is robust to com-

plications - such as unconditional variance- or covariance breaks, conditional heteroscedasticity

and perturbations - and it has good power against an array of low frequency contaminations.

To highlight the usefulness of the test in practice, we apply it to two measures for the variation

of stock indices - the log-absolute returns, and log-realized volatilities - of the S&P 500, the

DAX, the FTSE, and the NIKKEI. It is found that the log-absolute return of the S&P 500 is

not correctly specified as a pure long memory process, which is particularly interesting because

it has often been quoted as an example of a series that may exhibit spurious long memory (cf. for

example Granger and Ding (1996), Granger and Hyung (2004), Lu and Perron (2010), Varneskov

and Perron (2011) and Xu and Perron (2014)). The available univariate tests, however, usually

fail to reject the null hypothesis of a pure long memory process. For the realized volatility series,

on the other hand, we find no evidence for contaminations.

The subject of Chapter 3 are processes with seasonal long range dependence. Parametric seasonal

long memory models generalize seasonal ARIMA models so that the stochastic seasonal effects

become more persistent and the magnitude of the autocovariance function declines hyperbolically

at large lags. In this case, the poles in the spectrum that characterize long memory do not

appear at the origin, but at the cyclical frequencies. Examples of these models include the

(rigid) SARFIMA model of Porter-Hudak (1990), the flexible SARFIMA of Hassler (1994) and

the k-factor GARMA processes of Woodward et al. (1998) and Giraitis and Leipus (1995) which

nests the former two. An open issue in this literature is the model specification - in particular

that of the number of poles and their location. If a possible specification can be inferred from

theoretical considerations, the LM tests of Robinson (1994) and Hassler et al. (2009) allow to test

for the null hypothesis that a given model is correct. Without a priori information however, the

specification of the model order and the location of the cyclical frequencies with these methods

is not possible.
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We therefore propose an automatic model order selection procedure for k-factor Gegenbauer

processes. The procedure is based on sequential tests of the maximum of the periodogram and

semiparametric estimators of the model parameters. As a byproduct, we introduce a generalized

version of Walker’s large sample g-test that allows to test for persistent periodicity in stationary

short memory processes. This test is combined with a result of Hidalgo and Soulier (2004), who

show that the maximum of the periodogram is a consistent estimator for the location of a pole

and the generalized local Whittle estimator of Arteche and Robinson (2000). Since this estimator

only makes assumptions about the behavior of the spectrum in a degenerating neighborhood

of the respective pole, it allows for a consistent estimation of the memory of the corresponding

cycle without any knowledge about possible other persistent cyclical effects.

In each iteration of the proposed model selection procedure our modified G∗-test is applied to test

for the presence of an omitted pole. If there is no rejection, the procedure terminates. Otherwise,

the location of the pole is estimated by the maximum of the periodogram and the respective

memory parameter is estimated using the aforementioned local Whittle estimator. Subsequently,

the cycle is removed by applying the Gegenbauer filter with the estimated parameters and the

next iteration is conducted on the filtered process.

The consistency of the procedure is proved and the effect of seasonal demeaning prior to the

application of our procedure is also considered. Monte Carlo simulations show that the procedure

performs well in identifying the correct model order under various circumstances.

As an empirical application, we consider electricity load data from the state of California. Elec-

tricity loads have frequently been discussed in the forecasting literature, cf. for example Ra-

manathan et al. (1997), Soares and Souza (2006) or Weron and Misiorek (2008). Using our

procedure shows that the series is driven by a complex 14-factor Gegenbauer model, with poles

at weekly and at daily harmonics with different memory parameters.

Chapter 4 provides a result on the memory of products of long memory time series. It turns out

that the persistence of products of time series critically depends on the means of the processes.

On the one hand, if both factor series have non-zero means, the memory of the product is deter-

mined by the maximal memory of the factor series. On the other hand, if both series are mean

zero, the memory of the product is reduced. If only one of the series has a zero-mean, it is the

memory of this series that determines that of the product series. Corollaries are derived, that

characterize the memory of squared processes and products of fractionally cointegrated series.

Finally, Chapter 5 extends the popular Diebold-Mariano test to situations in which the forecast

error loss differential exhibits long memory. Using the results from Chapter 4, it is shown

that this situation can arise frequently, since long memory can be transmitted from forecasts

and the forecast objective to forecast error loss differentials. The nature of this transmission

mainly depends on the (un)biasedness of the forecasts and whether the involved series share

common long memory. Further results show that the conventional Diebold-Mariano test is

invalidated under these circumstances. The reason is that the presence of long memory can
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complicate inference on the sample mean since the convergence rate is reduced to T 1/2−d and

the autocovariance function is no longer absolutely summable. Therefore, standard estimators

of the long run variance (such as HAC) do not work without modifications.

We then consider two robust statistics based on a memory and autocorrelation consistent esti-

mator of Robinson (2005) and the extended fixed-bandwidth approach of McElroy and Politis

(2012). A Monte Carlo study is conducted to provide a comparison of these robust statistics.

It is found that tests based on the MAC estimator have better power properties, whereas tests

using extended fixed-bandwidth asymptotics allow for a better size control - especially if the

modified quadratic spectral kernel is used.

As an empirical application, we conduct forecast comparison tests for the realized volatility of

the S&P 500 index among recent extensions of the heterogeneous autoregressive model of Corsi

(2009). We find that forecasts improve significantly if jumps in the log-price process are consid-

ered separately from continuous components. Improvements achieved by the inclusion of implied

volatility turn out to be insignificant.



Chapter 2

A Multivariate Test Against Spurious Long Memory
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A Multivariate Test Against Spurious Long Memory
Co-authored with Philipp Sibbertsen and Marie Busch.

Under revision for the Journal of Econometrics.

2.1 Introduction

Distinguishing between true and spurious long memory is of major importance for the empirical

modeling of many macroeconomic and financial time series. Usually, fractionally integrated

processes are used to model long memory. Nevertheless, several authors point out that other

data generating processes can have similar autocovariance features. Examples of this literature

include Granger and Ding (1996), who argue that time varying coefficient models and other

non-linear models can generate spurious long memory or Diebold and Inoue (2001) who derive

parameter constellations for which random level shift processes, STOPBREAK models, and

markov switching models can generate spurious long memory and support these arguments with

extensive simulation studies. Similar results are obtained by Granger and Hyung (2004), who

also report that the evidence for long memory in absolute returns of the S&P 500 vanishes if

breaks are accounted for. Further contributions that give similar evidence are Lobato and Savin

(1998) and Mikosch and Stărică (2004), among others.

Motivated by these findings, several tests have been proposed to distinguish true long memory

from spurious long memory. Berkes et al. (2006) or Yau and Davis (2012), among others,

suggest tests for the null hypothesis of spurious long memory. Here, we focus on the literature

with the null hypothesis of true long memory. Dolado et al. (2005) propose a time domain test

based on the testing principle of previously derived fractional Dickey Fuller tests. Shimotsu

(2006) suggests two tests. The first one is based on the observation that for a true fractionally

integrated process the memory parameter d must be the same across all subsamples. On the

other hand, the implied d of a spurious long-memory process depends on the number of shifts and

their location in the sample. Splitting the sample into subsamples, therefore, changes the implied

d in every subsample. Shimotsu’s second approach is to test whether the d-th difference of a

process is I(0) or its partial sum I(1), using KPSS and Phillips-Perron tests. Another property

of fractionally integrated processes is that the parameter d remains unchanged if the process is

temporally aggregated. Ohanissian et al. (2008) use this property to test for true long memory

by testing the equality of ds estimated from different aggregation levels of the same process.

A similar test based on periodic sub-sampling, also known as skip-sampling, is presented by

Davidson and Rambaccussing (2015). Their testing procedure compares the memory estimator

of the skip-sampled data with the estimated d from the original data. Haldrup and Kruse (2014)

propose a test based on the fact that nonlinear transformations of an I(d) process will reduce

the order of memory when the Hermite rank of the transformation is greater than one.

Perron and Qu (2010) derive the properties of the periodogram of processes with short memory

and level shifts. They find that for low frequencies the effect of the shifts dominates the behavior

of the spectral density and the implied value of d is one. For larger frequencies, on the other

mailto:sibbertsen@statistik.uni-hannover.de
mailto:busch@statistik.uni-hannover.de


2.1. Introduction 8

hand, the short memory component is dominant and the implied d is zero. These findings

explain the sensitivity of semiparametric d-estimators with respect to the bandwidth choice.

Therefore, Perron and Qu (2010) propose a test statistic based on the difference between memory

parameters estimated with different bandwidths. The same results on the spectral density of

level shift processes are used by Qu (2011), who derives a score-type test that is based on the

derivative of the local Whittle likelihood function. Simulation studies conducted by Qu (2011)

and Leccadito et al. (2015) show that among the tests suggested so far, overall the Qu test has

the best power against a wide range of alternatives.

All of these approaches discussed so far are univariate. There is, however, a strand of literature

that has considered multivariate extensions of fractionally integrated processes. Early examples

include the work of Sowell (1989) and Lobato (1997). In particular, Lobato (1999) and Shimotsu

(2007) extend the local Whittle estimator to a multivariate framework. Extensions of the local

Whittle estimator to fractionally cointegrated systems have been considered by Nielsen (2007a),

Robinson (2008) and Shimotsu (2012).

We contribute to this literature by generalizing the approach of Qu (2011) to test for true

long memory in multivariate processes. The test statistic is based on the weighted sum of the

partial derivatives of the multivariate local Whittle likelihood function in the form introduced

by Shimotsu (2007). In this specification the cross-spectral densities contain information on the

phase and coherence of the process. As Kechagias and Pipiras (2015) show, the assumed form

of the spectral density matrix local to the origin is specific to causal filters with hyperbolically

decaying coefficients. Therefore, our test can be interpreted as a general test on the correct

specification of a multivariate series as a causal long memory process. If one is willing to assume

that the process is causal, a rejection of the test can be interpreted as evidence for low frequency

contaminations.

The limit distribution of the test statistic is derived for general weights. However, by choosing

the weighting scheme accordingly, one can obtain a pivotal distribution that coincides with that

of the univariate Qu test. Furthermore, it is also possible to choose the weights so one can gain

further insights into which components of a multivariate process cause a rejection.

To our knowledge, this is the first multivariate test against spurious long memory. The idea

behind the test is that under the null hypothesis the derivative of the local Whittle likelihood

function evaluated at d̂ for the first bmrc < m Fourier frequencies with r ∈ [ε,1] is approximately

equal to zero. Under the alternative the derivative diverges if it is evaluated for a lower number

of Fourier frequencies than used for the estimation of d, since it is based on a wrong assumption

about the shape of the spectral density.

Our test statistic is derived in a multivariate long memory framework which excludes fractional

cointegration. Nevertheless, we show that the test can easily be modified for the situation of

fractionally cointegrated data. This modified test statistic has the same asymptotic properties

as the original test statistic, including the same limiting distribution.

In the empirical example we apply our test to the log-absolute returns and realized volatilities
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of four stock market indices, the Standard & Poor 500, the DAX, the FTSE and the NIKKEI.

Even though especially the log-absolute values of S&P 500 returns have been studied in many of

the aforementioned contributions on the possibility of spurious long memory, the tests proposed

so far often fail to reject the null hypothesis of a true long-memory process. We, therefore,

reconsider this example by extending it to a multivariate framework and we can clearly reject

the null hypothesis of a pure long memory process for the S&P 500. For realized volatility series

of these four stock market indices on the other hand, we do not find any evidence of spurious

long memory.

The rest of the paper is structured as follows. After stating the model and the assumptions in

Section 2.2, the test statistic is derived in Section 2.3. Some Monte Carlo simulations are given

in Section 2.4. The empirical application is presented in Section 2.5 and Section 2.6 concludes.

Proofs can be found in the appendix and additional results are provided in a supplementary

appendix.

2.2 Model Specification and Assumptions

The spectral density of a multivariate long-memory process Xt, with d = (d1,d2, ...,dq)′ and −1/2<

d1, . . . ,dq < 1/2 being the memory vector, is local to the origin given by

f (λ j) ∼ Λ j(d)GΛ∗j(d), (2.1)

with Λ j(d) = diag(Λ ja(d)) and Λ ja(d) = λ−da
j ei(π−λ j)da/2, where λ j = 2π j/T denotes the j-th Fourier

frequency, and j = 1, . . . , bT/2c. G is a real, positive definite, symmetric and finite matrix and the

asterix A∗ denotes the conjugate transpose of the matrix A. Further, the imaginary number is

denoted by i and da is the memory parameter in dimension a.

The assumptions on G exclude fractional cointegration as they stand. We first derive our test

statistic under this assumption and consider the case of fractionally cointegrated series after-

wards. It turns out that the asymptotic properties of the test statistic remain unchanged if the

test is slightly modified to accommodate fractional cointegration.

The spectral density representation in (2.1) accounts for phase shifts in the spectrum. Phase

shifts occur as the covariance function γ(h) of the process is no longer necessarily time-reversible

in the multivariate setting, that is γ(h) , γ(−h). Therefore, the off-diagonal elements of the

spectral matrix of Xt contain complex valued elements which are not vanishing even at λ = 0 and

which depend on the memory parameter da. These complex valued elements vanish if and only

if the matrix G in (2.1) is diagonal or da = d for all dimensions a.

One possible example is the multivariate q-dimensional FIVARMA model
(1−L)d1 0

. . .

0 (1−L)dq




X1t −EX1t
...

Xqt −EXqt

 =


u1t
...

uqt

 ,
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with −1/2 < d1, . . . ,dq < 1/2 and t = 1, . . . ,T . This can alternatively be written as

D(d1, ...,dq)(Xt −EXt) = ut, (2.2)

where Xt is a (q× 1) column vector and ut = (u1t,u2t, ...,uqt)′ is a covariance stationary process

with spectral density fu(λ) which is bounded and bounded away from zero in a matrix sense at

the zero frequency, λ = 0. The operator D(d1, ...,dq) = diag((1−L)d1 , ..., (1−L)dq) is a (q×q) matrix

polynomial with zeros on the non-diagonal elements.

In a univariate framework a type II fractionally integrated process (e.g., Marinucci and Robinson,

1999) is defined by (1−L)d xt = ut1(t≥ 0), where ut is an I(0) process having the Wold representation

ut =
∑∞

j=0 θ jεt− j with
∑∞

j=0 ‖θ j‖
2 <∞. The innovations εt are assumed to be a martingale difference

sequence satisfying E(εt|Ft−1) = 0 and E(ε2
t |Ft−1) < ∞ with Ft = σ({εs, s ≤ t}). Furthermore, it is

ut = 0 for t ≤ 0. The order of fractional integration is given by d and (1− L)d is defined by its

binomial expansion

(1−L)d =

∞∑
j=0

Γ( j−d)
Γ(−d)Γ( j + 1)

L j,

with Γ(z) =
∫ ∞

0 tz−1e−tdt. L denotes the Backshift operator, i.e. Let = et−1. Details about recent

developments on long-memory time series can be found in Beran et al. (2013) or Giraitis et al.

(2012).

The spectral density of the process ut in (2.2) is assumed to fulfill the local condition

fu(λ) ∼G, λ→ 0.

This condition is fulfilled whenever ut has the Wold decomposition ut = C(L)εt, where C(1) is

finite and has full rank, and C(L) is a polynomial in the lag operator with absolute summable

weights.

Furthermore, define the periodogram of Xt evaluated at frequency λ as

I(λ) = w(λ)w∗(λ), with w(λ) =
1
√

2πT

T∑
t=1

Xteitλ.

In the rest of the paper the superscript 0 denotes the true value of a parameter, for example d0

is the true memory parameter.

We need to state the following assumptions which follow those in Shimotsu (2007):

Assumption 2.1. For β ∈ (0,2] and a,b = 1, . . . ,q as λ→ 0+

fab(λ)− exp
(
i (π−λ)

(
d0

a −d0
b

)
/2

)
λ−d0

a−d0
bG0

ab = O
(
λ−d0

a−d0
b+β

)
.

Here and in the following fab and Gab are the respective elements of the matrices f and G.
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Assumption 2.2. It holds that

Xt −EXt = A(L)εt =

∞∑
j=0

A jεt− j,

with
∑∞

j=0 ‖A j‖
2 < ∞ and ‖ · ‖ denotes the supremum norm. It is assumed that E(εt|Ft−1) = 0,

E(εtε
′

t |Ft−1) = Iq a.s. for t = 0,±1,±2, . . . where Ft denotes the σ-field generated by εs and Iq is an

identity matrix, s≤ t. Furthermore, there exists a scalar random variable ε such that Eε2 <∞ and

for all τ > 0 and some K > 0 it is P(‖εt‖
2 > τ) ≤ KP(ε2 > τ). In addition, it holds for a,b,c,d = 1,2,

t = 0,±1,±2, . . . that

E(εatεbtεct|Ft−1) = µabc a.s.

and

E(εatεbtεctεdt|Ft−1) = µabcd a.s.,

where |µabc| <∞ and |µabcd | <∞.

Assumption 2.3. In a neighborhood (0, δ) of the origin, A(λ) =
∑∞

j=0 A jei jλ is differentiable and

∂

∂λ
aA(λ) = O

(
λ−1‖aA(λ)‖

)
, λ→ 0+,

where aA(λ) is the a-th row of A(λ).

Assumption 2.4. As T →∞ it holds for any γ > 0

1
m

+
m1+2β(logm)2

T 2β +
logT
mγ

→ 0,

where m is the bandwidth parameter.

Assumption 2.5. There exists a finite real matrix Q such that

Λ j
(
d0

)−1
A(λ j) = Q + o(1), λ j→ 0.

These assumptions are multivariate versions of the assumptions in Qu (2011). They allow for

non-Gaussianity. Assumption 2.1 and 2.5 are satisfied by multivariate FIVARMA processes.

Assumption 2.4 is slightly stronger than the assumption used in Qu (2011) for the univariate

local Whittle estimator. However, this stronger assumption is necessary for the Hessian of the

objective function of the local Whittle estimator to converge, which is needed in our proof.

It should be mentioned that Assumption 2.4 gives a sharp upper bound for the number of

frequencies m which can be used for the local Whittle estimator and thus for our test statistic.

It is m = o(T 0.8).
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2.3 Testing for Spurious Long Memory

In this section we consider multivariate testing for pure causal long memory. Our test is spectral

based and investigates whether the data under consideration can be well described by the spectral

density (2.1). However, it is motivated by using the different properties of the periodogram of

long-memory processes and processes with structural breaks or trends. Special use will be made

from the fact that the slope of the spectral density of a process with structural breaks is nearly

zero for j >
√

T .

2.3.1 The MLWS Statistic

To be specific, we are interested in testing the hypothesis that the spectral density local to the

origin has the shape given in equation (2.1):

H0 : f (λ j) ∼ Λ j(d)GΛ∗j(d)

as λ j→ 0+ with da ∈ (−1/2,1/2) ∀ a = 1, . . . ,q. Thus, under the null hypothesis Xt is a multivariate

causal long-memory process with phase (da−db)π/2. The alternative is that the data cannot be

described by this spectral density:

H1 : f (λ j) / Λ j(d)GΛ∗j(d).

To motivate our test statistic, we focus on considering the properties of the periodogram under

the alternative of low frequency contaminations. We consider two alternative models. The first

one is a multivariate random level shift model defined by

Xt = µt + κt with (2.3)

µt = (Iq−φΠt)µt−1 +Πtet,

where κt, Πt = diag(π1t, . . . ,πqt) and et are mutually independent. The Bernoulli variables πit and

π jt for the different dimensions of the q-dimensional process Xt are correlated with correlation

matrix Σπ for i, j = 1, ...,q. We consider a shift probability that is defined by p = p̃/T , where p̃ is

the expected number of shifts. Furthermore, the magnitude of the shifts is characterized by the

q-dimensional column vector et, with et ∼ N(0,Σe), and the noise process κt, κt ∼ N(0,Σκ). The

pairwise correlation coefficients of πit and π jt, eit and e jt, and κit and κ jt are labeled as ρπ,i j, ρe,i j

and ρκ,i j, ∀ i, j = 1, ...,q.

The autoregressive coefficient 0 ≤ φ ≤ 1 determines the persistence of the level shifts. This allows

us to consider stationary as well as non-stationary multivariate random level shift processes.

This formulation of our random level shift model is a multivariate version of the autoregressive

random level shift process suggested in Xu and Perron (2014).
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The second model under the alternative is the smooth trend model:

Xt = H
( t
T

)
+ κt, (2.4)

where all variables are q-dimensional column vectors, H(t/T ) = (h1(t/T ), . . . ,hq(t/T ))
′

and hi(t/T ) is

a Lipschitz continuous function on [0,1], ∀ i = 1, ...,q. The noise term κt is defined as in equation

(2.3).

In analogy to Perron and Qu (2010), the periodogram of Xt in (2.3) or (2.4) can be decomposed

in four components by

IX(λ j) =
1

2πT

T∑
t=1

T∑
s=1

µtµ
′

s exp
{
i(t− s)λ j

}
+

1
2πT

T∑
t=1

T∑
s=1

κtκ
′

s exp
{
i(t− s)λ j

}
+

1
2πT

T∑
t=1

T∑
s=1

κtµ
′

s exp
{
i(t− s)λ j

}
+

1
2πT

T∑
t=1

T∑
s=1

µtκ
′

s exp
{
i(t− s)λ j

}
.

In contrast to the univariate case, we have four terms instead of three, due to the asymmetry of

the autocovariance matrices. By similar arguments as in Proposition 3 of Perron and Qu (2010)

for λ j = o(1) the first summand is of order OP(1), the second is of order OP(T−1λ−2
j ), and the

third and fourth term are of order OP(T−1/2λ−1
j ). Therefore, for each component in Xt the level

shifts affect the periodogram only up to j = O(T 1/2). The stochastic orders are exact in the case

of level shifts as in equation (2.3) and approximate for slowly varying trends in (2.4).

This decomposition of the periodogram can now be used to construct a multivariate local Whittle

score-type test (MLWS test). It is based on the difference between the spectral density of a

fractionally integrated process and the periodogram of a series contaminated by mean shifts or

smooth trends that is almost flat for frequencies m >
√

T . This property also explains why the

bias of the estimate d̂ of the memory parameter depends heavily on the bandwidth choice if a

local semiparametric estimator is used.

The test statistic is based on the derivative of the local Whittle likelihood function evaluated

at d̂, where d̂ is the local Whittle estimate obtained using the first m Fourier frequencies. Qu

(2011) now evaluates the derivative of the local Whittle likelihood function at the first bmrc]

Fourier frequencies, where r ∈ [ε,1] with ε > 0. For r = 1 the derivative is exactly zero and for

smaller r the derivative should be close to zero as long as the estimate of d remains stable when

the bandwidth is decreased. This is the case under the null hypothesis. If the alternative is true,

the non-uniform behavior of the spectral density leads to a divergence of the derivative. The

test statistic is obtained by taking the supremum of the derivative over all r.

Our test statistic extends this idea to the multivariate case. It is based on the weighted sum of
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the partial derivatives of the multivariate local Whittle likelihood as defined in Shimotsu (2007),

which is given in (2.1). As the Gaussian log-likelihood of Xt and G are real, the local Whittle

likelihood localized to the origin can be written as

Qm(G,d) =
1
m

m∑
j=1

{
logdetΛ j(d)GΛ∗j(d) + tr

[
G−1Re

[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]]}
. (2.5)

The first order condition with respect to G gives

G =
1
m

m∑
j=1

Re
[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
.

Substituting this into Qm(G,d) and

logdetΛ j(d) + logdetΛ∗j(d) = logdetΛ j(d)Λ∗j(d)

= logdet
(
diag

(
λ−2da

j

))
= −2

q∑
a=1

da logλ j

gives the objective function of the multivariate Gaussian semiparametric estimate (GSE) of

Shimotsu (2007):

R(d) = logdetĜ(d)−2
q∑

a=1

da
1
m

m∑
j=1

logλ j (2.6)

with

Ĝ(d) =
1
m

m∑
j=1

Re
[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
.

To state our test statistic, we need to introduce some algebra on the first derivative of the

objective function R(d) which is condensed in Lemma 2.1 below. Denote by η = (η1, . . . , ηq)
′

a

(q× 1) vector of real numbers and ν j = logλ j − 1/m
∑m

j=1 logλ j. Furthermore, set aG−1 to be the

a-th row of G−1 and set ia to be the (q×q) matrix with a one on the a-th diagonal element and

zeros elsewhere. Additionally, Ma denotes the a-th column of the matrix M. Then, we can write:

Lemma 2.1. Under Assumptions 2.1 to 2.5 we have

q∑
a=1

ηa
√

m
∂R(d)
∂da

=
2
√

m

q∑
a=1

ηa

m∑
j=1

ν j
(
aG−1Re

[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
a
−1

)
+

1
√

m

q∑
a=1

ηa

m∑
j=1

λ j−π

2 a
G−1Im

[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
a
+ oP(1)

The right hand side of Lemma 2.1 is the main ingredient of our test statistic which is asymptoti-
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cally equivalent to the weighted sum of the components of the gradient vector. The test statistic

is given by:

MLWS =
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥∥∥
2√∑m
j=1 ν

2
j

q∑
a=1

ηa

[mr]∑
j=1

ν j
(
aG−1(d̂)

[
Re

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]]
a
−1

)
(2.7)

+
1√∑m
j=1 ν

2
j

q∑
a=1

ηa
(
aG−1(d̂)

) [mr]∑
j=1

λ j−π

2
Im

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]
a

∥∥∥∥∥∥∥∥∥ .
Remark 1: The factor 1/2 is added in order to obtain comparability with the univariate case.

Remark 2: As usual, a small sample correction is applied by replacing m−1/2 with (
∑m

j=1 ν
2
j )
−1/2

which improves the size of the test and is asymptotically equivalent.

In the univariate case our test reduces exactly to that of Qu (2011). The imaginary part in

our test statistic accounts for the phase shifts in the multivariate spectrum. By combining the

results of Shimotsu (2007) with those of Qu (2011) we are able to derive the limiting distribution

of the test statistic (2.7). It is stated in the following theorem, where B(s) denotes standard

one-dimensional Brownian motion, � is the Hadamard product and⇒ denotes weak convergence:

Theorem 2.1. Under Assumptions 2.1 to 2.5 and denoting i =
√
−1 we have for T →∞

MLWS ⇒
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥
∫ r

0

[
(1 + log s)

(
2η
′

η+ 2η
′
(
G0�

(
G0

)−1
)
η
)1/2

(2.8)

+i
[
π2

2

(
η
′
(
G0�

(
G0

)−1
)
η−η

′

η
)]1/2dB(s)

− 2η
′

B(1)
∫ r

0
(1 + log s)dsη

−

∫ 1

0

[
(1 + log s)

(
2η
′

F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)
′

η
)1/2

+i
(
π2

2
η
′

F(r)Ω−1(G0� (G0)−1− Iq)Ω−1′F(r)
′

η

)1/2dB(s)

∥∥∥∥∥∥∥ ,
where Ω = 2

[
G0� (G0)−1 + Iq + π2

4 (G0�
(
G0

)−1
− Iq)

]
and

F(r) = 2
∫ r

0

[
(1 + log s)2

(
G0�

(
G0

)−1
+ Iq

)
+
π2

4

(
G0�

(
G0

)−1
− Iq

)]
ds.

The test statistic as it stands and its limiting distribution in Theorem 2.1 hold for any choice of

the weight vector η. However, the test statistic is not pivotal as the limiting distribution depends

on G0 and thus on the unknown memory parameter d0. Furthermore, the limiting distribution

depends on the dimension q.
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To overcome this problem, we fix the weighting scheme η to ηa = 1/
√

q, ∀a = 1, . . . ,q, to obtain

a pivotal test independent of the unknown parameter d0. Furthermore, this choice guarantees

that for every dimension q the limiting distribution is exactly the same as in Qu (2011). This is

stated in the following lemma:

Lemma 2.2. Under Assumptions 2.1 to 2.5 and setting η1 = . . . = ηq = 1/
√

q we have for T →∞

MLWS ⇒ sup
r∈[ε,1]

∥∥∥∥∥∫ r

0
(1 + log s)dB(s)

− B(1)
∫ r

0
(1 + log s)ds

− F(r)
∫ 1

0
(1 + log s)dB(s)

∥∥∥∥∥∥ ,
where

F(r) =

∫ r

0
(1 + log s)2ds.

Remark 3: For ε = 0.02, the asymptotic critical values of the MLWS test are given by 1.118,

1.252, 1.374, and 1.517 for a 10%, 5%, 2.5%, and 1% significance level respectively. The corre-

sponding critical values for a larger trimming parameter, ε = 0.05, equal 1.022, 1.155, 1.277, and

1.426, as shown by Qu (2011).

After deriving the limiting distribution of the test, we have to prove its consistency under the

alternatives (2.3) and (2.4). This is done in the following theorem:

Theorem 2.2. Suppose that the process Xt is generated by (2.3) or (2.4) with at least one

non-constant mean. Furthermore, assume that m/T 1/2→∞, P(d̂ j −d0
j > ε)→ 1, P(m−1 ∑m

j=1 I j(λ)

λ2d̂
j > ε)→ 1 for each j, as T →∞ with ε being some arbitrary small constant, and assume that

Assumptions 2.1 to 2.5 hold. Then, MLWS
p
→∞, as T →∞.

Note that (2.3) or (2.4) nest the cases, where only a subvector of Xt is subject to low frequency

contaminations. Theorem 2.2 therefore does not assume, that all components of Xt are affected.

2.3.2 Testing for Low Frequency Contaminations in a Component of a Multivariate

System

A rejection of the MLWS statistic indicates misspecifications in at least one of the components

of the process. To gain further insights into which of the components of Xt cause the rejection,

one can use the limit distribution derived in Theorem 2.1 to test the hypothesis

H0(a) : S (a)� f (λ j) ∼ S (a)�
(
Λ j(d)GΛ∗j(d)

)
, (2.9)
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as λ j→ 0, where S (a) is a selection matrix with ones in its a-th row and a-th column and zeros

in all other elements. Such a test is obtained by setting the a-th element of η to one and all

others to zero.

In this case the limit distribution simplifies slightly to

MLWS ⇒
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥
∫ r

0

√2(1 + log s)
(
gaa det(G0

−aa)
det(G0)

+ 1
)1/2

(2.10)

+i
[
π2

2

(
gaa det(G0

−aa)
det(G0)

−1
)]1/2dB(s)

− 2B(1)
∫ r

0
(1 + log s)ds

−

∫ 1

0

[
(1 + log s)

(
2F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)

′
)1/2

aa

+i
(
π2

2
F(r)Ω−1(G0� (G0)−1− Iq)Ω−1′F(r)

′

)1/2

aa

dB(s)

∥∥∥∥∥∥∥ .
Since the distribution depends on G0, it is not pivotal and the implementation of the test statistic

requires the simulation of critical values for each Ĝ(d̂).

Under the null hypothesis the a-th row and column of the spectral density matrix correspond

to those of a multivariate long memory process. In case of a low frequency contamination in

component b , a, only one of the off-diagonal elements in the a-th row and the a-th column is

affected, whereas all elements in the b-th row and column differ from the null hypothesis.

A rejection of H0(a) might therefore be due to a low frequency contamination in the b-th compo-

nent. However, a non-rejection of H0(a) and a rejection of H0(b) can be interpreted as evidence

for a contamination in component b only. Furthermore, the ordering of the p-values of the test

statistics can be used as an indication for the relative probability of a contamination in the

respective components.

2.3.3 MLWS Test for Fractionally Cointegrated Series

So far, fractional cointegration has been ruled out by our assumptions on the matrix G, which

has reduced rank if components of Xt are cointegrated. However, our test can be robustified

against fractional cointegration without altering the limiting distribution. Let there be pG

cointegrating relationships between the components of Xt, where 1 ≤ pg < q, and assume without

loss of generality that these involve the first pG components of Xt. Then rank(G) = q− pG, the

memory order of the first pG components is d1 = d2 = ... = dpG , and there exists a cointegrating

matrix B, such that

BXt = wt,
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and wt has a spectral density matrix as specified in (2.1), but with G̃ = BGB′ and d̃ = (dpG −

b1, ...,dpG − bpG ,dpG+1, ...,dq)′ instead of G and d, for 0 < ba ≤ da. The matrix B is such that the

first pG elements of Xt are replaced by the cointegrating residual series so that G̃ has full rank.

This is achieved, if the first pG rows of B contain the cointegrating vectors, normalized so that

the diagonal elements of B equal 1 and the remaining rows contain zeros on all the off-diagonal

elements. In the bivariate case, for example, B takes the form

B =

 1 β

0 1

 .
Consequently, the MLWS test for the hypothesis H0 : fBXt (λ j) ∼ Λ j(d)G̃′Λ∗j(d), as λ j → 0+ can

simply be carried out on the transformed series BXt, if the cointegrating matrix B is known. To

obtain a feasible procedure for unknown B, a consistent estimator for B has to be applied, that

converges with a faster rate than
√

m, where m is the bandwidth used for the MLWS statistic.

If a multivariate local Whittle estimator B̂MLW is used, such as those of Robinson (2008) or

Shimotsu (2012), this is equivalent to constructing the test statistic as in (2.7), but using the

concentrated local Whittle likelihood of the cointegrated system. The resulting test statistic is

M̃LWS =
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥∥∥
2√∑m
j=1 ν

2
j

q∑
a=1

ηa

[mr]∑
j=1

ν j
( ˜
aG−1(d̂, B̂)

[
Re

[
Λ j(d̂)−1 Ĩ(λ j, B̂)Λ∗j(d̂)−1

]]
a
−1

)

+
1√∑m
j=1 ν

2
j

q∑
a=1

ηa
( ˜
aG−1(d̂, B̂)

) [mr]∑
j=1

(λ j−π)
2

Im
[
Λ j(d̂)−1 Ĩ(λ j, B̂)Λ∗j(d̂)−1

]
a

∥∥∥∥∥∥∥∥∥ ,
where G̃(d,B) = 1

m
∑m

j=1 Re
[
Λ j(d)−1BI(λ j)B′Λ∗j(d)−1

]
and Ĩ(λ j,B) = BI(λ j)B′. As Robinson (2008)

shows for the bivariate example, B̂MLW converges to B0 with rate
√

m∆m, where ∆m = diag(λ−b1
m , ...,

λ
−bpG
m ,1, ...,1). Since this is faster than

√
m, we can state the following lemma for our test under

fractional cointegration:

Lemma 2.3. Let Assumption 2.1 to 2.5 hold. Then the test statistic M̃LWS has the same null

limiting distribution as MLWS in Theorem 2.1, but with G0 replaced by G̃ = B0G0B0′.

Consequently, if fractional cointegration is present, the cointegrated variables can be removed

from Xt and replaced by the cointegration residuals wt, without altering the limit distribution

(apart from G0).

2.3.4 Pre-Whitening

Although the MLWS statistic in (2.7) is asymptotically independent of short memory dynamics,

we need to apply a pre-whitening procedure to avoid negative effects on the size and power

properties of the test in finite samples if short memory dynamics are present. Similar to Qu
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(2011), we do so by approximating the short memory dynamics of ut in (2.2) with a low order

VARMA process that is given by

ut =A(L)−1M(L)vt,

whereA(L) = Iq−A1L− ...−ApA LpA andM(L) = Iq−M1L− ...−MqM LqM are matrix lag polynomials

and vt is a (q×1) white noise with zero mean and variance-covariance matrix Σv.

Since A(L) and D(d1, . . . ,dq) are not commutative in the multivariate case, there are two ways

to generalize the univariate ARFIMA process to a vector process. This has been pointed out

by Lobato (1997). For the specification used here, Sela and Hurvich (2009) coined the acronym

FIVARMA because the process Xt = D(d1, . . . ,dq)−1A(L)−1M(L)vt can be interpreted as a frac-

tionally integrated VARMA process. The process Xt =A(L)−1D(d1, . . . ,dq)−1M(L)vt is a vector

autoregression of a fractionally integrated vector moving average process and is referred to as

VARFIMA. The FIVARMA model has recently been applied in Chiriac and Voev (2011) and

has first been studied by Sowell (1989). As Lütkepohl (2007) points out, the parameters of the

unrestricted VARMA model are not identified. Thus, we follow Chiriac and Voev (2011) and

estimate the model in its final equation form, where A(L) is a scalar operator.

The estimation is carried out using the conditional sum of squares estimator (cf. Beran (1995),

Hualde et al. (2011) and Nielsen (2015)) which is based on an approximation of the AR(∞)

representation of the FIVARMA process.1

Before we can introduce our pre-whitening procedure we have to sharpen Assumption 2.2. This

is necessary as our test is then applied to the filtered rather than the original series. The

sharpened assumption is a multivariate version of Assumption F in Qu (2011).

Assumption 2.6. Assume that in addition to Assumption 2.2 A j = O( j−1/2−c) with c > 0 as

j→∞.

Since the short memory dynamics can be approximated well with a low order model and the

estimation of FIVARMA models is computationally very demanding, we restrict the model order

to be pA = qM = 1. In analogy to Qu (2011), we then apply the filter Â(L)−1M̂(L)(Xt −EXt) = X̃t

to the original series Xt. To test for spurious long memory we subsequently apply the MLWS

test in (2.7) to the filtered series X̃t.

Lemma 2.4. Assume that Xt satisfies Assumptions 2.1 to 2.5 and 2.6. Then, the MLWS test

applied on the filtered series X̃t has the same limiting distribution as given in Theorem 2.1.

Note that we do not assume that the short memory dynamics follow a VARMA(1,1)-process.

We use it as a reasonable approximation to the true short memory dynamics in small samples.

Asymptotically the test is unaffected by any form of short memory dependence because we only

1For the sample sizes considered here, this approach turns out to be faster than the method of Sela and Hurvich
(2009). For larger samples the computing time can be further reduced by conducting the ML estimation on
subsamples and using the average of these subsample estimators, as suggested by Beran and Terrin (1994).
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use the periodogram ordinates at Fourier frequencies local to the pole. The short memory dy-

namics have no influence on the shape of the pole. This is also why the pre-whitening procedure

leaves the limiting distribution of the test unaffected.

2.4 Monte Carlo Study

To analyze the finite sample properties of the MLWS test, we conduct a Monte Carlo analy-

sis that consists of three parts. In the first part, we consider a bivariate setup and conduct

experiments to determine the influence of the bandwidth choice, m = bT δc, and the choice of

the trimming parameter ε on the size and the power of the test. Then, we turn to higher di-

mensional applications to analyze how the size and power depend on the dimension q of the

multivariate process. Finally, in the third part we analyze the performance of the test if short

memory dynamics exist. To disentangle the performance of the multivariate test from that of the

pre-whitening procedure, the latter is only applied in the last part when short memory dynamics

are present.

The simulation studies of Qu (2011) and Leccadito et al. (2015) show that the Qu test has

good power against a wide range of different alternatives, such as non-stationary random level

shifts, smooth trends, markov switching models, or the STOPBREAK proces of Engle and Smith

(1999). Therefore, we focus on analyzing the properties that are specific to the multivariate case

and use a stationary random level shift process for all power DGPs. Further simulation studies

covering other forms of deterministic trends and conditional heteroscedasticity are included in a

supplementary appendix, available online. All results presented hereafter are based on M = 5000

Monte Carlo replications and all tests are carried out with a nominal significance level of α= 0.05.

2.4.1 Size and Power Comparison in a Bivariate Setup

The size study for the bivariate case is based on the multivariate fractionally integrated process

from equation (2.2), where the short memory component ut = vt with vt ∼ N(0,Σv) is specified to

be a bivariate white noise

D(d1,d2)Xt = vt.

In this setup we want to investigate two aspects. First, we evaluate whether the size depends

on the correlation ρv between the components of the innovation vector vt, or whether it depends

on the (possibly different) degrees of memory d1 and d2 in the two series. Second, we want to

determine the effect of the bandwidth m and the trimming parameter ε. Since the trimming

parameter ε can be chosen discretionary, we follow Qu (2011) and conduct our simulations for

ε ∈ {0.02,0.05}.

Table 2.1 shows the results. We find that the test is generally conservative in finite samples - a

feature which it shares with its univariate version. For all parameter constellations, the size is

better with ε = 0.05 than with ε = 0.02 and it is increasing in m. The results also improve as the
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ρv = −0.8 ρv = 0 ρv = 0.4 ρv = 0.8
d2 0 0.4 0 0.4 0 0.4 0 0.4

T d1 δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0

0.60 0.006 0.007 0.007 0.012 0.005 0.010 0.006 0.009 0.005 0.008 0.007 0.008 0.004 0.008 0.007 0.007

0.65 0.009 0.014 0.011 0.013 0.008 0.015 0.010 0.015 0.009 0.014 0.007 0.013 0.011 0.015 0.012 0.012

0.70 0.012 0.017 0.012 0.015 0.011 0.016 0.014 0.018 0.013 0.017 0.011 0.016 0.010 0.021 0.011 0.019

0.75 0.013 0.015 0.016 0.023 0.014 0.019 0.014 0.019 0.016 0.023 0.012 0.018 0.015 0.021 0.013 0.021

0.4

0.60 0.007 0.010 0.008 0.008 0.007 0.009 0.007 0.010 0.005 0.008 0.006 0.009 0.008 0.008 0.006 0.009

0.65 0.011 0.016 0.007 0.013 0.009 0.016 0.011 0.015 0.010 0.015 0.011 0.014 0.009 0.018 0.011 0.013

0.70 0.013 0.014 0.017 0.021 0.014 0.018 0.011 0.017 0.012 0.016 0.014 0.019 0.015 0.017 0.012 0.018

0.75 0.015 0.025 0.017 0.023 0.016 0.024 0.019 0.019 0.014 0.022 0.021 0.022 0.021 0.019 0.016 0.022

1000

0

0.60 0.013 0.019 0.015 0.02 0.013 0.021 0.014 0.020 0.014 0.022 0.014 0.021 0.014 0.021 0.017 0.022

0.65 0.021 0.027 0.019 0.025 0.019 0.028 0.017 0.028 0.020 0.025 0.022 0.028 0.018 0.028 0.019 0.024

0.70 0.023 0.028 0.031 0.032 0.024 0.029 0.021 0.027 0.025 0.029 0.025 0.029 0.023 0.029 0.025 0.031

0.75 0.030 0.036 0.032 0.043 0.025 0.034 0.029 0.034 0.029 0.038 0.030 0.035 0.026 0.035 0.030 0.041

0.4

0.60 0.016 0.020 0.015 0.023 0.013 0.019 0.015 0.022 0.014 0.018 0.014 0.020 0.015 0.022 0.015 0.019

0.65 0.023 0.024 0.022 0.024 0.019 0.022 0.020 0.024 0.017 0.026 0.018 0.025 0.019 0.024 0.021 0.024

0.70 0.024 0.037 0.022 0.031 0.024 0.029 0.020 0.028 0.022 0.032 0.023 0.031 0.024 0.032 0.023 0.035

0.75 0.033 0.033 0.029 0.040 0.026 0.035 0.032 0.033 0.027 0.038 0.030 0.038 0.028 0.041 0.032 0.036

2000

0

0.60 0.022 0.031 0.023 0.027 0.022 0.025 0.021 0.028 0.021 0.033 0.016 0.027 0.028 0.030 0.023 0.028

0.65 0.028 0.035 0.025 0.035 0.026 0.029 0.022 0.035 0.023 0.037 0.024 0.033 0.020 0.029 0.026 0.032

0.70 0.029 0.029 0.031 0.038 0.025 0.034 0.026 0.031 0.026 0.035 0.024 0.035 0.028 0.033 0.030 0.034

0.75 0.031 0.041 0.043 0.042 0.036 0.040 0.034 0.040 0.032 0.040 0.031 0.038 0.033 0.039 0.042 0.039

0.4

0.60 0.021 0.034 0.022 0.027 0.018 0.025 0.021 0.026 0.020 0.032 0.018 0.028 0.021 0.028 0.018 0.029

0.65 0.024 0.028 0.026 0.038 0.024 0.035 0.023 0.034 0.028 0.031 0.028 0.032 0.023 0.035 0.026 0.032

0.70 0.035 0.033 0.028 0.033 0.028 0.033 0.030 0.033 0.028 0.034 0.027 0.034 0.026 0.034 0.031 0.028

0.75 0.036 0.044 0.035 0.042 0.032 0.036 0.033 0.043 0.034 0.043 0.038 0.039 0.037 0.046 0.038 0.043

Table 2.1: Size of MLWS test for FIVARMA (0,d,0): D(d1,d2)Xt = vt with vt ∼ N(0,Σv) and σ2
v = 1. The

bandwidth m is determined by m = bT δc.

sample size increases. With a sample size of T = 2000, m = bT 0.75c and ε = 0.05 for example, we

find that the size is between 3.6 and 4.6 percent for all combinations of ρv, d1, and d2. Thus, in

larger samples the MLWS test achieves good size properties with the right choice of m and ε.

With regard to the correlation ρv between the innovations, the size tends to improve as the

correlation increases, since the MLWS test makes use of the coherence information. Overall,

even though the test is quite conservative in small samples, the size is good in larger samples

and it is remarkably stable for different degrees of memory in the components of the series and

correlations among the innovation sequences.

We will now turn to the effect of m and ε on the power of the test. In contrast to the true long-

memory processes under the null hypothesis, that we denote by Xt, the DGP in the power study

will be denoted by Yt. Here, Yt it is the sum of the white noise sequence vt and the multivariate

random level shift process µt from equation (2.3):

Yt = µt + vt (2.11)

µt = (Iq−φΠt)µt−1 +Πtet.

For φ = 1 the process is stationary and for φ = 0 it is non-stationary. The shift probability is
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Stationary (φ = 1) Non-Stationary (φ = 0)

ρπ = ρe 0 0.5 1 0 0.5 1

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.114 0.120 0.110 0.128 0.199 0.196 0.184 0.209 0.192 0.218 0.296 0.302

0.65 0.264 0.308 0.259 0.299 0.350 0.377 0.395 0.441 0.407 0.465 0.485 0.502

0.70 0.447 0.475 0.445 0.463 0.494 0.509 0.598 0.610 0.613 0.623 0.641 0.634

0.75 0.632 0.640 0.638 0.645 0.634 0.633 0.766 0.764 0.764 0.768 0.743 0.730

1000

0.60 0.674 0.710 0.688 0.720 0.734 0.756 0.817 0.832 0.816 0.838 0.832 0.834

0.65 0.897 0.910 0.898 0.908 0.872 0.873 0.952 0.949 0.942 0.948 0.918 0.919

0.70 0.967 0.971 0.971 0.967 0.933 0.934 0.983 0.983 0.981 0.978 0.948 0.945

0.75 0.990 0.988 0.986 0.985 0.952 0.952 0.991 0.992 0.988 0.986 0.960 0.956

2000

0.60 0.918 0.922 0.910 0.921 0.912 0.908 0.957 0.963 0.954 0.961 0.936 0.944

0.65 0.984 0.984 0.982 0.982 0.959 0.958 0.991 0.993 0.988 0.986 0.963 0.964

0.70 0.995 0.996 0.994 0.993 0.970 0.969 0.996 0.997 0.996 0.994 0.977 0.970

0.75 0.998 0.996 0.995 0.994 0.976 0.974 0.999 0.998 0.995 0.994 0.979 0.977

Table 2.2: Power of MLWS test against stationary random level shifts: Yt = µt + vt with vt ∼ N(0,Σv) and
µt = (Iq−φΠt)µt−1 +Πtet. The bandwidth m is determined by m = bT δc.

always kept at p = 5/T , so that in expectation there are five shifts in every sample and the

standard deviation of the shifts is σe = 1. Since a different behavior of the breaks can imply

different coherence information, we consider different values for the correlation between the

occurrence of shifts ρπ and the correlation of the shift sizes ρe. For simplicity, we always set

ρπ = ρe. If ρπ = ρe = 0 shifts occur independently in each of the components of the series, whereas

shifts always coincide in timing and size if ρπ = ρe = 1.2

The results of this experiment are shown in Table 2.2. We find that the power is always increasing

in the bandwidth and it is higher against non-stationary level shifts. For small sample sizes with

weakly correlated shifts the test has better power with ε = 0.05, but in larger samples ε = 0.02

leads to a higher power if m is also relatively large. With regard to the correlation of the shifts,

we find that the power of the test increases in small samples if shifts show a stronger correlation.

In large samples the power slightly decreases if shifts are perfectly correlated.

Overall, the test shows good size and power properties and for an increasing bandwidth both

size and power improve. Note however that a larger bandwidth also makes the test more prone

to errors if short memory dynamics are present. Therefore, we will address the choice of ε and

m in practice later.

2.4.2 The Effect of Increasing Dimensionality

Since the proposed MLWS test is multivariate and its limiting distribution is independent of

the dimension q of the process, we now consider how its finite sample properties depend on the

2Since the presence of spurious long memory depends on the location of the shifts in the sample, we discard all
samples for which a test, for H0 : d = 0 based on the local Whittle estimate d̂LW , is not rejected for all components.
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Size Power

MLWS Qu MLWS Qu

T q/ρv 0 0.4 0.8 0 0.4 0.8 q/ρπ, ρe 0 0.5 1 0 0.5 1

100

1 0.011 0.010 0.011 0.014 0.013 0.012 1 0.098 0.093 0.095 0.093 0.098 0.094

2 0.011 0.013 0.015 0.008 0.010 0.010 2 0.173 0.172 0.205 0.121 0.125 0.105

3 0.013 0.015 0.011 0.007 0.007 0.007 3 0.243 0.243 0.296 0.125 0.118 0.111

4 0.013 0.014 0.009 0.007 0.010 0.008 4 0.295 0.309 0.328 0.128 0.126 0.120

5 0.011 0.010 0.011 0.006 0.006 0.007 5 0.356 0.357 0.366 0.135 0.133 0.118

250

1 0.020 0.020 0.019 0.017 0.022 0.023 1 0.411 0.393 0.392 0.402 0.415 0.414

2 0.018 0.023 0.025 0.018 0.018 0.012 2 0.645 0.643 0.621 0.534 0.539 0.486

3 0.020 0.022 0.020 0.013 0.012 0.014 3 0.801 0.784 0.712 0.617 0.610 0.506

4 0.019 0.021 0.022 0.016 0.011 0.015 4 0.884 0.877 0.763 0.686 0.683 0.528

5 0.020 0.017 0.023 0.012 0.013 0.009 5 0.946 0.930 0.773 0.729 0.714 0.559

500

1 0.027 0.026 0.025 0.027 0.027 0.026 1 0.751 0.742 0.752 0.742 0.743 0.747

2 0.028 0.029 0.026 0.025 0.021 0.026 2 0.922 0.919 0.865 0.911 0.890 0.813

3 0.026 0.028 0.029 0.018 0.021 0.021 3 0.979 0.973 0.906 0.963 0.951 0.834

4 0.029 0.029 0.029 0.025 0.026 0.021 4 0.996 0.987 0.917 0.983 0.974 0.849

5 0.026 0.031 0.028 0.021 0.023 0.022 5 0.999 0.994 0.923 0.994 0.987 0.857

Table 2.3: Size and power of MLWS test and repeated Qu test with Simes correction for increasing
dimensions q. Left panel: Size for FIVARMA (0,d,0): D(d1, . . . ,dq)Xt = vt. Right panel: Power for
Yt = µt + vt with vt ∼ N(0,Σv).

dimension q.

As before, our size DGP, D(d1, ...,dq)Xt = vt, is a fractionally integrated white noise. Motivated

by our previous findings, we set m = bT 0.75c and ε = 0.05 and consider only the effect of increasing

the dimension q.

Since there is no other multivariate test against spurious long memory available in the literature,

a practitioner has no other choice but to apply the Qu test to each of the q components of the

process separately. We will use this approach as a benchmark procedure. To avoid Bonferroni

errors, we apply the correction of Simes (1986) that consists in ordering the p-values in ascending

order and then comparing them with α/q, 2α/q, ..., α. The null hypothesis is rejected if any of

the ordered p-values exceeds its respective threshold.

Note that for q = 1 the MLWS test and the Qu test are identical. The left panel of Table 2.3

contains the results. We can observe that the MLWS test is quite conservative in small samples,

but the size improves if the sample size increases. It also maintains approximately the same

size independent of the dimension q and independent of the correlation among the components

of vt. For the repeated application of the Qu test we find that similar to the MLWS test it is

conservative in small samples. In addition, the size tends to further decrease with increasing q

and with increasing correlation ρv between the noise components, which is an effect of the Simes

correction.

As in the bivariate setup, the power DGP, Yt = µt +vt, is the sum of the q-dimensional white noise
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Pre-whitened: X̃t Unfiltered: Xt

DGP 1 2 3 4 1 2

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.006 0.007 0.006 0.009 0.004 0.007 0.010 0.008 0.007 0.009 0.005 0.010

0.65 0.012 0.013 0.006 0.009 0.003 0.007 0.007 0.009 0.012 0.017 0.011 0.024

0.70 0.010 0.013 0.005 0.006 0.002 0.004 0.013 0.013 0.018 0.017 0.037 0.072

0.75 0.009 0.010 0.001 0.002 0.002 0.003 0.011 0.012 0.018 0.020 0.127 0.209

500

0.60 0.012 0.015 0.013 0.013 0.009 0.008 0.013 0.012 0.012 0.015 0.007 0.013

0.65 0.013 0.015 0.015 0.016 0.009 0.011 0.011 0.012 0.014 0.025 0.017 0.038

0.70 0.013 0.017 0.013 0.015 0.004 0.004 0.016 0.015 0.021 0.021 0.061 0.105

0.75 0.013 0.013 0.006 0.006 0.002 0.003 0.010 0.013 0.023 0.030 0.238 0.340

1000

0.60 0.014 0.021 0.016 0.024 0.016 0.018 0.017 0.018 0.017 0.018 0.011 0.025

0.65 0.021 0.019 0.021 0.024 0.015 0.017 0.021 0.023 0.023 0.029 0.023 0.033

0.70 0.020 0.019 0.025 0.019 0.011 0.007 0.016 0.018 0.031 0.032 0.075 0.112

0.75 0.018 0.018 0.014 0.011 0.003 0.004 0.019 0.016 0.039 0.038 0.351 0.452

2000

0.60 0.016 0.027 0.017 0.024 0.016 0.028 0.017 0.026 0.020 0.027 0.017 0.027

0.65 0.019 0.030 0.023 0.035 0.022 0.029 0.023 0.034 0.023 0.031 0.023 0.039

0.70 0.024 0.022 0.029 0.024 0.018 0.017 0.026 0.027 0.030 0.036 0.075 0.106

0.75 0.028 0.022 0.025 0.020 0.009 0.006 0.020 0.024 0.043 0.040 0.433 0.535

Table 2.4: Size of the MLWS test for FIVARMA(1,d,1): (1− φ1L)D(d1,d2)Xt = (Iq −M1L)vt with and
without pre-whitening. Parameters values of the respective DGPs are given above. The bandwidth m is
determined by m = bT δc.

vt and the q-dimensional multivariate random level shift model from equation (2.11). Similar to

the size DGP, we restrict the correlations of shifts in the components as well as the correlation

of the shift sizes to be the same among all components such that ρπ,ab = ρe,ab = ρπ = ρe for all

a , b.

If we consider the results on the right hand side in Table 2.3, we find that there are indeed

large power gains compared to the repeated application of the Qu test. For T = 100 these can

be more than 24 percentage points. We find that the power is increasing in q and T . While

correlated shifts increase the power in smaller samples, the power reduction observed in the

bivariate simulations for correlated shifts in large samples increases with increasing q.

2.4.3 Short Memory Dynamics

So far we have considered the MLWS test applied directly to the observed series Xt. As discussed

in Section 2.4, the performance of the local Whittle based methods can be negatively affected in

finite samples if short memory dynamics are present. This is why we suggested a pre-whitening

procedure based on the FIVARMA(1,d,1). Subsequently, the test is applied to the filtered series

X̃t. The performance of this procedure is analyzed in the following.
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We consider four different DGPs for the size. These are given by:

DGP1: D(0.2,0.3)Xt = vt

DGP2: (1−0.4L)D(0.2,0.3)Xt = vt

DGP3: (1−0.6L)D(0.2,0.3)Xt = vt

DGP4: (1−0.4L)D(0.2,0.3)Xt =

I2−

 0.5 0

0 0.3

L

vt.

For all processes we set σ2
v = 1, ρv = 0.5 and p = 5/T . All of these processes are special cases

of the FIVARMA(1,d,1). DGP1 is a simple bivariate fractional white noise, while DGP2 and

DGP3 contain autoregressive dynamics. Finally, DGP4 contains both autoregressive and moving

average dynamics.

For the power studies we combine the respective size DGP Xt with the stationary multivariate

random level shift µt:

Yt = Xt +µt

µt = (Iq−Πt)µt−1 +Πtet.

In the multivariate random level shift process we use ρπ = ρe = 0.9 and σe = 2.

To investigate the costs and benefits of the pre-whitening procedure, the simulations for DGP1

and DGP2 are conducted with and without pre-whitening. The results for the size simulations

are given in Table 2.4.

DGP1 is the baseline case. By comparing the results for the tests applied to the pre-whitened

series X̃t with the results of the unfiltered series Xt, we can observe that the empirical size

becomes a bit more conservative. However, for an increasing T the size approaches its nominal

level. By considering DGP2, we see that there are considerable over-rejections if moderate

autoregressive dynamics are present and no pre-whitening is applied, whereas with pre-whitening

these distortions are successfully removed.

The results for DGP3 and DGP4 show that the pre-whitening procedure works well in controlling

the size for different forms of short memory dynamics. As before, the size is generally better if

ε = 0.05 is used. With regard to the bandwidth selection, the best size is observed most often

for δ = 0.65 or δ = 0.7. It is no longer strictly increasing in m.

Table 2.5 considers the power results. For the baseline case there is a considerable power reduc-

tion caused by the additional flexibility introduced through the pre-whitening procedure. But

when comparing the results for DGP1 and DGP2 without pre-whitening, we observe that the

power also suffers severely if there are short memory dynamics but no pre-whitening is applied.

Using the filtering procedure reduces this effect substantially. The power is increasing in T and

generally also in m, but we observe some power drops for larger bandwidths, especially if the

autoregressive dynamics become more persistent. Similarly to Section 2.4.1, in small samples
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Pre-whitened: X̃t Unfiltered: Xt

DGP 1 2 3 4 1 2

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.022 0.026 0.032 0.032 0.012 0.014 0.023 0.030 0.037 0.045 0.014 0.020

0.65 0.052 0.066 0.050 0.062 0.017 0.020 0.053 0.077 0.099 0.102 0.024 0.028

0.70 0.099 0.088 0.068 0.062 0.016 0.016 0.107 0.110 0.183 0.199 0.020 0.021

0.75 0.154 0.159 0.066 0.059 0.020 0.016 0.161 0.168 0.315 0.322 0.025 0.048

500

0.60 0.083 0.076 0.092 0.081 0.044 0.041 0.080 0.081 0.130 0.121 0.075 0.063

0.65 0.146 0.158 0.139 0.154 0.049 0.061 0.155 0.177 0.243 0.287 0.077 0.102

0.70 0.254 0.266 0.194 0.194 0.054 0.052 0.284 0.300 0.462 0.508 0.096 0.087

0.75 0.372 0.361 0.203 0.187 0.049 0.037 0.399 0.399 0.662 0.677 0.067 0.067

1000

0.60 0.226 0.231 0.241 0.234 0.134 0.128 0.232 0.245 0.308 0.339 0.232 0.223

0.65 0.398 0.398 0.369 0.354 0.186 0.158 0.396 0.413 0.564 0.588 0.324 0.307

0.70 0.543 0.518 0.463 0.393 0.177 0.099 0.566 0.569 0.766 0.772 0.327 0.273

0.75 0.634 0.591 0.475 0.381 0.121 0.069 0.685 0.651 0.889 0.894 0.255 0.181

2000

0.60 0.502 0.514 0.524 0.526 0.345 0.345 0.511 0.534 0.611 0.639 0.509 0.518

0.65 0.709 0.710 0.685 0.668 0.423 0.379 0.721 0.730 0.841 0.855 0.651 0.632

0.70 0.777 0.749 0.749 0.698 0.404 0.285 0.829 0.807 0.931 0.930 0.679 0.604

0.75 0.779 0.703 0.765 0.651 0.316 0.146 0.845 0.793 0.961 0.958 0.569 0.441

Table 2.5: Power of the MLWS test for Yt = µt + Xt, with (1− φ1L)D(d1,d2)Xt = (Iq −M1L)vt with and
without pre-whitening. Parameters values of the respective DGPs are given above. The bandwidth m is
determined by m = bT δc.

ε = 0.05 tends to give better results, whereas ε = 0.02 gives better power results in large samples.

In view of the size and power results presented here, the rule of thumb to choose ε = 0.05 for

T ≤ 500, that is suggested by Qu (2011), still works well if short memory dynamics are present.

Similarly, using m = bT 0.7c for the bandwidth remains a good rule as well.

2.4.4 Testing Against Breaks in Fractionally Cointegrated Systems

In Section 2.3.3, we showed that the limit distribution of the MLWS statistic is asymptotically

unaffected by the estimation of the cointegrating matrix B, so that the test can be applied to

the linearly transformed system B̂Xt. To explore the finite sample performance of this approach,

we conduct a simulation study where the DGP is

D(0,d2)

 1 −1

0 1

Xt = vt,

with vt ∼ N(0,Σv) and Σv = ((1,ρv), (ρv,1))′. Here the components of Xt are fractionally cointegrated

with cointegrating vector (1,−1)′. The parameter d2 determines the memory of both components

in Xt and since d1 = 0, the memory in the linear combination is reduced to zero. By increasing
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Size Power

ρv 0 0.4 0.8 0 0.4 0.8

d2 T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

0.1

250

0.60 0.005 0.007 0.005 0.008 0.006 0.007 0.076 0.088 0.075 0.091 0.077 0.102

0.65 0.008 0.016 0.010 0.010 0.009 0.013 0.179 0.223 0.178 0.198 0.187 0.227

0.70 0.010 0.014 0.012 0.014 0.009 0.014 0.321 0.327 0.303 0.322 0.337 0.355

0.75 0.012 0.021 0.011 0.019 0.011 0.016 0.471 0.465 0.459 0.455 0.509 0.517

1000

0.60 0.017 0.018 0.012 0.018 0.012 0.020 0.584 0.602 0.574 0.606 0.600 0.620

0.65 0.017 0.025 0.020 0.024 0.017 0.027 0.817 0.819 0.818 0.813 0.833 0.837

0.70 0.023 0.027 0.020 0.029 0.022 0.030 0.910 0.902 0.906 0.903 0.932 0.935

0.75 0.026 0.032 0.025 0.035 0.025 0.032 0.953 0.946 0.950 0.939 0.960 0.963

0.25

250

0.60 0.006 0.007 0.003 0.009 0.005 0.007 0.053 0.061 0.049 0.058 0.071 0.076

0.65 0.007 0.015 0.006 0.010 0.007 0.015 0.121 0.139 0.115 0.141 0.151 0.178

0.70 0.011 0.016 0.009 0.015 0.013 0.016 0.206 0.218 0.214 0.216 0.278 0.281

0.75 0.016 0.019 0.011 0.021 0.012 0.018 0.334 0.337 0.328 0.330 0.423 0.427

1000

0.60 0.017 0.021 0.012 0.017 0.014 0.016 0.440 0.455 0.475 0.494 0.525 0.565

0.65 0.020 0.025 0.017 0.022 0.017 0.022 0.669 0.687 0.705 0.713 0.780 0.789

0.70 0.020 0.032 0.019 0.029 0.025 0.029 0.828 0.818 0.844 0.835 0.894 0.899

0.75 0.027 0.038 0.023 0.031 0.025 0.037 0.904 0.889 0.916 0.903 0.950 0.941

0.4

250

0.60 0.006 0.009 0.004 0.009 0.004 0.007 0.034 0.041 0.034 0.039 0.060 0.065

0.65 0.008 0.013 0.007 0.013 0.008 0.012 0.075 0.091 0.077 0.102 0.145 0.156

0.70 0.013 0.016 0.011 0.017 0.009 0.015 0.140 0.139 0.163 0.168 0.257 0.255

0.75 0.018 0.022 0.014 0.021 0.015 0.022 0.235 0.227 0.262 0.262 0.401 0.400

1000

0.60 0.015 0.019 0.011 0.017 0.011 0.022 0.286 0.302 0.355 0.370 0.475 0.489

0.65 0.014 0.024 0.016 0.025 0.018 0.028 0.514 0.532 0.603 0.611 0.718 0.728

0.70 0.018 0.029 0.021 0.025 0.022 0.028 0.716 0.704 0.777 0.775 0.877 0.878

0.75 0.024 0.033 0.022 0.035 0.029 0.038 0.851 0.836 0.883 0.863 0.941 0.938

Table 2.6: Size and power of the MLWS test in a bivariate fractionally cointegrated system, where
D(0,d2)BXt = vt with B = ((1,0)′, (−1,1)′), vt ∼ N(0,Σv) and Σv = ((1,ρv), (ρv,1))′.

d2 the cointegration strength is increased. The correlation between the innovations to the linear

combination and the common fractional trend is determined by ρv.

The results of this experiment are shown in Table 2.6. First, the size remains conservative

for all parameter constellations. With respect to the power, one can observe that the power

is decreasing with increasing strength of the cointegrating relationship. Since the convergence

rate of the local Whittle estimator for the B matrix is faster if the cointegrating relationship

is stronger, this effect cannot be attributed to the effect of the estimation error. Instead, the

MLWS test has lower power to detect contaminations if the memory is stronger. For the Qu

test this was pointed out by Kruse (2015), who advocates to apply the test to the fractionally

differenced process. In addition to that, one can observe that the power is higher, the higher
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η = 1
√

2
(1,1)′ η = (1,0)′ η = (0,1)′

ζ 0 2 0 2 0 2

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.007 0.012 0.059 0.042 0.013 0.016 0.219 0.121 0.014 0.015 0.012 0.017

0.65 0.006 0.017 0.107 0.095 0.015 0.022 0.355 0.247 0.016 0.023 0.017 0.022

0.70 0.011 0.018 0.177 0.150 0.019 0.024 0.511 0.380 0.018 0.026 0.023 0.024

0.75 0.016 0.019 0.219 0.194 0.024 0.029 0.533 0.463 0.021 0.029 0.028 0.028

1000

0.60 0.014 0.019 0.249 0.244 0.022 0.026 0.642 0.582 0.020 0.027 0.022 0.029

0.65 0.022 0.028 0.466 0.455 0.028 0.035 0.888 0.848 0.032 0.030 0.032 0.036

0.70 0.023 0.030 0.703 0.598 0.034 0.036 0.976 0.938 0.033 0.046 0.040 0.045

0.75 0.025 0.039 0.844 0.761 0.040 0.047 0.996 0.985 0.038 0.052 0.040 0.053

Table 2.7: MLWS test for breaks in components using different weight vectors η in Yt =

(ζ,0)′SD(Xt)I(t/T>1/2) + Xt, with vt ∼ N(0,Σv) and Σv = ((1,0), (0,1))′.

the correlation ρv.

2.4.5 Testing for Breaks in Components of a Multivariate System

In Section 2.3.2 we introduced a variation of the MLWS test where all components of the weight

vector η are set to zero and only one takes the value 1. This allows to test for misspecifications

in components of the spectral density matrix and can be used to gain further insights about

which components of Xt cause a rejection of the MLWS test with equal weights.

The performance of the MLWS test using the proposed weighting scheme is evaluated in Table

2.7. Here the DGP is a bivariate fractionally integrated process with a single deterministic break

in the first component. It is given by

Yt =

 ζ0
SD(Xt)I(t/T>1/2) + Xt,

with vt ∼ N(0,Σv) and Σv = ((1,0), (0,1))′. The parameter ζ controls the magnitude of the breaks.

To determine the critical values based on an estimate Ĝ(d̂), we approximate the integrals in (2.10)

by sums over 500 increments and we draw 1000 values. One can observe for ζ = 0, the size is

well controlled. Also, as one would expect, the test generates better power if we specifically test

for a contamination in the first component, compared to the baseline case with equal weights.

Furthermore, if one specifically tests for a contamination in the second component, the test

does not generate power due to the misspecification of the off-diagonal components alone. A

rejection therefore gives a strong indication for a low frequency contamination in the respective

component.
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2.4.6 Further Simulations

A number of further simulations are provided in a supplementary appendix. Here we explore

the impact of perturbations, heteroscedasticity, breaks in the variance-covariance matrix of the

innovations, the power against other alternative processes and the performance of the test, if

the pre-whitening is conducted using univariate estimators. It is found, that the MLWS test is

remarkably stable under all these complications. However, power against non-causal alternatives

is only developed very slowly.

2.5 Empirical Example
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Figure 2.1: The log-absolute return of the S&P 500 series with the corresponding autocorrelation
function and periodogram.

Log-absolute returns of stock market indices are a typical example in the spurious long memory

literature - in particular that of the Standard & Poor’s 500 (hereafter S&P 500). The series is

examined by Granger and Ding (1996) who find that it seems to follow a long-memory process.

Nevertheless, they argue that long memory properties can be generated by other models than
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Figure 2.2: The log-realized volatility of the S&P 500 series with the corresponding autocorrelation
function and periodogram.

the standard I(d) process. Granger and Hyung (2004) obtain a reduction of the estimated

memory parameter by considering structural breaks in the series. Similarly, Varneskov and

Perron (2011) consider a model allowing for both random level shifts and ARFIMA effects. Lu

and Perron (2010) and Xu and Perron (2014) analyze the forecast performance of random level

shift processes for the log-absolute returns of the S&P 500. In most cases, random level shift

processes clearly outperform GARCH, FIGARCH and HAR models.

All these findings indicate spurious long memory in log-absolute return series. However, uni-

variate tests are often not able to reject the null hypothesis of true long memory. Dolado et al.

(2005), for example, apply their test to absolute and squared returns of the S&P 500, without

being able to indicate spurious long memory.

Due to the increased availability of high frequency data, the focus in the more recent literature

has shifted to the modelling of realized volatility. Especially the heterogenous autoregressive

model of Corsi (2009) and its extensions have become very popular. As for the log-absolute

return series existing tests against spurious long memory tend not to reject their null hypothesis
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log(|rt |+ 0.001) log RVt

DAX NIKKEI S&P 500 FTSE DAX NIKKEI S&P 500 FTSE

mean -4.977 -4.924 -5.156 -5.107 -9.789 -9.432 -10.055 -9.665

median -4.920 -4.803 -5.133 -5.051 -9.946 -9.543 -10.183 -9.741

std.dev. 0.924 1.004 0.937 0.900 1.126 0.964 1.017 0.885

skewness -0.131 -0.307 0.053 -0.087 0.744 0.662 0.639 0.747

kurtosis 2.475 2.419 2.528 2.573 3.666 3.751 3.295 4.301

Table 2.8: Summary statistics of the log-absolute returns and the log-realized volatility series.

if applied to these realized volatility series. Examples include the application in Qu (2011), who

finds no evidence for low frequency contaminations in the realized volatility of the exchange rate

between Japanese Yen and US Dollar and Kruse et al. (2016) who apply the Qu test to S&P

500 log-realized volatility.

In view of the power gains of the multivariate procedure demonstrated in Section 2.4.2, we

revisit these variation series of the S&P 500 and additionally consider those of the DAX, FTSE

and NIKKEI in a multivariate setup to test for spurious long memory using the MLWS test.

The analysis is conducted for both - the log-absolute return and the log-realized volatility. Note

however, that both of these measures follow different variation concepts. It is therefore not to

expect that features found in one of them will translate to the other.

We analyze the period from 2005/01/03 to 2014/12/31 (T=2608 observations). Data on daily

stock price indices is obtained from Thomson Reuters Datastream. The log-returns are computed

by first differencing the logarithm of the price index, rt = ln(Pt)− ln(Pt−1). Subsequently, the log-

absolute returns are calculated as ln(|rt|+ 0.001).3 Realized volatilities calculated from 5 minute

returns are obtained from the Oxford-Man Realized Library.

As an example, Figures 2.1 and 2.2 depict the log-absolute return and log-realized volatility of

the S&P 500 series. Both, the autocorrelation functions and the periodograms show the typical

characteristics of long-memory processes. Since the series of the DAX, FTSE and NIKKEI are

highly correlated with that of the S&P 500, we omit plots of these series. Descriptive statistics

for the dataset are given in Table 2.8. It can be seen that all four series have similar locations

and standard deviations if the same variation measure is used. With the exception of the S&P

500, the distributions of the log-absolute return series are slightly negatively skewed and all

log-absolute return series have lighter tails than the normal distribution. The realized volatility

series on the other hand are positively skewed and have excess kurtosis.

Since the specification of the MLWS test depends on whether or not the series are fractionally

cointegrated, we proceed by applying the semiparametric cointegrating rank estimation method

3The constant 0.001 is added to avoid infinite values for zero returns, by following Lu and Perron (2010) and Xu
and Perron (2014).
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δ DAX NIKKEI S&P 500 FTSE partitions coint.rank β̂ d̂w

0.60 0.379 0.295 0.472 0.393 (1,1,1,1) 1 (0.155, 0.066, -1.446) 0.260

0.65 0.338 0.290 0.411 0.362 (1,1,1,1) 1 (-0.119, 0.079, -1.014) 0.236

0.70 0.328 0.285 0.359 0.303 (1,1,1,1) 1 (-0.043, -0.144, -1.153) 0.194

0.75 0.264 0.252 0.300 0.290 (1,1,1,1) 1 (-0.074, -0.037, -0.954) 0.139

Table 2.9: Fractional cointegration analysis for the log-absolute return series based on local
Whittle estimates of d with different bandwidths m = bT δc.

δ DAX NIKKEI S&P 500 FTSE partitions coint.rank β̂13 β̂23 d̂w13 d̂w23

0.60 0.642 0.631 0.635 0.637 (1,1,1,1) 2 -0.931 -1.084 0.464 0.596

0.65 0.605 0.612 0.642 0.570 (1,1,1,1) 2 -0.728 -0.978 0.463 0.514

0.70 0.594 0.611 0.633 0.568 (1,1,1,1) 2 -0.868 -1.068 0.400 0.483

0.75 0.563 0.573 0.588 0.540 (1,1,1,1) 2 -0.910 -1.172 0.368 0.447

Table 2.10: Fractional cointegration analysis for the log-realized volatility series based on local
Whittle estimates of d with different bandwidths m = bT δc.

of Robinson and Yajima (2002). The method consists of two steps. First, the vector series Xt is

partitioned into subvectors with equal memory parameters using sequential tests for the equality

of the da in each subvector. In the second step, the cointegrating rank of the relevant subvectors

is estimated.

All results of this procedure are given in Tables 2.9 and 2.10. The analysis is carried out for

different bandwidths m = bT δc using the local Whittle estimator. For both variation measures it

can be observed, that the estimates tend to decrease as the bandwidth increases, which indicates

that the series indeed might be contaminated by level shifts.

Since the log-absolute return series is considered to be a noisy estimate of the underlying absolute

variation process and perturbations cause a downward bias in the local Whittle estimator, we

include further results using different specifications of the LPWN estimator of Frederiksen et al.

(2012) and the robust estimator of Hou and Perron (2014) in Table 2.12 in the supplementary

appendix. It can be observed that there is a downward bias for the log-absolute return series.

Nevertheless, as discussed in Section 2.4 the MLWS test is fairly robust to perturbations. Also

the Hou-Perron estimator is lower for the S&P 500, which is a further indication of spurious

long memory. Apart from that, all estimates turn out to be remarkably stable.

Using the T̂0 statistic of Robinson and Yajima (2002) to test for the equality of the memory

parameters, the null hypothesis cannot be rejected for any of the bandwidths, so that no further

partitioning of Xt is necessary. Subsequently, the cointegrating rank of Xt is estimated. Again,
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the results are remarkably stable for different bandwidth choices. We find that there is one coin-

tegrating relationship between the four log-absolute return series and there are two relationships

between the realized volatility series.

As described in Section 2.3.3, the analysis than proceeds by estimating the cointegrating matrix

B using the multivariate local Whittle estimator of Robinson (2008) with the phase set to

(da−db)π/2.

In the case of the log-absolute return series the DAX series is specified to be the variable that

is replaced by the linear combination. For the log-realized volatility series we assume pairwise

relationships of the DAX and the NIKKEI with the S&P 500. Subsequently, the transformed

series B̂Xt are obtained. Additionally, we report the estimate d̂w of the noise term in the last

column of Table 2.9 and the last two columns of Table 2.10 to show that the memory in the linear

combination is reduced. When the cointegrating rank analysis is repeated on the transformed

series there is no evidence for a cointegrating relationship anymore, supporting the selection of

the estimated cointegrating relations.

It should be noted, that the rank-estimation procedure of Robinson and Yajima (2002) operates

under the assumption of a multivariate long memory series. In the presence of low frequency

contaminations on the hand, it will no longer be consistent. The estimates of the cointegrating

relations should therefore not be interpreted unless the MLWS test fails to reject.

To formally test for true long memory, we then apply the robustified multivariate local Whittle

score-type test (M̃LWS ) to our system B̂Xt. The test for contaminations in components of the

system discussed in Section 2.3.2 is applied to analyze which components of the series might

cause a rejection of the MLWS test. As a benchmark, we also apply the univariate test of Qu

(2011) to each series separately. Because of the large number of observations the trimming

parameter is set to ε = 0.02 for both tests. The corresponding test statistics are given in Table

2.11, where the p-values are displayed in brackets.4

As one can see, Qu’s univariate test fails to reject the null hypothesis of true long memory for

each country, all bandwidth specifications, and both variation measures. The only exception is

the log-absolute return series of the S&P 500, if the bandwidth is set to m = bT 0.75c. This would

lead to the conclusion that there are no low frequency contaminations in the variation of stock

returns. The MLWS statistic on the other hand rejects for the log-absolute return series for all

but one bandwidth. In the case of the realized volatility series however, it also fails to reject -

except for m = bT 0.75c.

If one considers the tests for contaminations in components of the spectral density matrix, we

find that the test rejects for the S&P 500 series if the bandwidth parameter is δ ∈ {0.65,0.70,0.75}
for the log-absolute return series, but not for the realized volatility series. The application of

the MLWS test therefore gives formal support to the arguments of Granger and Ding (1996)

and Granger and Hyung (2004), among others, who argued that the memory in the log-absolute

4Due to the large number of free parameters in the 4-dimensional example, the pre-whitening is carried out for each
series separately. Monte Carlo results supporting the validity of this approach are provided in the supplementary
appendix.
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Qu test Components MLWS

δ DAX NIKKEI S&P 500 FTSE DAX NIKKEI S&P 500 FTSE ALL

log(|rt |+ 0.001)

0.60 0.521 0.860 0.515 0.446 1.245 0.877 0.765 1.085 1.233

(0.862) (0.314) (0.871) (0.949) (0.494) (0.665) (0.854) (0.912) (0.054)

0.65 0.505 0.749 1.078 0.443 1.052 0.793 1.681 0.619 1.470

(0.886) (0.474) (0.118) (0.953) (0.220) (0.495) (0.013) (0.979) (0.014)

0.70 0.395 0.519 1.100 0.739 1.370 0.814 1.726 0.557 1.448

(0.983) (0.865) (0.107) (0.492) (0.179) (0.395) (0.004) (0.998) (0.016)

0.75 0.640 0.469 1.477 0.547 1.322 0.918 1.843 0.598 1.413

(0.662) (0.929) (0.013) (0.824) (0.057) (0.257) (0.002) (0.948) (0.019)

log RVt

0.60 0.317 0.425 1.179 0.544 0.700 0.452 1.283 0.548 0.662

(0.999) (0.966) (0.071) (0.829) (0.600) (0.978) (0.173) (0.992) (0.621)

0.65 0.445 0.641 0.807 0.929 1.241 0.965 1.140 0.985 1.465

(0.950) (0.661) (0.387) (0.236) (0.136) (0.187) (0.279) (0.425) (0.014)

0.70 0.406 0.657 0.700 0.670 0.617 0.539 1.039 0.807 0.643

(0.977) (0.632) (0.554) (0.607) (0.729) (0.881) (0.331) (0.635) (0.656)

0.75 0.597 1.062 0.724 1.022 0.488 0.397 0.614 1.199 0.683

(0.740) (0.129) (0.513) (0.152) (0.946) (0.999) (0.919) (0.082) (0.585)

Table 2.11: Test statistics of the Qu test applied to each series separately and the MLWS test applied to
the multivariate series for different bandwidths m = bT δc. p-values are given in brackets. Critical values
are 1.252 and 1.374 for α = 5% and α = 1%, respectively.

returns of the S&P 500 might be spurious.

We therefore find that one would falsely conclude that the process is not contaminated, if only the

univariate test is used. In contrast to that, there is no evidence for low frequency contaminations

in the log-realized volatility series, which are therefore well modelled as long memory processes.

2.6 Conclusion

This paper provides a multivariate score-type test for spurious long memory based on the objec-

tive function of the local Whittle estimator. The test statistic consists of a weighted sum of the

partial derivatives of the concentrated local Whittle likelihood function. By introducing a suit-

able weighting scheme, the test statistic becomes pivotal and the limiting distribution becomes

independent of the dimension of the data generating process. Consistency against multivariate

random level shift processes and smooth trends is shown.

Our test encompasses the test of Qu (2011) as a special case for scalar processes. Apart from
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the generalization to vector valued series, we consider several issues that are unique to the

multivariate case. First, we provide a modification of the test statistic in the case of fraction-

ally cointegrated series which has the same asymptotic properties as the original test statistic.

Second, by changing the weighting scheme, the multivariate test statistic can be used to gain

insights about which components of the multivariate series cause a rejection.

A Monte Carlo study shows that the test has good size and power properties in finite sam-

ples. These properties hold for different bandwidths, m = bT δc, as well as for different trimming

parameters ε. Furthermore, the size and power remain good if the dimensions of the data gener-

ating process increase and the test is robust against short memory dynamics if a pre-whitening

procedure is applied.

In our empirical example we revisit the log-absolute returns of the S&P 500 together with

the DAX, FTSE and NIKKEI stock indices in a multivariate framework. By applying our

multivariate test, we find evidence of spurious long memory in the log-absolute returns of the

S&P 500. A simple application of the univariate Qu test to the log-absolute returns, on the other

hand, cannot reject the null hypothesis of true long memory. As discussed in Section 2.5, several

authors have pointed out that the log-absolute returns might follow a spurious long-memory

process. Our empirical application adds to this literature by providing a formal rejection of pure

long memory in the sense of a statistically significant test decision. For realized volatilities on

the other hand, no such evidence is found.
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Appendix

Proof of Lemma 2.1:

To prove the lemma, note the following arguments in Shimotsu (2007)
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Therefore, we can write with ν j = logλ j−1/m
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j=1 logλ j, aM denoting the a-th row of the matrix

M, and Ma denoting the a-th column of the matrix M
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which proves our lemma. �
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Proof of Theorem 2.1:

To prove the theorem we start with the Taylor expansion
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where d̄ fulfills ‖d̄− d0‖ ≤ ‖d̂− d0‖ and the notation Rr(d) indicates that the summation is done

until [mr] rather than m. For the first part of the right hand side of equation (2.12) we can

write:
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d0

)−1 1
√

m

[mr]∑
j=1

λ j−π

2
Im

[
(Λ0

j(d))−1(−iaI(λ j)

+I(λ j)ia)(Λ0∗
j (d))−1

]]
=

2
√

m

q∑
a=1

aG0ηa

[mr]∑
j=1

ν j

[
a

(
G0

)−1′

a

(
G0

)−1 [
Re

[
Λ0

j(d)−1I(λ j)Λ0∗
j (d)−1

]]
a
−1

]

−
2aG0

m3/2

[mr]∑
j=1

ν j

 m∑
j=1

[
a

(
G0

)−1′

a

(
G0

)−1 [
Re

[
Λ0

j(d)−1A(λ j)Iε jA∗(λ j)

×Λ0∗
j (d)−1

]]
a
−1

]
+ oP(1) + tr

Ĝ (d0)−1 1
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By arguments as in Shimotsu (2007), we can write the first term plus the imaginary part as∑T
t=1 zt +oP(1) with z1 = 0 and zt = ε

′

t
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asymptotic normality of zt follows from Theorem 2 of Robinson (1995a). To obtain the covariance

of the zt we have for 0 ≤ r1 ≤ r2 ≤ 1
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by using Lemma 2 and 3 from Lobato (1999). Now we have
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The second and fourth term of this sum are oP(1) by Lemma 3b) and 3d) in Shimotsu (2007).

Applying Lemma 3a) in Shimotsu (2007) for the first term, we obtain for λ j→ 0
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For the third term we have again for λ j→ 0 by Shimotsu (2007) Lemma 3c)
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From the Euler-Mc Laurin equality and Lemma B.1 in Qu (2011) it follows that
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For the second term of the second equality of (2.13) we have by similar arguments as in Qu
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Altogether this gives
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


= tr


 1

m

[mr]∑
j=1

ν2
j

Ĝ(d)−1Ĝ2ab(d) +
π2

4
Ĝ(d)−1Ĝ3ab(d)

+ oP
(
log2T

)
→ tr

[∫ r

0
(1 + log s)2ds

(
G0

)−1
G0

2ab +
π2

4

(
G0

)−1
G0

3ab

]

so that

∂2Rr(d)
∂d∂d′

→ 2
∫ r

0

(
(1 + log s)2(G0�

(
G0

)−1
+ Iq) +

π2

4
(G0�

(
G0

)−1
− Iq)

)
ds

:= F(r). (2.14)

From the mean value theorem, we have

√
m(d̂−d0) =

√
m

(
∂2R(d)
∂d∂d′

|d̄

)−1 R(d)
∂d
|d0 .

Since from Shimotsu (2007) ∂2R(d)
∂d∂d′ |d̄ → Ω, with Ω = 2

[
G0� (G0)−1 + Iq + π2

4 (G0�
(
G0

)−1
− Iq)

]
, we

have

√
m(d̂−d0)→

√
mΩ−1 ∂R(d)

∂d
|d0

and finally using the result from (2.14)

η
′ ∂2Rr(d)
∂d∂d′

√
m(d̂−d0)→ η

′

F(r)Ω−1 √m
∂R(d)
∂d
|d0 . (2.15)

Now,
√

m∂R(d)
∂d |d0 can be treated as before. Thus, the right hand side of (2.15) has the covariance∫ 1

0 (1+ log s)22η
′

F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)
′

η+ π2

2 η
′

F(r)Ω−1(G0� (G0)−1− Iq)Ω−1′F(r)
′

ηds. Al-
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together, we obtain

η
′ ∂2Rr(d)
∂d∂d′

√
m(d̂−d0) ⇒

∫ 1

0

[
(1 + log s)

(
2η
′

F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)
′

η
)1/2

+i
(
π2

2
η
′

F(r)Ω−1(G0� (G0)−1− Iq)Ω−1′F(r)
′

η

)1/2dB(s).

Like Qu (2011), we use Theorem 13.5 of Billingsley (2009) to prove tightness. Thus, we show

that for every m and r1 ≤ r ≤ r2

E


∣∣∣∣∣∣∣

T∑
t=1

zt,r −

T∑
t=1

zt,r1

∣∣∣∣∣∣∣
2 ∣∣∣∣∣∣∣

T∑
t=1

zt,r2 −

T∑
t=1

zt,r

∣∣∣∣∣∣∣
2 ≤ K (ψm(r2)−ψm(r1))2

where K is some constant and ψm(·) is a function on [0,1] which is finite, nondecreasing and

fulfills

lim
δ→0

limsup
m→∞

|ψm(s +δ)−ψm(s)| → 0

uniformly in s ∈ [0,1]. Here we denote zt(s,r) = zt,r − zt,s. Denote also ct(r, s) = ct,r − ct,s and

ct = tr[Θt +Θ̃t]. Using this notation we can use Qu’s (2011) Lemma B.8 to show that E(|
∑T

t=1 zt,r−∑T
t=1 zt,r1 |

2|
∑T

t=1 zt,r2 −
∑T

t=1 zt,r |
2) is bounded from above by

K

 T∑
t=1

t−1∑
s=1

ct−s(r1,r)2


 T∑

t=1

t−1∑
h=1

ct−h(r,r2)2


where K is some positive constant. By similar arguments as in Qu (2011) we obtain furthermore

T∑
t=1

t−1∑
s=1

ct−s(r1,r)2 ≤

 1
Tm

[mr]∑
j=[mr1]+1

[mr]∑
k, j

(
ν2

j + ν2
k

)
+

1
m

[mr]∑
j=[mr1]+1

ν2
j


×

2 q∑
a=1

η2
a + 2

q∑
a=1

q∑
b=1

ηaηbG0
ab

(
G0

)−1

ab


≤

3
m

[mr]∑
j=[mr1]+1

ν2
j

2 q∑
a=1

η2
a + 2

q∑
a=1

q∑
b=1

ηaηbG0
ab

(
G0

)−1

ab

 .
As (2

∑q
a=1 η

2
a + 2

∑q
a=1

∑q
b=1 ηaηbG0

ab(G0)−1
ab ) ≤ K for some constant K we set ψm(s) = 1/m∑[ms]

j=1 ν
2
j . This satisfies the condition as

lim
δ→0

limsup
m→∞

|ψm(s +δ)−ψm(s)| = lim
δ→0

∫ s+δ

s
(1 + log x)2dx → 0.
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This proves the theorem. �

Proof of Lemma 2.2:

To prove the lemma, we first need to show that η
′

(G0� (G0)−1)η = 1, if η = (1/
√

q, ...,1/
√

q)′. For

this denote

G0 =



g11 g12 . . . g1q

g21 g22 . . . g2q
...

. . .
...

gq1 gq2 . . . gqq


.

Thus, by using Cramer’s rule we obtain for the inverse matrix

(
G0

)−1
=

1
det(G0)



det(G0
−11) −det(G0

−21) . . . (−1)1+q det(G0
−q1)

−det(G0
−12) det(G0

−22) . . . (−1)2+q det(G0
−q2)

...
. . .

...

(−1)1+q det(G0
−1q) (−1)2+q det(G0

−2q) . . . det(G0
−qq)


,

where G−ab denotes the matrix G with the a-th row and b-th column omitted. Therefore, by

applying Laplace’s formula and using that gi j = g ji we have

G0�
(
G0

)−1
=

1
det(G0)



g11 det(G0
−11) −g12 det(G0

−21) . . . (−1)1+qg1q det(G0
−q1)

−g21 det(G0
−12) g22 det(G0

−22) . . . (−1)2+qg2q det(G0
−q2)

...
...

. . .
...

(−1)1+qgq1 det(G0
−1q) (−1)2+qgq2 det(G0

−2q) . . . gqq det(G0
−qq)


.

Therefore,

G0�
(
G0

)−1
η =

1
det(G0)



1√
q
∑q

a=1(−1)1+ag1a det(G0
−a1)

1√
q
∑q

a=1(−1)2+ag2a det(G0
−a2)

...

1√
q
∑q

a=1(−1)q+agqa det(G0
−aq)


=

1
det(G0)



det(G0)
√

q
det(G0)
√

q
...

det(G0)
√

q


=



1√
q

1√
q
...

1√
q


and thus finally

η
′
(
G0�

(
G0

)−1
)
η = 1.

From this we can conclude that (2η
′

η+2η
′

(G0�(G0)−1)η)1/2 = 2 and (2η
′

η−2η
′

(G0�(G0)−1)η)1/2 = 0,

which shows that the first term in (2.8) has the desired form. The second term of (2.8) equals

the second term of the limit distribution of Qu (2011) anyway, so it remains to consider the
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third term.

We first show that
(
2η
′

F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)
′

η
)1/2

= 2
∫ r

0 (1+ log s)2ds. To see this note

that

F(r)
′

η = 2
∫ r

0
(1 + log s)2

(
G0� (G0)−1 + Iq

)′
ηds

= 4η
∫ r

0
(1 + log s)2ds

as
(
G0� (G0)−1 + Iq

)′
η = 2η by the same arguments as before. By denoting with η−1 the pseudo

inverse defined by the equality Aη−1η = A for every matrix A, we have η−1 = η′. Consequently,

Ω−1′η =
(
η−1Ω′

)−1
= (Ωη)

′−1.

Now, Ωη = 4η, since again (G0� (G0)−1)η = η, so that Ω−1′η = 1/4η.

Applying the same arguments to the term η
′

F(r)Ω−1 on the left side gives us altogether

2η
′

F(r)Ω−1(G0� (G0)−1 + Iq)Ω−1′F(r)
′

η = 2
(∫ r

0
(1 + log s)2ds

)2

η
′

(G0� (G0)−1 + Iq)η

= 4
(∫ r

0
(1 + log s)2ds

)2

.

Now applying the same arguments we can furthermore conclude that

η
′

F(r)Ω−1(G0� (G0)−1− Iq)Ω−1′F(r)
′

η = 0

which proves the lemma. �

Proof of Theorem 2.2:

To prove the consistency of our test statistic we closely follow the arguments in the consistency

proof of Qu (2011). We use the property that I(λ j) = OP(1) when jT−1/2 →∞. Note that ν j is

monotonically increasing in j with ν1 < 0 and νm > 0. For our test statistic we write

MLWS =
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥∥∥
2√∑m
j=1 ν

2
j

q∑
a=1

ηa

[mr]∑
j=1

ν j
(
ag

[
Re

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]]
a
−1

)

+tr

G(d̂)−1 1√∑m
j=1 ν

2
j

[mr]∑
j=1

λ j−π

2
Im

[
(Λ j(d̂))−1(−iaI(λ j) + I(λ j)ia)(Λ∗j(d̂))−1

]
∥∥∥∥∥∥∥∥∥

= sup
r∈[ε,1]

‖I + II‖.
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Let us consider the term I first. Define j∗ = min{ j : ν j ≥ 0}. From Qu’s (2011) Lemma B.1 it

follows that j∗ = Km for some constant K. Define now

AI =

∥∥∥∥∥∥∥∥
q∑

a=1

ηa

 m∑
j=1

ν2
j


−1/2 m∑

j= j∗
ν j

(
ag

[
Re

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]]
a
−1

)∥∥∥∥∥∥∥∥
and

BI =

∥∥∥∥∥∥∥∥
q∑

a=1

ηa

 m∑
j=1

ν2
j


−1/2 j∗−1∑

j=1

ν j
(
ag

[
Re

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]]
a
−1

)∥∥∥∥∥∥∥∥ .
Applying the reverse triangle inequality to I gives

I ≥max(AI −BI ,BI).

Now, if AI ≥ 2BI than we have

I ≥ AI −BI

=
AI

2
+

(
AI

2
−BI

)
≥ AI

2 .

On the other hand, if AI < 2BI than I ≥ BI > AI/2. Altogether, we have I ≥ AI/2. Thus, we have

to show that AI P
→∞ if T →∞. To do so, we write AI in the form

AI =

∥∥∥∥∥∥∥∥
q∑

a=1

ηa

 m∑
j=1

ν2
j


−1/2 m∑

j= j∗
ν j

(
ag

[
Re

[
Λ j(d)−1A(λ j)Iε jA∗(λ j)Λ∗j(d)−1

]]
a
−1

)∥∥∥∥∥∥∥∥ .
Applying the reverse triangle inequality to A gives

AI ≥

q∑
a=1

ηa

 m∑
j=1

ν2
j


−1/2 m∑

j= j∗
ν j−

q∑
a=1

ηa

m∑
j= j∗

ν j
(
ag

[
Re

[
Λ j(d)−1A(λ j)Iε jA∗(λ j)Λ∗j(d)−1

]]
a

)
.

For the first term of this inequality we have for each component

 m∑
j=1

ν2
j


−1/2 m∑

j= j∗
ν j = m1/2

∫ 1

K
(1 + log s)ds + o

(
m1/2

)
which is strictly positive and of exact order m1/2.

For the second term we can conclude the following. As m/T 1/2→∞ it holds that j∗/T 1/2→∞.

Thus, for every j∗ ≤ j ≤ m it follows I(λ j) = OP(1). Furthermore, we have
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ν j
(
ag

[
Re

[
Λ j(d)−1A(λ j)Iε jA∗(λ j)Λ∗j(d)−1

]]
a

)
= OP

(
λ2d̂

j

)
= OP

(
λ2ε

j

)
= oP(1)

for every a. This holds because ν j = OP(1) for j∗ ≤ j ≤ m, Ĝ(d) = 1/m
∑m

j=1 Re[Λ j(d)−1I(λ j)

Λ∗j(d)−1], P(d̂ j > ε)→ 1 and λ j = o(1). Therefore, the second term is of lower order than m1/2 and

is dominated asymptotically by the first term. Thus, AI P
→∞ if T →∞.

The treatment of term II is similar to that of term I. Write again

AII =

∥∥∥∥∥∥∥∥
 m∑

j=1

ν2
j


−1/2 m∑

j= j∗

λ j−π

2
Im

[
(Λ j(d̂))−1(−iaI(λ j) + I(λ j)ia)(Λ∗j(d̂))−1

]∥∥∥∥∥∥∥∥ (2.16)

and

BII =

∥∥∥∥∥∥∥∥
 m∑

j=1

ν2
j


−1/2 j∗−1∑

j=1

λ j−π

2
Im

[
(Λ j(d̂))−1(−iaI(λ j) + I(λ j)ia)(Λ∗j(d̂))−1

]∥∥∥∥∥∥∥∥ . (2.17)

As before we obtain from the reverse triangle inequality that II ≥ AII/2. Now, we write AII in

the form

AII =

∥∥∥∥∥∥∥∥
 m∑

j=1

ν2
j


−1/2

(−
π

2
)

m∑
j= j∗

Im
[
Λ j(d)−1A(λ j)Iε jA∗(λ j)Λ∗j(d)−1

]∥∥∥∥∥∥∥∥ (2.18)

By using exactly the same arguments as before for the second part of AI the term II is of lower

order than m1/2, and therefore dominated asymptotically by term I. This proves the theorem.

�

Proof of Lemma 2.3:

The test statistic is given by

M̃LWS =
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥∥∥
2√∑m
j=1 ν

2
j

q∑
a=1

ηa

[mr]∑
j=1

ν j
( ˜
aG−1(d̂, B̂)

[
Re

[
Λ j(d̂)−1 Ĩ(λ j, B̂)Λ∗j(d̂)−1

]]
a
−1

)

+
1√∑m
j=1 ν

2
j

q∑
a=1

ηa
( ˜
aG−1(d̂, B̂)

) [mr]∑
j=1

(λ j−π)
2

Im
[
Λ j(d̂)−1 Ĩ(λ j, B̂)Λ∗j(d̂)−1

]
a

∥∥∥∥∥∥∥∥∥ .



2.6. Conclusion 46

Now, from B̂−B0 = op(m−1/2∆−1
m ), we have Ĩ(λ j, B̂) = Ĩ(λ j,B0)+op(m−1/2∆−1

m ) and G̃(d̂, B̂) = G̃(d̂,B0)+

op(m−1/2∆−1
m ). Therefore,

M̃LWS = MLWS +

∑[mr]
j=1 op(m−1/2∆−1

m )√∑m
j=1 ν

2
j

,

and since
∑m

j=1 ν
2
j → m, we have M̃LWS → MLWS + op(∆−1

m ) = MLWS + op
(
T (δ−1)max{b1,...,bpG }

)
, for

m = bT δc. �

Proof of Lemma 2.4:

The proof of the lemma is similar to the proof of Corollary 2 in Qu (2011) after replacing his

univariate coefficients of the short-memory model with our multivariate coefficients and using

the respective norms. It is therefore omitted here. �
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Supplementary Appendix

δ DAX NIKKEI S&P 500 FTSE DAX NIKKEI S&P 500 FTSE DAX NIKKEI S&P 500 FTSE

log(|rt |+ 0.001)

dELW dHP dHP+Noise

0.60 0.365 0.290 0.476 0.396 0.350 0.204 0.436 0.334 0.354 0.545 0.436 0.334

0.65 0.341 0.289 0.415 0.368 0.292 0.233 0.327 0.306 0.488 0.446 0.562 0.306

0.70 0.337 0.289 0.363 0.310 0.291 0.247 0.242 0.230 0.427 0.247 0.608 0.484

0.75 0.273 0.258 0.307 0.299 0.187 0.205 0.136 0.231 0.534 0.380 0.648 0.415

dLPWN(0,0) dLPWN(1,0) dLPWN(0,1)
0.60 0.436 0.545 0.472 0.446 0.452 0.540 0.477 0.461 0.515 0.553 0.472 0.631

0.65 0.488 0.446 0.582 0.462 0.431 0.459 0.521 0.477 0.440 0.575 0.481 0.538

0.70 0.452 0.373 0.608 0.531 0.476 0.397 0.551 0.416 0.448 0.535 0.558 0.387

0.75 0.534 0.408 0.648 0.489 0.412 0.428 0.600 0.493 0.413 0.399 0.602 0.490

log RVt

dELW dHP dHP+Noise

0.60 0.625 0.640 0.642 0.622 0.639 0.546 0.637 0.629 0.639 0.546 0.637 0.661

0.65 0.593 0.646 0.577 0.608 0.567 0.597 0.558 0.588 0.648 0.597 0.660 0.668

0.70 0.598 0.640 0.577 0.612 0.558 0.595 0.546 0.583 0.620 0.595 0.621 0.639

0.75 0.580 0.601 0.554 0.583 0.515 0.531 0.498 0.538 0.642 0.673 0.630 0.662

dLPWN(0,0) dLPWN(1,0) dLPWN(0,1)
0.60 0.642 0.679 0.637 0.661 0.619 0.683 0.550 0.664 0.642 0.802 0.637 0.681

0.65 0.653 0.652 0.660 0.670 0.641 0.654 0.655 0.655 0.644 0.652 0.644 0.640

0.70 0.643 0.652 0.623 0.643 0.637 0.661 0.616 0.652 0.643 0.665 0.623 0.661

0.75 0.646 0.677 0.632 0.662 0.650 0.672 0.615 0.659 0.652 0.675 0.621 0.663

Table 2.12: Estimated memory parameters for different bandwidths m = bT δc using the estimators of
Shimotsu and Phillips (2005) (dELW), Hou and Perron (2014) (dHP and dHP+Noise) and Frederiksen et al.
(2012) (dLPWN).

This supplementary appendix contains additional empirical results and simulation studies on

the performance of the MLWS test. Table 2.12 shows estimates of the memory parameters in

our empirical application in Section 2.5. The exact local Whittle estimates (dELW) are very

close to the standard local Whittle estimates presented in Tables 2.9 and 2.10. For the log-

absolute returns the estimates using the LPWN estimator are considerably higher, as reported

by Frederiksen et al. (2012). Estimates using the estimator of Hou and Perron (2014), on

the other hand, are slightly reduced. When considering the log-realized volatility series, the

estimates are extremely robust - irrespective of the bandwidth and the choice of the estimator.

The following tables contain additional Monte Carlo simulations. All DGPs are given in the

captions. To analyze the power of the MLWS test against non-causal alternatives, we build

on the work of Kechagias and Pipiras (2015) who consider non-causal multivariate fractionally

integrated processes. Table 2.13 shows the results. The scaling factor ζ determines to which

degree the behaviour of the process is determined by the non-causal part. It can be seen that

the test is correctly sized, but only develops power very slowly.
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ζ 0 1 2

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.009 0.015 0.005 0.008 0.006 0.013

0.65 0.014 0.018 0.008 0.012 0.011 0.024

0.70 0.015 0.024 0.009 0.019 0.021 0.040

0.75 0.018 0.027 0.011 0.020 0.030 0.058

500

0.60 0.012 0.016 0.010 0.017 0.011 0.024

0.65 0.018 0.030 0.013 0.024 0.022 0.043

0.70 0.022 0.033 0.014 0.032 0.049 0.076

0.75 0.030 0.033 0.025 0.031 0.085 0.139

1000

0.60 0.016 0.029 0.014 0.021 0.020 0.038

0.65 0.025 0.029 0.023 0.035 0.044 0.079

0.70 0.029 0.038 0.027 0.048 0.103 0.136

0.75 0.037 0.045 0.042 0.057 0.201 0.262

2000

0.60 0.025 0.032 0.019 0.040 0.029 0.060

0.65 0.031 0.038 0.031 0.055 0.074 0.102

0.70 0.031 0.044 0.051 0.074 0.174 0.222

0.75 0.046 0.055 0.074 0.097 0.403 0.458

Table 2.13: Power of the MLWS test against non-causal alternatives of the form Xt = D(0.2,0.3)−1Q−vt +

D̃(0.2,0.3)−1ζQ−vt, where D̃(d1,d2) = diag((1−L−1)d1 , (1−L−1)d2 ), vt ∼ N(0,Σv), Σv is an identity matrix and
Q− = ((1,0.7), (−0.5,1)).

Table 2.14 shows the effect of breaks in the variance-covariance matrix of a bivariate fractionally

integrated process. Initially the innovations have unit variance and a correlation of ρ1 = 0.45.

After 100ξ percent of the sample, the variance and correlation switch. It can be seen that the

size of the test is robust to unconditional breaks in variance as well as breaks in the correlation

between the innovations. Only for increases of the correlation after 20 percent of the sample,

the size increases to about 7 percent. In all other combinations it remains close to or below the

nominal level of 5 percent.

Table 2.15 shows the effect of conditional heteroscedasticity on the size and power of the test.

We find that the size increases slightly, but only for very persistent GARCH effects. The power

remains largely unchanged. The MLWS test is therefore robust to conditional and unconditional

heteroscedasticity.

Random level shifts are not the only data generating processes that cause spurious long mem-

ory. Similar effects are caused (among others) by linear or monotonous trends, non-monotonous
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σ2
2

1 2

ρ2 0 0.45 0.9 0 0.45 0.9

ξ T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

0.2

250

0.60 0.006 0.011 0.007 0.007 0.012 0.015 0.004 0.008 0.006 0.010 0.008 0.010

0.65 0.010 0.014 0.008 0.014 0.016 0.025 0.009 0.013 0.007 0.015 0.012 0.018

0.70 0.014 0.018 0.012 0.015 0.020 0.035 0.011 0.021 0.015 0.019 0.018 0.023

0.75 0.012 0.020 0.015 0.019 0.031 0.039 0.015 0.024 0.017 0.019 0.020 0.026

1000

0.60 0.015 0.021 0.011 0.020 0.030 0.046 0.015 0.020 0.017 0.022 0.024 0.029

0.65 0.021 0.030 0.017 0.027 0.039 0.057 0.021 0.024 0.019 0.031 0.032 0.041

0.70 0.020 0.031 0.024 0.032 0.058 0.074 0.022 0.034 0.025 0.033 0.036 0.049

0.75 0.031 0.040 0.031 0.037 0.064 0.077 0.032 0.039 0.033 0.043 0.045 0.051

0.5

250

0.60 0.005 0.011 0.006 0.008 0.010 0.016 0.008 0.011 0.009 0.011 0.011 0.015

0.65 0.011 0.018 0.009 0.017 0.013 0.025 0.013 0.020 0.014 0.016 0.014 0.025

0.70 0.016 0.018 0.012 0.018 0.019 0.026 0.016 0.024 0.014 0.022 0.017 0.028

0.75 0.020 0.021 0.014 0.021 0.026 0.035 0.018 0.029 0.020 0.026 0.024 0.030

1000

0.60 0.016 0.022 0.012 0.016 0.025 0.03 0.017 0.028 0.016 0.025 0.023 0.035

0.65 0.023 0.024 0.022 0.022 0.031 0.044 0.028 0.035 0.024 0.030 0.031 0.039

0.70 0.024 0.035 0.021 0.027 0.039 0.049 0.030 0.045 0.028 0.039 0.039 0.048

0.75 0.033 0.043 0.025 0.034 0.046 0.053 0.040 0.050 0.033 0.049 0.044 0.055

0.8

250

0.60 0.006 0.01 0.007 0.007 0.008 0.011 0.008 0.01 0.005 0.011 0.005 0.012

0.65 0.010 0.015 0.009 0.013 0.011 0.019 0.012 0.019 0.010 0.014 0.012 0.016

0.70 0.014 0.017 0.016 0.018 0.016 0.023 0.017 0.024 0.012 0.020 0.015 0.023

0.75 0.017 0.025 0.015 0.019 0.019 0.025 0.021 0.029 0.019 0.025 0.020 0.027

1000

0.60 0.016 0.024 0.014 0.021 0.018 0.025 0.017 0.033 0.015 0.025 0.020 0.030

0.65 0.019 0.029 0.017 0.026 0.025 0.034 0.029 0.040 0.020 0.036 0.023 0.034

0.70 0.029 0.034 0.023 0.031 0.031 0.033 0.032 0.052 0.029 0.040 0.034 0.041

0.75 0.034 0.038 0.027 0.037 0.032 0.043 0.046 0.060 0.038 0.043 0.035 0.050

Table 2.14: Size of the MLWS test in presence of breaks in the variance-covariance matrix. D(0.2,0.3)Xt =

vt, with vt ∼ N(0,Σv,t) and Σv,t = ((1,0.45), (0.45,1))′I(t/T<ξ) +σ2
2((1,ρ2), (ρ2,1))′(1− I(t/T<ξ)).

trends or Markov switching models. Theoretically, it has been shown by McCloskey and Perron

(2013) that the effect of these processes on the periodogram is approximately of the same order

as that of random level shifts. Qu (2011) also demonstrates the power of his test against these

alternatives. A similar analysis for the MLWS test is provided in Table 2.16. As can be seen,

the test has good power against all of these alternatives.

In our empirical application we opt to conduct the test after using a univariate pre-whitening.

This is to avoid convergence issues of the numerical optimization involved in the maximum

likelihood estimation of the VARFIMA model, that could arise due to the large number of free

parameters. As one can see from Table 2.17, the size of the test is controlled using univariate

pre-whitening as it is with multivariate pre-whitening. With regard to the power, in smaller

samples with up to 1000 observations univariate pre-whitening even leads to improvements. For

T = 2000, on the other hand, we observe a considerable power loss compared to the multivariate
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Size Power

β1 0.4 0.6 0.8 0.4 0.6 0.8

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.007 0.011 0.005 0.010 0.007 0.015 0.104 0.117 0.108 0.122 0.101 0.134

0.65 0.011 0.015 0.010 0.015 0.015 0.026 0.247 0.313 0.251 0.296 0.257 0.295

0.70 0.015 0.017 0.018 0.019 0.022 0.028 0.450 0.476 0.448 0.461 0.453 0.471

0.75 0.017 0.022 0.020 0.027 0.035 0.039 0.639 0.638 0.634 0.643 0.629 0.654

1000

0.60 0.014 0.023 0.014 0.024 0.020 0.031 0.687 0.719 0.679 0.713 0.669 0.695

0.65 0.020 0.026 0.023 0.027 0.033 0.046 0.901 0.909 0.898 0.911 0.890 0.902

0.70 0.025 0.030 0.025 0.032 0.051 0.062 0.972 0.968 0.968 0.967 0.966 0.967

0.75 0.027 0.036 0.031 0.038 0.069 0.087 0.990 0.987 0.988 0.988 0.991 0.985

Table 2.15: Size and power of the MLWS test for processes with GARCH effects. D(0.2,0.3)Xt = vt, with

Σv,t =
(
(σ2

1,t,0.8σ1,tσ2,t), (0.8σ1,tσ2,t,σ
2
2,t)

)′
and σ2

a,t = 1 + 0.15v2
a,t−1 +β1σ

2
a,t−1.

pre-whitening. This effect is particularly pronounced for DGPs 1 and 4, where we observe a

non-monotonicity of the power in T . It is therefore advantageous to use the computationally

more demanding multivariate pre-whitening in larger samples in terms of power. Nevertheless,

if the computational costs become very large - as it is the case in our empirical example - the

size is well controlled by the univariate pre-whitening procedure.

Since especially the log-absolute return series in the empirical application are often modelled as

the underlying volatility process that is perturbed by a measurement error, Table 2.18 evaluates

the effect of perturbations on the size of the MLWS test. One can observe that the size is largely

robust. The only exception is the situation when the bandwidth and the sample are large and

the series are strongly correlated. In this case, the size can reach up to 10 percent, if also the

variance of the perturbation is large compared to that of the long memory process. Apart from

this special case, the test remains robust.

The effect of perturbations on the performance of the pre-whitening procedure is explored in

Table 2.19. It can be seen, that the size remains conservative for all DGPs. Interestingly, the

size distortions that occur if no pre-whitening is applied are considerably reduced. One could

therefore consider to omit the pre-whitening and to choose a smaller bandwidth if one has reason

to assume that the series is subject to a sizeable perturbation - especially since we also observe

a power loss after pre-whitening and an increase in power for the unfiltered series.
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DGP mon lin sin ms

T ζ δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0

0.60 0.004 0.010 0.006 0.010 0.006 0.008 0.008 0.008

0.65 0.008 0.011 0.009 0.015 0.009 0.015 0.008 0.013

0.70 0.009 0.017 0.012 0.017 0.013 0.017 0.014 0.020

0.75 0.013 0.020 0.012 0.021 0.015 0.018 0.012 0.020

1

0.60 0.068 0.070 0.125 0.123 0.973 0.987 0.103 0.106

0.65 0.114 0.120 0.227 0.246 0.999 1.000 0.182 0.197

0.70 0.167 0.131 0.342 0.279 1.000 1.000 0.296 0.286

0.75 0.193 0.135 0.427 0.330 1.000 1.000 0.427 0.406

2

0.60 0.216 0.232 0.225 0.282 1.000 1.000 0.116 0.129

0.65 0.409 0.444 0.505 0.582 1.000 1.000 0.226 0.267

0.70 0.609 0.545 0.772 0.756 1.000 1.000 0.395 0.403

0.75 0.751 0.663 0.912 0.870 1.000 1.000 0.596 0.618

1000

0

0.60 0.015 0.020 0.014 0.024 0.015 0.017 0.011 0.022

0.65 0.016 0.029 0.019 0.027 0.016 0.021 0.018 0.026

0.70 0.023 0.029 0.024 0.030 0.023 0.029 0.021 0.033

0.75 0.027 0.036 0.027 0.037 0.025 0.036 0.024 0.034

1

0.60 0.819 0.751 0.919 0.882 1.000 1.000 0.612 0.640

0.65 0.938 0.872 0.990 0.971 1.000 1.000 0.841 0.855

0.70 0.975 0.912 0.998 0.988 1.000 1.000 0.938 0.939

0.75 0.991 0.948 1.000 0.996 1.000 1.000 0.962 0.973

2

0.60 0.988 0.987 0.992 0.992 1.000 1.000 0.578 0.615

0.65 1.000 0.999 1.000 1.000 1.000 1.000 0.838 0.873

0.70 1.000 1.000 1.000 1.000 1.000 1.000 0.959 0.966

0.75 1.000 1.000 1.000 1.000 1.000 1.000 0.978 0.981

Table 2.16: Power against alternative DGPs, for Yt = µt + Xt, with D(0.2,0.3)Xt = vt, Σv = ((1,0), (0,1))′ and

µt = ζ
(
t−

t
5T −T−1 ∑T

t=1 t−
t

5T
)

(mon), µt = ζ (t/T −1/2) (lin), µt = ζ sin
(

4πt
T

)
(sin) or µt = ζt −T−1 ∑T

t=1 ζt (ms),
where ζt is a markov sequence that takes the values ζ or 0.
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Size

Pre-whitened: X̃t Unfiltered: Xt

DGP 1 2 3 4 1 2

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.007 0.010 0.011 0.011 0.009 0.008 0.008 0.011 0.005 0.011 0.005 0.01

0.65 0.007 0.013 0.009 0.016 0.009 0.012 0.011 0.016 0.010 0.016 0.014 0.028

0.70 0.010 0.012 0.010 0.012 0.008 0.007 0.016 0.015 0.015 0.018 0.040 0.070

0.75 0.008 0.010 0.008 0.007 0.006 0.007 0.011 0.013 0.016 0.019 0.127 0.197

500

0.60 0.012 0.014 0.017 0.016 0.015 0.015 0.013 0.015 0.012 0.014 0.011 0.013

0.65 0.013 0.022 0.015 0.020 0.012 0.020 0.019 0.024 0.014 0.022 0.019 0.037

0.70 0.018 0.025 0.021 0.021 0.014 0.015 0.025 0.026 0.018 0.028 0.064 0.104

0.75 0.023 0.019 0.015 0.018 0.011 0.010 0.028 0.028 0.025 0.028 0.240 0.317

1000

0.60 0.018 0.021 0.018 0.026 0.018 0.022 0.021 0.022 0.015 0.022 0.012 0.022

0.65 0.023 0.027 0.026 0.026 0.027 0.023 0.028 0.030 0.026 0.030 0.022 0.037

0.70 0.026 0.027 0.026 0.023 0.022 0.019 0.039 0.033 0.033 0.029 0.069 0.111

0.75 0.027 0.025 0.025 0.027 0.018 0.015 0.038 0.035 0.040 0.043 0.356 0.471

2000

0.60 0.019 0.026 0.019 0.024 0.016 0.031 0.018 0.024 0.018 0.025 0.013 0.028

0.65 0.025 0.034 0.023 0.033 0.026 0.031 0.024 0.034 0.026 0.034 0.022 0.038

0.70 0.028 0.031 0.026 0.033 0.030 0.023 0.036 0.036 0.030 0.034 0.072 0.109

0.75 0.033 0.036 0.033 0.029 0.022 0.016 0.049 0.043 0.041 0.046 0.442 0.525

Power

Pre-whitened: X̃t Unfiltered: Xt

DGP 1 2 3 4 1 2

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.038 0.044 0.053 0.056 0.038 0.039 0.040 0.046 0.041 0.042 0.013 0.015

0.65 0.077 0.091 0.089 0.105 0.051 0.059 0.090 0.105 0.090 0.111 0.020 0.027

0.70 0.127 0.126 0.119 0.111 0.056 0.044 0.150 0.143 0.175 0.180 0.024 0.023

0.75 0.170 0.170 0.118 0.106 0.047 0.033 0.198 0.179 0.325 0.329 0.024 0.037

500

0.60 0.109 0.100 0.118 0.102 0.071 0.066 0.101 0.107 0.120 0.120 0.066 0.059

0.65 0.197 0.217 0.176 0.195 0.093 0.105 0.189 0.221 0.249 0.281 0.083 0.100

0.70 0.319 0.330 0.263 0.255 0.115 0.116 0.325 0.343 0.470 0.506 0.092 0.083

0.75 0.411 0.410 0.272 0.233 0.118 0.089 0.423 0.416 0.672 0.673 0.068 0.063

1000

0.60 0.201 0.202 0.261 0.261 0.143 0.150 0.184 0.189 0.311 0.337 0.227 0.219

0.65 0.378 0.362 0.400 0.391 0.201 0.167 0.334 0.325 0.577 0.589 0.325 0.298

0.70 0.508 0.468 0.484 0.425 0.198 0.129 0.463 0.438 0.779 0.773 0.323 0.275

0.75 0.577 0.552 0.486 0.407 0.156 0.097 0.537 0.497 0.895 0.887 0.246 0.190

2000

0.60 0.239 0.234 0.534 0.553 0.349 0.345 0.267 0.268 0.611 0.643 0.523 0.516

0.65 0.329 0.320 0.699 0.697 0.415 0.380 0.389 0.352 0.838 0.842 0.656 0.643

0.70 0.389 0.366 0.751 0.707 0.377 0.269 0.430 0.380 0.939 0.928 0.678 0.603

0.75 0.448 0.404 0.765 0.631 0.287 0.121 0.469 0.380 0.965 0.959 0.586 0.432

Table 2.17: Size and power of the MLWS test after univariate pre-whitening for DGPs 1 to 4 described
in Section 2.4.3 with and without pre-whitening. The bandwidth m is determined by m = bT δc.
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Size

Pre-whitened: X̃t Unfiltered: Xt

DGP 1 2 3 4 1 2

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

250

0.60 0.007 0.007 0.006 0.007 0.005 0.009 0.008 0.011 0.008 0.011 0.005 0.011

0.65 0.007 0.014 0.006 0.010 0.006 0.010 0.008 0.010 0.015 0.024 0.007 0.016

0.70 0.007 0.012 0.008 0.009 0.006 0.006 0.009 0.009 0.019 0.027 0.015 0.020

0.75 0.011 0.008 0.004 0.004 0.003 0.005 0.013 0.013 0.024 0.033 0.020 0.043

500

0.60 0.012 0.013 0.016 0.015 0.016 0.011 0.010 0.013 0.019 0.020 0.011 0.013

0.65 0.014 0.016 0.014 0.022 0.009 0.016 0.012 0.019 0.027 0.032 0.012 0.023

0.70 0.014 0.015 0.014 0.011 0.006 0.007 0.014 0.017 0.038 0.045 0.020 0.039

0.75 0.012 0.014 0.005 0.005 0.004 0.003 0.015 0.012 0.054 0.056 0.039 0.069

1000

0.60 0.015 0.021 0.024 0.029 0.025 0.023 0.019 0.021 0.024 0.032 0.019 0.024

0.65 0.022 0.024 0.035 0.027 0.027 0.022 0.019 0.024 0.049 0.042 0.021 0.028

0.70 0.024 0.015 0.025 0.019 0.014 0.015 0.017 0.019 0.064 0.060 0.025 0.049

0.75 0.020 0.020 0.017 0.015 0.005 0.004 0.018 0.017 0.088 0.086 0.068 0.095

2000

0.60 0.016 0.031 0.021 0.033 0.022 0.037 0.021 0.030 0.027 0.039 0.019 0.028

0.65 0.037 0.033 0.034 0.041 0.033 0.046 0.030 0.033 0.049 0.066 0.020 0.032

0.70 0.027 0.026 0.041 0.035 0.037 0.031 0.029 0.027 0.079 0.081 0.031 0.044

0.75 0.025 0.019 0.029 0.024 0.019 0.009 0.024 0.016 0.139 0.132 0.083 0.118

Power

Pre-whitened: X̃t Unfiltered: Xt

DGP 1 2 3 4 1 2

T δ/ε 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05

0.60 0.034 0.033 0.028 0.030 0.018 0.017 0.038 0.037 0.074 0.081 0.030 0.033

0.65 0.061 0.079 0.041 0.050 0.019 0.027 0.062 0.074 0.171 0.196 0.050 0.066

0.70 0.114 0.117 0.061 0.055 0.020 0.012 0.114 0.117 0.323 0.332 0.078 0.068

0.75 0.181 0.186 0.066 0.057 0.017 0.011 0.176 0.172 0.494 0.496 0.113 0.097

500

0.60 0.110 0.107 0.081 0.078 0.071 0.052 0.106 0.104 0.227 0.209 0.115 0.091

0.65 0.172 0.207 0.119 0.140 0.061 0.076 0.170 0.209 0.408 0.460 0.164 0.189

0.70 0.282 0.296 0.159 0.160 0.062 0.049 0.290 0.305 0.650 0.677 0.237 0.243

0.75 0.358 0.337 0.169 0.143 0.047 0.022 0.367 0.346 0.818 0.811 0.286 0.254

1000

0.60 0.297 0.315 0.236 0.213 0.165 0.162 0.304 0.306 0.477 0.491 0.304 0.298

0.65 0.443 0.423 0.331 0.313 0.202 0.184 0.457 0.460 0.736 0.746 0.450 0.440

0.70 0.538 0.484 0.382 0.327 0.181 0.115 0.556 0.513 0.888 0.888 0.544 0.483

0.75 0.581 0.488 0.405 0.294 0.115 0.054 0.586 0.537 0.947 0.941 0.573 0.514

2000

0.60 0.620 0.638 0.481 0.497 0.382 0.390 0.615 0.640 0.763 0.784 0.597 0.617

0.65 0.776 0.760 0.626 0.602 0.469 0.439 0.781 0.768 0.917 0.922 0.745 0.740

0.70 0.780 0.728 0.653 0.568 0.448 0.298 0.802 0.755 0.967 0.963 0.802 0.752

0.75 0.733 0.623 0.641 0.448 0.323 0.109 0.781 0.670 0.980 0.979 0.810 0.728

Table 2.19: Size and power of the MLWS test after pre-whitening as in Tables 2.4 and 2.5, but for
perturbed series, where Yt = Xt +ϑt, ϑt ∼ N(0,Σϑ), with Σϑ = ((1,0), (0,1))′ and Xt is given by DGPs 1 to 4
as described in Section 2.4.3.
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Model Order Selection for Seasonal/Cyclical Long Mem-
ory Processes
Co-authored with Philipp Sibbertsen.

Under revision for the Journal of Time Series Analysis.

3.1 Introduction

The increasing availability of high frequency data poses new challenges to the analysis of cyclical

time series, since intraday data often exhibits periodic behavior and potentially contains multiple

cycles such as daily and weekly seasonalities. Important examples of those series include intraday

volatilities as discussed by Andersen and Bollerslev (1997), Bisaglia et al. (2003), Bordignon et al.

(2008) and Rossi and Fantazzini (2015) as well as trading volumes and electricity data, where

the aforementioned features are especially pronounced. Recent contributions such as Haldrup

and Nielsen (2006), Soares and Souza (2006) and Diongue et al. (2009) stress the long memory

properties of electricity time series and suggest that Gegenbauer models are useful to analyze

these datasets, because they allow for different degrees of long memory at arbitrary periodic

frequencies. An unresolved issue however, is how to select the number of cyclical components

that have to be modeled. This is why we propose a model selection procedure that consistently

estimates the required model order and demonstrate how it can be applied to the analysis of

electricity load data.

Intuitively speaking, seasonal long memory is an intermediate case between short memory sea-

sonal processes such as seasonal ARMA models and the seasonally integrated model. While a

time series exhibits long memory if it has a hyperbolically decaying autocorrelation function -

the autocorrelation functions of seasonal long memory processes show sinusoidal patterns with

hyperbolically decaying amplitude, so that the dependence between observations at distant pe-

riodic lags is relatively strong.

In general, the term cyclicality refers to any kind of periodic behaviour in a time series that will

cause a peak in its spectrum at the cyclical frequency γ and possibly also at its integer multiples

- the harmonic frequencies. Seasonality on the other hand, is a special case of cyclicalities which

refers to cycles with period lengths S = 2π/γ that coincide with ”natural” time intervals such as

years, weeks or days.

The model class considered here is the k−factor Gegenbauer model given by

k∏
a=1

(1−2cosγaL + L2)da Xt = ut, (3.1)

where ut is a linear short memory process with continuous, bounded and positive spectral density.

The filter (1−2xL + L2)−d is the generating function of the orthogonal Gegenbauer polynomials

mailto: sibbertsen@statistik.uni-hannover.de
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denoted by Cd
s (x):

(1−2xL + L2)−d =

∞∑
s=0

Cd
s (x)Ls,

where the Gegenbauer polynomials are given by

Cd
s (x) =

bs/2c∑
g=0

(−1)g(2x)s−2gΓ(d−g + s)
g!(s−2g)!Γ(d)

.

In this representation the operator b.c returns the integer part of its argument and Γ(x) denotes

the gamma function. The process defined by applying this filter to a white noise sequence vt is

a general linear process with the MA(∞)-representation

Yt = (1−2cosγL + L2)−dvt =

∞∑
s=0

ϕsvt−s, (3.2)

where the coefficients ϕs are the Gegenbauer polynomials Cd
s (cosγa).

The spectral density of (3.1) is given by

fX(λ) = fu(λ)
k∏

a=1

|2(cosλ− cosγa)|−2da . (3.3)

As can be seen from (3.3) for da > 0 the spectral density has poles due to the long memory

behavior at the cyclical frequencies γa with a = 1, ...,k. Under appropriate parameter restrictions,

the k-factor Gegenbauer model is nested in the seasonal/cyclical long memory (SCLM) model

of Robinson (1994).

If ut takes the form of a finite order ARMA process the model coincides with the k-factor GARMA

model (GARMA-k) proposed by Gray et al. (1989) and generalized by Giraitis and Leipus (1995)

and Woodward et al. (1998). Giraitis and Leipus (1995) show that the GARMA-k model is

causal, invertible and has long memory, if |da|< 1/2, ∀ γa ∈ (0,π) and if |da|< 1/4, ∀ γa ∈ {0,π}.

The dependence of the stationarity conditions on the cyclical frequency γa is due to a non-

uniform power law of the spectral density that will be discussed in more detail in Section 3.4.

GARMA models generalize the ARFIMA class by allowing for poles in the spectral density at

arbitrary frequencies γa and they nest most of the seasonal long memory models proposed in the

literature such as the (rigid) SARFIMA model of Porter-Hudak (1990) or the flexible SARFIMA

of Hassler (1994).

It should be noted, that even though the Gegenbauer model assumes cyclicality of a sinusoidal

form, it can also be used to model non-sinusoidal cycles if the model order is increased. The

reason for this is, that non-sinusoidal cycles affect the periodogram not only at the cyclical fre-

quency γa, but also at its harmonics. Therefore, they can be accounted for by adding additional
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Gegenbauer filters at the harmonics of γa.

One method to choose the model order k and the locations γa of the poles is based on the LM

tests of Robinson (1994) and Hassler et al. (2009) who test whether the sample supports a given

specification of (3.1). The null hypotheses are of the form H0 : θ = θ0 versus H1 : θ , θ0, where

θ = {γ1,d1, ...,γk,dk}
′. These procedures are useful in two situations. First, if the theory suggests

a model for the process considered, or the researcher wants to test whether one of the nested

special cases such as a (rigid) SARFIMA fits the data. Second, if the tests are applied on a grid

of values for θ to obtain “confidence sets” that contain the true model with a certain coverage

probability as suggested by Hassler et al. (2009). This second application of the LM-tests allows

to specify the location of periodic frequencies as well as their number, because θ implicitly

contains the model order k. The set of models that is not rejected should thus contain models of

the true model order k0. This grid search procedure has become the most common specification

method. Examples of its application include Gil-Alana (2002) and Gil-Alana (2007).

For larger k however, this model selection procedure suffers from severe dimensionality problems.

Consider a sample of T observations. Assume that the grid for γa has as many points as there are

periodogram ordinates and let nd denote the number of values on the grid for the respective da.

Then the number of points on the combined grid for a k-factor model is nk
d
∏k

a=1 {bT/2c− (a−1)},

which is O
(
{ndbT/2c}k

)
, so that the procedure quickly becomes unapplicable for models with a

larger number of relevant cyclical frequencies. In these situations the model order k is usually

selected discretionary based on a visual inspection of the periodogram. Unfortunately, this often

leads to misspecifications as demonstrated below in our empirical application.

To overcome this problem, we suggest a model order selection procedure based on iterative

filtering and periodogram based tests for persistent cyclical behavior in a time series. The

procedure is based on the observation that the residual series from a correctly specified model

for Xt given in (3.1) with k = k0 Gegenbauer filters has no poles in the periodogram. If the

selected model order k < k0 is too low, on the other hand, the periodogram of the filtered process

still exhibits poles. Consequently, we can apply k-factor Gegenbauer filters of increasing order k,

until no significant periodicity can be detected anymore. A similar sequential testing procedure

has been mentioned by Hidalgo and Soulier (2004). However, the performance of this procedure

has not been thoroughly studied, yet. We therefore include it in our Monte Carlo analysis as a

benchmark.

Section 3.2 discusses our model order selection procedure in more detail. To make the procedure

feasible, we need a test that can be used after each filtering step to determine whether the

residual process still contains significant persistent periodicity. Such a test for periodicity of

unknown frequency is suggested in Section 3.3. We also need estimators for f (λ), γa and da that

will be discussed in Section 3.4. Subsequently, we provide a Monte Carlo analysis of the finite

sample properties of our model order selection procedure and apply it to a Californian electricity

load series.
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3.2 Infeasible Automatic Model Selection by Sequential Filtering

To introduce the main idea of our procedure let the partial parameter vector θi = (γ1, ...,γk(i) ,d1,

...,dk(i))′ contain the true cyclical frequencies γa and the respective memory orders da at these

frequencies for some non-negative integer k(i) ≤ k0, where k0 denotes the true model order. In

addition to that, denote the Gegenbauer filter by GG(γa,da) = (1− 2cosγaL + L2)da and define

∆k(i)
(θi) =

∏k(i)

a=1 GG(γa,da). Then

∆k(i)
(θi)Xt =



∏k0
a=k(i)+1

GG(γa,−da)ut, if k(i) < k0

ut, if k(i) = k0∏k(i)

a=k0+1 GG(γa,da)ut, if k(i) > k0.

(3.4)

As one can see, if the k(i)-factor Gegenbauer filter ∆k(i)
(θi) is applied to the observed series Xt

and k(i) < k0, than the filtered process is a Gegenbauer process of order k0−k(i). If k(i) = k0 on the

other hand, the filtered series is simply the short memory process ut. Finally, if a filter of an

order k(i) > k0 is applied to the series, the residual process displays cyclical antipersistence with

k(i)− k0 zeros in its spectrum at the frequencies corresponding to the redundant filters.

This is the observation that our model selection procedure is based upon. Since the spectrum

of the short memory process and that of the residuals from an overspecified model are bounded,

a test for the null hypothesis that the spectrum is bounded will reject as long as the model is

underspecified, because the k0−k(i)-factor Gegenbauer process still exhibits poles in the spectrum.

Assume for now that such a test statistic exists and denote it by G∗. We can than use this test in

a sequential procedure to determine the model order of the Gegenbauer process. Starting with

the observed series Xt, we test the null hypothesis, that Xt is short memory with k(1) = 0. If this is

the case, a test against poles in the spectrum will not be rejected and the procedure terminates.

But if the true model order k0 is larger than k(1), the test will reject. We then remove the largest

peak from the spectrum by applying the corresponding Gegenbauer filter GG(γa,da). If Xt is of

order k(2) = 1, the residuals obtained will be short memory, so that the G∗-statistic will no longer

reject. Otherwise we proceed with an additional filtering step. Formally, we set k(1) = 0 and test

the null hypotheses

H0 : k0 = k(i) vs. H1 : k0 > k(i) (3.5)

repeatedly for k(i) = i−1 until the null hypothesis cannot be rejected anymore. The smallest k(i)

for which the null hypothesis of no significant periodicity cannot be rejected anymore is than

selected as the model order:

k̂ = min
{
k(i) such that G∗ < gcrit

}
, (3.6)

where gcrit is the critical value for G∗.
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To make this procedure feasible, we need estimators for γa and da that are consistent under the

null hypothesis as well as under the alternative - otherwise the procedure could not be applied

sequentially. The latter can be achieved using semiparametric estimators for the fractional ex-

ponent da as in Arteche and Robinson (2000) and semiparametric estimators of the location of

the pole γa as in Yajima (1996) and Hidalgo and Soulier (2004). A test G∗ that allows to test

whether there is unmodeled cyclical long memory in the process is presented in the next section.

3.3 Testing for Periodicity of Unknown Frequency

Note that under the null hypothesis in equation (3.5) the filtered process ∆k(i)
(θi)Xt is a short

memory process. Define the periodogram of the weakly dependent linear process Zt =
∑∞

j=0 a jzt− j

with zt
iid
∼ (0,σ2

z ) and
∑∞

j=0|a j| <∞ as

I(λ) = (2πT )−1

∣∣∣∣∣∣∣
T∑

t=1

Zte−iλt

∣∣∣∣∣∣∣
2

, with λ ∈ [−π,π] .

Here [.] denotes the closed interval. Further denote by I j the periodogram evaluated at the

Fourier frequency λ j =
2π j
T with j = 1, ...,n and n = b(T −1)/2c.

Tests for periodicity at an unknown frequency are based on the well-known result that the

periodogram ordinates of weakly dependent linear processes are approximately equal to f (λ j)

times an exponentially distributed random variable with mean one:

I j

f (λ j)
appr.
∼ Exp(1). (3.7)

A detailed discussion of traditional periodogram based tests for periodicity can be found in

Priestley (1981), pp. 406-415. We will focus on the large sample g-test of Walker (1914) for

the null hypothesis of a Gaussian iid-sequence (H0 : Zt = zt). In this case the relationship in

(3.7) holds without an approximation error and we have f (λ) = σ2
z/(2π). Walker’s large sample

g-statistic is based on the maximum of the periodogram and it is defined as

g∗Z =
2πmax(I j)

σ̂2
z

, (3.8)

where σ̂2
z is a consistent estimator of σ2

z . Due to the consistency of σ̂2
z , the distribution of g∗Z is

asymptotically the same as if σ2
z was known. Since the periodogram ordinates I j are independent

for iid-sequences, the distribution of g∗Z for every fixed n is given by

p(g∗Z > z̃) = 1− (1− exp(−z̃))n,

which converges suitably standardized to a Gumbel distribution (cf. Johnson et al. (1995), pp.
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4-11).

As shown in Proposition 3.1 below, Walker’s g-test can be extended to test the null hypothesis

of a stationary weakly dependent process against the alternative of cyclical long memory, if σ̂2
z

in (3.8) is replaced by a consistent estimate of the spectral density f (λ). In finite samples the

distribution of the periodogram ordinates normalized by the spectral density is unknown for

non-iid series, so that we can no longer determine the exact distribution of the test statistic.

Asymptotically however, the periodogram ordinates are independent and exponential distributed

(cf. Giraitis et al. (2012), Theorem 5.3.1). We therefore have to work with the limiting Gumbel

distribution and normalize the test statistic by subtracting log(n). Then the modified G∗-statistic

is defined as

G∗Z = max

 I j

f̂Z(λ j)

− logn. (3.9)

To obtain consistency of the test against cyclical long memory effects, we require the following

assumptions.

Assumption 3.1. The fractional exponents are restricted to 0 < da < 1/2 for all γa ∈ (0,π) and

0 < da < 1/4 for γa ∈ {0,π}.

Assumption 3.2. The fractional exponents da in (3.1) are bounded away from zero: da > ca > 0,

where ca is a small constant ∀ a = 1, ...,k.

Assumption 3.3. For k(i) = k0, f̂Z(λ)
p
→ fZ(λ) and for k(i) < k0 the estimator f̂Z(λ) is bounded for

all λ ∈ [0,π].

First of all, under Assumption 3.1 the process is stationary, so that the spectral density is well

defined. Assumption 3.2 guarantees the identifiability of the poles and is the same as in Hidalgo

and Soulier (2004). Finally, we require the spectral density estimate to be consistent under the

null hypothesis and bounded under the null and the alternative. For the modified G∗-test we

then obtain the following result.

Proposition 3.1. For ∆k(i)
(θi)Xt characterized by (3.4):

1. If k(i) = k0 and under Assumptions 3.1 and 3.3, we have limT→∞P(G∗ > z̃) = 1−exp(−exp(−z̃)).

2. If k(i) < k0 and under Assumptions 3.1, 3.2 and 3.3, we have limT→∞P (G∗ < c̃) = 0, for all

c̃ <∞.

Proofs of the main results are given in the appendix. Proposition 3.1 establishes the limiting

Gumbel distribution of the G∗-statistic under the null hypothesis and the consistency under the

alternative. We can therefore use this test to determine whether all significant periodicities have

been removed after the i-th iteration step.
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Note that the common g∗ statistic has power against weakly dependent processes as well as

against cyclical long memory processes. The G∗-test on the other hand is constructed so that

it is robust to weak dependence which makes it suitable for the selection of the order in model

(3.1).

3.4 Local Semiparametric Estimators of Cyclical Frequencies and

Memory Parameters

We derived the iterative model selection procedure based on the modified G∗-test under the

assumption that consistent estimators of the spectral density f (λ), the cyclical frequencies γa

and the memory parameters da are available. In this section, we provide a discussion of the

relevant methods available from the literature and the necessary modifications. Details on the

selection of bandwidth parameters in practical applications will be discussed in Section 3.5 and

are therefore omitted here.

First consider the estimation of the spectral density. Usually f (λ) is estimated through kernel-

smoothed versions of the periodogram. For our purpose, however, it is important that the

estimate f̂ (λ j) is very smooth in small samples and a single large spike in the periodogram has

little impact on the estimated spectrum in its immediate neighborhood. This is why we use a

logspline spectral density estimate as proposed by Cogburn and Davis (1974), who showed that

this estimator is asymptotically equivalent to a kernel spectral density estimate. In particular,

we use the maximum likelihood logspline spectral density estimator of Kooperberg et al. (1995)

and regression splines.

Following Kooperberg et al. (1995), define Ah = [(h−1)π/HT ,hπ/HT ) as a subinterval of [0,π],

for 1 ≤ h < HT and set AHT = π. The function g defined on [0,π] is a spline function if it is a

polynomial of degree ν on each subinterval Ah and if it is qν = max(0, ν− 1) times continuously

differentiable on [0,π].1 A spline function can be expressed in terms of Basis-splines denoted by

Bi, 1 ≤ i ≤ I where I = (ν+ 1)HT − (qν + 1)(HT −1) such that

g(λ,β) = β1B1(λ) + ...+βI BI(λ).

For further details on B-splines cf. De Boor (1978). The basis for the application of splines in

spectral density estimation is the result in (3.7). For weakly dependent linear processes Zt, the

periodogram ordinates are asymptotically uncorrelated and I j = f (λ j)Q j, where Q j is exponential

distributed with mean one. For the logarithm of I j follows that log I j = ϕ(λ j)+q j, where q j is the

log of the exponential variable Q j and ϕ(λ j) is the log-spectral density. This linearization allows

to apply a spline function g(λ,β) to estimate ϕ(λ). The spectral density estimate f̂ (λ) = exp(g(λ, β̂))

is then obtained after reversing the log-transformation.

Kooperberg et al. (1995) suggest a maximum likelihood estimator for f (λ) that is directly based

1It is common to use cubic splines, where the degree of the local polynomials is ν = 3. This is also the case which
we consider in our simulation studies and empirical application.
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on the periodogram. They show that from (3.7) the observed periodogram ordinate I j has the

log-density

ψ(I j,β) ∝
[
ϕ(λ j) + I j exp

(
−ϕ(λ j)

)]
≈

 I∑
i=1

βiBi(λ j) + I j exp

− I∑
i=1

βiBi(λ j)


 .

Therefore, the log-likelihood of the observed periodogram ordinates is given by

l(β|I1, ..., In) =
∑n

j=1ψ(I j,β). Since the spectral density is symmetric around zero and periodic,

β is restricted to the subspace Ω of RI such that g′(0) = g′′(0) = g′(π) = g′′(π) = 0. The number of

segments in the partition (A1, ...,AHT ) is determined according to HT = b1 + T ζc, with 0 < ζ < 1/2.

The maximum likelihood estimator is given by

β̂ML = argmax
β∈Ω

l(β). (3.10)

For a linear process Zt =
∑∞

j=1 a jzt− j, with zt ∼ N(0,σ2
z ) where

∑∞
j=1 |a j|| j|p <∞ for some p > 1/2,

Kooperberg et al. (1995) show that ||ϕ̂−ϕ|| = Op(
√

I/T + I−p). So that the consistent spectral

density estimate required in Proposition 3.1 is available. Since the spline function g(λ,β) is con-

tinuous and differentiable on [−π,π] by definition, it is also bounded as required for Proposition

3.1. To enforce the symmetry condition g′(0) = g′′(0) = 0 at the zero frequency, we maximize the

likelihood l(β|I−n, ..., In) =
∑n

j=−nψ(I j,β) over all Fourier frequencies in [−π,π] for a periodic spline,

so that also g′(π) = g′′(π) = 0. Accordingly, the number of B-splines I is determined using 2HT

segments. Due to the symmetry of the spectrum this does not affect the consistency or limit

distribution.

Even though this maximum likelihood estimator is asymptotically the most efficient, the esti-

mation can be time-consuming for large datasets. Alternatively a regression spline can be used

that is defined by

β̂ =argmin
β∈Ω

n∑
j=−n

[
log(I j) +η−g(λ j,β)

]2
, (3.11)

where the Euler-Mascheroni constant η enters the loss function because E(log(I j)) = log( f (λ j))−η.

Since this OLS estimator has a closed form solution, this approach does not require numerical

optimization. Here, we use the OLS estimator to determine starting values for the numerical

optimization procedure used by the ML estimator.

With regard to the estimators for the location parameters γa and the memory parameters da the

following assumptions are required in addition to Assumption 3.2 to ensure consistency.

Assumption 3.4. For every frequency γa ∈ [0,π], there exists an α∗ ∈ (0,2], such that as λ→ 0,

f (γa + λ) = Gaλ
−2δda(1 +O(λα

∗

)), where Ga ∈ (0,∞) and δ = 2 if γa ∈ {0,π} and δ = 1, otherwise.

Additionally, in a neighbourhood (−δ,0)∪ (0, δ) of γa, f (λ) is differentiable and | d
dγ f (γa + λ)| =
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O(λ−1−2da), as λ→ 0.

Assumption 3.5. The bandwidth m satisfies 1
m +

m1+2α∗ (log(m))2

n2α∗ → 0, as T →∞.

Assumption 3.4 is required to ensure that the spectral density and its derivative are sufficiently

smooth and neighbouring poles are sufficiently far away from each other so that their effects

on the periodogram do not interfere. This is required in addition to Assumption 3.2 for an

estimation of the location of the cyclical frequencies with the method of Hidalgo and Soulier

(2004). Assumption 3.5 is a modification of Assumption B.4 in Arteche and Robinson (2000)

that they discuss for the case of symmetric poles. The parameter m is used by the generalized

local Whittle estimator that will be introduced below. This generalized local Whittle estimator

of Arteche and Robinson (2000) is consistent for the k-factor Gegenbauer process (3.1) under

Assumptions 3.4 and 3.5.

If a significant periodicity is detected, we have to estimate the frequency at which it occurs.

The maximum of the periodogram is shown to be a consistent semiparametric estimator for

the cyclical frequencies γa in (3.1) by Yajima (1996) under Gaussianity and by Hidalgo and

Soulier (2004) if Assumptions 3.1 and 3.2 are fulfilled and the innovation process ut has finite

8-th moments. To estimate γa we therefore use

γ̂a = argmax
λ j

Ik(i)(λ j), (3.12)

where Ik(i)(λ j) denotes the periodogram of the residual process ∆k(i)
Xt. Note that due to the

sequential nature of our model selection procedure, we only estimate the location of one of the

remaining (k(i) − k0) poles in every iteration of the procedure. However, the order in which the

poles are identified has no effect on the consistency of the procedure since the Gegenbauer filters

are commutative.

To estimate the fractional exponents da, we use a generalized local Whittle approach similar to

that suggested by Arteche and Robinson (2000). Since they consider an asymmetric model that

allows for different fractional exponents on each side of the pole, they estimate the exponents

separately with a generalized local Whittle estimator using m frequencies on the respective side

of the pole. For our filtering procedure we determine the bandwidth m = b1 + T ξc by changing

the bandwidth parameter ξ that is subject to 0 < ζ < ξ < 1, where ζ is the bandwidth parameter

that determines the number of knots in the logspline spectral density estimation.

For γa close to 0 or π, there can be less than m Fourier frequencies on the respective side of γa

that is close to the boundary. Therefore, we conduct the estimations using mq ≤m periodogram

ordinates on the respective side of γa, where mq is the maximal number of Fourier frequencies

less than or equal m that is available at that side of the pole. The estimator is defined as

d̃a = argmin
da

(R1(da,m1) + R2(da,m2)) (3.13)

for q = 1,2, where Rq(da,q,mq)= logC̃q(da,q)− 2da,q
mq

∑mq

j=1 logλ j, C̃1(da,1)= 1
m1

∑m1
j=1λ

2da,1
j I(γa + λ j) and
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C̃2(da,2)= 1
m2

∑m2
j=1λ

2da,2
j I(γa−λ j).

Even though Arteche and Robinson (2000) assume that the locations of the poles are known,

Hidalgo and Soulier (2004) show for the GPH estimator that the estimation of the cyclical

frequencies does not affect the limit distribution of the estimator, which suggests that the same

is the case for the local Whittle estimator.

Note that the estimator of Arteche and Robinson (2000) is restricted to γa ∈ (0,π). As Hidalgo

and Soulier (2004) point out, the power law of the spectral density is |λ−γa|
−2δda , where δ = 2 if

γa ∈ {0,π} and δ= 1 otherwise. For this reason let j∗(T ) denote a positive integer that is increasing

in T but very slowly such that j∗/T → 0 as T →∞. Define

d̂∗a = d̂a/δ̂, (3.14)

where δ̂ = 1 + I(γ̂a<λ j∗ or γ̂a>π−λ j∗ ). The function I(γ̂a<λ j∗ or γ̂a>π−λ j∗ ) is an indicator function that

takes on the value 1, if γ̂a is one of the j∗ Fourier frequencies closest to 0 or closest to π. Since
j∗

T + 1
j∗ → 0, we have λ j∗ → 0 and λn− j∗ → π, so that δ̂ is a consistent estimator for the power law

coefficient δ.

From Theorem 2 in Arteche and Robinson (2000) and Assumptions 3.4 and 3.5 follows imme-

diately that we have d̂∗a
p
→ da for da ∈ (−1/2,1/2). For the case of a pole at 0, Velasco (1999)

shows, that the consistency extends to the interval da ∈ (−1/2,1) under conditions very similar to

those in Robinson (1995a) and Arteche and Robinson (2000). This suggests that our procedure

could also be applied within this interval. For poles at the origin, both Shimotsu and Phillips

(2005) and Abadir et al. (2007) suggest modified local Whittle estimators that are consistent

and asymptotically normal for non-stationary linear processes, so that our approach could be

extended along these lines as well.

3.5 Feasible Automatic Model Order Selection

With the estimators discussed in the previous sections the infeasible sequential filtering procedure

becomes feasible. It is carried out in the following steps:

Step 0: Initialize the procedure with i = 1.

Step 1: Set k(i) = i−1 and apply the filter ∆k(i)
to the time series Xt.

Step 2: Test whether there are any significant poles in the spectrum of ∆k(i)
Xt using the

modified G∗-test in (3.9). Proceed to Step 3 if the null hypothesis H0 : k0 = k(i) is

rejected - otherwise go to Step 5.

Step 3: Estimate γa and da using the estimators defined in (3.12) and (3.14).

Step 4: Set i = i + 1 and go back to Step 1.

Step 5: Estimate k with the estimator given in (3.6).
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Due to the consistency of the modified G∗-test established in Proposition 3.1, it asymptotically

has a power of 1 if k(i) < k0, so that the test rejects until k(i) = k0. If k(i) = k0, then there is a

probability of α that a type I error occurs and our procedure selects a model order of k̂ > k0.

To achieve consistency for k̂, we follow Bai (1997) and make the size dependent on the sample

size T so that α(T )→ 0. Under these conditions, we can establish the results in Proposition 3.2

below.

Proposition 3.2. Suppose that Xt is given in (3.1) and let k̂, G∗, f̂ (λ), γ̂a and d̂a be defined as

in equations (3.6), (3.9), (3.10), (3.12) and (3.14) and denote by gcrit(α) the critical value of the

G∗ test at the significance level α. Then under Assumptions 3.1 to 3.5 we have:

1. For a fixed significance level α, P(k̂ = k0) = 1−α.

2. For any non-increasing α(T ) such that α(T )→ 0, but gcrit(α(T )) = o(n2ca − log(n)) we have

P(k̂ = k0)→ 1, as T →∞.

A proof for Proposition 3.2 can be found in the appendix. Of course α(T ) = α can be kept

constant in empirical applications.

After the selection of appropriate long memory dynamics, the correct ARMA model orders p

and q of a GARMA-model can be selected using an information criterion if the selected model

is re-estimated parametrically using an approximate Whittle likelihood procedure. Giraitis and

Leipus (1995) prove the consistency of this estimator. The semiparametric estimation results

can be used as starting values for the numerical optimization.

As usual for semiparametric estimators there is the problem of an optimal bandwidth choice. We

have to select ζ that determines the number of knots in the smoothing spline via HT = b1 + T ζc,

ξ that determines the usual bandwidth m = b1 + T ξc and j∗ that is used for the estimation of

the power law coefficient δ. In the case of only a single pole at the origin the MSE-optimal

bandwidth m could be selected with the procedure of Henry and Robinson (1996) and Henry

(2001). For multiple poles however, no such results are available. An additional complication in

the k-factor Gegenbauer model is, that the parameter estimates might be negatively effected in

small samples if the selected bandwidth is too large, so that Assumption 3.4 is not sufficient to

inhibit that the effects from neighbouring poles interfere within the selected bandwidth. Hassler

and Olivares (2013) show that a conservative deterministic bandwidth selection outperforms

data-driven approaches in most situations.

In addition to that, simulation results not reported here show, that k̂ > k0 mainly occurs in

the presence of short memory dynamics if f̂ (λ) is not flexible enough to remove peaks in the

spectrum that originate from the short memory component. This typically leads to a selection

of several cyclical frequencies γ̂a within a very narrow frequency interval. We thus recommend

to repeat the model selection procedure using a grid of different values for ξ and ζ and then to

select the largest model with clearly distinct cyclical frequencies γ̂a. This is the strategy we will

follow in our empirical application in Section 3.8. With regard to the choice of j∗, simulation
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studies show, that j∗ =
√

T works well for the sample sizes considered in the Monte Carlo study,

so that λ j∗ = 2π√
T

. Note that the distribution of the j, for which I j is maximal if there is a pole

at γ = 0 seems to be independent of the sample size T , but strongly dependent on the memory

parameter d. Also, an overestimation of the da causes the appearance of zeros in the spectrum

of the filtered process. Therefore, it will not cause an overestimation of the model order.

Situations with k̂ < k0 can be identified by plotting the autocorrelation function of the filtered

process ∆k̂Xt. If the selected model is specified correctly, the hyperbolically decaying sinusoidal

pattern should be removed.

3.6 Model Order Selection in Presence of Deterministic Seasonality

So far we have assumed that the cyclicality of the series is purely stochastic. In practice however,

it is likely that there are deterministic as well as stochastic cyclical effects. In this case the mean

E[Xt] of the process in (3.1) is no longer constant. Instead, it is given by

µt =

S∑
s=1

Dstµ
(s), (3.15)

where S is the cycle length, the µ(s) denote the cyclical means and Dst is an indicator variable

that takes the value 1, for t = s + S (q−1), where q = 1, ...,r and r = bT/S c.

Similar to stochastic seasonality, deterministic cycles cause peaks in the (pseudo-) spectrum of

the process. However, Arteche (2002) shows that these effects only appear at a single Fourier

frequency at the cyclical frequency and each of its harmonics. Furthermore, since the generalized

local Whittle estimator employs only periodogram ordinates to the left and to the right of

these frequencies, it is robust to these effects. In a recent application of Gegenbauer models

Garćıa-Enŕıquez et al. (2014), use this observation to estimate the stochastic component of the

seasonality prior to the deterministic one. Here, we do not assume any prior knowledge about

the order of the process and the period lengths of the cycles. We therefore employ the G∗-test

to detect omitted cycles, which is likely to reject if there are peaks in the periodogram due to

deterministic effects. This is why we proceed in the opposite order to Garćıa-Enŕıquez et al.

(2014) and remove potential deterministic cycles by cyclical demeaning - prior to the application

of the sequential-G∗ procedure. In the context of seasonally integrated processes, the effect of

seasonal demeaning has been studied by Abeysinghe (1991), Abeysinghe (1994) and Franses

et al. (1995). Here, we treat stationary processes that are correctly specified and the demeaning

can be conducted using simple OLS estimates of the cyclical means µ(s). Afterwards, the model

selection procedure is carried out on the residuals of this regression.

To see why this approach will not affect our model selection procedure asymptotically, consider

the following argument of Murphy and Topel (2002) on step-wise estimation. In the first step we

estimate the partial parameter vector θ1 by minimization of some loss function LF1(X1, ...,XT |θ1)

and in the second step we minimize the loss function LF2(X1, ...,XT |θ2, θ̂1) with respect to the
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partial parameter vector θ2, conditional on θ̂1. If θ̂1
p
→ θ1, the estimation in the second step is

asymptotically equivalent to the case where θ1 is known. Therefore, Murphy and Topel (2002)

show that - in contrast to the asymptotic distribution - the consistency of θ̂2 is not affected by

the step-wise estimation. Our procedure does not rely on the distributional properties of the

estimators employed, but only on the distribution of the normalized periodogram ordinates of

a weakly dependent process. Therefore, asymptotically our procedure remains unaffected, if it

is applied to the residuals from a regression on seasonal dummies. The finite sample effects will

be considered in the Monte Carlo study in Section 3.7.

Note that the same argument applies to the iterative nature of our procedure. In the first step the

G∗-test is applied to the original series and d1 as well as γ1 are estimated from the original data.

From the second step onwards, we proceed with the residual series ∆k(i)
(θ̂i)Xt. Nevertheless, since

every estimator is consistent given a consistent estimation of the parameters in the preceding

steps, the succeeding estimator remains consistent, too and the G∗-test, that is based on the

exponential distribution of the normalized periodogram ordinates, remains unaffected according

to Slutsky’s theorem.

3.7 Monte Carlo Study

In this section we conduct Monte Carlo experiments to evaluate the performance of our model

order selection procedure. To separate the performance of the sequential filtering procedure

from that of the modified G∗-test, we first use Walker’s g-test to detect significant periodic

behavior. We start by considering the case of a single cyclical frequency and investigate how the

performance of the selection procedure depends on the location of the pole and the magnitude

of the long memory parameter. Then, we analyze how the procedure performs if the number

of poles is increased. Subsequently, we replace Walker’s g-test with the modified G∗-test and

analyze the robustness of the selection procedure to short memory dynamics. We also consider

the effect of seasonal demeaning and we compare the performance of our G∗-test to the alternative

approach suggested by Hidalgo and Soulier (2004).

All results shown are obtained with M=5000 Monte Carlo repetitions. Simulations from the

Gegenbauer process are generated using its AR(∞)-representation with a truncation after 1000

lags and a burn-in period of 1000 observations. In all experiments the shorter series uses only

the first T1 < T2 observations of the longer series. The DGP is always the k-factor Gegenbauer

process from equation (3.1). Hereafter, we will use the term ”power” to refer to the ability of

the procedure to identify the true model order k0.

3.7.1 Power Depending on the Location of the Pole and the Number of Cyclical

Frequencies

First, we consider the 1-factor Gegenbauer process (1−2cosγL+L2)dXt = εt that does not contain

any short memory dynamics. In this case the filtered process ∆k(i)
Xt equals the white noise
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sequence εt ∼ N(0,1) under the null hypothesis. Consequently, we can use Walker’s original large

sample statistic (3.8) instead of the modified G∗-statistic (3.9) to determine whether the filtered

process contains significant periodicity. We allow the fractional exponent d that determines the

shape of the pole to increase in steps of 0.05 from 0 to 0.45 and we shift the location of the pole

in 14 steps from γ = 0 to γ = π. Because of the change of the power law parameter δ discussed

above the results for γ = 0 and γ = π are simulated with half of the d reported. The sample sizes

considered are given by T ∈ {500,1000,2000,5000}. Table 3.4 in the appendix gives a detailed

overview of the results obtained in these simulations. A graphical summary of the results is

depicted in Figure 3.1.
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Figure 3.1: The DGP is (1− 2cosγL + L2)dXt = εt. On the left the cyclical frequency is fixed to γ = π/2
and T is increased. In the middle the sample size is fixed to T = 1000 and d is increased. In the graph on
the right d = 0.2 is fixed and T is increased. We set ξ = 0.7.

Since we are interested in the effects of γ, T and d, we always keep one of the parameters fixed

and show how the power depends on the other two. The graph on the left shows power curves

if the pole is fixed to the frequency γ = π/2. It can be seen, that the power of the selection

procedure is increasing in the magnitude of the fractional exponent d and the sample size T .

For d ≤ 0.05 however, it barely increases. This is because the location of the pole can only

be identified consistently if the fractional exponent is bounded away from zero as stated in

Assumption 3.2. Note that for the reasons discussed in Section 3.5, the maximal power that

the selection procedure can achieve in practical applications is 1−α. It is clear to see that the

procedure is slightly conservative in the size case where d = 0.

The graph in the middle shows the power for a fixed sample size of T = 1000 across the spectrum of

possible periodic frequencies γ and for different values of d. One can see that the conservativeness

of the procedure and the non-existing power for small d occur independent of the location of the

periodic frequency. For smaller d the power is increasing with increasing distance of γ from π/2.

Only for γ ∈ {0,π} there is a drop in power again. This is caused by the fact that the fractional

exponents at frequencies further away from the boundaries are estimated by using 2m Fourier

frequencies - that is m frequencies on either side of the pole. At the boundaries however, we

can only use ma < m Fourier frequencies on one side of the pole so that the estimator for the
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fractional exponent has a higher variance at these frequencies.

In the graph on the right in Figure 3.1 we keep d fixed at 0.2 and the curves show the power across

frequencies for increasing T , so that one can see that the increasing power in T remains intact

across all frequencies and the power does not depend on the cyclical frequency γ asymptotically.
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Figure 3.2: The DGP is
∏k

a=1(1− 2cosγaL + L2)da Xt = εt with γa = (πa)/(k + 1). Power curves are shown
for k ∈ {1,2,3,4} and increasing sample sizes for the case when ξ = 0.6.

Since the purpose of our procedure is to select the true model order k0 if there are multiple

cyclical frequencies, we now allow the number of cyclical frequencies k to take values from 1 to

4. The DGP is given by
∏k

a=1(1− 2cosγaL + L2)da Xt = εt, but the specification of the test, the

sample sizes and the values of the fractional exponents considered are the same as before. We set

γa = (πa)/(k + 1), so that the seasonal frequencies are equally spaced and the outer minimal and
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maximal periodic frequencies have the distance π/(k + 1) to the boundaries. All long memory

parameters are kept equal at da = d. The results of this experiment are shown in Figure 3.2

for m = bT 0.6c. Results for other bandwidths can be found in Table 3.5 in the appendix. From

Figure 3.2, we can observe that the power is lower for higher k if d and T remain constant.

Especially for small values of d repeated β-errors can lead to the selection of a lower model

order. Nevertheless, it can easily be seen that the procedure remains consistent if k is increased.

If one considers Table 3.5, one can observe that initially a larger bandwidth parameter ξ leads

to a higher power, because the estimates of the da are more precise. For ξ = 0.7 however, the

power starts to become non-monotonic in d. This is due to interference effects from neighboring

poles. Nevertheless, asymptotically the procedure selects the right model order with probability

1−α. So the experiments show that the sequential-g procedure also works well for larger k. To

avoid interference effects in empirical applications setting ξ < log((2π)/S )−log(4π)
log(T ) + 1 can be a useful

rule of thumb, where S is the period of any suspected seasonality. This choice assures that the

frequency band considered on each side of the poles has a width smaller than half of the distance

between two neighboring harmonics.

3.7.2 The Influence of Short Memory Dynamics and Seasonal Demeaning

So far we have only considered the restricted version of the model selection procedure that is

based on Walker’s original large sample g-test given in (3.8). Under the null hypothesis, this test

assumes that the process is iid. Since short memory dynamics are present in most applications,

we now consider the case in which the innovations in (3.1) show stationary ARMA behavior and

the modified G∗-test is used instead. The simulated DGP is (1−φL)(1−2cos
(
π
2

)
L + L2)dXt = εt.

This means the short memory component of the process takes the form of an AR(1). We consider

the case of one pole at γ = π/2 with increasing fractional exponents and increasing persistence of

the short memory process. It is well known that the semiparametric estimators of the fractional

exponents da are asymptotically unaffected by the presence of short memory dynamics. The

critical part of our procedure is the performance of the g-test. Apart from the baseline case in

which we use the g-test, the number of segments in the spline used for the G∗-test is determined

according to HT = bT 1/4c.

Figure 3.3 compares the performance of our sequential procedure using the g-test with the

performance if the modified G∗-test from (3.9) is used. A complete overview of the results is

given in Table 3.4 in the appendix, where we also consider the seasonal autoregressive model

(1− φL4)(1− 2cos
(
π
2

)
L + L2)dXt = εt. In quarterly data a period of length 4 corresponds to an

annual cycle. The spectral density of this seasonal AR-component has a peak at π/2, which

coincides with the peak of the seasonal long memory process.

If we focus on the results for the g-test in a sample of T = 500 observations on the left hand side

of Figure 3.3, we observe that the test maintains good size and power for small values of φ. For

larger values of φ however, if d = 0 the size increases with φ and the procedure loses its ability

to identify the correct model order k0. As we noted in Section 3.5, the procedure tends to find
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Figure 3.3: Power curves of the sequential G∗-procedure compared to the procedure using Walker’s large
sample g-test, for (1− φL)(1− 2cos

(
π
2

)
L + L2)dXt = εt with increasing autoregressive parameters φ. The

number of knots in the spline is determined as HT = bT 1/4c.

spurious seasonal peaks if short memory dynamics are present. If the G∗-test is used on the other

hand, we see that the procedure maintains good size and power properties for all sample sizes.

Only for larger values of φ these deteriorate slightly, but this affect can be mitigated easily if the

bandwidth parameter ζ is increased further so that the logspline estimate is more flexible. As

can be seen for the case when φ = 0, this additional flexibility comes at the cost of a power loss,

so that in empirical applications the bandwidth has to be chosen carefully. Overall however, we

find that the sequential G∗-procedure performs well - especially if the short memory dynamics

are only moderately persistent.
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HS-Test G-Test

T m/φ 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6

500

0.60 0.11 0.19 0.41 0.66 0.85 0.94 0.98 0.02 0.02 0.02 0.02 0.03 0.05 0.10

0.65 0.09 0.23 0.56 0.80 0.92 0.97 0.99 0.02 0.02 0.02 0.03 0.03 0.04 0.09

0.70 0.07 0.23 0.58 0.81 0.92 0.97 0.99 0.02 0.03 0.02 0.03 0.03 0.05 0.09

0.75 0.06 0.15 0.41 0.65 0.79 0.89 0.95 0.03 0.02 0.03 0.03 0.03 0.05 0.09

0.80 0.07 0.08 0.14 0.22 0.30 0.37 0.43 0.02 0.03 0.02 0.03 0.03 0.05 0.09

5000

0.60 0.06 0.09 0.17 0.31 0.56 0.80 0.92 0.05 0.05 0.05 0.06 0.05 0.06 0.08

0.65 0.05 0.12 0.38 0.69 0.87 0.96 1.00 0.05 0.05 0.05 0.05 0.05 0.05 0.08

0.70 0.04 0.29 0.71 0.92 0.98 1.00 1.00 0.04 0.05 0.05 0.05 0.05 0.06 0.09

0.75 0.05 0.52 0.86 0.97 1.00 1.00 1.00 0.05 0.04 0.04 0.05 0.05 0.06 0.10

0.80 0.05 0.51 0.80 0.94 0.99 1.00 1.00 0.05 0.05 0.05 0.05 0.05 0.06 0.09

Table 3.1: Size comparison of the G∗-Test and the HS-Test for cyclical long memory in seasonal AR(1)
process (1−φL4)Xt = εt. The number of knots in the spline is determined as HT = bT 1/4c.

From Table 3.4 it can easily be seen that these results carry over to the case of seasonal short

memory dynamics since the modified G∗-test is designed to detect cyclical long memory irre-

spective of the short memory dynamics. Also, even though we only present results for AR(1)

dynamics here, the results carry over to more general ARMA processes.

As discussed in Section 3.1, Hidalgo and Soulier (2004) outline another iterative procedure to

determine the model order in (3.1). It consists of the following step: i.) Find the largest

periodogram ordinate and test for da = 0 at this Fourier frequency. ii.) If the null hypothesis is

rejected, add the respective Gegenbauer filter to the model - otherwise terminate the procedure.

iii.) Exclude the neighbourhood of the last significant pole from the periodogram and repeat

the procedure from i.) onwards.

Both, the HS-procedure and ours are sequential testing procedures. The main difference between

them is that Hidalgo and Soulier (2004) test for da = 0 whereas we employ a non-parametric test

for the significance of peaks in the periodogram. While their approach has the advantage that

it does not require a filtering step, it has the disadvantage that its size will suffer from the

slow convergence of semiparametric estimates for da to their asymptotic Normal distributions

(cf. Hassler and Olivares (2013)). Therefore, it can be expected to overestimate the true model

order. In addition to that, our approach is designed to account for short memory dynamics,

that will also affect tests for da = 0 in finite samples. We therefore compare the performance

of the G∗-test with that of a test for da = 0 on the basis of d̂a estimated through (3.14). Table

3.1 displays the results of this procedure for increasing sample sizes and seasonal autoregressive

effects.

As expected, the HS-test is oversized for T = 500, even if no autoregressive effects are present
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γ π/2 π/4
T µ4/d 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

500

0∗ 0.02 0.04 0.14 0.37 0.66 0.86 0.95 0.97 0.98 0.02 0.04 0.17 0.45 0.74 0.90 0.95 0.97 0.97

0 0.02 0.03 0.12 0.31 0.57 0.80 0.93 0.97 0.98 0.02 0.04 0.17 0.45 0.75 0.90 0.95 0.97 0.97

4 0.02 0.04 0.17 0.46 0.78 0.93 0.97 0.98 0.98 0.02 0.05 0.18 0.43 0.74 0.90 0.95 0.98 0.97

1000

0∗ 0.02 0.04 0.21 0.52 0.83 0.94 0.97 0.98 0.98 0.02 0.05 0.25 0.62 0.88 0.96 0.97 0.97 0.97

0 0.02 0.04 0.18 0.46 0.78 0.93 0.97 0.98 0.98 0.02 0.05 0.25 0.62 0.88 0.96 0.97 0.97 0.97

4 0.02 0.04 0.17 0.46 0.78 0.93 0.97 0.98 0.98 0.02 0.05 0.26 0.62 0.88 0.96 0.97 0.97 0.97

2000

0∗ 0.02 0.05 0.27 0.69 0.93 0.97 0.97 0.98 0.98 0.02 0.06 0.34 0.79 0.95 0.97 0.97 0.97 0.97

0 0.02 0.05 0.24 0.64 0.91 0.97 0.97 0.98 0.98 0.02 0.06 0.35 0.79 0.95 0.97 0.97 0.98 0.97

4 0.02 0.05 0.24 0.65 0.92 0.97 0.98 0.98 0.98 0.02 0.06 0.33 0.78 0.95 0.97 0.98 0.97 0.98

5000

0∗ 0.03 0.07 0.41 0.87 0.97 0.98 0.98 0.98 0.98 0.02 0.08 0.50 0.91 0.97 0.97 0.98 0.97 0.97

0 0.03 0.07 0.39 0.85 0.97 0.98 0.98 0.98 0.98 0.02 0.08 0.50 0.91 0.97 0.97 0.98 0.97 0.97

2 0.03 0.07 0.38 0.85 0.97 0.98 0.98 0.98 0.98 0.03 0.09 0.49 0.92 0.97 0.97 0.97 0.98 0.98

Table 3.2: Effect of seasonal demeaning: The DGP is (1− 2cosγL + L2)d(Xt −µt) = εt, with µt following
(3.15), where µ(1) = µ(2) = µ(3) = 0. For µ(4) = 0∗ the seasonal mean is zero and no demeaning is conducted.

and if φ increases, there is no size control - not even for T = 5000. The G∗-test on the other

hand maintains a satisfactory size for all values of T and φ. Only for φ = 0.6 it becomes slightly

liberal. However, as discussed above, this effect can easily be mitigated if ζ is increased.

In Section 3.6, we discussed that it might be necessary in empirical applications to conduct a

seasonal demeaning prior to the application of our model selection procedure if one suspects

that deterministic seasonal effects are present. We therefore consider the effect of this approach

in Table 3.2. Again, we consider a 1-factor Gegenbauer process (1− 2cosγL + L2)d(Xt −µt) = εt

but now combined with a deterministic cycle with period 4. For the sake of simplicity we set

µ(1) = µ(2) = µ(3) = 0 in (3.15) and then consider different values of µ(4). If γ = π/2 the stochastic

and deterministic cycles coincide. If γ = π/4 on the other hand, the stochastic seasonality would

have a period of 8, so that the peaks in the periodogram are at different frequencies. The baseline

case when there are no deterministic seasonalities and no demeaning is conducted is denoted by

µ(4) = 0∗. As one can see, the procedure has good size properties, irrespective of the demeaning.

With regard to the power, we observe that there is a power loss in small samples if the periods of

the deterministic and the stochastic seasonality coincide. With increasing sample size however,

the power loss vanishes. A demeaning prior to the application of the sequential-G∗ procedure

therefore does not affect the size and reduces the power only moderately in finite samples. In

addition to that, it can also be seen that the demeaning has no effect on the power if the periods

of the cycles do not coincide. For γ = π/4, we observe that the power is unaffected by a seasonal

demeaning at frequency γ = π/2. Additionally, as in Figure 3.1, we see that the power is higher

at γ = π/4 than for γ = π/2.

With respect to conditional heteroscedasticity Robinson and Henry (1999) show that the consis-

tency, the asymptotic normality and even the asymptotic variance of the Gaussian semiparamet-
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ric estimator for the fractional exponents remain unaffected by conventional ARCH/GARCH

type conditional heteroscedasticity and also by long memory conditional heteroscedasticity. Ad-

ditional simulation studies showed that these results carry over to our model selection procedure,

even though this also depends on the semiparametric estimator of Hidalgo and Soulier (2004)

and the modified G∗-test.

3.8 Modeling Californian Electricity Loads with k-factor GARMA

Models

As discussed in the introduction, GARMA models are useful in high frequency datasets that

potentially exhibit multiple seasonalities. One such example are electricity load series. In par-

ticular the forecasting of the latter has attracted continued attention in the literature, because

electricity demand is very volatile and it has to be matched by supply in real time. Since different

means of electricity generation have very different marginal costs, precise forecasts are of major

importance for electricity producers to schedule production capacities accordingly. Recently,

GARMA models have been used to generate such forecasts by Soares and Souza (2006) who

apply a 1-factor GARMA model to forecast electricity demand in the area of Rio de Janeiro

(Brazil) and Diongue et al. (2009) who use a 3-factor GIGARCH model to forecast German spot

market electricity prices.
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Figure 3.4: Californian system wide log-load series from 2000 to 2002 before and after deterministic
seasonality is removed.

In general, two different approaches can be distinguished in the literature on electricity load

forecasting. The global approach is to fit a relatively complex model to the hourly series,

whereas local approaches forecast all 24 hourly series with separately estimated simpler models.

By applying our model selection procedure to electricity load series from the Californian power

system, we complement this literature with an in-sample perspective on model selection in the
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global series. The data is downloaded from UCEI2 and covers the period from 2000 to 2002,

which gives us 26304 hourly observations. A similar dataset was considered in Weron and Mi-

siorek (2008) who focus on prices in the period 1999-2000. As discussed in Section 3.6, we remove

deterministic seasonality upfront by considering the residual series obtained from regressing the

log of each hourly series separately on a trend and dummy variables for the day of the week and

the month of the year. Insignificant dummies are discarded stepwise using a general-to-specific

procedure. A similar approach was suggested in Haldrup and Nielsen (2006). This simple de-

terministic model already achieves an R2 of approximately 90.49 percent, which implies that a

large proportion of the seasonality in the series is deterministic. The original series as well as

the residual series from this regression are plotted in Figure 3.4. We will hereafter refer to the

residuals from this regression as the filtered electricity load series. It is obvious, that the variance

of the series is strongly reduced. The left side of Figure 3.5 depicts the autocorrelation function

of the filtered electricity load series. It shows clearly that the series exhibits long memory and

periodicity.
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Figure 3.5: Autocorrelation function of the original series (left) and the residual series of 14-factor
Gegenbauer process (right).

If one would discretionary fit a model based on a visual inspection of the periodogram shown on

the left side of Figure 3.6, one would probably consider a two factor model with a pole at the

origin and one in the neighborhood of λ = 0.25 which approximately corresponds to the daily

frequency 2π/24. Such a process could be approximated well by an ARFIMA process, since

the effect at λ = 0.25 seems to be of a small magnitude. In sharp contrast to that, our model

selection procedure indicates that a 14-factor Gegenbauer process should be used to model the

series. The intuition for this unexpected result becomes obvious, if one considers the residual

series ∆k(i)
Xt from (3.4) after filtering out the effect of the pole at the origin. The periodogram

of the filtered process is depicted on the right hand side of Figure 3.6. The poles that become

visible here are not visible in the original periodogram on the left hand side, because of the

2www.ucei.berkeley.edu



3.8. Modeling Californian Electricity Loads with k-factor GARMA Models 77

magnitude of the Fourier frequency closest to the origin. To include these effects, it is necessary

to increase the model order.
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Figure 3.6: Periodogram the Californian load series (left) and the residual series ∆k̂(i)
Xt obtained after

removing the non-cyclical long memory effects (right).
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Figure 3.7: Histogram of the frequencies selected by the sequential-G∗ procedure applied on a grid of
bandwidth parameters.

As discussed in Section 3.5, the bandwidth choice has a critical influence on the results of the

selection procedure. This is why we repeat the analysis using a grid of values for ξ and ζ, that



3.8. Modeling Californian Electricity Loads with k-factor GARMA Models 78

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d̂a 0.3373 0.2401 0.5550 0.3432 0.2208 0.3237 0.2791 0.2111 0.1902 0.2042 0.1979 0.1803 0.1241 0.1155

γ̂a 0.0025 0.0425 0.2625 0.5125 0.7825 1.0425 1.3075 1.5625 1.8275 2.0925 2.3525 2.6125 2.8775 3.1375

Table 3.3: Fitted 14-factor Gegenbauer model. Standard errors for da are 0.0233 for γ1 and γ14, 0.0200
for γ2, and 0.0167 for all other periodic frequencies.

determine the number of frequencies m used in the estimation of the long memory parameters

da and the number of segments HT used in the logspline estimate of the spectral density. We

allow ξ to increase from 0.45 to 0.65 in steps of 0.01 and determine ζ so that the number of

segments varies from 7 to 12. For every parameter constellation we store all estimated cyclical

frequencies γ̂a.

The histogram in Figure 3.7 shows which frequencies are selected and how often they are found

to be significant. It can be seen, that not every of the cyclical frequencies is selected with

every bandwidth parameter. However, 14 frequencies are selected in the majority of parameter

constellations. These are the zero frequency that corresponds to a non-seasonal long memory

component, 2π/(24× 7) - the frequency of a weekly cycle and 2πυ/24, with υ = 1, ...,12 which

is the frequency of a daily cycle and its harmonics. For better comparison, these theoretical

frequencies are superimposed as dashed and dotted vertical lines in Figure 3.7.

These findings indicate, that the data is best explained by the 14-factor Gegenbauer model with

these respective frequencies, which confirms the initial expectation that there are multiple cycles

in the data generating process. To fit the 14-factor Gegenbauer model we estimate the relevant

cyclical frequencies by the local modes in the histogram. These estimates γ̂a along with the

estimated fractional exponents d̂a are given in Table 3.3. If one considers the d̂a, one observes

that the exponent at the origin is larger than 0.25 which implies non-stationary but mean re-

verting long memory. The memory parameter of the daily frequency is 0.5550 which is also in

the non-stationary but mean reverting region.3 The other exponents lie between 0.12 and 0.35

and tend to decrease for higher frequencies.

The R2 obtained using the 14-factor model is as high as 81.44 percent, which means that the

deterministic model and the Gegenbauer model together explain approximately 98.23 percent of

the variation of the original series. Figure 3.5 shows the autocorrelation function of the residuals

after the short memory dynamics are accounted for by an ARMA(2,2) model, as discussed in

Section 3.5. As one can see, the dependence is completely removed.

Based on the visual inspection of the periodogram we would have chosen a 2-factor Gegenbauer

model with non-seasonal long memory and a daily cycle. In contrast to that, our model order

selection procedure finds a 14-factor model that also includes cycles at the weekly frequency

and the harmonics of the daily frequency. These different model choices have very different

implications. In the case of the 2-factor model no weekly cycle is detected and one would

3The non-stationary part of the parameter space for the da was excluded from our analysis in the preceding
sections. However, we discussed in Section 3.4 that the results can be expected to carry over to the mean
reverting region where da ∈ (0.5,1).
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conclude that the weekly seasonality in the original series is best modeled by deterministic

dummies. As discussed in the introduction, the occurrence of significant cycles at the harmonics

of the daily frequency indicates that the daily cycle is not of a sinusoidal form.

A test for the equality of the fractional exponents at the daily frequency and its harmonics

using a simple χ2
11-statistic gives a test statistic of 535.75, which is strongly rejected at every

common significance level. A more parsimonious rigid seasonal fractionally integrated model

would therefore be misspecified.

Furthermore, the exceptional fit of the 14-factor model for the global series shows that this series

can indeed be modeled directly, if the daily load profile is accounted for by a suitable seasonal

model. Considering the local series for every hour of the day separately can be done with a

relatively small loss of information, if the hourly series has low persistence. For a series with

non-stationary long memory, as found in Table 3.3, on the other hand, the information loss is

considerable. It is therefore desirable to find an appropriate global model.

Since the selected frequencies are seasonal frequencies and their harmonics, one might be inclined

to conclude that the model order could be inferred from theoretical considerations and tested

using the methods of Hassler et al. (2009) or Robinson (1994). Note however, that there are

12 daily harmonics and 84 weekly harmonics. Only four of the weekly harmonics are equal to

a daily harmonic, so that even with a grid of just 10 values for each da there would be 1093

possible combinations in the grid, which makes this approach computationally infeasible.

3.9 Conclusion

We introduce an automatic model order selection procedure for k-factor Gegenbauer models that

is based on iterative filtering and can be used for general model selection in cyclical long-memory

processes. As a byproduct we suggest a modified test for persistent periodicity in stationary

short memory models. Our procedure allows an easier application of k-factor Gegenbauer mod-

els in empirical analyses and prevents the use of false model specifications that are based on

discretionary decisions after a visual analysis of the periodogram. As the example of the Cali-

fornian electricity load series in Section 3.8 shows, this visual approach can be misleading if it is

used as a tool for the selection of the model order without taking the effect of the non-uniform

power law into account.

We also gain new insights into the behavior of electricity load series. It turns out that the

stochastic variation of the Californian electricity loads can be modeled very well by a 14-factor

GARMA process. The fit achieved suggests that it can indeed be a good strategy to model

the global series directly instead of fitting separate models for every hour of the day. This is

especially important for short term forecasts since the 1-hour-ahead forecast of a local model

only uses data up to 23 hours ago and does not utilize the information contained in the most

recent observations. These insights demonstrate the potential of k-factor Gegenbauer models

for the modeling of periodic time series.
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Appendix

T d/γ 0 .22 .45 .67 .9 1.12 1.35 1.57 1.8 2.02 2.24 2.47 2.69 2.92 π

500

0 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.05 0.03 0.07 0.05 0.05 0.04 0.05 0.03 0.05 0.04 0.04 0.04 0.05 0.05 0.06 0.03

0.10 0.08 0.32 0.24 0.19 0.16 0.16 0.15 0.14 0.14 0.15 0.16 0.19 0.25 0.33 0.09

0.15 0.24 0.72 0.57 0.49 0.42 0.38 0.38 0.37 0.39 0.40 0.43 0.49 0.58 0.72 0.24

0.20 0.49 0.89 0.83 0.76 0.73 0.69 0.69 0.66 0.67 0.68 0.73 0.76 0.84 0.90 0.46

0.25 0.71 0.93 0.92 0.92 0.89 0.87 0.87 0.87 0.87 0.88 0.89 0.90 0.93 0.93 0.69

0.30 0.84 0.93 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.92 0.82

0.35 0.90 0.92 0.95 0.96 0.97 0.97 0.97 0.96 0.97 0.97 0.96 0.96 0.95 0.92 0.88

0.40 0.93 0.92 0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.91 0.90

0.45 0.93 0.90 0.94 0.95 0.97 0.97 0.97 0.98 0.97 0.97 0.96 0.95 0.94 0.91 0.91

1000

0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.05 0.03 0.08 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.09 0.04

0.10 0.12 0.47 0.35 0.28 0.23 0.22 0.20 0.20 0.20 0.21 0.23 0.27 0.34 0.46 0.12

0.15 0.37 0.86 0.74 0.65 0.59 0.55 0.53 0.53 0.52 0.56 0.59 0.65 0.74 0.85 0.36

0.20 0.66 0.93 0.91 0.90 0.87 0.84 0.83 0.82 0.83 0.85 0.86 0.89 0.92 0.92 0.65

0.25 0.85 0.94 0.95 0.96 0.95 0.95 0.96 0.95 0.95 0.96 0.96 0.96 0.95 0.94 0.83

0.30 0.90 0.94 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.94 0.89

0.35 0.92 0.94 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.96 0.96 0.94 0.91

0.40 0.94 0.93 0.96 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.96 0.94 0.92

0.45 0.93 0.93 0.96 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.96 0.95 0.94 0.93

2000

0 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02

0.05 0.04 0.11 0.08 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.07 0.09 0.11 0.03

0.10 0.17 0.60 0.46 0.36 0.32 0.29 0.29 0.28 0.28 0.29 0.33 0.37 0.46 0.60 0.18

0.15 0.52 0.91 0.85 0.80 0.75 0.71 0.71 0.70 0.70 0.72 0.76 0.79 0.87 0.92 0.51

0.20 0.80 0.94 0.94 0.96 0.94 0.93 0.94 0.93 0.93 0.93 0.95 0.95 0.95 0.94 0.78

0.25 0.88 0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.87

0.30 0.90 0.95 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.95 0.91

0.35 0.92 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.96 0.92

0.40 0.93 0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.92

0.45 0.93 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.95 0.93

5000

0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02

0.05 0.04 0.16 0.11 0.09 0.08 0.07 0.06 0.08 0.07 0.08 0.08 0.09 0.12 0.17 0.05

0.10 0.26 0.76 0.63 0.52 0.46 0.42 0.41 0.41 0.41 0.43 0.47 0.53 0.64 0.77 0.27

0.15 0.71 0.92 0.92 0.93 0.90 0.87 0.89 0.88 0.88 0.89 0.91 0.91 0.93 0.93 0.69

0.20 0.86 0.95 0.96 0.97 0.97 0.96 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.96 0.83

0.25 0.88 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.88

0.30 0.91 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.90

0.35 0.92 0.96 0.97 0.98 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.97 0.91

0.40 0.92 0.97 0.98 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.96 0.91

0.45 0.93 0.96 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.96 0.92

Table 3.4: Size and power of the sequential G∗-procedure for (1− 2cosγL + L2)dXt = εt at different fre-
quencies γ.
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ξ 0.4 0.5 0.6 0.7

T d/k 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

500

0 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.1 0.09 0.02 0.00 0.00 0.11 0.02 0.00 0.00 0.12 0.02 0.00 0.00 0.13 0.02 0.00 0.00

0.2 0.49 0.27 0.14 0.07 0.58 0.35 0.18 0.10 0.64 0.41 0.22 0.08 0.66 0.36 0.07 0.04

0.3 0.77 0.60 0.48 0.35 0.87 0.79 0.67 0.56 0.93 0.88 0.76 0.52 0.95 0.82 0.16 0.16

0.4 0.84 0.69 0.58 0.46 0.92 0.86 0.81 0.70 0.97 0.95 0.88 0.63 0.98 0.87 0.09 0.11

1000

0 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.1 0.13 0.03 0.01 0.00 0.15 0.03 0.01 0.00 0.18 0.04 0.01 0.00 0.20 0.04 0.01 0.00

0.2 0.62 0.43 0.28 0.16 0.74 0.57 0.41 0.29 0.81 0.67 0.50 0.34 0.82 0.66 0.24 0.08

0.3 0.81 0.67 0.55 0.43 0.91 0.86 0.78 0.74 0.96 0.94 0.90 0.84 0.97 0.95 0.24 0.13

0.4 0.84 0.71 0.58 0.52 0.93 0.88 0.83 0.77 0.96 0.95 0.92 0.85 0.98 0.96 0.03 0.12

2000

0 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.1 0.18 0.05 0.02 0.01 0.22 0.06 0.02 0.01 0.25 0.07 0.02 0.01 0.27 0.07 0.02 0.00

0.2 0.71 0.56 0.41 0.31 0.85 0.76 0.65 0.55 0.91 0.85 0.77 0.68 0.94 0.88 0.76 0.17

0.3 0.83 0.70 0.60 0.50 0.93 0.88 0.84 0.79 0.96 0.95 0.94 0.91 0.98 0.97 0.88 0.04

0.4 0.87 0.76 0.65 0.56 0.95 0.90 0.86 0.83 0.97 0.96 0.95 0.93 0.98 0.97 0.80 0.07

5000

0 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.1 0.28 0.10 0.05 0.02 0.33 0.13 0.05 0.02 0.37 0.15 0.05 0.02 0.40 0.17 0.06 0.02

0.2 0.78 0.65 0.53 0.43 0.90 0.85 0.78 0.73 0.95 0.93 0.91 0.88 0.97 0.97 0.95 0.90

0.3 0.87 0.76 0.67 0.58 0.95 0.91 0.88 0.84 0.96 0.96 0.95 0.94 0.98 0.97 0.96 0.85

0.4 0.91 0.81 0.72 0.64 0.95 0.92 0.89 0.86 0.96 0.97 0.96 0.96 0.98 0.98 0.94 0.72

Table 3.5: Size and power of the sequential G∗ procedure for increasing model order k and different
bandwidths m = bT ξc. The DGP is

∏k
a=1(1−2cosγaL + L2)da Xt = εt with γa = (πa)/(k + 1).
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Proofs

Proof of Proposition 3.1:

1. Denote Q j = I j/ f (λ j) and Q̂ j = I j/ f̂ (λ j). For λ ∈ [0,π] we have from Assumption 3.3 that

f̂ (λ)
p
→ f (λ) as T →∞ if k(i) − k0 = 0. Therefore, by Slutsky’s theorem Q̂ j

d
⇒ Q j, where

d
⇒

denotes weak convergence.

If k(i) = k0 in equation (3.4), then ∆k(i)
Xt is reduced to the weakly dependent stationary

process ut for all t = 1, ...,T . Therefore, Theorem 5.3.1 in Giraitis et al. (2012) applies and

(Q1, ...,Qn) converges in distribution to a vector of independent exponentially distributed

random variables. Denote by GM
n = max {Q1, ...,Qn}. Then we have FGM

n (z̃) := P(max1≤i≤n Qi ≤

z̃) = 1−
∏n

i=1 P(Qi > z̃) = 1− (1−exp(−z̃))n. Thus, we have for our test statistic G∗ = GM
n − logn

by standard arguments for all x ∈ <:

FG∗(z̃) = FGM
n (z̃ + logn)

= (1− (exp(−z̃− logn)))n1[0,∞)(z̃ + logn)

= (1−
1
n

exp(−z̃))n1[− logn,∞)(z̃)

and finally limT→∞FG∗(z̃) = exp(−exp(−z̃)), which proves the first part of the proposition as

n depends on T and − logn converges to −∞ for n→∞.�

2. To prove the consistency of the G∗X-statistic if there are k0−k(i) > 0 poles remaining in ∆k(i)
Xt,

we follow Hidalgo and Soulier (2004) and consider a Fourier frequency γa,κ = γa ± κπ/T in

the neighborhood of the cyclical frequency γa, where κ is a fixed positive number such that

for every sample size γa,κ = λ j for some j. Then γa,κ→ γa, as T →∞, according to Theorem

1 in Hidalgo and Soulier (2004). Now write I(γa,κ) = f (γa,κ)χT , where χT is some random

variable so that

Q̂(γa,κ) =
I(γa,κ)

f̂ (γa,κ)
=

f (γa,κ)χT

f̂ (γa,κ)
.

From Lemma 2 of Hidalgo and Soulier (2004), f (γa,k) ≥ O(T 2ca) and χT has a distribution

with no probability mass at zero. In addition to that, f̂ (γa,κ) is bounded according to

Assumption 3.3. Therefore limT→∞
Q̂(γa,κ)
T 2ca = χ∗T , where χ∗T is a rescaling of χT . Then Q̂(γa,κ) =

Op(T 2ca), since for every ε > 0 there exists a quantile c∗, such that

lim
T→∞

P
(∣∣∣∣∣∣ Q̂(γa,κ)

T 2ca

∣∣∣∣∣∣ > c∗
)
< ε = lim

T→∞
P
(
χ∗T > c∗

)
< ε.

Since max j(Q̂ j)≥ Q̂(γa,κ), we have G∗X = max j(Q̂ j)−log(n)≥Op(n2ca−log(n)), so that limT→∞G∗X =

∞ and limT→∞P(G∗X < gcrit) = 0 for all gcrit = o(n2ca − log(n)). �

Proof of Proposition 3.2: The consistency of the model selection procedure can be established
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in analogy to that of the sequential structural break test established in Proposition 11 of Bai

(1997).

1. To derive the asymptotic probability to select the correct model order k0 if a fixed signifi-

cance level α is used, note that P(k̂ = k0) = 1−P(k̂ < k0)−P(k̂ > k0). From Proposition 3.1, we

have limT→∞P(G∗
∆k(i) Xt

> gcrit) = 1, for all k(i) < k0, so that limT→∞P(k̂ < k0) = 0. The second

probability is equal to the probability of an α-error of the G∗-test applied to the series ∆k0 Xt,

so that limT→∞P(k̂ > k0) = limT→∞P(G∗
∆k0 Xt

> gcrit) = α. Therefore, limT→∞P(k̂ = k0) = 1−α.�

2. For a decreasing significance level α(T )→ 0, we have limT→∞P(G∗
∆k(i) Xt

> gcrit(α(T ))) = 1 for

all k(i) < k0 and limT→∞P(k̂ > k0) = limT→∞P(G∗
∆k0 Xt

> gcrit(α(T )) = α(T ), if the rate of decay of

α is according to Proposition 1.2 chosen such that gcrit(α(T )) = o(n2ca − log(n)). Therefore,

limT→∞P(k̂ = k0) = 1.�
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On the Memory of Products of Long Range Dependent
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On the Memory of Products of Long Range Dependent
Time Series

4.1 Introduction

Products of time series occur frequently in non-linear models such as the bilinear model, ran-

dom coefficient models, or multiplicative noise models and they also play an important role as

interaction terms in time series regressions. Therefore, it is of interest how time series properties

such as long range dependence are translated from the factor series xt and yt to the product

series zt = xtyt. In this paper, it is shown that the transmission of memory critically depends

on the means of the processes. While the memory of products is the maximum of the memory

orders of the factor series if the means are non-zero, the memory order in the product series will

be reduced for zero mean processes.

In a related literature Granger and Hallman (1991) and Corradi (1995) have studied the proper-

ties of non-linear transformations of integrated variables. For long memory time series Dittmann

and Granger (2002) have derived the memory properties for transformations of zero mean time

series if the transformation can be expressed as a finite sum of Hermite polynomials. The

memory of products of long memory time series, however, has not been covered.1

The expectation of the product series zt = xtyt that we are interested in, is given by E[zt] =

σxσyρxy +µxµy, where µx and µy denote the means of xt and yt, respectively, σx and σy are the

standard deviations, and ρxy denotes the correlation between the two series. For general random

variables x and y, with finite first and second moments, Goodman (1960) derived the variance

of xy. Later, Bohrnstedt and Goldberger (1969) derived the exact covariance of the products xy

and vw, where v and w form a second pair of random variables that fulfills the same moment

conditions as x and y. According to Bohrnstedt and Goldberger (1969), the variance of zt is

given by

σ2
z = µ2

xσ
2
y +µ2

yσ
2
x + E[(x−µx)2(y−µy)2]

+ 2µxE[(x−µx)(y−µy)2]

+ 2µyE[(x−µx)2(y−µy)]

+ 2µxµyσxσyρxy−σ
2
xσ

2
yρ

2
xy.

The autocovariance function of the product of two weakly stationary time series xt and yt was

1Note that the application of a log-transformation does not mitigate this issue. It merely converts the problem into
determining the memory of the sum of non-linearly transformed series, but the logarithm cannot be represented
as required by Dittmann and Granger (2002). Therefore, the memory of the log-transformed series is unknown
- as is that of the product.
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derived by Wecker (1978). If both series are Gaussian, it is given by

γxy(τ) =µ2
xγy(τ) +µ2

yγx(τ) +µxµy[ξ(τ) + ξ(−τ)]

+γx(τ)γy(τ) + ξ(τ)ξ(−τ), (4.1)

where ξ(τ) denotes the cross-covariance function at lag τ defined as ξ(τ) = E[(xt −µx)(yt−τ−µy)].

In the remainder of this paper, the memory properties of the product series zt will be derived

from the asymptotic behavior of (4.1), as τ→∞. Definitions, assumptions and the main result

are given in Section 4.2. Sections 4.3 and 4.4 extend these results to squares of long memory

series and products of variables with common long range dependent factors. Conclusions are

drawn in Section 4.5.

4.2 Persistence of Products of Long Memory Time Series

In the following, a time series xt is a long memory series with parameter dx if its spectral density

fx(λ) at frequency λ obeys the power law

fx(λ) ∼ gx(λ)λ−2dx , (4.2)

as λ→ 0+, or if its autocovariance function γx(τ) at lag τ is

γx(τ) ∼Gx(λ)τ2dx−1, (4.3)

for τ→∞. Here, gx(λ) and Gx(λ) denote functions that are slowly varying at zero and infinitiy,

respectively. As Beran et al. (2013) show, these definitions are equivalent under fairly general

conditions. Hereafter, we write xt ∼ LM(dx) if xt fulfills at least one of (4.2) or (4.3). For

simplicity, we will treat gx and Gx as constants. The properties of any xt that is LM(dx) depend

on the value of dx ∈ (−1/2,1/2). For dx < 0, the process is antipersistent, and fx(0) = 0. If dx = 0,

fx(0) = gx and the process has short memory. Finally, for dx > 0, xt is long range dependent.

Here, we follow Dittmann and Granger (2002) and distinguish between fractional integration

and long memory. The reason is, that we derive the memory of zt = xtyt based on the behavior

of γxy(τ) for large τ that is of the form specified in (4.3), so that its spectral density is of the

form given in (4.2). A fractionally integrated process z̃t, on the other hand, has spectral density

fz̃(λ) = |1− eiλ|−2dz̃gz̃(λ), so that fz̃(λ) ∼ gz̃|λ|
−2dz̃ , as λ→ 0+, since |1− eiλ| → λ, as λ→ 0+. While

fractional integration is therefore a special case of long memory, the results given here only allow

to draw conclusions about the memory properties of the product series.

For the main result we require the following assumptions.

Assumption 4.1. xt ∼ LM(dx) and yt ∼ LM(dy) are weakly stationary and causal Gaussian pro-

cesses, with 0 ≤ dx,dy < 0.5 and finite second order moments.

Assumption 4.2. If xt,yt ∼ LM(d), then xt −ψ0−ψ1yt ∼ LM(d) for all ψ0,ψ1 ∈ R.
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Assumption 4.1 is a simple regularity condition, whereas Assumption 4.2 precludes the presence

of fractional cointegration. This will be relaxed in Section 4.4, where the case of a common long

memory factor driving xt and yt is considered.

Given these assumptions, the memory of the product series xtyt is characterized by the following

proposition.

Proposition 4.1. Under Assumptions 4.1 and 4.2 the product series zt = xtyt is LM(dz), with

dz =



max(dx,dy), for µx,µy , 0

dx, for µx = 0,µy , 0

dy, for µy = 0,µx , 0

max
{
dx + dy−1/2,0

}
, for µy = µx = 0 and S xy , 0

dx + dy−1/2, for µy = µx = 0 and S xy = 0,

where S xy =

∞∑
τ=−∞

γx(τ)γy(τ).

Proof. The autocovariance function of any xtyt satisfying Assumption 4.1 is given by (4.1).

This is a linear combination of the autocovariance functions γx(τ), γy(τ), the cross-covariance

function ξ(τ) and interaction terms between them. Since long memory is defined in (4.3) by the

shape of the autocovariance function for τ→∞, we can determine the memory of xtyt by finding

the limit of γxy(τ). For τ→∞, we can substitute γx(τ) and γy(τ) with Gxτ
2dx−1 and Gyτ

2dy−1 from

(4.3). The asymptotic properties of the cross-covariance function ξ(τ) can be derived from results

of Phillips and Kim (2007). In Theorem 1, they show that the autocovariance matrix ΓXX(τ) of

a q-dimensional multivariate fractionally integrated process Xt is

[ΓXX(τ)]ab =
2 fuaub(0)Γ(1−da−db) sin(πdb)

τ1−da−db
+ O

(
1

τ2−da−db

)
,

where Aab denotes the element in the ath row and bth column of the matrix A. The asymp-

totic expansion of the Fourier integral used to derive this result is not specific to fractionally

integrated processes, but holds for long memory processes in general. It therefore follows, that

ξ(τ) = Gxyτ
da+db−1 + o(τda+db−1). Furthermore, since by Assumption 4.1 both xt and yt are causal,

ξ(−τ) = 0, so that the last term in (4.1) drops out.

Therefore, as τ→∞, we have

γxy(τ) =µ2
xGyτ

2dy−1 +µ2
yGxτ

2dx−1 +µxµyGxyτ
dx+dy−1 +GxGyτ

2(dx+dy−1) + o(τdx+dy−1).
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Now, considering the exponents and setting dx + dy −1 = 2d̄3 −1 and 2(dx + dy −1) = 2d̄4 −1 gives

d̄3 = (dx + dy)/2 and d̄4 = (dx + dy−1/2), so that

γxy(τ) =µ2
xGyτ

2dy−1 +µ2
yGxτ

2dx−1 +µxµyGxyτ
2d̄3−1 +GxGyτ

2d̄4−1 + o(τdx+dy−1). (4.4)

Since O(τp) + O(τq) = O(τmax(p,q)), the autocovariance function γxy(τ) is dominated by the term

with the largest memory parameter, as τ→∞. The approximation error o(τdx+dy−1) vanishes,

because dx,dy < 1/2. Depending on the values of µx and µy, different cases can be distinguished.

1. If µx = µy = 0, (4.4) is reduced to γxy(τ) ≈GxGyτ
2d̄4−1. Therefore, the memory of xtyt would

be given by d̄4 = (dx + dy−1/2), which can be negative so that the decay rate of the autoco-

variance function is that of an antipersistent LM process. However, in this case the long

memory definition is only fulfilled if the spectral density is zero at the origin, which is

equivalent to S xy = 0. Otherwise the process is LM(0).

2. If µx = 0 , µy, (4.4) becomes γxy(τ) ≈ µ2
yGxτ

2dx−1 + GxGyτ
2d̄4−1 and the dominating term is

the maximum of dx and d̄4 = (dx + dy−1/2). This is dx, because dy < 1/2.

3. If µy = 0 , µx, by the same arguments, the memory is dy.

4. Finally, if µx,µy , 0, the memory order is the maximum of dx, dy, (dx + dy)/2 and dx + dy−

1/2. Furthermore, since dx,dy < 1/2, max
{
dx,dy

}
will always be at least as large as the other

two terms.

If ρxy = 0, we have Gxy = 0, so that the third term in (4.4) is zero. However, this does not affect the

memory properties of the product series compared to the case when ρxy , 0, because the memory

of the third term is always dominated by that of the first two terms since max
{
dx,dy

}
≥ (dx +dy)/2.

�

It can immediately be seen from Proposition 4.1, that the means of xt and yt play a crucial role.

If both means are non-zero, the asymptotic autocovariance function is dominated by the input

series with the larger memory parameter. If both means are zero, the first three terms in (4.4)

drop out, and the memory in zt is d̄4 = (dx + dy −1/2). If one of the processes is mean zero, the

memory is equal to that of this process, because dx,dy > d̄4.

Intuitively, if one thinks of long range dependence in terms of the persistence of deviations

from the mean, it is obvious that this persistence vanishes if the series is multiplied with a zero

mean iid -series. On the other hand, if the series is multiplied by a series with a non-zero mean,

consecutive observations of the product series are likely to be located at the same side of the

mean, so that the persistence remains intact.

Since the decay of the autocovariances of antipersistent LM-processes is initially very fast, the

condition S xy = 0 is basically a condition on the first autocovariances γxy(τ). As can be seen from

(4.1), this is equal to the product γxy(τ) = γx(τ)γy(τ), if µx = µy = 0. The process can therefore

only be LM with negative d, if γx(τ) and γy(τ) have different signs and the sum of their product
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over the first leads and lags is close to the process variance. If γxy(τ) is negative but S xy , 0,

the process has antipersistent short memory. Finally, if γxy(τ) is positive, the process is simply

LM(0) if dx + dy−1/2 is negative.2

4.3 Memory of Squared Series

An important special case of Proposition 4.1 arises if xt = yt, so that the product becomes the

square of one series. This gives the following corollary.

Corollary 1. For xt satisfying Assumption 4.1, the square zt = x2
t is LM(dz) with

dz =

dx, if µx , 0

max {2dx−1/2,0} , if µx = 0.

Proof. Wecker (1978) shows that for x2
t equation (4.1) simplifies to

γxx(τ) = 4µ2
xγx(τ) + 2γ2

x(τ).

For τ→∞, this gives

γxx(τ) ≈ 4µ2
xGxτ

2dx−1 + 2Gxτ
2(2dx−1). (4.5)

Again, from equating 2(2dx − 1) = 2dsq − 1 we have dsq = 2dx − 1/2 so that γxx(τ) ≈ 4µ2
xGxτ

2dx−1 +

2Gxτ
2dsq−1. Since dx < 1/2, by Assumption 4.1, dsq < dx so that the first term in (4.5) always

dominates the second if µx , 0. For µx = 0, the memory is determined by the second term. This

is max
{
dsq,0

}
, for the reasons discussed in the proof of Proposition 4.1, above. Since γx(τ)2 ≥ 0,

the process cannot become antipersistent and the lower bound for the memory order of the square

is always zero. �

Corollary 1 shows, that the memory of a squared series will be reduced if the series is mean zero,

whereas the memory is unaffected by this non-linear transformation if it has a non-zero mean.

In case of a reduction, the memory will be zero, for dx ≤ 0.25.

The memory of the squared zero mean series is also a special case of the results in Dittmann and

Granger (2002). As discussed above, they derive the properties of non-linear transformations

of fractionally integrated time series with zero mean and unit variance under the restriction

that the non-linear transformation can be expressed as a finite sum of Hermite polynomials.

Corollary 1 shows that the mean zero assumption is critical, since squaring the series does not

cause a reduction in memory if it is not fulfilled.

2A similar issue arises in Dittmann and Granger (2002). However, they consider pure fractionally integrated
processes and do not allow for short run dynamics. In this case all autocovariances are positive and the lower
bound for the memory of the transformed series is zero.
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Note that it is not possible to apply Proposition 4.1 together with Corollary 1 to determine the

memory of higher order power transformations such as x3
t , because the Gaussianity requirement

in Assumption 4.1 is no longer satisfied by the squared series x2
t .

4.4 Products of Fractionally Cointegrated Time Series

Another interesting special case is the product of series with a common factor, such as fractionally

cointegrated series. Consider the following model

xt = βx +δxut +ηt (4.6)

yt = βy +δyut +εt, (4.7)

where ut is LM(du), ηt ∼ LM(dη) and εt ∼ LM(dε) fulfill the conditions imposed in Assumption

4.1, and βx and βy are finite real constants. Furthermore, let ηt and εt be mean zero, with

dη = du−b ≥ 0 and dε = du−b−ε ≥ 0, for some constants b, ε ≥ 0. Clearly, both yt and xt are driven

by the common long range dependent factor ut and they are both LM(du). We therefore refer to

them as series with common long memory. As before 0 ≤ du < 0.5 and of course δx, δy , 0. We

then obtain the following result.

Proposition 4.2. Let yt and xt have common long memory of order du, so that they can be

represented as in equations (4.6) and (4.7). Then the product xtyt is LM(du) if either (βxδy +βyδx)

or µu is unequal zero and it is LM(max {2du−1/2,0}) if µx = µy = µu = 0.

Proof. By substituting the relationships in (4.6) and (4.7) and rearranging the terms, the product

xtyt is given by

xtyt = βxβy︸︷︷︸
I

+ (βxδy +βyδx)ut︸            ︷︷            ︸
II

+δxδyu2
t︸ ︷︷ ︸

III

+ (βx +δxut)εt︸         ︷︷         ︸
IV

+ (βy +δyut)ηt︸        ︷︷        ︸
V

+ ηtεt︸︷︷︸
VI

. (4.8)

Proposition 3 in Chambers (1998) states that a linear combination of fractionally integrated

processes is itself fractionally integrated, with an order of integration equal to the maximum of

those in the linear combination. Chamber’s arguments extend readily to long memory processes in

general because they only make use of the long memory properties. More specifically, let fX(λ) be

the spectral density matrix of the multivariate long memory process Xt that fulfills
[
Re( fX(λ))

]
ab ∼

gab|λ|
−da−db, as λ→ 0. Than the linear combination S t = w′Xt has spectral density

fS (λ) = w′ fX(λ)w ∼
q∑

a=1

w2
aGaa|λ|

−2da +
∑
a,b

wawbGab|λ|
−da−db , (4.9)

as λ→ 0. Since O(|λ|−2da) +O(|λ|−2db) = O(|λ|−2max(da,db)), as λ→ 0, and 2max(da,db) > da + db, the

spectral density is proportionate to the largest term in the first sum on the right hand side of

(4.9).
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The memory order of xtyt is therefore the maximum of the memory orders in terms I to VI in

(4.8) and the memory of these individual terms can be determined from the results in Proposition

4.1 and Corollary 1.

In Proposition 4.2, two cases are distinguished. In the first one, either µu or βxδy + βyδx are

unequal zero. In the second, µx = µy = µu = 0. These cases are considered separately.

1. Whenever µu , 0, III is LM(du), by Corollary 1. Since we know from Proposition 4.1

that none of the other terms can have stronger memory than the original series, it follows

directly from the result of Chambers (1998) that xtyt will be LM(du). The same holds true

if βxδy +βyδx , 0, since ut is LM(du).

2. If µx = µy = µu = 0, βx and βy in II are zero from (4.6) and (4.7) and term III is LM(max{2du

− 1/2,0}), by Corollary 1. From Proposition 3 in Chambers (1998) the lower bound for

the memory of the linear combination in (4.8) is therefore zero. By Proposition 4.1, the

reduced memory of the terms IV, V and VI is du + dε−1/2, du + dη−1/2 and du + dε−1/2,

respectively. Since dε,dη < du, by definition, all of these terms are smaller than 2du −1/2.

The memory of xtyt is therefore determined by that of term III. �

When comparing Propositions 4.1 and 4.2, one can see that the memory in the product series is

less fugacious if the factor series have common long memory. As before, the nature of the trans-

mission depends on the means of the series. However, since the square in term III determines

the memory of xtyt in equation (4.8), it is now the mean of the common factor that is crucial.

Therefore, zt can be du, even if µx = µy = 0.

4.5 Conclusion

This paper derives the memory of products of long memory time series. It is found that the

nature of the transmission critically hinges on the means of the factor series. While the memory

in the product series will be reduced if the means are zero, the memory of the more persistent

factor series will be directly propagated if the factor series have non-zero means. These findings

show that the property of long range dependence is less fugacious than it might seem from

previous results on non-linear transformations of long memory series obtained by Dittmann and

Granger (2002) that rely on a mean zero assumption.

One may conjecture that the transmission of long memory to other non-linear transformations

may similarly depend on the means. Further research on the memory properties of a broader

class of non-linear transformations would therefore be of great interest.
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Comparing Predictive Accuracy under Long Memory
- With an Application to Volatility Forecasting -
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Comparing Predictive Accuracy under Long Memory
- With an Application to Volatility Forecasting -
Co-authored with Robinson Kruse and Michael Will.

5.1 Introduction

If the accuracy of competing forecasts is to be evaluated in a (pseudo-)out-of-sample setup, it

has become standard practice to employ the test of Diebold and Mariano (1995) (hereafter DM

test). Let ŷ1t and ŷ2t denote two competing forecasts for the forecast objective series yt and let

the loss function of the forecaster be given by g(·) ≥ 0. Forecast errors are defined as eit = yt − ŷit

for i = 1,2 and the corresponding forecast error loss differential is denoted by zt = g(e1t)−g(e2t).

By only imposing restrictions on the loss differential zt, instead of the forecast objective and the

forecasts, Diebold and Mariano (1995) test the null hypothesis of equal predictive accuracy, i.e.

H0 : E(zt) = 0, by means of a simple t-statistic for the mean of the loss differentials. In order to

account for serial correlation, a long-run variance estimator such as the heteroscedasticity and

autocorrelation consistent (HAC) estimator is applied (see Newey and West (1987), Andrews

(1991) and Andrews and Monahan (1992)). For weakly dependent and second-order stationary

processes this leads to an asymptotic standard normal distribution of the t-statistic.

Apart from the development of other forecast comparison tests such as those of West (1996)

or Giacomini and White (2006), several direct extensions and improvements of the DM test

have been proposed. Harvey et al. (1997) suggest a version that corrects for the bias of the

long-run variance estimation in finite samples. A multivariate DM test is derived by Mariano

and Preve (2012). To mitigate the well known size issues of HAC-based tests in finite samples

of persistent short memory processes, Choi and Kiefer (2010) construct a DM test using the

so-called fixed-bandwidth (or in short, fixed-b) asymptotics, originally introduced in Kiefer and

Vogelsang (2005) (see also Patton (2015) and Li and Patton (2013)). Another extension of the

DM test is proposed by Rossi (2005), who develops a DM test under near unit root asymptotics.

However, all of these extensions fall into the classical I(0)/I(1) framework.

In this paper, we study the situation if these assumptions on the loss differential do not apply and

instead zt follows a long memory process. Our first contribution is to show that long memory

can be transmitted from the forecasts and the forecast objective to the forecast errors and

subsequently to the forecast error loss differentials. We consider the case of a mean squared error

(MSE) loss function and give conditions under which the transmission occurs and characterize

the memory properties of the forecast error loss differential. As a second contribution, we

show that the original DM test is invalidated in this case and suffers from severe upward size

distortions. Third, we study two simple extensions of the DM statistic that allow valid inference

under long (and short) memory. These extensions are the memory and autocorrelation consistent

(MAC) estimator of Robinson (2005) (see also Abadir et al. (2009)) and the extended fixed-b

mailto:y.r.kruse@rug.nl
mailto:will@statistik.uni-hannover.de
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asymptotics (EFB) of McElroy and Politis (2012). The performance of these modified statistics

is analyzed in a Monte Carlo study. Since these tests build on a restriction on the mean, the

results allow broader conclusions about the relative performance of the MAC and the extended

fixed-b approach, which is an interesting topic in its own right. We compare several bandwidth

and kernel choices that allow recommendations for practical applications.

Our fourth contribution is an empirical application where we reconsider two recent extensions of

the heterogeneous autoregressive model for realized volatility (HAR-RV) by Corsi (2009). First,

we test whether forecasts obtained from HAR-RV type models can be improved by including in-

formation on model-free risk-neutral implied volatility which is measured by the CBOE volatility

index (VIX). We find that short memory approaches (classic Diebold-Mariano test and fixed-b

versions) reject the null hypothesis of equal predictive ability in favor of models including im-

plied volatility. On the contrary, our long memory robust statistics do not indicate a significant

improvement in forecast performance which implies that previous rejections might be spurious.

The second issue we tackle relates to earlier work by Andersen et al. (2007) and Corsi et al.

(2010), among others, who consider the decomposition of the quadratic variation of the log-price

process into a continuous integrated volatility component and a discrete jump component. Here,

we find that the separate treatment of continuous components and jump components significantly

improves forecasts of realized variance for short forecast horizons even if the memory in the loss

differentials is accounted for.

The rest of this paper is organized as follows. Section 5.2 reviews the classic Diebold-Mariano

test and presents the fixed-b approach for the short memory case. Section 5.3 covers the case of

long range dependence and contains our theoretical results on the transmission of long memory

to the loss differential series. Two distinct approaches to design a robust t-statistic are discussed

in Section 5.4. Section 5.5 contains our Monte Carlo study and in Section 5.6 we present our

empirical results. Conclusions are drawn in Section 5.7. All proofs are contained in the Ap-

pendix.

5.2 Diebold-Mariano Test

Diebold and Mariano (1995) construct a test for H0 : E
[
g(e1t)−g(e2t)

]
= E(zt) = 0, solely based

on assumptions on the loss differential series zt. Suppose that zt follows the weakly stationary

linear process

zt = µz +

∞∑
j=0

θ jvt− j , (5.1)

where it is required that |µz| < ∞ and
∑∞

j=0 θ
2
j < ∞ hold. For simplicity of the exposition we

additionally assume that vt ∼ iid(0,σ2
v). If ŷ1t and ŷ2t are performing equally good in terms of

g(·), µz = 0 holds, otherwise µz , 0. The corresponding t-statistic is based on the sample mean
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z̄ = T−1 ∑T
t=1 zt and an estimate (V̂) of the long-run variance V = limT→∞Var

(
T δ (z̄−µz)

)
. The DM

statistic is given by

tDM = T δ z̄√
V̂
. (5.2)

Under stationary short memory, we have δ = 1/2, while the rate changes to δ = 1/2− d under

stationary long memory, with 0 < d < 1/2 being the long memory parameter. The (asymptotic)

distribution of this t-statistic hinges on the autocorrelation properties of the loss differential

series zt. In the following, we shall distinguish two cases: (1) zt is a stationary short-memory

process and (2) strong dependence in form of a long memory process is present in zt as presented

in Section 5.3.

5.2.1 Conventional Approach: HAC

For the estimation of the long-run variance V, Diebold and Mariano (1995) suggest to use

the truncated long-run variance of an MA(h− 1) process for an h-step-ahead forecast. This is

motivated by the fact that optimal h-step-ahead forecast errors of a linear time series process

follow an MA(h−1) process. Nevertheless, as pointed out by Diebold (2015), among others, the

test is readily extendable to more general situations, if for example, HAC estimators are used

(see also Clark (1999) for some early simulation evidence). The latter have become the standard

estimators for the long-run variance. In particular,

V̂HAC =

T−1∑
j=−T+1

k
( j

B

)
γ̂z( j) , (5.3)

where k(·) is a user-chosen kernel function, B denotes the bandwidth and

γ̂z( j) =
1
T

T∑
t=| j|+1

(zt − z̄)
(
zt−| j|− z̄

)
is the usual estimator for the autocovariance of process zt at lag j. The Diebold-Mariano statistic

is given by

tHAC = T 1/2 z̄√
V̂HAC

. (5.4)

If zt is weakly stationary with absolutely summable autocovariances γz( j), it holds that V =∑∞
j=−∞ γz( j). Suppose that a functional central limit theorem applies for partial sums of zt, so

that 1√
T

∑[Tr]
t=1 zt⇒

√
VW(r) where W(r) is a standard Brownian motion. Then, the tHAC-statistic

is asymptotically standard normal under the null hypothesis, i.e.

tHAC ⇒N(0,1),
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as
√

V in (5.2) cancels out as long as V̂
p
→ V holds. For the sake of a comparable notation to

the long memory case, note that V = 2π fz(0), where fz(0) is the spectral density function of zt at

frequency zero.

5.2.2 Fixed-bandwidth Approach

Even though nowadays the application of HAC estimators is standard practice, related tests are

often found to be seriously size-distorted in finite samples, especially under strong persistence.

It is assumed that the ratio b = B/T → 0 as T →∞ in order to achieve a consistent estimation of

the long-run variance V (see for instance Andrews (1991) for additional technical details). Kiefer

and Vogelsang (2005) develop a new asymptotic framework in which the ratio B/T approaches

a fixed constant b ∈ (0,1] as T →∞. Therefore, it is called fixed-b inference as opposed to the

classical small-b HAC approach where b→ 0.

In the case of fixed-b (FB), the estimator V̂(k,b) does not converge to V any longer. Instead,

V̂(k,b) converges to V multiplied by a functional of a Brownian bridge process. In particular,

V̂(k,b)⇒ VQ(k,b). Therefore, the corresponding t-statistic

tFB = T 1/2 z̄√
V̂(k,b)

(5.5)

has a non-normal and non-standard limiting distribution, i.e.

tFB⇒
W(1)
√

Q(k,b)
.

Here, W(r) is a standard Brownian motion on r ∈ [0,1]. Both, the choice of the bandwidth

parameter b and the (twice continuously differentiable) kernel k appear in the limit distribution.

For example, for the Bartlett kernel we have

Q(k,b) =
2
b

(∫ 1

0
W̃(r)2dr−

∫ 1−b

0
W̃(r + b)W̃(r)dr

)
,

with W̃(r) = W(r)− rW(1) denoting a standard Brownian bridge. Thus, critical values reflect

the user choices on the kernel and the bandwidth even in the limit. In many settings, fixed-b

inference is more accurate than the conventional HAC estimation approach. An example of its

application to forecast comparisons are the aforementioned articles of Choi and Kiefer (2010),

Patton (2015) and Li and Patton (2013), who apply both techniques (HAC and fixed-b) to

compare exchange rate forecasts. Our Monte Carlo simulation study sheds additional light on

their relative empirical performance.
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5.3 Long Memory in Forecast Error Loss Differentials

5.3.1 Preliminaries

Under long-range dependence in zt, one has to expect that neither conventional HAC estimators

nor the fixed-b approach can be applied in this context without any further modification, since

strong dependence such as fractional integration is ruled out by assumption. In particular,

we show that HAC-based tests reject with probability one in the limit (as T → ∞) if zt has

long memory. This claim is proven in our Proposition 5.5 (at the end of this section). As our

finite-sample simulations clearly demonstrate, this implies strong upward size distortions and

invalidates the use of the classic DM test statistic. Before we actually state these results formally,

we first show that the loss differential zt may exhibit long memory in various situations.

We start with a basic definition of stationary long memory time series.

Definition 5.1. A time series at with spectral density fa(λ), with λ ∈ [−π,π], has long memory

with memory parameter da ∈ (0,1/2), if fa(λ) ∼ L f |λ|
−2da for da ∈ (0,1/2) as λ→ 0. L f (·) is slowly

varying at the origin. We write at ∼ LM(da).

This is the usual definition of a stationary long memory process and Theorem 1.3 of Beran

et al. (2013) states that under this restriction and mild regularity conditions, Definition 5.1 is

equivalent to γa( j) ∼ Lγ| j|2da−1 as j→∞, where γa( j) is the autocovariance function of at at lag j

and Lγ(·) is slowly varying at infinity. If da = 0 holds, the process has short memory. Our results

build on the asymptotic behavior of the autocovariances that have the long memory property

from Definition 5.1. Whether this memory is generated by fractional integration can not be

inferred. However, this does not affect the validity of the test statistics introduced in Section

5.4. We therefore adopt Definition 5.1 which covers fractional integration as a special case. A

similar approach is taken by Dittmann and Granger (2002).1

Given Definition 5.1, we now state some assumptions regarding the long memory structure of

the forecast objective and the forecasts.

Assumption 5.1 (Long Memory). The time series yt, ŷ1t, ŷ2t with expectations E(yt) = µy,

E(̂y1t) = µ1 and E(̂y2t) = µ2 are causal Gaussian long memory processes (according to Definition

5.1) of orders dy,d1 and d2, respectively.

Similar to Dittmann and Granger (2002), we rely on the assumption of Gaussianity since no

results for the memory structure of squares and cross-products of non-Gaussian long memory

processes are available in the existing literature. It shall be noted that Gaussianity is only

assumed for the derivation of the memory transmission from the forecasts and the forecast

objective to the loss differential, but not for the subsequent results.

1Sometimes the terms long memory and fractional integration are used interchangeably. However, a stationary
fractionally integrated process at has spectral density fa(λ) = |1− eiλ|−2daGa(λ), so that fa(λ) ∼ G(λ)|λ|−2da as λ→
0, since |1− eiλ| → λ as λ→ 0. Therefore, fractional integration is a special case of long memory, but many
other processes would satisfy Definition 5.1, too. Examples include non-causal processes and processes with
trigonometric power law coefficients, as recently discussed in Kechagias and Pipiras (2015).
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In the following, we make use of the concept of common long memory in which a linear com-

bination of long memory series has reduced memory. The amount of reduction is labeled as b

in accordance with the literature (similar to the symbol b in ”fixed-b”, but no confusion shall

arise).

Definition 5.2 (Common Long Memory). The time series at and bt have common long memory

(CLM) if both at and bt are LM(d) and there exists a linear combination ct = at −ψ0−ψ1bt with

ψ0 ∈ R and ψ1 ∈ R\0 such that ct ∼ LM(d−b), for some d ≥ b > 0. We write at,bt ∼CLM(d,d−b).

For simplicity and ease of exposition, we first exclude the possibility of common long memory

among the series. This assumption is relaxed later on.

Assumption 5.2 (No Common Long Memory). If at,bt ∼ LM(d), then at−ψ0−ψ1bt ∼ LM(d) for

all ψ0 ∈ R,ψ1 ∈ R and at,bt ∈
{
yt, ŷ1t, ŷ2t

}
.

In order to derive the long memory properties of the forecast error loss differential, we make use

of a result in Leschinski (2016) that characterizes the memory structure of the product series

atbt for two long memory time series at and bt. Such products play an important role in the

following analysis. The result is therefore shown as Proposition 5.1 below, for convenience.

Proposition 5.1 (Memory of Products). Let at and bt be long memory series according to

Definition 5.1 with memory parameters da and db, and means µa and µb, respectively. Then

atbt ∼



LM(max {da,db}), for µa,µb , 0

LM(da), for µa = 0,µb , 0

LM(db), for µb = 0,µa , 0

LM(max {da + db−1/2,0}), for µa = µb = 0 and S a,b , 0

LM(da + db−1/2), for µa = µb = 0 and S a,b = 0,

where S a,b =
∑∞

j=−∞ γa( j)γb( j) with γa(·) and γb(·) denoting the autocovariance functions of at and

bt, respectively.

Proposition 5.1 shows that the memory of products of long memory time series critically depends

on the means µa and µb of the series at and bt. If both series are mean zero, the memory of

the product is either the maximum of the sum of the memory parameters of both factor series

minus one half - or it is zero - depending on the sum of autocovariances. Since da,db < 1/2, this

is always smaller than any of the original memory parameters. If only one of the series is mean

zero, the memory of the product atbt is determined by the memory of this particular series.

Finally, if both series have non-zero means, the memory of the product is equal to the maximum

of the memory orders of the two series.

It should be noted, that Proposition 5.1 makes a distinction between antipersistent series and

short memory series, if the processes have zero means and da + db −1/2 < 0. Our results below,
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however, do not require this distinction. The reason for this is that a linear combination involving

the square of at least one of the series appears in each case, and these cannot be anti-persistent

long memory processes (cf. the proofs of Propositions 5.2 and 5.4 for details).

As discussed in Leschinski (2016), Proposition 5.1 is related to the results in Dittmann and

Granger (2002), who consider the memory of non-linear transformations of zero mean long

memory time series that can be represented through a finite sum of Hermite polynomials. Their

results include the square a2
t of a time series which is also covered by Proposition 5.1 if at = bt. If

the mean is zero (µa = 0), we have a2
t ∼ LM(max {2da−1/2,0}). Therefore, the memory is reduced

to zero if d ≤ 1/4. However, as can be seen from Proposition 5.1, this behavior depends critically

on the expectation of the series.

Since it is the most widely used loss function in practice, we focus on the MSE loss function.

Let eit = yt − ŷit denote the i-th forecast error, then the quadratic forecast error loss differential

is given by

zt = e2
1t − e2

2t = (yt − ŷ1t)2− (yt − ŷ2t)2

= ŷ2
1t − ŷ2

2t −2yt (̂y1t − ŷ2t). (5.6)

Note that even though the forecast objective yt as well as the forecasts ŷit in (5.6), have time

index t, the representation is quite versatile. It allows for forecasts generated from time series

models where ŷit =
∑T

s=1φsyt−s as well as predictive regressions with ŷit = β′xt−s, where β is a w×1

parameter vector and xt−s is a vector of w explanatory variables lagged by s periods. In addition

to that, even though estimation errors are not considered explicitly, they would be reflected

by the fact that E[yt|Ψt−h] , ŷit|t−h, where Ψt−h is the information set available at the forecast

origin t− h. This means that forecasts are biased in presence of estimation error, even if the

model employed corresponds to the true data generating process. The forecasts are also not

restricted to be obtained from a linear model. Similar to the Diebold-Mariano test, which is

solely based on a single assumption on the forecast error loss differential (5.6), the following

results are derived by assuming certain properties of the forecasts and the forecast objective.

Therefore, we follow Diebold and Mariano (1995) and do not impose direct restrictions on the

way forecasts are generated.

5.3.2 Transmission of Long Memory to the Loss Differential

Following the introduction of the necessary definitions and a preliminary result, we now present

the result for the memory order of zt defined via (5.6) in Proposition 5.2. It is based on the

memory of yt, ŷ1t and ŷ2t and assumes the absence of common long memory for simplicity.

Proposition 5.2 (Memory Transmission without CLM). Under Assumptions 5.1 and 5.2, the
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forecast error loss differential in (5.6) is zt ∼ LM(dz), where

dz =



max
{
dy, d1, d2

}
, if µ1 , µ2 , µy

max {d1, d2} , if µ1 = µ2 , µy

max
{
2d1−1/2, d2, dy

}
, if µ1 = µy , µ2

max
{
2d2−1/2, d1, dy

}
, if µ1 , µy = µ2

max
{
2max {d1, d2}−1/2, dy + max {d1, d2}−1/2, 0

}
, if µ1 = µ2 = µy.

Proof: See the Appendix.

The basic idea of the proof relates to Proposition 3 of Chambers (1998). It shows that the

long-run behavior of a linear combination of long memory series is dominated by the series with

the strongest memory. Since we know from Proposition 5.1 that the means µ1,µ2 and µy play an

important role for the memory of a squared long memory series, we set yt = y∗t +µy and ŷit = ŷ∗it +µi,

so that the starred series denote the demeaned series and µi denotes the expected value of the

respective series. Straightforward algebra yields

zt = ŷ∗21t − ŷ∗22t −2
[
y∗t (µ1−µ2) + ŷ∗1t(µy−µ1) + ŷ∗2t(µy−µ2)

]
−2

[
y∗t (̂y∗1t − ŷ∗2t)

]
+ const. (5.7)

From (5.7) it is apparent that zt is a linear combination of (i) the squared forecasts ŷ∗21t and ŷ∗22t ,

(ii) the forecast objective yt, (iii) the forecast series ŷ∗1t and ŷ∗2t and (iv) products of the forecast

objective with the forecasts, i.e. y∗t ŷ∗1t and y∗t ŷ∗2t. The memory of the squared series and the

product series is determined in Proposition 5.1, from which the zero mean product series y∗t ŷ∗it is

LM(max
{
dy + di−1/2, 0

}
) or LM(dy + di−1/2). Moreover, the memory of the squared zero mean

series ŷ∗2it is max {2di−1/2, 0}. By combining these results with that of Chambers (1998), the

memory of the loss differential zt is the maximum of all memory parameters of the components

in (5.7). Proposition 5.2 then follows from a case-by-case analysis.

Proposition 5.2 demonstrates the transmission of long memory from the forecasts ŷ1t, ŷ2t and

the forecast objective yt to the loss differential zt. The nature of this transmission, however,

critically hinges on the (un)biasedness of the forecasts. If both forecasts are unbiased (i.e. if

µ1 = µ2 = µy), the memory from all three input series is reduced and the memory of the loss

differential zt is equal to the maximum of the maximum of (i) these reduced orders and (ii) zero.

Therefore, only if memory parameters are small enough such that dy + max {d1 + d2} < 1/2, the

memory of the loss differential zt is reduced to zero. In all other cases, there is a transmission of

dependence from the forecast and/or the forecast objective to the loss differential. The reason

for this can immediately be seen from (5.7). Note that the terms in the first bracket have larger

memory than the remaining ones, because di > 2di−1/2 and max
{
dy,di

}
> dy +di−1/2. Therefore,

these terms dominate the memory of the products and squares whenever biasedness is present,
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i.e. µi−µy , 0 holds. Interestingly, the transmission of memory from the forecast objective yt is

prevented, if both forecasts have equal bias - that is µ1 = µ2. On the contrary, if µ1 , µ2, dz is at

least as high as dy.

5.3.3 Memory Transmission under Common Long Memory

The results in Proposition 5.2 are based on Assumption 5.2 that precludes common long memory

among the series. Of course, in practice it is likely that such an assumption is violated. In fact,

it can be argued that reasonable forecasts of long memory time series should have common long

memory with the forecast objective. Therefore, we relax this restrictive assumption and replace

it with Assumption 5.3, below.

Assumption 5.3 (Common Long Memory). The causal Gaussian process xt has long memory

according to Definition 5.1 of order dx with expectation E(xt) = µx. If at,bt ∼CLM(dx,dx−b), then

they can be represented as yt = βy +ξyxt +ηt for at,bt = yt and ŷit = βi +ξixt +εit, for at,bt = ŷit, with

ξy, ξi , 0. ηt and εit are mean zero causal Gaussian long memory processes with parameters dη
and dεit fulfilling 1/2 > dx > dη,dεi ≥ 0, for i = 1,2.

Assumption 5.3 restricts the common long memory to be of a form so that both series at and bt

can be represented as linear functions of their joint factor xt. This excludes more complicated

forms of dependence that are sometimes considered in the cointegration literature such as non-

linear or time-varying cointegration.

We know from Proposition 5.2 that the transmission of memory critically depends on the bi-

asedness of the forecasts which leads to a complicated case analysis. If common long memory

according to Assumption 5.3 is allowed for, this leads to an even more complex situation since

there are several possible relationships: CLM of yt with one of the ŷit, CLM of both ŷit with

each other, but not with yt, and CLM of each ŷit with yt. Each of these situations has to be

considered with all possible combinations of the ξa and the µa for all a ∈ {y,1,2}. To deal with this

complexity, we focus on two important special cases: (i) at least one forecast is biased and (ii)

all forecasts are unbiased (and ξa = ξb if at and bt are in a common long memory relationship).

Situation (i) is similar to the first four cases considered in Proposition 5.2. By substituting the

linear relations from Assumption 5.3 for those series involved in the CLM relationship in the loss

differential zt = ŷ2
1t − ŷ2

2t − 2yt (̂y1t − ŷ2t) and again setting at = a∗t +µa for those series that are not

involved in the CLM relationship, it is possible to find expressions that are analogous to (5.7).

Since analogous terms to those in the first bracket of (5.7) appear in each case, it is possible to

focus on the transmission of memory from the forecasts and the objective function to the loss

differential. We therefore obtain the following result.
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Proposition 5.3 (Memory Transmission with Biased Forecasts and CLM). Under Assumptions

5.1 and 5.3, the forecast error loss differential in (5.6) is zt ∼ LM(dz), where

dz ≥


d1, if µ1 , µy

d2, if µ2 , µy

dy, if µ1 , µ2.

Proof: See the Appendix.

Proposition 5.3 states that the transmission of memory remains the same as in the absence of

common long memory, given that the forecasts are biased. As in (5.7) before, if the forecasts

are biased (or have different biases) the memory of the de-meaned series y∗t , ŷ∗1t and ŷ∗2t dominate

that of the other terms. However, if two of those terms appear, it is unclear which one of them

is larger - therefore the inequalities in Proposition 5.3.

The second special case (ii) refers to a situation of unbiasedness similar to the last case in

Proposition 5.2. In addition to that, it is assumed that ξa = ξb, if at and bt are in a common

long memory relationship. To understand the role of the coefficients ξa and ξb of the common

long memory factor xt driving both series, note that the forecast errors yt − ŷit impose a coin-

tegrating vector of (1,−1). A different scaling of the forecast objective and the forecasts is not

possible. In the case of CLM between yt and ŷit, for example, we have from Assumption 5.3 that

yt − ŷit = βy −βi + xt(ξy − ξi) +ηt − εit, so that xt does not disappear from the linear combination if

the scaling parameters ξy and ξi are different from each other. Hence, we have the following result.

Proposition 5.4 (Memory Transmission with Unbiased Forecasts and CLM). Under Assump-

tions 5.1 and 5.3, and if µy = µ1 = µ2 and ξy = ξa = ξb, then zt ∼ LM(dz), with

dz =



max
{
d2 + max

{
dx,dη

}
−1/2, 2max {dx,d2}−1/2, dε1

}
, if yt, ŷ1t ∼CLM(dx,dx − b̃)

max
{
d1 + max

{
dx,dη

}
−1/2, 2max {dx,d1}−1/2, dε2

}
, if yt, ŷ2t ∼CLM(dx,dx − b̃)

max
{
max

{
dx, dy

}
+ max

{
dε1 , dε2

}
−1/2, 0

}
, if ŷ1t, ŷ2t ∼CLM(dx,dx − b̃)

max
{
dη + max

{
dε1 , dε2

}
−1/2, 2max

{
dε1 , dε2

}
−1/2, 0

}
, if yt, ŷ1t ∼CLM(dx,dx − b̃)

and yt, ŷ2t ∼CLM(dx,dx − b̃).

Here, 0 < b̃ ≤ 1/2 denotes a generic constant for the reduction in memory.

Proof: See the Appendix.

Proposition 5.4 shows that the memory of the forecasts and the objective variable can indeed

cancel out if the forecasts are unbiased and if they have the same factor loading on xt (i.e. if
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ξ1 = ξ2 = ξy). However, in the first two cases, the memory of the error series ε1t and ε2t imposes a

lower bound on the memory of the loss differential. Furthermore, even though the memory can

be reduced to zero in the third and fourth case, this situation only occurs if the memory orders

of xt, yt and the error series are sufficiently small. Otherwise, the memory is reduced, but does

not vanish.

The results in Propositions 5.2, 5.3 and 5.4 show that long memory can be transmitted from

forecasts or the forecast objective to the forecast error loss differentials. This situation can arise

naturally in many practical situations. First, of course the forecast objective might be a long

memory time series. Second, from Proposition 3 in Chambers (1998), forecasts that are based

on linear combinations - such as predictive regressions - exhibit long memory if they include a

long memory variable.

Our results also show that the biasedness of the forecasts plays an important role for the transmis-

sion of dependence to the loss differentials. In practical situations, it might be overly restrictive

to impose exact unbiasedness (under which memory would be reduced according to Proposition

5.4). Our empirical application regarding the predictive ability of the VIX serves as an example

since it is a biased forecast of future quadratic variation due to the existence of a variance risk

premium (see Section 5.6).

It is well established that estimation errors might imply biased forecasts. This issue might be of

less importance in a setup where the estimation period grows at a faster rate than the (pseudo-)

out-of-sample period that is used for forecast evaluation. For the DM test however, it is usually

assumed that this is not the case. Otherwise, it could not be used for the comparison of forecasts

from nested models due to a degenerated limiting distribution (cf. Giacomini and White (2006)

for a discussion). Instead, the sample of size T ∗ is split into an estimation period TE and a

forecasting period T such that T ∗ = TE + T and it is assumed that T grows at a faster rate than

TE so that TE/T → 0 as T ∗ →∞. Therefore, the estimation error shrinks at a lower rate than

the growth rate of the evaluation period and it remains relevant, asymptotically.

Finally, even optimal forecasts can be strongly persistent for long forecast horizons. It is well

known that the forecast errors of an optimal h-step-ahead forecast follow an MA(h−1) process.

The coefficients of this process are given by the first h−1 coefficients in the MA(∞) representation

of the objective series yt. Therefore, forecast errors of the h-step forecast for h→∞ have long

memory if the underlying series yt has long memory as well. For larger forecast horizons long

memory processes are therefore a better approximation to the true dependence structure than

short memory processes.

5.3.4 Asymptotic and Finite-Sample Behaviour under Long Memory

After confirming that forecast error loss differentials can exhibit long memory, we now consider

the effect of long memory on the HAC-based Diebold-Mariano test. The following Proposition

5.5 establishes that the size of the test approaches unity, as T →∞. Thus, the test indicates

with probability one that one of the forecasts is superior to the other one, even if both tests
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Figure 5.1: Size of the tHAC- and tFB-tests with T = 50 for different values of the memory parameter d.

perform equally in terms of g(·).

Proposition 5.5 (DM under Long Memory). For zt ∼ LM(d) with d ∈ (0,1/4)∪ (1/4,1/2), the

asymptotic size of the tHAC-statistic equals unity as T →∞.

Proof: See the Appendix.

This result shows that inference based on HAC estimators is asymptotically invalid under long

memory. At the point d = 1/4, the asymptotic distribution of the tHAC-statistic changes from

normality to a Rosenblatt-type distribution which explains the discontinuity, see Abadir et al.

(2009). In order to explore to what extent this finding also affects the finite-sample performance

of the tHAC- and tFB-statistics, we conduct a small-scale Monte Carlo experiment as an illustra-

tion. The results shown in Figure 5.1 are obtained with M = 5000 Monte Carlo repetitions. We

simulate samples of T = 50 observations from a fractionally integrated process using different

values of the memory parameter d in the range from 0 to 0.4. The HAC estimator and the

fixed-b approach are implemented with the commonly used Bartlett- and Quadratic Spectral

(QS) kernels.2

2The bandwidth parameter of the fixed-b estimator is set to b = 0.8, since using a larger fraction of the autocor-
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As demonstrated by Kiefer and Vogelsang (2005), the fixed-b approach works exceptionally well

in the case of d = 0, with the Bartlett and QS kernel achieving approximately equal size control.

The tHAC-statistic behaves more liberal than the fixed-b approach and, as stated in Andrews

(1991), better size control is provided if the Quadratic Spectral kernel is used. If the memory

parameter d is positive, we observe that both tests severely over-reject the null hypothesis. For

d = 0.4, the size of the HAC-based test is approximately 65% and that of the fixed-b version

using the Bartlett kernel is around 40%. We therefore find that the size distortions are not only

an asymptotic phenomenon, but they are already severe in samples of just T = 50 observations.

Moreover, even for small deviations of d from zero, both tests are over-sized. These findings

motivate the use of long memory robust procedures.

5.4 Long-Run Variance Estimation under Long Memory

Since conventional HAC estimators lead to spurious rejections under long memory, it is necessary

to consider memory robust long-run variance estimators. To the best of our knowledge only two

extensions of this kind are available in the literature: the memory and autocorrelation consistent

(MAC) estimator of Robinson (2005) and an extension of the fixed-b estimator from McElroy

and Politis (2012). Note that we do not assume that forecasts are obtained from some specific

class of model. We merely extend the typical assumptions of Diebold and Mariano (1995) on

the loss differentials so that long memory is allowed.

5.4.1 MAC Estimator

The MAC estimator is developed by Robinson (2005) and further explored and extended by

Abadir et al. (2009). Albeit stated in a somewhat different form, the same result is derived

independently by Phillips and Kim (2007), who consider the long-run variance of a multivariate

fractionally integrated process. Robinson (2005) assumes that zt is linear and that for λ→ 0 its

spectral density fulfills

f (λ) = b0|λ|
−2d + o(|λ|−2d),

with b0 > 0, |λ| ≤ π, d ∈ (−1/2,1/2) and b0 = limλ→0 |λ|
2d f (λ) (cf. Assumption L, Abadir et al.

(2009)).3 Among others, this assumption covers stationary and invertible ARFIMA processes.

A key result for the MAC estimator is that as T →∞

Var
(
T 1/2−d z̄

)
→ b0 p(d)

relations provides a higher emphasis on size control (cf. Kiefer and Vogelsang (2005)). Other bandwidth choices
lead to similar results.

3For notational convenience, here we drop the index z from the spectral density and the memory parameter.
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with

p(d) =


2Γ(1−2d) sin(πd)

d(1+2d) if d , 0 ,

2π if d = 0 .

The case of short memory (d = 0) yields the familiar result that the long-run variance of the

sample mean equals 2πb0 = 2π f (0). Hence, estimation of the long-run variance requires esti-

mation of f (0) in the case of short memory. If long memory is present in the data generating

process, estimation of the long-run variance additionally hinges on the estimation of d. The

MAC estimator is therefore given by

V̂(d̂,md,m) = b̂m(d̂)p(d̂) .

In more detail, the estimation of V works as follows: First, if the estimator for d fulfills the

condition d̂−d = op(1/ logT ), plug-in estimation is valid (cf. Abadir et al. (2009)). Thus, p(d) can

simply be estimated through p(d̂). A popular estimator that fulfills this rather weak requirement

is the local Whittle estimator with bandwidth md = [T q], where 0 < q < 1 denotes a generic

bandwidth parameter. Many other estimation approaches (e.g. log-periodogram estimation,

etc.) would be a possibility as well. Next, b0 can be estimated consistently by

b̂m(d̂) = m−1
m∑

j=1

λ2d̂
j IT (λ j) ,

where IT (λ j) is the periodogram (which is independent of d̂),

IT (λ j) = (2πT )−1

∣∣∣∣∣∣∣
T∑

t=1

exp(itλ j)zt

∣∣∣∣∣∣∣
2

and λ j = 2π j/T are the Fourier frequencies for j = 1, ...,bT/2c. Here, b·c denotes the largest integer

smaller than its argument. The bandwidth m is determined according to m = bT qc such that

m→∞ and m = o(T/(logT )2).

The MAC estimator is consistent as long as d̂
p
→ d and b̂m(d̂)

p
→ b0. These results hold under

very weak assumptions - neither linearity of zt nor Gaussianity are required. Under somewhat

stronger assumptions the tMAC-statistic is also normal distributed (see Theorem 3.1. of Abadir

et al. (2009)):

tMAC ⇒N(0,1) .

The t-statistic using the feasible MAC estimator can be written as

tMAC = T 1/2−d̂ z̄√
V̂(d̂,md,m)

,
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with md and m being the bandwidths for estimation of d and b0, respectively.

It shall be noted that Abadir et al. (2009) also consider long memory versions of the classic HAC

estimators. However, these extensions have two important shortcomings. First, asymptotic

normality is lost for 1/4 < d < 1/2 which complicates inference remarkably as d is generally

unknown. Second, the extended HAC estimator is very sensitive towards the bandwidth choice

as the MSE-optimal rate depends on d. On the contrary, the MAC estimator is shown to lead to

asymptotically standard normally distributed t-ratios for the whole range of values d ∈ (−1/2,1/2).

Moreover, the MSE-optimal bandwidth choice m = [T 4/5] is independent of d. Thus, we focus on

the MAC estimator and do not consider extended HAC estimators further.

5.4.2 Extended Fixed-Bandwidth Approach

Following up on the work by Kiefer and Vogelsang (2005), McElroy and Politis (2012) extend

the fixed-bandwidth approach to long range dependence. Their approach is similar to the one of

Kiefer and Vogelsang (2005) in many respects, as can be seen below. The test statistic suggested

by McElroy and Politis (2012) is given by

tEFB = T 1/2 z̄√
V̂(k,b)

.

In contrast to the tMAC-statistic, the tEFB-statistic involves a scaling of T 1/2. This has an effect

on the limit distribution which depends on the memory parameter d. Analogously to the short

memory case, the limiting distribution is derived by assuming that a functional central limit

theorem for the partial sums of zt applies, so that

tEFB⇒
Wd(1)
√

Q(k,b,d)
,

where Wd(r) is a fractional Brownian motion and Q(k,b,d) depends on the fractional Brownian

bridge W̃d(r) = Wd(r)−rWd(1). Furthermore, Q(k,b,d) depends on the first and second derivatives

of the kernel k(·). In more detail, for the Bartlett kernel we have

Q(k,b,d) =
2
b

(∫ 1

0
W̃d(r)2dr−

∫ 1−b

0
W̃d(r + b)W̃d(r)dr

)
and thus, a similar structure as for the short memory case. Further details and examples can

be found in McElroy and Politis (2012). The joint distribution of Wd(1) and
√

Q(k,b,d) is found

through their joint Fourier-Laplace transformation, see Fitzsimmons and McElroy (2010). It is

symmetric around zero and has a cumulative distribution function which is continuous in d.

Besides the similarities to the short memory case, there are some important conceptual dif-

ferences to the MAC estimator. First, the MAC estimator belongs to the class of ”small-b”

estimators in the sense that it estimates the long-run variance directly, whereas the fixed-b ap-

proach leads also in the long memory case to an estimate of the long-run variance multiplied by a
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functional of a fractional Brownian bridge. Second, the limiting distribution of the tEFB-statistic

is not a standard normal, but rather depending on the chosen kernel k, the fixed-bandwidth

parameter b and the long memory parameter d. While the first two are user-specific, the latter

one requires a plug-in estimator, as does the MAC estimator. As a consequence, the critical

values are depending on d. McElroy and Politis (2012) offer response curves for various kernels.4

5.5 Monte Carlo Study

In this section we analyze the finite-sample performance of the procedures discussed above by

means of a simulation study. As in our motivating example, we conduct all size and power

simulations for the tMAC- and tEFB-tests with M = 5000 Monte Carlo repetitions and the nominal

significance level is set to 5%. For both tests, the plug-in estimation of d is done via local Whittle

(LW) with md = bT 0.65c which is similar to the simulation setup in Abadir et al. (2009). In the

case of the extended fixed-b approach, we consider the Bartlett and the Modified Quadratic

Spectral (MQS) kernel as used in Politis and McElroy (2009) and McElroy and Politis (2012).5

Note that even though the theoretical results in Section 5.3 are based on assumptions on the

forecasts and the forecast objective, the modified DM tests proposed in Section 5.4 are based

solely on assumptions on the time series properties of the loss differentials. Since these tests are

the subject of this Monte Carlo study, we also take this perspective for the simulation design

and generate the loss differential series zt directly from standard time series models.

The results reported below are generated for the following two DGPs. DGP1 is a fractional Gaus-

sian white noise process with memory parameter d = {0,0.05,0.1, ...,0.45}, while DGP2 contains

an additional first-order autoregressive component with parameter φ = 0.6.

If the loss differential series has zero mean, this represents a situation where both forecasts are

equally good. For non-zero means one of the forecasts outperforms the other. Since the DM test

is essentially a test on the mean, the results presented below can not only be interpreted with

regard to forecast comparisons. Instead, they can also be considered as a general comparison of

size and power between statistics using the MAC estimator and tests employing the extended

fixed-b asymptotics. To the best of our knowledge, such a comparison has not been conducted

in the existing literature before.

4All common kernels (e.g. Bartlett, Parzen) as well as others considered in Kiefer and Vogelsang (2005) can be
used. In addition to the aforementioned, McElroy and Politis (2012) use the Daniell, the Trapezoid, the Modified
Quadratic Spectral, the Tukey-Hanning and the Bohman kernel.

5The MQS kernel is a modified version of the usual QS kernel used in Kiefer and Vogelsang (2005), but restricted
to x ∈ [−1,1]. The kernel is given by k(x) = 3(sin(πx)/(πx)−cos(πx))/(πx)2 for x ∈ [−1,1] and k(x) = 0 for |x| > 1, where
x = j/B, if the kernel is employed for the long-run variance estimation as in (5.3). Further kernels, including
flat-top tapers, are analyzed as well but yield slightly inferior results to those reported here.



5.5. Monte Carlo Study 110

●
●

●
●

●
●

● ●

●

Size ext. FB MQS, T=50

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

● ●

●
●

●
●

●
●

●

●
●

●
●

● ● ●

●

●

●

●

DGP1
DGP2
b = 0.1
b = 0.2
b = 0.3
b = 0.4
b = 0.5
b = 0.6
b = 0.7
b = 0.8
b = 0.9
b = 1

●
● ●

● ●
●

● ●

●

Size ext. FB MQS, T=250

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

● ● ● ●
●

●
● ●

●

●
●

●
●

● ●
●

●

●

●

●

DGP1
DGP2
b = 0.1
b = 0.2
b = 0.3
b = 0.4
b = 0.5
b = 0.6
b = 0.7
b = 0.8
b = 0.9
b = 1

●

●

●
● ●

●

●

●

●

Size ext. FB Bartlett, T=50

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

●

●

●

●
●

●
●

●

●

● ● ●
●

● ● ●

●

●

●

●

DGP1
DGP2
b = 0.1
b = 0.2
b = 0.3
b = 0.4
b = 0.5
b = 0.6
b = 0.7
b = 0.8
b = 0.9
b = 1

●
●

● ●
● ●

● ●

●

Size ext. FB Bartlett, T=250

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

● ●
● ●

● ● ●
●

●

● ● ● ● ●
● ●

●

●

●

●

DGP1
DGP2
b = 0.1
b = 0.2
b = 0.3
b = 0.4
b = 0.5
b = 0.6
b = 0.7
b = 0.8
b = 0.9
b = 1

●

●

●

●
●

●
●

●

●

Size MAC, T=50

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

●

DGP1
DGP2
q = 0.5
q = 0.55
q = 0.6
q = 0.65
q = 0.7
q = 0.75
q = 0.8

●

●
● ●

●

●
●

●

●

Size MAC, T=250

d

R
ej

ec
tio

n 
fr

eq
ue

nc
y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0
0.

1
0.

2
0.

3

●

DGP1
DGP2
q = 0.5
q = 0.55
q = 0.6
q = 0.65
q = 0.7
q = 0.75
q = 0.8

Figure 5.2: Size of the tMAC- and tEFB-statistics for different degrees of long memory d, sample sizes T
and bandwidth parameters q and b.
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In regard of the fact that optimal forecasts are MA processes the attentive reader might wonder

why the results presented do not include MA dynamics. However, the derivative of the spectral

density of MA processes in the vicinity of the zero frequency tends to be much smaller than that

of AR processes, so that the spectral density at the origin is more flat and has a less severe effect

on the finite-sample performance of the estimators for the long memory parameters. We therefore

decide to present the results for the situation that is more challenging for the methods employed,

but additional results under MA dynamics are available from the authors upon request. In

addition to that, the important special case of optimal one-step-ahead forecasts is represented

by DGP1 for d = 0.

Figure 5.2 shows a comparison of the size of both tests for different degrees of long memory and

sample sizes of T ∈ {50,250}. In the case of DGP1, all tests are liberal and the size tends to

increase with increasing d. The tEFB-statistic obtained with the MQS kernel gives the best size

control, whereas the tMAC-statistic shows the highest rejection frequencies.

In larger samples of T = 250 observations the dependence of the size on d is reduced and both

tests approach their nominal significance level. However, for both sample sizes the tEFB-statistics

are notably closer to their nominal level of 5% than the MAC-based statistic and among the

tEFB-statistics, the one obtained with the MQS kernel performs best. As observed by Kiefer and

Vogelsang (2005), there is a trade-off in terms of size and power in the choice of the bandwidth

parameter b. Larger bandwidths generally improve the size and reduce the power. However, as

can be seen from the results below, the kernel choice has a more severe effect than the bandwidth

choice. Especially in larger samples the size is nearly identical for all bandwidths.

DGP2 contains short memory influences and the results shown here are obtained with an au-

toregressive coefficient of φ = 0.6. Interestingly, in the presence of short memory components,

the results change notably. Already in small samples of T = 50 observations both tests are con-

servative. For large values of d, we can observe that the tEFB-test becomes slightly liberal again.

Several further simulations are conducted, considering a wide range of different autoregressive

and moving average components. Qualitatively, this does not alter the findings, even though

the conservativeness of the procedure becomes stronger with increasing φ and moving average

components tend to have a less severe impact compared to autoregressive components for the

reasons discussed above.

Additional simulation studies using the true - but in practical applications unknown - memory

parameter d, reveal that the tests are no longer conservative. Consequently, the effect can be

attributed to the finite-sample bias of the local Whittle estimator that occurs if short memory

dynamics are present. This is in line with the results of McElroy and Politis (2012), who also

note that their results are strongly influenced by the performance of the estimation procedure

for the memory parameter d.

Our simulation study suggests that a fixed-bandwidth choice of b = 0.8 provides a good balance

in the size-power trade-off under both DGPs, for both kernels, and for all considered memory

parameters. Concerning the MAC estimator, the MSE-optimal choice mopt = bT 0.8c derived in

Abadir et al. (2009) indeed provides the best results under DGP2. In this situation, it gives a
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Figure 5.3: Power comparison of the robust statistics tEFB and tMAC with their short memory counterparts
when d = 0.

size close to the nominal level and is better than that of the tEFB-test. However, in the case of

DGP1 the bandwidth m = bT qc with q = 0.7 seems more adequate which can also observed in the

simulation study of Abadir et al. (2009).

In a next step, we consider the potential losses in power arising from the use of the robust tEFB-

and tMAC-statistics when the additional flexibility is not needed, because the series does not have

long memory (d = 0). Results are presented in Figure 5.3. Since it is our objective to evaluate the

potential loss in power if one would generally use memory robust tests in practice, we consider

size-unadjusted power here. We compare the tHAC- and tMAC-tests in the top row and the tFB-

with the tEFB-statistics in the bottom row of Figure 5.3 under T ∈ {50,250} and DGP1, setting
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Figure 5.4: Power comparison of the tMAC- and tEFB-statistics for d = 0.2 and sample sizes T ∈ {50,250}.

d = 0. Although as expected some power loss can be observed, the cost of using the long memory

robust procedures is more than acceptable, especially for T = 250.

Finally, we analyze the power of the tMAC- and tEFB-statistics under both DGPs, for the case of

d = 0.2. This setup matches the memory orders in our empirical application (cf. Section 5.6)

closely. With regard to the previous results, we chose the bandwidth parameter of b = 0.8 for the

extended fixed-b and m = bT 0.7c (m = bT 0.8c) for the MAC approach under DGP1 (DGP2). To

control for the increase in the variance of the process (which depends on the memory parameter

d), each loss differential series is standardized before the mean is added and the respective test is

applied. The results are shown in Figure 5.4. As expected, the power increases with the sample

size.

With regard to the ranking, we observe that in case of DGP1 the tMAC-statistic clearly outper-

forms the tEFB-statistics among which the one obtained using a Bartlett kernel performs best.

The tEFB-statistic obtained with the MQS kernel, on the other hand, has the lowest power under

both DGPs. Since the tMAC-statistic is clearly more liberal than its two competitors, we also

provide size-adjusted power curves in Figure 5.9 in the Appendix. Due to the different employ-

ment of the d estimator in both methods, such a comparison is only valid for known d. For

both DGPs, it can be clearly seen that the power advantages of the tMAC-statistic go beyond

the effect of the upward size distortion. Interestingly, further simulations have shown that these

power advantages tend to increase with increasing d.

By comparing the results for DGP1 with those of DGP2 in Figure 5.4, one can observe that the

power of both tests suffers if short memory components are present. Different from the size effect

of the short memory dynamics discussed above, simulations with known d show that this cannot

be explained by the effect of autoregressive dynamics on the estimation of d alone. Instead, the
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presence of short memory dynamics increases the finite-sample variance of the estimated means

- similar to the effect of an increase in d.

To robustify the procedures against the effect of short memory dynamics discussed above, one

could consider to apply the adaptive local polynomial Whittle (ALPW) estimator of Andrews

and Sun (2004). Figures 5.8 and 5.10 in the Appendix shows the results of this exercise. In

smaller samples, the size obtained using the ALPW estimator now becomes similarly liberal

for all procedures and both DGPs. In larger samples of T = 250, all tests reach a satisfactory

size, however, the size of the tEFB-statistic using the MQS kernel remains the best and the tMAC-

statistic performs better if a smaller bandwidth, say m = bT 0.55c is used. The power, on the other

hand, is remarkably reduced and the tEFB-statistic using the Bartlett kernel now has the highest

power.

We find that the tEFB-tests generally provide better size control than the tMAC-test, whereas the

latter has better power properties. Among the extended fixed-b procedures, the MQS kernel has

better size but less power compared to the Bartlett kernel. In presence of short memory dynamics

both procedures become quite conservative. This effect can be mitigated if the ALPW estimator

is employed for the plug-in estimation of the memory parameter d. However, this comes at the

cost of an additional loss in power.

Since there is no dominant procedure in terms of size control and power, we conclude that it

is beneficial for forecast comparisons in practice to consider both statistics and to compare the

outcomes. This also applies to other inference problems involving the sample mean.

5.6 An Application to Realized Volatility Forecasting
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Figure 5.5: Daily log-realized volatility of the S&P500 index and their autocorrelation function.

Due to its relevance for risk management and derivative pricing, volatility forecasting is of vital

importance and is also one of the fields in which long memory models are applied most often

(cf., e.g., Deo et al. (2006), Martens et al. (2009) and Chiriac and Voev (2011)). Since intraday

data on financial transactions has become widely available, the focus has shifted from GARCH-
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type models to the direct modelling of realized volatility series. In particular the heterogeneous

autoregressive model (HAR-RV) of Corsi (2009) and its extensions have emerged as one of the

most popular approaches.

As an empirical application we therefore re-evaluate some recent results from the related liter-

ature using traditional Diebold-Mariano tests as well as the long memory robust versions from

Section 5.4. We use a data set of 5-minute log-returns of the S&P 500 Index from January 2,

1996 to August 31, 2015 and we include close-to-open returns. The raw data is obtained from

the Thomson Reuters Tick History Database.

Before we turn to the forecast evaluations in Sections 5.6.1 and 5.6.2, we use the remainder of

this section to define the relevant volatility variables and to introduce the data and the employed

time series models. Define the j-th intraday return on day t by rt, j and let there be N intraday

returns per day, than following Andersen et al. (2001) and Barndorff-Nielsen and Shephard

(2002) the daily realized variance is defined as

RVt =

N∑
j=1

r2
t, j .

If rt, j is sampled with an ever-increasing frequency such that N →∞, RVt provides a consistent

estimate of the quadratic variation of the log-price process. Therefore, RVt is usually treated as

a direct observation of the stochastic volatility process. The HAR-RV model of Corsi (2009),

for example, explains log-realized variance by an autoregression involving overlapping averages

of past realized variances.

lnRV (h)
t = α+ρ22 lnRV (22)

t−h +ρ5 lnRV (5)
t−h +ρ1 lnRV (1)

t−h +εt , (5.8)

where

RV (M)
t =

22
M

M−1∑
j=0

RVt− j ,

and εt is a white noise process. Although this is formally not a long memory model, this

simple process provides a good approximation to the slowly decaying autocorrelation functions

of long memory processes in finite samples. Forecast comparisons show that the HAR-RV model

performs similar to ARFIMA models (cf. Corsi (2009)).

Motivated by developments in derivative pricing that highlighted the importance of jumps in

price processes, Andersen et al. (2007) extend the HAR-RV model to consider jump components

in realized volatility. Here, the underlying model for the continuous time log-price process p(t)

is given by

dp(t) = µ(t)dt +σ(t)dW(t) + κ(t)dq(t) ,
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where 0 ≤ t ≤ T , µ(t) has locally bounded variation, σ(t) is a strictly positive stochastic volatility

process that is càdlàg and W(t) is a standard Brownian motion. The counting process q(t)

takes the value dq(t) = 1, if a jump is realized and it is allowed to have time varying intensity.

Finally, the process κ(t) determines the size of discrete jumps, if these are realized. Therefore,

the quadratic variation of the cumulative return process can be decomposed into integrated

volatility plus the sum of squared jumps:

[r]t+h
t =

∫ t+h

t
σ2(s)ds +

∑
t<s≤t+h

κ2(s) .

In order to measure the integrated volatility component, Barndorff-Nielsen and Shephard (2004,

2006) introduce the concept of bipower variation (BPV) as an alternative estimator that is

robust to the presence of jumps. Here, we use threshold bipower variation (TBPV) as suggested

by Corsi et al. (2010), who showed that BPV can be severely biased in finite samples. TBPV is

defined as follows:

T BPVt =
π

2

N∑
j=2

|rt, j||rt, j−1|I(|rt, j|
2 ≤ ζ j)I(|rt, j−1|

2 ≤ ζ j−1) ,

where ζ j is a strictly positive, random threshold function as specified in Corsi et al. (2010) and

I(·) is an indicator function.6 Since

T BPVt
p
→

∫ t+1

t
σ2(s)ds

for N →∞, one can decompose the realized volatility into the continuous integrated volatility

component Ct and the jump component Jt as

Jt = max {RVt −T BPVt,0}I(C-Tz > 3.09) ,

Ct = RVt − Jt .

The argument of the indicator function I(C-Tz> 3.09) ensures that the jump component is set to

zero if it is insignificant at the nominal 0.1% level, so that Jt is not contaminated by measurement

error, see also Corsi and Renò (2012). For details on the C-Tz statistic, see Corsi et al. (2010).

Different from previous studies that find an insignificant or negative impact of jumps, Corsi et al.

(2010) show that the impact of jumps on future realized volatility is significant and positive.

Here, we use the HAR-RV-TCJ model that is studied in Bekaert and Hoerova (2014):

lnRV (h)
t = α+ρ22 lnC(22)

t−h +ρ5 lnC(5)
t−h +ρ1 lnC(1)

t−h

+$22 ln
(
1 + J(22)

t−h

)
+$5 ln

(
1 + J(5)

t−h

)
+$1 ln

(
1 + J(1)

t−h

)
+εt . (5.9)

6To calculate ζ j, we closely follow Corsi et al. (2010).



5.6. An Application to Realized Volatility Forecasting 117

q d̂LW d̂HP s.e. W d̂(0,0) d̂(1,0) d̂(1,1)

0.55 0.554 0.493 (0.048) 0.438 0.613 (0.088) 0.612 (0.132) 0.689 (0.163)

0.60 0.553 0.522 (0.039) 0.568 0.567 (0.074) 0.577 (0.110) 0.692 (0.131)

0.65 0.573 0.573 (0.032) 0.544 0.573 (0.059) 0.570 (0.089) 0.570 (0.118)

0.70 0.549 0.532 (0.026) 0.449 0.573 (0.048) 0.578 (0.072) 0.588 (0.093)

0.75 0.539 0.518 (0.021) 0.515 0.564 (0.039) 0.574 (0.058) 0.593 (0.075)

Table 5.1: Long memory estimation and testing results for S&P 500 log-realized volatility. Local Whit-

tle estimates for the d parameter and results of the Qu (2011) test (W statistic) for true versus spurious
long memory are reported for various bandwidth choices md = bT qc. Critical values are 1.118, 1.252 and
1.517 at the nominal significance level of 10%, 5% and 1%, respectively. Asymptotic standard errors for
d̂LW and d̂HP are given in parentheses. The indices of the LPWN estimators indicate the orders of the
polynomials used. For details, see Frederiksen et al. (2012).

The daily log-realized variance series (lnRVt) is depicted in Figure 5.5.7 It is common to use

log-realized variance to avoid non-negativity constraints on the parameters and to have a better

approximation to the normal distribution, as advocated by Andersen et al. (2001). As can be

seen from Figure 5.5, the series shows the typical features of a long memory time series, namely

a hyperbolically decaying autocorrelation function, as well as local trends.

Estimates of the memory parameter are shown in Table 5.1. Local Whittle estimates (d̂LW)

exceed 0.5 slightly and thus indicate non-stationarity. Since there is a large literature on the

potential of spurious long memory in volatility time series, we carry out the test of Qu (2011). To

avoid issues due to non-stationarity and to increase the power of the test, we follow Kruse (2015)

and apply the test to the fractional difference of the data. The necessary degree of differencing is

determined using the estimator by Hou and Perron (2014) (d̂HP) that is robust to low-frequency

contaminations. As one can see, the memory estimates are fairly stable and the Qu test fails to

reject the null hypothesis of true long memory.

Since N is finite in practice, RVt might contain a measurement error and is therefore often

modeled as the sum of the quadratic variation and an iid perturbation process such that

RVt = [r]t+1
t + ut, where ut ∼ iid(0,σ2

u). Furthermore, it is well known that local Whittle esti-

mates can be biased in presence of short run dynamics. We therefore also report results of the

local polynomial Whittle plus noise (LPWN) estimator of Frederiksen et al. (2012). Similar

to the ALPW estimator of Andrews and Sun (2004), the LPWN estimator reduces the bias

due to short memory dynamics by approximating the log-spectral density of the short memory

component with a polynomial, but it additionally includes a second polynomial to account for

the downward bias induced by perturbations. As one can see, the estimates remain remarkably

stable - irrespective of the choice of the estimator. The downward bias of the local Whittle

7For a better comparison, all variables in this section are scaled towards a monthly basis.
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estimator due to the measurement error in realized variance is therefore moderate.

Altogether, the realized variance series appears to be a long memory process. Consequently,

if forecasts of the series are evaluated, a transmission of long range dependence to the loss

differentials as implied by Propositions 5.2, 5.3 and 5.4 can occur.

5.6.1 Predictive Ability of the VIX for Quadratic Variation
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Figure 5.6: Log squared implied volatility and log cumulative realized volatility of the S&P 500 (left

panel) and variance risk premium VPt = ln(VIX2
t /12)− lnRV (22)

t+22 (right panel).

The predictive ability of implied volatility for future realized volatility is an issue that has

received a lot of attention in the related literature. The CBOE VIX represents the market

expectation of quadratic variation of the S&P 500 over the next month, derived under the

assumption of risk neutral pricing. Both, ln(VIX2
t /12) and lnRV (22)

t+22 are depicted in Figure 5.6.

As one can see, both series behave fairly similar and are quite persistent. As for the log-realized

volatility series, the Qu (2011) test does not reject the null hypothesis of true long memory for

the VIX after appropriate fractional differencing following Kruse (2015).

Chernov (2007) investigates the role of a variance risk premium in the market for volatility fore-

casting. The variance risk premium is given by VPt = ln(VIX2
t /12)− lnRV (22)

t+22 and displayed on

the right hand side of Figure 5.6. The graph clearly suggests that the VIX tends to overestimate

the realized variance and the sample average of the variance risk premium is 0.623. Furthermore,

the linear combination of realized and implied volatility is rather persistent and has a significant

memory of d̂LPWN = 0.2. This is consistent with the existence of a fractional cointegration rela-

tionship between ln (VIX2
t /12) and lnRV (22)

t+22 which has been considered in several contributions

including Christensen and Nielsen (2006), Nielsen (2007b) and Bollerslev et al. (2013). Boller-

slev et al. (2009), Bekaert and Hoerova (2014) and Bollerslev et al. (2013) additionally extend

the analysis towards the predictive ability of VPt for stock returns.

While the aforementioned articles test the predictive ability of the VIX itself and the ”implied-

realized-parity”, there has also been a series of studies that analyze whether the inclusion of

implied volatility can improve model-based forecasts. On the one hand, Becker et al. (2007)
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Models Summary statistics Short memory inference Long memory inference

tMAC tEFB

Model vs. Model+VIX z/σ̂z MS E1 MS E2 d̂LW d̂LPWN tDM tHAC tFB 0.7 0.75 0.8 0.2 0.4 0.6 0.8

HAR-RV 0.135 0.292 0.269 0.219∗ 0.234∗ 2.968 3.032 2.494 0.929 1.038 1.188 2.494 2.754 2.985 2.849
(3.404) (4.064) (4.750) (5.388)

HAR-RV-TCJ 0.109 0.285 0.268 0.175∗ 0.138 2.421 2.455 2.097 1.397 1.610 1.892 2.097 2.503 2.889 2.724
(2.610) (3.154) (3.693) (4.228)

HAR-RV-TCJ-L 0.082 0.282 0.269 0.182∗ 0.163 1.784 1.786 1.819 0.889 1.016 1.192 1.819 2.153 2.430 2.317
(1.645) (1.645) (2.092) (1.645) (3.404) (4.064) (4.750) (5.388)

Table 5.2: Predictive ability of the VIX for future RV. Models excluding the VIX are tested against

models including the VIX. Reported are the standardized mean (z/σ̂z) and estimated memory param-

eter (d̂) of the forecast error loss differential. Furthermore, the respective out-of-sample MSEs of the
models and the results of various DM test statistics. Bold-faced values indicate significance at the nomi-
nal 5% level; an additional star indicates significance at the nominal 1% level. Critical values of the tests
are given in parentheses.

conclude that the VIX does not contain any incremental information on future volatility relative

to an array of forecasting models. On the other hand, Becker et al. (2009) show that the VIX

is found to subsume information on past jump activity and contains incremental information

on future jumps if continuous components and jump components are considered separately.

Similarly, Busch et al. (2011) study a HAR-RV model with continuous components and jumps

and propose a VecHAR-RV model. They find that the VIX has incremental information and

partially predicts jumps.

Motivated by these findings, we test whether the inclusion of ln(VIX2
t /12) improves model-based

forecasts from HAR-RV-type models, using Diebold-Mariano statistics. Since the VIX can be

seen as a forecast of future quadratic variation over the next month, we consider a 22-step

forecast horizon. Consecutive observations of multi-step forecasts of stock variables, such as

integrated realized volatility, can be expected to exhibit relatively persistent short memory

dynamics. The empirical autocorrelations of these loss differentials reveal an MA structure with

linearly decaying coefficients. We therefore base all our robust statistics on the local polynomial

Whittle plus noise (LPWN) estimator of Frederiksen et al. (2012) discussed above.8 Since Chen

and Ghysels (2011) and Corsi and Renò (2012) show that leverage effects improve forecasts, we

also include a comparison of the HAR-RV-TCJ-L model and the HAR-RV-TCJ-L-VIX model.

For details on the HAR-RV-TCJ-L model, see Corsi and Renò (2012) and equation (2) in Bekaert

and Hoerova (2014).

Table 5.2 reports the results. Models are estimated using a rolling window of Tw = 1000 obser-

8We choose Ry = 1 and Rw = 0 concerning the polynomial degrees and a bandwidth md = bT 0.8c (see Frederiksen
et al. (2012) for details on the estimator).
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vations.9 All DM tests are conducted with one-sided alternatives. We test that a more complex

model outperforms its parsimonious version. For the sake of a better comparability, all kernel-

based tests use the Bartlett kernel. In accordance with the previous literature, the tDM-statistic

is implemented using an MA approximation with 44 lags for the forecast horizon of 22 days,

c.f. for instance Bekaert and Hoerova (2014). For the tHAC-statistic we use an automatic band-

width selection procedure and the tFB-statistic is computed by using b = 0.2 which offers a good

trade-off between size control and power, as confirmed in the simulation studies of Sun et al.

(2008).

Table 5.2 reveals that the forecast error loss differentials have long memory with d parameters

between 0.138 and 0.234. The results are very similar for the local Whittle and the LPWN esti-

mator. Standard DM statistics (tDM, tHAC and tFB) reject the null hypothesis of equal predictive

ability, thereby confirming the findings in the previous literature.

However, if the memory robust statistics in the right panel of Table 5.2 are taken into account,

all evidence for a superior predictive ability of models including the VIX vanishes. Therefore,

the previous rejections might be spurious and reflect the theoretical findings in Proposition 5.5.

In regard of the persistence in the loss differential series the improvements are too small to be

considered significant. These findings highlight the importance of long memory robust tests for

forecast comparisons in practice.

5.6.2 Separation of Continuous Components and Jump Components
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Figure 5.7: Log continuous component lnCt and jump component ln (1 + Jt) of RVt.

As a second empirical application, we revisit the question whether the HAR-RV-TCJ model

from equation (5.9) leads to a significant improvement in forecast performance compared to the

standard HAR-RV-model (5.8) from a purely out-of-sample perspective.

The continuous components and jump components - separated using the approach described

above - are shown in Figure 5.7. The occurrence of jumps is often associated with macroeconomic

9As a robustness check, we repeat the analysis for a larger window of 2500 observations and obtain qualitatively
similar results.
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events (cf. Barndorff-Nielsen and Shephard (2006) and Andersen et al. (2007)) and they are

observed relatively frequently at about 40% of the days in the sample. The trajectory of the

log-continuous component closely follows that of the log-realized volatility series.

Models Summary statistics Short memory inference Long memory inference

tMAC tEFB

HAR-RV vs. z/σ̂z MS E1 MS E2 d̂LW d̂LPWN tDM tHAC tFB 0.7 0.75 0.8 0.2 0.4 0.6 0.8

HAR-RV-TCJ, h = 1 0.122 0.409 0.375 0.094∗ 0.127 6.932 7.631 3.995 3.243 3.144 3.091 3.995 4.068 4.468 4.947
(2.610) (3.154) (3.693) (4.228)

HAR-RV-TCJ, h = 5 0.092 0.263 0.247 0.072 0.009 3.666 3.790 2.789 3.620 3.853 4.277 2.789 3.981 5.093 5.848
(2.050) (2.522) (2.975) (3.386)

HAR-RV-TCJ, h = 22 0.045 0.292 0.285 0.359∗ 0.343∗ 0.776 0.912 0.666 0.140 0.152 0.171 0.666 0.925 1.064 1.164
(1.645) (1.645) (2.092) (1.645) (4.701) (5.551) (6.413) (7.281)

Table 5.3: Separation of Continuous and Jump Components. Reported are the standardized mean (z/σ̂z)

and estimated memory parameter (d̂) of the forecast error loss differential. Furthermore, the respective
out-of-sample MSEs of the models and the results of various DM test statistics. Bold-faced values indicate
significance at the 5% level and an additional star indicates significance at the 1% level. Critical values
of the tests are given in parentheses.

Table 5.3 shows the results of our forecasting exercise for h ∈ {1,5,22} steps. Similar to the

previous analysis, the tDM-statistic is implemented using an MA approximation including 5, 10

or 44 lags for forecast horizons h = 1,5 and 22, respectively, as is customary in this literature.

All other specifications are the same as before. As one can see, the standard tests (tDM, tHAC and

tFB) agree upon rejection of the null hypothesis of equal predictive ability in favour of a better

performance of the HAR-RV-TCJ model for h = 1 and h = 5, but not for h = 22.

If we consider estimates of the memory parameter, strong (stationary) long memory of 0.34

is only found for h = 22. For smaller forecast horizons of h = 1 and h = 5, LPWN estimates

are no longer significantly different from zero, since the asymptotic variance is inflated by a

multiplicative constant which is also larger for smaller values of d. However, local Whittle

estimates remain significant at d̂LW = 0.094 and d̂LW = 0.070 which is qualitatively similar to

the results obtained using the LPWN estimator. Therefore, the rejections of equal predictive

accuracy obtained using standard tests might be spurious due to the neglected effect of long

range dependence. Nevertheless, the improvement in forecast accuracy is large enough, so that

the long memory robust tMAC- and tEFB-statistics reject across the board for h = 1 and h = 5. We

can therefore confirm that the separation of continuous and jump components indeed improves

the forecast performance on daily to weekly horizons.
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5.7 Conclusion

This paper deals with forecast evaluation under long range dependence. We show in Section 5.3

that long memory can be transmitted from the forecasts ŷit and the forecast objective yt to the

forecast error loss differential series zt. We demonstrate that the popular test of Diebold and

Mariano (1995) is invalidated in these cases. Rejections of the null hypothesis of equal predictive

accuracy might therefore be spurious if the series of interest has long memory.

Two methods to robustify DM tests against long memory are discussed in Section 5.4 - the MAC

estimator of Robinson (2005) and Abadir et al. (2009), as well as the extended fixed-b approach

of McElroy and Politis (2012).

The finite sample performance of both of these methods is studied using Monte Carlo simulations.

While the extended fixed-b approach allows a better size control, the MAC performs better in

terms of power. With regard to kernel and bandwidth choices for the tEFB-statistic, we find that

b = 0.8 gives good results and that the kernel choice has a larger impact on the size and power

of the procedure than the bandwidth selection. In general the MQS kernel gives a better size

control, whereas the Bartlett kernel is superior in terms of power. An important issue remains

the impact of short memory dynamics on the plug-in estimation of the memory parameter.

However, our results using the ALPW estimator of Andrews and Sun (2004) indicate that bias-

corrected local Whittle estimators successfully improve the results - at least in larger samples.

As to be expected, this comes at the price of a power loss.

An important example of long memory time series is the realized variance of the S&P 500. It

has been the subject of various forecasting exercises. We therefore consider this series in our

empirical application. In contrast to previous studies, we do not find statistical evidence for the

hypothesis that the inclusion of the VIX index in HAR-RV-type models leads to an improved

forecast performance. Taking the memory of the loss differentials into account reverses the test

decisions and suggests that the corresponding findings might be spurious. With regard to the

separation of continuous components and jump components, as suggested by Andersen et al.

(2007), on the other hand, the improvements in forecast accuracy remain significant. These

examples stress the importance of long memory robust statistics in practice.
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Appendix

Proofs

Proof (Proposition 5.2). By defining a∗t = at −µa, for at ∈
{
yt, ŷ1t, ŷ2t

}
, the loss differential zt in

(5.6) can be re-expressed as

zt =−2yt (̂y1t − ŷ2t) + ŷ2
1t − ŷ2

2t

=−2(y∗t +µy)[̂y∗1t +µ1− ŷ∗2t −µ2] + (̂y∗1t +µ1)2− (̂y∗2t +µ2)2

=−2{y∗t ŷ∗1t +µ1y∗t − y∗t ŷ∗2t − y∗t µ2 +µŷy∗1t +µyµ1− ŷ∗2tµy−µ2µy}

+ ŷ∗
2

1t + 2̂y∗1tµ1 +µ2
1− ŷ∗

2

2t − 2̂y∗2tµ2−µ
2
2

=−2[y∗t (µ1−µ2) + ŷ∗1t(µy−µ1)− ŷ∗2t(µy−µ2)]︸                                                  ︷︷                                                  ︸
I

−2[y∗t (̂y∗1t − ŷ∗2t)]︸           ︷︷           ︸
II

+ ŷ∗
2

1t − ŷ∗
2

2t︸   ︷︷   ︸
III

+const. (5.10)

Proposition 3 in Chambers (1998) states that the memory of a linear combination of fractionally

integrated processes is equal to the maximum of the memory orders of the components. As

discussed in Leschinski (2016), this result also applies for long memory processes in general, since

the proof is only based on the long memory properties of the fractionally integrated processes.

We can therefore also apply it to (5.10). In order to determine the memory of the forecast error

loss differential zt, we have to determine the memory orders of the three individual components

I, II and III in the linear combination.

Regarding I, we have y∗t ∼ LM(dy), ŷ∗1t ∼ LM(d1) and ŷ∗2t ∼ LM(d2). For terms II and III, we refer

to Proposition 5.1 from Leschinski (2016). We thus have for i ∈ {1,2}

y∗t ŷ∗it ∼

LM(max
{
dy + di−1/2,0

}
), if S y,̂yi , 0

LM(dy + di−1/2), if S y,̂yi = 0
(5.11)

and ŷ∗
2

it ∼ LM(max {2di−1/2,0}). (5.12)

Further note that

dy > dy + di−1/2 and di > dy + di−1/2 (5.13)

and

di > 2di−1/2, (5.14)

since 0 ≤ da < 1/2 for a ∈ {y,1,2}.

Using these properties, we can determine the memory dz in (5.10) via a case-by-case analysis.

1. First, if µ1 , µ2 , µy the memory of the original terms dominates because of (5.13) and

(5.14) and we obtain dz = max
{
dy, d1, d2

}
.
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2. Second, if µ1 = µ2 , µy, then y∗t drops out from (5.10), but the two forecasts ŷ1t and ŷ2t

remain. From (5.13) and (5.14), we have that d1 and d2 dominate their transformations

leading to the result dz = max {d1, d2}.

3. Third, if µ1 = µy , µ2, the forecast ŷ∗1t vanishes and d2 and dy dominate their reduced coun-

terparts by (5.13) and (5.14), so that dz = max
{
2d1−1/2, d2, dy

}
.

4. Fourth, by the same arguments just as before, dz = max
{
2d2−1/2, d1, dy

}
if µ2 = µy , µ1.

5. Finally, if µ1 = µ2 = µy, the forecast objective y∗t as well as both forecasts ŷ∗1t and ŷ∗2t drop from

(5.10). The memory of the loss differential is therefore the maximum of the memory orders

in the remaining four terms in II and III that are given in (5.11) and (5.12). Furthermore,

the memory of the squared series given in (5.12) is always non-negative from Corollary 1

in Leschinski (2016) and a linear combination of an antipersistent process with an LM(0)

series is LM(0), from Proposition 3 of Chambers (1998). Therefore, the lower bound for

dz is zero and

dz = max
{
2max {d1, d2}−1/2, dy + max {d1, d2}−1/2, 0

}
.

�

Proof (Proposition 5.3). For the case that common long memory is permitted, we consider three

possible situations: CLM between the forecasts ŷ1t and ŷ2t, CLM between the forecast objective yt

and one of the forecasts ŷ1t or ŷ2t and finally CLM between yt and each ŷ1t and ŷ2t.

First, note that as a direct consequence of Assumption 5.3, we have

µi = βi + ξiµx (5.15)

and

µy = βy + ξyµx. (5.16)

We can now re-express the forecast error loss differential zt in (5.10) for each possible CLM

relationship. In all cases, tedious algebraic steps are not reported to save space.

1. In the case of CLM between ŷ1t and ŷ2t, we have

zt =−2{y∗t (µ1−µ2) + x∗t [ξ1(µy−µ1)− ξ2(µy−µ2)] + x∗t y∗t (ξ1− ξ2)− x∗t (ξ1ε1t − ξ2ε2t)

+ε1t(µy−µ1)−ε2t(µy−µ2) +µx(ε1tξ1−ε2tξ2) + y∗t (ε1t −ε2t)}

+ x∗
2

t (ξ2
1 − ξ

2
2) +ε2

1t −ε
2
2t + 2µx(ε1tξ1−ε2tξ2) + const. (5.17)
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2. If the forecast objective yt and one of the ŷit have CLM, we have for ŷ1t:

zt =−2{x∗t [(µy−µ1)ξ1 + ξy(µ1−µ2)]− ŷ∗2t[µy−µ2]− ξyx∗t ŷ∗2t + x∗t [ε1t(ξy− ξ1) + ξ1ηt]

+ε1t(ξyµx−µ1) +ηt(µ1−µ2) +ε1tηt − ŷ∗2tηt}

− (2ξ1ξy− ξ
2
1)x∗

2

t +ε2
1t − ŷ∗

2

2t −2βyε1t + const. (5.18)

The result for CLM between yt and ŷ2t is entirely analogous, but with index ”1” being re-

placed by ”2”.

3. Finally, if yt has CLM with both ŷ1t and ŷ2t, we have:

zt =−2
{
x∗t [ξ1(µy−µ1)− ξ2(µy−µ2) + ξy(µ1−µ2)]

+ x∗t [(ξy− ξ1)ε1t − (ξy− ξ2)ε2t + (ξ1− ξ2)ηt]

+ x∗2t [ξy(ξ1− ξ2)−
1
2

(ξ2
1 − ξ

2
2)]

+ε1t(µy−µ1)−ε2t(µy +µ2) +µx(ξ1ε1t + ξ2ε2t) +ηt(ε1t −ε2t) +ηt[µ1−µ2]
}

+ε2
1t −ε

2
2t + 2µx(ξ1ε1t − ξ2ε2t) + const. (5.19)

As in the proof of Proposition 5.2, we can now determine the memory orders of zt in (5.17),

(5.18) and (5.19) by first considering the memory of each term in each of the linear combinations

and then by applying Proposition 3 of Chambers (1998) thereafter. Note, however, that

y∗t (µ1−µ2) + x∗t [ξ1(µy−µ1)− ξ2(µy−µ2)] in (5.17),

x∗t [(µy−µ1)ξ1 + ξy(µ1−µ2)]− ŷ∗2t(µy−µ2) in (5.18)

and

x∗t [ξ1(µy−µ1)− ξ2(µy−µ2) + ξy(µ1−µ2)] in (5.19)

have the same structure as

y∗t (µ1−µ2) + ŷ∗1t(µy−µ1)− ŷ∗2t(µy−µ2) in (5.10)

and that all of the other non-constant terms in (5.17), (5.18) and (5.19) are either squares or

products of demeaned series, so that their memory is reduced according to Proposition 5.1 from

Leschinski (2016). From Assumption 5.3, x∗t is the common factor driving the series with CLM

and from dx > dε1 ,dε2 ,dη and the dominance of the largest memory in a linear combination from

Proposition 3 in Chambers (1998), x∗t has the same memory as the series involved in the CLM

relationship. Now from (5.13) and (5.14), the reduced memory of the product series and the

squared series is dominated by that of either x∗t , y∗t , ŷ∗1t or ŷ∗2t. Therefore, whenever a bias term

is non-zero, the memory of the linear combination can be no smaller than that of the respective
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original series. �

Proof (Proposition 5.4). First note that under the assumptions of Proposition 5.4, (5.17) is

reduced to

zt = −2{−x∗t (ξ1ε1t − ξ2ε2t) + y∗t (ε1t −ε2t)}+ε2
1t −ε

2
2t + const, (5.20)

= −2{−ξ1x∗t ε1t︸ ︷︷ ︸
I

+ξ2x∗t ε2t︸ ︷︷ ︸
II

+ y∗t ε1t︸︷︷︸
III

− y∗t ε2t︸︷︷︸
IV

}+ ε2
1t︸︷︷︸
V

− ε2
2t︸︷︷︸

VI

+const,

(5.18) becomes

zt = −2{−x∗t (ξŷy∗2t − ξ1ηt) + (ε1t − ŷ∗2t)ηt +ε1t(ξyµx −µ1)}+ε2
1t − ŷ∗

2

2t −2βyε1t − ξ1ξyx∗
2

t + const, (5.21)

= −2{−ξyx∗t ŷ∗2t︸  ︷︷  ︸
I

+ξ1x∗t ηt︸ ︷︷ ︸
II

+ ε1tηt︸︷︷︸
III

− ŷ∗2tηt︸︷︷︸
IV

+ε1t(ξyµx −µ1)︸           ︷︷           ︸
V

}+ ε2
1t︸︷︷︸

VI

− ŷ∗
2

2t︸︷︷︸
VII

−2βyε1t︸ ︷︷ ︸
VIII

−ξ1ξyx∗
2

t︸  ︷︷  ︸
IX

+const,

and finally (5.19) is

zt = −2(ε1t −ε2t)ηt +ε2
1t −ε

2
2t + const, (5.22)

= −2 ε1tηt︸︷︷︸
I

+2ε2tηt︸︷︷︸
II

+ ε2
1t︸︷︷︸

III

− ε2
2t︸︷︷︸

IV

+const.

We can now proceed as in the proof of Proposition 5.2 and infer the memory orders of each term

in the respective linear combination from Proposition 5.1 and then determine the maximum as

in Proposition 3 in Chambers (1998).

In the following, we label the terms appearing in each of the equations by consecutive letters with

the equation number as an index. For the terms in (5.20), we have

I5.20 ∼

LM(max
{
dx + dε1 −1/2, 0

}
), if S x,ε1 , 0

LM(dx + dε1 −1/2), if S x,ε1 = 0

II5.20 ∼

LM(max
{
dx + dε2 −1/2, 0

}
), if S x,ε2 , 0

LM(dx + dε2 −1/2), if S x,ε2 = 0

III5.20 ∼

LM(max
{
dy + dε1 −1/2, 0

}
), if S y,ε1 , 0

LM(dy + dε1 −1/2), if S y,ε1 = 0

IV5.20 ∼

LM(max
{
dy + dε2 −1/2, 0

}
), if S y,ε2 , 0

LM(dy + dε2 −1/2), if S y,ε2 = 0

V5.20 ∼ LM(max
{
2dε1 −1/2, 0

}
)

and VI5.20 ∼ LM(max
{
2dε2 −1/2, 0

}
).

Since by definition dx > dεi, the memory of V5.20 and VI5.20 is always of a lower order than that of
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I5.20 and II5.20. As in the proof of Proposition 5.2, the squares in terms V5.20 and VI5.20 establish

zero as the lower bound of dz. Therefore, we have

dz = max
{
max

{
dx, dy

}
+ max

{
dε1 , dε2

}
−1/2, 0

}
.

Similarly, in (5.21), we have

I5.21 ∼

LM(max {dx + d2−1/2, 0}), if S x,̂y2 , 0

LM(dx + d2−1/2), if S x,̂y2 = 0

II5.21 ∼

LM(max
{
dx + dη−1/2, 0

}
), if S x,η , 0

LM(dx + dη−1/2), if S x,η = 0

III5.21 ∼

LM(max
{
dε1 + dη−1/2, 0

}
), if S ε1,η , 0

LM(dε1 + dη−1/2), if S ε1,η = 0

IV5.21 ∼

LM(max
{
d2 + dη−1/2, 0

}
), if S ŷ2,η , 0

LM(d2 + dη−1/2), if S ŷ2,η = 0

V5.21 ∼ LM(dε1)

VI5.21 ∼ LM(max
{
2dε1 −1/2, 0

}
)

VII5.21 ∼ LM(max {2d2−1/2, 0})

VIII5.21 ∼ LM(dε1)

and IX5.21 ∼ LM(max {2dx−1/2,0}).

Here, V5.21 can be disregarded since it is of the same order as VIII5.21. VIII5.21 dominates VI5.21,

because dε1 < 1/2. Finally, as dε1 < dx holds by assumption, III5.21 is dominated by II5.21 and

dη < dx, so that IX5.21 dominates II5.21. Therefore,

dz = max
{
d2 + max

{
dx,dη

}
−1/2, 2max {dx,d2}−1/2, dε1

}
.

As before, for the case of CLM between yt and ŷ2t, the proof is entirely analogous, but with index

”1” replaced by ”2” and vice versa.
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Finally, in (5.22), we have

I5.22 ∼

LM(max
{
dη + dε1 −1/2, 0

}
), if S η,ε1 , 0

LM(dη + dε1 −1/2), if S η,ε1 = 0

II5.22 ∼

LM(max
{
dη + dε2 −1/2, 0

}
), if S η,ε1 , 0

LM(dη + dε2 −1/2), if S η,ε2 = 0

III5.22 ∼ LM(max
{
2dε1 −1/2, 0

}
)

IV5.22 ∼ LM(max
{
2dε2 −1/2, 0

}
).

Here, no further simplifications can be made, since we do not impose restrictions on the rela-

tionship between dη, dε1 and dε2, so that

dz = max
{
dη + max

{
dε1 , dε2

}
−1/2, 2max

{
dε1 , dε2

}
−1/2, 0

}
,

where again the zero is established as the lower bound by the squares in III5.22 and IV5.22.

Proof (Proposition 5.5). First note that under short memory, the tHAC-statistic is given by

tHAC = T 1/2 z̄√
V̂HAC

,

with V̂HAC =
∑T−1

j=−T+1 k
(

j
B

)
γ̂z( j) and B being the bandwidth satisfying B→∞ and B = O(T 1−ε) for

some ε > 0. From Abadir et al. (2009), the appropriately scaled long-run variance estimator for

a long memory processes is given by B−1−2d ∑B
i, j=1 γ̂z(|i− j|), see equation (2.2) in Abadir et al.

(2009). Corresponding long memory robust HAC-type estimators (with a Bartlett kernel, for

instance) take the form

V̂HAC,d = B−2d

̂γz(0) + 2
B∑

j=1

(1− j/B)̂γz( j)

 .
The long memory robust tHAC,d-statistic is then given by

tHAC,d = T 1/2−d z̄√
V̂HAC,d

.

We can therefore write

tHAC,d = T 1/2T−d z̄√
B−2dV̂HAC

=
T−d

B−d tHAC
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and thus,

tHAC =
T d

Bd tHAC,d.

The short memory tHAC-statistic is inflated by the scaling factor T d/Bd = O(T dε). This leads

directly to the divergence of the HAC-statistic (tHAC →∞ as T →∞) which implies that

lim
T→∞

P(|tHAC | > c1−α/2,d) = 1

for all values of d ∈ (0,1/4)∪ (1/4,1/2). For 0 < d < 1/4, c1−α/2,d is the critical value from the

N(0,1)-distribution, while for 1/4 < d < 1/2, the critical value (depending with d) stems from the

well-defined Rosenblatt distribution, see Abadir et al. (2009). The proof is analogous for other

kernels and thus omitted. �
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Additional Simulation Results
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Figure 5.8: Size of the tMAC- and tEFB-statistics for different degrees of long memory d, sample sizes T
and bandwidth parameters q and b, if the ALPW estimator is used for the plug-in estimation of d.
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Figure 5.9: Power comparison of the tMAC- and tEFB-statistics, for different memory parameters d and
sample sizes T , adjusted for size and with known memory parameter d.
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Figure 5.10: Power comparison of the tMAC- and tEFB-statistics, for different memory parameters d and
sample sizes T if the ALPW estimator is used for the plug-in estimation of d.
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Corsi, F., Pirino, D., and Renò, R. (2010). Threshold bipower variation and the impact of jumps

on volatility forecasting. Journal of Econometrics, 159(2):276–288.
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Garćıa-Enŕıquez, J., Hualde, J., Arteche, J., and Murillas-Maza, A. (2014). Spatial integration

in the spanish mackerel market. Journal of Agricultural Economics, 65(1):234–256.

Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory time

series models. Journal of Time Series Analysis, 4(4):221–238.



Bibliography 136

Giacomini, R. and White, H. (2006). Tests of conditional predictive ability. Econometrica,

74(6):1545–1578.

Gil-Alana, L. A. (2002). Seasonal long memory in the aggregate output. Economics Letters,

74(3):333–337.

Gil-Alana, L. A. (2007). Testing the existence of multiple cycles in financial and economic time

series. Annals of Economics & Finance, 8(1):1–20.

Giraitis, L., Koul, H. L., and Surgailis, D. (2012). Large sample inference for long memory

processes. World Scientific Publishing Company Incorporated.

Giraitis, L. and Leipus, R. (1995). A generalized fractionally differencing approach in long-

memory modeling. Lithuanian Mathematical Journal, 35(1):53–65.

Goodman, L. A. (1960). On the exact variance of products. Journal of the American Statistical

Association, 55(292):708–713.

Granger, C. W. J. (1980). Long memory relationships and the aggregation of dynamic models.

Journal of Econometrics, 14(2):227–238.

Granger, C. W. J. and Ding, Z. (1996). Varieties of long memory models. Journal of Economet-

rics, 73(1):61–77.

Granger, C. W. J. and Hallman, J. (1991). Nonlinear transformations of integrated time series.

Journal of Time Series Analysis, 12(3):207–224.

Granger, C. W. J. and Hyung, N. (2004). Occasional structural breaks and long memory with an

application to the S&P 500 absolute stock returns. Journal of Empirical Finance, 11(3):399–

421.

Gray, H. L., Zhang, N.-F., and Woodward, W. A. (1989). On generalized fractional processes.

Journal of Time Series Analysis, 10(3):233–257.

Haldrup, N. and Kruse, R. (2014). Discriminating between fractional integration and spurious

long memory. Unpublished Manuscript, Department of Economics, University of Aarhus.

Haldrup, N. and Nielsen, M. Ø. (2006). A regime switching long memory model for electricity

prices. Journal of Econometrics, 135(1):349–376.

Harvey, D., Leybourne, S., and Newbold, P. (1997). Testing the equality of prediction mean

squared errors. International Journal of Forecasting, 13(2):281–291.

Hassler, U. (1994). (Mis)specification of long memory in seasonal time series. Journal of Time

Series Analysis, 15(1):19–30.



Bibliography 137

Hassler, U. and Olivares, M. (2013). Semiparametric inference and bandwidth choice under long
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