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Preface

Novelties in this work are introducing three approaches. The first one is the step
11 of the framework for reconstruction of 3D models from 2D images, Fig. 1.1.
The novelty is using a criterion based on a best-matching model, §2.2.6, instead
of a common modification approach found in the literature. The second one and
the third one are introducing new error tests, §3.2.2 and §3.2.4, and a method to

calibrate CT scanners instead of CT scans, §4.3.2.

To implement the introduced approach for building 3D CAD models from 2D
images, one may follow the steps in the Fig. 1.1 explained in the appendix A.
Parameters that are initialized during following the instructions, have been de-

scribed in §82.2.2-2.2.7.

To analyze accuracy of the built model, chapter three should be read. If tests
3.2.1 and 3.2.3 are performed, one can compare the results with former works.
Tests 3.2.2 and 3.2.4 are new and an interpretation of them can be found in the

discussion, §3.3.

To assign the patient-specific material properties to the built model, in case one
has access to a relevant calibration phantom image, he may follow the instruc-
tions in Fig. 4.1. Otherwise, an approach is suggested in §4.3.2. The method is
very simple yet it enables to obtain the patient-specific density distributions from
CT datasets which contain no calibration images, a task that previously might be

impossible.
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Abstract

In this work, three new approaches are presented from which the first two are:
a method for creating 3D CAD bone models using 2D images and investigating
its accuracy via applying new tests. Previous approaches were based on building
a mean model from a dataset of patients’ bone models and then modifying it in
order to properly resemble provided 2D images of a new patient. Although this
strategy is popular among researchers, it is still a challenge to modify the mean
model in the views where the new patient possesses no 2D image. That difficulty
comes from the fact that the bone shape is a patient-specific characteristic
influenced by several parameters while a mathematical relationship is not

available as a connection between these parameters and the bone outline.

As a solution to overcome this trouble, statistical mean models are not employed
in the present method, rather the method is based on the similarity between
geometry of bones. Its assumption is when specific parts of two bones are
similar in one view, they have experienced the same physiological history and,
consequently, they are similar in other views as well. After explaining the
method, its accuracy is analyzed with common tests and two new ones: one test
to determine offset error of the method and another test to study quantitative
relationships between reconstruction errors and stress values on the simulated

bone models.

For assigning mechanical properties to the reconstructed 3D models in a

patient-specific manner, in the selected approach in this work, a calibration
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phantom during the CT scanning of the patient is scanned as well. Afterwards,
a relationship between image intensities and bone mechanical properties is es-
tablished using image processing techniques and experimental results. Through
this strategy, each voxel and, consequently, the bone model is attributed the

properties.

Although the method is straightforward, it is faced with an obstacle which is
lack of calibration images in CT datasets. To solve this problem, a method is
proposed to calibrate previous scans of CT machines. The solution originates
from this view that instead of calibrating CT scans at each screening, the CT

machine is calibrated once and the obtained relationships are used thereafter.

Keywords: Patient-specific 3D finite element model, Statistical shape models,

3D reconstruction, Calibration phantom
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Zusammenfassung

In dieser Arbeit werden zwei Beitrige vorgestellt. Die Beitrige sind neue
Ansitze zur Erstellung von 3D-CAD-Knochen-Modellen unter Verwendung von
2D-Bildern, sowie neue Tests zur Untersuchung der Genauigkeits des Ver-
fahrens. Bisherige Ansitze basieren auf der Erstellung eines statistischen Mod-
ells (SSM) anhand der Datensitze von Patienten Knochenmodellen und der an-
schlieBenden Modifizierung, um dieses den zur Verfiigung gestellt 2D-Bilder

eines neuen Patienten anzugleichen.

Obwohl diese Strategie weit verbreitet ist, ist es immer noch eine Heraus-
forderung das SSM in den Ansichten anzupassen, von denen keine 2D-Bilder des
neuen Patienten existieren. Die Schwierigkeit beruht auf der Tatsache, dass die
Knochenform durch die patienten-spezifischen physiologische Geschichte bee-
influBten wird, wéhrend keine mathematische Beziehung als Verbindung zwis-

chen diesen Parametern und dem Knochen zur Verfiigung steht.

Der Ansatz zur Losung dieses Problems basiert darauf, dass die SSM nicht auf
der dargestellten Methode, sondern das Verfahren auf der Ahnlichkeit der Ge-
ometrie von Knochen beruht. Es wird die folgende Annahme getroffen: wenn
spezifischen Teile von zwei Knochen in einer Ansicht dhnlich sind, dann haben
sie die gleiche physiologische Geschichte und sind sich folglich auch in an-
deren Bild-Ansichten dhnlich. Nach Erlduterung des Verfahrens wird seine
Genauigkeit mit allgemeinen iiblichen Tests und mit zwei neuen Tests analy-

sisert: einem Test zur Bestimmung des Offsetfehlers und einem weiteren Test
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um die quantitative Beziehungen zwischen den Rekonstruktionsfehler und den

Spannungswerten der simulierten Knochen-Modelle zu studieren.

Eine Strategie um die Zuordnung mechanischer Eigenschaften auf die rekonstru-
ierten 3D Modelle zu finden ist das Scannen eines Kalibrierphantoms wéhrend
des CT-Scans eines Patienten. Danach wird eine Beziehung zwischen Bildin-
tensitdt und mechanischen Eigenschaften der Knochen hergestellt unter Verwen-
dung von Bildverarbeitungstechniken und experimentellen Ergebnissen. Durch
diesen Ansatz wird jedes Voxel, und folglich auch das Knochenmodell den

Eigenschaften zugeordnet.

Obwohl die Strategie relativ simpel ist, stellt die fehlenden Kalibrierung von
Bildern aus CT-Datensitzen ein Hindernis dar. Um dieses Problem zu 10sen,
wird ein Verfahren vorgeschlagen, welches es ermoglicht vorherige Scans von
CT-Maschinen zu kalibrieren. Der Ansatz zur Losung ist, anstelle der Kalib-
rierung des CT-Scans bei jedem Screening wird das CT-Gerét einmal kalibriert

und die erhaltenen Beziehungen darauthin angewendet.

Stichwort: Patient-spezifischen 3D-Finite-Element Modell, Statistische Modells,

3D-Rekonstruktion, Kalibrierphantom
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Chapter 1

Introduction

3D models of skeletal structures are required in numerous clinical treatments
and it is acquired routinely by employing CT scans of patients. The procedure
has been utilized in various applications, namely the implant design and numer-
ical studies on alternative therapies (SAHA & ROYCHOWDHURY, 2009; LUTZ
ET AL., 2011; BAH ET AL., 2015), the mechanical simulation of bone remodel-
ing (LUTZ & NACKENHORST, 2012; TOMASZEWSKI ET AL., 2012; XU ET AL.,
2016) and the mechanical analysis of skeletal muscles (JOHANSSON ET AL.,
2000; MARTINS ET AL., 2006; TANG ET AL., 2009). However, to decrease the
financial costs and the intensity of radiation to which patients are exposed, there
are efforts to build the 3D models from 2D images while limiting them to as few
as possible (PETKOVIC ET AL., 2014; VAANANEN ET AL., 2015; KARADE &

Ravi, 2015).

The general framework used by previous works to build a 3D model of a pa-
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tient’s bone from his x-ray images with the help of a CT dataset is displayed in
Fig. 1.1. For convenience in the description, this figure is referred to as frame-
work and its steps are cited by No. X. As the framework used images of former
patients, they are required to be given and it is done by providing their CT scans,
No. 1. Afterwards to build 3D models of the patients, No. 7, a series of actions
are performed, namely for each CT set of a patient, its slices are segmented, No.
2, and a point distribution model (PDM) is obtained, No. 3. By statistical ap-
proaches, a statistical shape model (SSM) from the bones in the database is built

at this step.

Thereafter in No. 4, a surface model is reconstructed on the PDMs and
smoothened, No. 6. Models at No. 7 and No. 15 are called gold models as
they are obtained from CT scans. By projecting each of the models, 2D views of
the models are acquired, No. 9. They are then scaled, registered, and compared
with the given 2D images of a new patient, No. 10. Afterwards, a modification
process in the statistical approach or a selection process in the present work, is
executed on them, No. 11. In No. 10, patient’s DXA image can similarly be
applied. The acquired PDM, No. 12, is undergone the same processes as before
and results in the new patient’s 3D bone model, No. 13. After achieving the 3D
models, No. 7, No. 13, and No. 15, volumetric meshing and the Finite Element

Analysis (FEA) can be executed on the models.

Among the published papers, there is one work that did not employ directly a

mean shape from the dataset (THEVENOT ET AL., 2013). Instead, they measured



nine internal parameters for all bones in the dataset followed by establishing re-
lationships between these parameters of each bone with radii! of landmarks on
the surface. In the next step, the same nine parameters on the patient’s x-ray im-
age were measured and using the previously established relationships the radii
of all points of the required 3D model were calculated. As radius of each point
on the surface is needed to be calculated, applying the method for reconstruction
of the whole femur is a laborious task and in practice, limits the method for re-
construction of small areas. Similar to SSM approaches, averaging of all models

in the dataset to build the new model is present in this method as well.

The final 3D bone model created by following the framework’s steps is not the
same as the real bone model because of errors accumulated in each step. To
investigate these error values, accuracy tests performed in the former works are
classified in two types. In the first, accuracy of segmentation was considered and
it was measured how much would be the difference between various segmented
images (ROBERTS ET AL., 2006; ZHENG ET AL., 2009; GOOAYEN ET AL.,
2011; ROBERTS ET AL., 2012; SARKALKAN ET AL., 2014a), i.e., if they per-
formed a manual segmentation it was studied how much the reproducibility of

the results would be when different users segment the CT sets.

If a semi-automatic segmentation is performed, the difference between a manual
segmentation and the semi-automatic segmentation was studied. In the second

type of the tests, it was examined how much would be the difference between

!By considering the neck and the shaft as cylinders, a kind of radius can be defined for the
bone surface points.
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two models built by the proposed method from 2D images and built from CT

scans, comparison between No.13 and No. 15, called validation test.

Heart of all the statistical approaches is that a mean model is modified in a way
that its projections resemble well the x-ray image of the new patient. Although
this approach is common among researchers, no work took into account the di-
versity of ethnics, genders and ages of patients in the dataset during the mean
model reconstruction, while MAHFOUZ ET AL. (2012) reported different mean
shapes in their studied populations, African-American® and East Asian popula-

tions as compared to the Caucasian population.

Based on this research result, an improved procedure to use SSMs would be:
first, the dataset is classified into different ages, genders, and ethnicities. There-
after, the corresponding mean model, No. 3, is reconstructed for each group.
New patient’s x-ray image is then placed in the most relative group and com-
pared with projections of the mean model of that group, No. 9. Nonetheless,

former works have used one mean model for the whole dataset.

The reason that they did not report large reconstruction errors could be that their
used datasets and test groups consisted of patients’ images in a not large range
of ages, in the range of 50 to 85 year-old. Also as they did not report patients’
ethnic background, it is concluded the used database did not include diversity in
this aspect. Therefore, by applying these methods that are based on one mean

model on a dataset containing different ethnicities, the reconstruction error might

2Black Americans
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become larger. Another reason that former works used one mean model for the
whole of dataset is the high computational cost of building distinct models for
each group. To avoid using this not cost effective approach, a possible solution
would be creating the SSM using a training dataset mixed of patients with differ-
ent ethnic backgrounds. However, there are two points about using this approach.
First, how the training database should be created to be an optimal choice is still
an open question. Second, how accurately a mean shape built on this database
can represent variations of the individuals in different ethnic groups has not been

addressed yet (SARKALKAN ET AL., 2014b).

The major challenge to employ SSMs arises during the modification procedure,
No. 11. When a mean model is modified in one view to become similar to the
patient’s x-ray image, other views of the mean model are still affected by all
bones in the dataset, without considering their level of similarity to the patient’s
bone. In fact, since the bone shape is influenced by complicated parameters,
implementing a reasonable modification on the other views might be impossible
as there is no mathematical relationship available as a connection between these

parameters and the bone outline.

As a solution to overcome this issue, statistical mean models are not employed
in the present work. The approach is based on the similarity between different
bone geometries, §2.2.6. When specific parts of two bones match in one view, it
is concluded that they have experienced similar physiological history and, con-

sequently, they are taken to be similar in other views as well. This conclusion



comes from the fact that bone’s shape is adapted to the acting force on it.

In chapter 3, new tests to analyze accuracy of the framework are presented. In
the first test, arisen error in each of the steps is investigated, §3.2.1. The results
show that the smoothing’s error could be larger than the segmentation’s. It might
be argued that if another smoothing method is applied, the error might become
smaller. This can be true but what the author suggests is that researchers in the
field of 3D reconstruction should evaluate reproducibility of all the steps. Cur-

rently this investigation is performed only for the segmentation.

In the second suggested test, a method is introduced that measures the offset er-
ror of the proposed methods, §3.2.2. In the third proposed test, the changes in
amount of stress values due to reconstruction errors are measured?, §3.2.4. The
procedure for this test is that two reconstructed bones of a patient, one built from
CTs and one from 2D images, are undergone a same simulation, i.e., similar
loading conditions and geometrical boundary conditions are applied to the both
models. Then differences between stress values at the same areas are measured,
e.g., where the maximum stress has happened in the reconstructed model from
CTs. Using Hausdorff criterion, distances between these areas are also mea-
sured. Combination of these two measurements gives a new information that

how much reconstruction error causes how much changes in the stresses.

In the last chapter, a method is presented that enables to calibrate CT scans of CT

3The validation test, §3.2.3, has been applied in the former works as well and will be ex-
plained in chapter 3.
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machines without the need to scan a calibration phantom during each imaging,
§4.3.2. To perform FE simulation on the 3D reconstructed models, it is required
to assign physical properties of bones to the models. But patients whose 3D bone

models are requested, only provide x-ray images.

One of the feasible approaches for this purpose is attributing mechanical proper-
ties to the 3D models in the CT dataset using their provided CT scans. Then the
most similar bone parts are found and their bone mass density (BMD) values are
transferred into the new model. However, this method is faced with an obstacle
which is lack of calibration images. To solve this problem, a method is proposed
to calibrate previous scans of CT machines, §4.3.2. The solution originates from
this view that instead of calibrating CT scans at each screening, the CT machine

is calibrated once and the obtained relationships are used thereafter.



Chapter 2

3D reconstruction of skeletal

structures

Overview

* Novelty: Introducing a method for creating 3D models from standard x-

ray images.

* Method: Former works in the field of 3D reconstruction from 2D im-
ages are based on modifying a mean model obtained from all bones in the
dataset. In this chapter, a new approach is suggested, §2.2.6. Reasons for
performing each step with a special method are explained at the beginning

of the sections before employing the method.
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2.1 Introduction

In this chapter, a new method for building 3D models from standard x-ray images
is presented. It consists of the same steps as former works but instead of mod-
ifying a mean model, it uses a best-matching selection criterion, §2.2.6. In the
following, former works and their frequent technical words are studied, §2.1.1
and §2.1.2. Thereafter, the framework’s steps are described and their results are

shown, §2.2.2 to §2.2.8.

2.1.1 Terminology

In this part, often used technical words in the literature are defined. An inter-
ested reader can find more information in DESERNO (2011) and GONZALEZ &

WoobDs (2008).

Image: explained by a function f(z,y) which describes brightness in spatial co-
ordinates. Elements of image called pixel are entries of this matrix.

DICOM: an abbreviation for Digital Imaging and Communication in Medicine,
defines a file format and a network communication protocol for handling, storing,
printing and transmitting medical images. When an equipment supports DICOM
standard, it means it can receive/send data from/to other equipments that support
the DICOM standard.

X-ray: discovered by Wilhelm Conrad Roentgen in 1895, can be generated if an
electron from a higher orbit jumps into an inner orbit. When x-ray passes through

a material, amount of absorption depends on the photon energy and thickness of
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the material while every material has a unique absorption coefficient.

DXA: Dual-energy x-ray absorptiometry is used to measure bone mineral den-
sity (BMD) by means of two x-ray beams with different energy loads.

CT and x-ray imaging: body part is imaged from a very limited viewpoints dur-
ing x-ray imaging. In Computer Tomography (CT) by using a rotating angular
gantry moving in a spiral path, more images are obtained and then analyzed to
build a 3D view of the imaged body part.

AP view: an abbreviation for the Anterior-Posterior view, means that the x-ray
source is placed in front of the patient and the detector is placed at the back.
Segmentation: means relevant information to the purpose of segmentation are
extracted. To segment a part, labeling should be performed meaning pixels rep-
resenting a relevant part are marked with the same tag.

Rigid registration: before comparing outlines of two bones, to evaluate the dif-
ferences originate from different geometry and not from different positions in
the space, input images are rigid registered which means translation, scaling and
rotation effects are removed.

Smoothing: is performed to prepare surfaces for volume meshing by attenuating
the edges. Through this approach, appearance of the model is improved that is

useful during comparing outline of bones and also during the mesh generation.
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2.1.2 Current Methods for Creating 3D Models From 2D Im-
ages

A series of publications from one group in the field of building a 3D model
from 2D images are ZHENG ET AL. (2009), SCHUMANN ET AL. (2010),
ZHENG (2010), SCHUMANN ET AL. (2013b), SCHUMANN ET AL. (2013a).
The mathematical idea in these works are the same and they applied the method
on different parts of the human body (ZHENG ET AL., 2009; ZHENG, 2010),
changed the view point to the problem (SCHUMANN ET AL., 2010, 2013a) or
used different mathematical functions (SCHUMANN ET AL., 2013b). Their
approach was that first, point distributed models (PDM) of the bones in the
dataset were produced. Then by using the principal component analysis (PCA)

or the least square regression, a mean model was obtained, No. 3.

Afterwards, the 3D mean model was projected, No. 8, in a view which the
new patient’s image was provided. They did not mention the smoothing step;
however, from the smooth surface of bones in their provided figures, it is
concluded that they performed the smoothing, No. 6, as well. By accomplishing
the scaling, rigid registration, comparison between projection of the mean model
and the patient’s x-ray image, and then carrying out a 2D-3D registration, No.
11, the mean model was modified and considered as the 3D model of the new
patient’s bone. The procedure to perform the 2D-3D registration in their work
was measuring a distance in projection of the mean model and then scale it to

the size of the patient’s bone.
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EHLKE ET AL. (2013) used the same approach while they considered distribu-
tion of density as well. To project the mean model before comparing with the
patient’s image, they proposed a method implemented in a parallel computing
platform, CUDA, to make it possible to compute projections of the images
faster. Their focus in this work was on presenting this algorithm and did not
explain two critical issues, namely how to compare the projection with the
patient’s x-ray image and what to do after this comparison to improve the mean

model and make it more similar to the x-ray image.

In this work, they used Bernstein density polynomial to calculate density values
from CT scans and in their former work (HELLMICH ET AL., 2008) they had the
following strategy: first translating voxel’s coefficients of x-ray attenuation of
a micro computer tomographic image into volume fractions of hydroxyapatite,

collagen, and water.

For this purpose, they used an average rule for x-ray attenuation coefficients and
a composition law for extracellular bone matrix obtained from two published
sources (VUONG & HELLMICH, 2011; DEJACO ET AL., 2012). Afterwards
they used a multiscale approach to calculate the elastic properties in macro
scale. In other words, they proposed a method to calculate voxel-specific
elastic properties by converting the x-ray attenuation information based on the
fundamentals of x-ray physics. They claimed that it is applicable to medical CT

scans and x-ray images as well.

One of the latest work in the area of building 2D patient-specific finite element
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modeling from a patient’s DXA image with the help of a dataset is SARKALKAN
ET AL. (2014a). In contrast to the former works, they could manage to perform it
in an automated framework but did not report the error of the material mapping.
The same lack of report goes to the recent work by VAANANEN ET AL. (2015)

which used DXA images to build the 3D patients’ specific bone models.

2.2 Method and Results

In this part, first, information about the CT dataset of the work is presented and
then the utilized tools for implementation of the framework are introduced and
their results are displayed. The procedure to perform these steps in the software

can be found in the appendix A.

2.2.1 Materials

Our dataset comprised 80 sets of pelvis and femur CT images of patients of dif-
ferent ethnicities (based on names of Arab, German, Russian and Turkish origin),
genders, and ages, with some including implants. Forty-five sets of images of the
dataset were then selected for this study by a hip joint surgeon as normal bones
with no skeletal pathology. Thirty of collected models were randomly set as the
training set, No. 1, 18 females bone and 12 males aged 18-88 years (avg., SD:

52.19, 10.38), and the rest 15 femurs composed the test group, No. 10, 9 females
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bone and 6 males aged 20- 78 years (avg., SD: 53.78, 9.61).

2.2.2 Segmentation, Step 2 of the Framework

To acquire a 3D model from CT scans of a patient, the outline of bone in each CT
slice is required to be segmented. Gold models from CT scans are provided by
manual segmentation (KAINMUELLER, 2015). This approach is applied in this
work as well. For the images that the bone outline are clearly distinguishable,
such as the outline after projecting in No. 8, a semi-automatic level set which
has been applied successfully by YUSHKEVICH ET AL. (2006) is utilized. An
automatic segmentation (SEIM ET AL., 2008) is not applied as its development
is a time consuming task without giving any extra benefit to the purpose, intro-

ducing a best-matching selection criterion instead of the statistical approaches.

To explain the mathematics of the method (L1 ET AL., 2010; OSHER &
SETHIAN, 1988), imagine I' in R" of codimension one bounds an open region

Q). A smooth function ®(x, t), called level set function (LSF), is defined as

O(x,t) >0 x e
d(x,t) <0 x <) ; (2.1)
d(x,t) =0 x=1(t)
\
where the third state is called zero level set and * = x(z1,z9,...,2,) € R"

and t represent position and time, respectively. To analyze the motion of I', the
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® values are convected with a velocity v as

0
VO = 2.2
ot Y 0 ’ 22

where v represents the velocity on the interface. Using the normalized velocity,

Vo
—v- 2.3
UN v |V(D| ) ( )
equation 2.2 is rewritten as
0P

Although the main focus is on the zero level set of the LSF and not on the LSF
itself, a distance condition is set for the LSF to keep the level set evolution stable.
This condition is expressed by |[V®| = 1. To meet this condition, one approach is
to reinitialize the LSF after each period as a signed distance function. However,
it can cause incorrect movement of the zero level set from the expected position.
Also, lack of a general answer to the questions when and how the reinitializa-
tion should be performed, encourages looking for methods without the need for
reinitialization. An approach which employs a LSF that intrinsically satisfy the

unity of the signed distance function is: first an energy function on @ is defined

E(®) = pRp(®) + Eear(®) (2.5)
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where the regularization function is described by

fM@:memm

and P is a potential function with the below specific construction

P(s) = 7 (1 — cos(2ms))

%(s —1)2

(2.6)

(2.7)

E.,+ in equation 2.5 is an energy function containing the minimum value when

the desired area is segmented, i.e., zero level set is placed on the desired object.

Derivative of equation 2.5 results in

8_E o aFiP aE’ext
00 Moo T a0

From calculus of variation, solution of

9°  B(®)
ot 0d

(2.8)

(2.9)

gives the minimum of the energy functional F/(®). The derivative of the function

Rp(@) is

ORp
0P

= —div(dp(|VO|)VD)

(2.10)
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where the function dp is defined as

dp(s) = 2.11)

and

P'(s) = - . (2.12)
(s —1) s>1

Combination of equations 2.9 and 2.8 results in

00  ORp OF.

ot~ Moo T oo

(2.13)

By substituting equation 2.10 in this equation, the evolution equality is obtained

8@ . aEe:L’t
i pdiv(dp(|VO|) V) — 5% , (2.14)
where the external energy is
Eewt = ALy(P) + aA, (D) . (2.15)

In this equation, o and )\ are real numbers where A >0,

L,(®) = /Q 45(®)|Vo|da (2.16)
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and

Ag(q)):/QgH(—q))dw , (2.17)

where ¢ is the Dirac delta function, H is the Heaviside function and g is an edge

indicator function that takes small values at boundaries of the object.

Figure 2.1: A point cloud obtained after segmenting CT slices of a femur.

Practically, smoothened Dirac delta and Heaviside functions are used which are

defined as

L1+ s <
5.(x) = o 1+ cosCE)] el < e (2.18)

0 otherwise
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and

H(x)=< 1 z| > € . (2.19)

In case of applying a manual segmentation, the itk-Snap software (YUSHKEVICH
ET AL., 2006) is employed and the procedure is explained in appendix A.1. After
performing the segmentation, a point cloud is obtained, step 3 (Fig. 2.1), on

which a surface is reconstructed in the next step.

2.2.3 Surface Reconstruction, Step 4 of the Framework

Reconstructing 3D surfaces from point clouds means providing a mesh on the
point samples. Previous works in this field did not report their method for this
step. Therefore, it is not possible to select a method based on their obtained re-
sults. In general, three approaches can be applied for this purpose from which
the two are: methods that are based on combinatorial structures such as Delau-
nay triangulation (KOLLURI ET AL., 2004; BOISSONNAT, 1984) and Voronoi
diagrams (AMENTA ET AL., 2001, 1998), and those that reconstruct an approxi-

mating surface directly (SHEN ET AL., 2004).

The third approach is the Poisson method that is applied in this work because it

is more stable than the others in presence of data noises (KAZHDAN & HOPPE,
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2013). The method can be expressed as a solution of a Poisson equation using
an implicit function framework. The main part of the method is the computation
of a 3D indicator function Y, i.e., inside points are set as 1 and outside points
0. As the indicator function is constant almost everywhere, its gradient is zero
almost everywhere except at points near the surface which is equal to the surface
normals’. So the problem changes to find the indicator function, x;, of solid M
whose gradient equals to the vector field INy,;> defined by the sample points on
the surface OM, i.e.

Vxu = Nowm : (2.20)

By applying the divergence operator, equation 2.20 transforms to
AXM = V.Na]w (221)

which is a Poisson equation and the obtained x,; represents the surface. To
avoid unbounded values during the computation of the gradient of the indicator
function, as it is a piecewise constant function, it is first smoothened and then
a relationship between this smoothened function and the surface normal field is

formulated. For this purpose equation 2.20 is rewritten as

Vixu * F)(q) = /8M Fp(q) Ngp (P) dP , (2.22)

They are computed by considering neighbors of a vertex, creating a local surface there, and
calculating the normal vector to that surface.

2The same function was defined in the description of the level set function but in this case,
the right hand side of the equation, Ny, is known.
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where * represents the convolution operation, F; is the smoothing filter, and
P is a point on the boundary. Equation 2.22 means that the gradient of
the smoothened indicator function is equal to the vector field obtained by
smoothening the surface normal field which is approximated by the summa-
tion of smoothened input point sets’ normals times by their corresponding areas

(KAZHDAN & HOPPE, 2013).

(@) (b)

Figure 2.2: Two views of the built surface, No. 5, on the acquired point cloud,
Fig. 2.1, using the Poisson surface reconstruction method.

Applying this method using the MeshLab software (CIGNONI ET AL., 1998),
explained in the appendix A.2, results in step 5 of the framework, Fig. 2.2, a
surface model that consists of 60,632 faces and contains no holes although it is

not smooth.
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2.2.4 Smoothing, Step 6 of the Framework

As it is displayed in Fig. 2.2, the built surface on the point cloud is not smooth
which is required for meshing and comparing the outlines. Previous works did
not report their method for this step (TADDEI ET AL., 2006; ZHENG ET AL.,
2009; SCHUMANN ET AL., 2013a; SARKALKAN ET AL., 2014a; VAANANEN
ET AL., 2015). Therefore, it is not possible to select a method based on their
obtained results. The Taubin filtering was selected in this work because it was
specifically developed for medical images to be able to handle their large number
of vertices. Other existing algorithms (MORETON & SEQUIN, 1992; HALSTEAD
ET AL., 1993) for this purpose are computationally more expensive (TAUBIN,

1995).

Smoothening a closed curve or surface by the Taubin filtering means remov-
ing noises from the coordinate signals. Its mathematical framework can be ex-
plained by considering a function defined on a regular polygon of n vertices,
x = (xq,..., xn)T, where x; represents the value of the signal at the vertex ¢ of
the polygon. The discrete Laplacian of x for node j on the neighbor of node 7,

1, 1s defined as

jei*
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where w;; is equal to the inverse number of neighbors of the vertex x;. Then, a

matrix K is defined by K = I — W, where elements of W are

wi; =1 J s a neighbor of ¢
(2.24)
w;; =0 otherwise
and a signal « is described by
T=) Gu (2.25)
i=1

where u; is an eigenvector from the linear decomposition of the signal. A

smoothened signal is attained from
Y= ZZH;& f ki) w; ; (2.20)
where k; is an eigenvalue of matrix K, the polynomial f is defined as
f(ki) = (1= Aki) (1 — ki) (2.27)

and the two coefficients are given as input considering the following limitations:

A > 0 and p < —A\. By this definition, when iteration numbers N increases

(2.28)
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As it is shown that eigenvalues of matrix K are positive and less-equal to two
(KAZHDAN & HOPPE, 2013), it can be seen from equation 2.28 that frequencies
with large eigenvalues are removed from the smoothened signal y, equation 2.26.
By removing these frequencies a smoothened image is obtained with the same

number of vertices and faces.

(a) (b)

Figure 2.3: The two surface bone models in the previous step after performing
the Taubin filtering on them.

Applying this method implemented in the MeshLab software (CIGNONI ET AL.,
1998), described in appendix A.2, results in a smoothened model, No. 7, of the
unsmoothed bone, Fig. 2.3. As it can be seen, the edges in the Fig. 2.2 have been
removed and the outline of bones can be compared together after projecting the
model. The model consists of 30,401 vertices and 60,632 faces that are similar

to the model’s before the smoothing.
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2.2.5 Projection, Step 8 of the Framework

To compare the outline of bones in the dataset with the new patient’s x-ray image,
No.10, they are projected in the AP view. For that purpose, the user places the

model in the AP view position before the projecting, a method that is applied

during DXA imaging®.
y
Y Apoint g(pj, 6;) in
/ the projection
Complete projection g(p, 6;)
forafixedangle — x'

p \9,(

— X

L(Pj; Ox)

Figure 2.4: Depiction of the emitted ray L(p;, ) at the displayed angle and
radius to compute the equation 2.30. Photo credit: reproduced from GONZALEZ
& WooDs (2008).

The projecting process is that a virtual x-ray source in front of the model and a

flat detector at the back of the model are placed. The distances are retrieved from

the meta data of the CT scans. By describing a line in the Cartesian coordinates

3For instance in the HOLOGIC DXA machines, a hip positioning fixture is provided besides
the imaging machine. When the femur is going to be scanned, the patient is requested to place
his foot on the fixture. Its special V shape causes the femur to be placed in a AP view. In some
cases, after imaging it is seen that the femur still needed to be rotated inward or outward. In such
a case, the radiologist repeats the scan after modifying the patient’s position.
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as

xcosh +ysinf =p , (2.29)

where p and 6 are shown in Fig. 2.4. One point of projection of the image f(z, y)

(a) 0° (b) 120°

Figure 2.5: Projections of the 3D built bone model in two views, No. 9. The
outlines were captured using the level set segmentation method, §2.2.2.

is modeled by parallel ray beams as

9(p;, k) = / / f(z,y) 0(xcos by + ysin b, — p;) de dy . (2.30)

where the angle 0, and the length p; are defined in Fig. 2.4. Allowing p to vary
while 6 is fixed, yields a total projection of the body part f(x,y). After projection
of the smoothened bone model, Fig. 2.5, its outline is detected using the semi-

automatic level set method.
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2.2.6 Registration and Comparison the Outlines, Step 11 of

the Framework

In this section, the best-matching selection criterion is introduced. It consists of

the below steps:

* The bone is divided into some areas and one part is determined as the
most important one during the reconstruction*. For instance, a femur is
considered in four areas, namely the head, the neck, the trochanter, and the

shaft.

* Qutlines of the models in the dataset are compared with the new patient’s

as

1- The 3D models are scaled using the MeshLab software. The scale
ratio equals to the ratio of the most important part measured in the

new patient’s outline and the patients’ in the dataset.

2- To remove the translational and rotational effects, the point sets are
registered using the Iterative Closest Point (ICP) algorithm (BESL &
McKAY, 1992). This method and also the criterion used in the next
step were selected as they were recommended by the ZHENG ET AL.
(2009) and ZHENG (2010). Subjects of the two studies were similar

to that of the present work. They examined various approaches for

“Determining, e.g., where the neck starts and where it ends is based on the radiologist’s
diagnosis. This is the procedure in the DXA software as well, i.e., the radiologist puts the box of
the neck area where he considers as the correct position.
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registering the models and the measurement criterion and concluded
that the ICP algorithm and the Hausdorff criterion resulted in satisfy-
ing results. To describe mathematics of registration, the transforma-

tion of pixel coordinates in the original image (v, w) is expressed by’

[z,y,1] = [o,w, T (2.31)

where (z,y) represents the corresponding pixel coordinates in the
transformed image. To rotate the image in 6 degree the transforma-

tion matrix is organized as

cosf) sinf O

T=|_ginf cosh 0 . (2.32)

To map two images to each other using the translation transformation,

two parameters, ¢, and t,, are searched to form the transformation

matrix as _ _
1 0 0

T=1|0g 1 0 ) (2.33)
te t, 1

The ICP algorithm iteratively revises the translation and the rotation

parameters up to satisfying a stopping criterion, i.e., a determined

>The T matrix does not need to be transposed.
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limitation by the user for the maximum least square distance between

models after each iteration. Below items are the steps of the algo-

rithm:

I) The closest point in the reference image is searched for each

1)

point of the target image while the Euclidean distance between

the two points, r; = rj;, j = 1,2,3 and 7 = 1, 2, is defined by

3
d(re,me) = | Y (rn—rp)? (2.34)

J=1

When A is a point set with N, points denoted by ay, equation
2.35 results in the distance between a point P and the point set
A,

d(P,A) =mind(P,az), k=1,...N,.  (2.35)

The required parameters for the rotational and translational
transformations are found by optimizing a mean squared error
cost function to align each pair of points found in the previous

step. This procedure between two point sets is defined by
F(R,t)=min) f(d(R, +t X)) (2.36)

while R is a rotation matrix (R"R = I, det(R) = 1), tisa
translation vector, and a;, are members of A as defined in (I). The

point set A and X respectively represent the target and reference
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images.
III) A new target point cloud® is obtained by transforming the target
image using the calculated transformation parameters obtained

in the former step.

3- The Hausdorff criterion (HAUSDORFF & WETS, 1998) is applied to
quantify similarity between two point clouds by calculating the dis-
tances between corresponding points. The average of all distances
is reported as a number and the smaller it is, the more similar the
models are to each other. To measure the Hausdorff distance be-
tween two models A and B containing respectively P and () points,

the following algorithm is performed for all points of the model A,
M ={1ti=1,.Ph
I) Points of the model B that are in the vicinity of I in a radius
defined by the user as input, known as the kernel size, are deter-
mined’:

QF ={0F j=1..M} . (2.37)

II) The distance between point [/ with each of Qf

is calculated (in the Cartesian coordination, it is

® After reconstructing the surfaces, again they are referred to as point clouds because when
two surfaces are compared, distances between their corresponding points are calculated. Also,
when a surface is smoothened by the Taubin filtering, position of its points are regulated. In other
words, point cloud and surface are two equivalent words in this context and the operations that
are performed on the surfaces, actually act on the point clouds.

"The distance between each point of model B and I:! is measured and if it is less than the
kernel size, it means that the point is a neighbor of [ iA.
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known as the Euclidean distance which is equal to

\/(xI_A —zqp)® + (Y2 — Yar)? + (214 — 2g2)?) and  max-
Q 7 1 J v J
imum amount is then considered as the distance between the

models A and B at point ¢,

df =max|I' = QF|, j=1,...M . (2.38)

III) Distance between the models A and B is then defined as the

average of all d7, i.e.

7

DAB = mean (dAB, 1=1, P) ) (2.39)

¢ The model which results in the minimum Hausdorff distance is considered

as the 3D bone model of the new patient.

Therefore, to reconstruct, e.g., a femur from its 2D image, referred to as new

femur in the following, the procedure is that

1. One part is considered as the most important one that in this example, the

neck is selected.

2. Ratios between ND of models® in the dataset with ND of the new femur

are calculated and the 3D models are then scaled.

3. The new models are projected, their outlines are obtained, and compared

81t is measured on the AP outlines as shown in the Fig. 2.6.
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with the new femur’s outline. A 3D model with the minimum Hausdorff

distance is selected as the 3D model of the new femur.

Figure 2.6: Geometrical parameters measured on a AP view of the femur to scale
the patient’s femur model. The TW line connects the highest point of the greater
trochanter to the lowest point of the lesser trochanter. The HD represents the
largest diameter in the femur head and the ND shows the diameter of the middle
section in the neck area. The SD is considered 2 cm below the lesser trochanter.
Photo credit: reproduced from THEVENOT ET AL. (2013).

2.2.7 Finite Element Simulation on the Created Models

In the Finite Element analysis (FEA), an arbitrary body, Fig. 2.7, is approximated
by an assemblage of discrete finite elements interconnected at nodal points on
the element boundaries. The method can be applied to analyze both linear and
nonlinear problems and in the following an introduction to the linear analysis of
solids and structures is presented. The main nonlinearity in solid mechanics are

classified into five types (WRIGGERS, 2008), namely
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zw f2.17

XU

Nodal point j

Finite element m

Figure 2.7: A general three-dimensional body with a tetrahedral finite element.
Photo credit: reproduced from BATHE (2002).

- Geometrical nonlinearity in structural elements like as cables where

strains are small but displacements and rotations are large.

- Deformations nonlinearity where both displacements and strains are

large such as in a tyre.

- Physical nonlinearity originates from the material nonlinearity like as the

concrete and soil.

- Nonlinear boundary condition occurs where a deformation dependent

loading or the contact between surfaces are present.

- Instability or coupled problem like what comes along with necking or
problems in which mechanical stresses, heat generation and conduction

have to be coupled.
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that in this work, none of them occurred, the simulated material is a linear elastic
material, the loads are simulated statically, geometry does not have large dis-
placement, and no nonlinear boundary condition or coupled problems are the
matter of the case. To introduce a formulation of the displacement-based finite

element method (BATHE, 2002), the 3D body displayed in Fig. 2.7 is considered

b

subjected to concentrated forces F,, F,, and F at point i, body forces f2, f7,

and f2, and surface forces f?, > and f7. The starting point in the FE analysis

is the principal of virtual displacement (PVD):

/ erdv = / T fBdv + / U 155+ ZﬁTFj . (2.40)
v v s -
where

U =[UVW|

€' = [exx &y €22 Vxy Tvz Vzx) (241)

T
T = [TXX Tyy Tzz TXy Ty Z 7'ZX]

The first three normal strain terms are computed by

ou ov ow
EXX = X’ €yy = Y’ €zz = 07 (2.42)
and the next shear strain terms are calculated by
—a_U+a_v- —a_v+8_W- —a_W+a_U (243)
gy Toxt T ez Tay YT ox Taz
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The corresponding stresses to € are

T
T = [TXX TYYy Tzz TXY TY Z TZX] ) (2-44)

where

T=Ce+1". (2.45)

In equation 2.45, C is the stress-strain material matrix and 71 denotes the given
initial stresses. The PVD states that if a body is subjected to any arbitrary virtual
displacement U which satisfies the displacement boundary condition, then the
virtual work, i.e., all loads applied on the virtual displacements, done externally
is equal to the virtual work done internally by the real stresses, T, that are in
equilibrium with the externally applied forces multiplied by the virtual strains,

€, corresponding to the virtual displacements.

In FEA, it is assumed that the virtual displacement of element m, EE?L 2) includ-
ing u,v, and w, is equal to a displacement interpolation matrix H EZZ 2) times a
—T
virtual nodal point displacement vector U shown in equation 2.46
@™ —H™ U (2.46)
(z,9,2) (z,9,2) ’ :

where

U” = [U,ViW, UsVaWa UnVyWi] (2.47)
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and N denotes the number of the nodal points. In other words, equation 2.46

describes the displacement in an element as a function of the nodal elements.

Ex

Figure 2.8: Displaying (a) the implemented boundary conditions, load forces,
and (b) mesh quality of the reconstructed 3D femur model.

The strains are calculated as

, (2.48)

m)

IR

where B(( 2) is the strain interpolation matrix of the element m obtained by

differentiating columns of H ((;n; 2 Rewriting PVD as a sum of integration over
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the elements results in

3 / et gy m — 3 / am” £ gy m)

My (m) M/ (m)

T s(m)
+> / @™ T dst (2.49)

M g(m)

+ Zﬁ”Fj

By substituting equations 2.46 and 2.48 into the equation 2.49:

=T ~ = m
U <> / BM' cmBMavm iU =0 (Y / H' B gy

m Vv (m) v (m)

+2 / " 5 g

M g(m)

- / B 1 gy tm)

M (m)
+ F.}

(2.50)

that is the PVD equation in terms of the nodal point displacements and element

interpolation matrices which can be rewriting as in the following:

KU=R | (2.51)
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where

R=Rp+ Rs+ R;+ R

K = Z/B<m cmBMqym

Vv (m)
Ry = Z / H(m)TfB<m>dV(m)
vem (2.52)
T
Rs=)_ / H5™ 57 ggtm
M g(m)
RI:Z/B(mT Im)dv
™ yr(m)
Ro = F,

To evaluate the terms, in simple cases, analytical approach can be employed;
however, in general, numerical integration is utilized for this purpose. In this
case, if isoparametric finite element analysis is used, the displacement transfor-
mation matrix and the strain displacement interpolation matrix are functionals of

the local element coordination 7, s, and ¢. Thus the integrals change to

K:///BTC’BdetJdrdsdt
:///F(r,s,t)drdsdt ,

where J is the Jacobian transformation between the global and local coordinate

(2.53)

axes. Using numerical integration, the stiffness matrix is computed by

K = Z a; o oy F(rg, s, ) , (2.54)
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Figure 2.9: Stress field in MPa on the 3D model of the reconstructed femur
undergone a linear finite element simulation.
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where 7;, 7;, and 7, denote the integration points, and «;, o, and oy, the cor-
responding weight coefficients. Equation 2.54 means function F'(r;, s;,tx) is
evaluated at particular points 4, 7, and k in the element and then multiplied by
attributed weights to those points. Different methods can be applied to choose
these points but the Gauss numerical integration method is usually applied as the
integration points are optimized by their locations in the interval and their cor-
responding weights, in contrast to the Newton-Cotes method that the points are

equally placed in the interval and the weights can only be optimized.

Mechanical Properties and Boundary Conditions for the Simulation

The type of meshing, applied mechanical properties and boundary conditions im-
plemented in this section are chosen from previous works who had the same sub-
ject to that of the present work and they reported their simulations’ results were
in agreement with the experiments’ (HELLER ET AL., 2005; TADDEI ET AL.,

2006; SPEIRS ET AL., 2007).

To perform the simulation on the built models, they were first meshed with tetra-
hedra elements using the Iso2mesh software (FANG & BOAS, 2009). The re-
quired commands for this purpose can be found in the appendix A.5. Physical
properties of the bones including the Young’s modulus and the Poisson’s ratio
were respectively set to 17 MPa and 0.3 (HELLER ET AL., 2005) and boundary
conditions assigned as reported in SPEIRS ET AL. (2007). Nodes at the distal area

were completely constrained and two vector forces Fy = (—490, 280, —1200) N
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and F» = (345,150, 800) N acted on the model, Fig. 2.8.

To ensure that results are not dependent on the number of elements of the applied
mesh while minimum number of elements are used, a mesh convergence study
was performed. It was observed that the average of stress values in the section
where the maximum stresses occurred was constant after meshing by 21,000 el-
ements when number of elements increases from 3000 to 273,000. Results of
the simulation using the FE software CalculiX are shown in the Fig. 2.8 and a

description of the process is explained in the appendix A.6.

2.2.8 Application of the Framework on the Reconstruction of
the Pelvis Bone

To investigate the application of the framework on the reconstruction of the
pelvis bone, Fig. 2.10, it is enough to see whether the framework can build
its gold model, No. 7. This is so because No. 8, projection, and No. 11, finding
a similar model, can always be performed. Using the Hausdorff criterion, it is
possible to measure the similarity between any two shapes. In any case, it results

in a number that is used for classification of the similarity.

Defining characteristic lengths for the pelvis bone is possible as well, such as
the introduced ones for the femur, Fig. 2.6. For instance, if the most important
part is considered the acetabulum, its largest diameter can be considered for the

scaling purpose though the reconstruction error might change when one defines
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another characteristic length. Therefore, an appropriate topic for a study can be
investigating how much selecting different characteristic lengths affect on the
final reconstructed model.
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Figure 2.10: Displaying the bone structure of the pelvis. It consists of five major
parts namely the sacrum, the illium, the ischium, the acetabulum, and the pubic
bone. Source: https://singaporeosteopathy.com

A reconstructed pelvis bone model following No. 2, No. 4, and No. 6 after
meshing by the Iso2mesh software is shown in Fig. 2.11. As the obtained model
is a 3D model that can be utilized for further studies such as FE analysis, it is

concluded that the method is capable of reconstructing a 3D model of the pelvis

bone in a procedure similar to the one described for the femur reconstruction.

For that purpose, first, the most important part for the reconstruction is deter-
mined, e.g., the right acetabulum. Then ratios between the largest acetabulum’s

diameters of models in the dataset with the new pelvis’s acetabulum’s diameter
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are calculated and the 3D models are then scaled. Afterwards, the new models
are projected, their outlines are obtained, and compared with the new pelvis’s

outline. A 3D model with the minimum Hausdorff distance is selected as the 3D

model of the new pelvis.
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Figure 2.11: A reconstructed pelvis model after performing the segmentation,
surface reconstruction and smoothing steps on CT scans of a patient in the

dataset.

2.3 Discussion

One of the challenges in 3D reconstruction from x-ray images is that there is
no information about the distance of the patient from the film required during
the projection. ZHENG (2010) offered a distance of 150 mm; however, applying

distances up to 600 mm is common in radiology centers depending on the cite of

imaging and the required field of view.
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In the literature there are three different methods to perform the scaling. One ap-
proach is using geometrical parameters and scaling the models according to the
ratio between these parameters (ZHENG, 2010). The second method, proposed
by DURRLEMAN ET AL. (2014), computes the distance of points of that shape

from center of mass by

1 N
o= N;Hmi—fH? : (2.55)

where Z is calculated by

|
T =< p (2.56)
i=1
for a typical point set (x4, ..., ). The scaling ratio between the two shapes is

then equal to the ratio of their corresponding o values. The third approach (DU

ET AL.) is calculating the scaling for two sets of points, ; and x5, by

o trace(xy T RT) ’ 2.57)

trace(x; x1)

where R is the rotation matrix computed by

R=VU" . (2.58)

In equation 2.58, V' and U matrices are singular value decompositions (SVD) of

the below matrix

M=xz . (2.59)
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All the works have reported satisfying results at the end regardless of the method
that they employed in this step. Therefore, in this work the first method was

applied as its subject of the study was similar to the present work’s.

To quantify similarity among the models, one of the methods which is based
on the distance between corresponding points, is the Hausdorff method that ap-
plied in this work. Another method suggested by (DURRLEMAN ET AL., 2014)
and implemented in the Deformetrica software is that the distance between two

meshes, S and S’, is calculated by

dw (S, 5")? = [|S — S'||%,.

(2.60)
= (S, 8y + (S, SV — 2(S, Sy
that does not need vertex correspondences as the inner product reads
T, /)2
(5,5 = S WV (G I @.61)
P q ‘np| |?7q}

where ¢ and 1) denote the centers and normals of the faces of the meshes, |7| is
the mesh cell area, and k" a Gaussian kernel with a fix width oy. By equation
2.60 every pair of normals in a neighborhood of size oy is considered and shape
differences in the direction of normals are measured. In case of presence of holes
and spikes in the mesh, the method is robust as it smoothens differences at a scale
smaller than oy, When S = 5, the double sum scans every pair of normals p

and ¢ attached at different vertices of the mesh.
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The only problem with this choice is that preparing the images to be compared
with this current state of the software, needs changes in the input file at each
time, while the procedure in using the Hausdorff criterion is only feeding the

output file from the previous step to the MeshLab software.

The major benefit of the Deformetrica software can be considered in its capa-
bility to perform a deformable registration that is not applicable for our strategy
and will not solve the problem of statistical approaches as well. It is so because
even if the projection of a mean model completely matches with the patient’s
x-ray image by means of a nonrigid registration, still other views of the mean
model are affected by all the bones in the dataset without considering their level

of similarity with the patient’s bone.

From a point cloud to the volumetric mesh two approaches can be employed.
First one is considering the cortical and the trabecular thicknesses. Although
the method seems reasonable but practically, a fixed thickness for the corti-
cal is applied when it cannot be distinguished well (NAYLOR ET AL., 2013;

SARKALKAN ET AL., 2014a; VAANANEN ET AL., 2015).

TADDEI ET AL. (2006) measured the cortical thickness using CT scans; however,
at the end, confirmed that the ambiguity in determining the thickness, acquiring
mechanical properties from images, and the measurement of strains during ex-
periments are sources of errors between results of the numerical simulations and

the experiments.
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Also considering the load points, TADDEI ET AL. (2006) has reported a pro-
cedure to exert the loads at exactly their same place in the experiments using
markers on the bone and then registering them to find corresponding points on
the simulated model. Another work that tried to address the issue is a numerical
simulation by reporting the coordination of load points (HELLER ET AL., 2005);
however, they did not mention the geometry of the bone model to enable per-

forming the scaling later.

Regarding mesh convergence study two strategies can be applied: first the num-
ber of elements are investigated in which the amount of displacement and von
Mises stress are changed within 1% at some of the marked elements while the
number of elements is increasing. The second approach is averaging over four
elements in specific sections of the bone. The pattern of the stress distribution
is in agreement with former reports (see KANG ET AL., 1993; TADDEI ET AL.,
2006); however, the absolute values are different which originates from differ-

ences in the geometry of the models and locations of the load points.

2.4 Conclusion

In this chapter, it was discussed that although employing SSMs are popular
among researchers, their application needs to note some points. First, ethnic
backgrounds, ages, and genders of patients in the dataset might be important and
they need to be considered during building the SSM. Second, while projection

of a mean model is modified to match well with the 2D images of a patient,
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other views of the 3D mean model are still affected by the models in the dataset

without considering their level of similarity to the patient’s bone.

The presented method in this chapter was that: when the 3D model for a new
patient was required who did not possess CT images, his x-ray image was
divided in some parts. For instance, in a femur they were the head, the neck, the
trochanter, and the shaft. Thereafter, the radiologist determined which part was
the most important one and then the scaling ratio between the most important
parts of the models in the dataset and the new patient’s were calculated. Using
the ratio, the 3D models in the dataset scaled afterward. The new models were
then projected and their outlines were compared with the new patient’s outline
and one with the minimum Hausdorff distance was picked up as the 3D bone

model of the new patient.

Using the ratio, the 3D models in the dataset scaled afterward. The new models
were then projected, their outlines were compared with the new patient’s outline
and one with the minimum Hausdorff distance was picked up as the 3D bone

model of the new patient.
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Chapter 3

Error Analysis of the Steps of the

Framework

Overview

* Novelty: Error analysis of the framework by performing new tests.

* Method: Previous works considered reproducibility of the interval steps
of the framework only for the segmentation process. Arisen errors in other
steps of the framework are measured in §3.2.1. Presenting a sequence
in which accumulated errors of the steps of the framework are measured
without considering the quality and quantity of the CT dataset is the topic
of the second new test, §3.2.2. The next test is preformed similar to the
former works which enables us to compare the reconstruction errors in

this work with previous ones, §3.2.3. In the third new test, a relationship
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between reconstruction errors and stress values are studied, §3.2.4.

3.1 Introduction

The final 3D bone model created by following the framework’s steps in the pre-
vious chapter is not the same as the real bone model because of arisen errors in
each step. To investigate these error values, accuracy tests in the former works

were taken and they are classified in two types.

In the first, accuracy of segmentation was considered and they measured how
much would be the difference between various segmented images. In the second
type of the tests, it was examined how much would be the differences between
two models built by the proposed method from 2D images of a patient and built
from his CT scans, comparison between No.13 and No. 15, usually called vali-
dation test. As it can be seen, accuracy of other steps have not been addressed in
the former works, e.g., how much the smoothing filter will affect the final model.

In the first test, §3.2.1, this issue will be studied.

After performing the validation test, §3.2.3, a question arises whether applica-
tion of the method on another dataset results in the same accuracy. The former
works did not perform such an study which is the topic of the test two, §3.2.2.
There a new sequence of steps are introduced which measures the error of the

framework without considering the quality and quantity of the dataset.

Finally in the test four, §3.2.4, it is investigated how much the stress values will
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change because of accumulated errors during the reconstruction. This is done
by studying the difference of stress values on the areas with maximum recon-
struction errors. The latter describes areas which are marked after comparing a

reconstructed model with its gold model.

3.2 Methods and results

3.2.1 Test 1, Studying Accuracy of each Step of the Frame-
work

This test is defined to measure reproducibility of the steps 2, 4, 6, and 8 and
the arisen error by the smoothing operation. For the first four processes, the
procedure of the test is that on a same input, the operation is performed three
times and the results are compared by the Hausdorff criterion. Therefore, each
of the operations, namely segmentation of a CT slice, No. 2, reconstruction
of a surface model on a point cloud, No. 4, smoothing a surface model, No. 6,
projecting a 3D model, No. 8, are performed three times and the obtained models

at each step compared to each other.

The maximum occurred error in all the tests were less than 0.1 mm. But when the
models resulted from smoothing, No. 5 and No. 7, were compared, the average
error was 0.86 mm. Using the Hausdorff method the mean, the minimum and the
maximum error values can be reported. Error here refers to the distance between

similar points of the two compared models. In Fig. 3.1, the distances measured
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4052 Distance [mm]
38

Figure 3.1: Distribution of the distances between corresponding points of two
reconstructed models. The measurement criterion is the Hausdorff distance and
a unit length of the frequency axis, (—), represents 1% of the total number of
points.

by the Hausdorff method between two models are displayed. For instance, the

red areas represent those parts of the models which are in a distance of 4.2 mm.

3.2.2 Test 2, Verification Test of the Framework

In this test, the accuracy of the proposed method is studied regardless of the
quantity and quality of the dataset. The procedure is that the new patient, No.
10, is chosen from the database in No. 1 and then images at No. 13 and No. 15

of the framework are compared.

Thereby theoretically it is expected the framework results in a 3D model exactly
similar to the 3D reconstructed model of the patient’s bone from the CT scans,

1.e. images No. 13 and No. 15 have to be exactly the same. However, practically
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that does not happen and the measured error between the two images built by

this strategy determines that kind of error.

Figure 3.2 shows that for 8 femurs of the training set, the average error between
models No. 13 and No. 15 were less than 0.1 mm, for one of them between
0.1 mm and 0.2 mm, and so on. These values determine the error of the frame-
work without considering the quality and quantity of the dataset which is called
offset error. As the new patient’s CT set was given in No. 1, it means both mod-
els in No. 13 and No. 15 were reconstructed from CT scans of the new patient.
Therefore, the difference between models No. 13 and No. 15 was expected to be

Z€10.

Frequency

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6

Hausdorff distance (mm)

Figure 3.2: Frequency histogram of the reconstruction error measured for 30
models of the training set.

However, because of accumulated errors in the interval steps, No. 2, 4, 6, 8,
and 11, the two models were not exactly the same and the average error between
them for the femurs in the training dataset are displayed in Fig. 3.2. As for three
models the error is a value between 0.5 mm and 0.6 mm, it is concluded that the

offset error of the framework using the implemented methods is 0.6 mm. The
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meaning of this number is that the framework cannot guarantee errors less than

0.6 mm.

3.2.3 Test 3, Validation Test of the Framework

Goal of this experiment is evaluation of the method similar to the approach re-
quired in clinical treatments. The procedure is that a new patient’s 2D image is

given as input, No. 10, and the images No. 13 and No. 15 are then compared.

error (mm)

Reconstruction

— Mean error

Figure 3.3: Reconstruction errors of 15 femurs in the validation group.

In Fig. 3.3 the reconstruction errors for femurs in the validation group are shown
in a box plot. The average errors shown by a solid line are less than 2 mm. As
the median values, top of the solid black rectangles, are nearer to the minimum
values, it is concluded that errors, the distances between corresponding points,

are mostly between the minimum and the median values.
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3.2.4 Test 4, Investigating Changes in the Stress Distribution
due to the Reconstruction Errors

This test is performed to investigate relationships between reconstruction errors
and distribution of stresses on the femur models. In Fig. 3.4, the distribution of
stress values on the models reconstructed from 2D and 3D images of one patient
is shown. Assigning physical properties of bones, boundary conditions, and load

forces were described in §2.2.7.

As can be seen, the amount of stress in the place of occurrence of maximum
reconstruction error, red color areas in Fig. 3.1, on the femur reconstructed by
the present method is 9.74 MPa and on the femur reconstructed from CT scans
i1s 6.82MPa. If the difference between these two values is compared with the
maximum stress value, the ratio is approximately 0.05 ~ [(9.74 — 6.82)/60)]
which means a reconstruction error of 4.2 mm causes change in the stresses at

about 5% of the maximum stress value.

3.3 Discussion

In the first test, it was shown that smoothening a model could result in an aver-
age change of 0.86 mm on the surface bone model which was higher than repro-
ducibility of the segmentation. It is true that using other smoothing filters can
result in a value less than 0.86 mm, but the intention is noting that when a new

reconstruction method is introduced, this value is also required to be reported.
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Figure 3.4: Von Mises stress field on a 3D model of a patient’s femur recon-
structed from his (a) 2D image, No. 13, and (b) CT scans, No. 15.
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Former works did not mention reproducibility of other steps in their works while
this value can be higher than the error of segmentation which they have tested

(THEVENOT ET AL., 2013; VAANANEN ET AL., 2015).

About the test two, §3.2.2, some of the former works instead of this test per-
formed a leave-one-out test. The procedure was that CT scans of a patient from
No. 1 was excluded and his x-ray image was given in No. 10. Then images
No. 13 and No. 15 are compared. This procedure is exactly similar to what is
performed in their next test, the validation test. The only difference is that they
executed the leave-one-out test on the dataset at No. 1 and later did the valida-
tion test on another dataset, No. 10 (ZHENG ET AL., 2009; SARKALKAN ET AL.,

2014a).

To discuss on the test three, §3.2.3, performing the validation test by the current
regulation may not result in applicable information as its results depend on the
similarity of bones in the training group at No. 1 and the test group at No. 10.
To improve this analysis, it could be a suitable option to quantify the differences
between the mean model and the new patient’s bone model. That enables those
who employed statistical approaches to find out how much difference between
the mean models and new patients’ bone models result in how much reconstruc-

tion errors.

Also about accuracy of this test, the criterion to measure the errors are different
between works. SCHUMANN ET AL. (2010) used two methods and the difference

between average errors did not change more than 0.5 mm. However, it is not clear
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how much error values will change using a new measurement criterion. There-
fore, a topic for a study might be quantifying this relationship. Another point to
notice is that practically average errors are compared; however, the amount of

maximum error and its position are also important to be determined.

3.4 Conclusion

In this chapter, accuracy tests in the former works were explained and new tests
were introduced. In the first test, the arisen errors in each of the steps were
investigated. The results showed that the smoothing’s error could be larger than
the segmentation’s while in the literature this study was performed only for the
segmentation. It might be argued if another smoothing method was applied,
the error would become much smaller. This could be true but what the author
suggested was that researchers in the field of 3D reconstruction should evaluate

reproducibility of all the steps.

In the next test, the offset error of the method was investigated. That error
determined the maximum level of reliability. The third test was the validation
test and common among the former works. It was discussed that its results
depended on the similarity of the images in the training group, No.1, and the test

group, No. 10.

In the fourth test, changes in amount of the stress values due to the reconstruction

errors were measured. The procedure for this test was that two reconstructed
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bones of a patient, one built from CTs and one from 2D images, were undergone
a same simulation, i.e., similar loading conditions and geometrical boundary
conditions were applied to the both models. Then differences between stress
values at the same areas were measured, e.g., where the maximum stress had
happened in the reconstructed model from CTs. Using Hausdorff criterion,
distances between these areas were also measured. Combination of these two
measurements gave a new information that how much reconstruction error

caused how much changes in the stresses.
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Chapter 4

Acquiring mechanical properties

from CT scans

Overview

* Novelty: Acquiring mechanical properties from CT scans without scan-

ning a calibration phantom during the scanning.

* Method: To map material properties to the created models from x-ray
images, it is required that the models in the CT dataset, contain the prop-
erties as well. For that purpose, i.e., assigning the material properties to
the models in the CT dataset, in one of the possible approaches to perform
this task in a patient-specific manner, calibration images had to be scanned
during CT scanning the former patients. However, no calibration image

was provided in the available CT dataset in this work. In §4.3.2 a method
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is suggested to solve this problem.

4.1 Introduction

In chapters two and three, it was explained how to reconstruct a 3D model from
x-ray images and the accuracy of the procedure was investigated. To perform FE
simulation on the created models, it is required to assign physical properties of
bones to the models. A feasible approach for this purpose is attributing mechan-
ical properties to the 3D models in the CT dataset using their provided CT scans.
Then a method similar to what was performed in chapter two is employed, i.e.,
finding the most similar bone parts and transferring their bone mineral density
(BMD) values into the new model. However, this approach is faced with an ob-
stacle which is lack of calibration images'. To solve this problem, a method is

proposed in §4.3.2.

In the following first former works in the area of material mapping are reviewed
and their methods are explained. Afterwards, the method to acquire physical
properties from CT scans and the proposed method for calibrating CT machines

are introduced.

!To obtain mechanical properties from CT scans, a calibration phantom has to be scanned.
Then, a relationship between image intensities and bone mechanical properties is established
using image processing techniques and experimental results. Thereafter, each voxel and, conse-
quently, the bone model is attributed the properties (TADDEI ET AL., 2006).
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4.2 Current Methods for the Material Mapping

into the Meshed Bone Models

Assigning of material properties means that after generating a mesh, material
properties have to be attributed to the elements. First approach is attributing
constant properties to the whole cortical layer and doing the same for the trabec-
ular areas. In this method, the cortical and the trabecular bone are meshed using
respectively shell elements and brick elements. However, the shell-solid mod-
eling’s results are not in agreement with the experiments’ (VARGHESE ET AL.,

2011).

Thus, ZHANG ET AL. (2010) suggested that tetrahedral elements instead of shell
elements should be used. Unstructured meshes provide the possibility that for
each element, an average of properties of voxels encompassed by that element
to be calculated and attributed to the element. However, it can cause underesti-
mation or overestimation of the material properties, known as the partial volume

effect (TADDEI ET AL., 2004).

In the second approach for the material mapping, a fixed Young’s modulus for
the cortical bone is considered, whereas the trabecular bone moduli is obtained
by averaging the material properties over the finite elements inside the trabecular

area (SHIM ET AL., 2008).

The third approach for translating the HU into mass density and Young’s modu-

lus is formulated in a thermodynamic framework. The reader can obtain a thor-
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ough vision on former works in this area and learns its improvement performed
in our research group by reviewing the following published dissertations and
journal articles NACKENHORST (1997); EBBECKE (2006); LuTZ (2011); FIETZ

(2013); SAPOTNICK & NACKENHORST (2014).

The fourth approach is finding a relationship between intensity of image voxels
and the local mineral density of bone. In other words, stiffness of an enclosed
piece of bone by a voxel is in relation with the Hounsfield unit (HU) value of the
voxel. Therefore, through this approach, the non homogeneous nature of bone
is considered as well (TANCK ET AL., 2009; CRAWFORD ET AL., 2003). Also,
the partial volume effect and the need for detecting the cortical boundary layer

during the segmentation are removed.

Among the four introduced approaches, only the last two can result in a patient-
specific bone model. The third approach has been investigated formerly in our
group. Therefore, the fourth method is studied in this work to enable us to com-

pare the two approaches.

4.3 Method and Results

4.3.1 Calculating Physical Properties

In the following, the procedure to employ CT scans of a calibration phantom to
acquire physical properties of bones is reviewed. The process has been imple-

mented in the Bonemat software (TADDEI ET AL., 2006) and required steps are
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Figure 4.1: Schematic representation of the procedure to assign the elasticity to
a bone model using a calibration phantom’s scans.
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shown in Fig. 4.1. For convenience in the description, the steps of the flowchart
are cited as No. X. The initial input data are given in No. 1 and No. 2 and then
in No. 3, the HU values are calculated. This step gives a relationship between
the HU values and the CT numbers. Thereafter in No. 4, the obtained HU values
are correlated to the ash density of the bone. The empirical relationships which

are utilized to connect these parameters are

pocr = 0.000791701(HU) — 0.00393573
4.1)

pash = 0.877pgocr + 0.079

where poor and pasp, hold the unit of gecm ™ and respectively represent the hy-
drated tissue mass and the bone ash mass which are divided by the total specimen
volume. It is shown that a power law relationship relates the obtained density val-
ues to the Young’s modulus (Z1IOUPOS ET AL., 2008). One of the relationships

which matches well with experiments is

E = 14,664 p%% | (4.2)

where the Young’s modulus, £, holds the unit of GPa (HELGASON ET AL.,
2008). Finally, the acquired elasticity for each voxel is attributed to the cor-

responding element in the meshed bone model, No. 6.

In Fig. 4.2 an output of the software is shown. The elasticity values changes

from 16.748 GPa to 10~% GPa. The bone has maximum strength at outer rings of
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the shaft and minimum strength at the middle of the femur. An important char-
acteristic during evaluating osteoporosis for a patient is the strength of his femur

neck. For that purpose two approaches in DEXA software are utilized.

Figure 4.2: Distribution of the bone density (a) in a femur and (b) in a normal
view to one of its sections. The red color represents the maximum elasticity
value, equals to 16.748 GPa, and the dark blue color represents the minimum
value, 10~% GPa. Photo credit: reproduced from the data provided by the Institute
of Istituto Ortopedico Rizzoli, Bologna, Italy.

First one is considering a section in the middle of the neck and calculating its

BMD. Another approach is calculating the BMD at a section that is tangible with



70 CHAPTER 4. ACQUIRING MECHANICAL PROPERTIES FROM CT SCANS

the edge of the greater trochanter and normal to the neck axis. Using either of
the approaches results in that the shown femur does not suffer from a decreased

level of strength in the neck.

4.3.2 Calibration of CT Machines

Up to this state, it has been described how to assign density values to the bone
models using calibration images which were scanned with them. However, when
a dataset of CT scans are available but a calibration phantom has not been im-
aged with them, there is no approach in the literature describing how to do the

calibration.

The method that is suggested in this section to solve this problem is based on
assuming that effective parameters on the relationship between the CT numbers
and the HU values in No. 3, are only the applied voltage and the current tube.
This assumption is based on the results of a former study (GIAMBINI ET AL.,
2015). It explored effects of various parameters on images of calibration phan-

toms and reported the applied voltage and the current tube as the key ones.

Our assumption concludes that if a phantom is scanned two times with a CT
scanner, the obtained images are the same if the machine is run again with the
same parameters as in the previous time. If it is proved, then the explained ap-

proach in Fig. 4.1 can be used again.

In such a case, when a set of CT scans is available without being accompanied
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by any calibration image, one only needs to scan a phantom using the utilized CT
machine while amounts of the parameters are set equal to the those applied for
scanning the CTs. Thereafter, the obtained phantom’s images are given as input

at No. 2 and the procedure can continue similar to the described one in §4.3.1.

Figure 4.3: An experimental setup for studying the changes in the HUs when
a scanner is run again without changes in the input parameters. The scanning
acquisitions were obtained at a voltage of 120kV, a current tube of 210 mAs, a
collimation width of 80 mm, a slice thickness of 3 mm and a spiral pitch factor
of 0.914 mm. Photo credit: The experiment was performed by the author’s own
means; its result is hereby displayed for the first time.

The correctness of the assumption was investigated in an experiment as follows?:

a calibration phantom, calibrated against CaCQOj3, were scanned three times using

ZPerhaps it can be considered as a double-checking because GIAMBINI ET AL. (2015) has
reported that the phantoms’ images alter only because of changes in the voltage and the current
tube.



72 CHAPTER 4. ACQUIRING MECHANICAL PROPERTIES FROM CT SCANS

an iCT 256 scanner (Philips, USA), Fig. 4.3. The voltage and the current were

respectively set as 120kV and 210 mAs in the exams.

The region of interest in the measurements were concentric circles with the rods?
with a radius of 10 pixels. Increasing the radius to 16 pixels, covering 90% of
the rod’s area, did not change the numbers. Each measurement was performed
three times and the average amount was assigned to the substance. The average

values for the fat, the muscle and the bone changed less than 2% in the exams.

4.4 Discussion

Deriving the bone stiffness using HU values is based on assuming an isotropic
behavior for the bone*; however, in reality, the bone consists of complex mi-
crostructures. The anisotropic behavior of the trabecular can be seen in its prefer-

able growth direction (NEWITT ET AL., 2002).

To represent better this microstructure and, consequently, the macroscale behav-
ior of the trabecular bone, one may apply a micro-FE model. However, this ap-
proach requires micro-CT images that is considered clinically incompatible. Fur-
thermore, VERHULP ET AL. (2006) reports that the simplification of anisotropy
by an isotropic behavior has little effects on the computed stress and strain dis-

tributions. However, this conclusion is valid only for healthy bones because the

3The calibration phantom composed of five rods, @ = 16 mm and [ = 13 cm, Fig. 4.3. Each
rod contained a reference material and the set was embedded in a plastic base material.

“During normalizing the HU values, a number of voxels are considered one unit and they
are then assigned one intensity value. This action is based on assuming similar properties for all
voxels in that unit which means ignoring the anisotropic behavior of the bone.
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anisotropic behavior of the bone is an important parameter in the FE simulation
of bones suffering from osteoporosis. Besides, in some bone areas, e.g., glenoid
area, the physiological load is transferred due to the anisotropy ratio (CATTANEO

ET AL., 2001; MANSAT ET AL., 1998).

It was explained that in one of the approaches for the material mapping, spatially
varying material properties are applied, i.e., considering a fixed Young’s mod-
ulus for the cortical bone, whereas the trabecular bone moduli is obtained by
averaging the material properties over the elements (SHIM ET AL., 2008). Due
to a large difference between Young’s modulus of the cortical bone and the tra-
becular bone (17 GPa vs. 500 MPa), the cost of implementing such a meshing is
higher than the strategy which considers a fixed value for the trabecular bone as
well. However, it might be beneficial to perform a study in which the magnitude

of ignoring the stiffness of the trabecular bone is investigated.

In the performed experiment, the 2% variation in the measured values, the CT
numbers and, consequently, the HUs, can cause a change of 60 MPa in the cal-
culated elasticity, equation 4.2. This amount is about 10% of the elasticity of
the trabecular bone, 500 MPa, and 0.35% of the elasticity of the cortical bone,
17GPa. Therefore, one might conclude that the new method can be used for

acquiring the properties from CT scans.

However, performing a study to investigate effects of the variations in the elas-
ticity due to the application of the new method can be recommended. Also,

conducting similar experiments with CT scanners from other producers might
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be essential for application of the method on those machines.

The method removes the need to a calibration phantom during the screenings. If
this feature is added to a current QCT software’, normally taken scans can be fed
into the software. For instance, currently in cases that the patient cannot meet
the required body positioning for the imaging process, e.g., because of causing
an extra pain, the software is simply out of function. Also in cases that the radi-
ologist has not put the phantom in the correct field of view of the scanning, using

the promoted software, there is no need to repeat the exam.

4.5 Conclusion

In this chapter, methods to assign physical properties to the bone models were
reviewed. Thereafter, the procedure to use calibration images and acquiring
the properties was described. In the following, an approach was presented for
the purpose of the material mapping to the new patient’s reconstructed bone
model using a CT dataset. The method was that: during reconstructing the new
patient’s bone model, besides considering the geometry of the most similar bone

in the dataset, its mechanical properties were also attributed to the new model.

Therefore, it was required that the obtained models from the CT dataset,

contained material properties as well. To assign material properties to these

>Quantitative Computed Tomography (QCT), measures separately the cortical and the tra-
becular BMD in a volumetric state which makes it possible to use the results for reconstructing
a patient-specific FE bone model (BESSHO ET AL., 2007; ADAMS, 2009; DRAGOMIR-DAESCU
ET AL., 2011; WANG ET AL., 2012).
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models, calibration images had to be scanned during CT scanning the former
patients. However, no calibration image was provided in the available CT

dataset.

To obtain the BMD from such CTs, an assumption was made that if a calibration
phantom was scanned while the voltage and the current tube were set on the
values which had been used during scanning the patient, the obtained images
could be used for the calibration. The experiment showed that using the new

method might cause a 60 MPa change in the computed elasticity.
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Chapter 5

Conclusion

In chapter two of this work, it was discussed that although employing SSMs are
popular among researchers, their application needs to note some points. First,
ethnic backgrounds, ages, and genders of patients in the dataset might be im-
portant and they need to be considered during building the SSM. Second, while
projection of a mean model is modified to match well with the 2D images of a
patient, other views of the 3D mean model are still affected by the models in the

dataset without considering their level of similarity to the patient’s bone.

The presented method in this chapter was that: when the 3D model for a new
patient was required who did not possess CT images, his x-ray image was di-
vided in some parts. For instance, in a femur they were the head, the neck, the
trochanter, and the shaft. Thereafter, the radiologist determined which part was
the most important one and then the scaling ratio between the most important

parts of the models in the dataset and the new patient’s were calculated. Using

7
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the ratio, the 3D models in the dataset scaled afterward. The new models were
then projected and their outlines were compared with the new patient’s outline
and one with the minimum Hausdorff distance was picked up as the 3D bone

model of the new patient.

In the next chapter, accuracy tests in the former works were explained and new
tests were introduced. In the first test, the arisen errors in each of the steps were
investigated. The results showed that the smoothing error could rise to higher
amounts than the segmentation’s while former works only studied the latter. It
might be argued if another smoothing method was applied, the error would be-
come much smaller. This could be true but what the author suggested was that
researchers in the field of 3D reconstruction should evaluate reproducibility of

all the steps.

In the next test, the offset error of the method was investigated. That error deter-
mined the maximum level of reliability. The third test was the validation test and
common among the former works. It was discussed that its results depended on

the similarity of the images in the training group, No.1, and the test group, No.

10.

In the fourth test, changes in amount of the stress values due to the reconstruc-
tion errors were measured. The procedure for this test was that two reconstructed
bones of a patient, one built from CTs and one from 2D images, were undergone
a same simulation, i.e., similar loading conditions and geometrical boundary

conditions were applied to the both models. Then differences between stress
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values at the same areas were measured, e.g., where the maximum stress had
happened in the reconstructed model from CTs. Using Hausdorff criterion, dis-
tances between these areas were also measured. Combination of these two mea-
surements gave a new information that how much reconstruction error caused

how much changes in the stresses.

The accuracy of acquiring patient specific 3D models from limited number of 2D
images could be influenced by the presence of the same model in the database.
In other words, although a new method was suggested to overcome limitations
of the former methods and also new tests were proposed to determine errors of
the framework, the obtained values only determine the maximum level of con-
fidence. Also, when a software based on the framework, creates a number of
models with small values of error, there is no guarantee that for a new patient the
reconstruction error does not reach to a larger amount because of, e.g., a genetic

abnormality.

To overcome this problem, one plausible solution would be to employ such a
software on a more specific target of patients. For instance the training set con-
sists of patients with a special range of ages from one ethnicity with a specific
kind of disease. Employing such a training set makes it more possible that when
the software builds a 3D model for a new patient whose age, ethnicity and dis-
ease type is similar to the patients’ in the training set, the reconstruction error

would be in the expected range.

Nonetheless, the error could be so large because of a specific disease in the new
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patient’s bone. Therefore, about the future application of these methods to be
applied in medical treatments, as x-ray images and CTs are mostly applied when
the patient has a real problem and he is not a healthy person to perform an an-
nual physical exam, it is highly expectable he possesses some unique features

that methods based on databases cannot be applied for the treatment.

However, if the method is applied for reconstructing a 3D model from 2D im-
ages of a patient, e.g., during a surgery, while that patient was CT imaged before
the operation, the method may be a wise selection. Through this approach, the
patient receives less radiation dose, the cost of the treatment decreases and a high
unexpected reconstruction error because of an unknown patient-specific disorder

might not happen.

In the last chapter, methods to assign physical properties to the bone models
were reviewed. Thereafter, the procedure to use calibration images and acquir-
ing the properties was described. In the following, an approach was presented
for the purpose of the material mapping to the new patient’s reconstructed bone
model using a CT dataset. The method was that: during reconstructing the new
patient’s bone model, besides considering the geometry of the most similar bone

in the dataset, its mechanical properties were also attributed to the new model.

Therefore, it was required that the obtained models from the CT dataset, con-
tained material properties as well. To assign material properties to these models,
calibration images had to be scanned during CT scanning the former patients.

However, no calibration image was provided in the available CT dataset.
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To obtain the BMD from such CTs, an assumption was made that if a calibration
phantom was scanned while the voltage and the current tube were set on the val-
ues which had been used during scanning the patient, the obtained images could
be used for the calibration. The experiment showed that using the new method

might cause a 60 MPa change in the computed elasticity.
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Appendix A

Implementation of the Framework

in Software

In this section, the implementation of the framework introduced in chapter two

is presented.

A.1 Step 2, Segmentation

For this purpose the itk-SNAP software ! (V 3.4.0) is used, which is a free open-
source and multi-platform software to segment structures of 3D medical images.
In Fig. A.1 a common environment of the software is shown and the procedure

resulting in a point cloud from DICOM images are listed below:

I- Atthe area marked 1 in Fig. A.1, click on the ‘File’ option and then ‘Open’

a DICOM image from the patient’s CT images.

Thttp://www.itksnap.org
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e Tools Help

update B@ v

Figure A.1: The UI of the itk-SNAP software.

2- In the popped up window, set the file format as ‘DICOM series’, click on

the area marked 2, and select the relevant pixels to be segmented.

3- Close the created polygon by clicking on ‘Complete’ in the area 4. Scroll

among the slices using the side bar in 3 and repeat the segmentation.

4- Export the point cloud as ‘*.stl” by choosing ‘Segmentation’ in 1 and then

the ‘Export as surface mesh’ option from the fallen down window.

A.2 Step 4 and 6, Surface Reconstruction and

Smoothing

To reconstruct a surface on the resulted point cloud from the previous step and

then smoothen the model, the Poisson method and the Taubin filtering imple-
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mented in the MeshLab software > (V 1.3.3) are used. This software is free and

can carry out various types of processing of 3D meshed models. Below is the list

of steps required for the actions:

1-

2-

Click on the ‘Filters’ option at the main menu.

In the fallen down window, select the ‘Remeshing, simplification and re-

construction’ option.

In the opened window, click on the ‘Surface reconstruction: Poisson

method’.

Click on the ‘File’ option in the main menu.

Select the ‘Import mesh’ from the fallen down window and choose the

desired ‘*.stl’ file.

Choose the option ‘Unify duplicate vertices’ in the popped out window.

Click on the ‘Filters’ in the main menu and choose the option ‘Smoothing

fairing and deformation’.

In the opened window, select the “Taubin smooth’ option.

Click on the ‘File’ option in the main menu, select ‘Export mesh as’ op-

tion in the fallen down menu and set the file type as: ‘Object File Format

(*.off)’.

Zhttps://sourceforge.net/projects/meshlab
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A.3 Step 8, Projection

The applied MATLAB? (Release 2014a, The MathWorks, Inc., Natick, Mas-
sachusetts, United States) code for this aim can be found in the supplementary
materials and its algorithm is summarized as the below (letters in parentheses

referred to the corresponding part in the code):

SET the initial parameters:
Detector panel size (A)
Distances between source to detector and to the object axis (B)
Gantry rotating direction (C)

Determining position of the object (D)

FOR all the required angles (E)
Project using the interp2 and the meshgrid commands in Matlab (F)

END

A4 Step 11, Registration and Comparison the

Outlines

The sequences to use the MeshLab software to measure the similarity between a

bone in the dataset with the new patient’s bone outline are as follows:

3https://www.mathworks.com/
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I) The model in the dataset is scaled as in the following:

1-

The 3D model in the dataset is projected. Its outline plus the new pa-
tient’s bone outline are segmented using the itk-Snap software. The
characteristic length from the 2D images, e.g., in a femur it can be
the HD, ND, TW, or the SD, Fig. 2.6, is measured using the pro-
vided ruler in the Meshlab software. The scaling ratio is calculated

by dividing these numbers.

Open the “.off” file of the 3D model. In the main menu, click on the
‘Filters’ tab and then choose the ‘Normals, curvatures and orienta-

tion’ option.

From the displayed options, choose the “Transform: scale’. Write
the scaling ratio in the ‘Uniform scaling’ box. Apply the changes

and save them.

After projecting the new scaled 3D model, segment its outline and

save it as a “.stl’ file.

II) The two segmented outlines, one from the model in the dataset and one

belongs to the new patient, are fed into the MeshLab and registered as in

the following:

1-

2-

Click on the ‘File’ option in the main menu.

From the fallen down window, click on the ‘Import’ option and select

the two ‘*.stl” meshes.
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From the main menu click on the ‘Edit’ option.
From the fallen down window choose the ‘Align’ option.

Select the ‘Iterative closest point registration (ICP)’ option in the

popped up window.

IIT) The two registered outlines are compared by the Hausdorff criterion as

follows:

In the main menu, click on the ‘Filters’ option.

From the fallen down window, select the ‘Sampling’ option.
Among the appeared choices, choose the ‘Hausdortf distance’.
From the main menu, click on the ‘Edit’ option.

From the choices in the popped out window, click on the ‘Quality
mapper’ option.

From the main menu, click on the ‘Render’ option.

Choose the ‘Show quality histogram’ choice from the fallen down

window to have the Hausdorff distance plus the minimum and the

maximum distances.

A.5 3D Meshing of the Surface Mesh

Iso2mesh # (V 1.7.9), a free Matlab based mesh generation toolbox, which cre-

ates tetrahedral finite element meshes from surfaces is used for this purpose.

*http://iso2mesh.sourceforge.net
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Below are a list of commands used to mesh the models:

I- Read the input file by running the relevant ‘“*.m’ file in the toolbox. The

command is read as:

[Node,Elem]=readoff(‘FileName.off’);

2- Alter the surface to a volume at a given thickness. This can be done by the

below commands:

Img=s2v(Node,Elem);

[Nodel,Eleml,Facel]=v2m(Img,0.1,1,10);

3- To get a plot from the produced mesh, run the command:

plotmesh(Nodel,Facel)

4- To export the mesh in an appropriate format for the next software, it is

written out by running the below command:

mesh2abaqus(Nodel,Elem1, ‘FileName’);

A.6 FE Simulation of the Meshed Model

To perform the FE simulation, the CalculiX software > (V 2.10) is employed. It
is an open set of Fortran codes that makes it possible to use this software to build

FE models, calculate them by a linear and non-linear solver in static, dynamic,

>http://www.dhondt.de/
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and thermal problems, and perform the post-processing. A compatible input file
consists of the following parts (words in capital letters are predefined words in

the software):

1- The input file is read by the command:

*INCLUDE, INPUT=MeshFile.inp

Note that to make the input file consistent with CalculiX, the line started

with “*ELEMENT” in the ‘MeshFile.inp’ has to be replaced with:

*ELEMENT, TYPE=C3D4, ELSET=Volume 3

2- Nodes that are later going to be constrained are read by

*INCLUDE, INPUT=NodeFile.nam

3- To perform a linear elastic simulation, the Young’s modulus and the Pois-

son’s ratio are defined and set to the elements by:

*MATERIAL, NAME=MAT

*ELASTIC

19E3,.3

*SOLID SECTION, MATERIAL=MAT, ELSET=Volume3

4- The nodes that were read in the second line are fixed in three directions:

*BOUNDARY

Nfix,1

Nfix,2
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Nfix,3

5- Static loads are exerted. First the node number, then the load direction
(x, y, and z-directions are set as 1, 2, and 3 respectively), and finally its

amount are determined:

*STEP

*STATIC

*CLOAD

17897,1,4000

6- Required output parameters are determined. In this example displacements

U and stress values S are to be written by the commands:

*NODE FILE

U

*EL FILE

*END STEP

7- Save the input file as ‘FileName.inp’ and close it. Then open it by SciTE

editor, present in the downloaded folder, and start the simulation.

To perform post-processing on the acquired results, the procedure is as follows.

1- Run the **.frd’ file in the folder that the main files are present.
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Datasets »|  1DISP 1.000000
Viewing » 2STRESS 1.000000 ’
Animate » ~Entity- » 15X
Frame | —— 2svv
Zoom 3s2z
Center 45Xy
Enquire 5svZ
Cut » 652X
Graph » 7 Mises
Orientation » 11Ps1
Hardcopy » 15PS2
Help » 19pS3
-QurT- [:Zr_x 23 worstPS
< 24 Tresca
-Parameter- »

2-

Figure A.2: The Ul of the CalculiX software.

Click on the area marked 1 in the Fig. A.2 and select ‘Dataset’ among the

appeared option. Then choose the desired parameters, e.g., stresses.

Click on 1 again and select ‘Dataset’. Then choose the desired components

to be displayed.

Turn off viewing the edge elements by

view edges off

During typing a command, the mouse pointer has to be kept on the area

marked 2.

To increase the number of divisions that the parameter is shown, run the

below command:

steps <Desired number>
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A.7 Increasing Quality of Meshes

To increase quality of the meshes, a free software, GmsH 6 (V 2.12.0), is used.
The required steps to optimize the meshes and refine them are described in the

following and the referred parts in the steps can be seen in the Fig. A.3.

| File Tools Window Help
[ Modules A

[ Geometry
[E Elementary entities
[ Add

Parameter
Point
Straight line
Spline
B-Spline
Circle arc
Ellipse arc
Plane surface

Ruled surface
2 Volume
Tansiate

Rotate
Scale
Symmetry
Split
Delete

[E Physical groups

Point File Tools Window Help
dace [ Modules
Geometry
3
. Coherence i Weah
Reload Define
Editfile

1D

= 20
.
Opfimize 30D

Optimize 3D (Netgen)
Setorder 1

Set order 2

Setorder 3

High order tools

Inspect
Refine by splitting 5
Partition
Reclassify 2D
[ Delete

Save
Solver

A 4

Figure A.3: The Ul of the GmsH software.

1- In the area 1, click on the ‘File’ option and ‘Open’ the “*.stl’ file of the

model.

2- Click on the ‘“Volume’ option at the area marked 2 and then select the
opened ‘*.stl” model. Press the ‘e’ letter on the keyboard and ‘Create new

*.geo’ file.

®http://gmsh.info
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Select the bone model, press the ‘e’ letter on the keyboard, then click on
the ‘Volume’ at the area 3, select the green ball inside the object and press

the ‘e’ letter.

Select ‘“Tools’ at the area marked 1, then ‘Options’ and select ‘Mesh’ from

the popped up window.

In the tab ‘Advanced’, mark the two choices: ‘Optimize quality of tetrahe-

dra’ and ‘Optimize quality of tetrahedral with Netgen’.

Mesh the bone by selecting ‘3D’ at the area marked 4. Use the area marked

5 to refine the mesh by determining an amount for splitting the elements.
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Further Examples of the Femur and

the Pelvis Reconstruction

In this section, 3D reconstruction of several models in the dataset are shown. The
contribution of chapter two was introducing a new method for reconstruction of
3D models from 2D images and the results were shown and discussed there.
Therefore, displaying other reconstructed models of femurs and pelvises may
not have any impacts on the contribution. The goal of this section is providing
a sign of proof that the suggested method is able to reconstruct other femur and

pelvis models and it is not limited to the shown models in chapter two.
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(a) (b)

(d)

Figure B.1: Displaying the (a) point cloud, (b) reconstructed surface, (c)
smoothened surface, (d) projected model, and (e) 3D mesh of a femur model
in the dataset.



97

(e)

Figure B.2: Displaying the (a) point cloud, (b) reconstructed surface, (c)
smoothened surface, (d) projected model, and (e) 3D mesh of a femur model
in the dataset.
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(d)

Figure B.3: Displaying the (a) point cloud, (b) reconstructed surface, (c)
smoothened surface, (d) projected model, and (e) 3D mesh of a femur model
in the dataset.
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(a) (b)

(e)

Figure B.4: Displaying the (a) point cloud, (b) reconstructed surface, (c)
smoothened surface, (d) projected model, and (e) 3D mesh of a hemipelvis model
in the dataset.
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(©) (d)

(e)

Figure B.5: Displaying the (a) point cloud, (b) reconstructed surface, (c)
smoothened surface, (d) projected model, and (e) 3D mesh of a pelvis model
in the dataset.
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