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Zusammenfassung 

In den meisten Eukaryoten stellt das mitochondriale System der “oxidativen Phosphorylierung” 

(OXPHOS) die Basis für die zelluläre Energieversorgung dar. Von besonderer Bedeutung für das 

OXPHOS System ist der mitochondriale NADH-Dehydrogenase Komplex (Komplex I). Dieser ist 

die Haupteintrittspforte für Elektronen in die mitochondriale Elektronentransportkette (mETC) und 

dadurch indirekt an der mitochondrialen ATP Synthese beteiligt. Der pflanzliche Komplex I ist 

insofern besonders, als dass er zusätzliche pflanzenspezifischen Untereinheiten, wie gamma-Typ 

Carboanhydrasen (γCA), beinhaltet. In der Modellpflanze Arabidopsis thaliana gibt es drei γCA 

und zwei gamma-Typ Carboanhydrase ähnliche (γCAL) Proteine: γCA1, γCA2, γCA3, γCAL1 und 

γCAL2. Drei dieser fünf Untereinheiten können gleichzeitig in der γCA Domäne, welche mit dem 

Membranarm des Komplex I assoziiert ist, enthalten sein. Die mögliche 

Untereinheitenzusammensetzungen der γCA Domäne, so wie sie sich aus den Ergebnissen dieser 

Arbeit und bereits zuvor erworbenen Erkenntnissen ableiten lassen, wurden in einem 

Übersichtsartikel zusammengefasst (Kapitel 2.3). Im Zentrum der vorliegenden Dissertation stand 

die Charakterisierung der Funktion der γCA/ γCAL Proteine und die damit verbundenen 

pflanzenspezifischen Funktionen des Komplex I. Um zwischen den direkten γCA/ γCAL und den 

indirekten, durch Komplex I hervorgerufenen, Funktionen unterscheiden zu können, wurden 

ca1ca2 Doppelmutanten mit enzymatisch inaktiven CA2 Versionen hergestellt und mittels 

proteomischen und metabolomischen Methoden analysiert. Des Weiteren wurde besonderes 

Augenmerk auf die physiologische, molekulare und biochemische Charakterisierung der ca1ca2 

Doppelmutante gelegt. Die durchgeführten Studien deuteten darauf hin, dass die γCA/ γCAL 

Proteine für Komplex I strukturell essentiell sind. Die gleichzeitige Deletion der CA1 und CA2 Gene 

verursachte eine Komplex I Dysfunktion mit drastischen Auswirkungen auf die Samen- und 

Pflanzenentwicklung. Zudem kam es zu einer Reorganisation des OXPHOS Systems mit 

veränderten in vitro Aktivitäten der Komplexe II und IV, sowie einem erhöhten Fluss von 

Elektronen durch die mETC (Kapitel 2.2). Dieses konnte mit Hilfe von systematischen 

vergleichenden Proteomanalysen für die ca1ca2 Mutante belegt werden (Kapitel 2.4). Zusätzlich 

wurde die cal1cal2i Mutante in dieser Dissertation hinsichtlich ihres mitochondrialen Proteoms und 

Metaboloms untersucht (Kapitel 2.1). Neue Erkenntnisse zur Diversität von Komplex I Mutanten 

und die unterschiedlichen daraus resultierenden Auswirkungen auf den pflanzlichen Phänotyp, die 

pflanzliche Entwicklung, das mitochondriale Proteom, sowie auf andere zelluläre Prozesse, wie die 

Photosynthese, wurden gewonnen. Diese Ergebnisse erlauben es, die pflanzenspezifischen 

Komplex I Funktionen besser zu definieren (Kapitel 2.4).  

Schlagworte: Arabidopsis thaliana, Atmungskette, Carboanhydrase, Komplex I Dysfunktion, 

NADH Dehydrogenase Komplex   



 



Abstract 

The mitochondrial “oxidative phosphorylation” (OXPHOS) system is essential for the majority 

of energy dependent cellular processes in most species. Of particular importance for the 

OXPHOS system is the mitochondrial NADH dehydrogenase complex (complex I). It is the 

major electron entry site for the mitochondrial electron transport chain (mETC) and of 

outstanding importance for mitochondrial ATP generation. In comparison to other eukaryotes 

Arabidopsis complex I is composed of additional plant specific subunits including gamma-type 

carbonic anhydrase (γCA) proteins. In Arabidopsis three γCA and two gamma-type carbonic 

anhydrase like (γCAL) proteins are present, termed γCA1, γCAβ, γCAγ, γCAL1 and γCALβ. 

Three out of these five subunits are arranged in a γCA domain that is attached to the membrane 

arm of complex I. Results of this thesis and findings of priory analyzed γca/ γcal mutants were 

reviewed to propose a model for the subunit composition of the γCA domain (Chapter 2.3). 

The functions of γCA/ γCAL proteins and resulting functions for plant complex I were of 

particular interest for this thesis. To discriminate between direct functions of γCA/ γCAL 

proteins and indirect functions that are coupled to complex I, ca1ca2 double mutants 

overexpressing enzymatically inactive CA2 versions were generated and analyzed by 

proteomic and metabolomic tools. Furthermore, special emphasis was placed on the 

physiological, molecular and biochemical characterization of ca1ca2 double mutants. These 

studies highlighted that γCA proteins are structurally essential for complex I. The simultaneous 

mutation of CA1 and CA2 genes caused complex I dysfunction with drastic effects on seed and 

plant development. Increased in vitro activities of complexes II and especially IV as well as 

higher flux of electrons through the mETC were observed (Chapter 2.2). In addition, 

reorganization of the OXPHOS system in the double mutant was shown by systematic 

comparative proteome investigations using gel-based approaches as well as gel-free 

quantitative “shotgun” proteome approach for ca1ca2 mutant plants and cell culture lines 

(Chapter 2.4). In addition, cal1cal2i mutants were analyzed with respect to the mitochondrial 

proteome and metabolism. Trace amounts of complex I levels and activity were remaining in 

the cal1cal2i mutant (Chapter 2.1). Novel insights into the diversity of complex I mutations 

and their differential effects on plant phenotype and development, the mitochondrial proteome 

as well as on photosynthesis were obtained. This allows to newly define complex I functions in 

plants (Chapter 2.4). 

Keywords: Arabidopsis thaliana, carbonic anhydrase, complex I dysfunction, NADH 

dehydrogenase complex, respiratory chain  
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Abbreviations 
  

1D one-dimensional 

2D two-dimensional 

ADP adenine diphosphate 

AOX alternative oxidase 

ATP adenine trisphosphate 

az  azygous 

BCT bicarbonate transporter 

BN Blue Native 

C3  three carbon organic acids 

C4  four carbon organic acids  

CA  carbonic anhydrase 

CAL carbonic anhydrase like 

CAM gamma carbonic anhydrase of Methanosarcina thermophila 

CCM carbon dioxide concentrating mechanism 

cDNA complementary desoxyribonucleic acid 

CMS cytoplasmatic male sterility  

complex I NADH dehydrogenase complex  

complex II succinate dehydrogenase complex 

complex III cytochrome c reductase complex  

complex IV cytochrome c oxidase complex  

complex V ATP synthase complex 

dap days after pollination 

DHODH dihydroorotatedehydrogenase 

DIC microscopy differential interference contrast microscopy 

DIGE differential gel electrophorese 

ETFQ-OR flavoproteine: quinone oxidoreductase  

FAD flavin adenine dinucleotide; oxidized form 

FADH2 flavin adenine dinucleotide; reduced form 

Fe/S cluster iron-sulfur cluster  

FMN flavin mononucleotide  

G3-P DH glycerol-3-phosphate dehydrogenase 

GLDH L-galactone-1,4-lactone dehydrogenase  

I+III2 complex I with dimeric complex III 

I+III2+IV1-4 monomeric complex I, dimeric complex III and one to four 
copies of complex IV  

IEF isoelectric focussing 

III2+IV1-2 dimeric complex III with one or two copies of complex IV 

IMM inner mitochondrial membrane 

IMS  inter membrane space 
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IPG immobilized pH gradient 

kDa kilo Dalton 

LβH left-handed parallel β-helices  

mETC mitochondrial electron transport chain 

mRNA messenger ribonucleic acid 

MS mass spectrometry 

NAD+ nicotinamide adenine dinucleotide; oxidized form 

NADH nicotinamide adenine dinucleotide; reduced form 

NADPH nicotinamide adenine dinucleotide phosphate; reduced form 

N-module NADH oxidation module of complex I 

OXPHOS oxidative phosphorylation 

PAGE polyacrylamide gel electrophoresis 

PCD programmed cell death 

PCR polymerase chain reaction 

P-module  proton translocation module of complex I 

ProDH proline dehydrogenase 

Q-module  quinone reduction module of complex I 

qPCR quantitative polymerase chain reaction 

ROS reactive oxygen species 

RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase 

SDS sodium dodecyl sulfate 

TCA cycle tricarboxylic acid cyle 

TIM translocases of the inner mitochondrial membrane 

TOM translocases of the outer mitochondrial membrane 

V2 dimeric complex V 

wt wildtype 
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Chapter 1: Introduction  

Oxidative phosphorylation: Complex I and the gamma-type 

carbonic anhydrases 

Chapter 1 provides the theoretical background of the thesis. It outlines general and plant specific 

features of the mitochondrial oxidative phosphorylation (OXPHOS) system. Special emphasis 

is placed on the NADH dehydrogenase complex and its plant specific γCA/ γCAL subunits.  

1.1. Mitochondrial metabolism 

1.1.1. Structural organization of mitochondria  

Mitochondria are supposed to have an endosymbiotic origin. The endosymbiont hypothesis 

suggests that mitochondria were originally prokaryotic cells and became endosymbionts inside 

eukaryotic cells (Margulis, 1970). Most eukaryotic organisms contain mitochondria. However, 

mitochondria have not been detected in some unicellular eukaryotes of the protozoa kingdom 

(reviewed in Makiuchi and Nozaki, 2014).  

The morphology of mitochondria is very dynamic. Their shape, size and number is controlled 

by fission and fusion (Logan, 2003). The general shape of mitochondria is spherical or rodlike, 

and their size range from 0.5 to 1.0 µm in diameter and 3 µm in length (Douce, 1985). The 

number of mitochondria per cell is variable and depends on the physiological and the 

developmental state of the cell as well as on the cell size. In plants, young leaves contain 

approximately 300 mitochondria per cell while older leaves have 450 mitochondria per cell 

(Preuten et al., 2010).  

Due to endosymbiosis mitochondria are organelles with a double membrane. The outer 

membrane completely surrounds the invaginated inner mitochondrial membrane (IMM). The 

invagination is called “cristae” and leads to a greatly enlarged surface area. The aqueous phase 

within the inner membrane is known as matrix and the region between the two membranes as 

intermembrane space. However, the inner and outer membranes can either get in close 

proximity via so called “contact sites” or be connected via bridge-like structures that provide 

the structural basis for membrane organization (Hackenbrock et al., 1986; Senda and 
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Yoshinaga-Hirabayashi, 1998; Perkins et al., 2001). These structures enable protein import and 

facilitate the passage of solutes and small molecules between cytosol and matrix (Senda and 

Yoshinaga-Hirabayashi, 1998; Logan, 2006). The IMM of plant mitochondria contains a 

diverse set of transporters that regulate the import and export of molecules like pyruvate, 

dicarboxylates, tricarboxylates, phosphate, ADP and ATP between the matrix and the cytosol 

(reviewed in Millar et al., 2011). These transporters are important for exchanging substrates for 

the tricarboxylic acid (TCA) cycle that provides reduction equivalents for the oxidative 

phosphorylation (OXPHOS) system. The mitochondrial OXPHOS system consists of five 

different protein complexes that are embedded in the IMM and two mobile carriers. Four of the 

five complexes comprise are respiratory chain enzymes (complex I: NADH dehydrogenase 

complex; complex II: succinate dehydrogenase complex; complex III: cytochrome c reductase 

complex; complex IV: cytochrome c oxidase complex), the fifth complex is the ATP synthase 

complex (complex V). The two mobile electron transporters are ubiquinone and cytochrome c. 

At present, two models of the arrangement of the OXPHOS complexes in the IMM have been 

proposed: The “fluid state model” and the “solid state model”. The “fluid state model” assumes 

that the OXPHOS complexes are diffusing in the inner mitochondrial membrane. Here, electron 

transfer takes place by accidently collisions of the OXPHOS complexes. This is supported by 

the fact that all five OXPHOS complexes can be purified in a physiologically active form, and 

by the ability to use isolated mitochondrial membranes for liquid dilution experiments 

(Hackenbrock et al., 1986; Boekema and Braun, 2007). In contrast, there also is evidence that 

supports the “solid state model” (Fowler and Richardson, 1963; Rich, 1984). This model 

assumes the OXPHOS complexes to be solid within in the membrane and thus, to interact with 

each other stably. The “solid state model” is generally supported by the occurrence of 

respiratory supercomplexes. Supercomplexes are associations of two or more OXPHOS 

complexes that can be found in organisms belonging to different kingdoms of eukaryotes 

(Chaban et al., 2014). The association of OXPHOS complexes varies between different 

organisms (Chaban et al., 2014). In Arabidopsis thaliana for example, supercomplexes of 

complex I associated with dimeric complex III (I+III2) and dimeric complex V (V2) exist 

(Dudkina et al., 2010; Chaban et al., 2014). In yeast and animals, these supercomplexes are 

stabilized by the lipid cardiolipin and stomatin-like proteins that bind cardiolipin and interact 

with prohibitins (Mileykovskaya et al., 2012; Mitsopoulos et al., 2015). Similar interactions are 

supposed for plants (Gehl and Sweetlove, 2014). These supercomplexes form even larger 

associations consisting of monomeric complex I, dimeric complex III and one to four copies of 

complex IV (I+III2+IV1-4) in some animals, yeast and plants such as Solanum tuberosum and 
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Spinacia oleracea (Chaban et al., 2014). These large structures are named respirasomes and 

can autonomously carry out respiration in the presence of ubiquinone and cytochrome c 

(Schägger and Pfeiffer, 2000). Those associations result in shorter electron transport ways in 

the mETC and, thus, are advantageous for the OXPHOS system. Productions of reactive oxygen 

species (ROS) at complexes I and III are minimized by the rapid electron transfer due to shorter 

transfer paths for ubiquinone and cytochrome c (Chaban et al., 2014). Furthermore, the 

supercomplexes determine the structure for the IMM and lead to increased protein insertion 

capacities (Boekema and Braun, 2007). 

In conclusion, both models on their own cannot explain many experimental observations. The 

OXPHOS complexes are of dynamic nature and might switch between both states (Boekema 

and Braun, 2007). 

1.1.2. General mechanism of the oxidative phosphorylation (OXPHOS) 

system 

Plant mitochondria are involved in numerous metabolic processes including photorespiration, 

programmed cell death, cell signaling as well as the biosynthesis of amino acids, vitamin 

cofactors, fatty acids and iron sulfur-clusters (Mackenzie and McIntosh, 1999; Bowsher and 

Tobin, 2001; Logan and Knight, 2003; Youle and Karbowski, 2005; Peterhänsel et al., 2010). 

Additionally, mitochondria are of particular importance for energy production of the cell and 

are also called “powerhouse of the cell”. Respiration is the fundamental ATP generating process 

of most eukaryotes. However, plants and other photosynthetic organisms do not completely rely 

on mitochondria for energy production because the majority of ATP is generated by 

photosynthesis during daytime. Nevertheless, also plant mitochondria carry out the final steps 

of aerobic respiration and efficiently generate ATP through oxidative phosphorylation 

(OXPHOS) (reviewed in Millar et al., 2011). 

In general, the OXPHOS complexes catalyze the electron transfer from NADH or FADH2 to 

molecular oxygen as the terminal electron acceptor (Figure 1). Glycolysis, the TCA cycle and 

photorespiratory processes in plant mitochondria generate NADH. The NADH dehydrogenase 

complex (complex I) oxidizes NADH to NAD+ by its matrix exposed “peripheral arm”. Two 

electrons are transferred in the mitochondrial electron transport chain (mETC).  

Chapter 1: Introduction: Oxidative phosphorylation: Complex I and the gamma-type carbonic anhydrases

5



 

Figure 1: General oxidative phosphorylation system.  

Electrons enter the mETC via complex I or complex II. These complexes are reduced by NADH respectively 
FADH2. Electrons are transported via ubiquinone (UQ) to complex III and finally via Cytochrome c (Cyt c) to 
complex IV. Molecular oxygen (O2) is reduced and water (H2O) is produced. Coupled to electron transport is the 
proton (H+) translocation across the IMM at complex I, III and IV. The proton gradient is used to drive the ATP 
synthesis at complex V in the mitochondrial matrix. M: mitochondrial matrix; IMM: inner mitochondrial 
membrane; IMS: inter membrane space; yellow proteins are mobile electron carrier. 

Additionally, two electrons are inserted in the mETC by oxidation of FADH2 at the succinate 

dehydrogenase complex (complex II). Complex II is a component of both the TCA cycle and 

the OXPHOS system. The inserted electrons are transferred to ubiqinone that is subsequently 

reduced to ubiquinol. This small lipid-soluble electron carrier can diffuse within the 

hydrophobic core of the membrane bilayer of the IMM. This characteristic enables the transport 

of electrons from complex I and II to the cytochrome c reductase complex (complex III) that is 

subsequently reduced. From here, electrons are transported via cytochrome c, a small protein 

loosely attached to the outer surface of the inner membrane, to the cytochrome c oxidase 

complex (complex IV).  

Finally, complex IV, the terminal oxidase of the mETC, reduces one molecule of molecular 

oxygen by the consumption of four electrons (Siedow and Umbach, 1995). The reduced oxygen 

reacts with protons in the mitochondrial matrix to water. Peter Mitchell (1961) was the first 

who proposed that electron transport is coupled to the translocation of protons from the 

mitochondrial matrix into the intermembrane space at complexes I, III and IV. The translocation 

of protons results in a proton gradient across the inner mitochondrial membrane. The ATP 

synthase complex (complex V) can use this proton gradient to generate ATP. During ATP 
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synthesis protons are channeled back into the mitochondrial matrix decreasing the proton 

motive force. As already mentioned (see section 1.1.1), the OXPHOS complexes can associate 

to supercomplexes to increase the flux of electrons and, thus, increase efficiency of ATP 

production. The produced ATP can be exported for energy requiring processes of the cell 

(reviewed in Millar et al., 2011).  

1.1.3. OXPHOS in plants: Alternative enzymes  

Plants are sessile organisms and, therefore, the rapid adaptation to changing environmental 

conditions and the availability of minerals and nutrients is of fundamental importance. Rapidly 

changing environmental conditions (e.g. higher light conditions) can cause an overreduction of 

the mETC. Subsequently, reactive oxygen species (ROS) can be generated at complexes I, II 

and III (Møller and Sweetlove, 2010; Jardim-Messeder et al., 2015). ROS are signaling 

molecules that regulate plant development and respond to stress. If ROS concentrations are 

elevated for a longer time period, decrease of the mitochondrial transmembrane potential and 

swelling of mitochondria is induced. This is followed by damage of cellular compartments and 

programmed cell death (PCD) (Li and Xing, 2010). In addition to classical OXPHOS 

complexes, plant mETC possess some alternative enzymes that can prevent the ROS formation 

and fulfill protective functions for mitochondria and the entire cell (Figure 2). 

Plants, fungi, protists and some bacteria possess alternative NAD(P)H dehydrogenases that 

have not been reported for most animals (Rasmusson et al., 2008). In Arabidopsis, seven 

alternative NAD(P)H dehydrogenases are present that are grouped in three families NDA, NDB 

and NDC (Michalecka et al., 2003). NDA1, NDA2 and NDC are attached to the inner 

mitochondrial membrane at the matrix site. NDB1, NDB2, NDB3 and NDB4 are attached to 

the inner mitochondrial membrane in the intermembrane space. NDB1 (Ca2+ dependent) and 

NDC1 function as NADPH dehydrogenases, whereas NDB2 (Ca2+ stimulated), NDB3, NDB4, 

NDA1 and NDA2 oxidize NADH (Elhafez et al., 2006; Geisler et al., 2007).  

The alternative NAD(P)H dehydrogenases are light regulated. An increase in photosynthetic 

metabolism subsequently leads to increased photorespiration with massive production of 

NADH in the mitochondrial matrix (Rasmusson and Escobar, 2007). If an excess of reduction 

equivalents is present in the mitochondrial matrix, the alternative NAD(P)H dehydrogenases 

can oxidize NADH or NADPH and reduce the ubiquinone pool by bypassing complex I 
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(Rasmusson et al., 2004). In comparison to complex I, the alternative NAD(P)H 

dehydrogenases cannot translocate protons and have no impact on the proton motive force 

needed for ATP synthesis (Rasmusson and Wallström, 2010). However, alternative NAD(P)H 

dehydrogenases prevent the generation of ROS and fulfill protective functions for mitochondria 

and the entire cell (Rasmusson et al., 2008).  

In Arabidopsis, additional electron entry points are present. They further increase the 

complexity of the mETC and are shortly presented in the following. In addition to the alternative 

NAD(P)H dehydrogenases, the flavoproteins quinone oxidoreductase (ETFQ-OR), proline 

dehydrogenase (ProDH), dihydroorotatedehydrogenase (DHODH) and glycerol-3-phosphate 

dehydrogenase (G3-P DH) mediate electron insertion into the ubiquinone pool. A further 

electron entry point is the cytochrome c pool. L-galactone-1,4-lactone dehydrogenase (GLDH) 

and D-lactate dehydrogenase can transfer electrons to that mobile electron carrier and 

subsequently reduce complex IV (Rasmusson et al., 2008; Schertl and Braun, 2014).  

 

Figure 2: Alternative enzymes supporting the OXPHOS system.  

Aside from the OXPHOS complexes I, II, III and IV and the ATP synthase complex (complex V), alternative 
enzymes that participate in mETC are present. Enzymes inserting electrons in the ubiquinone pool (UQ) are 
alternative NADH dehydrogenases (NDA, NDB and NDC), proline dehydrogenase (ProDH), flavoproteine: 
quinone oxidoreductase (ETFQ-OR), dihydroorotatedehydrogenase (DHODH) and glycerol-3-phosphate 
dehydrogenase (G3-P DH). Alternative oxidoreductase (AOX) can use electrons of the UQ pool to reduce 
molecular oxygen to water. L-galactone-1,4-lactone dehydrogenase (GLDH) and D-lactate dehydrogenase 
(DLDH) can reduce cytochrome c (Cyt c) by electron transfer. The alternative enzymes are not able to translocate 
protons. M: mitochondrial matrix; IMM: inner mitochondrial membrane; IMS: inter membrane space; yellow 
proteins are mobile electron carrier. 
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If the respiration rate exceeds the demand of the cell for ATP, an alternative oxidase (AOX) is 

activated by the elevated proton motive force. Arabidopsis possess five AOX genes, AOX1a- 

AOX1d and AOX2, that are facing the matrix site of the inner mitochondrial membrane 

(Thirkettle-Watts et al., 2003). AOX is reduced by electrons out of the ubiquinol pool and can 

subsequently reduce molecular oxygen and, thereby, generate water. Thus, AOX bypasses the 

proton pumping complexes III and IV. The energy that would normally be used for ATP 

production is released as heat in this alternative pathway (Rogov and Zvyagilskaya, 2015). 

AOX can prevent an overreduction of complex III and complex VI when stress conditions lead 

to an inhibition of respiration. This can prevent the formation of ROS. Besides this, AOX is 

involved in defense mechanisms against a wide range of biotic or abiotic stresses e.g. light, 

temperature, osmotic stress, drought and pathogen attack (Rogov and Zvyagilskaya, 2015).  

In addition, animal and plant mitochondria contain uncoupling proteins in the inner 

mitochondrial membrane. Uncoupling proteins allow proton flux from the intermembrane space 

into the mitochondrial matrix across the inner mitochondrial membrane. Thus, uncoupling 

proteins bypass the ATP synthase complex when an excess of protons is present in the 

intermembrane space (Vercesi et al., 2006).  

Finally, there is experimental evidence for an interaction between alternative enzymes that add 

electrons into the mETC and enzymes that use electrons out of the ubiquinol pool of mETC. 

An increased enzymatic capacity of alternative NAD(P)H dehydrogenases can directly increase 

the rate of either AOX or uncoupling proteins to establish a high flux of electrons through the 

mETC (Rasmusson and Wallström, 2010). These enzymes are protective for the entire cell. 

They can adjust the redox state of the cell and the mETC, if ATP generation has to be 

maintained and the generation of ROS needs to be prohibited.  

1.1.4. Mitochondrial metabolism in developing seeds 

Overall two distinct embryogenesis phases are defined: embryo morphogenesis and maturation 

of the embryo. Embryo morphogenesis is initiated by the double fertilization of the zygote that 

differentiates stepwise. Embryo morphogenesis comprises cell division and elongation of 

embryo and endosperm. The subsequent maturation stage is characterized by the accumulation 

of storage compounds and the acquisition of seed dormancy and desiccation tolerance 

(reviewed in Baud et al., 2008). The embryo is a quickly developing tissue that can reach the 

Chapter 1: Introduction: Oxidative phosphorylation: Complex I and the gamma-type carbonic anhydrases

9



maturation stage within a few days after fertilization (reviewed in Baud et al., 2008). To 

facilitate this rapid development about 17,500 distinct mRNAs are transcribed in Arabidopsis 

seeds to coordinate seed filling (Belmonte et al., 2013). The differentiation of the embryo is 

enabled by rapid changes of seed metabolism. In addition to photosynthetic processes in green 

seeds, mitochondrial metabolism is of special importance for developing seeds. 

Mitochondrial metabolite fluxes in green Brassica napus seeds were determined. Differences 

in mitochondrial metabolism between fully developed plants and developing seeds were 

estimated (Schwender et al., 2006). The main organic compounds for metabolism in the mature 

embryo are sucrose, glucose, glutamate, glutamic acid and alanine that are used for replenishing 

the TCA cycle and protein biosynthesis. Especially, alanine and glutamine provide nitrogen for 

the transamination/deamination of other amino acids (Schwender et al., 2006). However, cyclic 

flux around the TCA cycle is mainly absent which results in only minor fluxes through the 

OXPHOS system. 22 % of the ATP required for biosynthesis, cell division or cell expansion 

can be synthesized by the OXPHOS system. The majority of ATP is produced by 

photosynthetic light reactions and OXPHOS using cytosolic instead of mitochondrial NADH 

(Rolletschek et al., 2003; Schwender et al., 2006). However, a decrease in the contribution to 

ATP synthesis is reflected in a photosynthetic gradient from the outside to the inside of the 

embryo (Borisjuk et al., 2013). 

Instead of ATP production, the mitochondrial flux in green seeds is rather utilized to provide 

citrate as a precursor for cytosolic fatty acid elongation. Citrate is exported from mitochondria 

into the cytosol and used for the production of cytosolic acetyl-CoA by ATP citrate lysases. In 

the following, cytosolic oleic acid (C18:1) is elongated to C20:1 and C22:1 fatty acids (Fatland 

et al., 2005). The by-product oxaloacetate is reimported into mitochondria where it either reacts 

with acetyl-CoA to restore citrate or is converted to malate. Malate can be transformed to 

pyruvate via malic enzyme. This is supported by the finding that 40 % of the mitochondrial 

pyruvate is produced by malic enzyme rather than being imported from the cytosol (Schwender 

et al., 2006).  

Along with fatty acid synthesis, a decarboxylation reaction takes place that leads to an elevated 

CO2 concentration in seeds. Due to the enclosed environment by the silique, CO2 concentrations 

are 600 to 2000 fold higher than in ambient air preventing photorespiration in seeds 

(Rolletschek et al., 2003; Goffman et al., 2004). Additionally, oxygen concentrations tend to 

be very low and limit respiration. Especially, young, undifferentiated, heterotrophic embryos 

are mainly dependent on respiration but suffer from hypoxic conditions because molecular 
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oxygen cannot pass the silique from the outside. During differentiation, the embryo becomes 

green and is able to produce molecular oxygen by photosynthesis. The molecular oxygen can 

be used for respiratory processes (Rolletschek et al., 2003).  

In summary, young undifferentiated embryos are dependent on respiration. However, after 

greening of the seed, photosynthesis provides the majority of ATP and mitochondrial 

metabolism mainly contributes to the synthesis of seed storage compounds like fatty acids to 

allow the production of viable seeds. After seed dormancy, seeds need these accumulated seed 

storage compounds for energy supply during germination.  

1.1.5. Germination: Biogenesis of mitochondria and establishment of 

respiration 

Seed dormancy is a seed characteristic that avoids seed germination under unfavorable 

conditions for subsequent seedling establishment and reproductive growth. The phytohormones 

abscisic acid (low levels) and gibberellins (high levels) that are environmentally influenced can 

break seed dormancy (Finch-Savage and Leubner-Metzger, 2006). The transition from the 

dormant stage to a metabolic active seedling requires energy for cell division and expansion. 

Energy for germination can originate from degradation of seed storage compounds like 

accumulated fatty acids. These are degraded by beta-oxidation to produce carbon skeletons for 

sucrose synthesis. Sucrose is an energy source for respiration. The marginal functional 

mitochondria that even lack cristae structures have to be converted to metabolic active 

organelles during imbibition, before respiratory processes can generate energy for germination 

(Howell et al., 2006; Howell et al., 2007; Carrie et al., 2013). For establishing metabolic active 

mitochondria an ordered assembly of mitochondrial components is required. First, the 

mitochondrial import apparatus is established, then the TCA cycle and the OXPHOS system 

components are either imported or synthesized in mitochondria (Carrie et al., 2013). An 

accumulation of ATP synthase and cytochrome c oxidase transcripts six hours after imbibition 

was shown in maize (Ehrenshaft and Brambl, 1990). During this time, the TCA cycle and the 

OXPHOS system are not fully functional. The mitochondria are mainly powered by alternative 

NADH dehydrogenases (Logan et al., 2001). Mitochondria of typical size and shape were 

established after 12 hours of imbibition under continuous light conditions (Law et al., 2012). 
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Once mitochondria are functional, embryonic cells start to divide rapidly and expand for 

breaking the seed coat and establishment of a seedling.  

1.2. Complex I 

1.2.1. Structure and subunit composition 

As already mentioned (see section 1.1.2), the NADH dehydrogenase complex (complex I; EC 

1.6.5.3) is important for the OXPHOS system. This is why the majority of mitochondria 

containing organisms have a functional complex I. Exceptions are Saccharomyces cerevisiae, 

a facultative anaerobic yeast, and organisms belonging to the Plasmodium genus. The structure 

of complex I has been elucidated for complex I containing organisms like Escherichia coli, 

Thermus thermophilus, Bos taurus, Yarrowia lipolytica and Arabidopsis thaliana (Sunderhaus 

et al., 2006; Morgan and Sazanov, 2008; Baradaran et al., 2013; Vinothkumar et al., 2014; 

Zickermann et al., 2015). The L-like structure that originates from two orthogonal arranged 

arms is well conserved in these organisms. One arm is hydrophobic and embedded in the inner 

mitochondrial membrane and termed “membrane arm”. The second, “peripheral arm”, is 

hydrophilic, attached to the membrane arm end to end and protrudes into the mitochondrial 

matrix.  

In contrast to the conserved structure, organisms differ in complex I size and number of 

complex I subunits. Prokaryotic organisms contain a minimalistic complex I that has 14-17 

subunits and is ~550 kDa in mass (Dupuis et al., 1998; Friedrich, 1998; Yip et al., 2011; 

Berrisford et al., 2016). In contrast, complex I in eukaryotes is nearly twice as large. With its 

molecular mass of 1000 kDa it is the largest of the OXPHOS complexes (Friedrich and 

Böttcher, 2004). Beside the conserved prokaryotic core subunits, eukaryotes possess a large 

number of accessory complex I subunits (Friedrich, 2001). However, due to lineage specific 

additions of subunits, the number of complex I subunits is variable among different eukaryotes 

(Yarrowia lipolytica: 42; Chlamydomonas reinhardtii: 42; Bos taurus: 45; Arabidopsis 

thaliana: 49) (Cardol et al., 2004; Carroll et al., 2006; Angerer et al., 2011; Peters et al., 2013).  

Because of the conserved complex I core subunits, the functional mechanism of complex I and 

of OXPHOS system explored in prokaryotes can also be applied to eukaryotes. However, taking 

into consideration that eukaryotes contain a large number of accessory subunits, mechanistic 
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insights generated by analyses in prokaryotes might not provide full information (Lazarou et 

al., 2009).  

1.2.2. Functional mechanism of complex I 

Within the last years, the functional mechanism of complex I was elucidated by the analysis of 

complex I’ crystal structures of Escherichia coli, Thermus thermophilus and the obligate 

aerobic yeast Yarrowia lipolytica (Efremov et al., 2010; Efremov and Sazanov, 2011; Sazanov 

et al., 2013; Zickermann et al., 2015). Complex I can be subdivided into three major modules 

(Efremov and Sazanov, 2012): the N-module (NADH oxidation module), the Q-module 

(quinone reduction module) and the P-module (proton translocation module) (Figure 3).  

The N-module binds and oxidizes NADH by a non-covalently bound flavin mononucleotide 

(FMN) that is attached to the 51-kDa subunit of the “peripheral arm”. Electrons are transferred 

through a series of seven iron-sulfur cluster (Fe/S) (N3, N1b, N5, N4, N6a, N6b, N2) from the 

N- to the Q-module that binds and transfers electrons to the final acceptor ubiquinone (Sazanov, 

2014). An eighth Fe/S cluster (N1a) is located above the N3 cluster and does not belong to the 

main redox chain. It probably functions as a temporary electron storage reducing electron 

leakage and preventing the formation of ROS (Sazanov and Hinchliffe, 2006). For every pair 

of transferred electrons from NADH to ubiquinone, proton translocation from the mitochondrial 

matrix into the intermembrane space takes place. This involves the P-module that is embedded 

in the inner mitochondrial membrane and represents the membrane arm. From the distal tip to 

the peripheral arm it contains the following subunits: ND5, ND4, ND2, ND4L, ND6, ND3 and 

ND1. The last subunit might connect peripheral and membrane arm and is of special importance 

(Sazanov, 2014).  

By resolving the crystal structure of the membrane arm of Thermus thermophilus and 

Escherichia coli a special structural arrangement was discovered (Efremov et al., 2010; 

Efremov and Sazanov, 2011). The subunits ND5, ND4 and ND2 contain 14 transmembrane 

helices and an imbedded discontinuous helix. This discontinuous helix were also found to be 

present in other channels and transporters with the highest homology to Na+/H+ antiporters 

(Sazanov, 2014). Two anti-symmetrical half-channels are supposed to interact during proton 

translocation at these three proton translocation sites. 
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Figure 3: Electron transfer and proton translocation mechanism at complex I (adapted from 
Sazanov et al., 2013).  

Complex I is composed of three functional modules: N-, Q- and P-module. The N- and Q-module contain eight 
Fe/S cluster that can transfer electrons from NADH to Ubiquinone. The Fe/S cluster N1a does not belong to the 
main redox chain functions and is supposed to be an electron storage. A) If complex I is reduced by NADH the 
electrons are transferred to ubiquinone via Fe/S cluster. The Fe/S cluster N2 is linked to the proton translocation 
site containing (ND1, ND6 and ND4L) and initiates a cascade of conformational changes in the complex through 
the four proton translocation sites by two helices (HL and βH) that span the entire membrane arm. These are linked 
to a polar axis of charged residues in the middle of the membrane arm (light blue dots). Anti-symmetrical half 
channels are opening in the membrane arm of complex I at the matrix site. One proton per channel enters the 
membrane arm. B) In the oxidized state the membrane arm of complex I releases four protons by action of HL 
opening the corresponding half channels on the inter membrane space site of complex I. 

The fourth proton translocation site is proposed to involve the subunits ND1, ND6 and ND4L 

that are located at the interface between peripheral arm and membrane arm (Sazanov, 2014). 

The extended quinone headgroup binds to the Fe/S cluster N2 that is linked to the fourth proton 

translocation site (ND1, ND6 and ND4L) (Berrisford and Sazanov, 2009).  

The reductive energy of NADH is commonly used for the reduction of quinone but can also be 

released to cluster N2 near the quinone headgroup (Efremov and Sazanov, 2012). This initiates 

a cascade of conformational changes that disperse from the fourth proton translocation site to 

the other three proton translocation sites through a polar axis of charged and polar residues in 

the transmembrane helices in the middle of the membrane (Efremov et al., 2010). An 

amphipathic helix (HL) and a β-H element are linked to this polar axis and are orientated in 

parallel to the membrane surface and span the entire length of the membrane arm. These 

elements are in contact with the discontinuous helices and facilitate conformational changes 
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resulting in opening and closing the anti-symmetrical half channels for proton translocation 

(Efremov and Sazanov, 2011; Steimle et al., 2012). This is a two-step mechanism (Figure 3). 

In the oxidized state of complex I the discontinuous proton translocation channels are open to 

the periplasm and can release four protons. If complex I is reduced, the HL and β-H elements 

are supposed to move the discontinuous helices of the antiporter. Now, the channels are opened 

for proton uptake from the cytosol (Sazanov et al., 2013).  

1.2.3. Complex I in plants – γCA domain 

In 2005, the structure of Arabidopsis complex I was resolved by single particle electron 

microscopy (EM) (Dudkina et al., 2005). The L-like shape is similar to all other organisms 

analyzed so far. Surprisingly, an additional spherical domain was detected that has not been 

found before in animals, fungi or prokaryotes (Morgan and Sazanov, 2008; Baradaran et al., 

2013; Vinothkumar et al., 2014; Zickermann et al., 2015). This domain is attached to the 

membrane arm and protrudes into the mitochondrial matrix (Dudkina et al., 2005). Biochemical 

analysis of the membrane arm of complex I in Arabidopsis showed that proteins with homology 

to carbonic anhydrases are localized within this domain (Sunderhaus et al., 2006). Phylogenetic 

analysis identified them as gamma-type carbonic anhydrases (γCA) (Parisi et al., 2004; for 

detailed information see section 1.3.2).  

γCA have also been described to be part of complex I in other organisms like Chlamydomonas 

reinhardtii, Polytomella sp., Oryza sativum, Zea mays and Solanum tuberosum (Table 1) but 

not in Opisthokonta (Morgan and Sazanov, 2008; Baradaran et al., 2013; Vinothkumar et al., 

2014; Zickermann et al., 2015). In the Amoebozoa Acanthamoeba castellanii γCA proteins are 

present in complex I, but there are no crystal or EM structures available that show that complex 

I possess the γCA domain (Gawryluk and Gray, 2010). 

In Arabidopsis, the γCA domain consists of three γCA proteins (γCA1, γCAβ, γCAγ) and two 

gamma-type carbonic anhydrase like proteins (γCAL; γCAL1 and γCALβ) (Perales et al., 2004; 

Klodmann et al., 2010) (Figure 4). Whereas, the sequence identities between γCA and γCAL 

proteins are only ~ 30 %, the sequence identity is 65 to 70 % between the γCA1, γCAβ and 

γCAγ proteins and even ~ 90 % between γCAL1 and γCALβ (Klodmann and Braun, 2011; 

Wang et al., 2012). 
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Table 1: Occurrence of γCA homologs and their association with complex I in different organisms. 

supergroup organism 
γCA 

homolog 

association 

with complex I 
reference 

Euryarchaeota 

Methanosarcina 

thermophila 
yes no Ferry, 2010 

Pyrococcus horikoshii yes no Ferry, 2010 

Cyanobacteria 

Synechococcus sp. yes no 
Pena et al., 

2010 

Nostoc sp. yes no 
Araujo et al., 

2014 

Amoebozoa 
Acanthamoeba 

castellanii 
yes (yes) 

Gawryluk, and 
Gray, 2010 

Chlorophyta 

Chlamydomonas 

reinhardtii 
yes yes 

Cardol et al., 

2004 

Polytomella sp. yes yes 
Sunderhaus et 

al., 2006 

Plantae 

Arabidopsis thaliana yes yes 
Sunderhaus et 

al., 2006 

Oryza sativa yes yes 
Heazlewood et 

al., 2003 

Zea mays yes yes 
Peters et al., 

2008 

Solanum tuberosum yes yes 
Bultema et al., 

2009 
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Figure 4: γCA domain is associated with complex I (Fromm et al., 2016c).  

Three γCA (CA1, CAβ, CAγ) and two γCAL (CAL1, CALβ) proteins were identified. CA1, CAβ, CAL1 and 
CALβ are localized in the domain. The CAγ protein could not be found in association with the other γCA/ γCAL 
proteins. Three of the four γCA/ γCAL proteins can be localized in the 85 kDa domain at the same time.  

All γCA/ γCAL proteins are nuclear encoded and have to be imported into mitochondria. 

Interestingly, γCA proteins have a molecular mass of ~ γ0 kDa but no cleavable presequence. 

Contrary to this, the γCAL proteins have cleavable presequences and are therefore slightly 

smaller (~ 25 kDa) as mature proteins (Huang et al., 2009; Klodmann et al., 2010). The γCA 

domain itself has a mass of 85 kDa (Klodmann et al., 2010). Consequently, only three out of 

the five γCA/ γCAL proteins can be localized in the γCA domain at the same time. Interactions 

of two γCAβ proteins with either γCAL1 or γCALβ were identified in a yeast-two hybrid screen 

(Perales et al., 2004). 

In addition, the trimer can also consist of either two γCA1 and one γCAL protein or of two 

different γCA proteins and one γCAL protein (e.g. γCA1 + γCAβ+ γCAL1 or γCALβ) 

(Klodmann et al., 2010). The role of γCAγ is different because it was not found to be localized 

in the γCA domain. Furthermore, an interaction of γCAγ with other γCA/ γCAL proteins has 

not been detected within the yeast-two hybrid screen (Perales et al., 2004; Klodmann et al., 

2010). Six γCA domain compositions have been suggested (Chapter 2.3). 

The γCA/ γCAL proteins make plant complex I more complex than its eukaryotic counterparts 

and might add specific functions of complex I in the plant system. 
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1.3. Gamma-type carbonic anhydrases 

1.3.1. General overview – families and CA functions 

Carbonic anhydrases (CA; EC 4.2.1.1) are zinc (Zn)-containing metalloenzymes that have first 

been characterized in human erythrocytes in 1933 (Meldrum and Roughton, 1933). Since 1933, 

the CAs were detected in several organisms of all three domains of life (Hewett-Emmett and 

Tashian, 1996). However, sequence analysis revealed that the CA sequences of different 

organisms share no significant sequence homologies (Hewett-Emmett and Tashian, 1996). 

Therefore, the CAs were subdivided in six CA gene families that are called α, β, γ, į, İ and ζ 

(So et al., 2004; reviewed in Ferry, 2010). Due to some sequence similarities to other CA 

families the classification of į, İ and ζ is still discussed controversially (Sawaya et al., 2006; 

Park et al., 2007).  

Although the CA families are very different in their sequence, they have the same catalytic 

activity (Hewett-Emmett and Tashian, 1996). Depending on the pH of the surrounding media, 

CAs catalyze the reversible hydration of one carbon dioxide molecule to one bicarbonate 

molecule and one proton (pH 8.0) (Equation 1). CO2 reacts with a Zn-OH intermediate at the 

active site of the enzyme. In the reverse dehydration reaction, HCO3
- reacts with Zn-H2O to 

CO2 (pH 6.4). CAs can convert up to 106 carbon dioxide molecules per second (Khalifah, 1971; 

Moroney et al., 2011).  

 
Equation 1: The catalytic equilibrium catalyzed by carbonic anhydrases is pH dependent (adapted from 
Khalifah, 1971).  

Regarding their catalytic activity, carbonic anhydrases play an important role in carbon 

concentrating mechanisms (CCM). Photosynthetic organisms like cyanobacteria, algae and 

higher plants have evolved different forms of CCM. In general, CAs provide CO2 for refixation 

by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (Badger, 2003). One of the 

best investigated CCMs is the single-cell CCM in cyanobacteria. The HCO3
- is enriched in the 

pH

6.4 8.0
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cytosol of the cell by active transport of HCO3
- and CO2 from the outside. CO2 uptake is 

facilitate by NDH-1 complex that subsequently, converts CO2 to HCO3
- in the cytosol (Rae et 

al., 2013). HCO3
- diffuses and accumulates in the central compartment of the CCM, the 

carboxysome. The carboxysome encapsulates RuBisCO and a carboxysomal CA. The 

carboxysomal CA catalyzes the conversion of HCO3
- to CO2. The efflux of CO2 is prevented 

by the protein shell of the carboxysome and leads to an enrichment of CO2 in the carboxysome. 

Finally, RuBisCO can fix CO2 molecules for the carboxylation reaction (Rae et al., 2013).  

However, the single-cell CCM of cyanobacteria contrasts the multicellular CCM of C4 plants. 

Mesophyll and bundle sheath cells exchange metabolites for carbon fixation by RuBisCO that 

is located in bundle sheath cells. In the cytosol of mesophyll cells incoming CO2 is hydrated by 

a βCA to HCO3
-. Phosphoenolpyruvate carboxylase converts HCO3

- and phosphoenolpyruvate 

to oxaloacetate. Oxaloacetate can be metabolized either to malate (chloroplast of mesophyll 

cell) or aspartate (cytosol of the mesophyll cell). The C4-acid intermediates diffuse into the 

bundle sheath cells where they are decarboxylated again. The released CO2 can be fixed to 

ribulose-1,5-bisphosphate by RuBisCO (Badger, 2003). This multicellular anatomical 

differentiation and metabolic co-ordination within the leaf minimizes the oxygenation reaction 

of RuBisCO. C3 plants do not possess such a mechanism. Hence, carbon dioxide and molecular 

oxygen compete for the binding site at RuBisCO. The oxygenation reaction of RuBisCO results 

in photorespiration (reviewed in Peterhänsel et al., 2010). Nevertheless, several chloroplastidic 

CAs were identified in C3 plants. They are very abundant and can make up 2 % of the total leaf 

protein (Peltier et al., 2006). The function of these CAs is mainly unknown but it is assumed 

that their impact on CO2 refixation is rather low in comparison to C4 plants (Ignatova et al., 

2011; Ludwig, 2012).  

Our current understanding of CA biochemistry and biological functions is largely based on α 

and βCAs. Beside αCAs and βCAs, higher plants possess a third CA family, the γCAs (Moroney 

et al., 2011). Great efforts were made to characterize the gamma-type carbonic anhydrases of 

plants more in detail within the last decade. 
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1.3.2. Gamma-type carbonic anhydrases in A. thaliana – Phylogeny and 

activity 

In 2000, the genome of Arabidopsis thaliana was sequenced (Arabidopsis Genome Initiative, 

2000). Among others, five new genes were identified. They were annotated as homologues of 

the gamma-type carbonic anhydrase family because sequence analysis yielded in a high 

consensus sequence with the prototype γCA (CAM) of Methanosarcina thermophila (Kisker et 

al., 1996; Moroney et al., 2001; Parisi et al., 2004). High homology between CAM and γCA of 

Arabidopsis was obtained for an amino acid sequence (50 – 220 AS) of CAM annotated as 

PaaY motif (carbonic anhydrase/ acetyltransferase, isoleucine patch family) (Parisi et al., 

2004). This motif contains hexapeptide repeats that are very important for a catalytic active 

conformation of CAM - the first described biochemical active γCA protein (Alber and Ferry, 

1994). Due to the conservation of the PaaY motif, the γCA proteins of Arabidopsis are also 

supposed to catalyze the hydration/dehydration reaction of CO2/HCO3
- (Equation 1). However, 

only marginal evidences for this catalytic activity of Arabidopsis γCA proteins exist. It was 

demonstrated that the Arabidopsis γCAβ protein can bind inorganic carbon (Martin et al., 

2009). Nevertheless, the entire catalytic reaction has not been shown for plant γCAs so far.  

However, catalytic activity of Arabidopsis γCA proteins cannot be excluded. In the following 

homologies of catalytic important amino acids, conservations in folding and structure between 

active CAM and γCA of Arabidopsis are summarized.  

Zinc atoms are essential for the active site constitution of CAM to enable CA activity (reviewed 

in Ferry, 2010). The positions of the three metal ligands - histidines - that coordinate the zinc 

atoms are mostly conserved between CAM and γCA of Arabidopsis. Three out of the five 

gamma-type carbonic anhydrases are homologous for all three histidine residues of CAM 

(CAM: histidine 81 (His81), histidine 117 (His117) and histidine 122 (His122)). However, two 

proteins lack two out of three histidine residues. Therefore, these are termed gamma-type 

carbonic anhydrase like (γCAL) proteins (Parisi et al., 2004). In addition to the zinc atom, some 

amino acids were found to be important for catalysis. Most important residues for catalysis are 

conserved between CAM, γCA and γCAL proteins (CAM: arginine 59 (Arg59), aspartic acid 

61 (Asp61), glutamine 75 (Gln75), glutamine 73 (Gln73) and aspartic acid 76 (Asp76)). 

Notably, CAM residues glutamic acid 62 (Glu62), glutamic acid 84 (Glu84), and asparagine 

β0β (Asnβ0β) are absent in γCA and γCAL proteins of Arabidopsis (Parisi et al., 2004; 
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reviewed in Ferry, 2010). Glu84 is essential for acidic loop formation and together with Glu62 

involved in proton transport during catalysis by CAM (Iverson et al., 2000).  

Phylogenetic analysis estimated that γCA proteins of other organisms manly lack Glu62, Glu84 

and Asn202 similar to γCA and γCAL proteins of Arabidopsis. It seems that the γCA family is 

dominated by a subclass missing the acidic loop and the proton shuttle residues (reviewed in 

Ferry, 2010). Nevertheless, it is supposed that alternative amino acids might fulfill the functions 

of the missing residues (Parisi et al., 2004). 

Aside from the conservation of most catalytic important residues, the folding and the structure 

of plant γCA proteins are also relevant for catalytic activity. The CAM protein contains the 

PaaY motif with hexapetide repeats that fold into left-handed parallel β-helices (LβH) (Raetz 

and Roderick, 1995). Folding into LβH was also investigated for γCA proteins of Arabidopsis 

by structural modeling (Parisi et al., 2004). Furthermore, the trimeric conformation is common 

to CAM and γCA/ γCAL proteins associated in a γCA domain of complex I. It also seems likely 

that the γCA domain has to be attached to mitochondrial complex I to be catalytically active 

(Parisi et al., 2004) (see section 1.2.3). For this reason the investigation of catalytic activity of 

Arabidopsis γCA/ γCAL proteins that were overexpressed in bacteria might have failed. 

1.3.3. Functions of plant complex I and associated gamma-type carbonic 

anhydrases 

As already outlined in this thesis, complex I is of fundamental importance for maintaining the 

redox homeostasis of the cell and inserting electrons in the mitochondrial electron transport 

chain. The mETC is coupled to proton translocation by electrostatic chain reactions in the 

membrane arm (Sazanov, 2014). Complex I generates 40 % of the proton motive force 

contributing to ATP synthesis by proton translocation (Hunte et al., 2010). For the generation 

of one molecule ATP, three out of the four translocated protons at complex I have to pass 

through the ATP synthase complex (Rich, 2003).  

Furthermore, complex I is also a major source for ROS that are harmful for the mitochondria 

and the entire cell (Møller and Sweetlove, 2010).  

Additional functions of plant complex I were investigated with mutants that have gene defects 

in core and accessory subunits, assembly or splicing factors. Plants are attractive experimental 

Chapter 1: Introduction: Oxidative phosphorylation: Complex I and the gamma-type carbonic anhydrases

21



systems for studying complex I because plants are still viable even though complex I is lost 

completely. In contrast, in animal or human complex I mutations leading to the absence of the 

protein complex are generally lethal, presumably because alternative mETC enzymes like 

alternative NAD(P)H dehydrogenase are not present (Fassone and Rahman, 2012).  

Some complex I mutants were described in Nicotiana sylvestris, Zea mays and Arabidopsis 

thaliana.  

The cytoplasmatic male sterile II (cmsII) mutant of Nicotiana sylvestris lacks a functional 

complex I due to a deletion in the mitochondrial NAD7 gene (Pla et al., 1995). The cmsII mutant 

is delayed in seed germination and development. It is also characterized by a light-dependent 

male sterile phenotype. Loss of complex I results in a decreased efficiency of photosynthetic 

electron transfer (Sabar et al., 2000; Dutilleul et al., 2003). In addition, photosynthetic 

processes are influenced in other complex I mutants with complex I absence or deletion (Sabar 

et al., 2000; Meyer et al., 2009; Juszczuk et al., 2012).  

In Zea mays, the non-chromosomal stripe II (ncsII) mutant is also deficient in complex I, but 

complex I assembly intermediates were detected. This mutation is caused by a deletion at the 

γ’ end of the mitochondrial NAD4 gene (Marienfeld and Newton, 1994). Plants show an 

abnormal leaf development and a defect in kernel development. The mutant leaves have pale 

green stripes implying an influence of complex I in chloroplast function (Newton and Coe, 

1986). The ultrastructure of chloroplasts was abnormal. Additionally, a decrease in the CO2 

fixation rate and defects in photosystem I have been detected (Roussell et al., 1991). This 

underlines the importance of complex I and mitochondria for photosynthetic performance of 

the plant cell. This finding is supported by a higher complex I abundance in green compared to 

non-green tissues (Peters et al., 2012). The abnormal chloroplast ultrastructure was also shown 

for mutants of other OXPHOS complexes like complex IV. Consequently, these defects are not 

limited to complex I dysfunction but rather to a total mitochondrial impairment causing 

pleiotropic effects (Newton et al., 2004).  

In Arabidopsis, analyzed complex I mutants that lack complex I are not male sterile (Remacle 

et al., 2012). However, they also show a curly leaf phenotype and are delayed in vegetative and 

reproductive development (de Longevialle et al., 2007; Meyer et al., 2009; Wang et al., 2012; 

Hsu et al., 2014; Kühn et al., 2015). The strength of the developmental delay and the curly leaf 

phenotype correlate with the amount of complex I that is efficiently assembled. This is 

underlined by a comparative analysis of ndufv1 (absence of complex I) and ndufs4 (depletion 

of complex I) mutants (Kühn et al., 2015). Additionally, flux through glycolysis and the TCA 
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cycle were investigated for both mutants. The complete absence of complex I causes a 

metabolic switch that leads to increased fluxes through both pathways that were not observed 

for wildtype and ndufs4 mutant. This indicates that complex I is a negative regulator of both 

glycolysis and the TCA cycle (Kühn et al., 2015). 

As described before (see section 1.2.3), Arabidopsis complex I is even more complex than its 

prokaryotic or even eukaryotic counterparts. For the majority of accessory complex I subunits 

no function has been assigned yet. Generally it is assumed that the accessory subunits fulfill 

functions in stabilization, regulation and assembly of complex I (Heazlewood et al., 2003; 

Marques et al., 2005; Meyer et al., 2011; Vinothkumar et al., 2014; Letts and Sazanov, 2015). 

The assembly of complex I subunits is a multistep process that proceeds via defined assembly 

intermediates and is supported by a number of assembly factors (Klodmann et al., 2010; Meyer 

et al., 2011; Subrahmanian et al., 2016). For example, the accessory NUMM subunit 

(orthologue to NUDFS6) of Yarrowia lipolytica contains a functional zinc site. The subunit is 

important for stable insertions of the Fe/S cluster N4 in the N module and for proper assembly 

of complex I (Kmita et al., 2015).  

The γCA/ γCAL proteins are unique accessory subunits of plant complex I. For functional 

investigation of γCA/ γCAL proteins, single and double mutants (ca1ca3, cal1cal2i, ca2cal1, 

ca2cal2 and ca1ca2) were analyzed (Perales et al., 2005; Wang et al., 2012; Soto et al., 2015; 

Córdoba et al., 2016; Chapter 2.1, 2.2 and 2.4).  

In Arabidopsis, single knockout mutant plants for CA1, CA2, CA3, CAL1 and CAL2 genes 

showed no developmental or growth defects in comparison to wildtype plants (Wang et al., 

2012; Chapter 2.2). However, the cell culture line of the ca2 mutant has reduced growth rates, 

decreased respiration rates and reduced complex I levels (~ 20 % complex I are left) and activity 

(Perales et al., 2005). Immunoblot analyses of seven complex I mutants - including the ca2 

single mutant - that lack different complex I subunits, were carried out (Meyer et al., 2011). 

Based on this analysis and 15N-labeling experiments, γCAβ was found to be present from the 

beginning of the early assembly process of complex I. This indicates an essential role for γCAβ 

during early complex I assembly (Li et al., 2013). The assembly of complex I is a stepwise 

process during which assembly intermediates are associated by assembly factors to form the 

holocomplex. The assembly process in plants shows unique characteristics. It is assumed that 

the γCA domain has to be assembled, before complex I holocomplex can be assembled (Perales 

et al., 2004; Subrahmanian et al., 2016). Therefore, γCAβ and the other γCA/ γCAL proteins 

are of fundamental importance for the complex assembly process. However, γCAβ and the other 
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γCA/ γCAL proteins cannot be viewed solely as assembly factors because they are also part of 

the mature complex I. In general, assembly factors help to assemble the complex I intermediates 

but are not part of the holocomplex. Assembly factors identified in plants are L-galactone-1,4-

lactone dehydrogenase (GLDH) and iron-sulfur protein required for NADH dehydrogenase 

(INDH) (Pineau et al., 2008; Wydro et al., 2013).  

Single particle electron microscopy showed that complex I particles from ca2 mutant cell lines 

have normal shape and include the γCA domain (Sunderhaus et al., 2006). This implies that 

γCA/ γCAL subunits can substitute for each other in the γCA domain. Hence, γCA/ γCAL double 

mutants were generated to study the γCA function in more detail.  

The ca1ca3 double mutant shows no alterations in growth as well as vegetative and 

reproductive development compared to wildtype plants (Wang et al., 2012). As mentioned 

before (see section 1.2.3), the role of CAγ in the γCA domain is not completely understood. 

Therefore, this mutant might be an exception. Simultaneous mutation of two other γCA/ γCAL 

genes causes more drastic effects.  

The ca2cal1, ca2cal2, cal1cal2i and ca1ca2 double mutants show retarded growth with the 

typical curly leaf phenotype for complex I mutants (Wang et al., 2012; Soto et al., 2015; 

Chapter 2.1 and 2.2). In the ca2cal1, ca2cal2 and cal1cal2i mutants trace amounts of complex 

I are left. These mutants can complete embryogenesis and maturation of the seeds, germinate 

and establish growing seedlings. The plants have a smaller rosette diameter and are slightly 

delayed in establishing flowers (Wang et al., 2012; Soto et al., 2015; Chapter 2.1). Besides 

this, cal1ca2i lines were hypersensitive to light independent of the wave length. Furthermore, 

they showed a higher accumulation of anthocyanin compared to the wildtype suggesting a 

functional association of γCA/ γCAL with photomorphogenesis (Wang et al., 2012). 

In contrast, simultaneous mutation of γCAL1 and γCAL2 (cal1cal2) or γCA1 and γCA2 (ca1ca2) 

leads to complex I dysfunction that causes defects in the embryogenesis of Arabidopsis seeds 

ending up in embryo lethality (Wang et al., 2012; Córdoba et al., 2016; Chapter 2.2). The 

cal1cal2 embryo is delayed in embryo development, had problems to synthesize chlorophyll 

pigments and in the end the seeds were not able to germinate (Wang et al., 2012). Further 

analysis of ca1ca2 mutant embryos indicated that the mutant contains less active mitochondria, 

accumulates ROS and has fewer but larger oil bodies (Córdoba et al., 2016). Plants and cell 

suspension culture lines show a reorganized respiration with increased respiration rates 

(Chapter 2.2 and 2.4).  
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However, the strength of the retardation correlates to the residual complex I level and activity 

as described before for ndufv1 and ndufs4 (Kühn et al., 2015). 

RuBisCO is the key enzyme of photosynthesis and is a bifunctional enzyme that binds carbon 

dioxide as well as molecular oxygen (Bowes et al., 1971; Bowes and Ogren, 1972). If RuBisCO 

is carboxylated, 3-phosphoglycerate molecules are converted to polysaccharides by the Calvin 

cycle. The resulting sugars can be catabolized and supply the cell with ATP and reduction 

equivalents. If RuBisCO binds oxygen, photorespiratory processes are initiated which 

compromises reactions in chloroplast, peroxisome and mitochondrion. Toxic 2-

phosphoglycolate is produced that has to be converted back to 3-phosphoglycerate for synthesis 

of polysaccharides by the Calvin cycle. This is a complex, energy and reduction equivalent 

consuming process which releases prior fixed CO2 into mitochondria (Peterhänsel et al., 2010).  

For prevention of oxygenation of RuBisCO, many photosynthetic organisms evolved different 

types of CCMs such as C4 photosynthesis in some plants or single-cell CCM in cyanobacteria 

to increase the carboxylation of RuBisCO by spatial segregation and action of CA enzymes (see 

section 1.3.1). In C3 plants RuBisCO is not spatial segregated and photorespiration occurs. 

However, the γCA/ γCAL proteins were supposed to be involved in conversion and transport 

of released CO2 for refixation by RuBisCO in C3 plants (Braun and Zabaleta, 2007; Zabaleta 

et al., 2012). 

Photorespiration leads to an increasing CO2 production in mitochondria by the conversion of 

two glycine molecules to one serine molecule (Peterhänsel et al., 2010). If the passive transport 

by diffusion of CO2 across the mitochondrial membranes is too slow, an unequal CO2 balance 

between the chloroplast and the mitochondrion might be the consequence. This might be 

readjusted by an active transport mechanism, which potentially involves mitochondrial 

respiratory complex I and the associated γCA domain. The hypothesis assumes that γCA 

proteins are catalytically active and can convert carbon dioxide to bicarbonate (Braun and 

Zabaleta, 2007; Zabaleta et al., 2012) (Figure 5). As already mentioned (see section 1.3.1), the 

equilibrium is dependent on the pH. Thus, a pH around 8 is required for an excessive hydration 

of CO2 to bicarbonate. The required pH predominates in the mitochondrial matrix where CO2 

is released during the conversion of glycine to serine. Additionally, proton translocation across 

complex I could lead to alkaline pockets at the matrix side of complex I and, thereby, facilitate 

the conversion of CO2 to bicarbonate in the mitochondrial matrix (Braun and Zabaleta, 2007). 
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Figure 5: Refixation of mitochondrial released CO2 by RuBisCO via γCA associated with complex 
I (adapted from Braun and Zabaleta, 2007).  

Photorespiration occurs by oxygenation of RuBisCO and previously fixed CO2 is released by glycine 
decarboxylase complex (GDC) during the conversion of Glycine to serine in mitochondria. The released CO2 
might diffuse across the multi membraned organelles to RuBisCO. Another possibility is the conversion of CO2 
to bicarbonate (HCO3

-) by γCA domain of complex I. HCO3
- might be transported across mitochondrial and 

chloroplastidic membranes by bicarbonate transporter (BCT). In the chloroplast HCO3
- can be reconverted by a 

βCA to CO2 to be fixed by RuBisCO for synthesis of polysaccharides in the Calvin cycle. 

The bicarbonate could be transported out of mitochondria by a putative bicarbonate transporter 

(BCT). Alternatively, the γCA domain might transport bicarbonate itself by a porous structure 

near the domain (Zabaleta et al., 2012).  

Bicarbonate could get into the intermembrane space surrounded by the permeable outer 

mitochondrial membrane. Having reached the cytosol, it could be imported into the stroma of 

the chloroplast by another putative BCT. For subsequent reconversion of bicarbonate to CO2 

either a shifted equilibrium to CO2 by RuBisCO’ CO2 consumption, or an acidic pH is required. 

According to insights in CCM of Chlamydomas reinhardtii, bicarbonate might be transported 

into the acidic thylakoid lumen of the chloroplast and converted to CO2 (Moroney et al., 2011). 

Finally, CO2 could diffuse across the thylakoid membrane into the stroma of the chloroplast for 

refixation by RuBisCO.  
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Some findings support the hypothesized CO2 conversion and transport mechanism that involves 

the complex I associated γCA domain in C3 plants: 

(i) The complex I associated γCA domain is present in plants but absent in non-

photosynthetic organisms like animals and fungi (Sunderhaus et al., 2006; 

Vinothkumar et al., 2014; Zickermann et al., 2015). 

(ii) A sequence similarity of γCA/ γCAL proteins to the M-subunit of the cyanobacterial 

carbon concentrating mechanism machinery has been shown (Parisi et al., 2004). 

(iii) In cyanobacteria, the conversion of CO2/HCO3
- is also coupled to a complex I like 

enzyme (NDH-I) (Rae et al., 2013). 

(iv) The γCAβ protein can bind inorganic carbon (Ci) (Martin et al., 2009). This supports 

the performance of CA catalysis by γCA proteins. 

(v) Transcription of γCA2 and γCA3 is downregulated at elevated CO2 concentrations 

(restricting photorespiration) (Perales et al., 2005). 

(vi) When comparing the photosynthetic rates between protoplasts and isolated 

chloroplasts, protoplasts perform better at low CO2 concentrations. It was suggested 

that an internal CO2 source was available in protoplasts but not in chloroplasts 

(Riazunnisa et al., 2006). 

(vii) The complex I mutant cmsII has a 20 to 30 % reduced photosynthesis under 

atmospheric CO2 concentrations. This reduction was diminished when mutants were 

cultivated under high CO2 or low O2 concentrations (restricting photorespiration) 

(Dutilleul et al., 2003). 

(viii) ca2cal1 and ca2cal2 mutants show reduced growth rates under atmospheric but not 

under elevated CO2 concentrations compared to the wildtype and single mutants 

(Soto et al., 2015). 

In summary, complex I is not only an oxidoreductase but a multifunctional protein complex 

with versatile functions. The plant specific accessory subunits might also imply special complex 

I function in plant mitochondria with probable impact on the whole plant metabolism (Braun et 

al., 2014). The γCA/ γCAL proteins are important for complex I assembly and might fulfill 

additional functions that are not completely characterized. In most cases, the mutations of γCA/ 

γCAL genes have also an impact on complex I level and activity. Therefore, the discrimination 

between direct and indirect γCA/ γCAL functions remains challenging. 

Chapter 1: Introduction: Oxidative phosphorylation: Complex I and the gamma-type carbonic anhydrases

27



1.4. Objectives of this thesis 

The overall aim of this thesis is to increase the knowledge of the γCA and γCAL proteins that 

are associated in a γCA domain with mitochondrial complex I in Arabidopsis thaliana. Here, 

special focus is placed on the functional characterization of γCA/ γCAL proteins. In this thesis, 

generated and provided γCA/ γCAL double mutants are analyzed with versatile set of genomic, 

metabolomic and proteomic tools.  

(i) The main focus lies on a characterization of the ca1ca2 double mutant. I planned to 

generate the ca1ca2 mutant and analyze the filial generations with genetic tools to 

investigate the inheritance and the occurrence of ca1ca2 double mutant. Furthermore, 

analyses according to development and physiology of ca1ca2 plants should be performed 

(Chapter 2.2). The influence of the simultaneous mutation of CA1 and CA2 genes on the 

OXPHOS complexes has to be monitored by proteomic approaches (Chapter 2.2). In 

addition, gel-based and gel-free comparative proteomic investigations are planned to 

elucidate the effects of simultaneous CA1 and CA2 mutation and the subsequent absence 

of complex I on the mitochondrial and the whole cellular proteome (Chapter 2.4). As 

already mentioned, it is challenging to discriminate between direct functions of γCA/ 

γCAL proteins and indirect functions that are coupled to complex I depletion until the 

catalytic activity of γCA/ γCAL enzymes remains to be elusive. For better distinction 

ca1ca2 mutants overexpressing enzymatically inactive CA2 versions shall be generated. 

Amino acids that are supposed to be important for carbonic anhydrase activity shall be 

exchanged against structural similar amino acids (Chapter 2.2). These complemented 

ca1ca2::CA2 lines should also be used to investigate the carbon refixation hypothesis.  

(ii) The cal1cal2i double mutant was generated by Wang et al. (2012). They already pointed 

to some particular functions of the γCAL proteins. However, the impact of the mutation 

on complex I level and activity as well as on the mitochondrial proteome has to be figured 

out. In addition, the cal1cal2i mutant also should be investigated according to the carbon 

refixation hypothesis. Different carbon dioxide concentrations should be applied to 

cal1cal2i mutants and wildtype plants to monitor the growth rates. Furthermore, 

metabolites should be analyzed for these plants and glycine/serine ratios, an indicator for 

photorespiration, are planned to be evaluated (Chapter 2.1). 
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(iii) Finally, a model for the γCA domain composition shall be supposed by summarizing 

experimental investigations on γca/ γcal mutants (Chapter 2.3). 
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“Gamma-type carbonic anhydrase-like” (CAL) proteins form part of complex I in plants. Together with “gamma

carbonic anhydrase” (CA) proteins they form an extra domain which is attached to the membrane arm of com-

plex I on its matrix exposed side. In Arabidopsis two CAL and three CA proteins are present, termed CAL1, CAL2,

CA1, CA2 and CA3. It has been proposed that the carbonic anhydrase domain of complex I is involved in a process

mediating efficient recycling of mitochondrial CO2 for photosynthetic carbon fixation which is especially impor-

tant during growth conditions causing increased photorespiration. Depletion of CAL proteins has been shown to

significantly affect plant development and photomorphogenesis. To better understand CAL function in plants we

here investigated effects of CAL depletion on the mitochondrial compartment. In mutant lines and cell cultures

complex I amount was reduced by 90–95% but levels of complexes III and V were unchanged. At the same

time, some of the CA transcripts were less abundant. Proteome analysis of CAL depleted cells revealed significant

reduction of complex I subunits as well as proteins associated with photorespiration, but increased amounts of

proteins participating in amino acid catabolism and stress response reactions. Developmental delay of the

mutants was slightly alleviated if plants were cultivated at high CO2. Profiling of selected metabolites revealed

defined changes in intermediates of the citric acid cycle and amino acid catabolism. It is concluded that CAL pro-

teins are essential for complex I assembly and that CAL depletion specifically affects central mitochondrial

metabolism.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Themitochondrial NADHdehydrogenase complex (complex I) is the

largest enzyme complex of the respiratory chain. It transfers electrons

from NADH to ubiquinone and at the same time translocates protons

across the inner mitochondrial membrane [1]. Complex I is composed

of two large and longish domains called “arms”: the “membrane arm”,

which is mostly embedded into the inner mitochondrial membrane,

and the “peripheral arm”, which protrudes into the mitochondrial ma-

trix. Both arms are connected end-by-end forming an L-like particle.

NADH oxidation takes place at the tip of the peripheral arm. Electrons

are transferred to the ‘ubiquinone-binding pocket’. Reduction of

ubiquinone finally drives protein translocation across the membrane

arm. Until recently, the coupling between electron transfer and protein

translocation at complex I was not understood. Meanwhile, the crystal

structure of bacterial complex I has been resolved [2]. Furthermore,

structural data were reported for yeast and mammalian complex I

[3,4,5]. Interpretation of these structures indicates that far-ranging

conformational changes take place within complex I during its catalytic

cycle [2,6,5,7].

Mitochondrial complex I of higher eukaryotes includes more than

40 subunits (44 in bovine and about 49 in Arabidopsis mitochondria;

[8,9,10,11]). In plants complex I comprises an extra spherical domain

which is attached to the membrane arm on its matrix exposed side

[12]. It includes subunits resembling γ-type carbonic anhydrases

which are absent in complex I particles from fungi and animals

[13,14]. The Arabidopsis genome encodes five distinct γ-type

carbonic anhydrases, all of which form part of mitochondrial

complex I: three subunits which contain a completely conserved active

site, termed carbonic anhydrase 1, 2 and 3 (CA1, CA2 and CA3), and two

more derived subunits which lack some of the active site amino acid,

termed “carbonic anhydrase-like” proteins 1 and 2 (CAL1 and CAL2).

Not all five CA/CAL proteins are simultaneously present in individual

Biochimica et Biophysica Acta 1857 (2016) 60–71
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complex I particles because the extra spherical domain most likely is a

trimer [15,16,11]. The CAL1 and CAL2 proteins of Arabidopsis exhibit

91% sequence identity and possibly represent isoforms. Carbonic

anhydrase activity so far has not been demonstrated for any of

the CA/CAL proteins but it was shown that CA2 homotrimers bind

CO2/HCO3
−[17].

The physiological role of the CA/CAL subunits of complex I in plants

has been investigated by the use of Arabidopsis knock out lines [18,15,

19,20]. Deletion of the genes encoding CA2 or CA3did not cause a visible

phenotype under the conditions tested. However, an Arabidopsis cell

culture lacking CA2 had a reduced growth rate and reduced respiration.

Interestingly, amounts of complex I are very low in Δca2mutants, indi-

cating an essential role of CA2 for assembly of this protein complex [18].

Electrophoretic analyses of the remaining complex I revealed that ab-

sence of CA2 does not alter subunit composition of complex I to a signif-

icant extent. Similarly, analyses by single particle electron microscopy

revealed that the carbonic anhydrase domain of complex I has a normal

shape in plants lacking CA2. It has been concluded that CA2 is replace-

able by other CA subunits [15]. CA2 forms part of small assembly inter-

mediates of complex I which accumulate in some complex I mutants

[19]. Additionally, labeling experiments using 15N and in vitro assembly

studies revealed that the CA/CAL domain represents a key factor for

early steps in complex I assembly in plants [21]. Single mutants of all

five CA/CAL proteins were phenotypically analyzed by Wang et al.

[20]. All mutants did not exhibit altered phenotypes compared to

wild-type plants at the conditions tested. Therefore, plants lines defec-

tive in more than one gene encoding CA/CAL subunits of complex I

have to be generated to further investigate the physiological role of

this protein family.

So far, four different Arabidopsis double mutants with respect to

the complex I integrated carbonic anhydrases have been analyzed,

Δcal1/Δcal2, Δca1/Δca3 and two lines lacking CA2 and additionally

either CAL1 or CAL2 [20,22]. While plants defective in CA1 and CA3

do not have an altered phenotype, the Δca2/Δcal1 and Δca2/Δcal2

lines show growth retardation which is reverted by cultivating

plants in a high carbon dioxide atmosphere [22]. In contrast, plants

lacking CAL1 and CAL2 suffer from embryonic defects [20]. Seeds

homozygous for CAL1 and CAL2 deletions initially have a colorless

and later a deep-brown phenotype. To obtain viable plants the

CAL2 gene was down-regulated by RNAi in the background of a

homozygous CAL1 knockout. Δcal1/cal2i plants showed delayed

germination and significantly postponed development. In the light,

Δcal1/cal2i plants developed a short hypocotyl phenotype. The

gene encoding chalcone synthase, a key enzyme of anthocyanin

synthesis, was induced in the mutant lines. It is concluded that

CAL1 and CAL2 play important roles in light-dependent growth and

development in Arabidopsis [20].

To better understand the physiological role of CAL proteins in plants,

we here report a characterization ofΔcal1/cal2i lineswith respect to the

mitochondrial compartment. Complex I level in the mutant is reduced

by 90%–95%. Also, oxygen consumption of isolated mitochondria is

much diminished. Comparative proteome analyses reveal several

changes in the mutant, which not only refer to complex I subunits, but

also point to specific alterations of central mitochondrial metabolism.

This finding was confirmed by the profiling of selected mitochondrial

metabolites. Conclusions on the physiological role of the complex

I-integrated CAL proteins are discussed.

2. Material and methods

2.1. Plant material and growth conditions

Arabidopsis (Arabidopsis thaliana) lines used for this study were

of the Columbia ecotype. RNAi lines were obtained from Qin Wang,

Hunan University, China (for details see [20]).Plants were grown

on 1/2 MS medium in climate chambers under the following

conditions: 12 h of light (120 μmol s−1 m−2) / 12 h of dark, 22 °C,

65% humidity, and either 400 ppm or 2000 ppm CO2. After four

weeks plants were transferred to soil and cultivation was continued

at the same conditions.

Cell cultures of Arabidopsis lines were established as described by

May and Leaver [23]. Callus was maintained as suspension culture

according to Sunderhaus et al. [15]. Growth rates of cell cultures

were determined using 1.5 g starting material. Weight increase was

determined after three, five and seven days. This time period was

chosen because growth of cell culture lines is linear up to seven

days [24].

2.2. Transcript analysis

RNA preparation with TRIzol and cDNA synthesis were performed

according to Heimann et al. [25]. The concentration of RNA was mea-

sured photometrically and controlled by agarose gel electrophoresis.

Quantitative PCR was carried out using sequence specific oligonucleo-

tides. The following primer combinations were used:

CA1.

5′-GTTCGAGAAGGTTCTACGCAAGA-3′ and. 5′-GAGGTTAAGCTC

TGGTGGAGTT-3′,

CA2.

5′-GATAGTATACATCTCACAGTCAGC-3′ and. 5′-CTTCTTCCTAAG

CGCTCTCTCAA-3′,

CA3.

5′-GTTCGGCTGTGGAGTACTCCAA-3′ and. 5′-CTGAATCATATTCT

GTATCGCGAGC-3′,

CAL1.

5′-TAGCCATCAACCACTTAAGCG-3′ and. 5′-GCGATCCCAAGGGA

CTTCTT-3′,

CAL2.

5′-CAAACATTGATCGATAGGTACGTGA-3′ and. 5′-TGCCAGGTGG

TAAAACAGAACCA-3′,

GAPDH.

5′-GGAATCTGAAGGCAAAATGAAGG-3′ and. 5′-TGTTGTCACCAA

CAAAGTCGG-3′.

SYBR Green mediated fluorescence was measured using an ABI

PRISM 7300 camera (Life Technologies). Amplification started with an

initial denaturation (2 min, 95 °C) and was followed by 40 alternating

cycles of 15 s at 95 °C/1min at 60 °C. Afterwards, amelting curvewas re-

corded. Transcript quantities were standardized for abundance of the

housekeeping transcript glyceraldehyde-3-phosphat-dehydrogenase

(GAPDH, At1g13440).

2.3. Isolation of mitochondria

Mitochondria from cell culturewere purified by differential centrifu-

gation and Percoll density gradient centrifugation as described by

Werhahn et al. [26]. Isolation of mitochondria from green leaves was

performed according to the protocol of Keech et al. [27] (method A).

2.4. Protein gel electrophoresis procedures

One-dimensional Blue native PAGE (1D BN PAGE) was performed

according to Wittig et al. [28]. Mitochondrial membranes were solubi-

lized by digitonin at a concentration of 5 g/gmitochondrial protein [29].

Two-dimensional IEF/SDS-PAGE was carried out as described by

Mihr and Braun [30]. For the IEF gel dimension, Immobiline DryStrip

gels (24 cm, nonlinear gradient pH 3–11) were used. Focusing took

place for 24 h at 30 to 8000 V using the Ettan IPGphor 3 system (GE

Healthcare).

61S. Fromm et al. / Biochimica et Biophysica Acta 1857 (2016) 60–71

Chapter 2: Publications

44



For the second gel dimension, IPG stripes were equilibrated

for 15 min with DTT (0.4 g/40 ml) and afterwards 15 min with

iodoacetamide. SDS PAGE was carried out using the High Performance

Electrophoresis (HPE) FlatTop Tower-System (Serva Electrophoresis)

using precast Tris–Glycine gels (12.5% polyacrylamide, 24 × 20 cm).

Polyacrylamide gels were stained with Coomassie Brilliant Blue

G250 according to the protocol of Neuhoff et al. [31,32]. However,meth-

anol in the fixing and staining solutions was substituted by ethanol

(p.A.). Comparative proteome analyses were based on gel triplicates

and data evaluation using the Delta 2D software 4.3 (Decodon,

Greifswald, Germany) according to Berth et al. [33] and Lorenz et al.

[34].

2.5. Protein identification by mass spectrometry

Tryptic digestion of proteins and identification of proteins by MS

using the EASY-nLC System (Proxeon, Thermo Scientific, Bremen,

Germany) and coupled MS analyses using the MicrOTOF-Q II mass

spectrometer (Bruker Bremen, Germany) were performed as described

by Klodmann et al. [16].

MS primary data were evaluated using the Proteinscape software

(version 2.1, Bruker, Bremen, Germany), the Mascot Search Engine

(Matrix Science, London, UK), the Arabidopsis protein database

(www.arabidopsis.org; release TAIR 10), and an updated version of a

complex I database [16], that represents a subset of the Arabidopis

protein database. The threshold Mascot Score was set to 80 for proteins

and 20 for peptides.

2.6. Enzyme activity assays

In-gel NADH dehydrogenase activity staining for complex I was

carried out according to Jung et al. [35]. Stripes of one-dimensional

gels were washed twice for 10 min in ddH2O. Afterwards, gel stripes

were incubated in staining solution (100 mM Tris–HCl, pH 7.4, 0.14 mM

NADH, 1 mg/ml NBT) until the purple staining of the bands representing

the I + III2 of supercomplex and monomeric complex I become visible.

The reaction was stopped in a solution containing 15% (v/v) ethanol

(p.A.) and 10% (v/v) acetic acid. All steps were carried out at room

temperature.

Photometric NADHdehydrogenase activitywasmeasured using 2 μg

mitochondrial proteins at 420 nm in an Epoch Microplate Spectropho-

tometer (Biotek, Winooski, VT, USA) at room temperature in the

presence of 50 mM Tris–HCl, pH 7.4, 500 μM K3Fe(CN)6 and 200 μM

deamino NADH [36,37].

2.7. Oxygen consumption measurements

Oxygen consumption of isolated mitochondria was measured

using a Clark-type oxygen electrode (Hansatech Instrument, Norfolk,

UK) according to Meyer et al. [38]. Reaction buffer included 100 μg

mitochondrial protein in 3 ml respiration buffer (300 mM sucrose,

5 mM KH2PO4, 10 mM TES, 10 mM NaCl, 2 mM MgSO4, 0.1% (w/v)

BSA, pH 6.8) in the presence 120 μM CoA, 200 μM TPP, 2 mM

NAD+, 10 mM glutamate and 10 mM malate. At stable oxygen con-

sumption, 200 μM ADP was added for measuring ADP dependent

respiration.

2.8. Metabolite analysis

Formetabolite extraction, Arabidopsis plantswere grown at 400 ppm

CO2 and 2000 ppm CO2 with a day night rhythm of 12 h/12 h at 120 μE.

Whole plantswere harvested at the age of 4weeks.Material of five to six

plants of the same genotype was pooled. Plant material was subse-

quently ground in reaction tubes. Oneml of prechilled extraction buffer

(1 vol. of H2O, 1 vol. of ChCl3, and 2.5 vols. of methanol) containing 5 μl
12C-ribitol of a 2 mg/ml stock solution was added to 20 to 50 mg of

sample material for polar phase preparation. The samples were mixed

for 5 min at 4 °C. After centrifugation (2 min, 16.000 ×g), 500 μl of the

supernatant were mixed with 250 μl of ultra pure H2O and centrifuged

again (2 min, 16.000 ×g). 250 μl of the top layer (polar phase) were

dried in a speed-vac concentrator. Derivatization, addition of standards,

and sample injection were performed as described in Lisec et al. [39].

Chromatograms and mass spectra were analyzed and evaluated using

ChromaTOF® (LECO Corporation, St. Joseph, Mi, USA) software. A

standard curve of puremetaboliteswas used for calculating the amount

of metabolites in the samples per g fresh weight.

3. Results

3.1. Arabidopsis Δcal1/cal2i lines and cell cultures grow slower

To verify developmental properties previously described for Δcal1/

cal2i lines [20], wild-type and mutant plants were cultivated in soil at

standard growth conditions (Fig. 1). Three independent mutant lines,

termed Δcal1/cal2i-1, Δcal1/cal2i-5 and Δcal1/cal2i-20, were analyzed.

At seven weeks rosettes of the mutants were clearly smaller (rosette

diameter: 7 versus 14 cm; number of rosette leaves: 16 versus 38).

Furthermore, flowering was significantly delayed in all mutant lines

(Fig. 1). These results are in line with observations published before

[20]. To facilitate biochemical investigations, suspension cell cultures

were established for Δcal1/cal2i and wild-type plants. Growth rates

of mutant cell cultures were reduced by about 50% relative to the

wild-type culture (Fig. 2). Expression analyses of the five CA/CAL

genes in Δcal1/cal2i plants revealed that CAL1 expression was

reduced by about 90% and CAL2 expression by about 50%. (Fig. 3).

These values correspond exactly to previously published data ([20],

Fig. 5A). Residual detection of CAL1 transcripts probably occurs

due to the insertion site of the T-DNA within an intron of the gene

(the T-DNA might become partially excised by splicing). Interestingly,

expression of the CA1, CA2 and CA3 genes also was slightly reduced in

some of the RNAi lines.

Fig. 1.Comparison of phenotypes of Arabidopsiswt andΔcal1/cal2i lines. A: rosette of four

weeks old plants, B: six weeks old plant, C: outer rosette diameter and number of rosette

leaves of wt and Δcal1/cal2i lines. n = 6 (biological), mean ± SE, **p ≤ 0.01 (student's

t-test).
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3.2. Isolated mitochondria of Δcal1/cal2i lines have reduced oxygen

consumption rates and drastically reduced amounts of complex I

Mitochondria were isolated from Δcal1/cal2i-5 and wild-type cell

lines in order tomonitor consequences of the induced genetic alterations

onmitochondrialmetabolism. Usingmalate and glutamate as substrates,

state III respiration was reduced by 30% in mitochondria isolated

from the mutant cell lines (Fig. 4). Blue native (BN) polyacrylamide gel

electrophoresis (PAGE) was carried out to investigate the protein

complexes of the mitochondrial oxidative phosphorylation (OXPHOS)

system in mutant and wild-type lines. Bands representing the I + III2
supercomplex and monomeric complex I were drastically reduced by

90–95% in organelles from mutant lines (Fig. 5A). In contrast, the com-

plexes III2 and V of the OXPHOS system were present at unchanged

abundances. Bands representing complex II and IV in general are diffuse

upon BN-PAGE of mitochondrial fractions from Arabidopsis and are not

clearly detectable. However, no differenceswere visible in the respective

gel regions in wt andmutant cell lines. We therefore conclude that com-

plexes II and IV most probably also are of unchanged abundance in the

mutant lines. Residual complex I and I + III2 supercomplex have

NADH:NBT oxidoreductase activity as revealed by an in gel activity

assay (Fig. 5B). BN PAGE analysis was repeated for organelles isolated

from leaves of wild-type and Δcal1/cal2i plants (Fig. 5C and D). As

found for organelles isolated from cell cultures, complex I and I + III2
levelswere drastically reduced. Finally, a photometric NADHdehydroge-

nase assay was performed for mutant and wild-type cells. Deamino

NADH was used for this assay because it can be used by complex I but

not as well by the alternative NADH dehydrogenases for substrate [40].

Reduction of activity in themutant was in the range of 70%. In summary,

complex I and I+ III2 supercomplex levels inΔcal1/cal2i lines are strong-

ly reduced, causing a substantial drop in complex I activity. However,

residual complex I activity is still detectable in the mutant lines.

3.3. Δcal1/cal2i mutants do not accumulate complex I assembly

intermediates

Complex I assembly proceeds via assembly intermediates of about

200, 420, 470, 650 and 850 kDa which were described previously

[19,41,21]. Their abundances are comparatively low but they can be vi-

sualized by BN PAGE in combination with immunoblotting using anti-

bodies directed against complex I subunits. Using this experimental

approach, several assembly intermediates were detectable in wild-

type plants, which all included CA as well as CAL proteins (Fig. 6A). In

a strict sense, this experiment does not allow discriminating between

assembly intermediates of complex I and break-down products. How-

ever, the masses of the observed subcomplexes nicely match to those

previously identified representing assembly products of complex I

[19]. In Δcal1/cal2i lines complex I and supercomplex I + III2 levels

were much reduced (only became visible upon prolonged immune

Fig. 2. Freshweight increase of Arabidopsiswt andΔcal1/cal2i-5 cell cultures. Startingma-

terial (day 0) for wt (black bars) and Δcal1/cal2i-5 (white bars) was 1.5 g, respectively.

Fresh weight (g) was recorded after three, five and seven days. n = 9 (biological),

mean ± SE, **p ≤ 0.01 (student's t-test).

Fig. 3. Expression of CA and CAL genes in Arabidopsis Δcal1/cal2i-1, Δcal1/cal2i-5 and

Δcal1/cal2i-20 lines relative to wt. n = 5 (biological), mean ± SE, **p ≤ 0.01 (student's

t-test).

Fig. 4. Oxygen consumption of Arabidopsis wt and Δcal1/cal2i-5 lines. Oxygen consump-

tion of isolated mitochondria was measured at state III using a Clark-type oxygen

electrode. n = 5 (technical), mean ± SE, **p ≤ 0.01 (student's t-test).
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staining) and the assembly intermediates were hardly visible (Fig. 6B).

Results could not be evaluated quantitatively, but clearly indicate that

assembly intermediates did not accumulate in mutant lines. We con-

clude that the entire complex I assembly process is strongly compro-

mised in mutant lines.

3.4. Comparative proteome analysis of wild-type and Δcal1/cal2i lines

Reduced complex I assemblymay cause accumulation ofmonomeric

complex I subunits. Furthermore, reduction of CA/CAL proteins

might induce further changes within the mitochondrial proteome. To

systematically compare abundances of mitochondrial proteins in wild-

type and Δcal1/cal2i lines, total protein of isolated mitochondria was

separated by 2D IEF-SDS PAGE. About 1200 protein spots were detected

on the resulting 2D gels upon Coomassie staining (Supp. Fig. S1A). Data

evaluation was carried out using the Delta 2D software package

(Decodon, Greifswald) (Supp. Fig. S1B).

Volumes of 123 protein spots were significantly changed between

wild-type and mutant lines (change N1.5 fold). Of these, 81 protein

spots were of reduced volume in the Δcal1/cal2i line, whereas 42 pro-

tein spots were of increased volume in the mutant (Fig. 7). All 123

spots were analyzed by mass spectrometry (spots of decreased volume

in themutantwere cut out from thewild-type 2D gel, spots of increased

volume in the mutant from the 2D gel of the mutant). Overall, 283 pro-

teins were identified. Total number of different proteinswas 150 (some

proteinswere identified inmore than one spot). At the same time,more

than one protein was identified for several spots. Changes in volume

were only assigned to a specific protein, if a spot only included one

main protein. This further reduced the number of unambiguously

changed proteins to 85. 56 of these proteins were of decreased abun-

dance in the mutant and 29 of increased abundance (Table 1).

Evaluation of the set of 84 reveals specific differences between the

mitochondrial proteomes of mutant and wild-type cells (Fig. 8):

(i) Overall, 23 complex I subunits were identified. All of them are less

abundant in the mutant except for one subunit. The average reduction

with respect to wild-type cells is 3 fold (the highest reduction is 8

fold). (ii) The L subunit of the glycine decarboxylase complex (GDC)

and serine hydroxymethyl transferase (SHMT), both involved in

photorespiratory metabolism, were reduced about 2.3 fold in average.

However, the SHMT2 isoform identified here is not involved in photo-

respiration in leaf mesophyll cells [42]. (iii) Likewise, subunits of

Fig. 5.NADHoxidation activity of complex I inmitochondrial fractions of Arabidopsiswt andΔcal1/cal2i-5 and 20 lines. Protein complexes ofmitochondria isolated from cell culture (Aand

B) and plant leaves (C and D)were resolved by Blue native PAGE. Gels were stained with colloidal Coomassie (A and C). Corresponding gels (B and D)were used for in gel activity assays

using NBT as artificial electron acceptor. Molecular masses of the resolved protein complexes are given to the left of the figure. Identity of selected mitochondrial protein complexes are

given in between the gels (I: complex I; V: complex V; III2: dimeric complex III; I + III2: supercomplex formed of complex I and dimeric complex III; F1: F1 part of complex V).

E: Photometric NADH dehydrogenase activity assay of mitochondria isolated from cell culture using deamino NADH. n = 3 (biological), mean ± SE, **p ≤ 0.01 (student's t-test). Note:

Deamino NADH is well suited to monitor complex I activity specifically. However, residual activity of other NADH dehydrogenases cannot be totally excluded.

Fig. 6.Complex I assembly intermediates in Arabidopsiswt (A) andΔcal1/cal2i-5 (B) lines.

Total mitochondrial proteins were separated by 2D BN-SDS PAGE. Gels were

immunoblotted and stained with an antibody directed against CA/CAL proteins. Note:

since immune signals were hardly visible in the mitochondrial fraction of the mutant

the immune development was prolonged (part B of the figure). The positions of CA and

CAL proteins are indicated to the right of the blots. I + III2: supercomplex formed by

one copy of complex I and dimeric complex III (I + III2); I: complex I.
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pyruvate dehydrogenasewere reduced 2 fold in average. (iv) Glutamate

dehydrogenase and oxoglutarate dehydrogenase were both induced in

the mutant (1.7 to 3.5 fold). The latter enzyme catalyzes a step of the

TCA cycle. In contrast, no other enzymes of the TCA cycle were found

to be of changed abundance in the mutant. (v) Prohibitins and several

stress related proteins were much induced in the mutant (1.5 to 7

fold). (vi) Several further proteins were of changed abundance and

are potentially involved in metabolic adaptations necessary to compen-

sate for reduced CAL levels.

We conclude that non-assembled complex I subunits did not accu-

mulate in Δcal1/cal2i lines, but subunits were either synthesized at

lower rates or specifically degraded or both. Reduction of the L subunit

of the GDC might cause a reduced capacity for glycine— serine conver-

sion during photorespiration. In contrast, glutamate and pyruvate break

downmight be increased in the mutant. Finally, biosynthesis of several

stress-related proteins was clearly induced in the mutant.

3.5. Growth properties of wild-type andΔcal1/cal2i lines at low and high CO2

Reduced abundance of the L-protein of GDCmight affect photorespi-

ration. To test for a photorespiratory phenotype, wild-type and mutant

plants were cultivated in parallel at 400 and 2000 ppm CO2. Rosette

diameters of plants were determined after six weeks of cultivation. In

accordance with our previous investigations (Fig. 1), rosette diameter

of mutant plants was reduced by about 50% compared to wt plants at

400 ppm CO2 (Fig. 9). Cultivation at high CO2 did not revert the mutant

phenotype: rosette diameters forwt andmutant plantswere slightly in-

creased, but the rosette diameter of the mutant plants was still signifi-

cantly smaller. Increase in the rosette diameter at high CO2 was +19%

for wt plants and+22–34% for mutant plants. We conclude that the in-

crease in rosette diameter of mutant plants with respect to wt plants

was slightly larger. However, high CO2 did not revert the phenotype of

the mutant which was reported for several other mutants of genes

directly involved in photorespiration [43].

3.6. Central mitochondrial metabolism is modified in Δcal1/cal2i lines

Changes in protein levels related to photorespiration and pyruvate

and glutamate metabolism indicated alterations of the central

mitochondrial metabolism in Δcal1/cal2i lines. Therefore, selected

metabolites related to mitochondrial metabolism were quantified

by GC–MS (Fig. 10). As reported previously [44], glycine was high

at ‘end of the day’ (EoD) in wt plants but much lower at ‘end of the

night’ (EoN). Two out of three mutant lines showed a reduction in

glycine accumulation EoD. At 2000 ppm CO2, glycine accumulation

during the day was diminished for all genotypes. However, levels

were here higher in the mutants compared to the wt. Differences in

serine concentrations were less pronounced in mutants and wt.

This resulted in an overall reduced glycine/serine (gly/ser) ratio in

the mutants at 400 ppm CO2, but not 2000 ppm CO2. Gly/ser ratios

are often used as a proxy for photorespiratory flux. Levels of most

TCA cycle intermediates and glutamate were increased in the mutants

with the exception of succinate that was decreased (Fig. 10). These data

suggest thatmitochondrial respiratory andphotorespiratorymetabolism

is changed in the mutants.

4. Discussion

Δcal1/cal2i plants have been previously characterized with re-

spect to development, photomorphogenesis and photosynthesis

[20]. To investigate the role of CAL proteins in metabolism, mutants

here were characterized with respect to the mitochondrial com-

partment. Five different types of CA/CAL proteins, CA1, CA2, CA3,

CAL1 and CAL2, were previously shown to form part of respiratory

complex I [14,16]. All proteins were found exclusively as constitu-

ents of complex I or its assembly intermediates but not as free pro-

teins [16]. So far, carbonic anhydrase activity could not be

monitored for any of the CA/CAL proteins [45,20]. However,

Escherichia coli lysates overexpressing CA2 were shown to

efficiently bind CO2/HCO3
−[17]. What could be the physiological

role of the CA/CAL proteins?

4.1. The function of the CA/CAL proteins

It has been proposed that complex I-integrated CA/CAL proteins are

involved in a CO2 recycling mechanism by promoting efficient transfer

of CO2 from mitochondria to chloroplasts [46,47]. The mechanism in-

volves CO2-bicarbonate conversion in mitochondria, transport of

Fig. 7. Comparative analysis of themitochondrial proteomes of Arabidopsiswt andΔcal1/cal2i-5 lines. Mitochondriawere isolated as described inMaterials andMethods. Total mitochon-

drial protein was separated by 2D IEF–SDS PAGE and proteins were stained by Coomassie blue. Three replicates were produced per fraction and used for the calculation of master gels

(Delta 2D software package, Decodon, Germany). The molecular masses of standard proteins are given to the left of the 2D gel (in kDa). Isoelectric focusing range is form pH 3 (left) to

pH 11 (right). Proteins indicated in pink are more abundant in the mutant (N1.5 fold increase); proteins indicated in green are less abundant in the mutant. Spots indicated by numbers

were identified by mass spectrometry (for results see Table 1).
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bicarbonate from mitochondria to chloroplasts, re-conversion of CO2

from bicarbonate by chloroplast-localized carbonic anhydrases and fi-

nally re-fixation of CO2 by RubisCO. It should be of special importance

at high photorespiration, so low CO2 concentrations. The proposed pro-

cess resembles the well-studied carbon concentration mechanism

(CCM) of cyanobacteria, which also requires presence of

(cyanobacterial) complex I [48,49]. Some experimental results were

interpreted to support presence of the proposed CO2 transfer mecha-

nism from mitochondria to chloroplasts: (i) When photosynthetic

rates were compared between protoplasts and isolated chloroplasts,

the protoplasts performed better at low CO2 suggesting that an internal

CO2 source was available in protoplasts but not in isolated chloroplasts

[50]. Increase of photosynthesis rates in protoplasts was repressed in

the presence of inhibitors of carbonic anhydrases. (ii) Transcription of

genes encoding the CA/CAL proteins is reduced if plants are cultivated

at high CO2 [18,22]. (iii) The tobaccoΔcmsIImutantwhich has drastical-

ly reduced amounts of complex I exhibits diminished steady-state pho-

tosynthesis. Inhibition of photosynthesis was reduced if plants are

cultivated at high CO2 [51]. This was very recently also described for

an Arabidopsis mutant lacking CA2 and additionally, either the CAL1

or the CAL2 protein [22]. Under photorespiratory conditions carbon as-

similation is diminished and glycine accumulates in double mutant

plants. However, plants were cultivated at comparatively low light

and it remains to be established if the Δca2/Δcal2 phenotype is

completely rescued by high CO2 in the presence of increased light inten-

sities [22]. In summary, the specific role of the CA/CAL proteins during

photosynthesis is still not fully understood and has to be further

investigated.

The CA/CAL proteins belong to an acetyltransferase superfamily

[45,20]. Indeed, overexpressed CAL2 has been shown to have a low

but measurable in vitro histone acetyltransfrase activity [20]. However,

mitochondrial substrates could not be identified. In conclusion, the

biochemical role of the CA/CAL proteins still is far from clear.

In this study, we provide additional insights into the metabolic

context of CA/CAL function. Protein analyses revealed down-

regulation of the L-subunit of the GDC complex (Table 1 and Fig. 8)

and reduced gly/ser ratios in the mutants (Fig. 10). These results

might indicate lower photorespiratory flux in the mutants. At first

glance, these data are not supporting the inner-cellular CO2 transfer hy-

pothesis, because higher rates of photorespiration would be expected if

the CO2 pump would be inactive in the mutants. Consequences of the

mutation on photorespiration might not only affect the CO2 recycling

but also the NAD+/NADH ratio. However, reduced growth of the mu-

tants at normal conditions (Fig. 1) suggests that also photosynthetic

rates were reduced in the mutants and that reduced photorespiration

was simply a consequence of reduced photosynthesis. This is also in

line with the slightly more positive growth response of the mutants

when atmospheric CO2 concentrations were increased (Fig. 9) and the

higher concentration of stress-related proteins (Table 1 and Fig. 8).

Data on photosynthetic rates of themutants at different CO2 concentra-

tions would be helpful to better understand these results but we were

not able to generate these data as mutant leaves were too small for re-

producible gas exchange measurements. It can be concluded that CA/

CAL function is relevant in the context of photorespiration but evidence

that this group of proteins is specifically involved in the proposed CO2

transfer mechanism is still not conclusive.

4.2. Proteome analyses for investigating CAL function in plants

Proteome analyses have been carried out to systematically investi-

gate consequences of CAL depletion in mitochondria of plants. More

than 80 proteins were identified which were specifically changed in

abundance. In general, complex I subunits were much reduced. This

was shown for 23 different subunits of this protein complex. Overall,

complex I comprises about 49 subunits in plants [10,11]. It can be as-

sumed that complex I subunits not identified by our study also are of

reduced abundance inΔcal1/cal2i lines butwere not detecteddue to hy-

drophobicity (hydrophobic proteins are poorly resolved by IEF) or spot

overlappings on the 2D gels. Interestingly, enzymes of defined

metabolic pathways were of increased abundance in the mutants, like

enzymes involved in pyruvate and glutamate catabolism. Indeed, accu-

mulation of glutamate was observed for Δcal1/cal2i lines by metabolite

analysis. Finally, stress-related proteins clearly are induced in the mu-

tant. Some of the stress-related proteins were previously assigned to

other cellular compartments, like the cytoplasm and the ER. It remains

to be established whether these proteins are imported into mitochon-

dria upon stress or rather attached to the surface of the organelles. A

comparative whole-plant proteome experiment would be desirable

for not only monitoring protein changes in the mitochondrial compart-

ment but the entire cell.

4.3. Complex I mutants in plants

Some other complex I deficient mutants were characterized previ-

ously [52,51,18,38,53]. Complex Imutants exhibit rather heterogeneous

phenotypic properties [11]. In general, growth of mutant plants is

reduced, development is delayed and leaves are curled. The extend of

growth reduction depends on the level of residual complex I [53].

Mutants with a complete loss of complex I are also impaired in seed

development and germination [54,53]. Also the Δcal1/cal2i lines have

a delayed development (Fig. 1) curled leaves and reduced germination

rates (Fig. 9A). For the tobacco ΔcmsII mutant it has been shown that

complex I deficiency has an impact on photosynthetic efficiency [51].

In contrast, the Δcal1/cal2i lines showed no differences in photosyn-

thetic efficiency [20]. This was confirmed in the frame of our study

(data not shown). For the Δndufs4 and Δndufv1 mutants, which largely

or completely lack complex I, increased levels of TCA cycle intermedi-

ates have been reported [53]. Increased levels of TCA metabolites also

were found for Δcal1/cal2i lines with the exception of succinate.

However, day times of harvesting plant material differ between the

two studies, thereby limiting the comparability of the data sets. Overall,

both studies indicate that complex I represents a negative regulator of

the TCA cycle. In summary, effects caused by CAL depletion basically

resemble those obtained for other complex I mutants and therefore,

do not allow drawing conclusions on specific CAL function.

4.4. Regulation of nuclear gene expression with respect to mitochondrial

proteins

Most complex I subunits are encoded by nuclear genes, synthesized

in the cytosol and posttranslationally transported into the organelle

[11]. In Δcal1/cal2i mutant lines complex I levels were much reduced

(Fig. 5). At the same time, accumulation of assembly intermediates or

singular complex I subunits did not occur (Fig. 6). This either could be

caused by specific degradation of excess subunits or by the down-

regulation of the genes encoding complex I subunits in the nucleus

and in the mitochondrial compartment. Indeed, transcription of CA

genes localized in the nucleus is slightly reduced in some of the

CAL-depleted plants (Fig. 3). We cannot exclude off-target effects of

the CAL2-directed RNAi construct but alternatively conclude that

down-regulation of complex I genes in the mutant lines and the ER

might be caused by specific signaling processes. The chemical nature

of the signals for adapting nuclear gene expression to the requirements

of themitochondrial compartment is currently unknown. Signals can be

assumed to be highly specific because levels of other OXPHOS

complexes were not changed in CAL-deficient plants (Fig. 5).

5. Conclusion

In conclusion, new molecular adaptations to depletion of the

complex I-integrated CA/CAL proteins have been identified, but more

insights into the physiological role of this group of proteins, besides
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their requirement for complex I assembly, are still required. Analysis of

further double and eventually triple and quadruplemutantswill be nec-

essary in future research, as well as transformation of CA/CAL deficient

plantswith constructs encoding altered versions of CA andCAL proteins.

This eventually will allow discriminating between the biochemical

functions of the CA/CAL proteins and their role in complex I assembly.

Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.bbabio.2015.10.006.
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Fig. 9. Phenotype of Arabidopsis wt and Δcal1/cal2i lines at 400 ppm and 2000 ppm CO2. Rosette diameters of wt, Δcal1/cal2i-1, Δcal1/cal2i-5 and Δcal1/cal2i-20 plants were measured

after cultivation for fourweeks at 400 ppm CO2 (A, B: black bars) and 2000 ppm CO2 (B: white bars) (n= 11 to 15). The growth increase at 2000 ppm CO2 in relation to 400 ppm CO2was

calculated for each genotype (C). n = 6 to 15 (biological), mean ± SE, ** p ≤ 0.01 (student's t-test).

Fig. 8. Protein categories changed in Δcal1/cal2i plants relative to wt plants. a) pyruvate

catabolism(3proteins), b) complex I subunits (23proteins), c) photorespiration (2proteins),

d) glutamate catabolism(4proteins), e) prohibitins (3proteins), f) proteins involved in stress

response (5 proteins).

Notes to Table 1:
a Spot number in accordance with Fig. 7. Note: some spots include more than one protein.
b Accession numbers as given by TAIR (http://www.arabidopsis.org/).
c Proteins are named according to the corresponding genes annotated at TAIR (www.arabidopsis.org).
d Subcellular localization according to SUBAcon (http://suba3.plantenergy.uwa.edu.au/, [55]): mitochondrion (M), plastid (P), peroxisome (PX), endoplasmatic reticulum (ER), cytosol

(C), nucleus (N), extracellular (EX).
e Calculated molecular mass of the identified protein as deduced from the corresponding gene. Note that in some cases mitochondrial targeting peptides (2–5 kDa) are removed from

the proteins after import into mitochondria.
f Probability score for the protein identification based on mass spectrometry analysis and MASCOT search.
g Number of matching peptides.
h Unique peptides out of the number of matching peptides.
i Sequence coverage of a protein by identified peptides in %.
j Ratio of spot volume of mutant to ratio of spot volume to wt. Spot volumes were calculated on the basis of the master gels shown in Fig. 7 using the Delta 2D software (Decodon,

Germany). −: decreased spot volume in mutant; +: increased spot volume in mutant.
k p-values of ratio of spot volume of mutant to ratio of spot volume to wt.
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SUPPLEMENTARY FIGURE 

 
Supplementary figure 1 
 

A 
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SUPPLEMENTARY FIGURE 1: 2D IEF/SDS PAGE of mitochondrial proteins of wt and 
Δcal1cal2i-5 lines (A). A set of three gels per genotype were used for calculation of the 
master gels using the Delta 2D software package (Decodon, Freiburg, Germany) (B). 
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Corrigendum to “Depletion of the "gamma-type carbonic 
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a Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 
30419 Hannover, Germany 
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The authors regret to inform the readers of our article that the results presented in 
Figure 10 were not correctly calculated. The corrected figure is presented below. 
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Cor. Figure 10: Quantification of metabolites of Arabidopsis wt and Δcal1/cal2i lines. 
Glycine and serine contents at 400 ppm CO2 and 2000 ppm CO2 at the end of night 
(dotted bars) and end of day (dashed bars) were analyzed (A). The glycine serine ratio 
was calculated from the contents. Metabolites of the citric acid cycle were measured 
at 400 ppm at the end of the night (B). For each sample, three to four plants were 
pooled and extracts were analyzed by GC-MS. n = 6 (biological), mean ± SE, * p ≤ 
0.05 or ** p ≤ 0.01 (student’s t-test). 
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Due to the changes in Figure 10, three sentences in the text paragraph related to this 

Figure have to be corrected (Page 65, results section, 2nd column, lines 5-13) 
 
 
 
Published version (sentences to be changed are given in colors) 
 
 
Two out of three mutant lines showed a reduction in glycine accumulation EoD. At 
2000 ppm CO2, glycine accumulation during the day was diminished for all 
genotypes. However, levels were here higher in the mutants compared to the wt. 
Differences in serine concentrations were less pronounced in mutants and wt. This 
resulted in an overall reduced glycine/serine (gly/ser) ratio in the mutants at 400 ppm 
CO2, but not 2000 ppm CO2. Gly/ser ratios are often used as a proxy for 
photorespiratory flux. Levels of most TCA cycle intermediates and glutamate were 
increased in the mutants with the exception of succinate that was decreased (Fig. 10). 
 
 
Has to be corrected into (corrected sentences are given in colors) 
 
Wt plants and mutant lines have the same glycine content at 400 ppm (EoD). At 2000 
ppm CO2, glycine accumulation during the day was diminished for all genotypes. 
However, levels were here higher in the mutants compared to the wt. All mutant lines 
accumulated serine at 400 ppm and 2000 ppm EoD. At EoN serine content increased 
in two out of three mutant lines at 400 ppm and 2000 ppm. This resulted in an overall 
reduced glycine/serine (gly/ser) ratio in the mutants at 400 ppm CO2, but not 2000 
ppm CO2. Gly/ser ratios are often used as a proxy for photorespiratory flux. Levels of 
most TCA cycle intermediates and glutamate were increased in the mutants with the 
exceptions of succinate and aspartate (Fig. 10). 
 
 
 
 
 
 
 
 
The authors would like to apologise for any inconvenience caused. 
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Summary

� Complex I of the mitochondrial electron transport chain (mETC) in plants contains an extra

domain that is made up from proteins homologous to prokaryotic gamma-carbonic anhy-

drases (cCA). This domain has been suggested to participate in complex I assembly or to sup-

port transport of mitochondrial CO2 to the chloroplast.
� Here, we generated mutants lacking CA1 and CA2 – two out of three CA proteins in

Arabidopsis thaliana. Double mutants were characterized at the developmental and physio-

logical levels. Furthermore, the composition and activity of the mETC were determined, and

mutated CA versions were used for complementation assays.
� Embryo development of double mutants was strongly delayed and seed development

stopped before maturation. Mutant plants could only be rescued on sucrose media, showed

severe stress symptoms and never produced viable seeds. By contrast, callus cultures were

only slightly affected in growth. Complex I was undetectable in the double mutants, but com-

plex II and complex IV were upregulated concomitant with increased oxygen consumption in

mitochondrial respiration. Ectopic expression of inactive CA variants was sufficient to comple-

ment the mutant phenotype.
� Data indicate that CA proteins are structurally required for complex I assembly and that

reproductive development is dependent on the presence of complex I.

Introduction

The mitochondrial electron transport chain (mETC) comprises
four multiprotein complexes. These complexes transfer electrons
from NADH or organic acids via multiple carriers ultimately to
oxygen as the terminal electron acceptor, resulting in the forma-
tion of water. During this process, protons are translocated across
the inner mitochondrial membrane, forming an electrochemical
gradient that can be used by ATP synthase for formation of ATP
from ADP. ATP derived from this reaction is the major energy
source for metabolic reactions in mitochondria and the cytosol
(Millar et al., 2011).
Complex I is the major NADH dehydrogenase of the mETC.

It transfers electrons from NADH to ubiquinone and translocates
protons during this process (Baradaran et al., 2013; Brandt,
2013). The complex has an L-like shape with a membrane arm
embedded in the inner mitochondrial membrane and a periph-
eral arm protruding into the mitochondrial matrix (Hunte et al.,
2010; Hirst, 2013; Vinothkumar et al., 2014; Letts & Sazanov,
2015; Zickermann et al., 2015). This structure is conserved
between prokaryotes and eukaryotes. However, prokaryotic com-
plex I is composed of 14 core subunits and eukaryotic complex I
of > 40 subunits; for example, plant complex I is composed of 49
subunits (Baradaran et al., 2013; Peters et al., 2013; Braun et al.,
2014). In plants, in contrast to animal and fungi, an additional

spherical domain directly attached to the membrane arm has
been identified (Heazlewood et al., 2003; Perales et al., 2004;
Dudkina et al., 2005; Sunderhaus et al., 2006; Klodmann et al.,
2010). This domain is made up exclusively by proteins with
homology to gamma-carbonic anhydrases (cCA) from bacteria
and archaea (Parisi et al., 2004; Sunderhaus et al., 2006; Klod-
mann et al., 2010). Complex I from the protist Acanthamoeba
also contains cCA proteins, but it is unknown whether they form
a separate domain (Gawryluk & Gray, 2010). The Arabidopsis
genome encodes five cCA proteins: Three proteins have a highly
conserved catalytic domain and are termed carbonic anhydrase
1–3 (CA1, CA2, CA3). Two additional proteins that show less
homology to their prokaryotic homologues especially in the cat-
alytic domain are termed cCA-like proteins (CAL1 and CAL2)
(Perales et al., 2004). CO2 hydration activity has never been vali-
dated experimentally for plant cCA enzymes. However, a trun-
cated version of CA2 has been shown to form a homotrimer that
can bind CO2/bicarbonate (Martin et al., 2009). By contrast,
residues required for catalytic activity of CAM, the cCA from the
archaeon Methanosarcina thermophila, have been characterized in
great detail. Replacement of an arginine residue (R59) by alanine
at the N-terminus has been shown to affect CA activity by desta-
bilizing the homotrimer (Tripp et al., 2002), whereas a glutamine
(Q75) was important for catalytic activity. Furthermore, three
histidines (H81, H117, H122) were shown to be essential for
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activity, most probably because they are involved in Zn2+ binding
(Kisker et al., 1996). Based on structural modeling, all of these
sequence elements are highly conserved in plant cCA (Parisi
et al., 2004).

The function of complex I-associated cCA in plant mitochon-
dria is not well defined. Based on the presence of CA2 in early
assembly intermediates of complex I, it was suggested that cCA
might act as subunits required for assembly of the multiprotein
complex (Meyer et al., 2011; Li et al., 2013). This was consistent
with the clear decrease of complex I amounts and activity in ca2
mutants (Perales et al., 2005). However, no experimental evi-
dence is currently available that cCA is absolutely required for
complex I assembly. An alternative hypothesis suggested that
cCA might help to translocate CO2 released in photorespiration
from mitochondria to chloroplasts in order to increase the proba-
bility of refixation (Braun & Zabaleta, 2007; Zabaleta et al.,
2012). Experimental support for this hypothesis was recently
obtained by the description of double mutants in ca2 cal1 and
ca2 cal2, respectively. These mutants showed reduced growth at
normal CO2 concentrations, but not at elevated CO2 (Soto et al.,
2015).

Beside the cCA domain of complex I, the presence of alterna-
tive electron donors and acceptors in plants is another difference
between the mETC of plants and animals (Millar et al., 2011).
On the one hand, alternative NADH and NADPH dehydroge-
nases, located both at the matrix side and the inter-membrane side
of the inner mitochondrial membrane, can transfer electrons from
reduced adenylates to ubiquinone (Rasmusson et al., 2008). These
reactions are not linked to proton translocation across the mem-
brane and, thus, not to ATP synthesis (Rasmusson et al., 2004).
Probably because of the presence of these alternative enzymes,
most complex I mutants in plants can survive under normal
growth conditions (e.g. Gutierres et al., 1999; Karpova et al.,
2002; Meyer et al., 2009; Juszczuk et al., 2012), whereas complex
I mutations in animals are mostly lethal (Fassone & Rahman,
2012). On the other hand, alternative oxidases transfer electrons
from ubiquinol to molecular oxygen without proton translocation
(Moore et al., 2013). These oxidases are not restricted to plants
(Rogov & Zvyagilskaya, 2015). The activity of both alternative
NAD(P)H dehyrogenases and oxidases has been mostly associated
with stress situations where production and demand of NAD(P)H
or ATP were out of balance (Giraud et al., 2008; Rasmusson et al.,
2008; Wallstr€om et al., 2014; Dahal et al., 2015).

In this study, we show that ca1 ca2 double mutants completely
lacked complex I. This resulted in strongly retarded embryo devel-
opment that could only be rescued at high external sugar supply.
Overexpression of enzymatically inactive CA2 was sufficient for
complementation. These data provide new insights into the func-
tion of cCA and the role of complex I in plant development.

Materials and Methods

Plant material and growth conditions

Arabidopsis thaliana (L.) Heynh. lines SALK_109391
(At1 g19580, ca1/ca1) and SALK_010194 (At1 g47260, ca2/ca2)

were obtained from NASC. Mutants were crossed to generate
ca1 ca2 double mutants. Plants were grown on 0.59MS medium
in climate chambers at 8–12 h light (see figure legends),
120 lmol m�2 s�1, 22°C, 65% humidity and atmospheric CO2

concentrations. After 4 wk, plants were transferred to soil.
Plantlets with fully opened cotyledons of homozygous ca1 ca2
mutants were rescued on 0.59MS medium containing 3% (w/v)
sucrose.

Cell cultures were established from sterile 10-d-old Arabidop-
sis plants. Leaf or hypocotyl tissue was cut and transferred to
Gamborg B5 solid medium (0.316% (w/v) B5 medium, 3% (w/
v) sucrose, 1% (w/v) plant agar, 0.0001% (w/v) 2,4 dichlorphe-
noxyacetic acid, 0.00001% (w/v) kinetin, pH 5.8). Emerging
calli were cultivated for 3 wk in darkness and maintained as sus-
pension cultures. Growth rates of cell cultures were determined
using 1.5 g starting material. Weight increase was determined
after 3, 5 and 7 d.

Generation of CA2 variants

The coding sequence of CA2 was amplified from cDNA
(50-CACCATGGGAACCCTAGGA-30 and 50-TTAGAAGTAC
TGAGTAGACGG-30) and inserted in pENTRTM/D-TOPO®

vector (Invitrogen). Site-directed mutagenesis was performed
using the QuikChange® Kit (Stratagene, La Jolla, CA, USA).
Oligonucleotide combinations were 50-TGGTATGGCTGTGT
TCTTGCAGGTGATGTGAATAACATCAGTGTTG-30 and
50-CAACACTGATGTTATTCACATCACCTGCAAGAACA
AGCCATACCA-30 for CA2 R86A and 50-TGTAACAGT
AGGTAACAGTGCTGTCATTAATGGGTGTACTGTTG-
A-30 and 50-TCAACAGTACACCCATTAATGACAGCAC
TGTTACCTACTGTTACA-30 for CA2 H130N H135N.
Mutant CA2 sequences were transferred to pEarleyGate 100
(Earley et al., 2006) by recombination (Gateway® LR
ClonaseTM Enzyme Mix; Invitrogen). Floral dip transformation
of CA1/ca1 ca2/ca2 mutants or ca2/ca2 mutants was carried out
according to Clough & Bent (1998).

Genotyping of mutants

For DNA extraction, leaves or calli were homogenized, 500 ll
extraction buffer (50 mM Tris-HCl (pH 7.6), 0.5% (w/v) SDS)
and 500 ll water-saturated phenol were added, and the suspen-
sion was mixed for 10 min. Phases were separated by centrifuga-
tion (16 000 g, 10 min, 22°C). 400 ll supernatant was added to
40 ll 3 M sodium acetate (pH 5.2) and 800 ll 96% (v/v)
ethanol, samples were mixed and centrifuged (16 000 g, 20 min,
4°C). The pellet was washed with 70% (v/v) ethanol and dis-
solved in water.

PCR reactions were performed at standard conditions (95°C
5min, 35 cycles of 95°C 30 s, 58°C 30 s and 72°C 90 s, 72°C
5min) with c. 30 ng genomic DNA template. Oligonucleotide
sequences for genotyping were derived from http://sig-
nal.salk.edu/: SALK_109391: LP: 5-TAGCGATTCTGGA
TTCGAATG-30, RP: 50-CATCCCATGCTTTTCAACAAC-30.
SALK_010194: LP: 50-ACGGAAACAAAGGTGGTTCTC-30,
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RP: 50-TGATGTTCAGATCGGAAAAGG-30, T-DNA: 50-AT
TTTGCCGATTTCGGAAC-3. ACTIN2 (At3 g18780) RP:
50-GGTAACATTGTGCTCAGTGGTGG-30, LP: 50-GGTGCAA
CGACCTTAATCTTCAT-30.

Transcript analysis

RNA was isolated using the TRIZOL method (Chomczynski,
1993). 100 ng RNA were used for cDNA synthesis. DNA con-
taminations were digested (1 U DNase (Thermo Scientific),
37°C, 30 min) and DNase was inactivated at 70°C for 15 min.
50 pmol of random nonamer oligonucleotide were added and
annealed at 70°C for 5 min. Reverse transcription (1 mM
dNTPs, 200 U MMLV-RT, Promega) was carried out at 37°C
for 60 min and inactivated at 70°C for 10 min. Quantitative RT-
PCR was performed on an ABI PRISM 7300 (Applied Biosys-
tems, Darmstadt, Germany) using SYBR Green fluorescence
(Platinum SYBR Green qPCR Mix; Life Technologies, Carlsbad,
CA, USA) for detection.

Primer combinations were 50-GTTCGAGAAGGTTCTACG
CAAGA-30 and 50-GAGGTTAAGCTCTGGTGGAGTT-30 for
CA1, 50-GATAGTATACATCTCACAGTCAGC-30 and 50-CT
TCTTCCTAAGCGCTCTCTCAA-30 for CA2, 50-GTTCGGC
TGTGGAGTACTCCAA-30 and 50-CTGAATCATATTCTGT
ATCGCGAGC-30 for CA3, 50-TAGCCATCAACCACTTAA
GCG-30 and 50-GCGATCCCAAGGGACTTCTT-30 for CAL1,
50-CAAACATTGATCGATAGGTACGTGA-30 and 50-TGCC
AGGTGGTAAAACAGAACCA-30 for CAL2. UBIQUITIN 10
(At4 g05320) expression was used as an internal standard
(50-GGCCTTGTATAATCCCTGATGAATAAG-30 and 50-AA
AGAGATAACAGGAACGGAAACATAGT-30).

Analysis of embryo development

Recently opened flowers were marked with colored threads over a
time series of 15 d. Siliques were harvested and dissected, and
seeds were transferred to an object slide covered with Hoyer’s
solution (15 ml distilled water, 3.75 g gum arabic, 3 mM glyc-
erin, 50 g chloral hydrate). Seeds were incubated overnight at
4°C in Hoyer’s solution for clearing. Developmental stages were
analyzed by differential inference contrast (DIC) microscopy
(Axioskop 2 mot plus; Zeiss, Oberkochen, Germany) with
Nomarski objectives. Pictures were taken with an Axio cam
MRc5 camera (Zeiss).

Embryo rescue

Seeds 7, 10 and 14 d after pollination (dap) were transferred to
0.59 MS medium containing 3% (w/v) sucrose and cultured at
8 h light (120 lmol m�2 s�1, 22°C, 65% humidity), and atmo-
spheric CO2 concentrations for several weeks.

Pollen tube germination assay

Pollen grains were transferred on to objective slides with pollen
tube germination medium (1 mM calcium chloride, 1 mM

calcium nitrate, 1 mM magnesium sulfate, 1.6 mM boric acid,
18% (w/v) sucrose, 0.5% (w/v) agar) by dabbing recently
opened flowers on the slides. Samples were incubated up to
24 h at 100% humidity.

Superoxide detection

Superoxide was detected by formazan staining for 5 h in
0.1 mg ml�1 nitro blue tetrazolium chloride (NBT) and 25 mM
HEPES, pH 7.6. After incubation, chlorophyll was removed
from leaves with 80% ethanol for 2 h at 70°C. Superoxide anions
were visualized as a dark precipitate (Welchen et al., 2012). Note
that this assay might also indicate complex II activity (Boerjan
et al., 1991).

Metabolite analysis

Plants were grown for 4 wk in short day conditions. Afterwards,
half of the plants were shifted to 100 ppm CO2 for 2 d. Plants
were harvested at 4 h light. Metabolites were extracted and quan-
tified as described in Fromm et al. (2016).

Isolation of mitochondria

Mitochondria from cell culture were isolated as described by
Werhahn et al. (2001). For total protein extracts, 5 g leaf material
were homogenized in 10 ml disruption buffer (300 mM manni-
tol, 50 mM Tris-HCl (pH 7.4), 1 mM EDTA, 1% (v/v) Triton
X-100, 0.2 mM PMSF) with a mortar and sea sand, filtered
through gauze, and centrifuged (10 min, 18 300 g, 4°C). The
supernatant was transferred to a new reaction tube. All steps were
carried out at 4°C or on ice.

Protein gel electrophoresis

One-dimensional Blue Native polyacrylamide gel electrophoresis
(1D BN-PAGE) and two-dimensional BN-sodium dodecyl sul-
fate (SDS)-PAGE were performed according to Sch€agger (2001).
A gradient gel (4.5–16% acrylamide) with a 4% stacking gel was
used. Mitochondrial membranes were solubilized by digitonin
according to Eubel et al. (2003).Gels were fixed for 2 h in 15%
(v/v) ethanol, 10% (v/v) acetic acid and stained with Coomassie
Brilliant Blue G-250 (Neuhoff et al., 1985, 1990).

Mass spectrometry

Tryptic digestion of proteins and identification of proteins using
the EASY-nLC System (Proxeon; Thermo Scientific, Bremen,
Germany) and coupled MS analyses (MicrOTOF-Q II mass
spectrometer; Bruker, Bremen, Germany) were performed as
described by Klodmann et al. (2010). Mass spectrometry primary
data were evaluated using the PROTEINSCAPE v.2.1 software
(Bruker, Bremen, Germany), the Mascot Search Engine (Matrix
Science, London, UK), the Arabidopis protein database (release
TAIR 10) and an updated version of a complex I database
(Klodmann et al., 2010), which represents a subset of the Arabidopis
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protein database. The threshold Mascot Score was set to 30 for
proteins and 20 for peptides.

Enzyme activity assays

In-gel staining for complexes I, II and IV was carried out accord-
ing to Jung et al. (2000) with modifications. Gels were washed
twice for 10 min in H2O. For NADH : NBT oxidoreductase
activity staining, BN gel strips were incubated in staining solu-
tion (100 mM Tris-HCl, pH 7.4, 0.14 mM NADH, 1 mg ml�1

NBT) until the purple staining of the bands became visible.
Complex II activity staining was carried out in 50 mM KH2PO4

buffer (pH 7.4), 84 mM succinate, 0.2 mM PMS and 2 mg ml�1

NBT. For complex IV activity staining, gels were incubated in
10 mM KH2PO4 buffer (pH 7.4), 1 mg ml�1 DAB and three
tips of a spatula of cytochrome c. Complex V activity staining
was carried out in 35 mM Tris-HCl (pH 7.4), 270 mM glycine,
14 mM MgSO4, 0.2% (w/v) Pb(NO3)2 and 8 mM ATP
overnight (Cox et al., 1978). Reactions were stopped in fixing
solution containing 15% (v/v) ethanol and 10% (v/v) acetic acid.
All steps were carried out at room temperature. Densitometric
analyses were carried out using IMAGEJ. In addition, photometric
activity measurements for complexes I, II and IV were done with
the Epoch Microplate Spectrophotometer (Biotek, Winooski,
VT, USA). Complex I activity was measured at 420 nm using
2 lg mitochondrial protein, 50 mM Tris-HCl, pH 7.4, 500 mM
K3Fe(CN)6 and 200 mM NADH (Singer, 1974; Zhou et al.,
2003). For complex II activity, 15 lg mitochondrial protein was
incubated for 5 min in 25 mM KH2PO4 buffer (pH 7.4), 5 mM
MgCl2, 20 mM succinate, 0.3 mM ATP. Afterwards, 500 lM
SHAM, 100 lM ubiquinone (oxidized) and 2 mM KCN were
added. Reactions were started with 50 lM DCPIP and activity
was measured at 600 nm (Birch-Machin et al., 1994). Complex
IV activity was measured at 550 nm using 1 lg mitochondrial
protein, 25 mM KH2PO4 buffer (pH 7.4), 15 lM reduced
cytochrome c, and 300 mM dodecylmaltoside (Birch-Machin
et al., 1994).

Oxygen consumption

Oxygen consumption of isolated mitochondria was measured
using a Clark-type oxygen electrode (Hansatech Instruments,
Norfolk, UK) according to Meyer et al. (2009). Reaction buffer
included 100 lg mitochondrial protein in 3 ml respiration buffer
(300 mM sucrose, 5 mM KH2PO4, 10 mM TES, 10 mM NaCl,
2 mM MgSO4, 0.1% (w/v) BSA, pH 6.8) supplied with 120 lM
CoA, 200 lM TPP, 2 mM NAD+, 10 mM glutamate and
10 mM malate. At stable oxygen consumption, 200 lM ADP
was added for measuring ADP-dependent respiration.

Results

In order to elucidate the function of mitochondrial CA proteins,
we generated mutants with mutations in more than one CA gene.
We started with genetic crossings of ca1 and ca2 mutants. The
possible role of CA3 is evaluated below in the Discussion.

T-DNA integration sites are shown schematically in Fig. 1(a). The
ca1 and ca2 mutants did not show an obvious growth phenotype
compared with wild-type (WT) (Fig. 1b). However, amounts of
CA1 and CA2 mRNAs, respectively, were highly decreased in the
mutants. Expression of other CA and CAL genes remained unaf-
fected (Fig. 1c). Strongly decreased transcription also reduced
protein levels beyond detection levels (Fig. 1d). This was evi-
denced by separation of complex I and supercomplex I+III2 on
2D-BN-SDS gels and protein identification by mass spectrome-
try (bold: identified by unique peptides, other: ambigious pep-
tides that correspond to more than one CA/CAL protein). For
the WT, unique peptides corresponding to all CA and CAL pro-
teins were detected, whereas the ca1 mutant did not contain
CA1-specific peptides. In the ca2 mutant, unique peptides were
identified for CA1, CAL1 and CAL2, but only ambiguous pep-
tides derived from either CA2 or CA3. Also, it had been demon-
strated previously for the ca2 mutant that CA2 was absent not
only in complex I, but also from complex I subcomplexes, and
that no CA2 monomers had been detected (Perales et al., 2005).
Together, these results provided strong evidence that the CA1
protein was absent in the ca1 mutant and the CA2 protein was
absent in the ca2 mutant without much affecting the abundance
of other subunits.

We also isolated mitochondria from leaves of mutants and
determined the NADH : NBT oxidoreductase activity for com-
plex I (Supporting Information Fig. S1). We observed a slight
decrease of complex I activity for the ca1 mutant (89% residual
activity with in gel activity measurement and no decrease in pho-
tometrical assay), but for the ca2 mutant a decrease by c. 75% for
the in gel activity measurement and 50% in the photometrical
assay. Together, growth was unaffected and complex I abundance
partially decreased in ca1 and ca2 mutants.

We performed reciprocal crosses of ca1 and ca2 mutants where
ca1 and ca2 mutants were used as male or female parent, respec-
tively. In these crosses, we were able to recover all predicted geno-
types with the exception of the ca1 ca2 double mutant genotype.
We therefore isolated individual F2 plants that were homozygous
for one T-DNA integration, but hemizygous for the other T-
DNA integration (ca1/ca1 CA2/ca2 or CA1/ca1 ca2/ca2 derived
from reciprocal crosses) and again analyzed genotypes in the next
generation after selfing (F3 progeny; Table 1). Independent of the
parental genotype, we again did not recover ca1 ca2 double
mutants. Segregation ratios significantly deviated from the
expected 3 : 1 segregation according to the v2 test. This was not
due to differences in germination rates of the tested F3 families
that were all between 78 and 88% (data not shown).

When analyzing maturing siliques from individual plants that
were homozygous for the T-DNA integration in one CA locus,
but hemizygous for the T-DNA integration in the other (ca1/ca1
CA2/ca2 or CA1/ca1 ca2/ca2 derived from reciprocal crosses), we
observed green and pale developing seeds (Fig. 2a). However,
siliques of the single mutants grown in parallel almost exclusively
contained green developing seeds. When quantifying the number
of pale seeds, we found c. 2% for the single mutants, but 21–24%
for the segregating genotypes (Table 2). Abundance of pale seeds
was in accordance with a 3 : 1 segregation according to the v2 test.
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We sought to genotype embryos in pale developing seeds. In
order to generate sufficient material for genotyping, embryos
were isolated and callus cultures were established (Fig. S2a).
DNA from these cultures was then used for genotyping. DNAs
from leaves of azygous (az), hemizygous and homozygous single
mutants were used as controls (Fig. S2b–d). Azygous plants are
derived from the same mother plant, but have lost the transgene
by segregation. Ten out of 10 pale seeds were homozygous for
both the ca1 and the ca2 T-DNA insertions indicating that
embryos in pale seeds were ca1 ca2 double mutants. Reciprocal
crosses with WT plants suggested that this effect was not due to
paternal or maternal sterility (Table S1).

We then recorded by microscopy embryo development in
siliques of azygous plants, ca1 and ca2 single mutants, and CA1/
ca1 ca2/ca2 mutants. For CA1/ca1 ca2/ca2, the embryo

development in pale (double mutant) and green seeds from indi-
vidual siliques was recorded separately. Table 3 shows days after
pollination at which embryos reached a particular developmental
stage. Embryos of azygous plants and ca1 or ca2 single mutants
developed similarly between 4 and 12 dap from transition stage
to green mature stage. Green seeds of CA1/ca1 ca2/ca2 plants
already showed a delay in some embryo developmental stages.
The transition stage was reached at 6.4 dap compared with
4.0 dap for the azygous lines. This delay remained almost con-
stant throughout development and the mature stage was reached
1.5 d later compared with azygous embryos. Embryos in pale
seeds from this genotype reached the transition stage and the
heart stage at similar time points compared with green seeds from
the same mother plant, but were then drastically delayed in fur-
ther development. Late torpedo stage was reached 5.8 d after

(a) (b)

(c) (d)

Fig. 1 Characterization of Arabidopsis
thaliana ca1 and ca2 single mutants. (a) CA1
and CA2 gene structure with T-DNA
insertion (grey triangles) for the SALK lines
used in this study. Black boxes indicate
exons, grey boxes the 50 and 30 UTRs, and
lines introns. (b) Phenotype of wild-type
(WT), ca1mutants and ca2mutants that
were grown for 7 wk under short day
(8 h : 16 h, light : dark) conditions. (c) CA and
CAL transcript abundance relative to WT
levels analyzed by RT-qPCR (n = 5–7,
mean� SE). (d) Detection of CA and CAL
proteins in complex I and supercomplex
I + III2. Protein complexes were isolated from
leaf mitochondria and separated by Blue
Native sodium dodecyl sulfate
polyacrylamide gel electrophoresis. Identity
of CA and CAL proteins was determined by
LC-MS. Proteins indicated in bold were
identified by unique peptides, other proteins
had no unique peptides and could not be
unambiguously identified.

Table 1 Analysis of F3 progeny genotypes of reciprocal crossings between Arabidopsis thaliana ca1 and ca2mutants

Crossing F2 individual F3 progeny
Expectation (%)
(1 : 2 : 1)

Observation
(%) v² (3 : 1) P-value

ca1/ca19 ca2/ca2 ca1/ca1 CA2/ca2 ca1/ca1 CA2/CA2 25 36� 1 228 < 0.001
ca1/ca1 CA2/ca2 50 64� 1
ca1/ca1 ca2/ca2 25 0� 0

CA1/ca1 ca2/ca2 CA1/CA1 ca2/ca2 25 35� 1 127 < 0.001
CA1/ca1 ca2/ca2 50 65� 1
ca1/ca1 ca2/ca2 25 0� 0

ca2/ca29 ca1/ca1 ca2/ca2 CA1/ca1 ca2/ca2 CA1/CA1 25 44� 3 80 < 0.001
ca2/ca2 CA1/ca1 50 56� 3
ca2/ca2 ca1/ca1 25 0� 0

CA2/ca2 ca1/ca1 CA2/CA2 ca1/ca1 25 40� 3 69 < 0.001
CA2/ca2 ca1/ca1 50 60� 3
ca2/ca2 ca1/ca1 25 0� 0

Observed segregation ratios were derived from the F3 progeny (n = 5–10 independent F2 individuals, mean� SE). v² values were calculated based on abso-
lute numbers of segregants with 1 df.
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(a)

(b)
Fig. 2 Defect seed and embryo development
of Arabidopsis thaliana ca1 ca2 double
mutants. (a) Seeds in the siliques of ca1 or
ca2 single mutants and the ca1/ca1 CA2/ca2

genotype. Pictures were taken at 12 d after
pollination (dap). Pale seeds are indicated by
arrows. (b) Typical embryo developmental
stages at 15 dap of azygous and ca1 ca2

double mutant seeds. Azygous (az) embryo is
in the green mature stage and ca1 ca2

double mutant embryo in the late torpedo
stage. Bar, 100 lm.

Table 2 Ratios of green and pale developing seeds in siliques of Arabidopsis thaliana azygous plants, ca1 and ca2 single mutants and segregating lines
derived from reciprocal crosses of these mutants

♂

♀ Azygous ca1/ca1 CA2/CA2 CA1/CA1 ca2/ca2 ca1/ca1 CA2/ca2 CA1/ca1 ca2/ca2 ca2/ca2 CA1/ca1 CA2/ca2 ca1/ca1

Green ovules 99%� 0 98%� 0 98%� 0 79%� 5 76%� 3 77%� 1 77%� 1
Pale ovules 1%� 0 2%� 0 2%� 0 21%� 5 24%� 3 23%� 1 23%� 1
v² (3 : 1) – – – 1.6 3.5 1.4 2.5
P-value – – – < 0.25 < 0.10 < 0.25 < 0.25

Genotypes are indicated in the table. Ten independent plants per genotype were analyzed (n > 800 seeds, mean� SE). v² values were calculated based on
absolute numbers of segregants with 1 df.

Table 3 Embryo development of Arabidopsis thaliana azygous (az) plants, ca1 and ca2mutants and segregating CA1/ca1 ca2/ca2 plants derived from
reciprocal crosses of these mutants

Parental genotype Seed colour

Embryo stage

Transition Heart Early torpedo Torpedo Late torpedo Mature

az 4.0� 0.1 5.4� 0.5 6.6� 0.3 7.5� 0.3 8.0� 0.6 11.8� 0.4
ca1/ca1 4.3� 0.6 6.0� 1.2 6.8� 0.3 7.5� 0.1 8.3� 0.1 12.4� 0.2
ca2/ca2 4.7� 0.2 5.6� 0.4 7.2� 0.1 7.9� 0.3 10.2*� 0.1 11.9� 0.6
CA1/ca1 ca2/ca2 Green 6.4**� 0.2 7.7� 0.8 7.6� 0.3 9.0*� 0.2 10.4*� 0.3 13.3*� 0.1

Pale 7.2**� 0.1 7.7**� 0.2 10.7**� 0.2 12.5**� 0.3 13.8**� 0.1 –

Embryo development was analyzed in three biological replicates from 4 d after pollination (dap) to 15 dap by differential inference contrast microscopy. For
segregating lines, green and pale ovules were separately analyzed (n > 500 seeds, mean dap� SE). *, P ≤ 0.05; **, P ≤ 0.01 according to Student’s t-test
mutants compared with wild-type.
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azygous embryos. We did not observe mature embryos in pale
seeds during the investigated time period (Fig. 2b). Thus, simul-
taneous mutation of CA1 and CA2 resulted in a strong delay in
embryo development. Very similar delays were also obtained for
other parental genotype combinations (ca1/ca1 CA2/ca2 and
reciprocal father/mother combinations; Table S2). However, seed
development was WT-like for the ndufs4 mutant (Table S2),
although complex I levels are strongly decreased in this mutant
(Meyer et al., 2009; K€uhn et al., 2015).

Our data suggested that ca1 ca2 double mutant seeds aborted
embryo development. However, in exceptional cases (< 1%),
double mutant seeds matured and germinated. Seedlings derived
from these seeds did not turn green and died after few days.
However, when these seedlings were transferred to sucrose
medium (3% w/v), some of these plants survived, formed green
rosette leaves and eventually flowered. These plants were much
smaller than controls and their development was strongly
retarded (Fig. 3a–c) which was often associated with anthocyanin
accumulation. We determined superoxide anion levels by NBT
staining as a representative for reactive oxygen species (Fig. 3d).
The ca1 ca2 double mutants showed clearly enhanced staining
compared with corresponding azygous segregants. However, note
that this assay might also indicate complex II activity (Boerjan
et al., 1991). Siliques of these plants developed only few seeds.
All remaining seeds were pale up to 12 dap. In older seeds (> 15
dap), we always observed endosperm degeneration and seed abor-
tion (Fig. S3). Seeds derived from ca1 ca2 double mutants never
germinated even on high sucrose media. Defects in pollen devel-
opment as assayed by in vitro pollen germination assays were not
detected (Fig. S4).

In addition to growth of young double mutant seedlings on
sucrose medium shown here, we were also able to recover double

mutants by the embryo rescue technique. These plants showed a
similar phenotype and are shown in Fig. S5.

cCA proteins are part of complex I of the mitochondrial elec-
tron transport chain (mETC; see the Introduction section). We
therefore wanted to analyze the activity of mETC complexes in
double mutants. Analyses of mitochondria from leaf samples
were hampered by the low availability of leaf material from the
few rescued double mutant plants. We therefore generated callus
cultures from ca1 ca2 embryos (see earlier) and analyzed mETC
complexes in mitochondria derived from this source. ca2 single
mutants and WT were used as controls (Fig. 4a). ca1 ca2 double
mutant cultures grew slightly slower than WT cultures, but com-
parable to the ca2 single mutant (Fig. S6). Complex I protein
and NADH : NBT oxidoreductase activity of complex I were
lower in the ca2 mutant (20%), but absent (1% or less of WT) in
the double mutant. We confirmed the absence of complex I by
mass spectrometry. Proteins were extracted from BN-PAGE gels
at the expected position of complex I. Most complex I subunits
could be identified in protein from WT mitochondria. However,
we could not detect any complex I subunit in the corresponding
double mutant samples (Fig. S7). The remaining NADH : NBT
oxidoreductase activity in the lower part of the gel was previously
assigned to alternative NADH dehydrogenases or to the activity
of dehydrolipoamide dehydrogenase (Meyer et al., 2009).

Complex II activity was also less (44%) in the ca2 mutant, but
slightly increased in the double mutant (Fig. 4a). However, com-
plex IV activity was clearly increased (261%) in the double
mutant compared with both controls. Complex V activity
remained largely unaffected (73%). Together, these data indi-
cated that mitochondria from the ca1 ca2 double mutant did not
contain any intact complex I. This coincided with an upregula-
tion of complex II and complex IV activity.

(a) (b)

(c) (d)

Fig. 3 Phenotype of Arabidopsis thaliana
ca1 ca2 double mutants in comparison to
azygous (az) plants, ca1 and ca2 single
mutants and hemizygous individuals. (a)
Rosettes of 10-wk-old plants grown under
short-day (10 h : 14 h, light : dark) conditions.
Scale bar is 2 cm. (b) 12-week-old plants
(12 h : 12 h, light : dark) with flowers.
(c) Number of rosette leaves and outer rosette
diameter of 10-wk-old double mutant plants
and a control line (n = 8, mean� SE).
**, P ≤ 0.01 according to Student’s t-test ca1/
ca1 ca2/ca2mutant compared with ca1/ca1
CA2/ca2. (d) Superoxide detection in
azygous and ca1 ca2 leaves as determined by
NBT staining. Bar, 1 cm.
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We further performed photometrical activity assays with pro-
tein isolated from mitochondria (Fig. 4b–d). NADH : ferri-
cyanide oxidoreductase activity decreased by more than two-fold
in the ca2 mutant compared with the WT and a further decrease
was observed in the double mutant. This assay cannot discrimi-
nate complex I activity from other alternative mitochondrial
dehydrogenases that might be responsible for the remaining
activity in the double mutant. Complex II activity was slightly
lower for ca2 mutants, but significantly higher for the double
mutant, compared with the WT. Most significantly, complex IV
activity was strongly increased by more than eight-fold in the
double mutant. This is greater than observed in in gel assays and
might be caused by different dynamic ranges of the different
assays. Together, these data supported the observations from in
gel assays indicating that absence of complex I was partially com-
pensated for by upregulation of other mETC complexes.

In an effort to verify the absence of complex I in leaf samples
from double mutants, we prepared mitochondria from the lim-
ited number of available leaves. These preparations were
inevitably contaminated with chloroplast proteins (Fig. 4e). We
observed a strong band of the expected size in the complex I
activity stain from WT samples, but not from double mutant
samples. A very faint activity stain was visible below the size of
the expected complex I band (indicated by a closed triangle). We
therefore again confirmed the absence of complex I by mass spec-
trometry as described earlier for material from callus cultures
(Fig. S7). We could not detect any complex I subunit in double
mutant samples.

We determined the capacity of the complete mETC in intact
mitochondria from double mutants and control lines by oxygen
consumption measurements (Fig. 5). In the WT, background
oxygen consumption in the absence of external ADP was
increased by 67% after ADP addition resulting in an ADP-
dependent oxygen consumption of c. 86 nmol mg�1min�1. This
was almost identical for the ca2 mutant. However, oxygen con-
sumption was significantly increased in the double mutant con-
trols, both before and after ADP addition. ADP-dependent
activity was 106 nmol mg�1min�1. This indicated increased
activity of the mETC in spite of the absence of complex I.

The ca1 ca2 double mutants lacked assembled complex I
(Fig. 4). We wanted to understand whether structure or enzy-
matic function of CA proteins was important for complex I
assembly. We failed to detect CA activity of recombinant pro-
teins overexpressed in E. coli despite significant efforts (data not
shown) and therefore created versions of CA2 with mutations
that would very probably disrupt the activity of the enzyme (see
Introduction and Fig. 6a). In version H130N/H135N, two his-
tidines important for Zn2+ ligation (Kisker et al., 1996; Parisi
et al., 2004) were replaced by aspartic acid. In version R86A, an
asparagine residue was replaced by an alanine. The homologous
substitution had been shown to disrupt activity of the cCA from
Methanosarcina thermophila (Tripp et al., 2002). Constructs
encoding the modified CA2 versions were transformed into
plants homozygous for the ca2 mutation and heterozygous for
the ca1 mutation (CA1/ca1 ca2/ca2). T1 plants were selected on
MS medium containing Glufosinate and selfed. Individual T2

(a) (e)

(b) (c) (d)

Fig. 4 Activity of respiratory protein
complexes in Arabidopsis thaliana wild-type
(WT), ca2, and ca1 ca2mutants. (a) Protein
complexes of mitochondria isolated from cell
culture were resolved by Blue Native
polyacrylamide gel electrophoresis. Gels were
stained with colloidal Coomassie.
Corresponding gels were used for in gel

activity assays of complex I, II, IV and V (for
details see the Material and Methods
section). Identities of selected mitochondrial
protein complexes are indicated beside the
gels (I, complex I; II, complex II; III2, dimeric
complex III; I + III2, supercomplex formed of
complex I and dimeric complex III; IV,
complex IV; V, complex V; F1, F1 part of
complex V). Relative density was estimated
with IMAGEJ. Closed triangle, faint
NADH : NBT oxidoreductase activity stain.
Photometrical activity assays of mitochondria
isolated from cell culture were carried out for:
(b) complex I, (c) complex II and (d) complex
IV (n = 5, mean� SE). **, P ≤ 0.01 according
to Student’s t-test mutants compared with
WT. (e) Protein complexes of mitochondria
isolated from leaves were resolved by BN-
PAGE. Gels were stained with colloidal
Coomassie. Corresponding gel was used for
in gel activity assay of complex I.
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segregants were genotyped for T-DNA integrations at the CA1
and the CA2. We expected to detect ca1 ca2 double mutants in
the T2 only if the modified CA2 versions could complement the
severely impaired embryo development of the double mutant.
ca1 ca2 double mutants were detected both among plants trans-
formed with the H130N/H135N (three plants) and R86A (one
plant) constructs. T3 plants that grew on MS supplemented with
Glufosinate were again genotyped (Fig. S8). Phenotypically, we
could not discriminate between complemented lines from WT
plants (Fig. 6b) and seed development was normal in these lines.
Moreover, complemented double mutant lines again showed
WT-like complex I NADH : NBT oxidoreductase activity on
BN-PAGE gels (Fig. 6c). This was comparable to complex I
NADH : NBT oxidoreductase activity in plants that were com-
plemented with the nonmutated CA2 sequence (Fig. S9). To fur-
ther support this observation, we also transformed the constructs
encoding the modified CA2 versions into ca2 single mutants
(CA1/CA1 ca2/ca2). As shown earlier (Figs 1, 3), these mutants
were not impaired in growth, but had decreased complex I levels.
This decrease was confirmed in this experiment, but lines overex-
pressing the H130N/H135N or R86A constructs showed WT-
like levels of complex I (Fig. 6c). Together, these data suggest that
cCA enzymatic activity is dispensable for complex I assembly and
seed development.

We additionally tested a possible function of cCA enzymatic
activity in CO2 transfer from mitochondria to chloroplasts (see

Introduction). Our hypothesis was that CO2 transfer would
reduce oxygenation of RuBP by Rubisco and – by this – pho-
torespiration. Inactive cCA versions could not support CO2

transfer and this would result in higher rates of photorespiration.
We used glycine : serine (gly : ser) ratios as an estimate for pho-
torespiratory flux (Novitskaya et al., 2002) and determined this
parameter at normal (400 ppm) and enhanced (100 ppm) pho-
torespiratory conditions (Fig. 6d). As expected, gly : ser ratios
increased at 100 ppm compared with 400 ppm for all genotypes.
When comparing the different genotypes, both complemented
lines with inactive cCA versions showed slightly lower gly : ser
ratios than WT plants, indicating similar or lower rates of pho-
torespiration. These data do not support a role for cCA enzy-
matic activity in CO2 transfer.

Discussion

Whereas mutation of the CA1 or CA2 genes, respectively, had lit-
tle influence on the plant phenotype (Fig. 1), ca1 ca2 double
mutants were characterized by delayed embryo development and
an inability to form viable seeds under normal growth conditions
(Table 3; Fig. S3). Moreover, rescued seedlings showed strong
defects in vegetative growth (Fig. 3). These observations could be
either assigned to the function of carbonic anhydrase (CA) pro-
teins as essential subunits for the assembly of plant complex I
(Meyer et al., 2011; Li et al., 2013) or to the enzymatic activity of
these proteins (Parisi et al., 2004; Martin et al., 2009). We were
now able to discriminate between these two possibilities by com-
plementation analyses with inactive versions of the plant cCA2.
Admittedly, we and others were unable to determine the activity
of the overexpressed protein, but – given that the protein would
possess CA activity – the introduced mutations would very prob-
ably eliminate this activity. Still, these inactive versions fully com-
plemented the growth phenotype and this was associated with
reconstitution of a wild-type (WT)-like amounts of assembled
complex I (Fig. 6). Furthermore, rates of photorespiration as esti-
mated by gly/ser ratios did not support a role in CO2 transfer.
Thus, function as a complex I assembly factor is probably more
important for plant viability than the predicted enzymatic func-
tion. Our data do not exclude a function in the equilibration of
subcellular CO2 concentrations in the leaf (Braun & Zabaleta,
2007; Zabaleta et al., 2012; Soto et al., 2015) under specific
growth conditions that we did not test.

Beside functions in primary metabolism, complex I has also
been associated with ascorbate biosynthesis. This was based on
the physical interaction of complex I and L-galactono-1,4-lactone
dehydrogenase (GLDH) (Heazlewood et al., 2003), the last
enzyme of the ascorbate biosynthetic pathway in plants (Wheeler
et al., 1998). Thus, the growth phenotype of ca1 ca2 double
mutants might be caused by a disruption of ascorbate biosynthe-
sis. This is consistent with higher superoxide levels in the mutants
(Fig. 3). However, GLDH is only transiently associated with
complex I assembly intermediates and absent from mature com-
plex I (Schimmeyer et al., 2015). Most GLDH in mitochondria
is actually not complexed, but exists as a free monomer according
to Gelmap (Klodmann et al., 2011). Leaves of the tobacco

Fig. 5 Oxygen consumption of mitochondria derived from Arabidopsis

thalianawild-type (WT), ca2mutant and ca1 ca2 double mutant lines.
Oxygen consumption of isolated mitochondria was measured before (grey
bars) and after adding ADP (black bars) using a Clark-type oxygen
electrode as described in the Materials and Methods section (n = 5,
mean� SE). **, P ≤ 0.01 according to Student’s t-test mutants compared
with WT.
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CMSII mutant that lacked complex I contained normal ascorbate
concentrations (Dutilleul et al., 2003). Moreover, growth of
ca1 ca2 double mutants in heterotrophic cell cultures was only
slightly slower compared with WT (Fig. S6) even though the
growth medium did not contain ascorbate. We conclude that
ascorbate deficiency is probably not the reason for the severe
growth phenotype of ca1 ca2 double mutants.

Our results indicate that presence of either CA1 or CA2 is an
absolute requirement for complex I assembly (Fig. 4). CA2 is the
dominant isoform in WT leaves. As complex I amounts clearly
decreased in ca2 single mutants (Perales et al., 2005; Meyer et al.,
2011; this study), but only slightly affected in ca1 mutants
(Fig. S1), CA2 is seemingly more important for complex I assem-
bly than CA1. The remaining CA3 protein obviously cannot
compensate for the absence of the other two cCAs. This is consis-
tent with the observation that ca1 ca3 double mutants showed a
WT-like phenotype (Wang et al., 2012). In addition, CA3 was

the only cCA that was not detected in the extra CA domain of
complex I but, rather, was associated with the core membrane
arm of the complex I (Klodmann et al., 2010), and the amounts
of CA3 transcripts in developing seeds are low compared with
CA1 and CA2 transcripts (Fig. S10). Thus, the currently available
data do not provide evidence for a function of CA3 in complex I
assembly. Beside CA proteins, CAL proteins are seemingly also
important for seed development and plant growth because
cal1 cal2 double mutants were characterized by an embryo-lethal
phenotype (Wang et al., 2012; Fromm et al., 2016). One CAL
protein was sufficient for normal growth. In addition, combina-
tions of ca mutants and cal mutants were investigated (Soto et al.,
2015). Both ca2 cal1 and ca2 cal2 double mutants were slightly
retarded in growth, but plants did not show stress symptoms and
were capable of completing their life cycle. We conclude that at
least one CA isoform and one CAL isoform are required for com-
plex I assembly and reproductive development.

(a)

(b)

(c) (d)

Fig. 6 Complementation of Arabidopsis
thaliana ca1 ca2 double mutants with
inactive versions of CA2. (a) In the CA2
protein sequence, the amino acid arginine 86
(R86) was replaced by alanine and histidine
130 and histidine 135 (H130 H135) were
replaced by asparagine. (b) Phenotype of 9-
wk-old azygous plants, ca1 ca2 double
mutants and complemented plants
(8 h : 16 h, light : dark). Bar, 2 cm. Image
sections are assembled from different parts
of a gel photo. (c) Reconstitution of complex
I in complementation lines. Protein
complexes of protein extracts were separated
in a BN-PAGE and used for in gel complex I
activity staining (I, complex I). Image sections
are assembled from different parts of a gel
that have been reorganized. Relative density
was estimated with IMAGEJ. (d) Ratio of
glycine and serine contents in complemented
lines at 400 ppm and 100 ppm CO2 (n = 4,
mean� SE). *, P ≤ 0.05 according to
Student’s t-test mutants compared with
azygous plants.
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Homozygous ca1 ca2 double mutant seeds were strongly
affected in development (Table 3; Fig. 2) and the few rescued
double mutant plants did not produce any viable seeds (Fig. S3).
This is consistent with the phenotype of other Arabidopsis com-
plex I mutants such as otp43 (de Longevialle et al., 2007), ndufv1
(K€uhn et al., 2015) and indh (Wydro et al., 2013): whereas otp43
plants do not properly splice a mitochondrial pre-mRNA encod-
ing a complex I subunit, the ndufv1 mutant lacks the catalytic
subunit of complex I, and the indh mutant an iron-sulfur protein
required for complex I assembly. None of the mutants presented
detectable amounts of complex I and were also characterized by
retarded growth and low viability of seeds. However, other
mutants with decreased, but not completely abolished complex I
levels, mostly showed normal reproductive development (Gutier-
res et al., 1999; Perales et al., 2005; Meyer et al., 2009, 2011;
K€uhn et al., 2015). Thus, only low amounts of complex I are
required for embryo and seed development. There is conflicting
information about the importance of mitochondrial respiration
during embryo and seed development. On the one hand, based
on flux labeling of metabolites, it has been suggested that devel-
oping seeds of Brassica napus lack a complete TCA cycle and
probably mainly use the light reactions of photosynthesis and the
plastidal oxidative pentose phosphate pathway for NADPH and
ATP production (Schwender et al., 2006; Baud et al., 2008). On
the other, efficient oxygen supply (as terminal electron acceptor
of mitochondrial respiration) is important for seed development
(Borisjuk et al., 2003; Geigenberger, 2003; Rolletschek et al.,
2003) and mutants deficient in complex IV (Dahan et al., 2014)
or the biosynthesis of ubiquinone (Okada et al., 2004), both
components of mitochondrial respiration, were arrested very
early in embryo development. We also observed delayed embryo
development from early stages in embryo maturation for the
ca1 ca2 double mutant (heart stage; Table 3). We therefore sug-
gest that complex I activity and, thus, efficient ATP synthesis by
the mitochondrial electron transport chain (Wikstrom, 1984;
Heazlewood et al., 2003; Galkin et al., 2006) is of special impor-
tance during early embryo development where embryo photosyn-
thesis cannot provide sufficient energy equivalents to sustain
cellular metabolism. Other observations such as absence of
embryo greening or shrinking of seeds might be secondary effects
that are common to many mutants in embryo development (e.g.
Eastmond et al., 2002; van Dijken et al., 2004; G�omez et al.,
2006; Hsu et al., 2014) and that might be due to active maternal
abortion of the development of unhealthy seeds in order to save
sugars and other nutrients (Sun et al., 2004).

Even when seeds of ca1 ca2 double mutants were rescued on
high sugar media, the resulting plants showed strongly retarded
growth and stress symptoms such as anthocyanin and reactive
oxygen species (ROS) accumulation (Fig. 3). This is reminiscent
of plants with an imbalance in redox homeostasis (Winkel-
Shirley, 2002; Juszczuk et al., 2012; Baxter et al., 2014).
Heterotrophic callus cultures of ca1 ca2 mutants also grew slower
than wt cultures, but these effects were less pronounced than for
plants (Fig. S6). At the molecular level, we observed increases in
complex II and particularly complex IV activity that were associ-
ated with higher oxygen consumption in respiration (Fig. 5).

This argues for an upregulation of electron transport through the
mitochondrial electron transport chain (mETC) in order to com-
pensate for the decreased proton translocation caused by the
absence of complex I. Electron transfer into the mETC could be
catalyzed by alternative NADH dehydrogenases, but also multi-
ple organic acid dehydrogenases in the mitochondrial matrix
(Schertl & Braun, 2014), and additional electron donors could
be provided by an upregulation of glycolysis or the tricarboxylic
acid (TCA) cycle. This kind of compensatory upregulation of
upstream processes has recently been determined for the ndufv1
mutant (K€uhn et al., 2015). Interestingly, ndufv1 mutants also
showed increased respiratory oxygen consumption, but this was
mainly assigned to higher activities of alternative oxidases (AOX)
and not to increases in complex IV activity as for ca1 ca2 double
mutants. However, we also observed higher ADP-independent
respiration in our mutants (Fig. 5). This might indicate higher
AOX activity, because AOX do not contribute to formation of
the proton gradient and are therefore not linked to ATP synthesis
(Rogov & Zvyagilskaya, 2015). A direct comparison of both
mutants under identical growth conditions is probably required
to resolve these differences at the molecular level. However, both
datasets indicate that a complete loss of complex I results in com-
pensatory adaptations that might cause an imbalance between
NADH production and consumption in leaves.

In conclusion, simultaneous deletion of ca1 and ca2 caused
strong growth defects most probably because of the absence of
detectable amounts of complex I in these plants. We observed a
drastic rearrangement of the mETC in response to this defi-
ciency. This also provides additional evidence about an impor-
tant function of the enigmatic cCA domain in complex I
assembly.
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Fig. S1 Complex I activity in Arabidopsis �� and ca1 and ca2 single mutants. (a) Protein 

complexes of mitochondria isolated from green tissue were resolved by BN-PAGE. Gels were 

stained with colloidal Coomassie. (b) Corresponding gels were used for complex I in gel activity 

assays using NBT as artificial electron acceptor (for details see the Material and Methods 

section). Molecular masses of the resolved protein complexes are given to the left of the figure 

(I, complex I; I+III2, supercomplex formed of complex I and dimeric complex III). Identity of 

selected mitochondrial protein complexes are given in between the gels. (c) Photometric 

complex I activity assay of mitochondria isolated from cell culture was also carried out (n = 5, 

mean ± SE). **, P ≤ 0.01 according to Student’s t-test mutants compared to ��. 
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Fig. S2 Genotyping of pale developing seeds. (a) Callus cultures were established from embryos 

isolated form pale seeds. (b–d) Genotypes were determined by PCR. DNAs from leaves of 

azygous (az) plants, hemizygous and homozygous mutants were used as controls. A fragment of 
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the Actin2 gene (112 bp) was amplified form all callus samples as a control for successful DNA 

isolation. Specific oligonucleotides for genomic loci and T-DNA integrations are given in 

Materials and Methods section and sizes of expected amplification products are given in the 

figure. M = 1 kb GeneRuler (Thermo Scientific, Braunschweig, Germany). 
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Fig. S3 ca1 ca2 double mutant seeds were aborted in the silique. (a) Representative pictures of 

dissected siliques and corresponding embryos in seeds are shown for ca1 ca2 double mutant at 

12 d after pollination (dap) and >15 dap. (b) Mature seeds of azygous (az), ca1 and ca2 single 

mutants and the ca1 ca2 double mutant are shown.  
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Fig. S4 Analysis of male sterility of azygous (az), ca1 and ca2 single mutants and ca1 ca2 double 

mutants. In vitro pollen tube germination assay (n = 6 plants, mean ± SE). 
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Fig. S5 Embryo rescue of azygous (az) and ca1 ca2 lines. Seven days after pollination, 10 dap 

and 14 dap old siliques were dissected and seeds were transferred to 0.5 MS media containing 

3% (w/v) sucrose. (a) Rescued azygous and ca1 ca2 plants 20 d after the transfer. (b) Thirty-four 

days after the transfer the relative number of rescued plants that were able to form rosette 

leaves was analyzed (mean ± SE).  
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Fig. S6 FW increase of Arabidopsis ��, ca2 and ca1 ca2 cell cultures. Starting material (day 0) 

for �� (black bars), ca2 (white bars), and ca1 ca2 (grey bars) cultures was always 1.5 g. FW (g) 

was recorded after 3, 5 and 7 d (n = 9, mean ± SE). *, P ≤ 0.05; **, P ≤ 0.01 according to 

Student’s t-test mutants compared to ��.  

0

1

2

3

4

5

6

7

day 0 day 3 day 5 day 7

fr
e

s
h

 w
e

ig
h

t 
[g

]

�� ca2/ca2 ca1/ca1 ca2/ca2

***

**
**

**

**

Chapter 2: Publications

82



Fig. S7 Protein subunit identification of protein complexes of �� and ca1 ca2 double mutant 

lines. (a, b) Protein complexes of isolated mitochondria of �� and ca1 ca2 of cell culture and 

green tissue were separated by BN-PAGE and Coomassie stained afterwards. In the surrounding 

of complex I proteins were analyzed by LC-MS. The number of identified complex I subunits 

(su/ sus) for �� and ca1 ca2 mutant is given beside the gels. 
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Fig. S8 Genotyping of complemented ca1 ca2 lines. (a–c) Genotypes were determined by PCR. 

DNAs from leaves of hemizygous and homozygous mutants were used as controls. A fragment 

of the ACTIN2 gene (112 bp) was amplified from all samples in combination with the CA1 

genomic and ca1 T-DNA oligonucleotides as a control for successful DNA isolation. A multiplex 

PCR system was used for CA2 and ca2. Specific oligonucleotides for genomic loci and T-DNA 

integrations are given in Materials and Methods and sizes of expected amplification products 

are given in the figure. M = 1 kb GeneRuler (Thermo Scientific, Braunschweig, Germany). *Plant 

was excluded from activity measurements. 
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Fig. S9 Reconstitution of complex I in complementation lines. Protein complexes of protein 

extracts from leaves were separated in a BN-PAGE and used for in gel complex I activity staining 

(I, complex I). Image sections are assembled from different parts of a gel that have been 

reorganized. az, azygous; CA2-��, ca1/ca1 ca2/ca2 mutant complemented with the CA2 

wildtype sequence; R86A, ca1/ca1 ca2/ca2 mutant complemented with CA2 R86A; H130N 

H135N, ca1/ca1 ca2/ca2 mutant complemented with CA2 H130N H135N. 
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Fig. S10 Expression of CA and CAL genes in developing seeds. Gene expression data were taken 

from Arabidopis eFP Browser (http://bar.utoronto.ca/~dev/eplant/). Low and high expression 

levels are indicated in yellow and red, respectively.  
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Table S1 Reciprocal crossings of plants that were homozygous for the T-DNA integration in one 

CA locus, but hemizygous for the T-DNA integration in the other CA locus (CA1/ca1 ca2/ca2, 

ca1/ca1 CA2/ca2, ca2/ca2 CA1/ca1 and CA2/ca2 ca1/ca1) with �� plants 

Observed/expected 

Mother Father 
CA1/ca1 

CA2/ca2 

CA1/ca1 

CA2/CA2 

CA1/CA1 

CA2/ca2 
Total Chi² P-value 

CA1/ca1 

ca2/ca2 
��� 59/51 - 43/51 102 2.51 <0.1 

�� 
CA1/ca1 

ca2/ca2 
60/51 - 42/51 102 3.18 <0.1 

ca1/ca1 

CA2/ca2 
�� 78/73.5 69/73.5 - 147 0.55 <0.5 

�� 
ca1/ca1 

CA2/ca2 
49/45.5 42/45.5 - 91 0.53 <0.5 

ca2/ca2 

CA1/ca1 
�� 83/75 - 67/75 150 1.71 <0.25 

�� 
ca2/ca2 

CA1/ca1 
75/67.5 - 60/67.5 135 1.67 <0.25 

CA2/ca2 

ca1/ca1 
�� 27/27 27/27 - 54 0 0.0 

�� 
CA2/ca2 

ca1/ca1 
65/76.5 88/76.5 - 153 3.45 <0.1 

After crossing, the F1 progeny was analyzed. Observed and expected numbers are given and Chi² test 

indicates if the observed values fit the expected 1 : 1 segregation (5% significance threshold = 3.81). 
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Table S2 Embryo development of azygous (az) plants, ca1 mutants, ca2 mutants, and 

descendants derived from selfing of the CA1/ca1 ca2/ca2, ca1/ca1 CA2/ca2, ca2/ca2 CA1/

ca1 and CA2/ca2 ca1/ca1 genotypes and ������ mutant plants 

Embryo stage 

Parental 

genotype 
Seed colour Transition Heart Early torpedo Torpedo Late torpedo Mature 

az 4.0 ± 0.1 5.4 ± 0.5 6.6 ± 0.3 7.5 ± 0.3 8.0 ± 0.6 11.8 ± 0.4 

ca1/ca1 4.3 ± 0.6 6.0 ± 1.2 6.8 ± 0.3 7.5 ± 0.1 8.3 ± 0.1 12.4 ± 0.2 

ca2/ca2 4.7 ± 0.2 5.6 ± 0.4 7.2 ± 0.1 7.9 ± 0.3 10.2* ± 0.1 11.9 ± 0.6 

ca1/ca1 

CA2/ca2 

Green 6.3** ± 0.3 6.3 ± 0.1 7.8* ± 0.1 8.6* ± 0.2 10.0* ± 0.1 13.1 ± 0.3 

Pale 6.8** ± 0.1 7.1* ± 0.2 9.8** ± 0.3 11.9** ± 0.5 14.2** ± 0.2 - 

CA1/ca1 

ca2/ca2 

Green 6.4** ± 0.2 7.7 ± 0.8 7.6 ± 0.3 9.0* ± 0.2 10.4* ± 0.3 13.3* ± 0.1 

Pale 7.2** ± 0.1 7.7** ± 0.2 10.7** ± 0.2 12.5** ± 0.3 13.8** ± 0.1 - 

ca2/ca2 

CA1/ca1 

Green 6.3** ± 0.1 6.5 ± 0.1 7.8* ± 0.1 9.2** ± 0.1 10.7* ± 0.1 13.2* ± 0.1 

Pale 7.5** ± 0.1 7.9** ± 0.1 11.1** ± 0.1 13.4** ± 0.2 14.4* ± 0.1 - 

CA2/ca2 

ca1/ca1 

Green 6.1** ± 0.1 6.4 ± 0.1 7.5 ± 0.3 9.0* ± 0.3 10.7** ± 0.1 13.3* ± 0.1 

Pale 7.3** ± 0.1 7.6* ± 0.1 10.6** ± 0.1 12.5** ± 0.1 14.4** ± 0.1 - 

ndufs4  nd  nd 7.1 ± 0.1 8.1 ± 0.1 9.2 ± 0.1 13.0 ± 0.1 

Embryo development was analyzed in three biological replicates from 4 dap to 15 dap by DIC 

microscopy. For segregating lines, green and pale ovules were separately analyzed (n > 500 seeds, 

mean dap ± SE). *, P ≤ 0.05; **, P ≤ 0.01 according to Student’s t-test mutants compared with ��. 
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The mitochondrial NADH dehydrogenase complex (complex I) consists of
several functional domains which independently arose during evolution. In
higher plants, it contains an additional domain which includes proteins
resembling gamma-type carbonic anhydrases. The Arabidopsis genome codes
for five complex I-integrated gamma-type carbonic anhydrases (�CA1, �CA2,
�CA3, �CAL1, �CAL2), but only three copies of this group of proteins form
an individual extra domain. Biochemical analyses revealed that the domain
is composed of one copy of either �CAL1 or �CAL2 plus two copies of
the �CA1/�CA2 proteins. Thus, the carbonic anhydrase domain can have six
distinct subunit configurations. Single and double mutants with respect to the
�CA/�CAL proteins were employed to genetically dissect the function of the
domain. New insights into complex I biology in plants will be reviewed and
discussed.

Introduction

The NADH dehydrogenase complex is the first protein
complex of the mitochondrial oxidative phosphoryla-
tion (OXPHOS) system and the main site of electron
insertion into the respiratory chain (Hirst 2013). It is
composed of two large and longish domains called
arms: the membrane arm, which mainly is inserted into
the inner mitochondrial membrane, and the peripheral
arm, which protrudes into the mitochondrial matrix. The
domains are put together end-by-end, forming an L-like
particle. The structure was first described using electron
microscopy (EM) (Hofhaus et al. 1991,Weiss et al. 1991)
and later by X-ray crystallography (Hunte et al. 2010,
Zickermann et al. 2015). The most detailed structure has
been resolved for complex I of the bacterium Thermus

thermophilus, which is only composed of 16 subunits

Abbreviations – �CA, gamma-type carbonic anhydrase; �CAL, gamma-type carbonic anhydrase like; CCM, CO2 con-
centrating mechanism; EM, electron microscopy; complex I, NADH dehydrogenase complex; NADH, nicotinamide adenine
dinucleotide; OXPHOS, oxidative phosphorylation.

(Baradaran et al. 2013). In contrast, mitochondrial com-
plex I is larger and includes more than 40 subunits
(Carroll et al. 2006, Balsa et al. 2012). The structure of
Bos taurus complex I has been recently resolved using
cryo-electron microscopy (Vinothkumar et al. 2014).

Over ten years ago the first EM images of complex
I from plants were published (Dudkina et al. 2005). It
also has an L-like shape but surprisingly turned out to
have a second matrix-exposed domain which is attached
to the membrane arm at a central position (Fig. 1).
Besides complex I from the model plant Arabidopsis
thaliana, this extra domain meanwhile also has been
described for potato, maize and the alga Polytomella

(Sunderhaus et al. 2006, Peters et al. 2008, Bultema
et al. 2009) and is considered to represent a general
feature of plant complex I (Braun et al. 2014). Since its
discovery it was speculated that this extra domain is
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Fig. 1. Structure of mitochondrial complex I from Arabidopsis thaliana

as revealed by single particle electron microscopy. The extra domain,

which is absent in complex I from animals and fungi, is indicated by a

green circle. From: Sunderhaus et al. 2006, modified.

composed of additional subunits which do not form part
of complex I in animals and fungi. Indeed, proteomic
analyses of complex I subunits of plants have revealed
a number of plant-specific subunits (Heazlewood et al.
2003, Cardol et al. 2004, Sunderhaus et al. 2006). A
total of 49 different types of subunits have meanwhile
been described for A. thaliana, some of which occur in
different isoforms (Peters et al. 2013, Braun et al. 2014).
Of the extra-subunits in plants, most remarkable is a
group of five structurally related proteins which resemble
�-type carbonic anhydrases (Parisi et al. 2004, Perales
et al. 2004).

The carbonic anhydrase subunits
of complex I in plants

Three of the five gamma-type carbonic anhydrase sub-
units of A. thaliana have a largely conserved active
site with respect to the archaebacterial gamma-type
carbonic anhydrases of Methanosarcina thermophila
(Parisi et al. 2004, Ferry 2010) and are named �CA1
(AGI code: At1g19580), �CA2 (At1g47260) and �CA3
(At5g66510). The two remaining proteins lack two of
the histidines essential for zinc binding and therefore
are called �-carbonic anhydrase-like proteins, �CAL1
(At5g63510) and �CAL2 (At3g48680). Amino acid
sequence conservation is in the range of 70–75% for
the �CAs and even 91% for the two �CALs (Wang et al.
2012). The latter proteins therefore most probably repre-
sent isoforms. All five proteins are nuclear encoded and
post-translationally transported into mitochondria. The

�CA1/�CA2/�CA3 proteins lack cleavable mitochondrial
presequences, whereas the �CAL1/�CAL2 proteins have
short presequences of 12 (�CAL1) and 15 (�CAL2) amino
acids (Braun et al. 2014). The mature �CA1 and �CA2
proteins have masses of 30 kDa, �CA3 has a mass of
28 kDa and the two �CAL proteins of 25 kDa, respec-
tively. Despite extensive attempts, carbonic anhydrase
activity to this day has not been proven for any of the
�CA subunits of plant complex I. It has been speculated
that carbonic anhydrase activity of the �CA proteins
might depend on attachment to native complex I (Braun
and Zabaleta 2007, Zabaleta et al. 2012). However,
�CA2 overexpressed in Escherichia coli has been proven
to bind CO2/bicarbonate (Martin et al. 2009).

All genomes of higher plants code for complex
I-integrated carbonic anhydrases. However, genomes
of several plants such as rice, maize and poplar only
comprise one gene encoding �CAL (Meyer 2012), further
supporting that the Arabidopsis �CAL1 and �CAL2 pro-
teins represent isoforms. Moreover, some plant genomes
only code for two �CA subunits (maize, sorghum), while
other code for three (Arabidopsis, rice, poplar) (Meyer
2012). As a consequence, a minimal set of complex I
integrated �-carbonic anhydrase subunits might consist
of one �CAL and two �CA proteins.

The carbonic anhydrase domain of plant
complex I

Extensive evidence has been presented that the extra
matrix-exposed domain of plant complex I indeed
is composed of the �CA/�CAL proteins. Looking at
EM images of plant complex I, the extra domain
has a spherical shape and a diameter of about 60Å
(Dudkina et al. 2005, Peters et al. 2008). This allows
estimating a molecular mass of 75 kDa, plus some mass
for anchoring the domain within the membrane arm
of complex I. The prototype �-carbonic anhydrase of
Methanosarcina thermophila, which has been charac-
terized by X-ray crystallography (Iverson et al. 2000), is
a spherical homotrimer of very similar dimensions and
shape (Peters et al. 2008). Localization of the �CA/�CAL
subunits at thematrix-exposed side of themembrane arm
was furthermore demonstrated by protease protection
experiments (Sunderhaus et al. 2006). Finally, systematic
dissection of the membrane arm of isolated complex I
from Arabidopsis by treatment with low concentrations
of SDS allowed separating an 85 kDa subcomplex from
the membrane arm (Klodmann et al. 2010). It has been
demonstrated using mass spectrometry that this domain
includes the �CA1, �CA2, �CAL1 and �CAL2 proteins
(�CA3 was not detected). A smaller version of the mem-
brane arm is detectable upon detachment of the 85 kDa
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A B

Fig. 2. Subunit composition of the carbonic anhydrase domain. Dissection products of complex I were analyzed by 2D Blue native/SDS PAGE

(Klodmann et al. 2010; dissection by pre-treatment of isolated complex I with low concentrations of SDS). Only small areas of the 2D gels are

shown [native (horizontal) gel dimension: ∼75–100 kDa, SDS (vertical) gel dimension: ∼ 20–40 kDa]. (A) Results of two different experiments

(Coomassie-stained 2D gels). (B) Same gels including identified proteins (Klodmann et al. 2010; protein identifications using mass spectrometry).

An interpretation with respect to the subunit composition of the carbonic anhydrase domain is given above the gels in B.

subcomplex which includes all known subunits of the
membrane arm except for the �CA/�CAL proteins. It was
concluded that detachment of the �CA/�CALs does not
destabilize the membrane arm (Klodmann et al. 2010).
In summary, experimental data indicate that the extra
domain of plant complex I consists of three �CA/�CAL
proteins and has a molecular mass of approximately
85 kDa.

Subunit composition of the carbonic
anhydrase domain

The genome of Arabidopsis codes for five complex I
integrated �CA/�CAL proteins but the carbonic anhy-
drase domain of complex I only includes three of these
proteins. How can this be explained? Careful inspection
of 2D Blue native/sodium dodecyl sulfate (SDS) gels
separating complex I dissection products revealed that
the 85 kDa complex includes the �CA1, �CA2, �CAL1
and �CAL2 subunits, but that the latter two proteins are
not exactly aligned on a vertical line as required for sub-
units forming part of the same protein complex (Fig. 2).
It therefore was concluded that two ∼85 kDa complexes
closely co-migrate on the 2D gels, both including two
copies of the �CA1/�CA2 proteins and additionally
either �CAL1 or �CAL2. These findings are nicely sup-
ported by yeast-two hybrid data: It has been found that
�CA2 interacts with �CA2, �CAL1 and �CAL2 (Perales
et al. 2004, Braun et al. 2011). Interaction of �CAL1

and �CAL2 has not been found by yeast-two-hybrid
analyses. Again, no interaction data could be obtained
for �CA3.

In summary, location of �CA3 within the �CA domain
of complex I remains elusive. Several lines of evidence
indicate that �CA3, although detectable using MS in
total complex I fractions, is of very low abundance
and unclear localization: (i) few �CA3-specific pep-
tides were detected in the course of proteomic ana-
lyses of intact complex I (Peters et al. 2013), (ii) �CA3
was not detectable using MS in the 85 kDa domain
(Klodmann et al. 2010), and (iii) interaction of �CA3 with
any of the other �CA/�CAL proteins was not detected by
yeast-two-hybrid screens. We conclude that �CA3 might
not be included in the �CA domain (Fig. 3). Further-
more, �CAL1 and �CAL2 do not simultaneously form
part of individual complex I particles, but alternatively
occur within two distinct 85 kDa subcomplexes. Finally,
two copies of the �CA proteins form part of the 85 kDa
subcomplexes. Because yeast-two-hybrid data indicate
that �CA2 also can interact with �CA2, we speculate
that the �CA pair can be either homo- or heteromeric
(�CA1+ �CA2, or �CA1+ �CA1, or �CA2+ �CA2). How-
ever, further experiments have to be carried out to
prove that all three possible CA1/CA2 pairs indeed
occur. Taken together, available data are compatible
with occurrence of up to six subunit configurations for
the gamma carbonic anhydrase domain as illustrated in
Fig. 4.
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Fig. 3. Scheme of the subunit composition of the carbonic anhydrase

domain of complex I in Arabidopsis thaliana. CAL subunits are given in

light or dark green, CA subunits in orange red and purple. The CA3

protein was not found to be part of the carbonic anhydrase domain.

Function of the carbonic anhydrase domain

Single and double knock-out mutants with respect to the
�CA/�CAL proteins were employed to genetically dissect
the function of the �CA domain in A. thaliana. Plants
deficient in �CA2 had no visible phenotype at the condi-
tions tested (Perales et al. 2005). However, a suspension
cell culture of �ca2-deficient plants had reduced growth
and oxygen-uptake rates. Analyses of the respiratory
chain by 2D Blue native/SDS-polyacrylamide gel elec-
trophoresis (SDS-PAGE) revealed drastic reduction in
complex I amount and activity (Perales et al. 2005).
However, single particle EM showed that complex I par-
ticles frommutant cells had a normal shape and included
the characteristic �CA domain (Sunderhaus et al. 2006).
It was concluded that �CA2 could be replaced by other
�CA/�CAL proteins, most probably �CA1. In contrast
to plants deficient in �CA2, deletion of �CA3 had less
influence on complex I amount (Perales et al. 2005) fur-
ther supporting a more cryptic role of this member of the
�CA/�CAL protein family. Meanwhile, knock out mutants
for all five �CA/�CAL genes have been analyzed in Ara-
bidopsis. They all lack visible phenotypes (Wang et al.
2012). It was concluded that reciprocal substitutions
can compensate depletion of single �CA/�CAL proteins.
However, complex I amount and activity was reduced
in the mutants indicating that the �CA/�CAL subunits
are required for complex I assembly or stability. Nev-
ertheless, they should not be considered representing

Fig. 4. The six subunit arrangements of the carbonic anhydrase domain.

assembly factors because they clearly form part of mature
complex I, constituting the very significant extra domain.
A role of the �CA/�CAL subunits in early stages of com-
plex I assembly has been demonstrated by analysis of
complex I subcomplexes in Arabidopsis mutant lines
(Meyer et al. 2011) and by 15N-labeling experiments (Li
et al. 2013). Interestingly, genomes of some protists also
code for the complex I-integrated �CA/�CAL proteins
(Gawryluk and Gray 2010), possibly indicating their
involvement in ancient complex I assembly processes
which became lost during evolution in animal and
fungal lineages.

Beside their importance for complex I assembly, the
structural significance of the �CA domain clearly points
to another specific role of the �CA/�CAL protein family.
Even though carbonic anhydrase activity could not
be demonstrated up to date, active site conservation
with respect to the prototype �CA from Methanosarcina

thermophila much supports a role of these proteins in
mitochondrial CO2–bicarbonate conversion. Alterna-
tively, because �CA proteins form part of a larger protein
superfamily which also includes acetyltransferases (Parisi
et al. 2004), a role in mitochondrial protein acetylation
has been proposed but also could not be experimentally
demonstrated (Wang et al. 2012). Finally, sequence
similarity of the �CA/�CAL proteins to the M-subunit of
the cyanobacterial ‘carbon concentration mechanism’
(CcmM) machinery has been recognized (Parisi et al.
2004). Some of the CcmM proteins exhibit carbonic
anhydrase activity, but others do not (Peña et al. 2010).
The CcmM protein is important for efficient carbon
fixation in the carboxysomes of cyanobacteria (Rae et al.
2013).

In analogy to the cyanobacterial CcmM it has
been proposed that complex I integrated �CAs in
plants participate in an inner-cellular carbon transfer
mechanism that allows recycling of mitochondrial CO2
released by matrix-localized catabolic processes (includ-
ing glycine–serine conversion during photorespiration)
for carbon fixation in chloroplasts (Braun and Zabaleta
2007, Zabaleta et al. 2012). This hypothesis is sup-
ported by some experimental evidence (summarized in
Fromm et al. 2016): (i) when photosynthetic rates were
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C 

Fig. 5. Consequences of mutations with respect to the �CA/�CAL proteins on the six possible subunit arrangements of the carbonic anhydrase domain

(Fig. 4). The following mutants were generated: (A) RNAi-mediated depletion of �CAL2 in the background of a �cal1 knock-out (Δ�cal1/�cal2i). (B)

�ca2/�cal1 and �ca2/�cal2 knock outs (Soto et al. 2015). (C) A �ca1/�ca2 double knock out (Fromm, Braun and Peterhänsel, unpublished results). Red

cross: complex I assembly not possible anymore; yellow arrow: complex I assembly depleted.

compared between protoplasts and isolated chloro-
plasts, the protoplasts performed better at low CO2

suggesting that an internal CO2 source was avail-
able in protoplasts, but not in isolated chloroplasts
(Riazunnisa et al. 2006). Higher photosynthetic rates
in protoplasts were not detectable in the presence of
inhibitors of carbonic anhydrases. (ii) Transcription of
genes encoding the �CA/�CAL proteins is reduced if
plants are cultivated at high CO2 (Perales et al. 2005).
(iii) The tobacco ‘CMSII’ mutant, which has drastically
reduced amounts of complex I, exhibits diminished
steady-state photosynthesis. Inhibition of photosynthesis
was reduced if plants were cultivated at conditions
diminishing photorespiration (Dutilleul et al. 2003).
However, the above listed experimental results also
could be interpreted representing general effects of
complex I dysfunction on photorespiration. Altered
mitochondrial NAD+/NADH ratios caused by complex
I depletion might directly affect GDC function (Bykova
et al. 2014).

Characterization of double mutants
for investigating �CA/�CAL function

Until now, conclusive evidence for involvement of the
�CA/�CAL proteins in recycling mitochondrial CO2 for
carbon fixation by photosynthesis so far has not been pre-
sented. Very recently, double mutants with respect to the
�CA/�CAL proteins have been analyzed for investigating
the function of the �CA domain in Arabidopsis (Wang
et al. 2012, Soto et al. 2015, Frommet al. 2016). Overall,
four different double mutants have been characterized so
far:

(i) Δ�ca1/Δ�ca3 (Wang et al. 2012). Genes encod-
ing �CA1 and �CA3 are deleted in this Arabidopsis
mutant line. Plants do not show a visible pheno-
type under the conditions tested and are not distin-
guishable form a �ca1 single mutant. The biologi-
cal role of �CA3 therefore has to be further studied.

(ii) Δ�cal1/�cal2i (Wang et al. 2012). Because dele-
tion of either �CAL1 or �CAL2 did not reveal
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any phenotypic alterations, mutant lines were
crossed to generate �cal double mutants. How-
ever, resulting seeds turned out to arrest in
development. To obtain viable plants, the �CAL2
gene was downregulated by RNAi in the back-
ground of a homozygous �CAL1 knockout (Fig. 5).
Δ�cal1/�cal2i plants showed delayed germina-
tion and significantly postponed development.
In the light, Δ�cal1/�cal2i plants developed a
short hypocotyl phenotype. The gene encoding
chalcone synthase, a key enzyme of anthocyanin
synthesis, was induced in the mutant lines. It was
concluded that �CAL1 and �CAL2 play important
roles in light-dependent growth and development
in Arabidopsis (Wang et al. 2012). Meanwhile,
Δ�cal1/�cal2i plants have been characterized with
respect to the mitochondrial compartment (Fromm
et al. 2016). Complex I amount was reduced by
90–95% and oxygen consumption of isolated
mitochondria is much diminished. Comparative
proteome analyses revealed several changes in
the mutant which not only refer to complex I
subunits but also point to specific alterations of
central mitochondrial metabolism, e.g. pyruvate,
glutamate and stress metabolism. However, it
still is difficult to dissect molecular consequences
caused by complex I depletion on the one side
and diminishment of �CAL proteins on the other.

(iii) Δ�ca2/Δ�cal1 and Δ�ca2/Δ�cal2 (Soto et al.
2015). These double mutants lack the �CA2 gene
and additionally either �CAL1 or �CAL2. This
only allows for assembly of one out of six pos-
sible subunit configurations of the �CA domain
(Fig. 5). Both mutant lines are clearly delayed in
growth and development. Interestingly, this effect
is reverted if plants are cultivated in the presence
of high CO2, indicating that �CA function might
be especially relevant in the presence of photores-
piration. Reduction of complex I (about 80%) is
similar to the degree of complex I reduction in
�ca2 single mutants. However, the �ca2 mutant
did not exhibit a growth phenotype. The double
mutants also exhibit altered glycine metabolism. It
is concluded that �CA/�CAL function is important
in the context of photorespiration, but the precise
role of the �CA/�CAL proteins still remains elusive.

Outlook

For future research, precise differentiation between gen-
eral complex I function and specific function of the
�CA/�CAL subunits will be of great importance. Very
recently, a Δ�ca1/Δ�ca2 mutant has been generated

(Fromm, Braun and Peterhänsel, unpublished results and
Córdoba, Soto and Zabaleta, unpublished data). This
mutant, which lacks both main �CA proteins of the �CA
domain (presence of �CA3 within this domain is ques-
tionable) is severely impaired in development. Plants
can be rescued but development is extremely delayed.
As predicted (Fig. 5), complex I is completely absent.
This double mutant was genetically transformed with
�CA genes encoding modified �CA proteins which allow
reconstitution of complex I assembly, but lack their spe-
cific enzymatic function. Analysis of resulting plant lines
might help to finally uncover the significance of the �CA
domain of plant complex I.
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Abstract

The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in 

mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore 

of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant 

lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific ‘carbonic 

anhydrase domain’ of mitochondrial complex I.  The mutant lacks complex I  completely. Here we report extended 

analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show 

that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respira-

tory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. 

Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This 

is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain 

amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosyn-

thesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the 

double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much 

induced. These together with previously reported insights into the function of plant complex I, which were obtained by 

analysing other complex I mutants, are integrated in order to comprehensively describe ‘life without complex I’.

Key words: Arabidopsis thaliana, carbonic anhydrase, complex I, mitochondrial metabolism, photosynthesis, proteomics, 

respiratory chain.

Introduction

Cellular respiration is the fundamental ATP generating 
process common to most eukaryotes. Mitochondria carry 
out the final steps of  this process and efficiently generate 
ATP through oxidative phosphorylation (OXPHOS). The 
mitochondrial OXPHOS system consists of  five inner 

mitochondrial membrane-embedded protein complexes –  
the four respiratory chain protein complexes (complexes 
I–IV) and the ATP synthase complex (complex V) – 
and two mobile electron transporters (ubiquinone and 
cytochrome c).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which 

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.  

Abbreviations: 2D BN/SDS PAGE, two-dimensional blue native/sodium dodecyl sulfate polyacrylamide gel electrophorese; 2D IEF/SDS PAGE, two-dimensional 

isoelectric focusing/sodium dodecyl sulfate PAGE; CA, carbonic anhydrase; CAL, carbonic anhydrase-like; complex I, NADH dehydrogenase complex; DIGE, 

difference gel electrophorese; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; TCA cycle, tricarboxylic acid cycle; TIM, translocase of inner 

mitochondrial membrane; TOM, translocase of outer mitochondrial membrane.
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The OXPHOS complexes catalyse the electron transfer 
from NADH or FADH2 to molecular oxygen as the terminal 
electron acceptor. Electrons are inserted into the mitochon-
drial electron transport chain (mETC) via NADH generated 
by glycolysis, the TCA cycle (additionally electrons come 
from FADH2), and other catabolic processes such as the pho-
torespiration pathway in plants. As irst proposed by Peter 
Mitchell (1961), electron transport at the mETC is coupled to 
the translocation of protons from the mitochondrial matrix 
into the intermembrane space. This creates an electrochemi-
cal gradient across the inner mitochondrial membrane that 
results in a proton motive force. Complex V can use this pro-
ton gradient to generate ATP, which inally is exported and 
used for driving energy-demanding processes.

The NADH dehydrogenase complex (complex I) is of spe-
cial importance for the OXPHOS system because it is the 
main site for electron insertion into the mETC and can pro-
vide up to 40% of the protons for mitochondrial ATP forma-
tion (Hunte et al., 2010; Braun et al., 2014). The structure of 
complex I has been investigated in Escherichia coli, Thermus 

thermophilus, Bos taurus, and Yarrowia lipolytica (Morgan 
and Sazanov, 2008; Baradaran et  al., 2013; Vinothkumar 
et al., 2014; Zickermann et al., 2015). Its L-like shape, which 
originates from two orthogonally arranged ‘arms’, is well 
conserved in these species. One arm is hydrophobic, embed-
ded in the inner mitochondrial membrane, and termed the 
‘membrane arm’. The second arm, which is designated the 
‘peripheral arm’, is hydrophilic and is attached to the end 
of the membrane arm. It protrudes into the mitochondrial 
matrix. In plants, complex I contains an additional spherical 
domain, which is attached to the membrane arm at a cen-
tral position on its matrix-exposed side (Dudkina et al., 2005; 
Sunderhaus et al., 2006).

Despite overall similarity in shape, complex I from prokar-
yotes is comparatively small and has a simple subunit com-
position. The 14 subunits present in the 550 kDa complex 
I of E. coli constitute the ‘minimal set’ of subunits (Weidner 
et al., 1993; Yagi and Matsuno-Yagi, 2003; Sazanov, 2007). 
Complex I of eukaryotes is nearly twice as large (1000 kDa) 
(Friedrich and Böttcher, 2004; Brandt, 2006). In addition 
to the conserved ‘minimal set’ of subunits, eukaryotic com-
plex I  includes several accessory subunits (Friedrich, 2001). 
However, due to the occurrence of some lineage-speciic 
accessory subunits the overall number of complex I subunits 
varies between different eukaryotes (e.g. Chlamydomonas rein-

hardtii: 42; Yarrowia lipolytica: 42; Bos taurus: 45; Arabidopsis 

thaliana: 49) (Cardol et al., 2004; Carroll et al., 2006; Angerer 
et al., 2011; Peters et al., 2013).

Plant complex I  includes nine lineage-speciic subunits 
(Braun et al., 2014), most notably a group of carbonic anhy-
drases located within the spherical extra domain attached 
to the membrane arm (Sunderhaus et al., 2006). Within this 
domain, which is designated the ‘carbonic anhydrase domain’ 
of plant complex I, three gamma-type carbonic anhydrase 
(γCA) proteins (γCA1, γCA2, γCA3) and two gamma-
type carbonic anhydrase-like (γCAL) proteins (γCAL1 and 
γCAL2) are located (Perales et  al., 2004; Klodmann et  al., 
2010). Since the γCA domain has a molecular mass of 85 kDa 

it can only include three out of the ive γCA/γCAL proteins 
at the same time (Klodmann et al., 2010). Based on investiga-
tions using γCA/γCAL mutants, six possible subunit arrange-
ments have been suggested to occur (Fromm et al., 2016a): 
each γCA domain contains either the γCAL1 or the γCAL2 
protein and additionally two copies of the γCA proteins 
(γCA1 or γCA2, or both but not γCA3).

The γCA/γCAL subunits have been found to be essential 
for the early steps of complex I assembly (Meyer et al., 2011; 
Li et al., 2013). Deletion of the gene encoding Arabidopsis 
γCA2 causes reduction of complex I  (Perales et  al., 2005). 
Deletion or downregulation of more than one gene encoding 
the γCA/γCAL subunits in Arabidopsis has drastic effects on 
the amount of complex I  (Soto et  al., 2015; Fromm et  al., 
2016b, c). Similarly, deletion of other genes encoding com-
plex I subunits has been reported to cause signiicant reduc-
tion of complex I levels (e.g. deletion of the ndufs4, bir6, and 
slo3 genes; Kühn et al., 2015; Koprivova et al., 2010; Hsieh 
et al., 2015). In contrast to vertebrates, plants can withstand 
complex I  reduction and dysfunction because they possess 
alternative NADH dehydrogenases in the mitochondria, 
which are important for mitochondrial functioning, espe-
cially if  plants are growing under unfavorable growth condi-
tions (Rasmusson et al., 2008).

A few Arabidopsis mutants have been described that 
completely lack mitochondrial complex I.  In one mutant 
the NDUFV1 subunit (also called the 51-kDa subunit of 
complex I) is missing, causing complete absence of complex 
I. The mutant displayed increased �uxes through glycolysis 
and the TCA cycle (Kühn et al., 2015). In a second complex 
I-deicient Arabidopsis mutant the genes encoding γCA1 and 
γCA2 are absent. Mutant seeds do not germinate but can be 
rescued in the presence of high sucrose by an embryo rescue 
method (Fromm et al., 2016c). Growth of the resulting plants 
is extremely retarded. In the ca1ca2 mutant the cytochrome 
c oxidase complex is much induced, probably compensating 
for the loss of complex I  with respect to proton transloca-
tion across the inner mitochondrial membrane (Fromm et al., 
2016c).

Complex I-deicient mutants offer the unique opportunity 
to study ‘plant life without complex I’. Here we report a sys-
tematic proteomic comparison between ca1ca2 and wildtype 
Arabidopsis lines that is based on three distinct experimental 
strategies: 2D IEF/SDS PAGE, 2D BN/SDS PAGE, and a 
label-free quantitative shotgun proteome approach. MS anal-
yses allowed in-depth insights into the molecular mechanisms 
compensating for the lack of complex I.

Material and Methods

Plant material and growth conditions

Arabidopsis (Arabidopsis thaliana) lines used for this study were 
of the Columbia ecotype. The SALK_109391 (AT1G19580, ca1/
ca1) and SALK_010194 (AT1G47260, ca2/ca2) mutant lines were 
obtained from The European Arabidopsis Stock Centre (NASC; 
Loughborough, UK). ca1 and ca2 single mutants were crossed to 
generate ca1ca2 double-mutants (Fromm et al., 2016c). Plants were 
grown on 0.5 Murashige and Skoog medium in climate chambers 
under the following conditions: 8 h of light (120 µmol s−1 m−2)/16 h 
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of dark, 22  °C, 65% humidity, atmospheric CO2 concentrations. 
Homozygous ca1ca2 mutants were germinated and rescued by cul-
tivation on 0.5 MS medium containing 3% (w/v) sucrose. After 6 
weeks plants were transferred to soil and cultivation was continued 
under the same conditions without sucrose. Wildtype and double-
mutant plants were harvested at the 10-rosette-leaf developmental 
stage, and leaves were used for proteomic analyses.

Cell cultures of Arabidopsis lines were established as described by 
May and Leaver (1993). Callus was maintained as suspension cul-
ture according to Sunderhaus et al. (2006).

Isolation of mitochondria

Mitochondria from cell culture were puriied by differential centrifu-
gation and Percoll density gradient centrifugation as described by 
Werhahn et al. (2001).

Protein gel electrophoresis procedures and staining procedures

One-dimensional Blue Native PAGE (1D BN PAGE) was performed 
according to Wittig et  al. (2006). Mitochondrial membranes were 
solubilized by digitonin at a concentration of 5 g g–1 mitochondrial 
protein (Eubel et al., 2003). For subsequent SDS PAGE, BN lanes 
with separated protein complexes were transferred horizontally onto 
SDS gels. Second-dimension PAGE was carried out as outlined pre-
viously (Wittig et al., 2006). Differential gel electrophoresis (DIGE), 
which is based on labeling of proteins with CyDyes before 2D BN/
SDS PAGE, was carried out according to Peters and Braun (2012).

Two-dimensional IEF/SDS PAGE was carried out as described 
by Mihr and Braun (2003). For the IEF gel dimension, Immobiline 
DryStrip gels (24 cm, non-linear gradient pH 3–11) were used. 
Focusing took place for 24 h at 30 to 8000 V using the Ettan IPGphor 
3 system (GE Healthcare).

For the second gel dimension, IPG stripes were equilibrated for 
15 min with DTT (0.4 g/40 ml) and then 15 min with iodoaceta-
mide (1.0 g/40 ml). SDS PAGE was carried out using the High 
Performance Electrophoresis (HPE) FlatTop Tower-System (Serva 
Electrophoresis) using precast Tris-Glycine gels (12.5% polyacryla-
mide, 24 x 20 cm).

Gels were ixed for 2 h in 15% (v/v) ethanol, 10% (v/v) acetic acid 
and stained with Coomassie Brilliant Blue G250 (Neuhoff et  al., 
1985, 1990).

Comparative proteome analyses were based on gel triplicates 
and data evaluation using the Delta 2D software 4.3 (Decodon, 
Greifswald, Germany) according to Berth et al. (2007) and Lorenz 
et al. (2014).

Protein identification by mass spectrometry

Tryptic digestion of proteins and their identiication by mass spec-
trometry (MS) were performed as described by Klodmann et  al. 
(2010). Peptide separation was carried out by using the EASY-nLC 
System (Proxeon, Thermo Scientiic, Bremen, Germany) and cou-
pled MS analyses by using the MicrOTOF-Q II mass spectrometer 
(Bruker Bremen, Germany). MS primary data were evaluated using 
the Proteinscape software package (version 2.1, Bruker, Bremen, 
Germany), the Mascot Search Engine (Matrix Science, London, 
UK), the Arabidopsis protein database (www.arabidopsis.org; 
release TAIR10), and an updated version of a complex I database 
(Klodmann et al., 2010) that represents a subset of the Arabidopsis 
TAIR10 database. The threshold Mascot Score was set to 30 or 60 
for proteins and 20 for peptides.

Label-free quantitative shotgun mass spectrometry

Sample preparation for ESI-MS/MS
Total proteins of ive biological replicates of wt and ca1ca2 leaves 
were extracted. Then 50 µg of protein were solubilized in 2× sample 
buffer [4% (w/v) SDS, 125 mM Tris-HCl (pH 6.8), 20% (v/v) glycerol, 

and 0.5% (w/v) bromophenol blue (BPB)] and loaded on a glycine/
SDS gel [10% (w/v) acrylamide in stacking gel, 14% (w/v) in separa-
tion phase]. To concentrate proteins in a single band the gel run was 
stopped when the BPB front reached the end of the stacking gel. Gels 
were then Coommassie-stained and the protein bands were extracted 
and transferred into low-binding Eppendorf caps (Eppendorf, 
Wesseling-Berzdorf, Germany). After drying in a vacuum centri-
fuge (Eppendorf, Wesseling-Berzdorf, Germany), gel pieces were 
rehydrated in 200 µl reduction solution [20 mM DTT, 0.1 M ammo-
nium bicarbonate (AmBiC)] for 30 min at 56 °C. Afterwards, they 
were dehydrated again by addition of 200 µl acetonitrile (ACN) for 
10 min. The supernatant was removed and alkylation of cysteine 
residues was achieved by incubation in 200  µl alkylating solution 
(55 mM iodoacteamide, 0.1 M AmBiC) for 30 min in the dark. After 
ACN-dehydration for 10 min the supernatant was removed and 
200 µl of  0.1 M AmBiC were added. After 15 min of incubation the 
supernatant was removed and gel pieces were dehydrated by addition 
of ACN. After removal of residual ACN, gel pieces were dried by 
vacuum centrifugation for 20 min. The dried gel pieces were treated 
with trypsin (Promega, Mannheim, Germany) solution prepared 
according to the manufacturer’s instruction. Eighty microliters were 
added to each sample, which were subsequently incubated overnight 
at 37 °C. Extraction of peptides was initiated by adding 40 µl of  50% 
(v/v) ACN, 5% (v/v) formic acid (FA) (30 min, 37 °C, 800 rpm). The 
tryptic peptide-containing supernatants were collected in new low-
binding Eppendorf tubes. The procedure was repeated twice by irst 
adding 40 µl of  50% (v/v) ACN, 1% (v/v) FA, and then 100% (v/v) 
ACN afterwards. The supernatants for each sample were pooled in 
the same Eppendorf tubes and subsequently dried using a vacuum 
centrifuge at 30 °C. For mass spectrometry peptides were absorbed 
in 20 µl 2% (v/v) ACN, 0.1% (v/v) FA.

ESI-MS/MS
Tandem mass spectrometry (MS/MS) analysis was performed 
by means of a Q-Exactive (Thermo Fisher Scientiic, Dreieich, 
Germany) mass spectrometer coupled to an Ultimate 3000 (Thermo 
Fisher Scientiic, Dreieich, Germany) UPLC.

Seven microliters of sample solution were drawn from 0.25-ml 
glass insert vials (Sun-SRI, Rockwood, TN, US) kept at 8  °C in 
the sample compartment and stored in a 20-µl sample loop before 
being injected into a 2 cm, C18, 5 µm, 100 Å reverse phase trapping 
column (Acclaim PepMap100, Thermo Fisher Scientiic, Dreieich, 
Germany) at a rate of 4 µl min–1. Peptide separation was achieved on 
a 50 cm, C18, 3 µm, 100 Å reverse phase analytical column (Acclaim 
PepMap100, Thermo Fisher Scientiic, Dreieich, Germany). 
Peptides were eluted using a non-linear 2% to 30% (v/v) acetonitrile 
gradient in 0.1% (v/v) formic acid with a �ow of 300 nl min–1 over a 
period of 60 mins and at a set column oven temperature of 35 °C. To 
clean the column, the ACN concentration was subsequently raised 
to 95% (v/v) within 10 min, where it was kept for another 15 min 
before column equilibration to 2% (v/v) ACN commenced.

Transfer of eluted peptides into the mass spectrometer was 
achieved by means of a NSI source (Thermo Fisher Scientiic, 
Dreieich, Germany) using stainless steel nano-bore emitters 
(Thermo Fisher Scientiic, Dreieich, Germany) connected to the 
column outlet by a 50-cm, 0.05 mm ID fused silica capillary. During 
MS analysis spray voltage was set to 2.2 kV, capillary temperature 
to 275  °C, and S-lens RF level to 50%. The MS was run in posi-
tive ion mode, MS/MS spectra (top 10) were recorded from 30 mins 
to 220 min. For full MS scans, the number of microscans was set 
to 1, resolution to 70 000, AGC target to 1e6, maximum injection 
time to 400 ms, number of scan ranges to 1, scan range to 400–1600 
m/z, and spectrum data type to ‘proile’. For dd-MS2, the number 
of microscans was set to 1, resolution to 17 500, AGC target to 1e5, 
maximum injection time to 250 ms, Loop count to 10, MSX count to 
1, isolation window to 3.0 m/z, ixed irst mass to 100.0 m/z, NCE to 
27.0 (stepped NCE deactivated), and spectrum data type to ‘proile’. 
Data dependent (dd) settings were as follows: underill ratio, 0.5%; 
intensity threshold, 2.0e3; apex trigger, 10 to 40 s; charge exclusion, 
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unassigned, 1, 5, 5–8, >8; peptide match, preferred; exclude isotopes, 
on; dynamic exclusion, 45.0 s.

MS/MS data were queried against an in-house TAIR10 database, 
modiied to also include common contaminants (keratin, trypsin), 
MS-standards (BSA, ibrinopeptide) and known modiications of 
mitochondrial encoded proteins based on RNA-editing (AGIs) 
using Proteome Discoverer (Thermo Fisher Scientiic, Dreieich, 
Germany). Search runs employed the Mascot (Matrix Science, 
London, United Kingdom), peptide selector settings employed 
the following spectrum properties ilter: Lower Rt limit, 0; upper 
RT limit, 0; irst scan, 0; last scan, 0; lowest charge state, 1; high-
est charge state, 5; min. precursor mass, 350 Da; max. precursor 
mass, 5000 Da; total intensity threshold, 0; and minimum peak 
count, 1.  The scan event ilter was adjusted to the following set-
tings: mass analyser, ftms; ms order, MS2; activation type, HCD; 
min. collision energy, 0; max. collision energy, 1000; scan type, full; 
ionization source, nanospray; polarity mode, +. The S/N threshold 
was set to 1.5. For Mascot, the number of maximum missed cleav-
age sites was limited to 1, precursor mass tolerance to 10 ppm, and 
fragment mass tolerance to 0.8 Da. Allowed variable modiications 
were oxidation of methionine residues and N-terminal acetylations. 
Carbamidomethylation of cysteine residues was selected as ixed 
modiication. For the target decoy PSM validator, strict target FDR 
was set to 0.01, while 0.05 was selected for relaxed target FDR.

Identification and protein quantification
Q-Exactive raw-iles were loaded into the MaxQuant software (Cox 
and Mann, 2008) and processed using the following group speciic 
parameters: variable modiications, acetyl (N-term), oxidation (M); 
digestion mode, speciic; enzyme, Trypsin/P; max. number of missed 
cleavages, 2; match type, match from and to; number of threads, 3; 
max. instrument type, Orbitrap; irst search peptide tolerance, 20; 
main search tolerance, 4.5; peptide tolerance unit, ppm; individual 
peptide mass tolerance, chosen; isotope match tolerance, 2 (ppm); 
centroid match tolerance, 8 (ppm); centroid half  width, 35 (ppm); 
time valley factor, 1.4; isotope time correlation, 0.6; theoretical iso-
tope correlation, 0.6; recalibration unit, ppm; use MS1 centroids, 
not chosen; use MS2 centroids, not chosen; intensity dependent cali-
bration, not chosen; min. peak length, 2; max. charge, 5; min. score 
for recalibration, 70, cut peaks, chosen; gap scans, 1; advanced peak 
splitting, not chosen; intensity threshold, 500; intensity determina-
tion, value at maximum, label-free quantitation (LFQ) min. ratio 
count, 2; Fast LFQ, chosen; LFQ min. number of neighbors, 3; 
LFQ average number of neighbors, 6; number of modiications per 
peptide, 5; min. time, NaN; max. time NaN; additional var mods 
for special proteins, not chosen; separate variable modiications for 
irst search, not chosen; separate enzyme for irst search, not chosen.

Global parameters were chosen as follows: a fasta ile contain-
ing all Uni-Prot listed Arabidopsis thaliana protein sequences; ixed 
modiications, carbamidomethyl (C); re-quantify, not chosen; match 
between runs, chosen; match time window, 0.7 min; alignment time 
window, 20 min; match unidentiied features, not chosen; decoy 
mode, revert; special AAs, KR; include contaminants, chosen; I=L, 
not chosen; max peptide mass, 4600 Da; min. peptide length for 
unspeciic search, 8; max. peptide length for unspeciic search, 25; 
PSM FDR, 0.01; protein fdr, 0.01; Site decoy fraction, 0.01; min. 
peptide length, 7; min. peptides, 1; min. razor + unique peptides, 
1; min. unique peptides, 0; min. score for unmodiied peptides, 0; 
min. score for modiied peptides, 40; min. delta score for unmodiied 
peptides, 0; min. delta score for modiied peptides, 6; base FDR cal-
culation of delta score, not chosen; razor protein FDR, chosen; split 
protein groups by taxonomy ID, not chosen; ilter labelled amino 
acids, chosen; second peptides, chosen; dependent peptides, not cho-
sen; min ratio count, 1.5; peptides for quantiication, unique + razor; 
use only unmodiied peptides and selected modiications, chosen; 
modiications used in protein quantiication, acetyl (N-term), oxida-
tion (M); discard unmodiied counterpart peptide, chosen; separate 
LFQ in parameter groups, not chosen; stabilize large LFQ ratios, 

chosen; require MS/MS for LFQ comparisons, chosen; iBAQ, cho-
sen; Log it, chosen; advanced site intensities, chosen.

LFQ intensities from the corresponding MaxQuant ‘protein-
Groups.txt’ ile were uploaded into the Perseus software (http://
www.biochem.mpg.de/5111810/perseus) to build a quantitation 
matrix. Data were cleaned from the matrix by applying the follow-
ing parameters: columns identiied only by site, reverse, potential 
contaminant; mode, remove matching rows; ilter mode, reduce 
matrix. Categorical annotation of  rows was performed manually 
(‘create’) and invalid data were removed by iltering rows based 
on valid values: min. number of  values, 3; mode, in at least one 
group; values should be greater than 0; ilter mode, reduce matrix. 
Two-sample testing was achieved by means of  a t-test using the 
following parameters: S0; side, both; permutation-based FDR, 
0.05, number of  randomizations, 250; preserve grouping in ran-
domizations, none; –log10, chosen. The –log10 P-value was cal-
culated and the cut-off  for the following analysis was P-value 
>1.31. Localization of  proteins was analysed with SUBAcon (Tanz 
et al., 2013; Hooper et al., 2014) and the functional context with 
MapMan (Thimm et al., 2004).

Oxygen consumption measurements

Oxygen consumption of isolated mitochondria was measured using 
a Clark-type oxygen electrode (Hansatech Instruments, Norfolk, 
UK) according to Meyer et al. (2009). The reaction buffer included 
100  µg mitochondrial protein in 3 ml respiration buffer (300 mM 
sucrose, 5 mM KH2PO4, 10 mM TES, 10 mM NaCl, 2 mM MgSO4, 
0.1% [w/v] BSA, pH 7.2) supplied with 5 mM succinate and 500 µM 
ATP. At stable oxygen consumption, 200 µM ADP was added for 
measuring ADP-dependent respiration. For estimation of AOX 
capacity, 500  µM of AOX inhibitor n-propyl gallate (nPG) was 
added and the O2 consumption rate after adding nPG was sub-
tracted from the ADP-dependent O2 consumption rate.

Results

Comparison of the mitochondrial proteomes of wt and 
ca1ca2 lines using 2D IEF/SDS PAGE

To investigate the consequences of the absence of complex 
I on the mitochondrial compartment, comparative proteome 
analyses of wt and ca1ca2 mitochondria isolated from cell 
culture lines were performed. Proteins were separated by 
2D IEF/SDS PAGE and spot volumes were systematically 
compared using the Delta 2D software package (Decodon, 
Greifswald).

Volumes of 121 spots were signiicantly altered, with a fold 
change of >1.5 (P-value < 0.01) between wt and ca1ca2 lines. 
Forty-four spots had higher volume in the ca1ca2 mutant, 
whereas 77 spot volumes were increased in wt (reduced in 
ca1ca2) (Fig. 1). All 121 spots were analysed by mass spec-
trometry. After applying a MASCOT threshold score of 60, 
overall a total of 288 identiied proteins were included in fur-
ther analyses. More than one protein was identiied for sev-
eral spots. Changes in volume were only assigned to a speciic 
protein if  a spot only included one main protein. This fur-
ther reduced the number of unambiguously changed proteins 
to 106. Sixty-six of these proteins were of decreased abun-
dance in the mutant and 40 of increased abundance. These 
proteins were annotated according to their functional context 
(Supplemantary Table S1 at JXB online).
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As expected, many proteins of reduced abundance were 
complex I subunits (15 proteins). We did not ind all the com-
plex I proteins because 2D IEF/SDS PAGE does not allow 
separation of very hydrophobic proteins. Reduction of com-
plex I subunits was on average 5-fold. It was shown previously 
by Fromm et al. (2016c) that complex I is completely absent 
in the mutant (Supplemantary Fig. S1); however, non-assem-
bled subunits may be present in mitochondria. Furthermore, 
reduction of levels of complex I  subunits can be expected 
to be even higher because nearly all spots included not only 
one main protein but also in addition some proteins of low 
abundance, which probably were of unchanged or not much 
changed abundance. As a consequence, fold-changes in gen-
eral might be slightly higher than determined in the frame 
of our study. Other proteins of reduced abundance in the 
mutant are involved in the central mitochondrial metabolism 
whereas many proteins of increased abundance play roles in 
transport or stress response processes (Table 1).

Detailed evaluation of the dataset revealed the following. 
Changes in abundance of TCA cycle enzymes were not uni-
form. We found subunits of citrate synthase (AT2G44350), 
malate dehydrogenase (AT3G15020), and succinyl-CoA ligase 
(AT5G08300) of decreased abundance in the ca1ca2 mutant, 
whereas a subunit of the oxoglutarate dehydrogenase com-
plex (AT5G55070) was increased. Glutamate dehydrogenase 
(AT5G18170) was also increased in the mutant. Notably, sev-
eral subunits of the TIM translocase were increased (TIM8, 
TIM9, TIM23). Several of the most induced proteins in the 
mutant are involved in plant stress responses.

Some of the proteins of changed abundance were subu-
nits of the remaining OXPHOS complexes II–V. Again, not 

all of the subunits were identiied because many of them are 
very hydrophobic and not resolvable by 2D IEF/SDS PAGE. 
It became apparent that several complex IV subunits are 
clearly induced. To get a more complete impression on how 
the mutant is altered with respect to the OXPHOS system, 
we next compared mitochondrial fractions of wt and ca1ca2 
lines using 2D BN/SDS PAGE, a gel electrophoresis system 
known to be particularly suitable for analysing membrane-
bound proteins and protein complexes.

Fig. 1. Comparative analysis of the mitochondrial proteomes of Arabidopsis wt and ca1ca2 lines. Mitochondria were isolated as described in the 

Materials and Methods. Total mitochondrial protein was separated by 2D IEF/SDS PAGE and proteins were stained by Coomassie blue. Three replicates 

were produced per line and used for the calculation of master gels (Delta 2D software package, Decodon, Germany). The molecular masses of standard 

proteins are given to the left of the 2-D gel (in kDa). Isoelectric focusing range is from pH 3 (left) to pH 11 (right). Proteins indicated in pink are more 

abundant in the mutant (>1.5-fold increase); proteins indicated in green are less abundant in the mutant (>1.5-fold decrease). Spots indicated by 

numbers were identified by mass spectrometry (for results see Supplementary Table S1).

Table 1. Relative spot volumes of altered proteins involved in 

defined functional processes in ca1ca2 mutant lines. Proteins 

were separated by 2D IEF/SDS PAGE (Fig. 1), normalized spot 

volumes of differential OXPHOS subunits were summed up and 

relative spot volumes were calculated by the Delta 2D software 

package

Functional context (number  

of proteins of changed abundance)

Relative spot volume  

with respect to wt  

plants (%)

Stress response (12) 186

Transport (7) 159

Processing of nucleic acids (5) 157

Protein folding and processing (6) 143

Oxidative phosphorylation without complex I (18) 133

Uncharacterized (4) 111

Miscellaneous proteins (6) 102

Amino acid metabolism (7) 75

Lipid metabolism (9) 68

TCA cycle (5) 45

Carbon fixation (4) 28
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Comparison of the mitochondrial proteomes of wt and 
ca1ca2 lines using 2D BN/SDS PAGE

As previously reported, the ca1ca2 mutant shows changes in 
the activities of complex II and complex IV (Fromm et al., 
2016c). In order to evaluate changes in the amounts of the 
OXPHOS complexes II–V in the absence of complex I  in 
more detail, comparative proteome experiments by 2D BN/
SDS PAGE were performed with mitochondrial membrane 
fractions of wt and ca1ca2 cell culture lines. The compari-
sons were based on two methods: (i) Delta 2D-mediated com-
parison of 2-D gels, and (ii) �uorophore based comparison 
(2D DIGE).

Visual inspection of the 2D BN/SDS gels used for Delta 2D 
comparison clearly revealed the absence of complex I and the 
I+III2 supercomplex in the mutant (Fig. 2A). On the resulting 
overlay image (Fig. 2B) the complexes III2 and V are more-
or-less unchanged, while the complexes II and IV are clearly 
increased in the mutant. Average spot volumes were calcu-
lated for each complex in the two fractions using the Delta 
2D software (Fig. 2B, Table 2). The following amounts of the 
OXPHOS complexes were found for the mutant (wt=100%): 
complex II, 133%; complex III, 108%; complex IV, 200%; 
and complex V, 107%.  Proteins within 16 spots were ana-
lysed by MS (Supplemantary Table S2) and all revealed the 
expected identiications (see the 2D BN/SDS GelMap of the 
Arabidopsis mitochondrial proteome for comparison, https://
gelmap.de/1227).

A more extended comparison of the mitochondrial mem-
brane proteomes of mutant and wt cell lines was carried out 
based on 2D BN/SDS DIGE (Fig. 3, Supplemantary Table 
S3). Spots differing in volumes between the two fractions 
were analysed by MS. After applying a MASCOT threshold 
score of 60, overall 147 identiied proteins were included in 
further analyses; however, a difference in spot volume only 
could be assigned to a speciic protein if  a spot included 
only one main protein. This further reduced the number of 
unambiguously changed proteins to 44. These were grouped 
according to functional context. Changes of individual 

Fig. 2. Comparative analysis of the mitochondrial membrane proteomes of Arabidopsis wt and ca1ca2 lines. Mitochondria were isolated as described in 

the Materials and methods. Mitochondrial membrane proteins were separated by 2D BN/SDS PAGE and proteins were stained by colloidal Coomassie 

(A). Three replicates were produced per fraction and used for the calculation of a master gel (Delta 2D software package, Decodon, Germany) (B). The 

molecular masses of standard proteins are given to the left of the 2-D gels (in kDa). OXPHOS complexes are boxed in (B); their identities are given above 

the gels (I, complex I; V, complex V; III2, dimeric complex III; I+III2, supercomplex formed of complex I and dimeric complex III; F1, F1 part of complex V; IV, 

complex IV; II, complex II). Proteins indicated in pink are less abundant in the mutant (>1.5-fold decrease); proteins indicated in green are more abundant 

in the mutant (>1.5-fold increase). Spots indicated by numbers were identified by mass spectrometry (for results see Supplementary Table S2).

Table 2. Relative spot volumes of OXPHOS complexes in ca1ca2 

lines. Proteins were separated by 2D BN/SDS PAGE (Fig. 2), 

normalized spot volumes of differential OXPHOS subunits were 

summed up and relative spot volumes were calculated by the 

Delta 2D software package

OXPHOS complex relative spot volume with  

respect to wt plants (%)

Complex I  - *

Complex II 133

Complex III 108

Complex IV 200

Complex V 107

* not detectable
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subunits of OXPHOS complexes were in accordance with the 
results of the Delta 2D analysis. In addition, several other 
membrane proteins were found to be of changed abundance 
in the mutant. Seven subunits of the TIM and TOM trans-
port machineries and one ABC transporter were identiied. 
All were more abundant in the ca1ca2 mutant.

Comparison of total protein extracts of wt and ca1ca2 
lines by label-free quantitative shotgun proteomics

In addition to effects on the mitochondrial compartment, the 
consequences of ca1ca2 deletion at the whole-plant level were 
investigated. Wild type and ca1ca2 mutant plants were har-
vested at a comparable growth stage and differential protein 
abundances were analysed by comparative quantitative shot-
gun MS (note that growth and development of ca1ca2 plants 
is much delayed; see Fromm et al., 2016c). The experiment 
was based on ive biological replicates. In total, 2233 different 
proteins were identiied. The quantitative analysis of identi-
ied proteins was carried out using MaxQuant. After applica-
tion of a –log10 P-value (P>1.31), 318 proteins of changed 
amounts were conirmed (Supplemantary Table S4) and were 
included in further analyses.

The proteins were assigned into categories according to sub-
cellular localization and functional context. Subcellular local-
ization was assigned according to SUBAcon (Fig. 4). Most of 
the identiied proteins are localized in the cytosol (30.4%), fol-
lowed by plastids (29.4%), mitochondria (15.2%), and other 
compartments with minor contributions (Fig.  4A). Proteins 
of increased abundance in ca1ca2 plants are mostly localized 
in the cytosol (44.1%) and mitochondria (19.8%) (Fig. 4B). In 
contrast, proteins of decreased abundance in ca1ca2 plants 
are mostly localized in plastids (62.3%) (Fig. 4C).

Assignment of proteins differing in amount between wt 
and ca1ca2 mutant plants to functional categories was carried 

out according to TAIR functional annotations (https://www.
arabidopsis.org/, TAIR10 genome release) and evaluated by 
MapMan (Fig.  5, Table  3). Proteins especially induced in 
mutant plants are involved in glycolysis, fermentation, the 
TCA cycle, amino acid metabolism, redox regulation, protein 
folding, as well as stress responses (Supplemantary Table S4). 
Decreased protein abundances in ca1ca2 plants were mainly 
found in the functional categories of photosynthesis (photo-
system I, photosystem II, Calvin cycle, photorespiration) and 
tetrapyrrole synthesis (Fig. 5). As expected, complex I subu-
nits were much decreased in the mutant. At the same time, 
AOX1A (AT3G22370) and alternative NADH dehydroge-
nase NDB2 (AT4G05020) were clearly induced.

Finally, we analysed the BIN coverage of the identiied pro-
teins in order to assess the in�uence of the absence of complex 
I on cellular processes (Table 4). We calculated the number of 
identiied proteins in relation to the number of genes that code 
for proteins of the BINs. The following BINs were most signii-
cantly changed in the mutant: fermentation (28.6%), glycoly-
sis (15.4%), nitrogen metabolism (15.4%), TCA cycle (13.8%), 
photosynthesis (12.6%), tetrapyrrole synthesis (11.1%), mito-
chondrial ETC (7.5%), and amino acid metabolism (6.8%). 
The BIN coverage indicates that these cellular process are par-
ticularly affected by absence of complex I.

Changes in protein levels in ca1ca2 plants with respect 
to wildtype plants as obtained by label-free quantitative 
shotgun proteomics are summarized in Fig.  6 and in the 
discussion below.

Discussion

In previous studies, the ca1ca2 mutant has been characterized 
with respect to development, mitochondrial metabolism, and 
features of the OXPHOS system (Fromm et  al., 2016c). In 

Fig. 3. Comparative analysis of the mitochondrial membrane proteomes of Arabidopsis wt and ca1ca2 lines by differential gel electrophoresis (DIGE). 

Mitochondria were isolated as described in the Materials and Methods. Mitochondrial membrane proteins of wt and ca1ca2 were labeled with different CyDyes 

and separated by 2D BN/SDS PAGE. Proteins were stained by colloidal Coomassie (A). The same gel was used for fluorescence detection of the two CyDyes (B). 

The molecular masses of standard proteins are given to the left of the 2-D gel (in kDa). The identities of selected mitochondrial protein complexes are given above 

the gels (I, complex I; V, complex V; III2, dimeric complex III; I+III2, supercomplex formed of complex I and dimeric complex III; F1, F1 part of complex V; IV, complex 

IV; II, complex II). Proteins indicated in red are less abundant in the ca1ca2 mutant (>1.5-fold decrease) and proteins indicated in green are more abundant in the 

ca1ca2 mutant (>1.5-fold increase). Proteins given in yellow are not changed in abundance. Spots indicated by numbers were identified by mass spectrometry 

(for results see Supplementary Table S3). Note: if compared to the comparative experiment shown in Fig. 2, several subunits of OXPHOS complexes appear to be 

absent in the DIGE approach. This is due to the fact that CyDye labeling takes place at native conditions. As a consequence, only proteins exposed to the surface 

of protein complexes are labeled. In contrast, image evaluation based on the Delta 2D approach (Fig. 2) allows visualization of all subunits of a protein complex.
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Fig. 4. Subcellular localization of proteins of altered abundances in the ca1ca2 line as obtained by label free quantitative shotgun proteomics. Total 

protein was extracted from wt and ca1ca2 mutant plants at a similar developmental stage. Proteins were identified and quantified by shotgun MS (for 

details see the Material and Methods). Predicted localizations of proteins of changed abundances between the two lines were obtained from the SUBA3 

database (http://suba3.plantenergy.uwa.edu.au/). (A) Predicted localization of all proteins changed (P-value <0.05). (B) Predicted localization of proteins 

more abundant in ca1ca2 compared to wt. (C) Predicted localization of proteins less abundant in ca1ca2 mutant compared to wt. Numbers indicate 

amounts relative to the sum of altered protein species (%).

Fig. 5. Functional annotation of proteins identified by quantitative label-free shotgun MS. The 318 proteins of differential abundances between wt and 

ca1ca2 mutant plants were grouped into functional BINs using MapMan. BINs are given to the right. Proteins more abundant in ca1ca2 are indicated in 

green and proteins that are less abundant in red (P-value <0.05). Each square represents one protein. BINs without any identified protein are with a grey 

dot (for results see Supplementary Table S4).
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order to systematically monitor the consequences of the dou-
ble gene deletion on the mitochondrial proteome and the entire 
leaf proteome, we report here the results of three different 
experimental approaches, two of which were based on gel elec-
trophoresis and one on gel-free shotgun proteomics. All three 
experimental systems have advantages and limitations. 2D IEF/
SDS PAGE-based analyses excel in investigating prominent 
hydrophilic proteins. 2D BN/SDS PAGE is strong in analysing 
membrane proteins and membrane-bound protein complexes, 
which also are relatively abundant. Shotgun proteome analy-
sis is a less systematic approach that allows the analysis of a 
very large number of proteins at the same time, and as such it 
better covers proteins of comparatively low abundance than 
the two gel-based approaches. Furthermore it should be noted 
that the 2D IEF/SDS and 2D BN/SDS PAGE approaches were 
carried out using cell cultures whereas shotgun proteomics was 

performed on total protein extracts from leaves. Cell suspen-
sion cultures are always well supplied with sucrose, whereas 
plants have to generate sugars by photosynthesis on their own. 
Therefore, the outcomes of the three experimental approaches 
need to be compared critically (Tables 1 and 3).

Although the three experimental systems and the sources 
of  the analysed protein fractions differed, all the approaches 
gave similar results in respect to proteomic alterations taking 
place in the ca1ca2 double-knock-out mutant. As expected, 
all the approaches indicated a dramatic reduction of  com-
plex I  subunits. However, residual levels of  non-assembled 
complex I  proteins seem to be present in the mutant’s 
mitochondria.

Levels of complex II and especially complex IV were much 
higher in the double-mutant, as were the levels of some of 
the alternative oxidoreductases of the plant mitochon-
drial OXPHOS system. This has been previously reported 
for other complex I mutants (Keren et al., 2012; Hsu et al., 
2014). Upregulation of complex IV points to elevated pro-
ton translocation at the inal segment of the mETC, which 
could partially compensate for the diminished proton trans-
location at the irst segment of the mETC in the absence of 
complex I. Indeed, increased in vitro activity of complex IV 
in the ca1ca2 mutant has been shown previously (Fromm 
et al., 2016c). An increased oxygen consumption of ca1ca2 
mitochondria was observed if  succinate was used as sub-
strate (Supplemantary Fig. S2). This might indicate a higher 
complex II activity, but could also be the consequence of an 
elevated electron �ux through the mETC caused by higher 
complex IV activity.

In contrast, levels of  the complexes III and V were rather 
similar in the ca1ca2 and wt lines, although relative abun-
dances of  some subunits of  these complexes were altered 
(Supplemantary Tables S1 and S2). The overall upregula-
tion of  the OXPHOS complexes in mutant cells requires 
increased import rates of  the corresponding nuclear encoded 
subunits by the TOM and TIM pre-protein import machin-
eries (Murcha et al., 2014). Indeed, levels of  TIM and TOM 
subunits clearly went up in the double-mutant (Fig.  1, 
Supplemantary Table S3).

The alternative NADH dehydrogenase NDB2 (AT4G05020) 
and the alternative oxidase AOX1A (AT3G22370) were 
induced 4- and 8-fold higher in the mutant (Supplemantary 
Table S4). This corresponds to increased capacity for alterna-
tive oxidase in the ca1ca2 mutants (Supplemantary Fig. S2). 
An increase of AOX has been previously reported for several 
plant complex I mutants, e.g. the nmat1, opt43, cmsII, ndufv1, 
and mTerf15 lines (Gutierres et al., 1999; de Longevialle et al., 
2007; Keren et al., 2012; Hsu et al., 2014; Kühn et al., 2015; 
see Table 5 for information on complex I mutants discussed in 
this section). Indeed, increased oxygen consumption rates have 
been observed for some complex I mutants, e.g. the ca1ca2 and 
ndufv1 lines (Kühn et al., 2015; Fromm et al., 2016c).

Induction of  the alternative oxidoreductases of  the res-
piratory chain is known to be an integral part of  the general 
plant stress response (Vanlerberghe, 2013). This, together 
with the induction of  a large number of  further stress 
related proteins [such as beta glucosidases (AT1G66270, 

Table 3. Relative protein intensities of altered proteins involved 

in defined functional processes in ca1ca2 mutant lines analysed 

by label-free quantitative shotgun MS approach. Proteins were 

identified and quantified using MaxQuant software

Functional context

(number of proteins of  

changed abundance)

Relative protein  

intensities with  

respect to wt  

plants (%)

Fermentation (4) 183

Glycolysis (10) 173

Protein folding (9) 172

Oxidative pentose phosphate (2) 166

Signalling (5) 162

Redox (8) 160

TCA cycle (11) 159

Stress response (14) 152

Amino acid metabolism (17) 149

Mitochondrial electron transport without complex I (5) 144

Cell wall (7) 140

Cell organisation (14) 132

Miscellaneous proteins (25) 121

Lipid metabolism (10) 120

Secondary metabolism (13) 114

Protein processing (6) 110

Protein degradation (18) 102

Protein synthesis (11) 95

Co-factor and vitamine metabolism (2) 89

Development (3) 89

Metal handling (2) 89

Protein targeting (7) 85

Uncharacterized (29) 81

Carbon metabolism (14) 79

Transport (15) 78

Photorespiration (4) 75

Calvin cycle (9) 66

Photosystem II (4) 66

Photosystem I (2) 66

Tetrapyrrole synthesis (5) 65

Light reaction others (3) 64

N-metabolism (4) 64

Processing of nucleic acids (11) 63

ATP synthase (plastid) (3) 61
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AT3G09260, AT3G09260, AT3G16420), catalase 3 
(AT1G20620), ascorbate peroxidase 4 (AT4G09010) and 
glutathione syntethase 2 (AT5G27380)] in the double-
mutant strongly indicates that the absence of  complex 
I  strongly affects the metabolic balance and the redox 
homeostasis of  the plant cell.

High levels of complex II, complex IV, and alternative oxi-
doreductases of the mETC require increased provision of elec-
trons to the mETC. Indeed, the enzymes involved in glycolysis 
were clearly induced in the double-mutants. It has been shown 
previously for the ndufv1 mutant, which also completely lacks 
mitochondrial complex I, that complex I deiciency causes a 
metabolic switch and that �ux through glycolysis signiicantly 
increases (Kühn et  al., 2015). Furthermore, our data point 
to an extended usage of fermentation to compensate for 
decreased ATP generation and decreased capacity of NADH 
oxidation by the complex I-deicient mETC. In contrast, the 
proteomic changes with respect to the citric acid cycle are 
more dificult to understand, as some enzymes are reduced 

whereas others are increased in the ca1ca2 double-mutant. 
This points to a scenario that the absence of complex I does 
not induce the entire citric acid cycle, but rather speciic seg-
ments of the pathway. Indeed, it is known that plant mito-
chondria have, depending on the physiological state of the 
respective cell, quite a number of non-cyclic operation modi 
with respect to the citric acid cycle (Sweetlove et al., 2010).

Electrons for the mETC can also originate from amino 
acid breakdown (Sweetlove et  al., 2010; Schertl and Braun 
2014; Hildebrandt et al., 2015). Several proteins involved in 
mitochondrial amino acid catabolism were identiied by our 
shotgun proteome approach and found to be induced in the 
ca1ca2 mutant, e.g. alanine, tyrosine, and branched-chain 
aminotransferases (AT1G17290, AT4G23600, AT3G19710), 
glutamate dehydrogenase (AT5G18170, AT5G07440), argin-
ase (AT4G08870), and methylmalonate-semialdehyde dehy-
drogenase (AT2G14170). The latter enzyme is involved in a 
step of branched-chain amino acid oxidation. The number of 
electrons provided for the mETC from amino acid breakdown 

Table 4. BIN coverage of proteins of altered abundances in ca1ca2 plants as determined by label-free quantitative shotgun MS

MapMan BIN BIN name Sum of  

genes

Number of differential  

proteins in wt and  

ca1ca2

Number of differential  

proteins / sum of  

genes per BIN (%)

5 Fermentation 14 4 28.6

4 Glycolysis 65 10 15.4

12 N-metabolism 26 4 15.4

8 TCA 80 11 13.8

1 Photosynthesis 199 25 12.6

19 Tetrapyrrole synthesis 45 5 11.1

25 C1 metabolism 39 4 10.3

6 Gluconeogenese 10 1 10.0

9 Mitochondrial electron transport 146 11 7.5

13 Amino acid metabolism 251 17 6.8

7 Oxidative pentose phosphate pathway 31 2 6.5

2 Major carbon metabolism 100 5 5.0

21 Redox 194 8 4.1

3 Minor carbon metabolism 124 5 4.0

24 Biodegradation of Xenobiotics 27 1 3.7

15 Metal handling 67 2 3.0

16 Secondary metabolism 438 13 3.0

23 Nucleotide metabolism 169 5 3.0

18 Co-factor and vitamine metabolism 79 2 2.5

11 Lipid metabolism 398 10 2.5

31 Cell organisation 746 14 1.9

26 Miscellaneous proteins 1397 25 1.8

20 Stress response 874 14 1.6

34 Transport 996 15 1.5

29 Protein folding and processing 3409 51 1.5

10 Cell wall 496 7 1.4

17 Hormone metabolism 495 5 1.0

33 Development 681 3 0.4

30 Signalling 1239 5 0.4

35 Not assigned 7748 29 0.4

27 RNA processing 2567 6 0.2

14 Sulfur assimilation 12 0 0.0

32 Micro RNA 4 0 0.0

28 DNA synthesis 1352 0 0.0

22 Polyamine metabolism 18 0 0.0
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is especially high during oxidation of the branched chain 
amino acids (Hildebrandt et al., 2015).

Prohibitins and stomatin-like proteins (SLP) were very 
much increased in the ca1ca2 mutant, as revealed by all 
three proteome analyses. In animal cells respiratory super-
complexes are stabilized by cardiolipin and SLPs. SLPs can 
bind cardiolipin and interact with prohibitins (Mitsopoulos 
et  al., 2015). Similar interactions have also been reported 
for the mitochondria of plants (Gehl et al., 2014; Gehl and 
Sweetlove, 2014). Knock-out mutants for slp1 have reduced 
complex I  levels and activity, and form lower amounts of 
supercomplexes, indicating that SLPs and prohibitins can 
affect the assembly and/or the stability of OXPHOS com-
plexes (Gehl et al., 2014). Complex I subunits that cannot be 
assembled might be stabilized to a certain degree by prohib-
itins and SLPs. Furthermore, prohibitins play a role in mito-
chondrial DNA organization, stress tolerance, and triggering 

retrograde signals in response to stress and mitochondrial 
dysfunction (Van Aken et al., 2010).

The phenotype of complex I mutant plants often includes 
curled leaves and a delayed vegetative and reproductive devel-
opment (de Longevialle et al., 2007; Meyer et al., 2009; Wang 
et al., 2012; Kühn et al., 2015; Hsu et al., 2014). The degree 
of the developmental delay and the curly leaf phenotype are 
dependent on the amount of residual complex I (Kühn et al., 
2015). For example, trace amounts of complex I are suficient 
for plants to pass through embryogenesis, whereas mutants 
lacking complex I, such as cal1cal2, opt43, indh, ndufv1, and 
ca1ca2, cannot complete this developmental stage and hardly 
germinate (de Longevialle et  al., 2007; Wang et  al., 2012; 
Wydro et al., 2013; Kühn et al., 2015; Fromm et al., 2016c). 
The growth rate of the ca1ca2 mutant has been reported to 
be drastically reduced (Fromm et al., 2016c). This is clearly 
re�ected by our shotgun proteome data.

Fig. 6. Life without complex I. The figure is based on altered protein levels in ca1ca2 plants relative to wildtype plants as obtained by label-free 

quantitative shotgun proteomics. Green arrows within the grey boxes indicate increased protein levels in the double-mutant, and red arrows indicate 

decreased levels. Absence of complex I causes reorganization of the cellular respiration system. Since electron insertion into the first segment of the 

mETC is not possible, increased electron insertion at later segments takes place (induction of complexes II, IV). This requires increased oxidation of 

organic substrates (induction of enzymes of glycolysis, the TCA cycle, and amino acid catabolism). Mitochondrial ATP formation most likely is still 

reduced, which requires increased fermentation. The growth rate of the double-mutant is drastically reduced. This is reflected by reduced amounts of the 

two photosystems, Calvin cycle enzymes, and enzymes of the tetrapyrrole biosynthesis pathway. Furthermore, altered metabolism and electron transport 

pathways in the mitochondria and chloroplasts cause increased ROS formation and stress symptoms. Several components of the ROS and stress 

defense system are induced in the double-mutant, as is the alternative oxidase, a well-known stress indicator in plants. Note: causal events indicated by 

black arrows do not necessarily indicate primary effects, but may well represent indirect consequences. For further details see the discussion section.
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Overall, proteins involved in developmental processes 
and photosynthesis were very much reduced in the ca1ca2 
mutant. More than 60% of  the proteins of  lower abundance 
in the ca1ca2 mutant are localized in plastids (Fig.  4C). 
All detected subunits of  the two photosystems (PS) were 
reduced, as were the ferredoxin-NADP+ oxidoreductase 
(AT5G66190, AT1G20020) and the subunits of  the chlo-
roplast ATP synthase complex. The maize ncsII and ncs6 
mutants also have a decrease in PSI while other photosyn-
thetic complexes are unaffected. The chloroplast ultrastruc-
ture is abnormal (Roussel et  al., 1991; Jiao et  al., 2005). 
Two recently described small twin cystein proteins, which 
are speciically induced in complex I-deicient plants, also 
speciically affect chloroplast metabolism (Wang et  al., 
2016). Furthermore, enzymes involved in the Calvin cycle 
are of  reduced abundance in ca1ca2 plants. This indicates 
substantial consequences of  the absence of  complex I  on 
photosynthesis. Additionally, tetrapyrrole synthesis is 
impaired. Tetrapyrroles are essential for chlorophyll bio-
synthesis. It has been suggested that reduction of  photo-
synthetic proteins may be caused by impaired chlorophyll 
synthesis (Brzezowski et al., 2015). Our results are in line 
with those obtained for the cmsII mutant of  Nicotiana 

sylvestris, which also lacks complex I.  In cmsII mutants 
photosynthetic eficiency is reduced (Sabar et  al., 2000; 
Dutilleul et  al., 2003). Defects in the photosystems may 
result in ROS formation (Schmitt et al., 2014). Higher ROS 
levels have indeed been observed in the ca1ca2 and other 
complex I mutants (Keren et al., 2012; Córdoba et al., 2016; 
Fromm et al., 2016c).

ROS may cause cellular damage and programmed cell 
death (Li and Xing, 2010), and thus they negatively affect 
plant development. Our proteome data indicate that seed 
photosynthesis in ca1ca2 mutant embryos may also be 
impaired by complex I dysfunction. A higher ROS content 
has been found in ca1ca2 embryos (Córdoba et al., 2016, 

Ostersetzer-Brian 2016). Defects in the photosynthetic 
apparatus should cause decreased synthesis and accumu-
lation of  seed storage compounds, which will be further 
impaired by mitochondrial dysfunction (Schwender et al., 
2006). Seed storage compounds such as fatty acids are 
essential to drive the germination process (Carrie et  al., 
2013). ca1ca2 mutant embryos depleted in energy-rich com-
ponents are not able to develop normally during germina-
tion, which results in seed abortion (Córdoba et al., 2016, 
Fromm et al., 2016c).

Reduced photosynthesis affects photorespiration. Indeed, 
all the identiied proteins of the photorespiration path-
way were reduced in the ca1ca2 mutant. This also applies 
for the T and the P subunits of the mitochondrial glycine 
decarboxylase complex (GDC) (AT1G11860; AT2G26080). 
Down-regulation of the GDC complex has been reported to 
be caused either by impaired photosynthesis or by feedback 
inhibition by an elevated NADH pool in the matrix (Oliver, 
1994; Peterhänsel et al., 2010), which may be caused by the 
absence of complex I.

Besides the absence of  the electron transfer function of 
complex I, which is coupled to proton translocation across 
the inner mitochondrial membrane, complex I is assumed to 
include further enzymatic and transport functions (Braun 
et al., 2014). In particular, the complex I-integrated carbonic 
anhydrase subunits have been suggested to play a role in 
recycling mitochondrial CO2 for carbon ixation in the chlo-
roplasts (Zabaleta et al., 2012). Thus it may well be that the 
ca1ca2 mutant lacks more than just the NADH-ubiquinone-
oxidoreductase activity. However, the ca1ca2 mutant very 
much behaves like other mutants that completely lack 
complex I, e.g. ndufv1 (Kühn et  al., 2015). Furthermore, 
in mutants lacking complex I  due to the absence of  other 
complex I subunits the formation of  the carbonic anhydrase 
domain is also prevented. This makes the ca1ca2 mutant 
an excellent model for studying the role of  mitochondrial 

Table 5. Summary of complex I mutants in plants

Name of mutant Mutation of ... Complex I depletion (i) or  

absence of complex I (ii)

Plant species Reference

ca2 Complex I subunit i Arabidopsis thaliana Perales et al., 2005 & Fromm et al., 2016c

ca1ca2 Complex I subunit ii Arabidopsis thaliana Fromm et al., 2016c

cal1cal2i Complex I subunits i Arabidopsis thaliana Fromm et al., 2016b

ca2cal1 or ca2cal2 Complex I subunits i Arabidopsis thaliana Soto et al., 2015

ndufs4 Complex I subunit i Arabidopsis thaliana Kühn et al., 2015

ndufv1 Complex I subunit ii Arabidopsis thaliana Kühn et al., 2015

gldh Assembly factor ii Arabidopsis thaliana Pineau et al., 2008

indh Assembly factor ii Arabidopsis thaliana Wydro et al., 2013

opt43 NAD1 splicing factor ii Arabidopsis thaliana de Longevialle et al., 2007

nMat1 NAD1 splicing factor ii Arabidopsis thaliana Keren et al., 2012

mTERF15 NAD2 splicing factor ii Arabidopsis thaliana Hsu et al., 2014

nms1 NAD4 splicing factor i Nicotiana sylvestris Brangeon et al., 2000

slo3 NAD7 splicing factor i Arabidopsis thaliana Hsieh et al., 2015

bir6 NAD7 splicing factor i Arabidopsis thaliana Koprivova et al., 2010

cmsII Leads to NAD7 deletion ii Nicotiana sylvestris Gutierres et al., 1999

ncs2 Replacing the 3 -end of NAD4  

with sequences from NAD7

ii Zea mays Karpova et al., 2002
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complex I  in plants, the proteomic level of  which has been 
addressed in this study.

Conclusions

‘Life without complex I’ is not so easy, even in plants that 
possess some alternative dehydrogenases in the mitochon-
drial compartment (which, however, do not contribute to 
the proton gradient across the inner mitochondrial mem-
brane). The metabolic balance of  the plant cell is deeply 
disturbed in the absence of  complex I. Complex I dysfunc-
tion causes reorganization of  cellular respiration and affects 
metabolic processes in mitochondria, plastids, peroxisomes, 
and other cellular compartments with drastic consequences 
for growth and development. Speciically, proteins involved 
in glycolysis and the TCA cycle are induced, as are subunits 
of  other OXPHOS complexes, especially the complex IV. 
This requires an upregulation of  the TIM and TOM trans-
locases for mitochondrial protein import. Furthermore, 
alternate electron entry pathways into the mETC are 
induced, e.g. oxidation of  amino acids. Increased �ux of 
electrons through the mETC causes elevated ROS forma-
tion in ca1ca2 plants. ATP formation in the chloroplasts is 
reduced by decreased photosynthesis, e.g. caused by defec-
tive chlorophyll biosynthesis in ca1ca2 mutant plants. In 
summary, plant cells metabolically rearrange in the absence 
of  complex I  in order to maintain a minimum level of 
energy supply and to balance redox homeostasis. At the 
same time, ca1ca2 mutants suffer from increased ROS pro-
duction and reduced ATP generation by both, respiration 
and photosynthesis.
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Fig. S1 Growth phenotype of ca1ca2 plants, absence of complex I. A: Rosettes of 

ten weeks old plants grown under short-day (10 h : 14 h, light : dark) conditions. Scale 

bar is 2 cm. ca1/ca1: plant line homozygous for knock-out of CA1; ca2/ca2: plant line 

homozygous for knock-out of CA2; CA1/ca1 ca2/ca2: plant line homozygous for knock-

out of CA2 but hemizygous for knock-out of CA1; ca1/ca1 CA2/ca2: plant line 

homozygous for knock out of CA1 but hemizygous for knock out in CA2; ca1/ca1 

ca2/ca2: plant line homozygous for knock-outs of CA1 and CA2. B Fresh weight 

increase of Arabidopsis wt, ca2 and ca1ca2 cell cultures. Starting material (day 0) for wt 

(black bars), ca2 (white bars), and ca1ca2 (grey bars) cell cultures was always 1.5 g. 

Fresh weight (g) was recorded after three, five and seven days (n = 9, mean ± SE). * = 

p ≤ 0.05; ** = p ≤ 0.01 according to Student’s t-test mutants compared to wt. C and D: 

Protein complexes of mitochondria isolated from leaves (C) and cell culture (D) were 

resolved by BN-PAGE. Gels were stained with colloidal Coomassie. Corresponding gels 

were used for in gel activity assays of complex I. Identities of selected mitochondrial 

protein complexes are indicated beside the gels (I: complex I; II: complex II; III2: dimeric 

complex III; I+III2: supercomplex formed of complex I and dimeric complex III; IV: 

complex IV; V: complex V; F1: F1 part of complex V). Note: the faint band at the 

position of complex I in the mitochondria from leaves of the double mutant does not 

represent complex I as determined by mass spectrometry (data not shown and data 

shown in the following figure parts) E and F: Protein complexes of isolated mitochondria 

of wt and ca1ca2 of leaves (E) and cell culture (F) were separated by BN-PAGE and 

Coomassie stained afterwards. In the surrounding of complex I proteins were analyzed 

by LC-MS. The number of identified complex I subunits (su/sus) for wt and ca1ca2 

mutant is given beside the gels. Some parts of this figure represent modified versions of 

figures published previously in Fromm et al. 2016c.       
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Fig. S2 Respiration through complex II and AOX capacity of mitochondria derived 

from Arabidopsis thaliana wildtype (wt) and ca1ca2 double mutant lines. Oxygen 

consumption of isolated mitochondria was measured to estimate the respiration through 

complex II by adding succinate as substrate (A) and the capacity of AOX by adding AOX 

inhibitor n-propyl gallate (nPG) (B) using a Clark-type oxygen electrode (n = 5, mean ± 

SE). * = p ≤ 0.05; ** = p ≤ 0.01 according to Student’s t-test mutants compared to wt. 
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