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Abstract 

Anthropogenic activities driven by demographic, economic and technologic changes 

affect the climate worldwide. As consequence, global warming, water scarcity and 

extreme weather events are predicted to occur like unprecedented. At the same time, 

pests and pathogens pose a significant threat to food security, and host-plant resistance 

to pathogens is likely to be affected by climate change. In this study, rice response to 

bacterial blight (BB) under high temperature and under drought stress was 

investigated. The effects of high temperature and drought stress on major rice R genes 

Xa4 and Xa7 mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) were evaluated 

under field conditions and in screenhouse experiments, evaluating disease 

development and plant growth and analyzing the associated time course transcriptome 

profiles. Furthermore, the resistance of the cultivated African rice Oryzae glaberrima to 

bacterial blight was evaluated under high temperature in order to identify a new source 

of BB resistance. Thus, the resistance response of 19 O. glaberrima accessions and one 

genotype of O. sativa, variety Supa, to ten races of Xoo from The Philippines was 

enhanced under high temperature conditions. This finding suggests that O. glaberrima 

possesses traits that respond to combined stress of high temperature and bacterial 

blight. Interestingly, genotypic analysis using Xa gene markers indicates that O. 

glaberrima possesses R genes which are different to the to date known Xa genes. 

For the first time it was shown that the effectiveness of the rice R gene Xa4 was 

compromised under both high temperature and drought stress, while R gene Xa7 

benefited from abiotic stress and responded more efficiently to bacterial blight. The 

study shows that drought tolerant rice genotypes without suitable bacterial blight R 

genes are susceptible to the pathogen invasion and development under both irrigated 

and drought stress conditions. The benefit from drought stress in enhancing the 

resistance to bacterial blight of genotypes carrying Xa7 suggests that the combination of 
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Xa7 with drought qDTY would provide a suitable way to combine both traits in rice 

genotypes resistant to bacterial blight and tolerant to drought stress. Time course 

transcriptome profiles of IR24 and IRBB67 show 4,683 differentially expressed genes 

across 3, 72 and 120 hpi under both temperature regimes. Our results further reveal that 

under low temperature the response to Xoo is triggered by protein kinase genes such as 

Leucine Rich Repeat (LRR) and Receptor like kinases (RLK) including wall associated 

kinases with significant up-regulation in the resistant genotype compared to the 

susceptible one. The plant cell wall constitutes the first barrier to pathogen invasion and 

out study shows that high temperature negatively affects the host plant cell wall, 

opening the door for pathogen invasion. However, the resistant genotype IRBB67 

shows up-regulation of genes involved in the cell membrane sensor of stimuli. 

Moreover, catalytic activity is shown to be the major regulator in response to high 

temperature and to Xoo inoculation in the resistant genotype IRBB67. Our results also 

suggest that, under high temperature, molecular mechanism underlying the resistance 

to bacterial blight mediated by IRBB67 R genes Xa4+Xa7 is manifested as cell membrane 

homeostasis through a low affinity cation transporter gene and through the regulation 

of glucose metabolism under expression of OsTPP6. 

The genome sequences of two Xoo strains from the Philippines representing different 

races, strain PXO145 (race 7) and strain PXO86 (race 2), revealed close relatedness. The 

prediction of Transcription Activator Like (TAL) effectors in PXO145 provides 

additional information on the rice-Xoo pathosystem and suggests that prediction of host 

genes targeted by TAL effectors will reveal hidden threats posed by Xoo to rice. Finally, 

this study shows that evaluation of rice genotypes under combined stress (abiotic and 

biotic) provides a valuable insight into host plant resistance to pathogens under the 

conditions of climate change. Thus, breeding rice varieties for resilience to climate 

change is an urgent need, and requires the combination of abiotic and biotic stress 
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tolerance and resistance traits, respectively, in elite varieties. Our results lay the 

molecular basis as well as provide the information from field trials to select genotypes 

with enhanced resilience to climate change.  

Keywords: Rice, Xoo, climate change 
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Zusammenfassung 

Anthropogene Aktivitäten, verursacht durch demografische, ökonomische und 

technologische Veränderungen, beeinflussen das Klima weltweit. Folglich sind eine 

globale Erwärmung, Wasserknappheit und extreme Wetterereignisse in unbekanntem 

Ausmaß vorhergesagt. Gleichzeitig stellen Schädlinge und Pathogene eine bedeutende 

Bedrohung für die Nahrungssicherheit dar, und die Resistenz von Wirtspflanzen 

gegenüber Pathogenen könnte durch Klimawandel verändert werden. In dieser Studie 

wurde die Reaktion von Reis auf den Befall mit Xanthomonas oryzae pv. oryzae (Xoo) 

unter hoher Temperatur und unter Trockenstress untersucht. Der Einfluss von hoher 

Temperatur und Trockenstress auf die durch die R-Gene Xa4 und Xa7 vermittelte 

Resistenz gegen X. oryzae pv. oryzae wurde im Feld und in Gewächshausexperimenten 

untersucht,  Befallsentwicklung und Pflanzenwachstum wurden bewertet und ein über 

einen Zeitverlauf angelegtes Transkriptomsprofil erstellt. Des Weiteren wurde die 

Resistenz gegen X. oryzae in afrikanischem Reis (Oryza glaberrima) unter erhöhten 

Temperaturen untersucht, um eine neue Quelle einer BB-Resistenz zu identifizieren.  

Die Resistenzreaktion von 19 O. glaberrima Herkünften  und eines Genotyps von O. 

sativa, Sorte „Supa‚, auf 10 Rassen von Xoo von den Philippinen war unter erhöhten 

Temperaturbedingungen verstärkt. Dieses Ergebnis deutet darauf hin, dass O. 

glaberrima Eigenschaften besitzt, die zu einer Reaktion auf die Kombination aus 

Temperatur-Stress und Xoo-Befall rführen. Interessanterweise ergibt eine 

Genotypenanalyse, in der Xa Genmarker verwendet wurden, dass O. glaberrima R-Gene 

besitzt, die sich von den bisher bekannten Xa-Genen unterscheiden.  

Zum ersten Mal konnte gezeigt werden, dass die Effektivität von R-Gen Xa4 in Reis 

durch hohe Temperatur und Trockenstress beeinträchtigt wurde, wohingegen das R-

Gen Xa7 von abiotischem Stress profitierte und zu einer effizienteren Reaktion auf den 

Xoo-Befall führte. Die Studie zeigt, dass trockenstresstolerante Genotypen ohne 
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geeignete Xoo-R-Gene anfällig für Pathogenbefall und –entwicklung  sowohl unter 

Bewässerung als auch unter Trockenstress sind. Der Vorteil von Trockenstress in der 

Verstärkung der Resistenz gegen Xoo von Genotypen, die das Xa7-Gen tragen, lässt 

vermuten, dass Xa7 zusammen mit qDTY eine geeignete Kombination darstellen, um 

beide Eigenschaften (Resistenz gegen Xoo und Trockenstresstoleranz) in Reis-

Genotypen zu vereinen. Transkriptomprofile von IR24 und IRBB67 über einen 

Zeitverlauf von 3, 72 und 120 hpi zeigen 4.683 unterschiedlich exprimierte Gene unter 

beiden Temperatur-Regimen. Unsere Ergebnisse zeigen des Weiteren, dass bei 

niedrigeren Temperaturen die Reaktion auf Xoo-Befall durch Gene, die Proteinkinasen 

wie z.B. Leucine Rich Repeat (LRR) und Receptor Like Kinases (RLK) codieren, 

gesteuert wird. Im resistenten Genotyp wurden Zellwand-Kinasen signifikant hoch 

reguliert im Vergleich zum anfälligen Genotyp. Die pflanzliche Zellwand stellt die erste 

Barriere gegen Pathogenbefall dar und unsere Studie zeigt, dass hohe Temperaturen die 

Zellwand negativ beeinflussen und somit den Türöffner für Pathogeninvasion 

darstellen. Der resistente Genotyp IRBB67 zeigt eine Hochregulierung von Genen, die 

in der Zellmembran Sensoren für Stimuli codieren. Außerdem wurde gezeigt, dass die 

katalytische Aktivität der Hauptregulator für die Reaktion auf hohe Temperatur und 

Xoo-Infektion im resistenten Genotyp IRBB67 ist. Unsere Ergebnisse zeigen ebenfalls, 

dass in die IRBB67-Resistenz gegen X. oryzae unter hohen Temperaturen die 

Zellmembranhomeostase Gene, die Affinitätstransporter codieren, und in den 

Glukosemetabolismus Gene unter OsTPP6-Regulierung involviert sind.   

Die Genomsequenz von zwei Xoo-Stämmen von den Philippinen, die verschiedene 

Rassen repräsentieren, Stamm PXO145 (Rasse 7) und PXO86 (Rasse 2), zeigten enge 

Verwandtschaft miteinander. Die Vorhersage von Transcription Activator Like (TAL) 

Effektoren in PXO145 liefert zusätzliche Informationen über das Reis-Xoo-Pathosystem 
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und lässt vermuten, dass die Vorhersage von TAL-Effektoren, die auf Wirtsgene zielen, 

eine versteckte Bedrohung der Pflanze durch Xoo darstellen.  

Unsere Studie gibt durch die Bewertung von Reis-Genotypen unter kombinierten 

Stressbedingungen (abiotisch und biotisch) einen wertvollen Einblick in die 

Wirtspflanzen-Resistenz gegen Pathogene im Klimawandel . So wurde die molekulare 

Basis für diese Resistenzinteraktionen gelegt und mit Ergebnissen aus Feldversuchen 

ergänzt, um Elitesorten mit erhöhter Widerstandsfähigkeit gegen Klimawandel zu 

selektieren, die eine Kombination aus abiotischer und biotischer Stresstoleranz besitzen.   

Schlüsselwörter: Reis, Xoo, Klimawandel 
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Chapter 1: Rice, bacterial blight and climate change 

Abstract 

Rice is staple food for half of the world’s population and mostly grown and consumed 

in Asia. Rice like any other plants in their natural habitats faces challenges from 

multiple stress factors categorized as biotic and abiotic stresses. Single stress effects on 

plants have been largely studied, but plant reactions and adaptation to combined stress 

factors need more consideration. Abiotic stress such as high temperature and drought 

induce a range of biochemical, molecular and physiological changes and responses 

from cellular level to entire plant processes. Climate change accompanied by 

unexpected heat and drought periods is predicted to have significant impact on 

agriculture. Rice cultivation will face more challenges than a decade ago. Among biotic 

stress factors limiting rice yield, rice bacterial blight caused by Xanthomonas oryzae pv. 

oryzae (Xoo) is one of the most important. A large number of R genes (to date 41 R 

genes) have been identified to confer bacterial blight resistance; however climate change 

influences the rice-Xoo pathosystem affecting R genes durability. X. oryzae pv. oryzae 

produces large candidate bacterial effectors that are injected into the host cell as 

virulence factor. Availability of omics data on the pathogen and also from rice-Xoo 

interaction provides opportunities’ to study the complex interaction between rice and 

Xoo under different climate scenarios. 

Keywords: Rice, climate change, bacterial blight, R genes 
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Introduction 

Rice is the second largest worldwide cultivated cereal crop. As staple food for more 

than half the world, rice is cultivated mainly in Asia with 90.9% of world rice 

production. Rice remains the main source of calories, especially for people in Asia and 

also an important source of income. Rice is grown in different ecosystems and 

conditions, including irrigated rice cultivation and upland and rainfed lowland 

ecosystems. Rice dominates overall crop production when the rice area harvested is 

considered, and overall food consumption considering the total caloric intake from rice 

(Mohanty et al., 2013). Although the world’s largest rice producers are found among the 

Asian countries, in Africa rice production has increased rapidly. African rice production 

accounts for 3.2% of the world production and the main part comes from West African 

countries accounting for more than 45% of African production. For the last decade, 

world rice production has increased from 530.90 million tons in 1993 to 745.172 million 

tons in 2013 (Figure 1). This growth is positively correlated to the increase of the area 

harvested which is expanded from 145.49 to 166.08 million of hectares between 1993 

and 2013 (FAO, 2014). Rice ecosystems are dominated by irrigated cultivation followed 

by the upland rice culitvation. Rice under any of these ecosystems is subjected to a 

range of constraints which negatively affect the yield.  

Rice plays important role in food security and, so far, rice production has met the 

population demands. However, there are more challenges that will affect its 

performance in future, where biotic and abiotic factors will play major roles. Rice like 

any other plant cannot escape the limitation imposed by these two factors. Unfavorable 

environmental conditions related to heat, water scarcity, salinity and cold reduce the 

average yield by more than 50% (Shao et al., 2008; Wang et al., 2003), and attack from a 

wide range of pests and pathogens including fungi, bacteria, viruses, nematodes and 
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herbivorous insects account for a further yield reduction (Hammond-Kosack and Jones, 

2000). 

 

Figure 1: Evolution of rice paddy production and area harvested from 1993-2013, data derived 

from FAO, 2014. 

IPCC (2013) reported that in the next century, the average surface temperatures will 

increase by 3-5°C, with an impact on the global agricultural system. As consequence, 

temperature rise will cause a reduction in the growing seasons in many regions, 

accompanied by unexpected weather events and shifts in the rainfall patterns. Also, an 

increase of sea level is predicted, with the consequence of salinization and decrease of 

agricultural land (IPCC, 2007; 2008; Easterling et al., 2000; Morison et al., 2008; Atkinson 

and Urwin, 2012). Thus, effects on the prevalence of pests and pathogens, their 

geographical expansion and reproductive capacity are expected, and plants are 

therefore likely to encounter more environmental stress than before, adding to it the 

more frequent occurrence of more virulent strains due to increased generation numbers. 
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Likewise, pests and pathogens will have more wild type species to colonize, as pests 

and pathogens will move poleward (Garrett et al., 2011; Bebber et al., 2013). To grow 

and develop under these challenging conditions, plants must develop sophisticated 

strategies of response to cope with multiple stress conditions.  

1. Rice bacterial blight disease caused by Xanthomonas oryzae pv. oryzae 

Among the biotic factors affecting rice yield, bacterial blight is the major bacterial 

disease of rice. The causal agent, Xanthomonas oryzae pv. oryzae (Xoo) is a Gram-negative 

γ- proteobacterium belonging to the Xanthomonas genus. The length and width of 

individual cells vary between 0.7 µm to 2 µm and between 0.4 µm to 0.7 µm, 

respectively (Nino-Liu et al., 2006). Xanthomonas oryzae pv. oryzae has been reported in 

many rice growing regions including Asia, Africa, Northen Australia and Central and 

North America and causes economical losses to farmers. The pathogen invades its host 

through natural openings such as stomata, hydathodes or wounds, then multiplies in 

the intercellular space of the underlying epithelium and colonizes the plant through the 

xylem vessels. The bacterium in the leaf moves vertically through primary veins and 

spreads laterally to commissural veins (Nino-Liu et al., 2006). Few days after entering 

inside the host, the infected plant xylem vessels are filled with the bacterial cells and 

extracellular polysaccharides (EPS) which ooze from the hydathodes to form exudates 

on the leaf surface. The bacterial exudates on the leaf surface are a source of secondary 

inocula (Mew et al., 1993, Nino-Liu et al., 2006). Genetic diversity existing among Xoo 

strains has been revealed by molecular studies and genome sequencing. Gonzalez et al. 

(2007) reported existence of a genetic distance between African Xoo and Asian strains. 

Therefore, resistant rice varieties to control the pathogen in Asia may not be effective 

against African strains, and, so far effective R genes against African Xoo have not been 

identified. To date, three complete genome sequences of Xoo strains from Asia have 

been published. The Philippines strain PXO99A, a 5-azacytidine-resistant derivative of 
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PXO99 (Salzberg et al., 2008); Japanese strain MAFF311018 (Ochiai et al., 2005) and the 

Korean strain KACC10331 (Lee et al., 2005). In addition, eight draft genomes (PXO86, 

Philiipines; BAI4; BAI3, Burkina Faso; NAI8, Niger; CFBP1947, Cameroun; MAI1, Mali; 

X11-5a and X8-1a, United State) are also available to gain insight into the genetic 

diversity among the Xoo populations (Verdier et al., 2012). Genome sequence analyses 

revealed a genome size varying from 4.94 Mb to 5.24 Mb with an average G+C content 

of ~ 63.7%. The X. oryzae pv. oryzae genome harbors numerous IS elements, Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR) elements and Transcription 

Activator Like (TAL) effecotors (Salzberg et al., 2008) that the pathogen injects into the 

host cells via the Type 3 secretion system (T3SS). Multiple TAL effectors are delivered 

into rice cells from where they are translocated into the nucleus and bind to the 

corresponding Upregulated by TAL effector (UPT) box sequence in host DNA (Bosh 

and Bonas, 2010). Recent studies reveal how the TAL effectors in the host cells find their 

targets (Bogdanove et al., 2010; Scholze and Boch, 2011) and the binding specificity 

governed by repeat-variable diresidues (RVDs) which recognize different DNA base 

pairs (Boch et al., 2009; Moscou and Bodganove, 2009). Omics data from several Xoo 

strains/races will enable to get insight into the genetic diversity existing in Xoo 

population. This allows the use of genetic engineering as new molecular breeding 

strategies to identify promotor variant alleles of major susceptibility genes (Verdier et 

al., 2012), as shown by Hutin et al. (2015) with identification of xa41(t), a variant allele of 

OsSweet14 gene which has 18 bp deletion within several TAL effectors binding sites and 

cause resistance to BB. 

Xanthomonas oryzae pv. oryzae causes different types of symptoms on the host plant, 

depending on the plant growth stage and level of resistance of the cultivars. Three 

major symptoms are reported on rice: leaf blight symptom, mostly on the susceptible 

cultivars, kresek or seedling wilt when infection occurs at seedling stage and can cause 

100% losses, and the pale yellow leaf or pale yellow on mature plants. The infection on 
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plants usually occurs as green water soaked spots at the tips and margins of the fully 

developed leaves; it spreads along the veins, and symptoms merge and extend from the 

leaf tip down along leaf veins and margins (Figure 2A). However, depending on the 

entering point, the symptoms may extend from the entry point (e.g. leaf break) and 

prolong lengthwise. Under artificial inoculation, the pathogen can also spread to non-

inoculated leaves on the susceptible cultivars even under drought stress conditions 

(Figure 2B).  

  

Figure 2: Bacterial blight symptoms on rice leaves. A: Development of different types of 

bacterial blight symptoms on rice leaves; B: BB spread from artificial infection to non 

inoculated leaves under drought stress. 

 

A B 



 

7 
 

2. Bacterial blight resistance genes 

Disease control strategies recommend several practices such as improved agricultural 

measures, chemicals’ application, biological control agents and resistant cultivars. 

However, among these practices, the use of resistant cultivars reveals as the most 

environmental friendly and most effective approach. Resistance genes known to act in a 

gene-for gene manner have been identified and are the main source of rice resistance to 

Xoo. The avirulence protein injected into the host cell via T3SS by the pathogen is 

recognized by the host corresponding R gene and results in expression of resistance. 

According to Bhasin et al., 2012; Natraijkumar et al., 2012; Khan et al., 2014, Zhang et al., 

2015; Suk‑Man et al., 2015; Hutin et al., 2015) 41 R genes [Xa1, Xa2, Xa3/Xa26, Xa4, xa5, 

Xa6, Xa7, xa8, xa9, Xa10, Xa11, Xa12, xa13, Xa14, xa15, Xa16, Xa17, Xa18, xa19, xa20, 

Xa21, Xa22(t), Xa23, xa24(t), xa25/Xa25(t), Xa25, xa26(t), Xa27, xa28(t), Xa29(t), Xa30 (t), 

xa31(t), Xa32(t), xa33(t), xa34(t), Xa35(t), Xa36(t), Xa38, Xa39, Xa40 and xa41(t)] are 

reported with a given prefix Xa as from Xanthomonas. These R genes comprise both 

dominant and recessive genes among which seven (Xa1, xa5, xa13, Xa21, Xa25, Xa27 and 

Xa3/Xa26) have been cloned with most of them encoding leucine-rich repeat domains. 

Due to the pathogen adaptation, a loss of function from monogenic line deployment has 

been reported; e.g. the predominance of virulent strains on rice varieties carrying the 

Xa4 R gene (Mew et al., 1992; Vera Cruz et al., 2000).  

Disease resistance genes are comprised of two major classes: receptor kinase (RLK) and 

nucleotide-binding site leucine-rich repeat (NBS-LRR). Among rice R gene mediated 

resistance to bacterial blight, the majority of the cloned genes possesses LRR domain. 

Rice Xa21 was the first clone member of RLK and confers a broad spectrum resistance to 

most the Philippines’ Xoo races. NBS-LRR class is the largest R gene class that confers 

resistance against bacteria but also against fungi and viruses (Hulbert et al., 2001). Rice 

Xa1 is the major gene encoding for NBS-LRR protein and confers highly specific 
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resistance to the Japanese Xoo race 1 (Yoshimura et al., 1998). The plant cell apoplast 

constitutes a physical barrier against pathogen attack and plays an important role in 

signaling and defense during the host-pathogen interaction. Rice Xa27 resistance allele 

is expressed upon inoculation with Xoo strains harboring avrXa27 and is reported to be 

localized in the xylem vessel, encoding a protein of 113 amino acids (Gu et al., 2005, Wu 

et al., 2008). Rice xa5 and xa13 are the two recessive genes that occur naturally among 

the cloned R genes. Rice xa5 is a naturally occurring mutation and encodes for a small 

subunit of transcription factor IIA (TFIIAɣ), and xa13 is a recessive allele of Os8N3 rice 

susceptibility gene, which is a target of PthXo1 TAL effector. However, PthXo1 fails to 

induce xa13, therefore rice varieties carrying xa13 reveal resistant to Xoo strains that rely 

only on the PthXo1 as virulence effector (Yang et al., 2006). Xa26 known also as Xa3 

encodes for a LRR receptor kinase protein with broad spectrum resistance (Sun et al., 

2004). The effectiveness of Xa26 is more related to the genetic background and was 

found in cultivar Mingui 63 (Sun et al., 2004). Cao et al. (2007) reported that the Xa26 

expression level was much higher in japonica cultivars and increased from seedling to 

adult stage, suggesting that Xa26 mediated resistance to Xoo is related to the 

development stage.  

Some of the R genes have been widely used in rice breeding programs, and cultivars 

carrying them are deployed in many Asian countries. Among them, Xa4, xa5 and Xa7 

are the major R genes. However, pathogen variability and adaptation lead to 

overcoming of the resistance as it was the case of rice Xa4. During the early 1970s, 

cultivars with Xa4 after deployment became sensitive to the pathogen due to the 

pathogen adaptation and spread of new races that overcame Xa4 resistance (Mew et al., 

1992; Huang et al., 1997). Vera Cruz et al. (2000), after evaluating the pathogen fitness 

and predicting the durability of a disease resistance came to the conclusion that xa5 and 

Xa7 would be more durable than Xa10, and the combination of xa5 and Xa7 into the 
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same line would be more effective than the use of single R genes alone. Quantitative 

resistance governed by several genes provides partial resistance compared to 

qualitative (monogenic) resistance which confers effective race-specific resistance is 

more durable as pathogen populations’ change frequently. 

3. Host-pathosystem and climate change 

Environmental factors such as biotic and abiotic stresses are limiting factors to plant 

productivity. Due to mainly anthropogenic factors, the climate is predicted to warm by 

an average of 2-5°C by end of the 21st century (Eitzinger et al., 2010; ICPP, 2013). Due to 

their sessile life style, plants are exposed to the increase of the global temperature, and 

high temperature and water scarcity are the major abiotic factors that constrain crop 

production. However, biotic stress occurs simultaneously with abiotic stress. Plants 

have developed specific mechanisms to detect environmental changes to survive and 

reproduce (Pieterse et al., 2009; Atkinson and Urwin, 2012), and when subjected to 

multiple stresses, plants respond in a non-additive manner (Rhizhsky et al., 2004; 

Mittler, 2006). 

Although climate change affects crop yield potential, pests and pathogens also 

contribute to crop yield losses (Gregory et al., 2009). The disease development is the 

result of the interaction between a susceptible host plant, a virulent pathogen and the 

environment. The interaction between biotic and abiotic factors has been demonstrated 

by several reports about the effects of abiotic stress on many pathosystems. Plant 

defense can be affected after long-term abiotic stress, resulting in increased plant 

susceptibility to pathogens (Amtmann et al., 2008; Goel et al., 2008, Mittler and 

Blumwald, 20010; Atkinson and Urwin, 2012). For example wheat susceptibility to the 

fungus Cochliobolus sativus is correlated with high mean temperature, as observed over a 

six year period (Sharma et al., 2007); tobacco and Arabidopsis HR and R- gene response 

to Pseudomonas syringae and viral elicitors  are compromised under high temperatures 
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(Wang et al., 2009). Sorghum and common bean plant show a higher susceptibility to 

Macrophomina phaseolina under drought stress (Diourte et al., 1995; Mayeke-Perez et al., 

2002). Moreover, a recent study shows increase in susceptibility of Arabidopsis plants to 

virus infection under heat stress or heat and drought combined stress (Prasch and 

Sonnewald, 2013). Climate changes affecting plant growth and development will 

directly or indirectly also affect the microorganisms living on the plant leaf and root 

surfaces. Garrett et al. (2006) in their modeling study, showed evidence of the influence 

of climate change on pests  and pathogens and point out a possible increase in their 

reproductive potential, geographical distribution and likely increasing number of pests 

and pathogens’ hosts and numbers of virulent strains. Recent studies have confirmed 

the increased pathogen spread (Luck et al., 2011; Madgwick et al., 2011). Climate change 

most likely predisposes the host to pathogen colonization. Plant recognition of the 

pathogen effectors through gene-for- gene manner belongs to the NB-LRR protein 

family and occurs as result of effector-triggered immunity (ETI). However, innate 

immune responses activated by pattern-triggered immunity (PTI) and pathogen 

interception through ETI triggers systemic signals resulting in plant defense responses 

and limiting disease spread (Kissoudis et al., 2014). The study of Cheng et al. (2013) 

suggest that changes in ambient temperature lead to a switch of ETI to PTI signaling in 

plants with activation of ETI at low temperatures and PTI at moderately elevated 

temperatures. Temperature increase affects crop R genes’ responses. For example, the 

wheat stripe rust R gene Yr36 confers broad spectrum resistance to Puccinia striiformis f. 

sp. tritici at high temperature (25-35°C), but shows susceptibility to the pathogen at low 

temperature (15°C) (Uauy et al., 2005). Thus, climate change adds a complexity to food 

production and food security. Therefore, there is an urgent need to develop varieties 

with enhanced tolerance to combined stresses. 
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In rice, Peng et al. (2004) reported that for each increase of temperature by 1°C rice yield 

declines by 10% during the dry season. High temperature or drought stress affect rice 

yield and the combined stress of high temperature and drought showed greater effects 

on rice than high temperature or drought stress alone (Prasad et al., 2011). There are few 

reports on the effects of the combined biotic and abiotic stress on rice, particularly 

combined stress of pathogen and heat or drought. Rice IR26 and IR36 showed 

decreased trends in the resistance against brown planthopper (BPH), Nilaparvata lugens, 

when the temperature increased from 25 to 34°C (Wang et al., 2010). Contrarily, Webb 

et al. (2010) reported evidence on rice Xa7 increased effectiveness against bacterial 

blight at high temperature. Other rice bacterial blight resistance genes (Xa3, Xa4, xa5 

and Xa10) studied by the authors were less effective under high temperature compared 

to low temperature, especially Xa4 in variety IRBB4, which showed high disease 

increase under higher temperature. Rice bacterial blight r esistance gene durability is 

therefore in question under the climate change. Pathogen adaptability under climate 

change brings the use of new approaches for breeding tolerance/resistance to stresses 

into front since abiotic and biotic stresses often occur simultaneously. Since the 

combination of several traits might lead to antagonistic interactions between the 

expression of traits, omics data from different combinatorial stress experiments are 

therefore required to allow identification of major regulatory genes involved in multiple 

stresses signaling pathways. 

Conclusion 

Climate changes affect plants from physiological to molecular level. Plant defense 

responses to pathogens are influenced by abiotic stress factors such high temperature 

and drought. Hundreds of reports exist on traditionally a single stress factor on plants, 

however, with the climatic predictions, stress combinations are more likely to occur in 

agricultural systems. The single stress factor study model is no longer sufficient in 
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creating multiple stress-tolerant crops to face the challenges from climate changes. As 

rice is consumed widely in the world, the predicted climatic conditions will negatively 

influence the role played by this cereal crop in food security. There is urgent need of 

research to study stress combinatory effects and to come out with multiple stress 

tolerant/resistance varieties. Signaling pathways of individual stress responses point to 

interaction and antagonism mechanisms controlled principally by hormones. For 

example, Abscisic Acid (ABA) produced in response to abiotic stress induces 

downstream processes for suppression of biotic stress signaling pathways (Anderson et 

al., 2004; Asselbergh et al., 2008; Atkinson and Urwin, 2012; Atkinson et al., 2013). An 

antagonism exists also between jasmonic acid, salicylic acid and ethylene in response to 

biotic stress. Breeding new varieties that hold multiple stress tolerance/resistance will 

therefore depend on the stress regulatory network. Research will have to explore 

existing omics data and construct new data if needed to reveal common genes existing 

between the biotic and abiotic signalling pathways to allow the manipulation of stress 

tolerance/resistance. Improved varieties for abiotic stress tolerance and biotic stress 

resistance should therefore be evaluated under combined stress, rather than single 

stress (Atkinson and Urwin, 2012).  

This study was conceived with the following objectives: 

1. To determine the rice and rice bacterial blight resistance gene response to 

bacterial blight under drought stress conditions. Under this objective, rice lines 

with different background were evaluated under two drought stress levels. The 

effects of drought stress on the pathogen development in planta were further 

evaluated in the lab. Secondly, seventeen rice lines were evaluated under field 

conditions for their responses to combined drought and bacterial blight using 

two Xanthomonas oryzae pv. oryzae strains, and further under screenhouse 

conditions with four Xoo strains.  
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2. To evaluate the cultivated African rice Oryza glaberrima resistance to the 

combined bacterial blight and high temperature stress. Nineteen O. glaberrima 

accessions and Supa (O. sativa) were evaluated under greenhouse conditions for 

their response to ten races of the Philippines Xoo strains. Their resistance 

response was enhanced under high temperature conditions. 

3. To understand the effects of high temperature on the defense response to 

bacterial blight of rice genotype IRBB67 carrying both Xa4 and Xa7 R genes. In 

this part, time course transcriptome profiles using RNA sequencing technology 

under illumine platform were analysed on two rice genotypes under two 

temperature regimes. Finally, the whole genome sequence of Xoo strain PXO145 

was established using Pacific Bio SMRT cell technology. 
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Abstract 

Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight (BB), is a 

common reason for severe economic yield losses in rice. Plant response to one type of 

stress can be affected by simultaneous exposure to a second stress, for example when 

abiotic and biotic stresses occur together. In this study, ten rice genotypes comprising 

those with BB resistance (R) genes, drought QTLs plus a BB R gene, and BB susceptible 

genotypes, were subjected to mild and moderate drought stress and plants were 

inoculated with two Xoo strains (PXO99 and PXO145) to simulate the challenges rice 

crops face under simultaneous stress of drought and BB. Plant height, dry shoot 

biomass and BB disease development were significantly reduced by drought stress 

treatments. The PXO99 population and spread in planta was higher compared to 
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PXO145 and generally decreased under mild drought stress. Rice IRBB7 (Xa7) showed 

less bacterial spread and a reduced Xoo population under drought stress compared to 

the well-watered control. In contrast, in genotypes with a different BB R gene and/or 

drought QTLs [IRBB4 (Xa4), IR87705-6-9-B (Xa4+qDYT2.2), IR87707-445-B-B-B 

(Xa4+qDYT2.2+qDYT4.1) and IR87707-446-B-B-B (Xa4+qDYT2.2+qDYT4.1)] an inverse 

reaction of Xoo population and spread in planta was observed in which Xoo population 

and spread increased with drought stress. This study has shown the inverse responses 

of the two major BB R genes under drought stress. It is concluded that evaluating rice 

varieties under combined abiotic and biotic stresses will be the best strategy to evaluate 

biotic stress resistance durability under climate change.   

Keywords: Xanthomonas oryzae pv. oryzae; bacterial blight; rice; drought stress; Xa4; Xa7. 
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Introduction 

Plants are limited to a sessile life style and are often exposed to diverse environmental 

stresses. However, experiments concurrently testing the effect of multiple stresses are 

typically not performed when developing stress resistant or tolerant varieties. Under 

field conditions, rice (Oryza spp.) like other crops is often simultaneously exposed to a 

number of biotic and abiotic constraints. Among rice biotic stress factors, bacterial 

blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major constraint causing 

substantial yield losses worldwide. The disease is prevalent in irrigated and rain-fed 

lowland systems and is favored by leaf surface wetness, high relative humidity, and 

high temperature (25-30°C). Initially, Xoo causes water-soaked leaf lesions and 

yellowing, and later colonizes the host xylem and turns systemic at an advanced stage 

of infection. Host resistance remains the most economically effective control measure 

against bacterial blight disease, and 39 rice resistance genes have been identified to 

control the disease in Asia (Natraijkumar et al. 2012; Khan et al. 2014; Zhang et al. 2015).  

The occurrence of drought is the consequence of increasingly unexpected fluctuations in 

precipitation. Rice production in general requires a large quantity of water, and drought 

stress can limit rice production. Rice is a drought-sensitive crop and occurrence of 

drought stress at the reproductive stage leads to severe yield loss (Venuprasad et al. 

2009a). Drought stress affects plant growth through its direct influence on plant water 

status (Anjum et al. 2011). Imposing drought stress on rice plants can decrease fresh and 

dry biomass, plant height, tiller number, and panicle number (Bhattacharjee et al. 1973; 

De Datta 1973; Rahman et al. 2002). Large efforts have gone into the identification of 

QTLs for rice yield under drought stress (Kumar et al. 2014), and several reports have 

highlighted the positive effect of drought QTLs on rice yield under drought stress in 

upland and rainfed lowland rice systems (Bernier et al. 2007; Kumar et al. 2008; 

Venuprasad et al. 2009b; Swamy et al. 2013). 
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Climate change is predicted to increase the simultaneous occurrence of abiotic and 

biotic stresses which may act synergistically in damaging the plant. Wright and Beattie 

(2004) reported that foliar pathogen growth is restricted by low water availability at an 

early stage of interaction, suggesting that leaf water content may be correlated with the 

host plant defense response to pathogens, and that lack of water may restrict the 

bacterial growth in intercellular spaces. Thus, Beattie (2011) observed that the apoplastic 

water availability for bacteria is reduced during effector-mediated defense and may 

have a negative impact on bacteria growth. Several physiological responses are related 

to water availability, such as stomata closure, increase of ABA, accumulation of 

compatible solutes and an increase in expression of aquaporin, a regulator of water flow 

across membranes to maintain the cell turgor (Bartels and Sunkar 2005). These 

physiological responses help the plant to economize water use, which may interact with 

pathogen response.  For example, under drought stress, water limitation in the apoplast 

may affect bacterial growth and movement - bacterial movement inside the host plant is 

regulated by its flagellae, which is favored by water availability in the leaf apoplast. An 

early study on colonization and movement of Pseudomonas syringae on bean seedlings 

suggested that a greater spread of the bacterium was promoted by water (Leben et al. 

1970), and an abundance of free water has been reported to favor phyllosphere tissue 

entry by bacteria (Beattie 2011). However, bacteria can still move by swarming motility 

under limited water content (Hattermann and Ries 1989; Kearns 2010; Beattie 2011).  

Continued climate change is expected to have effects on R gene-mediated responses to 

pathogen invasions. Long-term abiotic stress can increase host susceptibility to 

pathogen attack (Amtmann et al. 2008; Atkinson and Urwin 2012). A higher 

susceptibility of sorghum and common bean to Macrphomina phaseolina under drought 

stress has been reported (Diourte et al. 1995; Mayeke-Perez et al. 2002). Arabidopsis 

exposed to drought showed a higher infection level of an otherwise avirulent 
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Pseudomonas syringae strain (Mohr and Cahill 2003). In rice, simultaneous effects of 

drought stress and BB on rice resistance (R) gene-mediated resistance is still unknown. 

Therefore, we hypothesized that combined stresses of drought and BB would affect rice 

R gene-mediated resistance to BB. Understanding this complex interaction will provide 

information on how current BB R genes will respond under future climate change 

conditions. In this study, two major rice R genes in different genotypes were evaluated 

for their effects on BB symptoms under vegetative-stage drought in terms of bacterial 

development, multiplication, and movement in planta. The most resistant rice genotypes 

currently available for BB and drought stress were included in order to understand the 

range of potential responses of rice to these combined stresses. 

2- Materials and methods 

2-1- Rice genotypes and bacterial strains 

In order to study drought stress effects on bacterial blight development, ten rice 

genotypes were selected containing different combinations of R genes and R genes 

combined with drought QTLs (Table 1). The first group consisted of rice bacterial blight 

monogenic resistance lines IRBB4 (with R gene Xa4), IRBB7 (with R gene Xa7), IR64 

(with R gene Xa4), and bacterial blight susceptible check IR24. The second group 

consisted of pyramided bacterial blight resistance lines IRBB61 (with R genes Xa4, xa5, 

Xa7), IRBB67 (with R genes Xa4, Xa7) and PSBRc82 (with R genes Xa4, xa5). The third 

group consisted of IR64 (with R gene Xa4) and IR64 introgression lines with drought 

QTLs qDTY2.2 and qDTY4.1 (IR87707-445-B-B-B and IR87707-446-B-B-B) (Kumar et al. 

2014) and qDTY2.2 only (IR87705-6-9-B).  

Two Xoo strains from the Philippines in the collection at the International Rice Research 

Institute (IRRI) were used. We used PXO145 (avrXa4+avrxa5+avrXa7) for the 

incompatible interaction and PXO99 for the compatible interaction.  
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2-2- PVC-tube cultivation and drought stress application 

This study was conducted under greenhouse conditions at IRRI (14° 11’N, 121° 15’E). 

Two levels of drought stress were established: mild (MiDST; maintained at 70% of field 

capacity) and moderate (MDST; maintained at 50% of field capacity). The experiment 

was conducted in PVC cylinders of 10.8 cm diameter and 21 cm height following a split 

plot design with drought stress as the main factor, bacterial strains as a sub-factor, and 

genotype as a sub-sub factor with 3 replications for each strain per drought stress 

treatment and two plants per cylinder. The seeds of each genotype were pre-germinated 

for 4 days in the dark at 30 °C. Each cylinder was filled with 1.5 kg of dry soil mixed 

with 0.3 g of ammonium sulfate and watered to field capacity.  

Progressive drought stress was initiated at 14 days after sowing (das) and continued 

until the end of the experiment by imposing a gradual reduction over a period of 7 

days. The cylinders were weighed every two days and water was added when soil 

moisture dropped below the target level. At 21 das, the plants were maintained at the 

target soil moisture level until the end of the experiment. The well-watered control was 

maintained flooded for the whole experiment. Two different trials were performed: 

Trial 1 from March-April 2014 with average temperature 35.2°C, and Trial 2 from April 

to May 2014 with average temperature of 33.6°C. The average relative humidity was 

54.4% in Trial 1 and 58.2% in Trial 2. 

2-3- Bacterial blight inoculation and evaluation 

X. oryzae pv. oryzae strains were grown on Modified Wakimoto's medium (Leach et al., 

1992) for 72h. Inocula were prepared by suspending the 72h-old culture in sterilized 

demineralized water and inoculum concentration was adjusted to 5x108 CFU/ml. Leaf-

clip inoculation (Kauffmann et al. 1973) was performed at 21 das. Bacterial blight lesion 

lengths were measured at 32 das.  
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2-4- Bacterial multiplication in planta 

To assess drought stress effects on Xoo development and spread in planta from both 

compatible and incompatible interaction, the second leaf of the main tiller of each 

inoculated plant from each soil moisture condition was collected. Each leaf was 

separated into segments of 5 cm in length. Each segment was crushed in phosphate 

buffered saline [Sodium Chloride (NaCl): 8.0g, Potassium Chloride (KCl): 0.2g, Sodium 

Phosphate (Na2HPO4): 1.44g, Potassium Phosphate (KH2PO4): 0.24g for 1 liter 

preparation of phosphate buffered saline] and dilution series were prepared from the 

homogenate. Fifteen (15) µl of each dilution were spotted on Suwa’s medium *Sodium 

Glutamate: 2.0g; MgCl2 (6H20): 1.0g; KH2PO4: 0.1g; Peptone: 17.0g; Sucrose: 5.0g; Agar: 

17.0g and Fe-EDTA: 6.57g for 1 liter of medium] containing 0.8% of Cycloheximide 

antibiotic [8mL from stock solution (1g/100mL H2O) for 1L of medium] and 0.2% of 

Cephalexin antibiotic [4mL from stock solution (0.5g/100mL H2O) for 1 L of medium], 

with 3 spots per dilution and 2 replications. Xoo colonies were counted after 48h and the 

bacterial number was calculated in number of colony forming units (CFU) per ml for 

each segment. The whole experiment was replicated and the logarithm 10 of the mean 

values was used to evaluate BB spread along the length of the leaf. 

2-5- Measurement of plant morphological traits 

Plant height was measured on a single plant per cylinder at 32 das. The plant height 

was measured from soil surface to the tip of the most developed leaf of each plant. 

Shoots were harvested from all cylinders at 32 das. Shoot dry biomass was recorded 

after 72h of oven drying at 70°C. 

2-6- Data analysis 

The plant height, shoot dry biomass, and bacterial blight lesion length data were 

subjected to homogeneity of variance test using residual plots, followed by ANOVA. 

The homogeneity of variance test indicated no significant effect of the trial on plant 
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height and shoot dry biomass; therefore the data from the three replicates of each trial 

were combined for subsequent analyses. The bacterial blight lesion length data were 

analyzed separately by trial because a significant effect of trial was observed. Analyses 

of variance based on split plot design were performed on each trial using Statistical 

Tool of Agricultural Research (STAR v.2.0.1). Means differences of BB lesion lengths 

showed on each genotype were compared between drought stress treatment using 

Tukey Honest Significant Differences (HSD) test at α=0.05. For plant height, dry shoot 

biomass, Least Significant Differences (LSD) values were used to differentiate the mean 

values at the 95% confidence level.  

3-Results 

3-1-Plant height reduction with drought stress increased  

All genotypes showed plant height reduction as drought stress increased (Fig. 1). An 

average plant height reduction of approximately 20 cm was generally observed between 

the well-watered mild drought treatments, and approximately 30 cm between well-

watered and moderate drought stress treatments. Under well-watered and mild 

drought stress treatment, no differences in plant height were observed between 

genotypes (Figure 1). Genotypes IR87707-445-B-B-B and IR87707-446-B-B-B plant height 

were significantly different to other genotypes.  

Drought stress has significant effects (p-value <2e-16) on shoot dry biomass with shoot 

dry biomass reduction under drought stress. No differences were observed between 

genotypes across the three treatments (Fig. 2) 

3-2- Rice R genes Xa4 and Xa7 reactions to X. oryzae pv. oryzae under different 

drought stress 

Bacterial blight lesion lengths were generally higher in plants inoculated with PXO99 

compared to plants inoculated with PXO145. The BB lesion lengths under drought 
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stress varied according to rice genotypes and between trials. BB lesion lengths in 

IR87705-6-9-B from both mild and moderate drought stress were generally not 

significantly different compared to the well-watered treatment in both Trial 1 and Trial 

2 (Fig. 3A, 3B, 3C, 3D). The susceptible genotype IR24 showed the greatest lesion length 

reduction with both strains by drought stress, although the lesion length remained 

higher compared to other genotypes.  

3-2-1- Incompatible interaction 

Rice R genes Xa4, xa5 and Xa7 confer resistance to PXO145 (avrXa4+avrxa5+avrXa7) 

strain. The average lesion lengths of less than 5 cm are clustered as resistant, and those 

higher than 5 cm as susceptible. In the well-watered treatments, all rice genotypes’ 

average lesion lengths were below 5 cm, except for the susceptible genotype IR24, of 

which the average lesion length was higher than 5 cm (Fig. 3A, 3B). The effects of 

different drought stress conditions on BB disease development generally showed a 

decrease of BB lesion lengths with increased drought stress. After inoculation with 

strain PXO145, lesion lengths were reduced in four genotypes (IR24, IR64, IR87707-446-

B-B-B, IRBB7) in the moderate drought stress treatment compared to the well-watered 

treatment, while a tendency of increase in lesions lengths was observed in six genotypes 

(IRBB4, IR64, IR87705-6-9-B, IR87707-445-B-B-B, IR87707-446-B-B-B, IRBB67) in the mild 

drought stress treatment. IR64 and IR87707-446-B-B-B showed lesion length reduction 

under moderate drought stress compared to well-watered and mild drought stress 

treatments (Fig. 3A). In plants inoculated with PXO145 in the second Trial, four 

genotypes (IR64, IR87707-445-B-B-B, IR87707-446-B-B-B, PSBRc82) showed significant 

BB lesion lengths’ increase under mild drought stress compared to well-watered 

treatment, with two genotypes IR87707-445-B-B-B and IR87707-446-B-B-B showing 

significant BB lesion lengths’ increase under moderate drought stress in comparison to 

the well-watered treatment (Fig. 3B). Analyzing the reactions of genotypes carrying the 
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single Xa4 gene inoculated with PXO145, lesion lengths were significantly higher in 

mild drought stress compared to the well-watered treatment in IRBB4 and IR87707-445-

B-B-B, while the lesion lengths were not significantly different to well-watered in IR64 

and IR87707-446-B-B-B (Fig. 3A). IR64, IR87707-445-B-B-B and IR87707-446-B-B-B 

showed significant BB lesion length increase under mild drought stress compared to the 

well-watered treatment, and lesion lengths in IRBB4 were not significantly different 

across the three water stress treatments (Fig. 3B). BB lesion lengths in genotype IRBB7 

carrying Xa7 under drought stress were generally reduced. Rice genotypes with a 

combination of Xa4+xa5, Xa4+xa5+Xa7 and Xa4+Xa7 in IRBB61, PSBRc82 and IRBB67, 

respectively, showed slight BB lesion length increase under mild drought stress after 

inoculation with PXO145, which was significant in PSBRc82 in Trial 2. 

3-2-2- Compatible interaction 

Strain PXO99 was generally virulent on all genotypes used in this study, since the 

average lesion length was always above 5 cm in the well-watered treatment. In drought 

stress treatments compared to well-watered treatment, in plants inoculated with strain 

PXO99, BB lesion lengths were generally reduced (Fig. 3C & 3D). Three (IR64, IR87707-

446-B-B-B, IRBB67) of the ten genotypes showed BB lesion lengths’ reductions when 

drought stress increased. Genotypes IR24, PSBRc82, IRBB7 showed a tendency of BB 

lesion length reduction under mild and moderate drought stress conditions – while 

genotypes IR64 and IR87707-445-B-B-B showed significant BB lesion lengths’ reduction 

under moderate drought stress compared to well-watered treatment (Fig. 3C). In the 

second trial with inoculation with PXO99, BB lesion lengths were reduced in four 

genotypes (IR64, IR87707-446-B-B-B, PSBRc82 and IRBB7), when drought stress 

increased from mild to moderate drought stress. Genotypes IRBB4, IRBB61 and IRBB67 

showed BB lesion length reduction under moderate drought stress compared to well-

watered treatment (Fig. 3D). Drought QTL genotypes (IR87707-445-B-B-B and IR87707-
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446-B-B-B) under moderate drought stress inoculated with PXO99 showed generally 

reduced BB lesion length in Trial 1 and in Trial 2. 

3-3- In planta Xoo populations and spread increased in rice genotypes with the single 

Xa4 gene under mild drought stress. 

We investigated the possible role of drought stress on bacterial multiplication and 

movement in planta and found that in planta Xoo spread was reduced by drought stress, 

especially by moderate drought stress compared to the well-watered treatment, except 

in rice genotype with single Xa4 R gene (Fig. 4). Comparison of BB lesion length and 

Xoo spread in planta revealed that Xoo progressed beyond the symptomatic area in both 

drought stress and well-watered conditions (Figs. 4 & 5). Similarly to the drought stress 

effects on BB lesion length, Xoo numbers in planta generally did not show significant 

differences between water stress treatments.  

3-3-1- Incompatible interaction  

In the incompatible interaction PXO145 (avrXa4+avrxa5+avrXa7) spread less in IR87705-

6-9-B with a lower Xoo number under the well-watered treatment than in mild drought 

and moderate drought stress treatments. Similar to IR87705-6-9B, genotype IR87707-

445-B-B-B showed less Xoo spread in planta under the well-watered treatment. 

Genotypes PSBRc82 and IRBB67 showed in planta Xoo spread up to 20 cm (segment A to 

D) and 25 cm (segment A to E), respectively, under the well-watered treatment. Other 

genotypes such as IR24, IR64, IR87707-446-B-B-B, IRBB61 and IRBB7 showed highest 

Xoo spread in planta under the same treatment, and in IRBB4, Xoo spread up to 30 cm 

(Fig. 4).  

Under drought stress (mild drought stress), Xoo spread increased in genotype IR24, 

IR87705-6-9-B, IR87707-445-B-B-B, IR87707-446-B-B-B, IRBB4 and PSBRc82 while it 

decreased in genotypes IRBB67 and IRBB7. Genotypes IR64 and IRBB61 did not show 
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changes in Xoo spread under mild drought stress with PXO145. Under increased 

drought stress, Xoo spread in planta was reduced in IR87705-6-9-B, IR87707-445-B-B-B, 

IR87707-446-B-B-B, IRBB61, IRBB67, IRBB7 and PSBRc82 (Fig. 4). Genotypes IR24 and 

IRBB4 showed Xoo spread up to 40 cm under moderate drought stress while Xoo spread 

in IR64 remained with no change (35 cm).  

3-3-2- Compatible interaction 

With Xoo strain PXO99, bacterial spread in planta was generally reduced with increasing 

drought stress. Genotypes IR64, IR87707-445-B-B-B, IRBB7 and PSBRc82 showed the 

highest (40 cm) Xoo spread under the well-watered treatment (Fig. 5). In IRBB4, it 

spread less (30 cm) under the same treatment.  With drought stress, Xoo spread more in 

IRBB4 (40 cm) compared to well-watered treatment. Genotype IRBB7 showed the lower 

Xoo spread (20 cm) under moderate drought stress. In the compatible interaction 

(PXO99) Xoo numbers in planta were generally higher than Xoo numbers in planta in the 

incompatible interaction (PXO145). The maximum average lesion length was 17 cm, 

recorded on IR24 inoculated with PXO99 in the well-watered treatment (Fig. 3), while 

Xoo spread was up to 35 cm in the same plants (Fig. 5). 

4- Discussion  

In this study, BB lesion lengths in rice leaves varied by drought stress severity as well as 

genotype and the Xoo strain inoculated. Bacterial blight disease infection was generally 

reduced when drought stress increased in severity from well-watered to mild drought 

to moderate drought stress in compatible and incompatible interactions. The use of a 

range of rice genotypes with different combinations of BB R genes and drought QTLs in 

this study has shown that plant response to pathogens following a gene for gene 

interaction could be affected by drought stress.  
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In the compatible interaction, Xoo strain PXO99 virulence was reduced under drought 

stress. However, Xoo strain PXO145 induced longer BB lesion lengths - especially in 

mild drought stress, Trial 2 - in the susceptible genotype IR24 under drought stress 

compared to lesion lengths induced by PXO99. Foliar pathogen growth has been 

previously reported to be restricted by low water availability (Wright and Beattie 2004) 

and our results indicate that decrease in soil water content reduced BB lesion length, 

and additionally the different disease responses could be related to the genetic 

background of rice genotypes. Furthermore, the BB lesion lengths with PXO99 observed 

under well-watered conditions compared to lesion lengths under drought stress 

indicated that virulence of the strain was reduced by drought stress. Moreover, PXO145 

had shown increase in both BB lesion length and Xoo numbers in IR64, IR87707-445-B-B-

B, IR87707-446-B-B-B and PSBRc82 under mild drought stress compared to well-

watered conditions while the lesion length with PXO99 was reduced under low drought 

stress, further highlighting the variable responses of different rice genotypes to Xoo 

inoculation.  

Although lesion length was generally reduced with increasing drought stress, more 

bacteria were recorded from different segments of inoculated leaves under mild 

drought stress compared to the well-watered and moderate drought stress treatments, 

especially in rice genotypes with single Xa4 gene. Moreover, the BB lesion lengths, 

although reduced under moderate drought stress, were higher on genotypes with the 

single Xa4 gene compared to genotypes with the Xa7 gene when inoculated with 

PXO145 (avrXa4+avrxa5+avrXa7), suggesting that Xoo multiplication and spread in planta 

and BB lesion lengths depended on the resistance gene. Mild drought stress may favor 

Xoo multiplication and spread in planta, possibly through negative effects on host 

immune responses leading to increased bacterial multiplication and allowing Xoo 

movement in planta. Therefore, we hypothesized that mild drought stress possibly 
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created a negative impact on those genotypes by lowering their resistance to bacterial 

blight. Also Webb et al. (2010) observed that rice Xa4 gene mediated resistance to 

bacterial blight is compromised under high temperature as similarly our study revealed 

that Xa4 resistance was compromised under drought stress, particularly under mild 

drought stress. Additional, rice genotype IRBB7 (Xa7) showed lesion length, in planta 

Xoo multiplication and spread reduced with drought stress increased, suggesting that 

Xa7 resistance to bacterial blight increase was associated with leaf water loss. This result 

is consistent with the findings of Freeman and Beattie (2009) who reported that host 

resistance to bacteria is associated to leaf water loss in Arabidopsis thaliana.  

Although the disease symptoms were less developed under drought stress, this study 

showed that Xoo spread in planta extended beyond the symptomatic area under both 

compatible and incompatible interactions. The increase in Xoo spread in planta in IRBB4, 

IR64, IR87707-445-B-B-B, IR87707-446-B-B-B, and IR87705-6-9-B under drought stress 

could be associated with BB R gene Xa4 response. In contrary to Xa4 response, rice 

genotype IRBB7 carrying BB R gene Xa7 showed lower Xoo numbers and restricted Xoo 

spread in planta under drought stress. Since drought stress results in stomatal closure, 

drought stressed leaves are typically higher in temperature (Garrity and O’Toole 1995) 

than well-watered leaves. Therefore, our results appear to be consistent with the 

observation of less effectiveness of IRBB4 (Xa4), and increased effectiveness of IRBB7 

(Xa7) under high temperature that has been previously reported (Webb et al. 2010). Xa7 

response to BB under drought stress compared to well-watered conditions may be 

synergistically linked with abiotic stress response genes. In contrast to lower Xoo 

numbers observed with IRBB4 under well-watered conditions (Fig. 4), IRBB7 showed 

high Xoo numbers. Collectively, these results suggest that resistance conferred by Xa4 

was less effective under drought and high temperature conditions, and that IRBB7 may 

respond more efficiently to BB under climate change situations. 
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Development of rice genotypes with tolerance and resistance to combined abiotic and 

biotic stress would be suitable under climate change conditions and could consequently 

contribute to addressing food security problems. Tippmann et al. (2006) hypothesized 

that simultaneous occurrence of abiotic and biotic stresses can lead to host susceptibility 

or resistance, and that the outcome may depend on the stress and pathogen. Our study 

further builds on this hypothesis by suggesting that the outcome of multiple stress 

interaction may also be influenced by host plant genetic background (Figure 6). 

Moreover, the microclimates in which the plants are growing can also influence the 

plant-pathogen interaction, as indicated by the longer disease lesion lengths in Trial 2 

during which the relative humidity (58.2%) was higher compared to Trial 1 (54.4%).  

Rice genotypes IRBB7 (Xa7), IRBB61 (Xa4+xa5+Xa7), IRBB67 (Xa4+Xa7) and IR87705-6-9-

B (Xa4/qDTY2.2) showed less disease development with strain PXO145 

(avrXa4+avrxa5+avrXa7) while IRBB4 (Xa4), IR64 (Xa4), IR87707-445-B-B-B 

(Xa4/qDTY2.2+qDTY4.1), IR87707-446-B-B-B (Xa4/qDTY2.2+qDTY4.1) were less effective 

under simultaneous application of drought and bacterial blight stresses, demonstrating 

the genetic background effect on the interaction. Moreover, both increase and decrease 

of disease lesion length under drought stress revealed the complex interaction leading 

to physiological and molecular responses occurring in plants exposed to simultaneous 

abiotic and biotic stresses. The role that is played by different BB R genes and drought 

tolerance QTLs during stress combinations may also indicate which R genes are to be 

considered for variety improvement to cope with climate changes. Furthermore, Dossa 

et al. (2015) propose to customize bacterial blight resistance varieties deployment and in 

this study, the two major R genes (Xa4 and Xa7) used demonstrated that Xa4 

effectiveness was compromised under drought stress while Xa7 effectiveness was 

enhanced when inoculated with PXO145 (avrXa4+avrxa5+avrXa7) suggesting an inverse 

response to BB when drought stress increased (Figure 6) and suggesting that rice R gene 
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Xa7 should be taken into account for varietal improvement for combinations of abiotic 

and biotic traits expected under climate change. Rice genotypes with drought QTLs 

were not morphologically (plant height and dry biomass) distinct from varieties 

without these QTLs, suggesting that these specific drought QTLs responsiveness to 

water stress at seedling stage was minimal and may not be involved in plant water 

uptake under water stress conditions at seedling stage. This result is correlated to the 

report from Demirevska et al. (2009) who suggested that plant tolerance to water deficit 

depends on stress level, plant species, and also developmental stage. Moreover, Henry 

et al. (2015) reported no significant differences in shoot biomass, root architecture and 

anatomy in IR64 NILs at seedling stage. Tolerance of genotypes with drought QTLs to 

drought stress at advanced growth stage may be beneficial to BB disease development. 

Drought tolerant genotypes may have the capability to avoid water loss through 

stomata or develop deep roots for water uptake from deeper soil as reported in 

Arabidopsis thaliana (Yu et al., 2008) and in transgenic rice (Yu et al. 2013) and a high root 

hydraulic conductivity might occur in IR87707-445-B-B-B and IR87707-446-B-B-B 

(Henry et al. 2015). This suggests that a combination of drought QTLs and suitable BB R 

genes could enhance rice resistance and tolerance to simultaneous stresses of drought 

and bacterial blight. More research at vegetative and reproductive stages is necessary to 

evaluate these possibilities. 

In summary, BB lesion length development was generally reduced under drought stress 

conditions, but bacterial blight multiplication and spread varied according to rice 

genetic background. Rice BB single R gene Xa4 in interaction with PXO145 under mild 

and moderate drought stresses failed to limit BB multiplication and spread compared to 

well-watered conditions. However, Xa7 in IRBB7 showed less BB multiplication and 

restricted BB spread under moderate drought stress with Xoo strains PXO145, as well as 

with Xoo strain PXO99 which is virulent on IRBB7, suggesting that Xa7 benefited from 
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the drought stress for its resistance to bacterial blight under incompatible interaction 

and response to drought stress reduced the BB multiplication and spread in planta with 

PXO99. Furthermore, mechanistic understanding gained on the impact of drought 

stress on BB R gene mediated resistance to bacterial blight would provide better 

insights into the rice and bacterial blight pathosystem for rice varieties’ improvement 

under climate change. 
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Table1: List of rice genotypes used in this study and their corresponding R genes and QTLs 

S/N Genotypes Xa genes/QTLs 

1 IR24 Xa18* 

2 IRBB4 Xa4 

3 IR64 Xa4 

4 IR87705-6-9-B Xa4/qDTY2.2 

5 IR87707-445-BBB Xa4/qDTY2.2+qDTY4.1 

6 IR87707-446-BBB Xa4/ qDTY2.2+qDTY4.1 

7 PSBRc82 Xa4+xa5 

8 IRBB61 Xa4+xa5+Xa7 

9 IRBB67 Xa4+Xa7 

10 IRBB7 Xa7 

*Not effective in most Asian countries, except Myanmar and Africa 

Rice BB R gene is designated by Xa and drought QTL as qDTY 
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List of Figures 

Figure 1: Plant height of ten rice genotypes under well-watered (WW), mild drought 

stress (MiDST; 70% soil moisture) and moderate drought stress (MDST; 50% soil 

moisture). The letters a, b, c and d indicate the significant differences of plant height 

between genotypes at each stress level as determined by Tukey HSD test (p<0.05). 

Figure 2: Dry shoot biomass of 10 rice genotypes under different drought stresses. The 

shoot biomass was collected from 32 days-old plants. WW, MiDST and MDST represent 

well-watered (control), mild drought stress (70% soil moisture) and moderate drought 

stress (50% soil moisture), respectively. The letters a and b indicate the significant 

differences of the dry biomass between genotypes at each stress level as determined by 

Tukey HSD test (p<0.05). No significant differences between genotypes under mild 

drought stress. 

Figure 3: Bacterial blight lesion length comparison from 10 rice genotypes at each level 

of stress. A) plants inoculated with Xoo strain PXO145 in Trial 1; B) plants inoculated 

with Xoo strain PXO145 in Trial 2; C) plants inoculated with Xoo strain PXO99 in Trial 1; 

D) plants inoculated with Xoo strain PXO145 in Trial 2. The letters a, b, c and d indicate 

the significant differences of lesion length between drought stress and at genotype level 

as determined by LSD test (p<0.05). 

Figure 4: PXO145 numbers and spread in planta under different soil moisture 

conditions. Xoo colonies were counted from each segment after 48h of incubation 

following leaf sampling. WW: well-watered (control), MiDST: mild drought stress 

(drydown to 70% of field capacity), MDST: moderate drought stress (drydown to 50% 

of field capacity). Xa18 is not effective in most Asian countries, except Myanmar and 

Africa. Xa4, xa5 and Xa7 are resistant to PXO145 strain. 
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Figure 5: PXO99 numbers and spread in planta under different soil moisture conditions. 

Xoo colonies were counted from each segment 48h after incubation. WW, MiDST and 

MDST represent well-watered (control), mild drought stress (70% soil moisture) and 

moderate drought stress (50% soil moisture), respectively. Xa18 is not effective in 

most Asian countries, except Myanmar and Africa. PXO99 is virulent on Xa4, xa5 and 

Xa7. 

Figure 6: A proposed model of Xa4 vs Xa7 mediated responses to Xanthomonas oryzae 

pv. oryzae (Xoo) under drought stress. Plants with Xa4 and Xa7 showed an inverse 

response to BB under drought stress. Xoo numbers and spread in planta increased with 

increasing drought stress on plants with Xa4. Plants with Xa7 in contrast had Xoo 

numbers and spread restricted when drought stress increased. The model proposed 

here suggests that Xa7 resistance follows the drought stress gradient, while Xa4 

resistance decreases when stress increased. The green plant represents a healthy plant 

while the dark yellow and yellow plants are resistance reduced plants.  
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Chapter 3: Combining drought QTLs and bacterial blight Xa-genes to control 

bacterial blight disease under drought stress. 
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Abstract 

To control rice bacterial blight, near-isogenic lines carrying Xa genes were developed, 

while rice NILs with drought yield QTL (qDTY) were selected for rice yield 

improvement under drought conditions. Under climate change crops will be exposed to 

multi-stresses of biotic and abiotic nature simultaneously. In this study, the response of 

17 rice lines to simultaneous bacterial blight and drought stresses were evaluated in 

screenhouse trials and field trials. Under drought stress, qDTY NILs with their shorter 

growing period were less affected, while IR24 and IRBB4 showed growth reduction and 

0% flowering under field conditions. NILs with Xa gene alone showed  resistance to Xoo 

strains carrying the corresponding avirulence gene, except in genotype IRBB4 with Xa4 

R gene that, although resistant, showed significant increase in disease severity under 

mailto:c.dossa@irri.org
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drought stress after inoculation with Xanthomonas oryzae pv. oryzae (Xoo) strain PXO61 

(avrXa4) compared to irrigated conditions. The combination of Xa4 R gene with qDTY in 

IR64 introgression lines (IR87705-6-9-B, IR87707-445-B-B-B, IR87707-446-B-B-B) showed 

resistance to Xoo strains PXO61 (avrXa4) and PXO145 (avrXa4) under irrigated 

conditions but were less resistant under drought stress treatment. qDTY NILs were 

susceptible to all strains under both irrigated and drought stress conditions. These 

results highlight the different responses of rice lines to bacterial blight under drought 

stress and the advantage of traits’ combination (Xa+qDTY) to confer drought tolerance 

and BB resistance under unfavourable future climate conditions.  

Keywords: Rice, drought, bacterial blight, Xa gene, qDTY 
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Introduction 

Climate change accompanied by unexpected heat and drought events is predicted to 

influence diseases development in crops. Increase of the night temperature by 1°C will 

affect rice and result in a 10% yield reduction (Welch et al., 2010). Furthermore, the 

current climate situation and the predicted increases in global temperature and water 

scarcity conditions (IPCC, 2007) are expected to affect crop resistance against pathogens. 

Considering climate extremes and the looming water crisis for agriculture in the near 

future, drought is an important abiotic factor that affects crop growth and limits yield. 

Plants are continuously exposed to abiotic and biotic stresses which affect numerous of 

their physiological processes. While scientists face a challenge for developing resistant 

genotypes against biotic stress, the abiotic stress factors will bring about further threats 

for crop production. According to Prasad and Staggenborg (2008), high temperature 

and drought induce in plants a range of changes and biochemical, molecular and 

physiological responses from cellular level to entire plant processes.  A long-term 

abiotic stress can cause host susceptibility to pathogen attack (Amtmann et al., 2008; 

Goel et al., 2008; Mittler and Blumwald, 2010; Atkinson and Urwin, 2012). Sorghum and 

common bean plant showed a higher susceptibility to  Macrphomina phaseolina under 

drought stress (Diourte et al., 1995; Mayeke-Perez et al., 2002), and Arabidopsis exposed 

to drought showed a higher infection level to an avirulent Pseudomonas syringae strain 

(Mohr and Cahill, 2003). 

To date, many studies have examined either the effect of a single stress on crops, or the 

identification of resistance genes under appropriate rice growth condition.  Rice 

bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the economically 

most important bacterial disease in rice in both favorable and unfavorable rice growing 

areas. Webb et al. (2010) reported that rice genotype IRBB7 is effective under high 

temperature while IRBB3, IRBB4 and IRBB5 lost their resistance. A more recent study 
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revealed that triple stress (heat, drought and virus infection) reduced the expression of 

genes for resistance to disease, accompanied by an increase of cytoplasmic protein 

response in Arabidopsis plants (Prasch and Sonnewald, 2013). Garett et al. (2011) in 

their review reported that to predict pathogens response to climate variability, besides 

climate change, pathogen population shifts should be taken into account. According to 

Mittler (2006), determining plant responses to multiple stresses requires simultaneous 

application of stresses. The rice-Xoo pathosystem under drought conditions brought 

about by water limitation and increasing temperature is not yet well understood. Here 

we report about the impact of combined stress of drought and Xoo on rice R gene 

mediated response to bacterial blight and drought qDTY lines. We aim at an approach 

to control BB under drought conditions to help breeders and farmers to cope with the 

challenges of climate change.  

2. Materials and methods 

2.1. Plant materials 

Seventeen rice lines (Table 1) were used for the field experiments (irrigated and drought 

stress). Due to low germination of IR87705-6-9-B, only 16 lines were considered for the 

first year experiment while all the lines were used for the second year. In order to have 

drought stress during flowering stage of all genotypes, BB near isogenic lines, IR64 and 

its introgressed lines (IR87705-6-9-B, IR87707-445-B-B-B, IR87707-446-B-B-B) and Supa 

were seeded 21 days before seeding the genotypes with drought QTL alone (Vandana, 

IR90020:22-283-B-1, IR90020-22-283-B-4, IR84984-21-19-78-B, IR84984-83-15-481-B) 

during the second year. 
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2.2. Field experiment 

Field experiments were conducted at the experimental station of the International Rice 

Research Institute (IRRI), Los Banos, Laguna, Philippines, during the dry seasons of 

2014 and 2015. IRRI is located at 21 m of elevation above mean sea level at 14°13’N 

latitude and 121°15’E longitude. The soil type is a Maahas clay loam; isohyperthermic 

mixed typic Tropudalf (Venuprasad et al. 2009). 

2.3. Climate conditions 

During the first trial in 2014 the average temperature varied between 24.3 °C and 28.7 

°C. The total amount of rainfall ranged from 0.1 mm to 2.4 mm while the relative 

humidity ranged from 86.9 % in December 2013 to 77.9 % in April 2014. In 2015, the 

average temperature ranged from 24.9 °C to 29.5 °C between January 2015 and May 

2015. The rainfall amount varied between 0.2 mm and 2 mm from January to May 2015 

and the relative humidity ranged between 82.7 % and 80.1 % during the same period 

(Figure 1). In 2014, some rains were observed two weeks after Xoo inoculation. During 

2015, some rains were also observed in a month of March and were less during April.  

Experiment 

Three week-old seedlings were transplanted in two fields, one for well-watered and the 

second for drought stress. The experimental design was a split-plot design for each 

treatment with 3 replicates, with a Xoo strain as main factor and the rice lines as sub-

factor. The distance between plants was 20 cm with 25 hills in row and 6 rows per 

subplot giving in total 150 plants per subplot.  N-P-K fertilizer in the rate of 40-40-40 

kg.ha-1 was applied at transplanting and 40 kg.ha-1 of N in form of ammonium sulfate 

((NH4)2SO4) three weeks after transplanting for irrigated conditions. The well-watered 

treatment was maintain under irrigated conditions until maturity stage of the plant and 

the drought field was maintained under irrigated conditions for 3 weeks post 
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transplanting. The drought stress was imposed by cessation of irrigation from 3 weeks 

post transplanting until end of the experiment. 

BB strains and Inoculation 

Plants were inoculated with Philippine Xoo strains PXO61 (race 1, avrXa4) and PXO86 

(race 2, avrXa7) at 106 CFU/ml by the leaf clipping method (Kauffman et al. 1973). The 

strains were grown on solid modified Wakimoto’s medium. 

2.4. Simulating drought stress in screenhouse 

Under screenhouse conditions, three week-old seedlings of the 17 rice lines (Table 1) 

were transplanted in a complete randomized bloc with 3 replicates for each treatment 

(irrigated and drought stress). The Xoo treatments were the main plots and the rice lines 

the subplots. The seedlings were planted in three rows of 5 hills. While the irrigated 

plot was maintained under well-watered condition until plant maturity, the irrigation 

was withheld from three weeks post transplanting in the drought stress plot until the 

end of the experiment. In order to maintain the plants under drought stress, any water 

underneath the plantings was collected through a canal and pumped out of the area.  

Three weeks after the drought stress initiation, the plants were inoculated with Xoo 

strains PXO61 (race1, avrXa4), PXO86 (race 2, avrXa7), PXO99 (race 6) and PXO145 (race 

7, avrXa4+avrXa7) following leaf clipping inoculation method of. 

2.5. Data collection 

Daily data of rainfall, temperature, and relative humidity were collected from IRRI 

Climate Unit weather station in 2014 and 2015 during the experimental period.  The 

plant height was recorded for three randomized selected plants as distance from the soil 

surface to the tip of the last developed leaf of the main tiller or of the tallest panicle of 

each plant at maturity stage. The number of days to flowering of 50% of plants in each 

sub-plot was also recorded. 
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2.6. Disease evaluation 

In the field experiment, BB lesion length was scored 2 weeks post inoculation. Five 

leaves were evaluated from each plant and 30 plants were evaluated from each sub-

plot. However, in the screenhouse trials, 15 plants were evaluated at 14 days post 

inoculation. In order to compute BB severity, leaf length was also measured together 

with BB lesion length. BB severity was determined as percentage of BB lesion length per 

leaf length. 

2.7. Plant biomass, height and flowering date 

To evaluate drought stress effects on the rice genotypes, the shoot biomass weightof 

three plants per genotype and per replicate from both well-watered and drought stress 

treatments was determined after drying the samples in the oven at 70 °C for 3 days. 

Plant height was measured at maturity stage as height from the soil surface to the tip of 

the most developed leaf and the flowering date was recorded when 50% of the sub-plot 

had flowered. 

2.8. Plant canopy temperature and leaf water potential 

Canopy temperature is considered as indicator for plant water stress. Plants under 

water stress close their stomata to decrease transpiration, resulting in leaf temperature 

increase. We measured the canopy temperature using an infrared (IR) sensor (Apogee 

Instruments, Logan UT, USA) in each subplot and the average values from the three 

replicates were computed for each genotype. Leaf water potential was the second water 

stress indicator evaluated in this experiment. Leaf water potential (LWP) was 

determined at mid-day with a pressure chamber (3000HGBL Plant Water Status 

Console, Soil moisture Equipment Corp., CA, USA) using compressed N2 at 14 dpi. 

2.9. Statistics 

Statistical analyses were performed in R (v3.1.0) to compare genotypes’ responses to BB 

under drought stress. ANOVA under agricolae package were performed for each 
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response variable under each conditions (irrigated and drought stress) and Tukey HSD 

test was used for mean comparison.  

3. Results 

3.1. Plant morphology and agronomic characteristic under drought stress  

In both trials (2014 and 2015), drought stress significantly affected plant height in all 

lines (Figure 2), with Supa, IR90020:22-283-B-4 and IR84984-83-15-481-B showing the 

highest plant height under drought stress in the 2014 trial, and Supa was the tallest 

genotypes under irrigated and drought stress conditions in year 2015.  

The number of days to flowering in rice lines with drought qDTY as well as rice lines 

without qDTY was affected by drought stress. The flowering of qDTY lines (IR87705-6-

9-B, IR87707-445-B-B-B, IR87707-446-B-B-B, IR90020:22-283-B-1, IR90020:22-283-B-4, 

IR84984-21-19-78-B, IR84984-83-15-481-B) including IR64, Vandana and Supa was less 

affected by drought stress compared to IRBB NILs. IR24 and IRBB4 which showed 25 

days delay in days to flowering between the control (irrigated) and drought in 2014 trial 

did not flower during the 2015 trial. 

Similarly, under screenhouse conditions, the plant height was generally reduced under 

drought stress conditions compared to irrigated conditions. Genotype Supa was the 

tallest genotype under both irrigated and drought stress conditions, while the height of 

IRBB NIL genotypes was below 100 cm under both conditions (Figure 3). 

A significant biomass reduction was observed in all lines under drought stress. Also 

drought qDTY lines showed biomass reduction under drought stress, with IR87707-445-

B-B-B (Xa4/qDTY2.2+qDTY4.1) and IR87707-446-B-B-B (Xa4/qDTY2.2+qDTY4.1) being less 

affected than other drought qDTY lines (Figure 2). The highest biomass under drought 

conditions was recorded on drought qDTY lines IR87707-445-B-B-B 
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(Xa4/qDTY2.2+qDTY4.1), IR87707-446-B-B-B (Xa4/qDTY2.2+qDTY4.1) and IR84984-83-15-481-

B in screenhouse trials (Figure 3). 

3.3. Canopy temperature and leaf water potential under drought stress 

High temperature has been reported to affect host plant resistance to pathogen and 

plant canopy temperature has been reported to be higher under drought stress 

compared to control (irrigated) conditions. The canopy temperature was not 

significantly different between genotypes and irrespective of watr conditions and 

pathogen inoculation (Figure 4). In 2014, the canopy temperature varied between 35.5 

°C and 40.7 °C and ranged from 34.1 °C to 38.6 °C in 2015.  

The leaf water potential (LWP) was not significantly different across genotypes 

treatments during both years. During 2014, the LWP ranged from -22.3 to -16.1, while in 

2015, the LWP was generally higher than in 2014 (Figure 4). Rice genotype IR64 showed 

the highest LWP (-19.5) under inoculation with PXO86, and the lowest LWP (-36.2) was 

observed in genotype IR84984-83-15-481-B inoculated with PXO61. 

3.4. qDTY lines reveal susceptible to bacterial blight  

Disease scale ranges from 1, 3, 5, 7 and 9, where 1, 3, 5, 7 and 9 represent percentage of 

diseased leaf area, respectively, 1-5% (resistant), 6-12% (moderately resistant, 13-25% 

(moderately susceptible), 26-50% and above 50% (susceptible) was used to categorized 

different reactions of rice lines to BB.  

 3.5. Bacterial blight R genes under drought stress: which candidate for drought qDTY 

varieties' improvement? 

Three BB R genes (Xa4, xa5 and Xa7) in single or combination in ten rice lines were 

evaluated for their reaction to Xoo under drought stress and control (irrigated) 

conditions.  
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3.5.1. Bacterial blight disease severity evaluation under field conditions 

With inoculation of PXO61 (avrXa4), a tendency of increase in average BB severity was 

observed during 2014 trial on seven BB R genes NILs (IRBB4 (Xa4), IRBB5 (xa5), IRBB61 

(Xa4+xa5+Xa7), IRBB67 (Xa4+Xa7), IR64 (Xa4), IR87707-446-B-B-B (Xa4/qDTY2.2+qDTY4.1) 

under drought stress conditions compared to irrigated conditions (Figure 5). In IR24 

and generally in all gentoypes with drought qtl, BB severity decreased under drought 

stress compared irrigated conditions. BB severity was high (above 13%) on IR24 under 

both irrigated and drought stress conditions, while it was above 13% on IRBB7 under 

irrigated conditions only. Similarly in the 2015 trial, IRBB4, IRBB5, IRBB61, IR87707-445-

B-B-B showed significant BB severity increase under drought stress compared to 

irrigated conditions, while IR24, Vandana, IR90020:22-283-B-1, IR90020:22-283-B-4, 

IR84984-21-19-78-B and IR84984-83-15-481-B showed BB severity reduction with 

drought stress (Figure 5). The effect of drought on BB severity under inoculation with 

PXO61 was less prominent in IRBB67. 

Under inoculation of PXO86 (avrXa7) in 2014 trial, NILs IRBB5 (xa5), IRBB7 (Xa7), 

IRBB61 (Xa4+xa5+Xa7), IRBB67 (Xa4+Xa7) showed tendency of average BB severity 

increase under drought stress compared to irrigated conditions. BB severity was higher 

than 13% on IR24 and IR87707-446-B-B-B under both drought stress and irrigated 

conditions while it was above 13% on IRBB4, IR64 and IR87707-445-B-B-B only under 

irrigated conditions. During 2015 trial, a general decrease in BB severity was observed 

on BB R genes lines including IR24, except, IR87705-6-9-B which showed increase in BB 

severity under drought stress compared to irrigated conditions. BB severity on IRBB5, 

IRBB7 and IRBB67 was less increased under drought stress than in year 2014 (Figure 5). 

In both years, bacterial blight was reduced under drought conditions.  
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3.5.2. Bacterial blight disease severity evaluation under screenhouse conditions 

Under inoculation with Xoo strain PXO61 (avrXa4) under drought stress in 2014, BB 

severity of all genotypes with BB R genes was below 13%, except for IR24, IRBB4 (Xa4), 

PSBRc82 (Xa4+xa5) and IR64 (Xa4). IRBB4 showed significant BB severity increase of 

about 100% under drought stress. Drought qDTY combination with BB R gene lines did 

not show differences in BB severity between both irrigated and drought stress 

conditions (Figure 6A). All lines with drought stress QTLs showed a significant 

reduction in BB severity under drought stress conditions compared to irrigated 

treatments. IRBB67 (Xa4+Xa7) showed the lowest BB severity under drought stress 

(1.8%) and IRBB61 (Xa4+xa5+Xa7) the lowest disease severity under irrigated conditions 

(1.6%). During the 2015 trial, disease severity was generally increased under drought 

stress on all rice lines with BB R genes, except, IR24 and PSBRc82, which did not show 

significant differences between both irrigated and drought stress conditions, and IRBB7 

and IR64, of which BB severities were reduced under drought.   

With PXO86 (avrXa7) in 2014 trial, BB severity was generally reduced under drought 

stress on rice lines with BB R genes and IR24, except IR64 (Xa4) which showed no 

difference between both stress conditions. IRBB7 (Xa7) and IRBB67 (Xa4+Xa7) showed 

the lowest BB severity, 1.7% and 2.1%, respectively. Similarly to 2014 trial, the BB 

severity in 2015 trial was generally reduced under drought stress, except for IRBB67 

(Xa4+Xa7) which showed BB severity increased under drought stress (Figure 6A, 6B). 

Inoculated with PXO99, all genotpyes generally showed BB severity reduction under 

drought stress compared to irrigated conditions during the 2014 trial, except IR64, and 

Vandana. Generally, the BB severity was moderately severe (above 13%) under both 

irrigated and drought stress conditions, except in IRBB4 under drought stress in both 

years, with no significant differences between BB severity under both irrigated and 

drought treatments. In year 2015, in ten of the tested genotypes BB severity was higher 
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under drought conditions, except in IRBB4, IRBB67, IR87707-445- B-B-B, Vandana, 

IR90020:22-283-B-1, IR84984-21-19-78-B and IR84984-83-15-481-B.  

Generally, under the inoculation of PXO145 (avrXa4+avrxa5+avrXa7), BB severity on BB 

R gene NILs including IR24 decreased under drought stress during the 2014 trial, except 

IR87707-446-B-B-B (Xa4/qDTY2.2+qDTY4.1), which showed significant BB severity increase 

under drought stress. BB severity was generally below 13% for genotypes with r-genes, 

except for IR24 under both conditions and PSBRc82 under irrigated conditions only. In 

2015, IRBB5 (xa5), IRBB7 (Xa7), IRBB61 (Xa4, xa5, Xa7), IR64 (Xa4), IR87705-6-9-B 

(Xa4/qDTY2.2) and IR877070446-B-B-B (Xa4/qDTY2.2+qDTY4.1) showed BB severity 

increase under drought stress compared to irrigated conditions. BB severity on IR24 

was higher than 13% under both irrigated and drought stress conditions and above 13% 

on IRBB61 under drought stress only. The lowest BB severity was recorded on IRBB7 

(Xa7) under irrigated conditions and on IRBB67 (Xa4+Xa7) under drought stress 

conditions (Figure 6A, 6B). The genotypes with drought resistance genes showed a 

reduction of bacterial blight under drought stress conditions compared to irrigated 

conditions. 

3.6. Prolonged drought stress and bacterial blight 

Generally, BB disease evaluation is performed two weeks post inoculation. In this 

study, in order to see BB disease progression under drought stress, disease severity at 

21 dpi was also recorded. Disease severity evaluation at 21 dpi showed that prolonged 

drought did not stop bacterial blight growth on all lines. Under irrigated conditions as 

well as under drought stress conditions, BB severity increased on all rice lines at 21 dpi 

compared to 14 dpi evaluation. Under irrigated and drought conditions and inoculation 

of PXO61 (avrXa4) and PXO86 (avrXa7) four lines with R-genes IRBB5 (xa5), IRBB7 (Xa7), 

IRBB61 (Xa4+xa5+Xa7) and IRBB67 (Xa4+Xa7) showed BB severity below 13%, except 
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IRBB4 (Xa4) which disease severity was below 13% under irrigated conditions with 

PXO61 (avrXa4) (Figure 7). 

Discussion 

The projected future climate changes will have a negative impact on food production in 

the tropical and subtropical regions and, thus aggravate the existing discrepancies 

between food supply and food demand. Drought occurrence as consequence of climate 

changes is responsible for economic yield reduction of 60% at reproductive stage in rice 

(Venusprasad et al., 2007). Among the biotic stress factors, rice bacterial blight is 

responsible for a substantial yield reduction up to 50% (Robert & Pamela, 1992). 

Determining the rice response to combined drought stress and bacterial blight has 

shown that rice response varied between rice genotypes and depended on the Xoo 

strain. Studying the response of BB NILs, drought tolerant lines carrying Xa4 R gene to 

BB and drought tolerant lines to combined BB and drought provided a differentiated 

picture on the interaction of BB and drought stress on plant growth and on the effect of 

drought on BB development. Combining tolerance to abiotic and biotic stress is 

recommended to improve resilience to climatic changes in rice varieties’ development. 

This study has shown genotypic differences between the tested rice lines in days to 

flowering, plant height and biomass as well as in response to bacterial blight. Short 

growing period allow plants to reproduce and escape the dry environment (Farooq et 

al., 2009), and rice lines with drought qDTY showed a shorter life cycle compared to 

IRBB Nils. The delay in days to flowering caused by drought stress was lesser in 

drought qDTY lines compared to IRBB NILs allowing them to escape the severe 

drought stress. Furthermore, PSBRc82, IR64 and Supa also showed a shorter life cycle 

and were less affected by drought stress, suggesting that these rice lines could possess 

drought tolerance traits which enable them to cope with drought stress. Further studies 

are therefore required to investigate drought tolerance in these lines. Additionally, 
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plant height and biomass were significantly reduced by drought stress, demonstrating 

the effect of drought stress on all the rice lines. This is consistent with previous reports 

which show that drought stress decreased rice biomass, plant height, tiller number and 

panicle number (Bhattacharjee et al., 1973; De Datta, 1973; Rahman et al., 2002). 

Plant responses to environment changes follow complex mechanisms. Simultaneous 

application of biotic and abiotic stresses can lead to a failure of host resistance reactions 

which would be effective against a single stress factor. Bacterial blight and BB R Nils’ 

interaction varies according to presence and absence of R gene in the genotype and 

avirulence protein from Xoo. In this study, the Xoo strains varied in virulence Xoo strain 

PXO99 causing the most severe symptoms’ across all genotypes. This strain is known as 

most virulent Xoo strain among the Philippines Xoo strains (Cottyn and Mew, 204).  

Among the tested rice genotypes, the lines with drought qDTY alone and genotype 

Supa revealed susceptible to bacterial blight under drought stress as well as under 

irrigated conditions, remaining above the resistance threshold (13%). Our previous 

study showed Supa susceptible to Philippines Xoo strains (Dossa et al., 2015).  

These results suggest that a combination of abiotic and biotic traits such as drought 

qDTY and BB R gene will be necessary to cope with both stress factors under climate 

change conditions. Lines with drought qDTY and BB R gene, thought their resistance 

were reduced under drought stress, revealed more resistant to BB under drought stress 

compared to drought qDTY alone. Severe drought stress may result in significant BB 

disease reduction (Chapter 2). According to Amtmann et al. (2008), host susceptibility to 

pathogen attack can be increased by long term abiotic stress as shown by this study 

where the bacterial blight symptom progression was not significantly affected. This 

suggests that severe drought stress causes more effects to the host plant than to the 

pathogen. IRBB NILs response to BB follows a gene-for-gene interaction. Their reaction 
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to BB depends on presence and absence of the corresponding R gene. Here, our results 

showed that IRBB NILs remained resistant under combined drought and BB stresses, 

except when Xa4 R gene is present. IRBB4 carrying single Xa4 R gene has shown 

significant increase in BB severity with PXO61 (avrXa4) under drought stress compared 

to disease severity under irrigated conditions in both field and screenhouse trials. This 

finding corroborates previous studies of Webb et al. (2010), Dossa et al. (chapter 2) who 

also report about decreasing Xa4 effectiveness under combined stress of high 

temperature and BB, drought stress and BB at seedling stage, respectively, when 

inoculated with PXO145 (avrXa4). Similar results have been reported in sorghum and 

common bean which show susceptibility to Macrophomina phaseolina under drought 

stress (Diourte et al., 1995; Mayeke-Perez et al., 2002). This suggests that the basal 

defense of IRBB4 is weakened by drought stress, allowing BB to cause more damage 

than under irrigated conditions. Other BB R genes in IRBB5 (xa5) and IRBB7 (Xa7) or in 

combination in IRBB61 (Xa4+xa5+Xa7), IRBB67 (Xa4+Xa7) and PSBRc82 (Xa4+xa5) 

showed decrease in BB severity or either no significant difference in BB severity under 

drought conditions, except IRBB61 which showed BB severity increase under drought 

stress with PXO145 (avrXa4+avrxa5+avrXa7) in the 2015 screenhouse trial. Moreover, the 

lowest BB severity was observed either on IRBB7 (Xa7) or IRBB67 (Xa4+Xa7), suggesting 

that Xa7 R gene response was not affected by drought stress and Xa4 R gene showed a 

negative effect on Xa7 in their combination in IRBB67. The effectiveness of Xa7 or Xa7 in 

combination with Xa4 under dual stresses of BB and two drought stress levels was also 

reported by Dossa et al. (Chapter 2), and Xa7 resistance enhanced by high temperature 

compared to Xa4 resistance by Webb et al. (2010).  

Traits combination such as BB R gene and drought qDTY would allow rice plants to 

better cope with stress factors convened by climate change. Results from this study 

showed that Xa4 and drought qDTY combination in IR87705-6-9-B (Xa4/qDTY2.2), 
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IR87707-445-B-B-B (Xa4/qDTY2.2+qDTY4.1) and IR87707-446-B-B-B (Xa4/qDTY2.2+qDTY4.1) 

were resistant to Xoo strains with avrXa4 (PXO61 and PXO145) under drought 

conditions. This result suggests that the combination of Xa4+qDTY response to BB is 

affected by drought stress leading to disease severity increase. The use of BB R genes 

with broad spectrum of resistance such as Xa21 in IRBB21 (Kush et al., 1990; Ideka et al., 

1990) would give more advantage compared to Xa4. Thus, it will be necessary to 

determine the effects of drought stress on the response of these lines to BB. 

Additionally, Xa7 has shown resistance enhanced to BB under high temperature 

conditions (Webb et al., 2010) and also under drought stress when inoculated with Xoo 

strain harboring avrXa7. Incorporating Xa7 R gene into drought qDTY lines would be 

more suitable compared to Xa4+qDTY lines.   

In summary, investigating rice response to BB under drought stress under field and 

screenhouse conditions using 17 rice lines, rice lines harboring drought qDTY alone 

showed resistance to drought stress but were highly susceptible to BB under both 

irrigated and drought stress conditions, though under drought conditions BB was 

reduced, indicating a possible effect of elicited abiotic stress resistance against biotic 

stress factors. Rice lines with BB R gene alone were resistant to BB, except, lines with 

Xa4 which showed significant BB severity increased under drought stress compared to 

irrigated conditions. However, rice lines with BB R gene Xa4 and drought qDTY were 

resistant to both BB and drought with BB severity increased under drought stress. This 

study is the first of its kind of BB and drought stress combination under field and 

screenhouse conditions and may support breeders in achieving crop improvement to 

cope with climate change. Trait combinations (abiotic and biotic) showed promising 

results, however, biotic trait selection to improve varieties with drought QTLs will play 

an important role in this process.  
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Table 1: List of rice lines and their corresponding BB R genes and/or drought resistance QTLs 

(qDTY)  

S/N Plant Xa genes/Drought QTLs 

1 IR24 Xa18 

2 IRBB4 Xa4 

3 IRBB5 Xa5 

4 IRBB7 Xa7 

5 IRBB61 Xa4+xa5+Xa7 

6 IRBB67 Xa4+Xa7 

7 PSBRc82 Xa4+xa5 

8 IR64 Xa4 

9 IR87705-6-9-B Xa4/qDTY2.2 

10 IR87707-445-B-B-B Xa4/DTY2.2+qDTY4.1 

11 IR87707-446-B-B-B Xa4/DTY2.2+qDTY4.1 

12 VANDANA qDTY2.3+qDTY3.1 

13 IR90020:22-283-B-1  

qDTY12.1 14 IR90020:22-283-B-4 

15 IR84984-21-19-78-B 

16 IR84984-83-15-481-B 

17 Supa Unknown 
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Table 2: Days to flowering of 17 rice lines under irrigated and drought stress field conditions 

 Trial 2014 Trial 2015 

Genotypes Irrigated Drought Irrigated Drought 

IR24 90 115 89 no flowering 

IRBB 4 90 115 88 no flowering 

IRBB 5 90 104 85 105 

IRBB 7 90 109 86 105 

IRBB 61 90 104 79 87 

IRBB 67 90 104 86 104 

PSB RC 82 73 93 76 84 

IR64 73 82 73 82 

IR87705-6-9-B - - 71 77 

IR87707-445-B-B-B 73 82 74 82 

IR87707-446-B-B-B 73 88 70 82 

Vandana 67 73 65 66 

IR90020:22-283-B-1 67 73 60 65 

IR90020:22-283-B-4 65 73 58 64 

IR84984-21-19-78-B 65 73 59 63 

IR84984-83-15-481-B 63 73 59 64 

Supa 67 73 69 69 

 

IR24 and IRBB4 did not flower during the drought experiment in 2015.  IR87705-6-9-B 

was not included in the field trial in 2014 due to low germination rate.  
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List of figures 

Figure 1: Temperature, relative humidity and rainfall in 2014 and 2015. Data derived 

from IRRI Climate Unit. 

Figure 2: Plant height (left) and dry biomass (right) from 17 rice lines under irrigated 

and drought stress conditions in 2014 and 2015 field trials. Plant biomass was collected 

only during 2015 trial. Non-stress and stress represent irrigated and drought stress 

conditions, respectively. IR24 and IRBB4 did not flower during the drought experiment 

in 2015.  IR87705-6-9-B was not included in the field trial in 2014 due to low germination 

rate.  

Figure 3: Plant height (left) and dry biomass (right) from 17 rice lines under irrigated 

and drought stress conditions in the 2014 screenhouse trial. Due to Brown Plant Hopper 

(BPH) infestation, the plant height and biomass data were not collected in 2015 

screenhouse trial. Non-stress and stress represent irrigated and drought stress 

conditions, respectively. 

Figure 4: Canopy temperature (left) and leaf water potential (right) in 2014 and 2015 

field trials.  IR87705-6-9-B was not included in the field trial in 2014 due to low 

germination rate. Rice lines did not differ significantly for canopy temperature and leaf 

water potential (LWP) across trials. IR87705-6-9-B was not included in the field trial in 

2014 due to low germination rate. 

Figure 5: Bacterial blight severity under irrigated and drought stress conditions in field 

trials in 2014 and 2015. Rice lines were inoculated with PXO61 (avrXa4) and PXO86 

(avrXa7). The break at 13% indicates the level of susceptibility. NS and S represent 

irrigated and drought stress conditions, respectively. IR87705-6-9-B was not included in 

the field trial in 2014 due to low germination rate.  
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Figure 6A: Bacterial blight severity under irrigated and drought stress conditions in the 

screenhouse trial in 2014. Rice lines were inoculated with PXO61 (avrXa4), PXO86 

(avrXa7), PXO99 and PXO145 (avrXa4+avrxa5+avrXa7). The break at 13% indicates the 

level of susceptibility. NS and S represent irrigated and drought stress conditions, 

respectively. 

Figure 6B: Bacterial blight severity under irrigated and drought stress conditions in the 

screenhouse trial in 2015. Rice lines were inoculated with PXO61 (avrXa4), PXO86 

(avrXa7), PXO99 and PXO145 (avrXa4+avrxa5+avrXa7). The break at 13% indicates the 

level of susceptibility. NS and S represent irrigated and drought stress conditions, 

respectively. 

Figure 7: Bacterial blight severity increased under irrigated and drought stress 

conditions between 14 and 21 dpi (day post inoculation) in the field trials in 2014and 

2015. Rice lines were inoculated with PXO61 (avrXa4) and PXO86 (avrXa7). The break at 

13% indicates the level of susceptibility. NS and S represent irrigated and drought stress 

conditions, respectively.   
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Figure 6B
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Chapter 4: High temperature enhances the resistance of cultivated African rice, 

Oryza glaberrima, to bacterial blight 

Gerbert Sylvestre Dossa1,2*, Ricardo Oliva1, Edgar Maiss2, Casiana Vera Cruz1, Kerstin 

Wydra2,3  

1: Plant Breeding, Genetics and Biotechnology, International Rice Research Institute, 

Los Baños, Philippines 

2: Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany 

3: Plant Production and Climate Change, Erfurt University of Applied Sciences, Erfurt, 

Germany 

* Corresponding author: Gerbert S. Dossa c.dossa@irri.org 

Article published in Plant Disease: http://dx.doi.org/10.1094/PDIS-05-15-0536-RE 

Abstract 

Rice bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae (Xoo) and is 

responsible for substantial yield loss worldwide. Host resistance remains the most 

feasible control measure. However, pathogen variability leads to the failure of certain 

resistance genes to control the disease, and climate change with high amplitudes of heat 

predisposes the host plant to pathogen invasion. Due to pressure in natural selection, 

landrace species often carry a wide range of unique traits conferring tolerance of stress. 

Therefore, exploring their genetic background for host resistance could enable the 

identification of broad-spectrum resistance to combined abiotic and biotic stresses. 

Nineteen Oryza glaberrima accessions and O. sativa rice variety SUPA were evaluated for 

bacterial blight resistance under high temperature (35/31°C day/night temperatures) 

using 14 Xoo strains originated from the Philippines. Under normal temperature, most 

of the accessions showed resistance to 9 strains (64.3%) and accession TOG6007 showed 

mailto:c.dossa@irri.org
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broad-spectrum resistance to 12 strains (85.7%). Under high temperature, most 

accessions showed a reduction in BB disease, whereas, accession TOG5620 showed 

disease reduction from all the Xoo strains under high temperature. Molecular 

characterization using gene-based and linked markers for BB resistance genes Xa4, xa5, 

Xa7, xa13 and Xa21 revealed the susceptible alleles of Xa4, xa5, xa13 and Xa21 in O. 

glaberrima. However, no allele of Xa7 was detected among O. glaberrima accessions. Our 

results suggest that O. glaberrima accessions contain a BB resistance different from the 

Xa gene type. Genome-wide association mapping could be used to identify quantitative 

trait loci (QTL) that are associated with BB resistance or combined BB resistance and 

high-temperature tolerance. 

Keywords: Bacterial blight, Xoo, Rice, Oryza glaberrima 
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Introduction 

Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae is one of the most 

important bacterial diseases in rice. Reported in several rice-producing countries in Asia 

and Africa, rice bacterial blight affects rice production worldwide. Thus, rice-Xoo 

interaction leads to severe yield losses in major rice ecosystems. Host resistance is still 

the most economically effective control measure against the disease, and, so far, 39 rice 

resistance genes have been identified against Asian Xoo populations (Natrajkumar et al. 

2012; Khan et al. 2014; Zhang et al. 2014). However, in Africa, up till now, there has 

been no resistance gene identified to control this disease. The effectiveness or durability 

of host-plant resistance may be affected by climate change (Reddy 2015).  

Climate change, with air temperature increase and water scarcity, will affect world 

agricultural production. Several reports have shown the effects of global warming on 

pathogen and host plant alike. Increase in temperature predisposes the host plant to 

pathogen colonization. Webb et al. (2010) reported an increase in BB disease on rice 

near-isogenic lines carrying single Xa3, Xa4, xa5 and Xa10, with Xa4 resistance genes 

mostly under high temperature; however, the effectiveness of bacterial blight resistance 

gene Xa7 was enhanced under the same conditions. Similarly, the wheat stripe rust R 

gene, Yr36, confers broad-spectrum resistance to Puccinia striiformis f.sp tritici at high 

temperature (25-35°C) and shows susceptibility to the pathogen at low temperature 

(15°C) (Uauy et al. 2005). Therefore, there is an urgent need to develop cultivars with 

resistance to/tolerance of BB to sustain rice production under changing climate 

conditions. Oryza glaberrima is known to possess many important traits. 

Oryza glaberrima (2n=14, AA) is the second most important cultivated rice worldwide. It 

was domesticated in West Africa in the Niger River Delta more than 3,500 years ago 

(Yves et al. 2012). Because of its low-yielding characteristic, O. glaberrima was 

progressively abandoned for O. sativa, the Asian cultivated rice, which has a higher 
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yield (Jones et al. 1997). However, because of its adaptation to African climate 

conditions, O. glaberrima is still grown in some West African countries. Although the 

high-yielding cultivars of O. sativa are preferred, their adaptation to the adverse 

conditions of the local environment is not satisfactory. O. glaberrima is well known to 

possess many useful traits, such as resistance to blast, rice yellow mottle virus (RYMV), 

sheat blight, nematodes, stem borer, hispa, stalk-eyed fly, the African gall midge for 

weed competitiveness, and bacterial blight (Alam and Efron 1986; Albar et al. 2006; 

Baggie et al. 2002; Djedatin et al. 2011; Lorieux et al. 2003; Maji et al. 2001; Ndjondjop et 

al. 1999; Nipah et al. 1997; Nwilene et al. 2002; Sahrawat and Sika 2002; Silue and 

Notteghem 1991; Thélémé et al. 2010; Wang et al. 1996), and tolerance of drought, 

submergence, soil acidity, salt, iron and aluminum. Interestingly, notable traits from O. 

glaberrima have been combined with high-yielding traits of O. sativa to generate the 

New Rice for Africa (NERICA) (Jones et al. 1997). Vikal et al. (2007) have identified 13 

O. glaberrima accessions with resistance to Indian Xoo pathotypes, and a narrow genetic 

base for resistance to Xoo among 107 accessions of O. glaberrima was reported (Djedatin 

et al. 2011).  

Natural selection often generates wild species with diverse traits, such as disease 

resistance, that could be inherited by wild relatives (Das et al. 2014). Thus, resistance 

genes were identified from wild rice. For example, BB resistance gene Xa21, which 

confers resistance to several Philippine Xoo races, was identified from African rice, O. 

longistaminita. Identification of resistance genes from African rice would enable 

breeding of resistance cultivars not only against the African Xoo population, but also 

against the Asian Xoo. Discovery of new, large-spectrum resistance genes will 

contribute to the control of rice bacterial blight disease in the future. To our knowledge, 

there is no report available on the combination of high temperature and bacterial blight 



 

90 
 

stress on O. glaberrima. This study aims to evaluate selected accessions of the cultivated 

O. glaberrima to a combination of high temperature and bacterial blight stresses. 

Materials and methods 

Plant materials  

Nineteen (19) accessions of O. glaberrima (Table 1) were obtained from the Africa Rice 

Center gene bank (Cotonou, Benin), with the help of Dr. Drissa Silue. The 19 accessions, 

which originated from West African countries (Ghana, Liberia, Mali, Nigeria and 

Senegal), were selected according to their resistant reaction to African Xoo strain Mai1 

and Asian Xoo race 2 strain PXO86 (Djedatin et al. 2011). We also included O. sativa 

variety SUPA (accession IRGC 69789) as it is one of the most preferred varieties in East 

Africa. One set of plants were grown under greenhouse conditions (12h day length). To 

evaluate the combination of high temperature and Xoo, the plants were grown under 

greenhouse conditions for 21 days and then transferred into a growth chamber (12h 

light and 12h dark, 35/31°C day/night temperatures and 80% relative humidity). Rice 

genotypes IR24, IRBB4, IRBB5, IRBB7, IRBB13 and IRBB21 were used as control for Xa-

gene allele analysis. 

Bacterial blight inoculation and evaluation 

Fourteen strains (Table 1) representative of the Philippines’ 10 Xoo races (Cottyn and 

Mew, 2007) were used in this study. Strains were grown on Modified Wakimoto’s 

medium as described by Leach et al. (1992) for 72 hours. The inocula were prepared by 

suspending the harvested bacterial cells in demineralized sterile water. Approximately 

108 CFU/ml of each inoculum were used to inoculate the plants with the use of the leaf 

clipping inoculation method (Kauffman et al. 1973) 4 weeks after sowing, under 

greenhouse conditions and in growth chamber under 35/31°C (day/night temperatures). 

Disease assessment was done by measuring lesion length 14 days after inoculation. Two 

replicated trials were performed, each trial consisting of 3 replicates with 6 plants per 
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strain. The average lesion length was classified as follows: resistant (lesion length 0-5 

cm), moderately resistant (lesion length 5.1-10 cm), moderately susceptible (lesion 

length 10.1-15 cm) and susceptible (lesion length >15 cm). Ten accessions, including 

SUPA, were selected for resistance to bacterial blight under high temperature after 

evaluating 20 rice accessions in the greenhouse.  

O. glaberrima genotyping using Xa gene markers  

All the accessions were genotyped for the presence or absence of the resistance alleles of 

Xa4, xa5, Xa7, xa13 and Xa21. Rice genotypes IRBB4, IRBB5, IRBB7, IRBB13 and IRBB21 

with resistance alleles Xa4, xa5, Xa7, xa13 and Xa21, respectively, were used as control. 

IR24 was used as a susceptible allele control. Genomic DNA was extracted from each 

sample and control using the CTAB DNA extraction protocol. The genomic DNA was 

purified with RNase. The primer pairs used for Xa gene detection and their 

corresponding product size are listed in Table 2. 

For Xa4 detection, 50-100 ng of genomic DNA were used to detect resistance and 

susceptible alleles in 10 µl PCR reaction according to the following cycles: initial 

denaturation at 94°C for 4 min; 32 cycles of denaturation at 94°C for 1 min, annealing at 

58°C for 1 min, and extension at 72°C for 2 min; and a final extension step at 72°C for 8 

min. 

For xa5 allele detection, 10-20 ng genomic DNA were used in 10 µl PCR reaction 

according to the following cycles: initial denaturation at 94°C for 3 min; 34 cycles of 

denaturation at 94°C for 1 min, annealing at 68°C for 1 min, and extension at 72°C for 1 

min; and a final extension step at 72°C for 4 min. 

For Xa7, 50-100 ng of genomic DNA were used in 10 µl PCR reaction according to the 

following cycles: initial denaturation at 94°C for 4 min; 30 cycles of denaturation at 94°C 
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for 30 s, annealing at 60°C for 30 s, and extension at 72°C for 2 min; and a final extension 

step at 72°C for 8 min. 

xa13 alleles were detected with 10-20 ng genomic DNA in 10 µl PCR reaction according 

to the following cycles: initial denaturation at 94°C for 4 min; 30 cycles of denaturation 

at 94°C for 1 min, annealing at 60°C for 1 min, and extension at 72°C for 2 min; and a 

final extension step at 72°C for 8 min. 

Some 50-100 ng of genomic DNA were used for Xa21 alleles in 10 µl PCR reaction 

according to the following cycles: initial denaturation at 94°C for 4 min; 32 cycles of 

denaturation at 94°C for 1 min, annealing at 52°C for 1 min, and extension at 72°C for 2 

min; and a final extension step at 72°C for 8 min. 

The PCR products were separated in 1% agarose gel for Xa7, xa13 and Xa21 and 2% for 

Xa4 and xa5, and then visualized under UV light. 

Data analysis 

The mean value from two replicated experiments was used for variance analysis 

(ANOVA) of bacterial blight lesion length. The significant difference           in 

lesion length between accessions was assessed using the F test. Statistical analysis was 

performed using the R package. 

Results 

Identification of O. glaberrima accessions with broad-spectrum resistance to Philippine Xoo 

strains 

O. glaberrima accessions and SUPA showed different reactions in response to the 14 Xoo 

strains (Figure). O. sativa variety SUPA was susceptible to all the strains (Table 3, 

Supplementary table). For the O. glaberrima accessions, all of them showed resistance to 

moderate resistance to PXO86 (race2), PXO79 (race3B), PXO347 (race9c) and PXO341 

(race10). The majority of accessions were resistant to moderately resistant to PXO340 
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(race3C), PXO112 (race5), PXO145 (race7), PXO339 (race9A) and PXO349 (race9B). 

Strains PXO61, PXO71, PXO99, PXO363 and PXO280 were the most virulent ones with 

18, 16, 19, 12 and 10 accessions being moderately susceptible to susceptible to them, 

respectively (Table 3, Supplementary table). Xoo strains PXO86, PXO79, PXO347 and 

PXO341 were less virulent on O. glaberrima accessions. Race 3 strains (PXO79, race 3B 

and PXO340, race 3C) induced different reactions on O. glaberrima. All the accessions 

were resistant and moderately resistant to PXO79.  

O. glaberrima accessions TOG5953 and TOG6007 showed broad-spectrum resistance to 

12 Xoo strains and TOG5810, TOG5566 and TOG7173 were resistant to 11 Xoo strains. O. 

glaberrima accessions TOG5458 and TOG5523 were susceptible to 6 Xoo strains (Table 3).   

Accessions TOG5989 and TOG5473 were moderately susceptible and susceptible, 

respectively, to PXO340. Among race 9 strains, PXO363 (race 9d) was the most virulent 

with only 7 accessions showing resistance. Accessions CG17 and TOG5447 were 

moderately susceptible to race 9a, and accession TOG5523 was moderately susceptible 

to race 9b. All the accessions were resistant to moderately resistant to race 9c. 

Significant differences in lesion length were observed among all the accessions and 

differences were also significant among strains (           , (Table 4). 

High temperature enhances O. glaberrima resistance to Xanthomonas oryzae pv. oryzae 

O. glaberrima resistance to Xoo was found to be enhanced under high temperature (HT) 

(35/31°C). Bacterial blight resistance was evaluated in 9 O. glaberrima accessions and 

SUPA. Majority of the accessions showed disease lesion length reduction and HT 

compared to the greenhouse study (Table 5). Accession TOG5620 showed broad-

spectrum resistance to all Xoo strains, with moderate resistance to strains PXO71 and 

PXO99 under HT. Increase in lesion length under HT was observed in accession × 

strain—CG17 × PXO71; TOG5464 × PXO339, PXO341 and PXO347; TOG5953 × PXO71, 
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PXO112 and PXO339; TOG7173 × PXO339, PXO340 and PXO341; and SUPA × PXO61 

and PXO145. Although most of the accessions showed lesion length reduction under 

high temperature, average lesion length induced by Xoo strains PXO61, PXO71 and 

PXO99 were generally higher compared to lesion lengths induced by other strains. 

The lesion lengths under each treatment were significantly different among treatments 

and among accessions and strains,            (Table 5). Accession TOG5523 

showed the strongest BB disease reduction under HT and TOG5620 was the most 

resistant to majority of the Xoo strains under HT. 

Rice Xa gene detection from 10 O. glaberrima accessions 

All the O. glaberrima accessions—SUPA, IR24, IRBB4, IRBB5, IRBB7, IRBB13 and 

IRBB21—were genotyped for the presence and absence of the Xa4, xa5, Xa7, xa13 and 

Xa21 alleles. All the O. glaberrima accessions carried the susceptible alleles of Xa4, xa5, 

xa13 and Xa21. No Xa7 alleles were detected among O. glaberrima accessions and SUPA 

(Table 6). The Xa4 resistant allele was detected in SUPA. As expected, IRBB4, IRBB5, 

IRBB7, IRBB13 and IRBB21 showed resistant alleles Xa4, xa5, Xa7, xa13 and Xa21, 

respectively. The susceptible alleles were detected in IR24.  

Discussion 

As resistance loss can occur anytime because of pathogen adaptation and variability, a 

continuous search for new resistance traits is necessary. Continuous exploring of 

existing BB R genes or, alternatively, the search among cultivated and wild rice 

genotypes to discover new R genes with broad-spectrum resistance would enable 

containing the disease in the future, particularly, under climate change. In this study, 19 

cultivated African rice accessions evaluated for reaction to BB and combined BB and 

heat stresses showed different responses to BB. One accession with broad-spectrum 

resistance to at least 12 Philippine strains was identified, suggesting that more O. 
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glaberrima accessions should be evaluated to identify more accessions with broad-

spectrum resistance to BB. Nevertheless, 4, 5 and 6 accessions were identified as having 

resistance to moderate resistance to 11, 10 and 9 Xoo strains, respectively, among the 14 

strains. Our results are supported by previous reports which showed O. glaberrima 

accessions with broad-spectrum resistance to 7 Indian Xoo strains (Vikal et al. 2007) and 

resistance to West African Xoo strains and the Philippine strain, PXO86 (Djedatin et al. 

2011).  Moreover, the O. glaberrima accessions with broad spectrum resistance reported 

by Vikal et al. (2007) were not included in this study, suggesting that O. glaberrima could 

be a store of resistance to several BB populations. Future studies are therefore required 

to explore O. glaberrima gene pool for the development of new resistance cultivars. A 

new resistance gene for controlling BB in Asia, particularly in the Philippines, could be 

identified among O. glaberrima accessions. Furthermore, the use of broad-spectrum BB 

resistance genes would reduce the development of new virulent strains, and broad-

spectrum resistance traits among O. glaberrima could be introduced into O. sativa elite 

varieties through hybridization. Although majority of the accessions ranged from 

moderately susceptible to susceptible to PXO61, accession TOG6007 showed 

susceptibility to only PXO71, PXO99 and PXO363. 

Rice BB R gene Xa4 confers resistance to IRBB4 against PXO61 and has been widely 

used in Asia; however, the occurrence of new virulent strains affects the durability of 

Xa4 (Vera Cruz et al. 2000). We suggest that accession TOG6007 could be useful in areas 

dominated by Philippine race 1 strain. Majority of the accessions were susceptible to 

PXO61, PXO71, PXO99, PXO280 and PXO363. This could be explained by the: (a) 

presence of conserved transcription activator-like (TAL) effectors in these strains that 

activate susceptibility genes among the selected O. glaberrima accessions (4), and (b) lack 

of resistant genes among these accessions that could recognize the avirulence protein of 
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these strains. TAL effectors play an important role in the successful colonization of the 

host plant. 

In this study, high temperature had generally shown positive effects on O. glaberrima 

resistance to BB. The lesion lengths induced by different Xoo strains were generally 

reduced under high temperature in comparison to the greenhouse study, suggesting 

that O. glaberrima tolerance of abiotic stress enhanced its biotic stress response under 

HT. Resistance to abiotic and biotic stresses has been reported in O. glaberrima (Alam 

and Efron 1986; Albar et al. 2006; Baggie et al. 2002; Djedatin et al. 2011; Lorieux et al. 

2003; Maji et al. 2001; Ndjondjop et al. 1999; Nipah et al. 1997; Nwilene et al. 2002; 

Sahrawat and Sika 2002; Silue and Notteghem 1991; Thélémé et al. 2010; Wang et al. 

1996), however, none of the previous reports had shown a dual stress (abiotic and 

biotic) response. Thus, we suppose that O. glaberrima possesses traits that respond to 

combined stresses and could be useful for O. sativa varieties improvement. Although 

reproductive barrier between O. glaberrima and O. sativa has been a major constraint in 

order to explore the gene pool offers by O. glaberrima, further studies involving 

development of chromosome segment substitution lines (CSSLs)  to reduce hybrid 

sterility (Lorieux et al. 2013) are recommended to identify quantitative trait loci (QTL) 

responsible for abiotic and biotic stress in O. glaberrima to be used for development of 

interspecific hybridization between O. glaberrima and O. sativa (Ghesquière et al. 1997).   

Conversely, a few combinations of strains and four accessions (CG17, TOG5464, 

TOG5953 and TOG7173), including SUPA, showed an increase in BB disease with high 

temperature, which suggests that more attention should be given for resistance 

durability under combined stresses through abiotic and biotic factors. This result was 

more often observed with Xoo strains PXO71, PXO339, PXO341 andPXO347.  
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Previous reports have shown temperature effects on plant responses to pathogens. In 

rice, Webb et al. (2010) reported an increase in BB disease on IRBB4 and a reduction on 

IRBB7 under high temperature. A wheat variety with R gene Yr36 showed broad-

spectrum resistance to the wheat stripe rust (Puccinia striiformis f.sp tritici) at high 

temperature (25-35°C), but susceptibility at low temperature (15°C) (Uauy et al. 2005). 

This suggests that, identification of accessions that increase plant resistance and thus 

reduce pathogen aggressiveness under high temperature conditions could play an 

important role in breeding rice varieties for combined stresses.  

In this study, molecular characterization of O. glaberrima accessions and SUPA revealed 

that none of the O. glaberrima accessions possesses the resistance alleles of Xa4, xa5, Xa7, 

xa13 and Xa21. Interestingly, Xa7 alleles were not detected in any of the accessions, 

suggesting that O. glaberrima lacks Xa7. Moreover, resistance to PXO86 (avrXa7) may be 

conferred by a different type of resistance gene in O. glaberrima. The absence of 

resistance alleles of Xa4, xa13 and Xa21 correlate with the phenotype data, since all the 

accessions were susceptible to PXO61 (except TOG6007) and PXO99. Although SUPA 

was susceptible to all Xoo strains, the molecular characterization of SUPA was revealed 

homozygous for the Xa4 resistant allele. This suggests that the Xa4 resistant allele in 

SUPA is defective and, moreover, the Xa4 marker used in this study is not a linked 

marker.  

The use of resistant cultivars remains the most effective control measure. Thirty-nine R 

genes have been identified in rice (Natrajkumar et al. 2012; Khan et al. 2014; Zhang et al. 

2014), among which some of them, such as Xa21, derived from wild rice, originates 

from O. longistaminata (Khush et al. 1990; Song et al. 1995), Xa23 from O. rufipogon 

(Zhang et al. 1998), Xa27 from O. minuta (Gu et al. 2004, 2005) and Xa30(t) from O. nivara 

(Cheema et al. 2008). Wild rice genotypes are highly diverse due to natural selection 

and possess several traits that could be used for introgression of disease resistance in 
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rice cultivars. Thus, mutations due to selection pressure could be transmitted from the 

ancestor to various cultivated accessions. More attention should therefore be given to 

African cultivated rice and its ancestor, O. longistaminata, and to other wild rice species, 

to identify traits of combined BB resistance and abiotic stress tolerance. PCR-based 

detection of Xa genes revealed no resistance alleles of R genes studied here that could 

be associated to BB resistance. Therefore, we suggest the use of genome-wide 

association mapping to identify possible QTLs that are associated with BB resistance 

observed from O. glaberrima.  
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Table 1: List of rice accessions Oryza glaberrima and Xanthomonas oryzae pv. oryzae strains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

**Accession number according to IRRI (Los Baños, Philippines) germplasm data base, na: not 

available; *Accession name according to AfricaRice (Cotonou, Benin). hAccessions selected for 

combined high temperature and bacterial blight experiment. 

S/N Acc Name* Acc  No** Origin 

1 CG17h IRGC 86741 Senegal 

2 RAM90 na Mali 

3 RAM98 na Mali 

4 SUPAh IRGC 69789 Tanzania 

5 TOG5293 IRGC 96725 Nigeria 

6 TOG5447 IRGC 96756 Nigeria 

7 TOG5458 na Mali 

8 TOG5464h IRGC 96760 Nigeria 

9 TOG5473h IRGC 104534 Nigeria 

10 TOG5523h IRGC 86757 Nigeria 

11 TOG5566h IRGC 96779 Nigeria 

12 TOG5620h IRGC 86764 Ghana 

13 TOG5650 IRGC 104543 Nigeria 

14 TOG5675 IRGC 96791 Nigeria 

15 TOG5810 IRGC 86784 Liberia 

16 TOG5953h IRGC 96811 Nigeria 

17 TOG5989h na Nigeria 

18 TOG6007 IRGC 96824 Nigeria 

19 TOG6231 IRGC 96854 Mali 

20 TOG7173h IRGC 96893 Nigeria 

 
 Strain name Race  

1 PXO61 Race1 Philippines 

2 PXO86 Race2 Philippines 

3 PXO79 Race3b Philippines 

4 PXO340 Race3c Philippines 

5 PXO71 Race4 Philippines 

6 PXO112 Race5 Philippines 

7 PXO99 Race6 Philippines 

8 PXO145 Race7 Philippines 

9 PXO280 Race8 Philippines 

10 PXO339 Race9a Philippines 

11 PXO349 Race9b Philippines 

12 PXO347 Race9c Philippines 

13 PXO363 Race9d Philippines 

14 PXO341 Race10 Philippines 
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Table 2: Xa gene-based and linked markers and size of their PCR products 

 

Gene Primer name Sequence (5’ to 3’) Type of 

marker 

PCR 

Products 

Xa4a MP1_F ATCGATCGATCTTCACGAGG linked S= 120bp 

MP2_R dTG CTA TAA AAG GCA TTC GGG linked R= 150bp 

Xa5b Xa5_F2_Sus GCTCGCCATTCAAGTTCTTGTC Gene-based  

198bp Xa5-F2-Res GCTCGCCATTCAAGTTCTTGAG Gene-based 

Xa5_R2 CCTTGATAGAAACCTTGCTCTTGAC Gene-based 

Xa7a M5_F CGATCTTACTGGCTCTGCAACTCTGT linked S= 1170bp 

M5_R GCATGTCTGTGTCGATTGGTCCGTACGA linked R= 294bp 

Xa13a Xa13F_130-140 CCT GAT ATG TGA GGT AGT Gene-based S= 1326bp 

xa13R_1678-1662 GAG AAA GGC TTA AGT GC Gene-based R= 1523bp 

Xa21a Xa21 Forward ATA GCA ACT GAT TGC TTG G Gene-based S= 1200bp 

Xa21 Reverse CGA TCG GTA TAA CAG CAA AAC Gene-based R= 1400bp 

a co-dominant primers 

b Dominant primers 
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Table 3: Oryza glaberrima reaction to 14 strains of Xanthomonas oryzae pv. oryzae from the Philippines under greenhouse 

conditions 

Strains R MR MS S 

PXO61 

(Race 1) 

 TOG6007 

 

TOG5293, 

TOG5620, 

TOG7173 

 

 

 

CG17, RAM90,RAM98, SUPA, 

TOG5447, TOG5458,TOG5464, 

TOG5473,TOG5523,TOG5566, 

TOG5650,TOG5675,TOG5810, 

TOG5953,TOG5989, TOG6231 

PXO86  

(Race 2) 

TOG7173 TOG6007,CG17,RAM90,RAM98,TOG54

4, 

TOG5458,TOG5464,TOG5473,TOG5523, 

TOG5566,TOG5650,TOG5675,TOG5810, 

TOG5953,TOG5989, TOG6231, 

TOG5293, TOG5620 

 SUPA 

PXO79 

(Race 3B) 

TOG5650, TOG5810, CG17, RAM90, RAM98, TOG5293, 

TOG5447, TOG5458, 

TOG5464,TOG5473, TOG5523, 

TOG5566, TOG5620,TOG5675, 

TOG5953, TOG5989, 

 SUPA, 
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TOG6007,TOG6231, TOG7173 

PXO340 

(Race 3C) 

TOG5566, TOG5953, 

TOG6231 

CG17, RAM90, RAM98, TOG5293, 

TOG5447, TOG5458, 

TOG5464,TOG5523, TOG5620, 

TOG5650, TOG5675,TOG5810, 

TOG6007, TOG7173 

TOG5989, SUPA, TOG5473, 

PXO71 

( Race 4) 

 CG17, RAM90, TOG5810, TOG5953, TOG5523,TOG5566

, 

TOG5620,TOG5675

, TOG5989, 

TOG6231 

RAM98, SUPA, TOG5293, TOG5447, 

TOG5458, TOG5464, TOG5473, 

TOG5650, TOG6007, TOG7173 

PXO112 

(Race 5) 

RAM90, TOG5566,TOG5675, 

TOG5810,TOG5953,TOG598

9, TOG6007, TOG6231, 

TOG7173 

CG17, TOG5293, TOG5447, TOG5458, 

TOG5473, TOG5523, 

TOG5620,TOG5650, 

TOG5464, RAM98, SUPA, 

PXO99 

(Race 6) 

   CG17, RAM90, RAM98, SUPA, 

TOG5293, TOG5447, TOG5458, 

TOG5464, TOG5473, TOG5523, 

TOG5566, TOG5620, TOG5650, 

TOG5675, TOG5810, TOG5953, 
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TOG5989, TOG6007, TOG6231, 

TOG7173 

PXO145 

(Race 7) 

TOG5650, TOG5810, 

TOG7173 

CG17, RAM90, RAM98, TOG5293, 

TOG5464, TOG5473, 

TOG5523,TOG5566, TOG5620, 

TOG5675, TOG5953,TOG5989, 

TOG6007, TOG6231 

SUPA, TOG5447, TOG5458 

PXO280 

(Race 8) 

 RAM98, TOG5293, TOG5464, TOG5566, 

TOG5675, TOG5810, TOG5953, 

TOG6007, TOG7173 

 

TOG5447,TOG5473

,TOG5523,TOG562

0,TOG5650,TOG59

89, TOG6231 

CG17, RAM90, SUPA, TOG5458 

PXO339 

(Race 9a) 

TOG5293,TOG5464,TOG547

3, 

TOG5566,TOG5810,TOG595

3, TOG7173 

RAM90, RAM98, TOG5458, TOG5523, 

TOG5620, TOG5650, TOG5675, 

TOG5989, TOG6007, TOG6231 

CG17, TOG5447 SUPA 

PXO349 

(Race 9b) 

TOG5293,TOG5464,TOG547

3, 

TOG5620,TOG5810,TOG623

1, TOG7173 

CG17, RAM90, RAM98, TOG5447, 

TOG5458, TOG5566, 

TOG5650,TOG5675, TOG5953, 

TOG5989, TOG6007 

TOG5523 SUPA 

PXO347 TOG5953, TOG6231, CG17, RAM90, RAM98, TOG5293,  SUPA 
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(Race 9c) TOG7173 TOG5447, TOG5458, 

TOG5464,TOG5523, TOG5566, 

TOG5620, TOG5650,TOG5675, 

TOG5810, TOG5989, TOG6007 

PXO363 

(Race 9d) 

TOG5464,TOG5473,TOG556

6, TOG5953, TOG5989, 

TOG7173 

RAM98 TOG5810, 

TOG6007 

 

CG17, RAM90, SUPA, TOG5293, 

TOG5447, TOG5458, TOG5523, 

TOG5620, TOG6231, TOG5650, 

TOG5675 

PXO341 

(Race 10) 

TOG5566,TOG5675,TOG595

3, TOG7173 

CG17, RAM90, RAM98, TOG5293, 

TOG5447, TOG5458, 

TOG5464,TOG5473, TOG5523, 

TOG5620, TOG5650,TOG5810, 

TOG5989, TOG6007, TOG6231 

 SUPA 

 

Bacterial blight lesion lengths were evaluated under greenhouse conditions at two weeks after inoculation. Lesion lengths 

were scored 14 days after inoculation. Resistant (R): < 5 cm lesion length, moderately resistant (MR): > 5-10 cm lesion 

length, moderately susceptible (MS): > 10-15 cm lesion length, and susceptible (S): > 15 cm lesion length. 
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Table 4: Variance analysis of average lesion length from 20 rice accessions inoculated with 14 

Xoo strains under greenhouse conditions 

 

 

Sum sq Df F value Pr(>F) 

Accession 10029.7 19 68.5506 <2.20E-16*** 

Strain 20340.7 13 203.1897 <2.20E-16*** 

Accession × strain 9691.4 247 5.0953 <2.20E-16*** 

Residuals 4312.3 560 

   

Sum of square (Sum sq); Degrees of freedom (Df): 14 Xoo strains (Df: 13) were used to 

inoculate 20 rice accessions (Df: 19) under greenhouse (GH) conditions. *** indicates the 

level of significance of each factor or between factors at p-value of 0.001. 
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Table 5: Bacterial lesion length on 10 rice accessions evaluated under greenhouse and high temperature conditions  

Strains CG17 SUPA TOG5464 TOG5473 TOG5523 TOG5566 TOG5620 TOG5953 TOG5989 TOG7173 

PXO61 

( Race 1)- GH 

25.5±2.43 

(S) 

25.05±2.7 

(S) 

19.4±2.02 

(S) 

17.6±0.98 

(S) 

16±1.49 

(S) 

18.7±1.88 

(S) 

14.3±1.74 

(MS) 

17.3±2.26 

(S) 

19.04±1.83 

(S) 

13.81±0.75 

 (MS) 

PXO61  

(Race 1)-HT 

9.97±0.21 

(MR) 

27.03±2.03 

(S) 

4.31±0.50 

(R) 

9.37±0.98 

(MR) 

12.24±0.84 

(MS) 

10.33±0.95 

 (MS) 

5.31±0.89 

(MR) 

9.70±0.40 

(MR) 

16.07±2.53 

(S) 

11.53±0.78 

 (MS) 

PXO86  

(Race 2)-GH 

7.11±0.79 

(MR) 

19.04±2.11 

(S) 

6.43±1.19 

 (MR) 

7.15±1.42 

(MR) 

6.59±1.43 

(MR) 

5.42±0.96 

(MR) 

8.04±0.74 

(MR) 

6.28±0.96 

(MR) 

5.88±0.84 

(MR) 

4.7±1.8 

(R ) 

PXO86  

(Race 2)-HT 

2.40±0.1 

(R) 

11.14±0.92 

(MS) 

3.66±0.41 

(R) 

6.42±0.02 

(MR) 

2.91±0.31 

(R) 

3.22±0.53 

(R) 

2.98±0.25 

(R) 

2.83±0.53 

(R) 

2.29±0.47 

(R) 

5.04±0.07 

(MR) 

PXO79 

(Race 3B)-GH 

5.09±0.25 

(MR) 

16.11±1.02  

(S) 

7.08±0.93 

 (MR) 

6.12±0.23 

(MR) 

7.17±0.55  

(MR) 

7.31±1.47  

(MR) 

6.31±0.62 

(MR) 

6.49±1.53 

(MR) 

5.74±0.76  

(MR) 

6.5±1.01  

(MR) 

PXO79 

(Race 3B)-HT 

2.88±0.77 

(R) 

7.63±0.88 

(MR) 

4.35±0.13 

(R) 

3.13±0.83 

(R) 

6.44±1.41 

(MR) 

3.61±0.85 

(R) 

2.63±0.48 

(R) 

2.74±0.59 

(R) 

3.14±0.66 

(R) 

2.85±0.78 

(R) 

PXO340 

(Race 3C)-GH 

7.17±1.57 

(MR) 

21.17±1.76 

 (S) 

5.31±0.93  

(MR) 

17.13±0.23 

 (S) 

8.15±0.84 

 (MR) 

4.53±0.36 

 (R ) 

7.24±0.59 

(MR) 

4.93±0.73  

(R ) 

13.05±0.5  

(MS) 

5.03±1.66 

 (MR) 

PXO340 

(Race 3C)-HT 

2.18±0.58 

(R) 

11.48±1.23 

(MS) 

4.08±0.48 

(R) 

7.56±1.31 

(MR) 

2.53±1.13 

(R) 

2.48±1.47 

(R) 

5.44±0.32 

(MR) 

2.27±0.61 

(R) 

4.55±0.13 

(R) 

15.37±1.79 

(S) 

PXO71 

( Race 4)-GH 

7.68±0.89 

(MR) 

27.99±0.71 

 (S) 

21.65±0.84  

(S) 

18.14±2.33 

 (S) 

12.95±2.12 

(MS) 

11.63±2.98  

(MS) 

14.47±1.4  

(MS) 

9.91±2.35 

(MR) 

12.52±0.58 

(MS) 

15.38±1.58  

(S) 

PXO71 

( Race 4)-HT 

14.74±0.74 

(MS) 

15.75±1.99 

(S) 

13.75±0.13 

(MS) 

15.06±1.11 

(S) 

6.11±0.36 

(MR) 

13.15±0.97 

 (MS) 

13.01±0.15 

(MS) 

14.84±0.86 

(MS) 

3.84±0.29 

(R) 

10.63±0.25  

(MS) 

PXO112 

(Race 5)-GH 

6.01±2.52 

(MR) 

24.91±0.24 

 (S) 

13.46±0.65 

(MS) 

5.91±2.27 

(MR) 

5.44±1.97 

 (MR) 

4.18±1.44  

(R ) 

5.21±0.95 

(MR) 

4.82±1.65 

 (R ) 

4.16±1.25 

 (R ) 

3.84±1.35 

 (R ) 

PXO112 

(Race 5)-HT 

2.61±0.69 

(R) 

18.56±2 

(S) 

3.99±0.57 

(R) 

8.43±0.93 

(MR) 

3.26±0.59 

(R) 

3.12±0.39 

(R) 

3.28±0.63 

(R) 

7.70±0.80 

(MR) 

4.78±0.77 

(R) 

3.56±0.44 

(R) 

PXO99 

(Race 6)-GH 

25.81±2.78 

 (S) 

28.92±1.12 

 (S) 

25.16±1.93 

 (S) 

25.19±0.74 

 (S) 

27.45±2.45  

(S) 

17.29±0.5 

  (S) 

24±2.49 

  (S) 

20.15±2.37 

 (S) 

24.44±3.57  

(S) 

19.24±1.8 

  (S) 

PXO99 5.19±0.34 26.55±0.30 12.33±0.21 10.48±1.25 3.45±0.21 6.81±0.27 12.08±1.98 9.86±0.7 5.08±0.7 14.05±0.98  
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(Race 6)-HT (MR) (S) (MS) (MS) (R) (MR) (MS) (MR) (MR) (MS) 

PXO145 

(Race 7)-GH 

7.89±1.66 

(MR) 

13.76±1.5 

(MS) 

6.6±1.36 

(MR) 

5.58±0.45 

(MR) 

8.63±0.1 

(MR) 

7.31±2.44 

(MR) 

8.5±1.77 

(MR) 

6.53±1.02 

(MR) 

8.73±0.93 

(MR) 

4.88±0.75 

(R ) 

PXO145 

(Race 7)-HT 

2.47±0.76 

(R) 

17.01±1.08 

(S) 

3.55±0.65 

(R) 

5.26±0.25 

(MR) 

4.64±0.16 

(R) 

4.39±1.02 

(R) 

3.42±0.12 

(R) 

4.15±0.0 

(R) 

7.28±0.48 

(MR) 

4.56±0.48 

(R) 

PXO280 

(Race 8)-GH 

17.88±3.32 

 (S) 

28.26±2.42 

 (S) 

5.99±0.56 

 (MR) 

14.5±2.46 

 (MS) 

10.95±2.75 

(MS) 

6.96±1 

 (MR) 

10.17±1.45 

(MS) 

9.1±0.84  

(MR) 

13.13±1.75 

(MS) 

7.3±0.5 

 (MR) 

PXO280 

(Race 8)-HT 

5.68±0.68 

(MR) 

13.97±0.92 

(MS) 

4.62±0.74 

(R) 

4.49±1.04 

(R) 

4.06±0.01 

(R) 

1.94±0.19 

(R) 

4.10±0.85 

(R) 

13.92±1.62 

(MS) 

3.89±0.47 

(R) 

4.89±0.54 

(R) 

PXO339 

(Race 9a)-GH 

10.75±1.66 

(MS) 

29.22±2.81  

(S) 

4.1±0.41 

 (R ) 

4.94±0.65  

(R ) 

7.1±0.69 

 (MR) 

4.93±1.11 

 (R ) 

5.86±0.86 

(MR) 

5±1.25  

(R ) 

6.4±0.78 

 (MR) 

3.65±0.8  

 (R ) 

PXO339 

(Race 9a)-HT 

2.31±0.55 

(R) 

23.27±1.76 

(S) 

13.87±1.09 

(MS) 

7.4±0.87 

(MR) 

7.49±1.21 

(MR) 

2.99±0.16 

(R) 

5.75±0.35 

(MR) 

2.82±0.67 

(R) 

4.03±0.63 

(R) 

7.63±0.57 

(MR) 

PXO349 

(Race 9b)-GH 

7.25±2.79 

(MR) 

37.56±3.43  

(S) 

4.78±1.03  

(R ) 

4.87±0.97 

 (R ) 

12.34±1.65 

(MS) 

7.22±1.14  

(MR) 

4.68±0.27 

 (R ) 

6.38±2.41 

(MR) 

5.76±0.56  

(MR) 

3.45±0.73 

 (R ) 

PXO349 

(Race 9b)-HT 

3.10±0.88 

(R) 

24.99±1.01 

(S) 

3.31±0.44 

(R) 

5.48±0.55 

(MR) 

4.51±0.33 

(R) 

2.04±0.17 

(R) 

5.27±0.34 

(MR) 

1.92±0.82 

(R) 

1.86±0.66 

(R) 

2.49±0.36 

(R) 

PXO347 

(Race 9c)-GH 

7.35±1.96 

(MR) 

28.46±2.45 

 (S) 

5.27±0.97  

(MR) 

4.92±0.80  

(R ) 

5.32±1.41  

(MR) 

6.22±0.84 

 (MR) 

5.31±0.10 

(MR) 

4.75±1.13  

(R ) 

6.2±0.80 

 (MR) 

4.53±0.59 

 (R ) 

PXO347 

(Race 9c)-HT 

1.92±0.58 

(R) 

19.02±1.87 

(S) 

23.62±0.37 

(S) 

3.97±0.7 

(R) 

3.27±0.84 

(R) 

6.0±0.11 

(MR) 

5.29±0.53 

(MR) 

16.07±2.04 

(S) 

7.17±1 

(MR) 

5.36±0.63 

(MR) 

PXO363 

(Race 9d)-GH 

20.85±1.66 

 (S) 

17.15±1.2  

(S) 

3.87±1.71 

 (R ) 

3.57±1.03  

(R ) 

16.89±2.55 

 (S) 

4.56±1 

 (R ) 

19.45±2.59  

(S) 

3.53±1.23  

(R ) 

4.96±1.33  

(R ) 

4.76±1.65  

(R ) 

PXO363 

(Race 9d)-HT 

6.79±0.92 

(MR) 

9.22±2.03  

(MR) 

3.81±0.19 

(R) 

4.44±0.24 

(R) 

3.93±0.96 

(R) 

7.62±1.34 

(MR) 

4.96±0.2 

(R) 

2.86±0.05 

(R) 

3.01±0.92 

(R) 

2.64±0.67 

(R) 

PXO341 

(Race 10)-GH 

9.1±2.23 

(MR) 

23.13±2.62 

(S) 

5.53±0.95  

(MR) 

5.58±0.67 

(MR) 

6.02±0.51 

(MR) 

4.39±0.33 

(R ) 

6.18±1.18 

(MR) 

3.8±0.64 

(R ) 

6.31±1.47 

(MR) 

4.58±0.41 

(R ) 

PXO341 

(Race 10)-HT 

2.38±0.48 

(R) 

23.71±0.22 

(S) 

8.43±1.13  

(MR) 

3.66±0.68 

(R) 

7.16±0.76 

(R) 

3.91±0.29 

(R) 

3.98±0.82 

(R) 

2.07±0.52 

(R) 

5.78±0.28 

(MR) 

5.63±0.14 

(MR) 
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 Sum Sq Df F value Pr(>F)     

Strain 5078.7 13 54.82 <2.20E-16***     

Stress 5799.2 1 813.808 <2.20E-16***     

Variety 7167.2 9 111.7523 <2.20E-16***     

Strain × stress 1025.6 13 11.0705 <2.20E-16***     

Strain × accessions 3321.7 117 3.9841 <2.20E-16***     

Stress × accessions 685.1 9 10.6821 3.10E-16***     

Strain × stress × accessions 2097.0 117 2.5151 3.44E-11***     

Residuals 1995.3 280       

Bacterial blight lesion lengths were evaluated under greenhouse (GH) and high temperature (HT) conditions at two 

weeks after inoculation. Lesion lengths were scored 14 days after inoculation. Each value is the mean ±standard error. 

aThe mean values are followed by the standard error. bThe letters in bracket are reaction categories based on lesion length. 

Resistant (R): < 5 cm, moderately resistant (MR): > 5-10 cm, moderately susceptible (MS): > 10-15 cm, and susceptible (S): > 

15 cm. 

Sum of square (Sum sq); Degrees of freedom (Df): 14 Xoo strains (Df: 13) were used to inoculate 10 rice accessions (Df: 9) 

under greenhouse (GH) and high temperature (HT) conditions (Df: 1). *** indicates the level of significance of each factor 

or between factors at p-value of 0.001. 
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Table 6: Allele analysis of Oryza glaberrima genotype using Xa4, xa5, Xa7, xa13 and Xa21 markersa 

Acc. xa4 

(S) 

Xa4 

(R) 

xa5 

(R) 

Xa5 

(S) 

xa7 

(S) 

Xa7 

(R) 

xa13 

(R) 

Xa13 

(S) 

xa21 

(S) 

Xa21 

(R) 

Genotypeb 

Xa4 xa5 Xa7 xa13 Xa21 

CG17 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

RAM90 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

RAM98 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

SUPA - + - + + - - + + - Xa4/Xa4c Xa5/Xa5 xa7/xa7 Xa13/Xa13 xa21/xa21 

TOG5293 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5447 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5458 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5464 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5473 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5523 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5566 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5620 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5650 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5675 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5810 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5953 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG5989 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 
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TOG6007 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG6231 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

TOG7173 + - - + - - - + + - xa4/xa4 Xa5/Xa5 - Xa13/Xa13 xa21/xa21 

IRBB4 - + - + + - - + + - Xa4/Xa4 Xa5/Xa5 xa7/xa7 Xa13/Xa13 xa21/xa21 

IRBB5 + - + - + - - + + - xa4/xa4 xa5/xa5 xa7/xa7 Xa13/Xa13 xa21/xa21 

IRRB7 + - - + - + - + + - xa4/xa4 Xa5/Xa5 Xa7/Xa7 Xa13/Xa13 xa21/xa21 

IRBB13 + - - + + - + - + - xa4/xa4 Xa5/Xa5 xa7/xa7 xa13/xa13 xa21/xa21 

IRBB21 + - - + + - - + - + xa4/xa4 Xa5/Xa5 xa7/xa7 Xa13/Xa13 Xa21/Xa21 

IR24 + - - + + - - + + - xa4/xa4 Xa5/Xa5 xa7/xa7 Xa13/Xa13 xa21/xa21 

                           a + and – indicate presence or absence, respectively, of resistance and susceptible alleles 

                          b – indicates absence of resistance and susceptible alleles 

                          c Defective resistance allele in SUPA
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Figure: Reaction of 20 rice accessions to 14 strains of Xanthomonas oryzae pv. oryzae from the Philippines.  

Bacterial blight lesion lengths were evaluated under greenhouse conditions at two weeks after inoculation. Lesion lengths 

were scored 14 days after inoculation 

Resistant (R): < 5 cm lesion length, moderately resistant (MR): > 5-10 cm lesion length, moderately susceptible (MS): > 10-

15 cm lesion length, and susceptible (S): > 15 cm lesion length. 
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Supplementary Table: Bacterial blight average lesion length of 14 Xoo strains from the Philippines 

Accessions PXO61 

Race 1 

PXO86 

Race 2 

PXO79 

Race 3B 

PXO340 

Race 3C 

PXO71 

Race 4 

PXO112 

Race 5 

PXO99 

Race 6 

PXO145 

Race 7 

PXO280 

Race 8 

PXO339 

Race 9a 

PXO349 

Race 9b 

PXO347 

Race 9c 

PXO363 

Race 9d 

PXO341 

Race 10 

CG17 25.5±2.43 

(S) 

7.11±0.79 

(MR) 

5.09±0.25 

(MR) 

7.17±1.57 

(MR) 

7.68±0.89 

(MR) 

6.01±2.52 

(MR) 

25.81±2.78 

(S) 

7.89±1.66 

(MR) 

17.88±3.32 

(S) 

10.75±1.66 

(MS) 

7.25±2.79 

(MR) 

7.35±1.96 

(MR) 

20.85±1.66 

(S) 

9.1±2.23 

(MR) 

RAM90 17.5±3  

(S) 

8.86±2.37 

(MR) 

5.33±0.65 

(MR) 

8.08±0.83 

(MR) 

8.17±0.25 

(MR) 

4.16±1.04 

(R ) 

24.79±2.91 

(S) 

6.02±0.5 

(MR) 

17.06±1.21  

(S) 

8.22±0.32 

(MR) 

8.83±1.92 

(MR) 

8.98±1.9 

(MR) 

20.68±2.93 

(S) 

8.59±1.18 

(MR) 

RAM98 19.21±1.48 

(S) 

7.83±1.11 

(MR) 

6.64±0.98 

(MR) 

8.69±1.78 

(MR) 

17.25±1.44 

(S) 

23.2±0.55 

(S) 

20.02±2.35 

(S) 

5.47±0.4 

(MR) 

8.35±2.67 

(MR) 

6.42±2.07 

(MR) 

6.6±0.54 

(MR) 

5.68±0.49 

(MR) 

5.74±1.99 

(MR) 

7.62±0.98 

(MR) 

SUPA 25.05±2.7 

(S) 

19.04±2.11 

(S) 

16.11±1.02 

(S) 

21.17±1.76 

(S) 

27.99±0.71 

(S) 

24.91±0.24 

(S) 

28.92±1.12 

(S) 

13.76±1.5 

(MS) 

28.26±2.42 

(S) 

29.22±2.81 

(S) 

37.56±3.43 

(S) 

28.46±2.45 

(S) 

17.15±1.2 

(S) 

23.13±2.62 

(S) 

TOG5293 13.6±2.27 

(MS) 

8.15±1.55 

(MR) 

5.48±1.52 

(MR) 

6.4±0.57 

(MR) 

18.25±0.62 

(S) 

9.93±2.24 

(MR) 

22.06±0.36 

(S) 

5.44±0.17 

(MR) 

5.4±0.46 

 (MR) 

4.72±1.15 

 (R ) 

4.22±0.86 

(R ) 

6.44±1.04 

(MR) 

20.84±2.48 

(S) 

6.61±0.2 

(MR) 

TOG5447 15.4±2.28 

(S) 

7.83±1.4 

(MR) 

6.5±1.16 

(MR) 

9.74±2 

(MR) 

15±0.89 

(MS) 

6.27±2 

(MR) 

22.95±2.01 

(S) 

14.66±2.08 

(MS) 

14.78±0.59 

(MS) 

11.3±4 

 (MS) 

9.15±3.55 

(MR) 

7.57±0.09 

(MR) 

18.23±3.36 

(S) 

5.84±1.58 

(MR) 

TOG5458 25.5±3.10 

(S) 

9.18±1.71 

(MR) 

7.77±0.80 

(MR) 

8.59±0.80 

(MR) 

19.08±2.16 

(S) 

7.89±1.92 

(MR) 

25.19±2.54 

(S) 

17.59±1.35 

(S) 

16.42±0.29 

 (S) 

8.41±0.17 

(MR) 

7.11±0.18 

(MR) 

5.47±1.33 

(MR) 

18.05±2.31 

(S) 

7.11±2.25 

(MR) 

TOG5464 19.4±2.02 

(S) 

6.43±1.19 

(MR) 

7.08±0.93 

(MR) 

5.31±0.93 

(MR) 

21.65±0.84 

(S) 

13.46±0.65 

(MS) 

25.16±1.93 

(S) 

6.6±1.36 

(MR) 

5.99±0.56 

(MR) 

4.1±0.41  

(R ) 

4.78±1.03 

(R ) 

5.27±0.97 

(MR) 

3.87±1.71 

(R ) 

5.53±0.95 

(MR) 

TOG5473 17.6±0.98 

(S) 

7.15±1.42 

(MR) 

6.12±0.23 

(MR) 

17.13±0.23 

(S) 

18.14±2.33 

(S) 

5.91±2.27 

(MR) 

25.19±0.74 

(S) 

5.58±0.45 

(MR) 

14.5±2.46 

(MS) 

4.94±0.65  

(R ) 

4.87±0.97 

(R ) 

4.92±0.80 

(R ) 

3.57±1.03 

(R ) 

5.58±0.67 

(MR) 

TOG5523 16±1.49 

 (S) 

6.59±1.43 

(MR) 

7.17±0.55 

(MR) 

8.15±0.84 

(MR) 

12.95±2.12 

(MS) 

5.44±1.97 

(MR) 

27.45±2.45 

(S) 

8.63±0.1 

(MR) 

10.95±2.75 

(MS) 

7.1±0.69 

(MR) 

12.34±1.65 

(MS) 

5.32±1.41 

(MR) 

16.89±2.55 

(S) 

6.02±0.51 

(MR) 

TOG5566 18.7±1.88 

(S) 

5.42±0.96 

(MR) 

7.31±1.47 

(MR) 

4.53±0.36 

(R ) 

11.63±2.98 

(MS) 

4.18±1.44 

(R ) 

17.29±0.5 

 (S) 

7.31±2.44 

(MR) 

6.96±1 

(MR) 

4.93±1.11 

(R ) 

7.22±1.14 

(MR) 

6.22±0.84 

(MR) 

4.56±1  

(R ) 

4.39±0.33 

(R ) 

TOG5620 14.3±1.74 

(MS) 

8.04±0.74 

(MR) 

6.31±0.62 

(MR) 

7.24±0.59 

(MR) 

14.47±1.4 

(MS) 

5.21±0.95 

(MR) 

24±2.49 

 (S) 

8.5±1.77 

(MR) 

10.17±1.45 

(MS) 

5.86±0.86 

(MR) 

4.68±0.27 

(R ) 

5.31±0.10 

(MR) 

19.45±2.59 

(S) 

6.18±1.18 

(MR) 

TOG5650 22.3±1.63 

(S) 

5.94±0.45 

(MR) 

4.4±0.29 

(R ) 

7.65±0.58 

(MR) 

19.37±3.2 

(S) 

5.26±1.58 

(MR) 

27.06±2.76 

(S) 

4.53±0.73 

(R ) 

11.96±2.81 

(MS) 

7.35±0.78 

(MR) 

9.66±2.47 

(MR) 

6.01±1.33 

(MR) 

21.31±0.79 

(S) 

7.34±2.14 

(MR) 
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TOG5675 22.14±3.57 

(S) 

5.04±0.42 

(MR) 

5.77±1.56 

(MR) 

5.51±0.87 

(MR) 

12.15±1.49 

(MS) 

3.02±0.41 

(R ) 

25.34±2.29 

(S) 

6.1±0.99 

(MR) 

7.28±1.52 

(MR) 

5.94±0.71 

(MR) 

6.45±1.42 

(MR) 

5.2±1.21 

(MR) 

18.21±1.74 

(S) 

4.52±0.62 

(R ) 

TOG5810 18.1±2.67 

(S) 

6.24±0.81 

(MR) 

3.73±0.67 

(R ) 

6.62±1.5 

(MR) 

7.7±1.03 

(MR) 

4.41±1.38 

(R ) 

24.83±2.39 

(S) 

4.48±0.32 

(R ) 

7±0.68 

(MR) 

4.65±0.64 

(R ) 

3.8±0.95 

 (R ) 

5.6±1.45 

(MR) 

12.62±0.73 

(MS) 

5.4±2.03 

(MR) 

TOG5953 17.3±2.26 

(S) 

6.28±0.96 

(MR) 

6.49±1.53 

(MR) 

4.93±0.73 

(R ) 

9.91±2.35 

(MR) 

4.82±1.65 

(R ) 

20.15±2.37 

(S) 

6.53±1.02 

(MR) 

9.1±0.84 

(MR) 

5±1.25 

 (R ) 

6.38±2.41 

(MR) 

4.75±1.13 

(R ) 

3.53±1.23 

(R ) 

3.8±0.64 

(R ) 

TOG5989 19.04±1.83 

(S) 

5.88±0.84 

(MR) 

5.74±0.76 

(MR) 

13.05±0.5 

(MS) 

12.52±0.58 

(MS) 

4.16±1.25 

(R ) 

24.44±3.57 

(S) 

8.73±0.93 

(MR) 

13.13±1.75 

(MS) 

6.4±0.78 

(MR) 

5.76±0.56 

(MR) 

6.2±0.80 

(MR) 

4.96±1.33 

(R ) 

6.31±1.47 

(MR) 

TOG6007 7.8±1.02 

(MR) 

6.1±0.94 

(MR) 

8.31±0.88 

(MR) 

6.87±0.63 

(MR) 

18.84±2.03 

(S) 

4.52±1.44 

(R ) 

22.17±2.05 

(S) 

6.43±0.76 

(MR) 

7.79±0.57 

(MR) 

7.17±0.48 

(MR) 

7.59±0.8 

(MR) 

9.43±1.83 

(MR) 

13.80±1.32 

(MS) 

5.11±0.82 

(MR) 

TOG6231 17.53±0.98 

(S) 

5.79±0.2 

(MR) 

6.33±0.24 

(MR) 

4.94±0.26 

(R ) 

10.7±1.38 

(MS) 

4.89±1.58 

(R ) 

17.61±0.5  

(S) 

7.11±1.6 

(MR) 

12.28±1.84 

(MS) 

5.27±0.7 

(MR) 

4.81±0.23 

(R ) 

4.87±0.48 

(R ) 

16.35±2.41 

(S) 

8.25±2.48 

(MR) 

TOG7173 13.81±0.75 

(MS) 

4.7±1.8 

 (R ) 

6.5±1.01 

(MR) 

5.03±1.66 

(MR) 

15.38±1.58 

(S) 

3.84±1.35 

(R ) 

19.24±1.8  

(S) 

4.88±0.75 

(R ) 

7.3±0.5 

(MR) 

3.65±0.8 

 (R ) 

3.45±0.73 

(R ) 

4.53±0.59 

(R ) 

4.76±1.65 

(R ) 

4.58±0.41 

(R ) 

aThe mean values are followed by the standard error. bThe letters in bracket are reaction categories based on lesion length. 

Resistant (R): < 5 cm, moderately resistant (MR): > 5-10 cm, moderately susceptible (MS): > 10-15 cm, and susceptible (S): > 

15 cm. 

Bacterial blight lesion lengths were evaluated under greenhouse conditions at two weeks after inoculation. Lesion lengths 

were scored 14 days after inoculation
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Abstract 

Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae implies substantial yield 

loss to rice. In times of climate change, increasing temperatures are observed and 

further acceleration is expected worldwide. Increasing temperature often turns into 

inhibition of host plant defense to pathogens. Recently, a reduced resistance in rice 

IRBB4 carrying Xa4, but an increase in resistance in IRBB7 carrying Xa7 resistance by 

increasing temperature has been reported. Influence of high temperature on both R 

genes (Xa4+Xa7) combined in IRBB67 was analyzed under growth chamber conditions 

and transcriptomic analysis performed. The pyramided line IRBB67 showed no 

differences in lesion length between both temperature regimes, demonstrating that non-

effectiveness of Xa4 at high temperature did not affect IRBB67 resistance. Moreover, Xa4 

complements Xa7 resistance with no Xoo spread in planta beyond the symptomatic area 

under both temperature regimes in IRBB67. Time course transcriptomic analysis 

revealed that temperature enhanced IRBB67 resistance to combined heat and Xoo. Our 

mailto:c.dossa@irri.org
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findings highlight altered cellular compartment involved in Xoo resistance and heat 

stress tolerance in both susceptible (IR24) and the resistant (IRBB67) genotypes. 

Interestingly, up-regulation of trehalose-6-phosphatase gene and low affinity cation 

transporter in IRBB67 suggest that IRBB67 maintained a certain homeostasis under high 

temperature which may have enhanced its resistance. The interplay of both heat stress 

and Xoo responses as determined by up-regulated and down-regulated genes 

demonstrates how resistant plants cope with combined biotic and abiotic stresses. 

Genomic analysis of Xoo PXO145 showed close relatedness of PXO145 to Xoo PXO86 as 

revealed by MAUVE alignment. TAL effector prediction from PXO145 genome revealed 

18 TAL effectors including avrXa7 which activates Os11N3 and avrXa27 which binds to 

the executor R gene Xa27. Os11N3 was seen down-regulated in IRBB67 in comparison to 

IR24. 

Keywords: Rice, Xoo, Xa4, Xa7, IRBB67, TAL-effector, High temperature 
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Background 

The world population is projected to reach 9.7 billion by 2050 and half the world 

population growth is expected in developing countries (UN DESA, 2015). This world 

population growth coupled with the impact of climate change on agricultural 

production in those countries demands a rapid growth in food supply, animal feed and 

biomass for fuels (Naylor and Falcon, 2008; Battisti and Naylor, 2009). Previous reports 

have shown that an increase of seasonal temperature by 1°C results in decline of major 

grains yield in the range of 2.5 to 16% in the tropics and subtropics (Peng et al. 2004; 

Lobell et al. 2008). Unfortunately, due to their sessile life style, plants have no chance to 

escape this environment (biotic and abiotic stresses) and must respond and adapt (Hua, 

2013). Abiotic stress may imply positive or negative effects on plant defense responses 

(Atkinson and Urwin, 2012). According to the latter authors, the outcome of the 

interaction depends on the timing, nature and the severity of the stress. Temperature, 

water, relative humidity, light and circadian rhythm significantly influence plant 

defense and pathogen invasion (Hua, 2013). A small variation in temperature can affect 

plant growth, but also plants’ responses to pests and pathogens (Long et al. 1988; Garett 

et al. 2006). Thus, plant immunity is often compromised under high temperature 

(Dropkin, 1969). Most studies on plant responses to environmental changes were 

carried out under single stress and are therefore unsuccessful in explaining plant 

responses to more than one stress factor (Atkinson and Urwin, 2012). High temperature 

affecting host resistance to pathogens has been reported in tobacco with infected with 

Tobacco mosaic virus (Kiraly et al. 2008). Increased disease resistance to stripe rust 

(Puccinia striiformis f.sp tritici) was observed in wheat under high temperature (25-35°C) 

and is likely caused by the significant expression of resistance gene Yr36 which is not 

effective under low temperature (15°C) (Uauy et al. 2005; Fu et al. 2009). Similar 

reactions were reported in Arabidopsis which shows resistant to virulent Pseudomonas 

syringare pv. tomato (Pst) strain DC3000 at 22°C and susceptible to the same strain at 



 

122 
 

28°C (Wang et al. 2009). In rice, Webb et al. (2010) reported high temperature reducing 

the resistance of rice IRBB NILs carrying the Xa4 resistance gene to Xantomonas oryzae 

pv. oryzae (Xoo). According to these authors, an inverse response was observed in 

IRBB7, a NIL with Xa7 resistance gene. This inverse response raised the question about 

the R gene durability under climate change conditions. However, the pyramided lines 

such as IRBB67 (Xa4+Xa7) may be an alternative as pyramided lines are more durable 

and have broad-spectrum of resistance than monogenic lines (For review: Suh et al. 

2013). Therefore, there is a need to study the molecular mechanisms underlying the 

IRBB67 response to the pathogen under high temperature conditions. The inhibition of 

plant resistance to pathogens under high temperature is often associated to an enhanced 

activity of RNA-silencing mediated resistance and inhibition of effector triggered 

immunity under which the pathogen effector is normally recognized by the host R gene 

(Martin et al. 2003; Liu et al. 2015). The resistance induced by the NB-LRR class of R 

gene is reduced by temperature increase due to less nuclear accumulation of SCN1 (Zhu 

et al. 2010). In this study, both R genes Xa4 and Xa7 are not yet cloned and their 

putative function is still unknown. The reaction of NIL IRBB4 carrying Xa4 under high 

temperature (Webb et al. 2010) suggests that this Xa4 R gene might be an NB-LRR type 

of R gene which is less expressed under high temperature conditions.  

The hypothesis here is to determine the effects of Xa4 on Xa7 in the pyramided line 

IRBB67 carrying both R genes and to understand how this pyramided line responds to 

the combination of Xoo and heat stress. Combinations of high temperature and drought 

stress alter gene expression by activation of specific programs, revealing that plant 

response to multiple stresses differs to the one to single stress (Rizhsky et al. 2004). 

Moreover, the study of Rasmussen et al. (2013) has shown that 61% of transcripts were 

not predictable under double stress compared to single stress treatment. Understanding 
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how resistant plants respond to Xoo and heat stress will provide information to be used 

for developing double stress tolerant rice varieties. 

Genome sequencing has contributed to receive insight into the rice-Xoo pathosystem. 

Since the first Xoo genome sequence (Korean strain KACC10331) published in 2005 by 

Lee et al (2005) and followed by genome sequencing of the Japanese Xoo strain 

MAFF311018 (Ochiai et al. 2005) and the Philippines’ strain PXO99A, a 5-azacytidine-

resistant derivative of PXO99 (Salzberg et al. 2008), a lot of efforts were made to 

sequence more Xoo strains from Philippines, Africa and United State of America (for 

review: Verdier et al. 2012). Availability of these genome sequences has shown the 

diversity existing among Xoo strains. Moreover, Gonzales et al (2007) demonstrate 

existence of a genetic distance between African and Asian Xoo strains. Genome 

sequencing of Xoo has allowed understanding its interaction with rice through 

identification of effectors which are injected into the host cell via type 3 secretion 

systems known as important virulence factor in bacterial blight (Nino-Liu et al, 2006). 

The effectors identified so far are based on available genome sequences and will 

certainly significantly increase with additional genome sequences. 

Transcription activator-like (TAL) effectors have recently gained a lot of attention as 

they function like transcription activators of plant genes by binding to the gene 

promoters (Römer et al. 2010). TAL effectors can bind to host susceptible genes and 

promote disease or activate the host resistance gene and trigger defense (Boch et al. 

2014). For example, PXO99A TAL effector PthXo1 activates the rice susceptible gene 

Os08N3, a sugar transporter gene (Yang et al. 2006), however, when this Os08N3 gene 

lacks the effector binding site (EBE), it confers resistance as it is the case of IRBB13 

carrying a recessive gene xa13 (Yang et al. 2006, Yuan et al. 2009). Another susceptible 

gene, Os11N3, is targeted by several TAL effectors: PthXo3 (Yang and White, 2004), 

avrXa7 (Anthony et al. 2010), Tal5 (Streubel et al. 2013) and TalC (Yu et al. 2011), 
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resulting in increase in disease lesion development. Some of the rice genes targeted by 

TAL effectors’ are executor genes. These genes have EBEs in their promoter and are 

transcriptionally activated by TAL effectors. As an example, Xa27 is activated by 

AvrXa27 leading to resistance to Xoo (Römer et al. 2009). This approach could be used as 

a trap by engineering an R gene with EBE site that the TAL effector binds to (Wilkins et 

al. 2015). Mutation in the TAL effector binding site of the susceptible gene leads to 

expression of resistance in IRBB13, while genome editing with removal of the TAL 

effector binding site of the sugar transporter genes (OsSweet) promoters also results in 

resistance (Li et al. 2012). Therefore, it becomes highly important to identify TAL 

effector containing Xoo and their target genes in rice for development of resistance to 

rice bacterial blight. TAL effectors and the prediction of their targets will only be 

possible with availability of Xoo genome sequences and here we report about rice-Xoo 

pathosystem under high temperature conditions and predicted the TAL effectors in 

PXO145. 

Materials and Methods 

Plant growth conditions 

Rice genotypes’ IR24 (susceptible), IRBB4 (Xa4), IRBB7 (Xa7) and IRBB67 (Xa4+Xa7) 

seeds were pre-germinated for 4 days at 37°C and transferred to pots for further growth 

under greenhouse conditions (12h light, 12h dark). Two week-old healthy plants were 

then transferred into indoor growth chambers under two temperature regimes (29/21 °C 

and 35/31 °C; day/night temperatures) and 70% of relative humidity. Inoculation was 

conducted on 21 day-old plants. 

Plant inoculation 

Philippines’ Xoo race 7, strain PXO145 (avrXa4+avrXa7), inoculum was prepared from a 

3 day-old culture. Twenty-one day-old seedlings of IR24, IRBB4, IRBB7 and IRBB67 

were inoculated by the leaf clipping method (Kauffman et al. 1973) while IR24 and 
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IRBB67 were inoculated with syringes with PXO145 and with sterilized demineralized 

water (mock) for RNA-Seq gene expression analysis. The leaf at the second position of 

the main tiller was inoculated and disease assessment was performed daily from 4 days 

post inoculation to 11 dpi. Syringe inoculated leaves were sampled at 3, 72 and 120 

hours post inoculation (hpi). One leaf from 5 plants each for each rice genotype and 

treatment were taken at each time point and immediately frozen in liquid nitrogen, and 

stored at -80°C. 

Total RNA extraction, library construction and RNA sequencing 

Total RNA was extracted from syringe inoculated leaves using TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s protocol. Total RNA was 

then treated with DNase (Promega) and quantified using NanoDrop. RNA integrity 

was checked using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, 

USA). For each time point and condition, two biological replicates were prepared. A 

single-end fragment library of 100bp length was generated from cleaned total RNA 

following instructions of the TruSeq RNA Sample Preparation kit. Cluster generation of 

the produced libraries was performed using Illumina_ TruSeq SR Cluster Kit v3 - cBot - 

HS, and sequenced on a HiSeq 2000 platform (Illumina) with single-end 100-bp reads 

and submitted to the Microarray and Deep-Sequencing Core Facility of the University 

Medical Center Göttingen (Germany). Sequence images were transformed with 

Illumina software BaseCaller to bcl files, which were demultiplexed to fastq files with 

CASAVA v1.8.2.  

Transcriptome data analysis 

The reads of each sample were mapped to the rice genome version 7 of the Rice 

Genome Annotation Project (RGAP) at MSU using clcbiogenomics workbench v7.0.4 

with the following parameters: 2 for mismatch cost, 3 for insertion cost and deletion 

cost, 0.5 for length fraction and 0.8 for similarity fraction. The expression data for each 



 

126 
 

sample was exported from clcbiogenomics workbench and analyzed in the 

R/Bioconductor environment loading DESeq2 (Love et al. 2014), gplot, ggplot2 

packages. The differentially expressed genes were analyzed based on a generalized 

linear model likelihood ratio test assuming negative binomial data distribution via 

DESeq2. Candidate genes were filtered to a minimum of 4X fold change and FDR-

corrected p-value <0.05. Functional association enrichment analysis was conducted 

following the methodology of Du et al. (2010). 

Time course quantitative Real-Time PCR validation 

Quantitative RT-PCR using SYBR Green detection reagents in Step One Plus (Applied 

Biosystems, USA) was used to validate the expression of ten candidate genes shown to 

be differentially regulated from RNA-Seq data. Total RNA from the third biological 

replicate was used according to each time point. The sequence of each gene was 

obtained from the Rice Genome Annotation Project database, RGAP7 

(http://rice.plantbiology.msu.edu/), and the sequences of genes were used for primers 

design using qPCR Assay Design tool of Integrated DNA Technology (IDT, 

http://sg.idtdna.com/site). Rice actin gene was selected as a reference gene in qRT-PCR. 

2-∆∆Ct method as described by Schmittgen and Livak (2008) was used to determine the 

relative expression and the log2 transformation of the relative expression was used to 

compare with the RNA-Seq data. All samples were studied in triplicate PCR. The 

primers and corresponding sequences are listed in Supplementary Table1. 

PXO145 genome sequence and TAL effectors prediction 

Single molecule, real-time (SMRT) technology was used to sequence Xoo strain PXO145 

as described by Eid et al. (2009). De novo genome assembly was performed using HGAP 

version 3 (Chin et al., 2013, Wilkins et al., 2015), Pacific Biosciences, Menlo Park, CA) 

and the PBX toolkit (https://github.com/njbooher/pbx). Two (02) SMRT cell libraries 

were used for sequencing. Whole genome alignment with other publicly available Xoo 

http://rice.plantbiology.msu.edu/
http://sg.idtdna.com/site
https://github.com/njbooher/pbx
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genome sequences was performed using MAUVE v2.3.1 (Darling et al., 2010). TAL 

effector prediction was conducted using PBX toolkit as described in 

https://github.com/njbooher/pbx and Wilkins et al. (2015). 

Type III effectors were identified using tBlastn in clcbiogenomics workbench v.7.0.4. A 

database with all Xanthomonas type III effectors from Xoo and Xoc was built and used 

to blast against the whole genome sequence of PXO145. 

Results 

High temperature affects plant morphology 

Plant morphology change due to temperature rise was determined by measuring the 

plant height under both temperature regimes. All rice genotypes were taller with 

narrower leaves under high temperature compared to normal temperature (Figure 1A). 

Under low temperature, the plant height ranged from 47.8 cm to 50.8 cm, and under 

high temperature from 55.5 cm to 63 cm. The highest plant height under low 

temperature was recorded on IRBB7, and under high temperature on IRBB4. 

Rice near isogenic line with R genes Xa4 and Xa7 combination confers strong resistance to 

BB under high temperature 

Rice bacterial blight R genes Xa4 and Xa7 are among the major R genes mediating 

resistance to BB. In order to determine the high temperature effect on the combination 

of the two R genes (Xa4 and Xa7) responses to BB, rice NIL IRBB67 carrying Xa4 and 

Xa7, along with IR24 (susceptible) and IRBB4 carrying Xa4 and IRBB7 carrying Xa7 

were used. Plants were inoculated under both temperature regimes in the growth 

chamber with PXO145 (avrXa4+avrXa7). Disease evaluation after 11 days showed an 

inverse response between Xa4 and Xa7, with Xa7 resistance enhanced under high 

temperature. However, the gene combination in IRBB67 did not show a significant 

difference in disease lesion length between high and low temperatures. Under low 

https://github.com/njbooher/pbx
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temperature the average lesion length was 1.5 cm, under high temperature 1.3 cm on 

IRBB67 (Figure 1B). 

Evaluation of bacterial blight lesion length development recorded from 4 dpi to 11 dpi 

showed that IRBB67 resistance follows a similar pattern to that of IRBB7 under high 

temperature (Supplementary Figure 1). IRBB67 resistance was high compared to IRBB7 

resistance under low temperature with an average lesion length of 2.6 cm for IRBB7 at 

11 dpi. Additionally, in planta bacterial counts showed evidence of complementation of 

Xa4 to Xa7 under high temperature compared to low temperature (Figure 1C).The leaf 

segment plating beyond the visible lesion length showed no significant differences in 

the bacterial count in IR24 leaves under both temperature regimes. IRBB4 showed 

similar results at high temperature while significant differences were observed at low 

temperature. However, in IRBB7, the bacterial count between leaf segments was 

significantly different at high temperature compared to low temperature, suggesting 

that Xoo in planta spread less in IRBB7 under high temperature compared to the spread 

in IRBB4. Unexpectedly we did not detect bacterial growth beyond the symptomatic 

area under both temperature regimes in the pyramided NIL IRBB67. 

Gene expression profiling of IR24 and IRBB67, Xoo and mock inoculated under normal and 

high temperature 

Total RNA from each sample was single end sequenced using Illumina Hiseq 

technology. The read length of 100 bp in the range of 25.2-82.1 millions was generated 

(Supplementary Table 2). Percentage of mapped reads ranged from 97% to 98.6%. The 

mapped reads were used for further analysis. 

To identify differentially expressed genes (DEGs), we used the DESeq2 package (Love 

et al. 2014) under R/bioconductor. The significant DEGs were identified based on the 

dales discovery rate (FDR) of 0.05 and log-2 fold change. Using these criteria, we 
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identified 4,683 transcripts differentially expressed comparing Xoo inoculated samples 

to mock inoculated samples from both IR24 and IRBB67 under both temperature 

regimes at 3, 72 and 120 hpi. In IR24, under low temperature most of the transcripts 

were differentially expressed at 3 hpi (2,202 DEGs), 160 ones at 72 hpi and 232 DEGs at 

120 hpi. In the resistant NIL IRBB67, 2,296, 222 and 76 DEGs were identified at 3, 72 and 

120 hpi, respectively, at low temperature following the same comparison. Similar to low 

temperature, Xoo inoculated and mock inoculated sample comparisons revealed 3,110, 

62 and 521 DEGs in IR24 at 3, 72 and 120 hpi, respectively, while in IRBB67, 2,967, 91 

and 96 DEGs were identified at the same points (Figure 2). The temperature increase 

showed significant effects on DEG numbers, especially at 3 hpi in both IR24 and 

IRBB67. IRBB67 showed a decrease in DEG numbers with increase in the incubation 

period (hour post inoculation), suggesting that this rice NIL responds sufficiently to 

combined stresses of BB and high temperature at an early stage of infection. Both NILs 

showed significant reduction in DEGs at 72 hpi, however, IR24 showed more DEGs 

induced at 120 hpi compared to 72 hpi time points under both temperature regimes, 

with more DEGs (521) induced at high temperature. 

Functional classification using of the 4,683 transcripts differentially expressed using 

Pageman revealed late (120 hpi) up-regulation of hormone metabolism in IR24 at high 

temperature while it was induced at 3 and 120 hpi under low temperature. In IRBB67, 

the hormone metabolism was up-regulated from 3 to 72 hpi under low temperature and 

up-regulated across the three time points under high temperature. Jasmonate 

metabolism did not show significant differences in expression between both rice NILs 

and between both temperature regimes. Abscisic acid (ABA) negatively regulates host 

plant resistance to the pathogen by negative antagonistic effects on salicylic acid (SA) 

mediated resistance (Yasuda et al. 2008; Fan et al. 2009; Cao et al. 2011; Xu et al. 2013). In 

this study, ABA and an ABA induced response were shown to be up-regulated only in 
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IR24 under low temperature. Under temperature increase, no differences were seen 

between Xoo inoculated and mock inoculated samples. SA was seen to be up-regulated 

at 3 and120 hpi in IR24 under low temperature and only induced at 72 hpi under high 

temperature. In IRBB67, SA up-regulation was observed at 72 hpi under low 

temperature and from 72-120 hpi under high temperature (Figure 3). Cell wall plays 

several roles such as physical barriers against insects and pathogens, shape and 

structure, but also cell-cell communication and osmotic regulation. In this study, the cell 

wall was generally affected by high temperature combined with Xoo, especially in 

IRBB67. Similarly, the cell wall proteins such as AGPs (arabinogalactans-proteins) 

which link the cell wall with the plasma membrane and the cytoskeleton (Ellis et al. 

2010; Lyuben et al. 2014) were shown to be affected by high temperature and Xoo in 

both rice NILs (IR24 and IRBB67) at an early stage of inoculation (Figure 3). Cell wall 

precursor synthesis-sugar kinases and cell wall precursor synthesis-sugar kinases-

galacturonic acid kinase were seen to be up-regulated at low temperature at 72 hpi in 

both rice NILs. 

High temperature affects rice membrane enclosure 

To determine the effects of high temperature on rice, DEGs from mock inoculated 

plants at high and low temperature were compared at each time point and within 

genotype. A total of 332 DEGs were expressed in both mock inoculated genotypes. 

Several DEGs were down-regulated in both genotypes in response to high temperature. 

Differences in rice transcript accumulation between high and low temperatures were 

observed at 3 hpi at which most of the DEGs were down-regulated (Supplementary 

Table 3). Besides, 05 DEGs (LOC_Os07g34520.2; LOCOs01g12490.1; LOC_Os08g30020.3; 

LOC_Os07g34520.3; LOC_Os11g46850.1) were up-regulated in IR24 at 3 hpi and 

LOC_Os08g04500.2 encoding for terpene synthase was up-regulated at 72 hpi. In the 

resistant genotype IRBB67, 9 DEGs were up-regulated (Supplementary Table 3) 
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including MYB family transcription factor (LOC_Os02g53670.1) and MYB transcription 

factors, which are involved in plant development, but also in defense responses to 

hormone or stress treatments (Yanhui et al. 2006). Additionally, flavin mono-oxygenase 

(LOC_Os01g12490.1) which plays important role in n-tryptophan (Trp)-dependent 

indole-acetic acid (IAA) biosynthesis in plants and regulates plant growth and 

development was among the nine up-regulated DEGs in IRBB67.  

Functional analysis of the DEGs revealed enrichment in three functional groups (Figure 

4). Twelve DEGs were enriched, deriving from the external encapsulating structure 

(GO:0030312) and the cell wall (GO:0005618), with down-regulation in IR24 at 72 hpi. 

The third functional group was nucleus (GO:0005634) and showed overall up-

regulation in the resistant reaction at 120 hpi. The DEGs, 32 in total enriched in nucleus 

at 120 hpi in IRBB67 were significantly down-regulated at 3 hpi. 

High temperature during pathogen infection affects rice cellular compartments 

With mock inoculation, 332 transcripts were differentially expressed between high and 

low temperatures from both genotypes. In order to determine the effects of high 

temperature on rice during pathogen infection, transcript accumulation was compared 

between high and low temperatures of inoculated samples from both IR24 and IRBB67. 

A total of 156 DEGs (Supplementary Table 4) were induced from both IRBB67 and IR24 

genotypes, demonstrating the repression of several DEGs in response to Xoo inoculation 

between high and low temperatures. Besides, only 19 DEGs were shared between mock 

and Xoo inoculated samples (Supplementary Figure 2). 

At 3 hpi, no significant DEG was found to be up or down-regulated, except 

LOC_Os08g39850.2 encoding for lipoxygenase, a chloroplast precursor involved in the 

programmed cell death pathway and biotic and abiotic stress response in plants (Pavan, 

2011), which was down-regulated in IRBB67 (Supplementary Table 4). At 72 hpi, 14 
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DEGs were expressed in IR24 with down-regulation of 9 DEGs and up-regulation of 5 

DEGs. In the resistant genotype, the difference in the response to Xoo between high and 

low temperature was generally significant at 72 hpi compared to the susceptible 

response at the same time point. Fifty four and 39 DEGs were down-regulated and up-

regulated, respectively, in IRBB67 at 72 hpi. A late response was observed in the 

susceptible genotype at 120 hpi, where 63 DEGs were expressed with 7 down-regulated 

DEGs and 56 up-regulated. Only 5 significant DEGs were expressed in IRBB67 at 120 

hpi and all were up-regulated. These 5 DEGs included LOC_Os08g04500.1, 

LOC_Os08g04500.2, LOC_Os05g01140.1, LOC_Os12g1440.1, LOC_Os01g01840.1 and 

LOC_Os12g02470.1 (Supplementary Table 4). 

Functional analysis of the 156 DEGs showed down-regulation of plasma membrane 

(GO:0005886) and membrane (GO:0016020) genes across the three time points in IR24 

and at 72 and 120 hpi in IRBB67 (Figure 4). Genes of the cell wall (GO:0005618), 

extracellular region (GO:0005576), and external encapsulated structure (GO:0030312) 

were significantly down-regulated at 72 hpi in both genotypes while transferase activity 

(GO:0016740) was down-regulated in IR24 at 120 hpi, and vacuole (GO:0005773) was 

down-regulated in IRBB67 at 72 hpi. The late response observed in the susceptible 

genotype IR24 at 120 hpi was correlated with up-regulation of the following GO terms: 

transcription regulator activity (GO:0030528), transcription factor activity (GO:0003700), 

DNA binding (GO:0003677) and nucleic acid binding (GO:0003676) in IR24 at 120 hpi 

(Figure 4). 

IRBB67 mediated resistance to bacterial blight under low temperature conditions.  

To determine the difference in transcript accumulation after Xoo inoculation between 

the resistant (IRBB67) and the susceptible (IR24) genotypes, selected DEGs in the 

IRBB67 and IR24 were compared at each time point. A total of 145 DEGs were 

differently induced in IRBB67 and IR24 after Xoo inoculation under low temperature 
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(Supplementary Table 5). Among them, 102 DEGs (51 up-regulated and 51 down-

regulated) were induced at 3hpi, 40 (six up-regulated and 34 down-regulated) at 72hpi 

and 85 (37 up-regulated and 48 down-regulated) at 120hpi. DEG numbers decreased at 

72hpi, however, a late response to Xoo was observed at 120hpi with induction of 85 

DEGs. Additionally, 51 DEGs were specifically induced at 3hpi and there were 24 DEGs 

in common between the 3 time points.  

GO enrichment analysis of the DEGs revealed no significant GO terms at 5% of p-value. 

However, DEGs (LOC_OS02g40130 and LOC_Os02g40190) which belong to the group 

of protein kinases related genes, involved in cell death, response to biotic stimulus and 

response to stress were up-regulated in the resistance genotype (IRBB67). Protein 

kinases play important roles in activation of plant defense mechanisms and signal 

transduction. Among the 145 DEGs which are differentially induced in IRBB67 and 

IR24, 21 DEGs were related to protein kinases. Four (04) LRR type receptor like kinase 

genes were induced among which three (LOC_Os11g29110, LOCOs_02g40130 and 

LOC_Os11g29090) were significantly up-regulated in IRBB67 at 3hpi and 

LOC_Os05g46090 was down-regulated at 120hpi. One DEG encoding for cysteine-rich 

receptor-like protein kinase (LOC_Os02g12130) was down-regulated in IRBB67 

(Supplementary Table 5). Other types of receptor like kinase such as LOC_Os02g40180, 

LOC_Os06g38760, LOC_Os06g16300, LOC_Os09g18594, LOC_Os11g07170 and 

LOC_Os09g19500 were down-regulated in IRBB67. Additionally, protein kinase genes 

(LOC_Os05g41950, LOC_Os11g44250) were specifically up-regulated in IRBB67 at 3hpi 

and a DEG (LOC_Os09g18159) which encodes for light repressible receptor protein 

kinase, putative expressed was only up-regulated at 120 hpi. Two DEGs encode for wall 

associated kinases (LOC_Os11g47140 and LOC_Os11g46860) and LOC_Os07g03920 

which encodes for lectin-like receptor kinase, and LOC_Os06g38650 which encodes for 

RLKs were significantly up-regulated at 3 and 120hpi in IRBB67 in comparison to IR24 
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after Xoo inoculation under low temperature conditions. LOC_Os11g46850 which 

encodes for wall associated kinase was significantly up-regulated in IRBB67 only at 

3hpi as well as receptor kinase (LOC_Os02g40190) and cyclin-dependent kinase G-1 

(LOC_Os02g39010) in IRBB67 (Supplementary Table 5). 

In addition to protein kinases related genes, LOC_Os07g05400 encoding for Ferredoxin-

-NADP reductase, chloroplast precursor, putative expressed, LOC_Os06g38120 which 

encodes for low-affinity cation transporter, and LOC_Os06g38110, encoding for 

expressed protein, were significantly up-regulated at 3hpi in IRBB67. Uncharacterized 

glycosyl hydrolase Rv2006/MT2062, putative expressed, encoded by LOC_Os09g20390, 

LOC_Os11g44950 (glycosyl hydrolase family 3 protein) showed significant up-

regulation in IRBB67 at 120 hpi, and LOC_Os07g46660, encoding ubiquitin carboxyl-

terminal hydrolase domain containing protein expression was up-regulated in IRBB67 

from 72-120 hpi, while glycine-rich cell wall protein (LOC_Os03g07270) showed up-

regulation at 120 hpi (Supplementary Table 5). 

High temperature enhances IRBB67 resistance to bacterial blight 

In order to understand the mechanisms by which the resistant rice varietyIRBB67 

harboring Xa4 and Xa7 resistance genes, responds to the combined stress of high 

temperature and bacterial blight, DEGs from the resistant genotype IRBB67 and the 

susceptible IR24 after inoculation with Xoo under high temperature were compared. A 

total of 188 transcripts were differentially expressed between IRBB67 and IR24 at 3, 72 

and 120 hpi under high temperature conditions. At 3 hpi, 113 DEGs were expressed 

with 56 down-regulated and 57 up-regulated. At 72 hpi, 99 transcripts were 

differentially expressed (44 down-regulated and 55 up-regulated) and 145 DEGs at 120 

hpi with 77 down-regulated and 68 up-regulated (Supplementary Table 6). 
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Functional analysis of the differential DEGs between IRBB67 and IR24 after inoculation 

with Xoo under high temperature conditions revealed no functional enrichment at 3 hpi, 

which suggested no response to both high temperature and Xoo at an early stage of 

inoculation from both rice NILs. Examination of GO terms at 72 and 120 hpi suggested 

that under combined stress of Xoo and high temperature, the rice transcriptome is 

largely devoted to catalytic activity. At 72 hpi, 65 DEGs were functionally enriched in 

catalytic activity (Figure 5). Catalytic activity (GO:003824), transferase activity 

(GO:0016740), kinase activity (GO:0016301) and transferase activity, transferring 

phosphorus-containing groups (GO:0016772) were the most significant functional 

groups at 120 hpi. Catalytic activity was shown to be a major regulator in the response 

to high temperature and Xoo in IRBB67, as well as kinase activity (24 DEGs), transferase 

activity (35 DEGs) and transferase activity and transferring phosphorus-containing 

groups (24 DEGs) which belong also to catalytic activity groups (Figure 5). 

Besides these four functional groups, DEGs encoding wall associated kinases together 

with DEGs encoding for low-affinity cation transporter (LOC_Os06g38120.1) and 

expressed proteins (LOC_Os06g38110.1, LOC_Os06g38210.1, LOC_Os06g38210.2) were 

significantly up-regulated in IRBB67. Additionally, IRBB67 preferentially responds to 

the pathogen infection with up-regulation of NB-ARC/LRR disease resistance protein 

(LOC_Os11g29090.1) and NB-ARC domain containing protein (LOC_Os11g44990.1) and 

down-regulation of stress response genes such as DEGs encoding for NB-ARC domain 

containing protein (LOC_Os07g02570.1, involved in stress response, 

LOC_Os01g24820.1, and LOC_Os11g46210.1, involved in protein binding and plasma 

membrane). Receptor like kinases function like cell membrane sensors of stimuli and 

lectin-like receptor kinase 7 (LOC_Os07g03920.1 and LOC_Os07g03970.1) were up-

regulated in IRBB67 compared to IR24 in response to high temperature and Xoo 

(Supplementary Table 6).DEG LOC_Os09g20390 encoding for uncharacterized glycosyl 
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hydrolase Rv2006/MT2062, putative, expressed involved in trehalose 6 phosphate 

metabolism, also showed significant up-regulation to combined Xoo and high 

temperature in IRBB67. Additionally, the rice bacterial blight pathogen during its 

interaction with the host plant injects effector proteins that bind to host susceptibility 

genes (OsSweet), a sugar transporter gene. Induction of OsSweet14 caused by TAL 

effectors PthXo3 (Yang and White, 2004), avrXa7 (Anthony et al. 2010), Tal5 (Streubel et 

al. 2013) and TalC (Yu et al. 2011) results in increase in Xoo growth and lesion 

development. In the resistant plant IRBB67, OsSweet14 (LOC_Os11g31190.1) was down-

regulated, and more significantly at 120 hpi (Supplementary Table 6). 

RNA-Seq validation by RT-PCR  

To validate gene expression pattern determined by RNA-Seq, qRT-PCR was performed 

on 10 candidate genes (Figure 6). Expression pattern of the candidate genes determined 

by qRT-PCR data was in consistent with their expression pattern in RNA-Seq (Figure 6), 

although some smaller variation can be seen.LOC_Os11g44250.1, LOC_Os06g38110.1 

and LOC_Os06g38120.1 were not induced in IR24 under both temperature regimes 

confirming the RNA-seq data. The expression of OsSweet14 (LOC_Os11g31190.1) was 

much higher in IR24 as determined by qRT-PCR compared to RNA-seq data. 

PXO145 genome comparison reveals similarity to PXO86 genome sequences 

PXO145 genome was assembled in a single circular chromosome of 5,053,846 bp of size 

and 63.7% of GC content. Analysis of the circular representation of PXO145 showed 

more similarity to Xoo strain PXO86 than to other Xoo strains and Xoc strain BLS256. 

TAL effector locations seemed to be conserved between Xoo strains and Xoc BLS256. 

The circular schematic representation of PXO145 and other Xoo strains and Xoc BLS256 

is provided in Figure 7. 
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Phylogenetic relationship between PXO145, PXO86, PXO99A, MAFF, KACC and 

BLS256 was assessed after aligning all the genomes using MAUVE 2.3.2 (Darling et al. 

2010). Guide tree data were generated to build the phylogenetic relationship tree. 

Philippines’ Xoo strains (PXO145, PXO99 and PXO86) appeared to be distant from other 

Xoo strains (MAFF and KACC). The similarity between PXO145 and PXO86 was also 

confirmed by the phylogenetic relationship tree where both strains group together 

(Supplementary Figure 3). 

Whole genome alignment using progressive MAUVE (Darling et al., 2010) showed 

existence of rearrangement between Xoo strains. Several local blocks of 3,000,000 bp 

length were inverted in PXO86 in comparison to PXO145. Genome rearrangement was 

more significant in PXO99, MAFF and KACC (Figure 8). All the strains showed 

conserved in 4 locally blocks, and all blocks are more conserved in strains MAFF and 

KACC. 

Type 3 effectors and TAL effectors' identification in PXO145 

To identify Type 3 (T3) effectors, 29 T3 effectors from PXO99, MAFF, and BLS256 were 

blast to the PXO145 genome sequence using tblastn in clcbiogenomics workbench 

v.7.0.4. The results from tBlastn showed hit of 25 T3 effectors in PXO145. After applying 

the following filtering parameters; 97% of identity, 0.5 % of gaps and 10E-20 for E-value 

cut off, 21 T3 effectors were identified to be present in PXO145 (Table 1).  

In order to identify TAL effector containing PXO145, the PBX toolkit was used as 

described in https://github.com/njbooher/pbx and by Wilkins et al. (2015). Eighteen TAL 

effectors were identifiedincludingavrXa7and avrXa27 (Table 2). Among the 18 TAL 

effectors, eight Tal effectors are identical to known TAL effectors in PXO99A (Table 2). 

Tal4, Tal5, Tal7a, Tal7c and Tal11a show high similarity to PthXo6, Tal3a, Tal4, avrXa10 

and avrXa23, respectively. Tal11c which corresponds to Tal9e in PXO99 has the shortest 

https://github.com/njbooher/pbx
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RVDs sequence (12.5) length. The longest TAL in PXO145 was Tal11a which showed 

high similarity to avrXa23 and Tal9 with 26.5 RVDs. Predicted TAL effectors from 

PXO145 are identical to those of PXO86 as shown by RVDs comparison (data not 

shown). 

Discussion 

Increasing temperature affects rice response to bacterial blight. Plants have evolved 

mechanisms to respond to external stimuli such as biotic and abiotic stresses. Host plant 

immunity allows plants to counter-attack the invading pathogen, following pathogen 

recognition mediated by resistance R proteins (Martin et al. 2003). Our results on the 

effects of high temperature on the response of rice NIL IRBB67 which pyramids 

bacterial blight resistance genes (Xa4+Xa7) to bacterial blight, revealed a 

complementation effect of Xa4 to Xa7. Xa4 appears to be among the most widely used in 

rice breeding programs in Asia (Khan et al. 2014, Dossa et al. 2015). As previously 

reported; Xa4 resistance to Xoo decreases with temperature increase while the inverse 

trend is seen with Xa7 (Webb et al. 2010). In this study, we confirmed this inverse 

response between the two R genes. Moreover, the pyramiding NIL IRBB67 harboring 

the two R genes showed resistance to PXO145 (avrXa4+avrXa7) with no significant 

differences between both temperature regimes. Also, disease progression recorded on 

IRBB67 under both temperature regimes is similar to that of IRBB7 under high 

temperature, suggesting that Xa4 may not loose completely the resistance and is 

complemented by Xa7 in IRBB67. High temperature altered Xa4 response in IRBB4 to 

Xoo. The mechanisms by which the two R genes respond to Xoo is still unclear although 

it is known that Xa7 resistance is mediated by avrXa7 and gives pathogenic fitness cost 

to the pathogen (Vera Cruz et al. 2000). Hence, we hypothesized that these two R genes 

use different resistance mechanisms to mediate resistance to Xoo. The mechanisms by 

which Xa4 triggers the response to the pathogen seems to be affected by temperature 
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rise. In contrast, Xa7 resistance mechanisms may confer an abiotic tolerance component 

which enhances its reaction to Xoo under temperature rise, therefore, Xa4 resistance 

mechanism may not be affected by temperature when it is combined with Xa7 in 

IRBB67. This corroborates an early report that high temperature can negatively impact 

the temperature sensitive resistance to stem rust in oat cultivars harboring Pg3 and Pg4 

genes (Martens et al. 1967). 

In planta Xoo spread beyond the symptomatic area suggested that Xa4 complements Xa7 

at low temperature in IRBB67 thereby reducing Xoo spread in planta. The predominance 

of Xa7 over Xa4 in IRBB67 mediates strong resistance to PXO145 under high 

temperature with no Xoo spread in planta beyond the symptomatic area. High 

temperature promoting higher bacterial multiplication in the host was reported to 

possibly depend on the type of R gene mediating resistance to the pathogen (Chen et al. 

2013) as we observed in the current study as inverse reaction between Xa4 and Xa7. 

Moreover, it is plausible that these two genes may belong to two different classes of 

gens coding R proteins and are modulated by temperature. Consistently, SNC1 gene, a 

NB-LRR type of R gene, does not confer resistance at high temperature when activated 

compared to low temperature in Arabidopsis (Yang and Hua, 2004), suggesting that 

Xa4 R gene may belong to this type of R gene. Further study will have to investigate this 

hypothesis since both R genes (Xa4 and Xa7) are not cloned and the putative proteins 

are not known. Wang et al. (2009) suggest that high temperature inhibiting plant 

defense to pathogens may be regulated by some defense signalling components or by a 

combination of multiple factors. Bacteria spread in IRBB4 under high temperature 

suggests that recognition of corresponding avrXa4 by Xa4 R gene might be 

compromised by high temperature while effector recognition increased in IRBB7 leads 

to resistance increase. These results are in contrast to Chen et al. (2013), whose findings 
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suggest that high temperature promotes vigorously bacteria multiplication compared to 

low temperature.  

Examining the gene expression in IR24 and IRBB67 in response to PXO145 and two 

temperature (high and low) regimes, we found that the differentially expressed genes at 

early time triggered efficient response to the pathogen under both temperature regimes 

in IRBB67. However, in IR24, the pathogen progression in planta, enabled by late 

expression of genes in IR24 under both temperature regimes with more differentially 

expressed genes under high temperature (Figure 2). In response to environment 

changes, cells initiate a gene expression program to adjust its physiology and 

metabolism to the new environment, preventing it for damage or death (for review: 

Lopez-Mauray et al. 2008). In this study, it appears that at 3 hpi, high temperature and 

Xoo modulate more DEGs in both resistant and susceptible genotypes compared to that 

of low temperature. Phytohormones involved in host immunity and response to 

environmental stimuli (Pieterse et al. 2009; Santner et al., 2009; Jaillais and Chory, 2010; 

Denance et al. 2013) showed induction in this study, especially SA which is up-

regulated in the resistant genotype from 72-120 hpi under high temperature. One of the 

major SA signaling regulators (OsNPR1, LOC_Os01g09800.1) was significantly up-

regulated by the pathogen under high temperature. Expression of SA related genes in 

both rice genotypes appears to be a general response to pathogens which gets enhanced 

by high temperature in the resistant plant. Salicylic acid has numerously been reported 

to play an important role in resistance against pathogens (Cao et al. 1997; Alvarez, 2000; 

Desveaux et al. 2004; Garcion and Metraux, 2006; Ciokowski et al. 2008; Vlot et al. 2009; 

Sugano et al. 2010; De los Reyes et al. 2015).  

To invade the host organism, pathogens need to encounter the host cell wall, the first 

physical defense barrier. In case of Xoo, it enters the host through hydathodes or 

wounds (Ou, 1985; Nino-Liu et al. 2006). In this study, the infiltration allowed the 
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bacteria to gain access directly to the host xylem allowing the pathogen to interact 

directly with the host parenchyma cells (Hillaire et al. 2001; Nino-Liu et al. 2006). It 

appeared that high temperature increased host colonization by the pathogen as the host 

cell wall is affected allowing the pathogen to move easily in planta when no R gene is 

present. Moreover, the cell wall is a source of nutrients to the pathogen as the cell wall 

is composed of cellulose and hemicellulose layers which the pathogen degrades during 

the infection process (Bellincampi et al. 2014). The general down-regulation of the cell 

wall pathway in the resistant plants as shown by pageman analysis (Figure 3) is in 

contrast to resistance mediated by this genotype under high temperature. However, the 

comparison between low temperature and high temperature after mock inoculation 

showed that high temperature generally affects the membrane enclosure with down-

regulation of cell wall genes, external encapsulating structure and plastid in the 

susceptible genotype IR24, while high temperature in combination Xoo repressed the 

entire cellular compartment in both rice genotypes (Figure 4). Dahal et al. (2010) also 

reported suppression of cell wall metabolic proteins in susceptible tomato plant 

inoculated with Ralstonia solanacearum. A change caused by high temperature stress on 

cell wall metabolism is an important physiological mechanism for heat stress tolerance 

(Le Gall et al. 2015) suggesting that the plant responds by remodeling its cell wall 

architecture under abiotic stress, such as high temperature. This hypothesis could 

explain the fact that no bacterial spread was detected beyond the symptomatic area in 

IRBB67. 

Plant cell wall is a battle ground between the pathogens and its host, but after the 

pathogen won this battle, it is still confronted to molecular resistance responses (Jones 

and Dangl, 2006) as the information of the foreign invasion proceeds to the nucleus. 

With the mock inoculation, the nucleus is down-regulated in both IR24 and IRBB67 at 3 

and 72 hpi while a significant up-regulation was seen in IRBB67 at 120 hpi. However, 
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with pathogen stress combined to high temperature, the up-regulation of this pathway 

across the three time points suggests that the host plant stays under permanent alert 

after pathogen invasion. To sustain the response to this combined stress, lipid 

metabolism was significantly up-regulated in IRBB67 from 72 to 120 hpi while the 

significant expression was observed only at 72 hpi in IR24.  

Under low temperature, although no significant enrichment was seen between both rice 

genotypes, up-regulation of defense related genes in the resistance genotype suggests 

an early recognition of PXO145 in IRBB67 that triggered the defense reaction. Moreover, 

the up-regulation of the defense genes in IRBB67 in comparison to the susceptible 

genotype IR24 may suppress pathogen growth and spread in planta (Kottapalli et al. 

2007). Similarly, low-cation affinity transporter (LOC_Os06g38120) mediated cadmium 

transport into rice grains (Uraguchi et al. 2011) but also is involved in cellular 

homeostasis (Conde et al., 2011) was seen to be up-regulated in response to Xoo in 

IRBB67. Given that trehalose is a universal stress molecule, the up-regulation in the 

resistant genotype IRBB67 of LOC_Os09g20390 compared to the susceptible suggests 

that it may be involved in the defense response to Xoo.  

High temperature modulates resistance to the pathogen in IRBB67 suggests the 

existence of a shared pathway between biotic and abiotic stresses. Environmental 

changes induce plant cells to trigger several events that start with perception of the 

stimuli at the membrane level (Tuteja and Mahajan, 2007). According to the same 

authors, receptor sensors located in the cell membrane activate several signal 

transductions that triggered calcium mobilization and other secondary signals to induce 

stress responsive genes. Calcium acts as second messenger in various stresses (Snedden 

and Fromm, 1998; Snedden and Fromm, 2001; DeFalco et al. 2010; Conde et al. 2011) 

and calcium signaling was seen to be up and down regulated in both genotypes. 

However, calcium transport genes (LOC_Os05g02940, LOC_Os03g27960) were up-
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regulated in IRBB67 at 3 hpi. Additionally, wall associated kinase genes 

LOC_Os07g03920 and LOC_Os07g03970 were significantly up-regulated in the resistant 

reaction. Cell wall sensing pathogen invasion and high temperature triggering the plant 

response with up-regulation of receptor kinase gene LOC_Os07g03920 was also 

reported by Narsai et al. (2013) who observed a similar response of the resistant cultivar 

to bacterial blight. Response to combined high temperature and Xoo showed that the 

resistant genotype devoted large parts of its transcriptome to catalytic activity (Figure 

5). Physiological mechanisms may contribute to IRBB67 resistance to Xoo under high 

temperature. Up-regulation of trehalose phosphate phosphatase gene 

(LOC_Os09g20390) which dephosphorylates trehalose phosphate synthase to release 

free trehalose (Yadav et al. 2014), recently reported to be involved in anaerobic 

germination in rice (Kretzschmar et al. 2015) may also play an important role in IRBB67 

tolerance or adaptation to high temperature to trigger resistance to Xoo. Interestingly, 

up-regulation of the trehalase gene LOC_Os10g37660 was seen in the resistant 

genotype, suggesting that conversion of trehalose to glucose for carbohydrate 

metabolism may contribute to high temperature tolerance in IRBB67. Similarly, a low-

affinity cation transporter gene (LOC_Os06g38120) was also up-regulated in the 

resistant genotype compared to IR24 in response to high temperature and Xoo, 

suggesting a possible role of this gene in maintaining a certain homeostasis of the 

resistant genotype cell membrane under high temperature. Given that, the resistance 

increased in IRBB7 under high temperature could possibly relate to these genes which 

are involved in alleviating the high temperature effects on rice cell membrane by 

maintaining homeostasis during the stress. Further studies are required to prove the 

possible role of trehalose 6 phosphate and low-affinity cation transporter genes’ 

functions in IRBB7 and IRBB67. Stress tolerance accompanied with up-regulation of 

resistance gene such as NB-ARC/LRR (LOC_Os11g44990) and NR-ARC domain 

containing protein (LOC_Os11g44990) may contribute to enhance resistance to Xoo 



 

144 
 

under high temperature in IRBB67 and possibly in IRBB7 while their activities might be 

reduced in IRBB4 under high temperature. Total resistance activity below the threshold 

under high temperature results in no defense (Zhu et al. 2010).  

Availability of Xoo genome sequences supported the determination of the pathogen 

diversity and the understanding of the host-pathogen interaction. Genome comparison 

between PXO99, PXO86, PXO145, MAFF and KACC and Xanthomonas oryzae pv. 

oryzicola strain BLS256 showed variation among strains and demonstrates a diversity 

existing within Xoo population and between Xoo and Xoc. Strain MAFF and KACC 

shared more common features (Salzberg et al. 2008) than with PXO strains. The 

comparative analysis revealed close relatedness of PXO145 to PXO86 with a large 

inversion in PXO86 compared to that of PXO145. Additionally, type 3 effectors 

determined from PXO145 were similar to those in PXO99A and MAFF. White et al. 

(2009) reported that type 3 effectors are similar among Xoo strains.  

The genome sequence leads to the prediction of several bacterial effectors. Bacterial 

effectors are injected into the host plant through the type 3 secretion system and once 

inside the host bind to the host genes and initiate their activation (Kay et al. 2007; 

Römer et al. 2010, Wilkins et al. 2015). In PXO145, 18 TAL effectors were predicted 

among which avrXa7 that bind to Os11N3 (Antony et al., 2010) was also predicted. 

AvrXa27 which is recognized by the R gene Xa27 (Gu et al. 2005) was also predicted to 

be present in PXO145. An allele of avrXa23, avrXa10 and PthXo6 were also predicted in 

PXO145. The resistance reaction observed on IRBB23 and IRBB10 with PXO145 suggests 

that the presence of an allele of these TAL effectors does not affect the defense response 

in both IRBB23 and IRBB10. Up-regulation of Os11N3 in the susceptible genotype 

during the time course transcriptome profile confirmed the prediction of avrXa7 in 

PXO145. Host genes activated by TAL effectors can be either susceptible (S) gene which 

results in disease development or resistance (R) gene and contribute to host defense 
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(Boch et al. 2014, Wilkins et al. 2015). Moreover, sRNA biogenesis gene (OsHEN1, 

LOC_OS07g06970) was also up-regulated in the susceptible genotype IR24. OsHEN1 is a 

target of PXO99A TAL effector TAL9A (Moscou and Bogdanov, 2009) which is also 

predicted in PXO145. Prediction of TAL effectors repertoire in PXO145 opens the door 

to determine the host targeted genes and the use of biotechnology application to 

develop rice with R genes that could recognize multiple TAL effectors. 

Conclusion 

In the light of our overall results, high temperature affects the host response to Xoo. 

Time course transcriptome profiles revealed evidence that the resistance of genotype 

IRBB67 is enhanced under high temperature as several physiological changes were 

observed in comparison to the susceptible genotype IR24. The response to high 

temperature with regulation of cell membrane homeostasis might confer high 

temperature stress tolerance in IRBB67. Complementation effects of Xa4 in Xoo spread 

in planta as observed in IRBB67 under both temperature regimes suggest that this R 

gene may not be completely lost under high temperature, and that stress (high 

temperature) tolerance failure could possibly explain the decrease in Xa4 effectiveness 

compared to that of Xa7 under temperature increase. Thus, further understanding of 

how IRBB67 mediates resistance to Xoo under temperature will reveal insight into 

crosstalk in abiotic and biotic stress regulatory pathways.  

Finally, we predicted 18 TAL effectors in PXO145 among which avrXa7 and avrXa27 

were identified, which correlate with the resistance reaction observed on IRBB7 and 

IRBB27. Additionally, the PXO145 genome showed close relatedness to PXO86 and 

reveals the existence of genome rearrangement between Xoo strains from the 

Philippines and MAFF and KACC.  
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Table 1: List of Type 3 effectors identified from PXO145 using tBlastn 

T3 effectors % of Identity % of gaps E-value 

AvrBs2 99.39 0.0 0.0 

XopC 99.76 0.0 0.0 

XopF 99.82 0.0 0.0 

XopK 100 0.0 0.0 

XopK 100 0.0 0.0 

XopN 99.46 0.0 0.0 

XopP 99.38 0.0 0.0 

XopQ 99.49 0.0 0.0 

XopR 99.31 0.0 0.0 

XopU 98.03 0.0 0.0 

XopX 98.87 0.32 0.0 

XopZ 99.93 0.0 0.0 

XopAA 97.70 0.0 0.0 

XopAD 99.23 0.0 0.0 

XopAE 100 0.0 0.0 

XopV 100 0.0 0.0 

XopT 98.95 0.0 3.55E-128 

XopAB 98.96 0.0 8.78E-122 

XopI 99.47 0.0 7.88E-119 

XopW 100 0.0 1.53E-66 

XopI 100 0.0 6.42E-24 

 

 



 

158 
 

Table 2: list of TAL effectors and their corresponding RVDs sequences identified from PXO145 genome 

Tal 

ID 

Size Repeats RVDs* Identity* R 

genes 

tal1a 3411 16.5 NI N* NI NS NN NG NN HD HD HD NG HD NS HD N* NS NG      

tal1b 3855 20.5 NI N* NI HG NI NI NS HD NN HD NS NG SS HD NI NI NN NI NN NI NG     

tal2a 3297 15.5 NI NS HD HG NS NN HD H* NG NN NN HD HD NG HD NG Tal5a   

tal2b 3755 19.5 NI HG NS HG HG HD NS NG HD NN NG HG NG HD HG HD HD NI NN NG Tal7b   

tal3 3717 19.5 HD HD HD NG N* NN HD HD N* NI NI NN HD HI ND HD NI HD NG NG Tal9A   

tal4 4020 22.5 NI H* NI NN NN NN NN NN HD NI NN HG HD NI N* NS NI NI HD N* NS NI NG Similar to 

PthXo6  

  

tal5 2977 17.5 NS HD NG NG! NG NG NG HD HD HD NN HD NG HD NI HD NN N* Similar to 

Tal3a 

  

tal6 3720 19.5 NI NG NN NG NK NG NI NN NI NN NI NN NS NG NS NN NI N* NS NG Tal2a   

tal7a 3315 15.5 NI NN NN NI NI NS HD NS HG NN NN NN NI NI NG HD Similar to 

Tal4 

  

tal7b 3519 17.5 NI HG NI NI NI NN HD NS NN NS NN HD NN NI HD NN NS NG Tal7a/Tal8a   

tal7c 3306 15.5 NI H* NI HG NI NI NN HD NI HD NN HG NS N* HD N* Similar to 

AvrXa10 

Xa10 

tal8 2246 17.5 NS NG NG NG! NG NG NG HD HD HD NN HD NG HD HD HD HD H*     

tal9 4431 26.5 NI HG NI NI HG HD NN HD HD HD NI NI NN NI HD HD HD HG NN NN HD NS NN HD N* NS N*     

tal10 4341 25.5 NI HG NI NI NS HD NN HD HD HD NS N* N*! HD HD NS NS NN NN NI NG NN NI N* NS N* AvrXa7 Xa7 

tal11a 4449 26.5 HD HD NN NN NS NG HD S* HG HD NG N* HD HD HD N* NN NI! NN HD HI ND HD HG NN HG N* Similar to 

AvrXa23  

Xa23 

tal11b 3411 16.5 NI NN N* NG NS NN NN NN NI NN NI N* HD HD NI NG NG AvrXa27 Xa27 

tal11c 3009 12.5 NI NN NI HG HG NV HG HD HG HD HD HD NG Tal9d   

tal11d 4127 23.5 NN HD NS NG HD NN N* NI HD NS HD NN HD NN HD NN NN NN NN NN NN NN HD NG Tal9e   

* All the TAL effectors predicted from PXO145 are identical to those of PXO86
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List of Figures 

Figure 1A: Plant height under low and high temperature regimes conditions. Plant height 

was recorded at 32 days old by measuring the length from soil surface to the tip of the most 

expanded leaf. Plant under high temperature conditions were significantly higher compared 

to low temperature. The letters a, b represent the significant differences between low and 

high temperature on each genotype as determined by least significant differences means 

(LSD means) at α<0.05.  

Figure 1B: Bacterial blight lesion length under low and high temperature regimes conditions. 

Bacterial blight lesion length was recorded at 32 days old (11dpi). 

Figure 1C: PXO145 spread in planta in four rice NILs under two temperature regimes. Data 

were collected from inoculated leaves at 21 days old by leaf clipping and collected 11 days 

after inoculation. A, B and C represent leaf segments of 5 cm length beyond bacterial blight 

symptomatic area. 

Figure 2: Venn diagram showing the distribution of DEGs between Xoo and Mock inoculated 

samples under both temperature regimes. (2A) DEGs at 3 hpi, (2B) DEGS at 72 hpi and (2C) 

DEGS at 120 hpi. The venn diagrams were created using jvenny (Bardou et al., 2014) 

Figure 3: Pageman analysis showing the overall overview of the DEGs from both rice 

genotypes IR24 (susceptible) and IRBB67 (resistant) under low and high temperature across 

the three time points. Pageman is integrated program in MapMan version 5 (Usadel et al., 

2006). The red and green mean up and down-regulation, respectively. 

Figure 4: GO enrichment in DEGs from high vs Low after mock inoculation and after Xoo 

inoculation. The enriched GO terms across the three time points and from both genotypes 

(IR24 and IRBB67) as predicted using AgriGO tools Parametric Analysis of Gene Set 

Enrichment (PAGE) at p-value 5% (Du et al., 2010). The red and green mean up and down-

regulation, respectively. 
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Figure 5: GO enrichment analysis of 188 DEGs expressed between IRBB67 and IR24 under 

high temperature after Xoo inoculation as predicted using AgriGO tools Parametric Analysis 

of Gene Set Enrichment (PAGE) at p-value 5% (Du et al., 2010). The red and green mean up 

and down-regulation, respectively. 

Figure 6: Validation of RNA-Seq data by qRT–PCR 

Figure 7: PXO145 circular map comparison to Xoo strains PXO99, PXO86 and Xoc strain 

BLS256. PXO145 genome sequence was used as seed. 

Figure 8: Genome alignment using MAUVE v3.2.1. Linear genomes were aligned in MAUVE 

v3.2.1 and comparisons were performed using PXO145 as reference. 
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Figure 1A: Plant height under low and high temperature regimes conditions 

Figure 1B: Bacterial blight lesion length under low and high temperature regimes conditions 
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                                  2.38             

lipid metabolism.lipid degradation.lipases 
                                  2.13             

lipid metabolism.lipid 

degradation.lipases.triacylglycerol lipase 
                                  2.20             

lipid metabolism.lipid degradation.lysophospholipases 
        2.32                                       

lipid metabolism.lipid 

degradation.lysophospholipases.phosphoinositide 

phospholipase C 
                                  2.21             

major CHO metabolism 
-4.53     -3.54     -3.28     -3.69     4.14     3.41     2.45     3.59     

major CHO metabolism.degradation 
-3.16     -2.45     -3.13     -2.57     3.62     2.75     3.15     3.39     

major CHO metabolism.degradation.starch 
    2.15                   1.99     2.75                 

major CHO metabolism.degradation.sucrose 
-3.21     -2.76     -3.19     -2.88     3.28           3.74     3.26     

major CHO metabolism.degradation.sucrose.invertases 
                                1.98             2.15 

major CHO 

metabolism.degradation.sucrose.invertases.vacuolar 
                                2.15             2.37 

major CHO metabolism.degradation.sucrose.Susy 
-3.33     -2.92 2.32   -3.29     -3.47 2.51   3.27           4.24     3.44     

major CHO metabolism.synthesis 
-2.49     -2.76   2.32     2.63       1.99     2.75                 

major CHO metabolism.synthesis.starch 
-2.49     -2.76   2.32     2.63       1.99     2.75                 

major CHO metabolism.synthesis.starch.AGPase 
-3.33     -2.92   2.89     2.31 -2.17 2.51   2.49     2.48                 

metal handling 
-2.87     -2.20     -2.16     -2.34           2.27                 

metal handling.binding, chelation and storage 
-2.68     -1.99     -3.00     -2.32           2.17                 
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minor CHO metabolism 
                                2.49               

minor CHO metabolism.others 
                          1.98                     

minor CHO metabolism.raffinose family 
                  -2.67             3.18           3.84   

minor CHO metabolism.raffinose family.galactinol 

synthases 
                                2.15           2.83   

minor CHO metabolism.raffinose family.galactinol 

synthases.putative 
                                2.15           2.83   

minor CHO metabolism.raffinose family.raffinose 

synthases 
                                2.15           2.83   

minor CHO metabolism.raffinose family.raffinose 

synthases.putative 
                                2.15           2.83   

minor CHO metabolism.trehalose 
            2.27                                   

misc 
-6.35 3.76 4.64 -5.14 4.36 8.35 -5.61 4.83 3.78 -5.15 6.38 7.99 3.60     5.43 2.19   4.42     3.68     

misc.alcohol dehydrogenases 
-3.16     -2.45     -2.66     -2.57 1.99 2.59       2.75     2.93           

misc.alcohol dehydrogenases 
-3.16     -2.45     -2.66     -2.57 1.99 2.59       2.75     2.93           

misc.aminotransferases 
                                            2.35   

misc.aminotransferases.aminotransferase class IV family 

protein 
                                            2.35   

misc.beta 1,3 glucan hydrolases 
-2.99     -3.27 -2.31   -3.75     -3.53           3.33     2.73           

misc.beta 1,3 glucan hydrolases.glucan endo-1,3-beta-

glucosidase 
-2.99     -3.27 -2.31   -3.75     -3.53           3.33     2.73           

misc.cytochrome P450 
-3.22 3.77 3.25 -2.28 3.60 6.47 -2.90 4.56 4.48 -2.49 5.14 4.83       2.62                 

misc.dynamin 
                        2.42     2.47     2.44     2.54     

misc.GCN5-related N-acetyltransferase 
                                        2.21       

misc.GDSL-motif lipase 
            -2.66     -2.24     2.49     2.17           2.33     

misc.gluco-, galacto- and mannosidases 
                                    2.93     2.33     

misc.glutathione S transferases 
        5.51 4.96   3.56     5.29 3.67                         

misc.invertase/pectin methylesterase inhibitor family 

protein 
    2.47                                           

misc.nitrilases, *nitrile lyases, berberine bridge enzymes, 

reticuline oxidases, troponine reductases 
  2.64 2.15     2.56         2.55                           

misc.O-methyl transferases 
      -2.55     -2.87     -2.67                             

misc.oxidases - copper, flavone etc. 
                              2.29                 

misc.peroxidases 
-3.64     -3.81   2.33 -3.97     -3.71   2.38 4.16     4.19 3.99   4.82     3.56     

misc.plastocyanin-like 
  2.38 1.99     2.28     2.14                               

misc.protease inhibitor/seed storage/lipid transfer 

protein (LTP) family protein 
-2.49     -2.76     -2.47     -2.22   2.88 2.74           2.78           

misc.short chain dehydrogenase/reductase (SDR) 
          2.13   2.46 2.94   1.99 2.62         2.22           2.15   

misc.UDP glucosyl and glucoronyl transferases 
    2.30 2.26 3.23 2.83                                     

mitochondrial electron transport / ATP synthesis 
        2.95           1.99   2.49           2.63     2.86     

mitochondrial electron transport / ATP 

synthesis.cytochrome c reductase 
                                  2.21           2.56 

mitochondrial electron transport / ATP synthesis.F1-
                      2.30                         
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ATPase 

mitochondrial electron transport / ATP 

synthesis.NADH-DH.type II 
  3.28 2.16   3.28 2.80   1.97     2.79                           

mitochondrial electron transport / ATP 

synthesis.NADH-DH.type II.external 
  2.58     2.35 2.17         2.16                           

mitochondrial electron transport / ATP 

synthesis.NADH-DH.type II.internal matrix 
  2.58     2.35 2.17   2.37 2.36   2.16                           

mitochondrial electron transport / ATP 

synthesis.uncoupling protein 
                        2.42     2.47     2.44     2.54     

N-metabolism.nitrate metabolism 
                                  2.21             

N-metabolism.nitrate metabolism.NR 
                                  2.21             

nucleotide metabolism.degradation 
-2.89     -2.55           -2.67     2.69           2.72           

nucleotide metabolism.degradation.purine 
-2.43     -2.12     -2.47     -2.22     3.98           3.12           

nucleotide metabolism.phosphotransfer and 

pyrophosphatases 
    2.15                                           

nucleotide metabolism.phosphotransfer and 

pyrophosphatases.uridylate kinase 
      -2.12                                         

nucleotide metabolism.salvage 
                                    2.58           

polyamine metabolism.synthesis.SAM decarboxylase 
                  -2.22                             

protein 
2.82   -2.43       3.63     3.35     -2.82     -2.75 -2.72 -2.35 -3.19     -2.89 -2.79 -3.96 

protein.aa activation 
    -2.30                                           

protein.aa activation.cysteine-tRNA ligase 
  2.58                                             

protein.degradation 
                                    -1.99           

protein.degradation.AAA type 
          2.54                                     

protein.degradation.aspartate protease 
2.23 2.27                                             

protein.degradation.cysteine protease 
-2.84     -2.42                                         

protein.degradation.subtilases 
-2.53 4.71   -2.84   3.95 -2.55 3.66   -2.85 2.65 3.83       3.52                 

protein.degradation.ubiquitin 
2.63     2.34       -2.77   2.83   -2.14 -2.49           -2.90     -2.30     

protein.degradation.ubiquitin.E3 
3.33     3.26     3.31     3.64     -2.78     -3.57     -3.76     -3.59     

protein.degradation.ubiquitin.E3.BTB/POZ Cullin3 
        2.70 2.36         2.36                           

protein.degradation.ubiquitin.E3.BTB/POZ 

Cullin3.BTB/POZ 
        2.70 2.36         2.36                           

protein.degradation.ubiquitin.E3.RING 
3.84     2.52     3.81     3.26     -2.66     -3.27     -3.92     -3.38     

protein.degradation.ubiquitin.E3.SCF 
      2.68           2.28                             

protein.degradation.ubiquitin.E3.SCF.cullin 
                                  2.21             

protein.degradation.ubiquitin.E3.SCF.FBOX 
      2.60           2.42                             

protein.degradation.ubiquitin.ubiquitin protease 
                          2.47                     

protein.postranslational modification 
4.46     2.80     5.49   2.39 4.68     -3.58     -3.17 -2.13 -3.12 -3.63     -3.43 -2.45   

protein.postranslational modification.kinase 
2.29           2.86   3.52 2.17     -2.16     -2.18     -2.44     -2.27     

protein.postranslational modification.kinase.receptor 

like cytoplasmatic kinase VII 
2.29           2.86   3.52 2.17     -2.16     -2.18     -2.44     -2.27     

protein.synthesis 
                                          2.23     

protein.synthesis.ribosomal protein 
      -2.42                                         
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protein.synthesis.ribosomal 

protein.prokaryotic.unknown organellar 
                            2.25                   

protein.synthesis.ribosomal 

protein.prokaryotic.unknown organellar.50S subunit 
                            2.25                   

protein.synthesis.ribosomal 

protein.prokaryotic.unknown organellar.50S 

subunit.L28 
                            2.25                   

protein.targeting 
-2.63     -2.34     -2.61     -2.17     2.55     2.20     2.59           

protein.targeting.secretory pathway 
                        3.13     2.39     3.17     2.16     

protein.targeting.secretory pathway.unspecified 
                        2.18           2.21           

protein.targeting.unknown 
                            2.25           2.69       

PS 
-2.25   -2.34 -2.90     -2.76     -3.68         4.56 3.00   2.53       2.18   2.44 

PS.calvin cycle 
-2.83     -2.42     -2.67     -3.39         4.47 3.60     2.21           

PS.calvin cycle.aldolase 
                            2.25           2.69       

PS.calvin cycle.FBPase 
                            2.25                   

PS.calvin cycle.GAP 
                            2.25                   

PS.calvin cycle.phosphoglycerate kinase 
                            2.25                   

PS.lightreaction 
                                  2.13             

PS.lightreaction.photosystem I 
                            2.25     2.21   2.75       2.56 

PS.lightreaction.photosystem I.PSI polypeptide subunits 
                            2.25     2.21   2.75       2.56 

PS.photorespiration 
                            2.25     2.21           2.56 

PS.photorespiration.phosphoglycolate phosphatase 
                            2.25     2.21           2.56 

redox 
                        2.53     2.24     2.15     2.86     

redox.ascorbate and glutathione.ascorbate 
      -2.12           -2.22     2.24                 2.15     

redox.ascorbate and glutathione.ascorbate.GDP-L-

galactose-hexose-1-phosphate guanyltransferase 
                        2.42                 2.54     

redox.thioredoxin 
-2.87     -2.39     -2.85     -2.55     3.93     3.33     3.97     3.45     

RNA 
6.41     6.13     4.63     5.75     -4.53   -2.63 -4.82     -5.14     -4.87     

RNA.processing.ribonucleases 
          2.17                                     

RNA.processing.RNA helicase 
                2.31                               

RNA.processing.splicing 
                                              2.15 

RNA.regulation of transcription 
6.49   2.44 5.72     4.69     5.80     -4.11   -2.29 -4.25     -4.78     -4.94     

RNA.regulation of transcription.AP2/EREBP, 

APETALA2/Ethylene-responsive element binding 

protein family 
3.85   3.18 3.45     3.58     3.60     -2.53     -2.28     -2.37     -2.58     

RNA.regulation of transcription.bHLH,Basic Helix-

Loop-Helix family 
                                2.26     3.16     2.97 2.67 

RNA.regulation of transcription.C2C2(Zn) CO-like, 

Constans-like zinc finger family 
    4.23 2.18 2.43 2.54   2.46 3.45   1.99 2.59                         

RNA.regulation of transcription.C2H2 zinc finger family 
        2.24     2.50 2.16                               

RNA.regulation of transcription.HSF,Heat-shock 

transcription factor family 
2.72           2.73                                   

RNA.regulation of transcription.JUMONJI family 
    2.16   3.28                                       
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RNA.regulation of transcription.NAC domain 

transcription factor family 
    -2.89                                           

RNA.regulation of transcription.PHOR1 
1.98 2.19   2.48 2.27 2.43 1.98                                   

RNA.regulation of transcription.putative transcription 

regulator 
                    -2.28                           

RNA.regulation of transcription.unclassified 
                                    -2.53           

RNA.regulation of transcription.WRKY domain 

transcription factor family 
3.73 2.73 5.87 3.45 2.54 4.36 3.84 5.23 4.37 3.38 2.48   -2.31           -2.43           

RNA.transcription 
      2.48                                         

secondary metabolism 
-4.74 4.95 4.53 -5.49   4.45 -4.45 5.33 4.44 -5.79 4.57 4.66       4.68     2.33     2.14 4.18   

secondary metabolism.flavonoids 
-2.17   2.60           2.72   2.65 2.46           2.33             

secondary metabolism.flavonoids.chalcones 
    3.37           3.66                               

secondary metabolism.flavonoids.dihydroflavonols 
-2.87           -2.19       2.99                           

secondary metabolism.flavonoids.flavonols 
-2.43     -2.12           -2.22                     2.21       

secondary metabolism.isoprenoids 
-2.29 3.34 2.90 -3.76     -3.38 3.85   -3.83           3.82     2.53       4.24   

secondary metabolism.isoprenoids.non-mevalonate 

pathway 
  2.19                                         3.29   

secondary metabolism.isoprenoids.non-mevalonate 

pathway.DXS 
                                            2.35   

secondary metabolism.isoprenoids.non-mevalonate 

pathway.geranylgeranyl pyrophosphate synthase 
                                            2.83   

secondary metabolism.isoprenoids.terpenoids 
-2.65 3.13 2.97 -4.66     -4.24 3.87   -4.53           4.19     2.77     2.15 3.31   

secondary metabolism.N misc 
      -2.92   2.89   2.34   -3.47 2.51                           

secondary metabolism.N misc.alkaloid-like 
      -2.92   2.89   2.34   -3.47 2.51                           

secondary metabolism.phenylpropanoids 
  2.19       3.65   2.73 2.20 -2.12 2.69 3.37                     2.15   

secondary metabolism.phenylpropanoids.lignin 

biosynthesis 
          2.97   2.11 2.86   2.96 2.86                         

secondary metabolism.phenylpropanoids.lignin 

biosynthesis.CAD 
          2.17   2.37       2.42                     2.83   

secondary metabolism.phenylpropanoids.lignin 

biosynthesis.PAL 
    2.16     2.80   1.97 3.17     2.30                         

secondary metabolism.simple phenols 
-2.34     -2.46     -3.51 2.11 2.72 -2.58 2.96 2.22       2.95                 

signalling 
3.31     2.19           2.13 -2.49   -2.45     -2.62   -4.12       -2.99 -2.47   

signalling.calcium 
1.97         -1.96                                     

signalling.G-proteins 
                    -2.28                           

signalling.light 
-1.97                           2.26       3.67   2.99       

signalling.phosphinositides 
      -2.49                                         

signalling.receptor kinases 
3.54     3.53   2.15 2.34     2.98     -3.93     -3.75   -2.99 -3.77     -3.66     

signalling.receptor kinases.leucine rich repeat VIII-1 
                                2.85               

signalling.receptor kinases.leucine rich repeat VIII-2 
                                2.85               

signalling.receptor kinases.misc 
  2.15       2.58     1.98     2.27       -2.16           -2.26     

signalling.receptor kinases.proline extensin like 
                            3.37                   

signalling.receptor kinases.S-locus glycoprotein like 
2.80 -2.31         3.58     2.26     -3.37           -3.38     -2.44     
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stress 
                                            -2.13   

stress.abiotic 
                                        2.21       

stress.abiotic.drought/salt 
                                        2.50       

stress.abiotic.unspecified 
-2.49   2.82 -2.74     -3.47     -2.55 2.56                           

stress.biotic 
                        -2.11                       

stress.biotic.PR-proteins 
2.56     2.63     2.27     2.82     -2.45           -2.46           

TCA / org. transformation 
-2.78     -3.23                     1.98             2.64     

TCA / org. transformation.carbonic anhydrases 
                                        2.36 2.54     

TCA / org. transformation.other organic acid 

transformaitons.atp-citrate lyase 
                        2.42     2.47           2.54     

TCA / org. transformation.other organic acid 

transformations 
      -2.42                                         

TCA / org. transformation.TCA.malate DH 
                            2.25                   

tetrapyrrole synthesis.uroporphyrin-III C-

methyltransferase 
                                            2.35   

transport 
-3.58 -2.74 -2.37 -3.12     -3.17 -2.63 -2.58 -2.48     2.19   3.59 2.26     2.96   2.92 3.96     

transport.ABC transporters and multidrug resistance 

systems 
  2.36     2.59           2.32 2.80                         

transport.amino acids 
                            2.16             2.19     

transport.Major Intrinsic Proteins 
                            2.56             2.35     

transport.Major Intrinsic Proteins.PIP 
-2.43     -2.12     -2.47     -2.22         3.62   1.98   2.46   2.21 3.24     

transport.metabolite transporters at the mitochondrial 

membrane 
                            1.98                   

transport.misc 
    -2.74   -2.43 -3.00         -3.00                           

transport.peptides and oligopeptides 
-2.65           -2.63     -2.38     2.26   2.21 2.47     2.77     2.58     

transport.phosphate 
                      2.30                         

transport.potassium 
      -2.46   2.97           2.86                         

transport.sulphate 
-2.84     -2.42     -2.67             2.21 2.56       2.21           

transport.unspecified anions 
                            2.25     2.21     2.69   2.35   

not assigned 
4.36     4.23   -5.95 3.95   -4.82 2.62   -3.22       -2.92     -2.77     -3.39     

not assigned.unknown 
4.36     4.23   -5.95 3.95   -4.82 2.62   -3.22       -2.92     -2.77     -3.39     

Figure 3 
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Figure 4 
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Figure 5 

 

 

 

 



 

174 
 

Figure 6 
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Figure 7 

Figure 8 
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List of supplementary 

Supplementary Table 1: qRT-PCR primers for RNA-Seq data confirmation 

S/N Gene Description F or R Sequence (5’  3’) Remarks 

1 LOC_Os11g44250 

 

protein kinase, putative, expressed F GCGTTATAGCAGGCACTCTAA  

R CCCTCTTGCTCACATTCTTCT  

2 LOC_Os11g46850 

 

wall-associated kinase, putative F TCGACTGCAACCATAGCTTTAC  

R GCTGGATTCCGTGGTGTTAG  

3 LOC_Os07g03920 

 

lectin-like receptor kinase 7, putative F GTGAGAAGAAGGCTGAGGTATG  

R CAGTGCCCAAGAGATGACTATT  

4 LOC_Os07g06970 

 

HEN1, putative, expressed F CAGTACAGTTGGATCGCTTTCT  

R CACCACCAAGGAAGCAGTATAG  

5 LOC_Os06g38120 Low affinity cation transporter F  TTCCTCGCCTTCTCATCTTTC   

R GTATTGTCAGCACCGGTAGAA  

6 LOC_Os12g36830 pathogenesis-related Bet v I family 

protein, putative, expressed 

F  CAACGCAGCTCACATTATCAAG   

R CGAGCTCATACTCCACGTTTAT  

7 LOC_Os09g20390 OsTTP6 F AACAAGGGAGTCCTCTTCCAG Kretzschmar et 

al., 2015 R CTTGAACGCGTCCTCGTC 

8 LOC_Os06g38110 Expressed protein F CGCCGTTCTAATGGACTACTT  

R AAGGTTTGCGCGGATAGAG  

9 LO_Os07g15460 

 

metal transporter Nramp6, putative, 

expressed 

F ATGGGGGTGACGAAGGCGGA   

R ATTTCCAGGATCGAGGTAA  

10 LOC_Os11g31190 

 

OsSweet14 F CCTAGGCAACATCATCTCCT  

R CGATGTAGATGGTCTCGATG  

11 Actin 

 

 F TCCATCTTGGCATCTCTCAG  

R GTACCCTCATCAGGCATCTG  

F: Forward sequence, R: Reverse sequence. Primers were designed using qPCR Assay Design tool of Integrated DNA Technology 

(IDT, http://sg.idtdna.com/site).  

http://sg.idtdna.com/site
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Supplementary Table 2: Mapping results of IR24 and IRBB67 RNA sequencing reads at 3, 72 and 120 hours post-inoculation (hpi) with 

Xoo strain PXO145 and water inoculation under two temperature regimes (low and high) 

Samples Biological replication I Biological replication II 

 Temperature 

treatment 

Inoculation 

treatment 

Time 

Points 

Total reads Total 

mapped 

reads 

Percentage 

of mapped 

reads (%) 

Total 

reads 

Total 

mapped 

reads 

Percentage 

of mapped 

reads (%) 

IR24 Low Mock 3hpi 40,674,840 39,746,811 97.72 45,901,604 44,948,818 97.92 

IR24 Low Mock 72hpi 43,936,016 42,991,838 97.85 40,369,096 39,554,307 97.98 

IR24 Low Mock 120hpi 41,557,685 40,785,941 98.14 35,775,914 34,862,571 97.45 

IR24 High Mock 3hpi 38,816,251 38,023,319 97.96 42,282,183 41,385,534 97.88 

IR24 High Mock 72hpi 42,608,972 41,630,584 97.7 25,243,662 24,644,259 97.63 

IR24 High Mock 120hpi 37,366,180 36,536,207 97.78 33,906,037 33,209,507 97.95 

IR24 Low Xoo 3hpi 36,569,942 36,056,833 98.6 34,521,855 33,927,051 98.28 

IR24 Low Xoo 72hpi 38,381,083 37,500,798 97.71 33,215,355 32,452,033 97.7 

IR24 Low Xoo 120hpi 35,997,261 35,273,959 97.99 33,420,582 32,638,429 97.66 

IR24 High Xoo 3hpi 49,697,688 48,549,597 97.69 35,330,289 34,660,833 98.11 

IR24 High Xoo 72hpi 34,472,139 33,821,975 98.11 37,533,718 36,416,101 97.02 

IR24 High Xoo 120hpi 29,264,471 28,384,794 96.99 34,483,333 33,778,667 97.96 

IRBB67 Low Mock 3hpi 39,041,035 38,174,907 97.78 47,598,258 46,647,930 98 

IRBB67 Low Mock 72hpi 44,081,764 43,241,647 98.09 41,233,115 40,359,389 97.88 

IRBB67 Low Mock 120hpi 41,579,556 40,605,006 97.66 30,738,084 30,064,125 97.81 

IRBB67 High Mock 3hpi 44,707,371 43,700,382 97.75 42,754,098 41,869,626 97.93 

IRBB67 High Mock 72hpi 34,623,159 33,908,453 97.94 82,171,104 80,174,653 97.57 

IRBB67 High Mock 120hpi 34,143,236 33,458,910 98 33,053,013 32,324,261 97.8 

IRBB67 Low Xoo 3hpi 39,473,668 38,738,159 98.14 30,236,187 29,710,824 98.26 

IRBB67 Low Xoo 72hpi 34,082,657 33,333,817 97.8 40,133,169 39,031,327 97.25 

IRBB67 Low Xoo 120hpi 35,648,982 34,912,253 97.93 31,983,452 31,327,119 97.95 

IRBB67 High Xoo 3hpi 32,953,631 32,346,294 98.16 29,323,127 28,745,107 98.03 

IRBB67 High Xoo 72hpi 36,696,325 35,951,404 97.97 34,852,161 34,101,327 97.85 

IRBB67 High Xoo 120hpi 25,638,636 24,991,603 97.48 28,561,396 27,864,949 97.56 
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Suplementary Table 3: 332 DEGs expressed in high and low temperature comparison after mock inoculation in IR24 and 

IRBB67 
  

Gene Description IR
24
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LOC_Os01g04280.1 calmodulin binding protein, putative, expressed -1.93 -0.67 -0.22 -2.86 0.39 -0.07 

LOC_Os01g04330.1 OsCML16 - Calmodulin-related calcium sensor protein, expressed -1.36 -0.62 -0.22 -2.15 -0.03 0.21 

LOC_Os01g06590.3 zinc finger, C3HC4 type domain containing protein, expressed -2.15 0.36 -0.52 -0.58 -0.51 0.12 

LOC_Os01g07120.1 AP2 domain containing protein, expressed -0.38 0.14 -0.26 -2.09 0.20 -0.16 

LOC_Os01g09080.1 WRKY DNA-binding domain containing protein, expressed -0.71 -0.43 -0.07 -2.14 -0.10 -0.01 

LOC_Os01g09220.1 transposon protein, putative, CACTA, En/Spm sub-class, expressed -1.02 -0.38 -0.71 -2.83 0.17 -0.37 

LOC_Os01g12490.1 flavin monooxygenase, putative, expressed 2.21 0.85 0.17 2.28 -0.24 0.12 

LOC_Os01g20206.1 methyltransferase, putative -2.40 -0.78 -0.35 -3.76 -0.06 -0.30 

LOC_Os01g27340.1 glutathione S-transferase, putative, expressed -2.31 -0.73 -0.08 -2.88 0.02 -0.09 

LOC_Os01g28450.1 SCP-like extracellular protein, expressed -0.80 -2.24 0.56 -1.21 0.64 0.01 

LOC_Os01g28790.1 PRAS-rich protein, putative, expressed -1.43 -0.18 -0.19 -2.28 0.34 -0.12 

LOC_Os01g29280.1 expressed protein -1.30 -0.74 0.11 -3.30 -0.10 0.01 

LOC_Os01g29330.1 expressed protein -1.93 -1.53 0.04 -3.04 -0.09 0.27 

LOC_Os01g31370.1 glycosyltransferase, putative, expressed -2.39 -0.30 -0.32 -2.81 0.13 -0.15 

LOC_Os01g37810.1 expressed protein -1.21 0.22 -0.21 -2.09 -0.13 -0.03 

LOC_Os01g39330.1 helix-loop-helix DNA-binding domain containing protein, expressed -1.83 -0.45 -0.03 -2.27 -0.13 -0.06 

LOC_Os01g40260.1 OsWRKY77 - Superfamily of TFs having WRKY and zinc finger domains, expressed -1.29 -1.02 0.44 -2.04 0.33 0.16 

LOC_Os01g42370.1 pleiotropic drug resistance protein, putative, expressed -1.42 -0.85 -0.05 -2.21 0.21 -0.07 

LOC_Os01g42380.1 pleiotropic drug resistance protein, putative, expressed -2.11 -0.71 -0.02 -2.58 0.08 0.05 

LOC_Os01g42410.1 pleiotropic drug resistance protein, putative, expressed -2.03 -0.45 -0.34 -2.17 -0.16 -0.24 

LOC_Os01g44120.1 expressed protein -1.09 -0.04 -0.26 -2.04 -0.12 -0.04 

LOC_Os01g45110.1 anthocyanin 3-O-beta-glucosyltransferase, putative, expressed -1.11 0.15 0.04 -2.45 -0.22 -0.14 

LOC_Os01g47580.1 lipid phosphatase protein, putative, expressed -1.93 -0.36 -0.10 -3.14 -0.20 0.10 

LOC_Os01g50100.1 ABC transporter, ATP-binding protein, putative, expressed -2.56 -1.29 0.19 -3.96 -0.24 -0.02 
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LOC_Os01g50170.1 eukaryotic aspartyl protease domain containing protein, expressed -1.43 -1.10 0.22 -2.00 0.29 -0.21 

LOC_Os01g50420.1 

STE_MEKK_ste11_MAP3K.7 - STE kinases include homologs to sterile 7, sterile 11 and 

sterile 20 from yeast, expressed -0.66 -0.55 -0.28 -3.11 -0.64 -0.14 

LOC_Os01g51670.1 expressed protein -1.82 -0.46 -0.06 -3.59 0.21 -0.07 

LOC_Os01g51690.1 OsWRKY59 - Superfamily of TFs having WRKY and zinc finger domains, expressed -1.40 -0.51 -0.05 -2.97 -0.22 -0.04 

LOC_Os01g52730.1 DUF584 domain containing protein, putative, expressed -1.51 -0.27 -0.34 -2.45 -0.42 -0.35 

LOC_Os01g53920.1 receptor-like protein kinase 5 precursor, putative, expressed -2.08 -0.67 -0.35 -2.97 0.17 -0.30 

LOC_Os01g56240.1 OsSAUR2 - Auxin-responsive SAUR gene family member, expressed -0.98 -0.26 -0.03 -2.41 0.10 -0.03 

LOC_Os01g56690.1 helix-loop-helix DNA-binding domain containing protein, expressed -0.86 -0.63 -0.54 -4.07 -0.25 -0.09 

LOC_Os01g60600.1 WRKY DNA-binding domain containing protein, expressed -2.62 -0.07 -0.02 -3.09 -0.60 -0.17 

LOC_Os01g61080.1 OsWRKY24 - Superfamily of TFs having WRKY and zinc finger domains, expressed -1.21 -0.67 0.12 -2.21 0.17 -0.16 

LOC_Os01g61510.1 ammonium transporter protein, putative, expressed -2.00 -0.95 -0.16 -2.46 0.14 -0.22 

LOC_Os01g61990.1 ankyrin repeat-containing protein, putative, expressed -1.81 -0.54 -0.34 -2.46 -0.12 -0.04 

LOC_Os01g62430.2 C2 domain containing protein, putative, expressed -1.85 -0.73 -0.31 -2.70 0.31 -0.21 

LOC_Os01g62430.3 C2 domain containing protein, putative, expressed -2.40 -1.52 0.09 -3.82 0.24 0.13 

LOC_Os01g62670.1 avr9/Cf-9 rapidly elicited protein, putative, expressed -1.56 -0.07 -0.57 -2.09 0.30 -0.40 

LOC_Os01g64440.1 expressed protein -1.76 -0.84 0.25 -2.02 -0.08 0.09 

LOC_Os01g64470.1 harpin-induced protein 1 domain containing protein, expressed -1.67 -0.58 -0.22 -2.42 0.21 -0.05 

LOC_Os01g64670.2 soluble inorganic pyrophosphatase, putative, expressed -1.39 -2.14 0.31 -0.14 0.70 -0.09 

LOC_Os01g66860.1 serine/threonine protein kinase, putative, expressed -2.49 -0.44 0.20 -2.89 0.04 -0.05 

LOC_Os01g66860.2 serine/threonine protein kinase, putative, expressed -2.27 -0.74 0.25 -2.73 0.32 -0.14 

LOC_Os01g66860.3 serine/threonine protein kinase, putative, expressed -2.26 -0.64 0.31 -3.42 -0.10 -0.03 

LOC_Os01g67810.1 transposon protein, putative, unclassified, expressed -2.24 -0.14 -0.23 -2.58 -0.02 0.03 

LOC_Os01g67820.1 exo70 exocyst complex subunit domain containing protein, expressed -2.04 -0.24 -0.51 -2.53 -0.05 -0.08 

LOC_Os01g68060.1 copine, putative, expressed -1.74 -0.23 -0.29 -2.23 -0.18 -0.01 

LOC_Os01g70820.1 lumenal PsbP, putative, expressed -1.62 -0.25 0.12 -2.34 -0.27 0.39 

LOC_Os01g71340.1 glycosyl hydrolases family 17, putative, expressed -0.87 -2.01 0.16 -0.34 -0.26 0.00 

LOC_Os01g71690.2 recA protein, expressed -0.99 -0.88 0.26 -3.23 0.82 -0.27 

LOC_Os01g71760.1 amino acid permease family protein, putative -1.96 -1.13 0.46 -2.44 0.37 0.12 

LOC_Os01g71890.1 transposon protein, putative, unclassified -2.03 -1.01 -0.14 -0.67 0.36 -0.24 

LOC_Os01g72080.1 calmodulin-like protein 1, putative, expressed -1.52 -0.49 -0.11 -2.88 -0.08 -0.07 
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LOC_Os01g72530.1 OsCML31 - Calmodulin-related calcium sensor protein, expressed -1.47 0.02 -0.38 -2.62 -0.33 0.07 

LOC_Os01g72810.1 secreted glycoprotein, putative, expressed -2.49 -0.77 0.06 -2.45 0.50 -0.23 

LOC_Os01g74370.1 domain of unknown function DUF966 domain containing protein, expressed -1.79 -0.85 -0.06 -2.81 0.21 0.00 

LOC_Os02g01590.1 glycosyl hydrolases, putative, expressed 0.53 0.32 -0.04 2.06 -0.62 -0.52 

LOC_Os02g02780.1 protein kinase family protein, putative, expressed -1.64 -0.71 -0.18 -2.11 0.21 -0.27 

LOC_Os02g03020.1 EF hand family protein, putative, expressed -1.20 -0.40 0.17 -2.49 -0.22 0.19 

LOC_Os02g03400.1 microtubule associated protein, putative, expressed -1.16 -1.00 -0.05 -2.45 0.18 0.01 

LOC_Os02g04130.1 DUF1645 domain containing protein, putative, expressed -1.24 -0.25 -0.22 -2.42 0.06 -0.41 

LOC_Os02g04630.1 sodium/calcium exchanger protein, putative, expressed -1.44 -1.06 -0.17 -2.17 0.76 -0.08 

LOC_Os02g04750.2 cycloartenol synthase, putative, expressed 1.07 0.28 0.06 2.76 -0.26 0.01 

LOC_Os02g04750.3 cycloartenol synthase, putative, expressed 1.83 0.85 -0.13 2.66 0.46 0.04 

LOC_Os02g04760.1 cycloartenol synthase, putative 1.50 0.32 -0.06 2.20 0.07 0.04 

LOC_Os02g06090.1 phytosulfokine receptor precursor, putative, expressed -1.96 -0.68 0.09 -3.35 0.16 -0.05 

LOC_Os02g06930.2 protein kinase, putative, expressed -1.72 -0.52 -0.78 -2.01 -0.16 -0.24 

LOC_Os02g11070.1 3-ketoacyl-CoA synthase, putative, expressed -2.47 -0.93 0.06 -2.71 -0.46 -0.15 

LOC_Os02g11070.2 3-ketoacyl-CoA synthase, putative, expressed -1.57 -0.10 -0.09 -2.72 0.32 -0.10 

LOC_Os02g11859.1 expressed protein -1.94 -0.91 -0.43 -2.73 -0.02 0.02 

LOC_Os02g14440.1 peroxidase precursor, putative, expressed -1.54 -0.83 -0.05 -2.62 -0.07 -0.15 

LOC_Os02g21040.1 aspartic proteinase nepenthesin precursor, putative, expressed -1.57 -0.29 -0.36 -2.25 0.19 -0.27 

LOC_Os02g22160.1 DNA binding protein, putative, expressed -2.54 -1.44 -0.13 -3.71 0.10 -0.23 

LOC_Os02g26430.1 OsWRKY42 - Superfamily of TFs having WRKY and zinc finger domains, expressed -1.55 -0.25 -0.09 -2.05 0.04 0.16 

LOC_Os02g26670.1 F-box/Kelch-repeat protein, putative, expressed -1.08 0.02 0.16 -2.05 -0.28 -0.15 

LOC_Os02g27310.1 

TKL_IRAK_DUF26-lc.6 - DUF26 kinases have homology to DUF26 containing loci, 

expressed -1.69 -0.90 0.32 -2.14 0.16 0.06 

LOC_Os02g33680.1 U-box domain containing protein, expressed -1.44 0.07 0.06 -2.03 -0.01 -0.48 

LOC_Os02g35329.1 RING-H2 finger protein ATL3F, putative, expressed -1.70 -0.37 0.27 -3.02 -0.26 -0.11 

LOC_Os02g36530.1 hypothetical protein -1.71 -0.19 -0.08 -2.47 -0.02 0.04 

LOC_Os02g36740.7 zinc finger, C3HC4 type, putative, expressed 0.12 -0.30 0.21 -2.13 0.38 -0.01 

LOC_Os02g41510.1 MYB family transcription factor, putative, expressed -1.37 -0.71 0.05 -2.56 0.01 -0.02 

LOC_Os02g41670.1 phenylalanine ammonia-lyase, putative, expressed -0.87 -1.03 -0.11 -3.47 -0.26 -0.23 

LOC_Os02g43790.1 ethylene-responsive transcription factor, putative, expressed -1.70 -0.76 0.02 -3.13 -0.21 -0.09 
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LOC_Os02g45450.1 dehydration-responsive element-binding protein, putative, expressed -1.51 -0.41 -0.18 -2.49 -0.42 -0.03 

LOC_Os02g45780.1 zinc finger, C3HC4 type domain containing protein, expressed -1.71 -0.34 -0.21 -2.71 0.08 -0.23 

LOC_Os02g46910.1 glycosyl hydrolases family 16, putative, expressed -1.65 -0.29 -0.10 -2.12 -0.29 -0.13 

LOC_Os02g48320.2 DNA binding protein, putative, expressed -2.06 -0.49 -0.29 -2.44 -0.15 -0.25 

LOC_Os02g48570.2 peptide transporter PTR2, putative, expressed -0.29 -0.34 -0.07 -2.10 0.55 0.14 

LOC_Os02g50110.1 hypothetical protein -1.41 -0.14 -0.46 -2.01 -0.30 0.03 

LOC_Os02g50600.1 glycosyl transferase 8 domain containing protein, putative, expressed -1.64 -0.29 -0.35 -2.68 0.12 -0.14 

LOC_Os02g52040.1 phosphate-induced protein 1 conserved region domain containing protein, expressed -2.47 -0.10 0.01 -2.63 -0.07 -0.06 

LOC_Os02g52170.1 expressed protein -2.30 -0.57 0.05 -3.45 0.24 0.09 

LOC_Os02g53670.1 MYB family transcription factor, putative, expressed 1.37 0.34 -0.09 2.11 0.00 -0.25 

LOC_Os02g53700.3 DENN domain containing protein, expressed -0.88 0.19 -0.12 2.17 0.49 -0.12 

LOC_Os02g53750.2 tyrosine protein kinase domain containing protein, putative, expressed -1.38 -0.02 -0.22 -2.01 0.02 -0.24 

LOC_Os02g55970.1 ANTH, putative, expressed -1.78 -0.47 0.03 -2.20 0.06 -0.11 

LOC_Os02g56930.1 expressed protein -1.48 -0.09   -2.91 -0.05 0.04 

LOC_Os03g01740.1 expressed protein -1.58 -0.47 -0.34 -2.04 -0.05 -0.07 

LOC_Os03g03370.2 fatty acid hydroxylase, putative, expressed -2.66 -0.30 0.19 -1.69 -0.16 0.17 

LOC_Os03g03790.1 AMP-binding domain containing protein, expressed -1.78 -0.43 0.80 -3.07 -0.55 0.17 

LOC_Os03g05334.1 expressed protein -2.09 -0.16 -0.69 0.49 -0.08 0.18 

LOC_Os03g05920.1 expressed protein -2.16 0.03 0.02 -1.66 0.06 -0.49 

LOC_Os03g08310.1 ZIM domain containing protein, putative, expressed -2.14 -0.74 -0.13 -2.69 0.10 -0.12 

LOC_Os03g08320.1 ZIM domain containing protein, putative, expressed -1.91 -0.52 -0.13 -2.41 0.38 -0.12 

LOC_Os03g08410.1 flavin-containing monooxygenase family protein, putative, expressed -0.42 -0.08 0.18 -4.95 0.07 0.01 

LOC_Os03g08900.1 MATE efflux family protein, putative, expressed -1.03 0.25 0.06 -2.23 -0.70 -0.36 

LOC_Os03g08940.1 conserved hypothetical protein -1.40 -0.15 0.16 -1.99 0.05 -0.19 

LOC_Os03g09170.1 ethylene-responsive transcription factor, putative, expressed -1.50 -0.33 -0.24 -2.63 -0.68 0.02 

LOC_Os03g09900.1 membrane protein, putative, expressed -0.84 -0.50 0.17 -2.17 0.01 -0.11 

LOC_Os03g10300.1 haemolysin-III, putative, expressed -1.21 -0.18 -0.13 -2.07 -0.05 -0.18 

LOC_Os03g10640.1 calcium-transporting ATPase, plasma membrane-type, putative, expressed -1.15 -0.10 -0.46 -2.41 0.27 0.15 

LOC_Os03g12890.5 aminotransferase domain containing protein, putative, expressed -2.57 -0.69 -0.34 -1.00 0.06 -0.54 

LOC_Os03g13740.1 immediate-early fungal elicitor protein CMPG1, putative, expressed -1.89 -0.37 -0.37 -2.73 0.02 -0.04 

LOC_Os03g15780.2 anthranilate synthase component I-1, chloroplast precursor, putative, expressed -2.01 -0.47 0.05 -1.98 0.23 -0.15 
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LOC_Os03g15780.4 anthranilate synthase component I-1, chloroplast precursor, putative, expressed -2.46 -0.55 -0.43 -2.02 0.12 -0.10 

LOC_Os03g17700.1 

CGMC_MAPKCGMC_2_ERK.2 - CGMC includes CDA, MAPK, GSK3, and CLKC kinases, 

expressed -1.72 -0.61 -0.18 -2.08 -0.17 -0.17 

LOC_Os03g18910.1 COBRA-like protein 7 precursor, putative, expressed -2.13 -0.11 0.00 -2.97 -0.13 -0.14 

LOC_Os03g19070.1 long cell-linked locus protein, putative, expressed -2.51 -0.84 -0.37 -3.53 0.16 0.02 

LOC_Os03g20330.1 VQ domain containing protein, putative, expressed -2.02 -1.18 -0.05 -2.25 0.56 0.07 

LOC_Os03g20380.4 

CAMK_KIN1/SNF1/Nim1_like.2 - CAMK includes calcium/calmodulin depedent protein 

kinases, expressed -1.23 -0.90 0.41 -2.30 0.05 0.64 

LOC_Os03g20380.5 

CAMK_KIN1/SNF1/Nim1_like.2 - CAMK includes calcium/calmodulin depedent protein 

kinases, expressed -0.74 -0.90 0.28 -2.09 0.13 0.42 

LOC_Os03g20380.8 

CAMK_KIN1/SNF1/Nim1_like.2 - CAMK includes calcium/calmodulin depedent protein 

kinases, expressed -1.34 -0.96 0.32 -2.01 -0.33 0.70 

LOC_Os03g24100.1 expressed protein -1.67 -0.96 0.12 -2.33 0.10 0.09 

LOC_Os03g32230.1 ZOS3-12 - C2H2 zinc finger protein, expressed -1.69 -0.95 -0.11 -3.93 -0.42 -0.16 

LOC_Os03g33520.1 exo70 exocyst complex subunit, putative -1.19 -0.35 -0.01 -2.52 0.36 -0.13 

LOC_Os03g44810.3 expressed protein -1.00 0.15 0.00 -2.35 -0.38 0.09 

LOC_Os03g45210.1 2-aminoethanethiol dioxygenase, putative, expressed 1.05 0.30 -0.16 2.09 -0.50 -0.65 

LOC_Os03g45960.1 thaumatin, putative, expressed -2.11 -1.46 -0.31 -1.40 0.33 -0.66 

LOC_Os03g46200.1 acetyltransferase, GNAT family, putative, expressed -1.05 -0.79 0.21 -2.07 -0.38 0.06 

LOC_Os03g46884.1 transposon protein, putative, CACTA, En/Spm sub-class -1.83 -0.70 0.35 -3.02 0.52 0.02 

LOC_Os03g47280.1 VQ domain containing protein, putative, expressed -1.51 -0.92 -0.34 -2.27 -0.12 -0.13 

LOC_Os03g49380.1 lipoxygenase, putative, expressed -1.86 -0.87 -0.81 -2.42 -0.09 -0.35 

LOC_Os03g51350.1 expressed protein -0.43 -0.86 0.11 -2.15 0.83 -0.39 

LOC_Os03g53340.5 HSF-type DNA-binding domain containing protein, expressed -1.36 -0.75 -0.31 -2.23 -0.03 -0.17 

LOC_Os03g55430.1 expressed protein -1.11 -0.67 -0.27 -2.26 0.23 -0.26 

LOC_Os03g56250.1 LRR receptor-like protein kinase, putative, expressed -1.50 -0.51 -0.18 -2.02 0.05 -0.13 

LOC_Os03g56820.2 fatty acid hydroxylase, putative, expressed -2.16 -0.28 0.01 -0.64 -0.05 0.10 

LOC_Os03g57310.1 syntaxin, putative, expressed -1.47 -0.38 -0.01 -2.08 -0.06 -0.14 

LOC_Os03g57640.1 gibberellin receptor GID1L2, putative, expressed -1.67 -0.73 -0.22 -2.22 -0.15 -0.14 

LOC_Os03g57880.1 glucan endo-1,3-beta-glucosidase precursor, putative, expressed -0.90 -0.47 -0.38 -2.15 -0.02 -0.46 

LOC_Os03g60570.1 ZOS3-22 - C2H2 zinc finger protein, expressed -1.65 -0.39 -0.25 -3.20 0.10 -0.06 

LOC_Os03g61360.1 hydrolase, alpha/beta fold family domain containing protein, expressed -1.32 -0.11 -0.36 -2.11 -0.14 -0.14 

LOC_Os03g61490.1 expressed protein -0.68 -0.22 -0.16 -3.68 0.20 -0.20 
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LOC_Os04g03796.3 OsSub37 - Putative Subtilisin homologue, expressed -0.23 -2.48 0.25 -1.16 0.25 0.18 

LOC_Os04g12960.1 UDP-glucoronosyl/UDP-glucosyl transferase, putative, expressed -1.75 -0.97 -0.04 -2.15 0.28 -0.15 

LOC_Os04g15580.1 serine/threonine-protein kinase receptor precursor, putative, expressed -1.35 -0.59 0.07 -2.07 -0.11 0.07 

LOC_Os04g15920.1 dehydrogenase, putative, expressed -1.85 -0.31 0.55 -3.20 -0.52 0.40 

LOC_Os04g22470.1 SHR5-receptor-like kinase, putative -1.41 -1.13 -0.08 -2.02 -0.04 -0.04 

LOC_Os04g25900.1 go35 NBS-LRR, putative, expressed -2.53 -0.59 -0.57 0.31 -0.53 0.25 

LOC_Os04g32480.1 zinc-finger protein, putative, expressed -1.70 -0.93 -0.17 -2.72 -0.23 0.13 

LOC_Os04g32920.2 potassium transporter, putative, expressed -1.49 -0.53 0.00 -3.34 -0.59 0.32 

LOC_Os04g33640.1 glycosyl hydrolases family 17, putative, expressed -2.40 -0.06 0.06 -3.01 0.10 -0.13 

LOC_Os04g33640.2 glycosyl hydrolases family 17, putative, expressed -2.34 0.28 -0.01 -3.31 -0.48 0.30 

LOC_Os04g33820.1 OsFBX132 - F-box domain containing protein, expressed -1.27 -0.52 -0.18 -2.62 0.16 -0.20 

LOC_Os04g37490.1 oxidoreductase, aldo/keto reductase family protein, putative, expressed -0.97 -0.64 0.09 -2.57 -0.01 0.10 

LOC_Os04g39350.1 heavy metal associated domain containing protein, expressed -1.71 -1.07 -0.45 -2.38 -0.07 -0.01 

LOC_Os04g40310.2 dehydrogenase, putative, expressed -0.22 -1.00 0.90 -2.26 0.60 -0.28 

LOC_Os04g41960.1 NADP-dependent oxidoreductase, putative, expressed -1.84 -0.63 -0.23 -2.47 0.27 -0.21 

LOC_Os04g43440.1 NB-ARC/LRR disease resistance protein, putative, expressed -3.23 -0.60 -0.46 -3.99 -0.04 -0.04 

LOC_Os04g43680.1 MYB family transcription factor, putative, expressed -1.54 -0.95 -0.20 -2.48 -0.27 -0.09 

LOC_Os04g46830.1 LTPL122 - Protease inhibitor/seed storage/LTP family protein precursor, expressed -1.69 0.00 -0.05 -2.42     

LOC_Os04g46970.1 glucosyltransferase, putative, expressed -1.93 -1.05 0.02 -3.27 0.34 -0.06 

LOC_Os04g48850.1 aminotransferase, classes I and II, domain containing protein, expressed -0.85 -0.67 -0.68 -3.80 -0.68 -0.18 

LOC_Os04g49510.2 

CAMK_CAMK_like.27 - CAMK includes calcium/calmodulin depedent protein kinases, 

expressed -0.98 -0.07 -0.14 -2.17 -0.04 -0.06 

LOC_Os04g51460.1 glycosyl hydrolases family 16, putative, expressed -2.46 -0.43 -0.32 -4.01 -0.10 -0.18 

LOC_Os04g52750.1 expressed protein -1.83 -0.88 -0.24 -3.02 0.11 0.07 

LOC_Os04g55100.1 expressed protein -1.51 -0.55 0.13 -2.29 0.38 -0.25 

LOC_Os04g56110.3 protein kinase, putative, expressed -1.16 -0.29 0.19 -2.06 0.25 -0.20 

LOC_Os04g57810.3 GA18008-PA, putative, expressed -1.69 -0.50 0.30 -2.85 -0.16 0.18 

LOC_Os04g58090.1 harpin-induced protein 1 domain containing protein, expressed -1.89 -0.27 -0.02 -2.89 0.37 -0.54 

LOC_Os04g58220.1 transporter family protein, putative -2.17 -0.42 0.09 -1.40 -0.10 -0.10 

LOC_Os04g58810.1 CAF1 family ribonuclease containing protein, putative, expressed -0.92 -0.99 -0.10 -1.99 -0.30 -0.03 

LOC_Os04g58920.1 U-box domain-containing protein, putative, expressed -1.15 -0.42 0.12 -2.70 0.05 0.00 
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LOC_Os05g02140.1 clathrin assembly protein, putative, expressed -1.35 -0.39 0.22 -2.15 -0.02 -0.10 

LOC_Os05g07940.2 glyoxalase family protein, putative, expressed -1.13 -0.21 -0.41 -2.21 0.07 -0.62 

LOC_Os05g08830.1 expressed protein -0.14 -1.03 -0.05 -2.29 -0.05 -0.04 

LOC_Os05g08860.1 expressed protein -2.13 -0.76 -0.01 -3.41 0.68 -0.06 

LOC_Os05g08890.1 transposable element protein, putative, containing Pfam profile: PF03108, MuDR -1.86 -0.35 -0.05 -3.31 0.03 0.03 

LOC_Os05g08900.1 expressed protein -2.32 -0.66 0.09 -3.39 0.44 -0.03 

LOC_Os05g08910.1 expressed protein -1.48 -0.41 -0.20 -2.17 0.17 0.00 

LOC_Os05g10840.2 calmodulin-binding protein, putative, expressed -0.39 0.55 -0.15 -2.35 -0.14 0.02 

LOC_Os05g21180.3 phosphatidic acid phosphatase-related, putative, expressed -2.40 -0.21 -0.14 -2.17 -0.09 0.13 

LOC_Os05g21180.4 phosphatidic acid phosphatase-related, putative, expressed -1.61 -0.82 -0.16 -2.68 -0.08 -0.30 

LOC_Os05g24770.1 reticulon domain containing protein, putative, expressed -2.02 -0.18 -0.24 -2.31 0.23 0.09 

LOC_Os05g24780.1 OsCML21 - Calmodulin-related calcium sensor protein, expressed -1.70 -0.12 -0.09 -2.36 0.26 0.18 

LOC_Os05g27730.1 OsWRKY53 - Superfamily of TFs having WRKY and zinc finger domains, expressed -1.25 -0.44 0.10 -2.07 0.14 -0.02 

LOC_Os05g30500.1 expressed protein -1.83 -0.14 -0.32 -2.39 -0.86 0.02 

LOC_Os05g33400.1 basic 7S globulin precursor, putative, expressed -1.91 -0.47 0.00 -2.39 0.35 -0.29 

LOC_Os05g35290.1 phenylalanine ammonia-lyase, putative, expressed -1.65 -0.20 0.09 -2.41 -0.73 -0.23 

LOC_Os05g36260.1 soluble inorganic pyrophosphatase, putative, expressed -2.35 -0.40 -0.09 -2.17 -0.24 0.25 

LOC_Os05g39720.1 OsWRKY70 - Superfamily of TFs having WRKY and zinc finger domains, expressed -0.83 -0.36 0.14 -3.33 -0.32 0.12 

LOC_Os05g41370.1 

TKL_IRAK_DUF26-la.1 - DUF26 kinases have homology to DUF26 containing loci, 

expressed -2.03 -0.43 -0.26 -2.32 0.28 -0.06 

LOC_Os05g41610.1 glycosyl hydrolases family 17, putative, expressed -1.49 -0.13 0.13 -2.06 -0.02 0.00 

LOC_Os05g45100.1 anthocyanidin 5,3-O-glucosyltransferase, putative, expressed -1.61 -0.22 -0.10 -2.84 -0.11 -0.15 

LOC_Os05g46020.1 OsWRKY7 - Superfamily of TFs having WRKY and zinc finger domains, expressed -1.77 -0.19 0.02 -2.76 0.05 -0.16 

LOC_Os05g46750.1 

STE_MEKK_ste11_MAP3K.18 - STE kinases include homologs to sterile 7, sterile 11 and 

sterile 20 from yeast, expressed -1.61 0.02 -0.45 -2.06 -0.69 0.29 

LOC_Os05g46760.1 

STE_MEKK_ste11_MAP3K.19 - STE kinases include homologs to sterile 7, sterile 11 and 

sterile 20 from yeast, expressed -1.67 -0.16 -0.29 -2.47 0.09 0.11 

LOC_Os05g46790.1 expressed protein -0.76 -1.01 0.13 -3.69 0.62 -0.39 

LOC_Os05g50100.1 expressed protein -1.92 -0.53 0.04 -2.54 -0.11 0.09 

LOC_Os05g50570.1 OsSCP29 - Putative Serine Carboxypeptidase homologue, expressed -0.91 -0.69 0.11 -2.37 -0.23 -0.06 

LOC_Os05g50770.1 C4-dicarboxylate transporter/malic acid transport protein, expressed -2.35 -0.19 0.01 -3.62 0.03 -0.03 

LOC_Os06g03810.1 expressed protein -1.00 -1.06 0.00 -2.42 0.45 0.02 
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LOC_Os06g04220.1 expressed protein -2.08 -1.24 -0.14 -2.93 -0.02 0.05 

LOC_Os06g04240.1 expressed protein -1.45 -0.53 -0.60 -2.11 -0.07 -0.08 

LOC_Os06g09310.1 zinc finger, C3HC4 type domain containing protein, expressed -1.26 -0.94 -0.65 -3.24 -0.02 -0.16 

LOC_Os06g09370.2 PTF1, putative, expressed -1.49 0.27 -0.02 -2.07 -0.73 0.64 

LOC_Os06g09370.3 PTF1, putative, expressed -2.22 -0.55 -0.36 -2.42 0.00 -0.41 

LOC_Os06g09980.1 expressed protein -1.46 -0.59 0.24 -2.27 0.30 0.33 

LOC_Os06g10210.1 expressed protein -1.40 0.62 -0.39 -2.52 0.21 0.03 

LOC_Os06g10210.2 expressed protein -2.04 -0.36 -0.40 -2.10 -0.50 0.24 

LOC_Os06g10210.3 expressed protein -2.00 -0.56 -0.21 -1.88 -0.06 -0.59 

LOC_Os06g13180.1 metalloendoproteinase 1 precursor, putative, expressed -1.12 -0.31 -0.08 -2.15 0.24 -0.23 

LOC_Os06g13940.1 expressed protein -1.84 -0.15 -0.31 -2.75 -0.28 -0.35 

LOC_Os06g14370.1 caleosin related protein, putative, expressed -2.23 -0.31 -0.74 -0.75 0.08 -0.08 

LOC_Os06g14450.2 exo70 exocyst complex subunit family protein, putative, expressed -1.77 -0.21 0.14 -2.24 -0.15 0.05 

LOC_Os06g20900.1 expressed protein -1.05 -0.59 0.05 -2.32 -0.47 0.08 

LOC_Os06g23350.1 late embryogenesis abundant protein D-34, putative, expressed -0.17 -1.08 0.18 -2.29 0.70 -0.13 

LOC_Os06g28050.3 expressed protein -2.24 -0.35 -0.01 -1.95 0.01 0.09 

LOC_Os06g33970.1 VQ domain containing protein, putative, expressed -1.69 -1.07 0.09 -2.85 0.14 0.13 

LOC_Os06g37300.1 cytochrome P450, putative, expressed -1.49 -2.19 0.28 -0.75 -0.05 -0.28 

LOC_Os06g43080.1 expressed protein -1.76 -0.91 -0.04 -3.28 -0.18 -0.28 

LOC_Os06g44010.1 OsWRKY28 - Superfamily of TFs having WRKY and zinc finger domains, expressed -1.28 -1.30 0.15 -2.17 0.11 -0.02 

LOC_Os06g46950.1 EF hand family protein, putative, expressed -1.54 -0.64 -0.26 -2.46 0.05 0.07 

LOC_Os06g48160.1 glycosyl hydrolases family 16, putative, expressed -2.21 -0.07 -0.19 -3.50 -1.17 -0.03 

LOC_Os07g03020.1 hypothetical protein -1.33 -0.76 0.19 -2.16 0.17 -0.07 

LOC_Os07g03710.1 SCP-like extracellular protein, expressed -0.72 -2.49 0.58 -1.71 0.48 0.18 

LOC_Os07g04560.1 no apical meristem protein, putative -2.40 -0.85 -0.02 -3.50 0.48 -0.53 

LOC_Os07g04820.1 protein kinase, putative, expressed -1.02 0.15 -0.25 -2.50 0.35 -0.17 

LOC_Os07g05940.1 9-cis-epoxycarotenoid dioxygenase 1, chloroplast precursor, putative, expressed -0.53 -0.31 -0.06 -2.30 -0.60 -0.12 

LOC_Os07g09420.1 ATPase, putative, expressed -1.56 -0.46 0.05 -2.27 -0.02 -0.14 

LOC_Os07g33280.1 expressed protein -0.78 -0.55 -0.38 -2.21 -0.24 0.16 

LOC_Os07g34260.1 chalcone and stilbene synthases, putative, expressed -0.76 -1.23 -0.08 -2.81 0.40 -0.18 

LOC_Os07g34280.1 CXE carboxylesterase, putative, expressed -0.64 -1.30 -0.18 -3.27 0.04 -0.09 
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LOC_Os07g34520.2 isocitrate lyase, putative, expressed 2.38 0.04 -0.03 0.60 -0.46 -0.92 

LOC_Os07g34520.3 isocitrate lyase, putative, expressed 2.10 0.06 -0.08 0.63 -0.33 -0.79 

LOC_Os07g35280.1 

TKL_IRAK_DUF26-lc.1 - DUF26 kinases have homology to DUF26 containing loci, 

expressed -1.09 -0.36 0.18 -2.43 0.17 0.05 

LOC_Os07g35290.1 

TKL_IRAK_DUF26-lc.10 - DUF26 kinases have homology to DUF26 containing loci, 

expressed -1.18 -0.20 -0.14 -2.01 -0.31 0.04 

LOC_Os07g35330.1 

TKL_IRAK_DUF26-lc.13 - DUF26 kinases have homology to DUF26 containing loci, 

expressed -1.64 -0.77 -0.18 -2.70 -0.25 -0.11 

LOC_Os07g36560.1 transferase family protein, putative, expressed -1.48 -0.40   -2.67 0.11 -0.06 

LOC_Os07g36570.1 KI domain interacting kinase 1, putative, expressed -1.24 -0.56 0.03 -2.14 -0.04 -0.11 

LOC_Os07g37400.1 OsFBX257 - F-box domain containing protein, expressed -2.14 -0.67 -0.30 -2.22 -0.31 0.15 

LOC_Os07g37730.1 NADH-ubiquinone oxidoreductase, mitochondrial precursor, putative, expressed -0.93 -0.54 -0.23 -4.34 -0.21 -0.17 

LOC_Os07g37920.1 no apical meristem protein, putative, expressed -1.25 0.30 -0.29 -2.04 0.25 -0.38 

LOC_Os07g40240.1 GASR9 - Gibberellin-regulated GASA/GAST/Snakin family protein precursor, expressed -0.55 -0.71 0.31 -2.46 0.12 -0.10 

LOC_Os07g42940.2 

CAMK_CAMK_like.7 - CAMK includes calcium/calmodulin depedent protein kinases, 

expressed -1.73 -0.35 -0.01 -2.01 -0.71 0.81 

LOC_Os07g42940.7 

CAMK_CAMK_like.7 - CAMK includes calcium/calmodulin depedent protein kinases, 

expressed -1.36 -0.57 -0.22 -2.01 -0.04 -0.36 

LOC_Os07g42940.8 

CAMK_CAMK_like.7 - CAMK includes calcium/calmodulin depedent protein kinases, 

expressed -1.93 -0.36 -0.07 -2.35 -0.18 0.29 

LOC_Os07g43160.1 uncharacterized glycosyl hydrolase Rv2006/MT2062, putative, expressed -1.27 -0.22 0.06 -2.14 0.13 -0.10 

LOC_Os07g43800.1 EF hand family protein, putative, expressed -1.40 -0.90 0.23 -2.43 0.34 -0.01 

LOC_Os07g44140.1 cytochrome P450 72A1, putative, expressed -1.41 0.20 0.00 -2.00 0.17 -0.15 

LOC_Os07g46920.1 sex determination protein tasselseed-2, putative, expressed -2.24 -0.93 0.41 -1.51 -0.19 0.25 

LOC_Os08g04340.1 plastocyanin-like domain containing protein, putative, expressed -1.74 -1.23 0.05 -3.31 0.10 -0.03 

LOC_Os08g04350.1 plastocyanin-like domain containing protein, putative, expressed -0.73 -0.88 -0.01 -4.02 0.34 -0.39 

LOC_Os08g04360.1 plastocyanin-like domain containing protein, putative, expressed -1.35 -0.10   -2.85 0.02 -0.04 

LOC_Os08g04370.1 plastocyanin-like domain containing protein, putative, expressed -1.69 -0.48 0.09 -3.86 -0.11 -0.01 

LOC_Os08g04500.2 terpene synthase, putative, expressed 1.63 2.01 -0.04 1.16 -0.50 -0.05 

LOC_Os08g04630.1 

external NADH-ubiquinone oxidoreductase 1, mitochondrial precursor, putative, 

expressed -1.40 -1.08 -0.37 -2.30 0.27 -0.43 

LOC_Os08g07100.1 terpene synthase, putative, expressed -0.89 -0.92 -0.01 -3.76 0.30 -0.14 

LOC_Os08g07620.1 hypothetical protein -0.58 -0.18 -0.02 -2.69 0.17 0.08 

LOC_Os08g10500.1 hypothetical protein -1.55 -0.20 -0.10 -2.40 0.15 -0.24 
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LOC_Os08g13570.1 exo70 exocyst complex subunit family protein, putative, expressed -1.69 -0.39 0.10 -2.10 0.33 0.06 

LOC_Os08g27170.1 calmodulin binding protein, putative -1.66 -0.73 0.42 -2.83 -0.05 0.14 

LOC_Os08g28710.1 receptor protein kinase CRINKLY4 precursor, putative, expressed -2.16 -0.90 0.03 -2.60 0.06 0.03 

LOC_Os08g29570.1 pleiotropic drug resistance protein 3, putative, expressed -1.94 -0.83 0.23 -2.05 -0.25 0.29 

LOC_Os08g30020.3 membrane protein, putative, expressed 2.17 0.65 0.05 0.10 0.47 -0.54 

LOC_Os08g31850.1 expressed protein -2.04 -0.19 -0.26 -2.39 0.18 -0.30 

LOC_Os08g31860.1 expressed protein -2.16 -0.35 -0.11 -1.86 0.25 -0.34 

LOC_Os08g32750.1 

bifunctional monodehydroascorbate reductase and carbonic anhydrasenectarin-3 

precursor, putative, expressed -2.41 -1.40 -0.10 -3.14 0.50 0.03 

LOC_Os08g32780.1 

bifunctional monodehydroascorbate reductase and carbonic anhydrasenectarin-3 

precursor, putative -2.39 -1.05 -0.11 -3.66 0.57 -0.02 

LOC_Os08g34790.1 AMP-binding domain containing protein, expressed -2.10 -0.47 -0.05 -2.21 -0.58 -0.34 

LOC_Os08g39850.1 lipoxygenase, chloroplast precursor, putative, expressed -2.20 -1.58 0.21 -2.28 0.18 0.05 

LOC_Os08g39850.2 lipoxygenase, chloroplast precursor, putative, expressed -0.76 -1.71 0.23 -3.51 0.22 0.11 

LOC_Os08g39850.4 lipoxygenase, chloroplast precursor, putative, expressed -2.19 -1.49 0.37 -2.68 0.12 0.23 

LOC_Os08g40270.1 lectin-like protein kinase, putative -2.36 -0.94 -0.32 -3.66 0.06 -0.36 

LOC_Os08g40530.1 calcium-transporting ATPase 9, plasma membrane-type, putative, expressed -1.39 -0.58 -0.20 -2.02 -0.06 -0.06 

LOC_Os09g00999.1 conserved hypothetical protein -2.09 -0.09 0.84 -0.35 -0.60 0.56 

LOC_Os09g20090.1 L-ascorbate oxidase precursor, putative, expressed -1.63 -0.84 -0.44 -2.73 -0.05 -0.29 

LOC_Os09g27010.1 tyrosine protein kinase domain containing protein, putative, expressed -1.36 -0.54 -0.39 -2.03 -0.58 -0.05 

LOC_Os09g28160.1 phosphate carrier protein, mitochondrial precursor, putative, expressed -1.72 -0.30 -0.62 -2.33 -0.24 -0.09 

LOC_Os09g29510.1 OsWAK80 - OsWAK receptor-like protein kinase, expressed -0.78 -0.85 -0.02 -2.05 -0.15 0.03 

LOC_Os09g31031.2 ubiquitin family protein, putative, expressed -0.34 -0.37 0.13 0.23 -2.06 0.26 

LOC_Os09g34160.1 resistance protein, putative, expressed -1.90 -0.55 -0.38 -2.18 0.18 -0.03 

LOC_Os09g34230.1 UDP-glucoronosyl/UDP-glucosyl transferase, putative, expressed -1.46 -0.16 -0.14 -2.40 -0.23 -0.06 

LOC_Os09g34250.1 UDP-glucoronosyl and UDP-glucosyl transferase domain containing protein, expressed -1.69 -0.23 -0.32 -2.39 -0.06 -0.15 

LOC_Os09g34330.1 helix-loop-helix DNA-binding domain containing protein -1.30 -0.34 0.20 -3.28 -0.11 0.41 

LOC_Os09g35780.1 BAP2, putative, expressed -1.33 -0.44 0.04 -2.44 -0.12 -0.03 

LOC_Os09g36500.1 zinc finger, C3HC4 type domain containing protein, expressed -1.59 -0.03 -0.21 -2.17 0.24 -0.09 

LOC_Os09g37080.1 expressed protein -1.52 -0.72 -0.38 -2.27 -0.07 -0.16 

LOC_Os09g38800.1 OsWAK88 - OsWAK pseudogene -1.88 -0.71 0.10 -4.11 -0.08 0.02 

LOC_Os09g38840.1 OsWAK90 - OsWAK receptor-like protein kinase, expressed -0.66 -0.98 0.05 -4.95 -0.05 -0.10 
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LOC_Os09g38850.1 OsWAK91 - OsWAK receptor-like protein kinase, expressed -2.04 -0.74 -0.17 -3.33 0.05 0.02 

LOC_Os09g39620.1 protein kinase family protein, putative, expressed -2.20 -0.51 -0.03 -1.71 -0.13 0.33 

LOC_Os10g04380.1 conserved hypothetical protein -1.40 -0.08 -0.11 -2.45 0.17 -0.10 

LOC_Os10g25310.1 SPX domain containing protein, putative, expressed -2.95 -0.42 -0.79 0.35 -0.33 0.18 

LOC_Os10g28240.1 calcium-transporting ATPase, plasma membrane-type, putative, expressed -1.61 -0.27 -0.29 -2.51 0.30 0.07 

LOC_Os10g28680.1 DUF581 domain containing protein, expressed 0.95 0.79 0.03 2.05 -0.48 -0.13 

LOC_Os10g35460.1 COBRA, putative, expressed -0.41 -0.54 -0.46 -2.49 -0.58 0.02 

LOC_Os10g35950.1 transferase family protein, putative, expressed -1.71 -0.38 0.53 -2.84 -0.13 0.09 

LOC_Os10g36360.1 expressed protein -1.56 -0.14 -0.09 -2.44 0.00 -0.09 

LOC_Os10g37570.1 OsFBDUF49 - F-box and DUF domain containing protein, expressed -1.38 -0.34 0.18 -2.62 0.06 -0.01 

LOC_Os10g39140.2 flavonol synthase/flavanone 3-hydroxylase, putative, expressed -1.68 -1.08 0.09 -2.28 -0.06 -0.02 

LOC_Os10g39680.1 CHIT14 - Chitinase family protein precursor, expressed -1.28 -1.39 -0.02 -2.02 -0.04 -0.07 

LOC_Os10g39700.1 CHIT15 - Chitinase family protein precursor, putative, expressed -1.60 -0.86 -0.24 -2.56 -0.07 -0.28 

LOC_Os10g40480.1 LTPL143 - Protease inhibitor/seed storage/LTP family protein precursor, expressed -1.78 -0.09 0.00 -3.21 -0.30 -0.08 

LOC_Os10g41330.2 AP2 domain containing protein, expressed -1.50 -0.73 -0.86 -3.17 0.09 0.04 

LOC_Os10g42020.2 RALFL29 - Rapid ALkalinization Factor RALF family protein precursor, expressed -2.38 -1.71 1.14 -0.28 0.03 0.53 

LOC_Os10g42040.1 expressed protein -1.77 -2.56 0.57 -1.62 0.00 0.11 

LOC_Os10g42690.1 jmjC domain containing protein, expressed -1.67 -0.58 -0.21 -2.06 -0.17 -0.07 

LOC_Os10g43060.1 expressed protein -1.45 -0.70 -0.16 -2.08 -0.10 0.05 

LOC_Os11g04560.1 calmodulin-like protein 1, putative, expressed -0.98 -0.41 -0.17 -2.11 0.08 0.19 

LOC_Os11g08100.1 eukaryotic aspartyl protease domain containing protein, expressed -1.72 -0.64 -0.37 -2.15 0.20 0.01 

LOC_Os11g09010.1 lipase, putative, expressed -2.23 -0.22 -0.25 -2.35 0.68 0.11 

LOC_Os11g10470.1 expressed protein -1.85 -0.38 -0.43 -2.55 -0.72 -0.04 

LOC_Os11g19340.1 lipase, putative, expressed -1.74 -0.43 0.01 -3.79 -0.02 -0.04 

LOC_Os11g31540.1 

BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 precursor, putative, 

expressed -2.22 -0.89 0.45 -0.57 0.53 -0.47 

LOC_Os11g35330.1 LYK, putative, expressed -1.07 -0.41 -0.01 -2.10 -0.03 0.15 

LOC_Os11g37230.2 zinc finger, C3HC4 type domain containing protein, expressed -1.20 -0.26 -0.18 -2.10 0.46 -0.12 

LOC_Os11g44600.1 calmodulin binding protein, putative, expressed -1.87 -0.24 -0.11 -3.51 -0.43 -0.03 

LOC_Os11g46860.1 wall-associated receptor kinase-like 4 precursor, putative, expressed 2.05 -0.55 0.26 -0.58 0.43 0.41 

LOC_Os12g04360.1 calmodulin-like protein 1, putative, expressed -1.29 -0.78 -0.30 -2.04 0.05 0.15 
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LOC_Os12g08700.1 expressed protein -1.45 -0.58 -0.02 -2.02 0.00 0.02 

LOC_Os12g08850.1 expressed protein -1.70 -0.45 0.36 -3.25 -0.01 0.02 

LOC_Os12g25660.1 cytochrome P450, putative, expressed -1.71 -0.70 0.24 -4.15 -0.12 -0.04 

LOC_Os12g28550.1 ATPase, AAA family domain containing protein, expressed -1.33 -0.03 0.20 -3.08 -0.15 0.05 

LOC_Os12g32610.1 expressed protein -2.33 -0.52 0.03 -3.22 0.24 0.00 

LOC_Os12g36110.1 calmodulin binding protein, putative, expressed -2.47 -0.57 -0.01 -2.77 0.05 -0.07 

LOC_Os12g36880.1 pathogenesis-related Bet v I family protein, putative, expressed -0.77 -2.18 0.75 -0.26 0.16 0.11 

LOC_Os12g38760.2 nucleotide pyrophosphatase/phosphodiesterase, putative, expressed -1.25 -0.74 0.26 -2.21 -0.14 -0.11 

LOC_Os12g39310.1 cytochrome P450, putative, expressed -1.63 -0.49 -0.02 -2.62 -0.18 -0.11 

LOC_Os12g41110.1 OsCML5 - Calmodulin-related calcium sensor protein, expressed -1.65 -0.19 -0.12 -2.31 0.19 -0.05 

LOC_Os12g43410.1 thaumatin, putative -0.94 -2.04 0.44 -0.49 0.20 0.05 
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Supplementary Table 4: 156 DEGs expressed in high and low temperature comparison after Xoo inoculation in IR24 and IRBB67 

Gene Description 
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LOC_Os01g01430.1 No apical meristem protein, putative, expressed 0.09 0.37 2.32 0.02 0.25 -0.05 

LOC_Os01g01840.1 helix-loop-helix DNA-binding domain containing protein, expressed 0.21 0.85 0.88 -0.16 2.68 2.22 

LOC_Os01g11620.1 GDSL-like lipase/acylhydrolase, putative, expressed -0.77 -1.16 -1.33 -1.11 -2.48 -0.60 

LOC_Os01g27630.1 glutathione S-transferase, putative, expressed 0.06 -1.14 -1.01 -0.17 -2.70 -0.41 

LOC_Os01g28450.1 SCP-like extracellular protein, expressed -0.25 -1.44 -1.41 -1.36 -2.51 -0.94 

LOC_Os01g32460.1 expressed protein -0.22 0.86 0.44 0.49 2.42 1.40 

LOC_Os01g39020.1 HSF-type DNA-binding domain containing protein, expressed 0.17 0.79 2.07 0.32 1.34 0.78 

LOC_Os01g50400.1 STE_MEKK_ste11_MAP3K.5 - STE kinases include homologs to sterile 7, sterile 11 and sterile 

20 from yeast, expressed 

0.54 -0.23 2.37 0.15 0.92 0.98 

LOC_Os01g50910.1 late embryogenesis abundant protein, group 3, putative, expressed 0.51 1.67 2.57 -0.64 2.75 0.52 

LOC_Os01g50910.2 late embryogenesis abundant protein, group 3, putative, expressed -0.22 0.24 2.02 -0.60 1.38 0.07 

LOC_Os01g54030.1 NADP-dependent malic enzyme, putative, expressed 0.38 0.77 2.12 -0.48 2.17 0.90 

LOC_Os01g55510.1 dynein light chain type 1 domain containing protein, expressed -0.80 0.60 2.03 -1.01 0.75 0.22 

LOC_Os01g59780.1 AP2 domain containing protein, expressed 0.14 0.71 2.17 -0.90 1.39 0.64 

LOC_Os01g65060.1 S-domain receptor-like protein kinase, putative 0.44 -0.96 -1.78 0.19 -2.07 -1.07 

LOC_Os01g68650.1 plant-specific domain TIGR01615 family protein, expressed -0.05 0.63 2.06 -0.29 1.15 -0.11 

LOC_Os01g70850.1 esterase, putative, expressed 0.05 0.14 -0.28 -0.59 -2.48 -1.29 

LOC_Os01g70850.2 esterase, putative, expressed -0.27 0.70 -2.16 0.14 -1.50 -0.43 

LOC_Os01g72270.1 cytochrome P450, putative, expressed 0.18 0.27 2.04 -0.23 0.59 0.34 

LOC_Os02g01590.1 glycosyl hydrolases, putative, expressed 0.56 1.69 0.23 1.27 2.11 0.54 

LOC_Os02g02210.1 aminotransferase, putative, expressed 0.05 0.29 2.17 0.08 2.16 0.71 

LOC_Os02g04750.3 cycloartenol synthase, putative, expressed 0.59 2.00 0.54 0.73 0.61 0.74 

LOC_Os02g06670.1 retrotransposon protein, putative, unclassified, expressed 0.23 0.39 2.09 -0.13 1.10 0.29 

LOC_Os02g07170.1 MYB family transcription factor, putative, expressed -0.04 -0.05 2.17 0.00 -0.05 -0.06 

LOC_Os02g08440.2 OsWRKY71 - Superfamily of TFs having WRKY and zinc finger domains, expressed -0.24 -0.92 2.28 -0.46 0.08 0.49 

LOC_Os02g17620.1 isochorismatase family protein, putative, expressed -0.28 -1.67 -1.71 -0.04 -2.19 -1.12 

LOC_Os02g26720.1 Inositol 1, 3, 4-trisphosphate 5/6-kinase, putative, expressed 0.10 0.05 2.16 -0.76 1.17 1.05 

LOC_Os02g43330.1 homeobox associated leucine zipper, putative, expressed 1.25 0.82 2.75 0.77 1.43 1.11 

LOC_Os02g45490.3 expressed protein -0.20 -0.56 -0.17 0.43 -1.99 -0.01 

LOC_Os02g46560.1 helix-loop-helix DNA-binding protein, putative, expressed 0.01 -0.70 -0.16 -0.34 -2.08 -0.40 



 

191 
 

LOC_Os02g47780.1 hydrolase, alpha/beta fold family domain containing protein, expressed -0.21 1.13 -0.56 0.08 2.09 0.09 

LOC_Os03g02050.1 LTPL151 - Protease inhibitor/seed storage/LTP family protein precursor, expressed 0.21 1.19 2.51 0.18 1.15 0.67 

LOC_Os03g02190.1 protein kinase domain containing protein, expressed -0.23 -1.54 -1.74 -0.08 -2.00 -0.26 

LOC_Os03g04080.1 expressed protein 0.20 1.60 3.08 0.11 2.06 0.50 

LOC_Os03g06360.1 late embryogenesis abundant protein D-34, putative, expressed 0.03 0.70 1.38 0.05 2.03 0.78 

LOC_Os03g06360.2 late embryogenesis abundant protein D-34, putative, expressed 0.49 0.60 2.01 -0.48 1.62 0.44 

LOC_Os03g12510.1 non-symbiotic hemoglobin 2, putative, expressed 0.15 -0.82 2.44 -0.73 -0.07 0.05 

LOC_Os03g14010.2 glycosyl hydrolase family 10 protein, putative, expressed -0.03 -0.89 -0.03 -0.16 -2.22 0.05 

LOC_Os03g14654.1 LTPL108 - Protease inhibitor/seed storage/LTP family protein precursor, expressed -1.25 -1.98 -0.90 -1.07 -2.39 -0.28 

LOC_Os03g17350.1 white-brown complex homolog protein, putative, expressed -0.14 1.53 -0.15 -0.24 2.13 0.00 

LOC_Os03g28330.2 sucrose synthase, putative, expressed -0.46 -1.58 -0.75 -1.01 -2.41 -0.45 

LOC_Os03g28330.3 sucrose synthase, putative, expressed -0.58 -1.05 -0.63 -0.27 -2.12 -0.72 

LOC_Os03g28330.4 sucrose synthase, putative, expressed -0.65 -1.11 -0.09 -0.31 -2.13 -1.83 

LOC_Os03g28330.5 sucrose synthase, putative, expressed -0.81 -1.06 -0.86 -0.36 -2.36 -0.92 

LOC_Os03g48710.3 expressed protein 0.39 -0.10 2.05 0.16 0.56 0.81 

LOC_Os03g48770.1 Cupin domain containing protein, expressed   -1.00 0.43 -0.07 -2.00 -0.08 

LOC_Os03g54750.1 COBRA-like 3 protein precursor, putative, expressed -0.53 -1.39 -0.98 -0.19 -2.18 -0.52 

LOC_Os03g55090.1 alpha-glucan phosphorylast isozyme, putative, expressed 0.30 -1.20 -1.35 -0.20 -2.43 -0.26 

LOC_Os03g57460.1 fasciclin domain containing protein, expressed -0.61 -1.61 -1.31 -0.56 -2.19 -0.58 

LOC_Os03g57980.1 LTPL99 - Protease inhibitor/seed storage/LTP family protein precursor, expressed -0.06 1.15 -0.09 -0.08 2.05 -0.13 

LOC_Os03g58290.1 indole-3-glycerol phosphate lyase, chloroplast precursor, putative, expressed -0.62 2.10 0.03 -0.92 0.50 1.79 

LOC_Os03g61150.1 expressed protein 0.44 0.81 1.95 0.04 2.25 1.08 

LOC_Os03g61150.3 expressed protein 0.33 1.63 2.13 -0.02 0.75 0.14 

LOC_Os03g63390.1 plastocyanin-like domain containing protein, putative, expressed -0.41 -1.23 -0.30 0.23 -2.09 -0.24 

LOC_Os04g03210.1 receptor kinase, putative -0.06 -1.48 -0.60 -0.06 -2.27 -1.52 

LOC_Os04g27670.1 terpene synthase family, metal binding domain containing protein, expressed 0.41 0.46 2.29 0.02 1.13 0.02 

LOC_Os04g39880.3 Os4bglu12 - beta-glucosidase, exo-beta-glucanase, expressed -0.78 -1.42 -1.21 -0.63 -2.17 -0.56 

LOC_Os04g40630.1 BTBZ4 - Bric-a-Brac, Tramtrack, Broad Complex BTB domain with TAZ zinc finger and 

Calmodulin-binding domains, expressed 

-1.28 -1.16 0.51 0.40 -2.20 -0.09 

LOC_Os04g40630.4 BTBZ4 - Bric-a-Brac, Tramtrack, Broad Complex BTB domain with TAZ zinc finger and 

Calmodulin-binding domains, expressed 

0.21 -0.14 -0.13 0.76 -2.04 -0.08 

LOC_Os04g44500.1 GEM, putative, expressed 0.09 1.37 2.38 0.17 1.87 1.44 

LOC_Os04g48850.1 aminotransferase, classes I and II, domain containing protein, expressed -0.21 -1.09 2.23 -0.75 -0.66 0.34 

LOC_Os05g01140.1 methyltransferase, putative, expressed -0.27 0.69 0.33 -0.85 1.88 2.00 

LOC_Os05g03130.1 OsRCI2-7 - Putative low temperature and salt responsive protein, expressed 0.18 0.55 2.03 -0.12 1.65 0.40 

LOC_Os05g04380.1 peroxidase precursor, putative, expressed -0.83 -2.26 -0.47 -0.65 -2.66 -1.04 

LOC_Os05g20100.1 glycerol-3-phosphate acyltransferase, putative, expressed -0.26 1.35 -0.08 -0.26 2.42 0.31 
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LOC_Os05g24660.1 IPP transferase, putative, expressed -0.35 -1.76 -0.85 -0.93 -2.18 -0.92 

LOC_Os05g32110.2 COBRA, putative, expressed -0.29 -1.38 -1.32 0.57 -2.07 -0.27 

LOC_Os05g38290.2 protein phosphatase 2C, putative, expressed 0.53 1.07 2.15 0.26 1.28 0.60 

LOC_Os05g39320.1 thiamine pyrophosphate enzyme, C-terminal TPP binding domain containing protein, 

expressed 

-0.18 -1.24 -0.72 0.08 -2.01 -0.44 

LOC_Os05g45370.1 cell cycle control protein, putative, expressed 0.55 -1.63 -1.52 0.05 -3.48 -0.19 

LOC_Os05g48890.1 fasciclin domain containing protein, expressed -0.27 -0.68 -0.74 -0.15 -2.26 -0.30 

LOC_Os05g48900.1 fasciclin domain containing protein, expressed -0.56 -1.44 -1.85 0.05 -2.47 -0.98 

LOC_Os05g49730.1 protein phosphatase 2C, putative, expressed 0.64 1.00 1.87 0.26 2.24 0.89 

LOC_Os05g50260.1 polygalacturonase, putative, expressed -0.05 0.96 1.14 0.11 2.07 0.67 

LOC_Os06g03670.1 dehydration-responsive element-binding protein, putative, expressed 0.36 0.43 2.31 0.13 0.78 1.03 

LOC_Os06g14670.1 ODORANT1, putative, expressed -0.19 0.58 2.09 -0.18 0.93 0.74 

LOC_Os06g16350.1 peroxidase precursor, putative, expressed -0.19 1.77 -0.21 -0.27 2.38 0.13 

LOC_Os06g17070.1 retrotransposon protein, putative, Ty1-copia subclass 0.54 -0.43 2.01 0.22 -0.50 -0.07 

LOC_Os06g21910.1 late embryogenesis abundant group 1, putative, expressed 0.11 0.83 2.24 -0.28 2.98 0.31 

LOC_Os06g27910.1 oleosin, putative, expressed -0.02 0.58 2.21 0.05 0.70 0.09 

LOC_Os06g30370.1 osMFT1 MFT-Like1 homologous to Mother of FT and TFL1 gene; contains Pfam profile 

PF01161: Phosphatidylethanolamine-binding protein, expressed 

0.89 1.08 1.51 0.80 2.21 0.85 

LOC_Os06g35520.1 peroxidase precursor, putative, expressed 0.20 0.60 2.66 -0.05 -0.14 0.16 

LOC_Os06g36270.1 receptor-like protein kinase 5 precursor, putative, expressed -1.01 -0.84 0.35 -0.37 -2.03 -0.49 

LOC_Os06g36560.1 inositol oxygenase, putative, expressed -0.37 0.03 2.07 -0.12 0.28 0.35 

LOC_Os06g37140.2 retrotransposon protein, putative, Ty3-gypsy subclass, expressed 0.41 -0.32 2.09 0.13 0.13 0.08 

LOC_Os06g42560.2 tryptophan synthase beta chain 2, putative, expressed -0.61 -1.34 -0.57 -0.26 -2.14 -0.84 

LOC_Os07g03920.1 lectin-like receptor kinase 7, putative 0.08 -1.27 -2.27 0.28 0.15 -0.13 

LOC_Os07g04560.1 no apical meristem protein, putative 0.31 -1.82 -0.83 -0.77 -2.14 -0.78 

LOC_Os07g04940.1 uncharacterized PE-PGRS family protein PE_PGRS54 precursor, putative 0.02 1.52 -0.05 -0.11 2.35 -0.14 

LOC_Os07g05940.1 9-cis-epoxycarotenoid dioxygenase 1, chloroplast precursor, putative, expressed 0.80 -0.20 3.19 0.30 1.22 1.02 

LOC_Os07g34520.2 isocitrate lyase, putative, expressed 0.31 0.13 2.25 0.20 1.84 0.80 

LOC_Os07g34520.3 isocitrate lyase, putative, expressed 0.45 0.22 2.56 0.24 2.36 0.29 

LOC_Os07g35350.1 glucan endo-1,3-beta-glucosidase precursor, putative, expressed 0.01 -2.54 0.44 0.06 -1.90 -1.29 

LOC_Os07g40850.1 retrotransposon protein, putative, unclassified, expressed -0.06 1.65 -0.05 -0.50 2.16 0.04 

LOC_Os07g40870.1 igA FC receptor precursor, putative, expressed -0.45 1.67 -0.37 -0.11 2.21 -0.04 

LOC_Os07g40890.1 igA FC receptor precursor, putative, expressed -0.29 1.85 -0.07 -0.51 2.53 -0.06 

LOC_Os07g41350.1 B12D protein, putative, expressed -0.77 0.21 2.21 -0.52 1.43 0.07 

LOC_Os07g45060.1 uncharacterized GPI-anchored protein At5g19240 precursor, putative, expressed -0.52 -1.48 -1.16 -0.13 -2.05 -0.85 

LOC_Os07g46920.1 sex determination protein tasselseed-2, putative, expressed -0.33 1.33 -0.67 -0.52 2.12 0.10 

LOC_Os07g47210.1 GDSL-like lipase/acylhydrolase, putative, expressed -0.28 1.20 -0.15 -0.32 2.32 0.14 
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LOC_Os07g48050.1 peroxidase precursor, putative, expressed 0.29 0.47 -0.35 0.02 -2.13 0.03 

LOC_Os08g01370.1 expressed protein 0.18 1.25 2.06 -0.12 2.29 1.02 

LOC_Os08g04500.1 terpene synthase, putative, expressed 1.54 2.27 2.03 0.56 2.61 2.14 

LOC_Os08g04500.2 terpene synthase, putative, expressed 1.39 2.24 1.55 0.30 2.29 2.00 

LOC_Os08g04540.1 decarboxylase, putative, expressed -0.74 -1.70 -0.61 -1.34 -2.19 -1.17 

LOC_Os08g07080.1 terpene synthase, putative, expressed 0.18 0.31 1.17 0.17 3.32 0.43 

LOC_Os08g19420.1 O-methyltransferase, putative, expressed 0.49 0.88 2.05 0.22 1.65 0.99 

LOC_Os08g23870.1 late embryogenesis abundant group 1, putative, expressed 0.59 0.78 2.00 -0.35 1.79 0.14 

LOC_Os08g32750.1 bifunctional monodehydroascorbate reductase and carbonic anhydrasenectarin-3 precursor, 

putative, expressed 

-1.28 -2.42 -2.45 -1.56 -1.64 -1.93 

LOC_Os08g32780.1 bifunctional monodehydroascorbate reductase and carbonic anhydrasenectarin-3 precursor, 

putative 

-0.72 -1.89 -2.47 -0.92 -1.21 -1.77 

LOC_Os08g34390.1 retrotransposon protein, putative, unclassified, expressed 0.73 1.05 2.53 -0.02 0.86 0.65 

LOC_Os08g35710.1 expressed protein -0.46 -2.38 -1.71 -0.31 -3.34 -0.67 

LOC_Os08g36920.1 AP2 domain containing protein, expressed -0.66 -0.11 2.30 -0.87 -0.07 0.35 

LOC_Os08g37300.1 expressed protein -0.60 1.81 -0.11 -0.16 2.39 -0.01 

LOC_Os08g38270.1 fasciclin domain containing protein, expressed -0.73 -1.32 -0.48 -0.05 -2.28 -0.13 

LOC_Os08g39490.1 expressed protein 0.06 0.17 -2.32 0.20 0.19 -0.72 

LOC_Os08g39850.2 lipoxygenase, chloroplast precursor, putative, expressed -0.89 -1.05 0.11 -2.01 -1.26 -0.61 

LOC_Os08g39870.1 Os8bglu28 - beta-glucosidase homologue, similar to Os4bglu12 exoglucanase, expressed -0.40 -1.59 -1.78 -0.34 -2.34 -0.69 

LOC_Os08g42570.1 plant protein of unknown function domain containing protein, expressed -0.10 -1.11 -1.01 -0.25 -2.10 -1.04 

LOC_Os09g03190.1 expressed protein 0.71 0.14 2.41 0.42 0.30 0.38 

LOC_Os09g03200.1 hypothetical protein 1.01 -0.04 2.02 0.49 0.32 0.53 

LOC_Os09g04339.1 expressed protein -0.21 -0.05 1.25 0.26 -2.22 -1.01 

LOC_Os09g12660.1 glucose-1-phosphate adenylyltransferase large subunit, chloroplast precursor, putative, 

expressed 

-0.03 -1.08 -1.33 -0.26 -2.92 -0.38 

LOC_Os09g21120.1 armadillo/beta-catenin repeat family protein, putative, expressed 1.01 0.95 2.41 0.60 1.96 1.06 

LOC_Os09g27010.1 tyrosine protein kinase domain containing protein, putative, expressed 0.10 0.12 1.99 -0.30 0.44 0.69 

LOC_Os09g31430.1 Os9bglu30 - beta-glucosidase, similar to Os4bglu12 exoglucanase, expressed -0.85 -0.60 -0.84 -0.77 -2.68 -0.37 

LOC_Os09g32570.1 alcohol dehydrogenase GroES-like domain containing protein, expressed -0.58 -1.34 -0.97 -0.50 -2.29 -0.76 

LOC_Os09g36700.1 ribonuclease T2 family domain containing protein, expressed -0.68 -1.42 -0.34 0.04 -2.09 0.10 

LOC_Os09g39410.1 male sterility protein, putative, expressed -0.11 1.47 -0.28 -0.02 2.21 -0.30 

LOC_Os10g11310.3 expressed protein 0.10 0.23 -2.03 0.27 -0.62 -0.39 

LOC_Os10g13700.1 phosphoenolpyruvate carboxykinase, putative, expressed 0.23 -0.04 2.37 0.45 1.24 0.70 

LOC_Os10g23820.1 transferase family protein, putative, expressed -0.10 -1.77 -0.21 -0.65 -2.07 -1.03 

LOC_Os10g25310.1 SPX domain containing protein, putative, expressed -0.86 -1.99 -0.11 0.23 -0.72 -0.25 

LOC_Os10g36100.1 LTPL157 - Protease inhibitor/seed storage/LTP family protein precursor, expressed 0.02 0.34 3.53 -0.05 0.73 1.01 
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LOC_Os10g37400.1 DUF538 domain containing protein, putative, expressed -0.47 1.57 0.24 0.34 2.19 0.06 

LOC_Os10g38120.1 cytochrome P450, putative, expressed 0.09 -2.01 -0.96 -0.15 -1.97 -0.67 

LOC_Os10g39680.1 CHIT14 - Chitinase family protein precursor, expressed -0.71 -1.90 -0.80 -1.00 -2.13 -0.98 

LOC_Os10g39700.1 CHIT15 - Chitinase family protein precursor, putative, expressed -0.63 -2.46 -0.62 -0.20 -2.55 -0.29 

LOC_Os10g42040.1 expressed protein 0.03 -1.71 -1.35 -0.61 -2.11 -0.54 

LOC_Os11g02540.1 OsWRKY50 - Superfamily of TFs having WRKY and zinc finger domains, expressed -0.06 0.97 1.06 -0.20 2.34 1.96 

LOC_Os11g07911.1 expressed protein 0.19 0.68 2.71 -0.65 1.82 0.56 

LOC_Os11g14910.1 NADP-dependent oxidoreductase, putative, expressed 0.12 -2.48 -0.99 0.08 -1.33 -0.51 

LOC_Os11g26750.1 dehydrin, putative, expressed 0.43 2.21 2.35 -0.28 2.94 0.54 

LOC_Os11g26780.1 dehydrin, putative, expressed 0.73 1.14 1.90 0.01 2.60 0.73 

LOC_Os11g31090.1 transferase family protein, putative, expressed -0.71 1.01 -0.32 -0.38 2.03 -0.11 

LOC_Os11g42200.1 laccase precursor protein, putative, expressed 0.25 -1.53 -2.13 -0.96 -2.65 -1.70 

LOC_Os11g46000.1 von Willebrand factor type A domain containing protein, putative, expressed -0.13 0.40 0.40 0.07 2.58 1.55 

LOC_Os12g02470.1 OsWRKY65 - Superfamily of TFs having WRKY and zinc finger domains, expressed -0.34 0.10 1.16 -0.78 2.31 2.28 

LOC_Os12g14440.1 Jacalin-like lectin domain containing protein, putative, expressed 0.81 0.44 0.74 0.31 1.00 2.04 

LOC_Os12g27830.1 dehydrogenase/reductase, putative, expressed 0.09 0.59 2.31 -0.18 2.71 0.91 

LOC_Os12g37350.1 lipozygenase protein, putative -0.04 1.73 0.94 -0.10 2.26 0.74 

LOC_Os12g37519.1 retrotransposon protein, putative, unclassified, expressed 0.32 -0.33 2.05 0.13 -0.44 0.23 

LOC_Os12g38770.1 nucleotide pyrophosphatase/phosphodiesterase, putative, expressed -0.22 0.59 2.28 -0.44 1.75 0.52 

LOC_Os12g40180.1 expressed protein -0.18 0.09 2.16 -0.10 0.94 0.50 

LOC_Os12g43410.1 thaumatin, putative -0.19 -2.12 -0.92 -0.07 -3.11 -1.05 

LOC_Os12g43440.1 thaumatin, putative, expressed -0.23 -1.75 -0.34 -1.18 -2.51 -0.98 

LOC_Os12g44050.1 purple acid phosphatase precursor, putative, expressed -0.24 -0.90 -0.07 -0.87 -2.07 -0.48 
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Supplementary Table 5: 145 DEGs induced in comparison between IRBB67 and IR24 after Xoo 

inoculation across the three time points under low (L) temperature 

DEGs ID Description L-3hpi L-72hpi L-120hpi 

LOC_Os02g43860.2 amino acid permease, putative, expressed -1.17332 -1.11553 -2.41756 

LOC_Os06g16420.3 amino acid transporter, putative, expressed -1.08992 -0.88597 -2.07977 

LOC_Os05g45100.1 anthocyanidin 5,3-O-glucosyltransferase, putative, expressed 2.530754 0.130024 -0.12798 

LOC_Os10g07970.1 anthocyanidin 5,3-O-glucosyltransferase, putative, expressed -1.0842 -2.81756 -2.10173 

LOC_Os03g08490.1 AP2 domain containing protein, expressed -3.54605 -2.36232 -3.30238 

LOC_Os06g16300.1 BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 

precursor, putative, expressed 

-2.52179 -2.25919 -2.08362 

LOC_Os03g10640.1 calcium-transporting ATPase, plasma membrane-type, putative, 

expressed 

2.13141 0.732054 0.955736 

LOC_Os11g44340.1 calmodulin binding protein, putative -4.15576 -2.33324 -1.99956 

LOC_Os11g44310.1 calmodulin binding protein, putative, expressed -5.63959 -3.8695 -3.45226 

LOC_Os11g44680.1 calmodulin binding protein, putative, expressed -2.64773 -1.01934 -1.99154 

LOC_Os06g12940.1 conserved hypothetical protein -2.39245 -1.29127 -0.61583 

LOC_Os11g37140.1 conserved hypothetical protein 2.222485 0.533981 0.574019 

LOC_Os11g42590.1 conserved hypothetical protein 1.190916 1.155552 2.158446 

LOC_Os11g44260.1 conserved hypothetical protein 2.498451 1.132176 1.679368 

LOC_Os05g47540.3 CPuORF26 - conserved peptide uORF-containing transcript, expressed -2.24453 -1.39035 -2.51173 

LOC_Os05g47540.4 CPuORF26 - conserved peptide uORF-containing transcript, expressed -2.04203 -1.68335 -1.6317 

LOC_Os05g47540.5 CPuORF26 - conserved peptide uORF-containing transcript, expressed 2.235462 0.410622 1.690458 

LOC_Os03g10650.1 cyclin, putative, expressed 2.341483 1.281531 1.227796 

LOC_Os02g39010.2 cyclin-dependent kinase G-1, putative, expressed 2.284552 0.903509 0.417002 

LOC_Os02g12130.1 cysteine-rich receptor-like protein kinase 35 precursor, putative, 

expressed 

-2.56024 -1.27746 -1.50349 

LOC_Os06g15680.1 cytochrome P450 71A6, putative 2.559062 1.105753 1.184552 

LOC_Os06g37330.1 cytochrome P450, putative, expressed 2.164737 0.955665 2.038015 

LOC_Os11g47120.1 DEFL48 - Defensin and Defensin-like DEFL family, expressed -1.17089 -2.27281 -1.58909 

LOC_Os03g09020.1 dehydrogenase, putative, expressed 2.977628 1.671782 2.500217 

LOC_Os05g49440.2 DUF1264 domain containing protein, putative, expressed 2.632096 0.362221 0.345543 

LOC_Os11g43790.1 DUF581 domain containing protein, expressed 0.264527 2.516845 1.543991 
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LOC_Os03g06890.1 DUF593 domain containing protein 2.00471 0.391361 0.023391 

LOC_Os10g42220.1 enoyl-CoA hydratase/isomerase family protein, putative -2.28984 -1.56211 -1.8326 

LOC_Os10g42210.1 enoyl-CoA-hydratase, putative, expressed -2.63269 -1.43331 -1.8848 

LOC_Os01g66310.1 expressed protein -2.24406 -2.13975 -2.3592 

LOC_Os02g23939.1 expressed protein 1.086042 1.162446 2.106175 

LOC_Os03g04580.1 expressed protein 0.94452 1.078523 2.346658 

LOC_Os03g04930.1 expressed protein 4.162021 0.311608 4.24955 

LOC_Os03g04930.2 expressed protein -3.88265 -3.80518 -3.56148 

LOC_Os03g06835.1 expressed protein 3.064404 1.732996 2.469337 

LOC_Os03g07410.1 expressed protein 2.484993 1.524403 2.168718 

LOC_Os03g08030.1 expressed protein 1.999362    

LOC_Os03g54240.1 expressed protein -2.18971 -2.02877 -3.03288 

LOC_Os05g01330.1 expressed protein -2.99973 -2.46677 -3.02957 

LOC_Os05g03320.1 expressed protein -4.61004 -0.21217 -5.13674 

LOC_Os05g03390.1 expressed protein -1.40697 -0.74556 -2.97492 

LOC_Os05g46470.1 expressed protein -1.62317 -2.09703 -1.89645 

LOC_Os05g46630.1 expressed protein 2.566898 1.499949 1.354047 

LOC_Os05g48790.2 expressed protein 1.427175 0.261487 2.035762 

LOC_Os05g48790.3 expressed protein 2.835146 0.216631 0.234296 

LOC_Os06g12455.1 expressed protein 2.251372 1.453547 0.508675 

LOC_Os06g16140.1 expressed protein -2.32102 -2.38307 -1.88089 

LOC_Os06g35165.1 expressed protein -2.7879 -2.62128 -2.62009 

LOC_Os06g38110.1 expressed protein 3.423657 1.102293 0.762949 

LOC_Os06g38210.1 expressed protein 6.715736 0.079007 6.14724 

LOC_Os06g38210.2 expressed protein 5.416072 0.104087 6.250925 

LOC_Os06g38594.1 expressed protein 1.803122 1.394789 2.066424 

LOC_Os06g38660.1 expressed protein -1.33495 -2.10052 -1.5514 

LOC_Os06g38680.1 expressed protein -3.18032 -1.92754 -1.90682 

LOC_Os06g39110.1 expressed protein 2.262224 1.210601 1.875511 

LOC_Os06g39120.1 expressed protein -3.22079 -4.00758 -3.87525 

LOC_Os06g42060.2 expressed protein 4.068029 0.124942 5.246743 
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LOC_Os07g05510.1 expressed protein 1.968914 1.995229 2.626074 

LOC_Os08g14195.1 expressed protein -1.75316 -1.75143 -2.46756 

LOC_Os09g17329.2 expressed protein 0.255656 0.17939 3.234041 

LOC_Os09g27135.1 expressed protein 0.920837 1.273145 2.233695 

LOC_Os11g09979.1 expressed protein -2.00287 -0.58205 -1.22798 

LOC_Os11g29500.1 expressed protein -4.12671 -0.26297 -4.94223 

LOC_Os11g35540.1 expressed protein -0.59116 -1.25229 -2.25203 

LOC_Os11g42850.1 expressed protein -2.04296 -2.55564 -2.52905 

LOC_Os11g42850.2 expressed protein -1.33819 -2.32001 -1.9082 

LOC_Os11g43390.1 expressed protein 1.726026 1.279666 2.14279 

LOC_Os11g43895.1 expressed protein -2.74069 -2.15327 -3.04909 

LOC_Os11g43990.1 expressed protein -3.23871 -2.03876 -2.2559 

LOC_Os11g44330.1 expressed protein -1.99438 0.303231 0.021902 

LOC_Os11g44380.1 expressed protein -6.57085 -0.24237 -4.97008 

LOC_Os11g44800.1 expressed protein -2.35184 -1.29062 -1.09668 

LOC_Os11g47370.1 expressed protein -4.78496 -0.3985 -4.79287 

LOC_Os07g05400.1 ferredoxin--NADP reductase, chloroplast precursor, putative, expressed 5.094868 0.187138 0.317455 

LOC_Os05g45860.1 glucan endo-1,3-beta-glucosidase precursor, putative, expressed 2.790977 0.846886 0.703957 

LOC_Os03g07270.1 glycine-rich cell wall protein, putative, expressed 3.737792 0.133888 4.844386 

LOC_Os11g44950.2 glycosyl hydrolase family 3 protein, putative, expressed 1.122281 1.253246 2.124103 

LOC_Os05g46240.1 green ripe-like, putative, expressed 2.941236 1.93459 1.234 

LOC_Os05g46240.2 green ripe-like, putative, expressed 3.474341 0.191211 0.248265 

LOC_Os05g46240.3 green ripe-like, putative, expressed 3.273121 0.232445 2.036524 

LOC_Os05g46240.4 green ripe-like, putative, expressed 2.720919 1.477819 0.726256 

LOC_Os02g43100.1 hypothetical protein -2.14488 -1.90525 -2.464 

LOC_Os06g42650.1 hypothetical protein -4.14257 -1.44043 -2.21171 

LOC_Os11g17650.1 hypothetical protein -2.21211 -0.71031 -1.50275 

LOC_Os11g44300.1 hypothetical protein -2.77956 -1.96442 -1.09603 

LOC_Os06g12870.1 leaf senescence related protein, putative, expressed -2.01029 -0.87989 -1.18378 

LOC_Os07g03920.1 lectin-like receptor kinase 7, putative 2.991725 1.551647 2.077128 

LOC_Os05g46090.1 Leucine Rich Repeat domain containing protein -1.19149 -1.58962 -2.09313 
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LOC_Os11g29110.1 Leucine Rich Repeat family protein, expressed 4.285871 0.419829 0.317032 

LOC_Os02g40130.1 leucine-rich, putative, expressed 2.183729 1.194568 1.219134 

LOC_Os09g18159.1 light repressible receptor protein kinase, putative, expressed 1.799087 0.314541 4.03369 

LOC_Os06g38120.1 low-affinity cation transporter, putative, expressed 4.309904 0.283214 0.378859 

LOC_Os03g08900.1 MATE efflux family protein, putative, expressed -0.45698 -1.88616 -2.11834 

LOC_Os07g02570.1 NB-ARC domain containing protein -2.95131 -2.65558 -1.96395 

LOC_Os11g44990.1 NB-ARC domain containing protein, expressed 1.188558 1.536231 2.080183 

LOC_Os11g45090.1 NB-ARC domain containing protein, expressed 0.743014 1.244376 2.37905 

LOC_Os11g46210.1 NB-ARC domain containing protein, expressed -3.99819 -3.45074 -3.87747 

LOC_Os11g29090.1 NB-ARC/LRR disease resistance protein, putative 3.115347 0.161341 0.113785 

LOC_Os01g11670.1 OsSCP2 - Putative Serine Carboxypeptidase homologue, expressed -2.85125 -0.65175 -0.98628 

LOC_Os11g42390.1 OsSCP64 - Putative Serine Carboxypeptidase homologue, expressed -0.9642 -3.46927 -2.23355 

LOC_Os11g47140.1 OsWAK123 - OsWAK receptor-like protein kinase, expressed 3.556176 0.125273 3.823489 

LOC_Os02g42810.1 oxidoreductase, short chain dehydrogenase/reductase family domain 

containing protein, expressed 

-2.81477 -2.2403 -2.29416 

LOC_Os11g29490.1 plasma membrane ATPase, putative, expressed -2.34538 -2.19425 -2.35146 

LOC_Os05g46360.2 possible lysine decarboxylase domain containing protein, expressed 2.615184 2.28311 1.10909 

LOC_Os02g43080.1 PPR repeat domain containing protein, putative -2.34315 -2.07167 -2.18174 

LOC_Os09g18594.1 protein kinase domain containing protein, expressed -0.83633 -2.16596 -2.92228 

LOC_Os05g41950.1 protein kinase, putative, expressed 2.131787 1.158887 1.326898 

LOC_Os11g44250.1 protein kinase, putative, expressed 2.531544 1.050811 1.286531 

LOC_Os02g38780.2 protein phosphatase 2C containing protein, expressed 2.076739 1.132669 2.578884 

LOC_Os06g45080.2 rabGAP/TBC domain-containing protein, putative, expressed -0.84815 -1.21887 -2.12055 

LOC_Os06g12790.1 ras-related protein, putative, expressed 2.539213 1.487975 1.775321 

LOC_Os06g12790.2 ras-related protein, putative, expressed -1.55516 -1.6109 -2.25543 

LOC_Os02g40190.1 receptor kinase, putative 2.598084 0.939081 1.490533 

LOC_Os11g07170.1 receptor kinase, putative, expressed -0.5909 -1.41267 -2.5323 

LOC_Os02g40180.1 receptor-like protein kinase 5 precursor, putative, expressed -3.28973 -2.84479 -2.80228 

LOC_Os06g38640.1 receptor-like protein kinase precursor, putative 0.913235 1.490023 2.377775 

LOC_Os06g38670.1 receptor-like protein kinase precursor, putative -2.87161 -1.50282 -1.40711 

LOC_Os06g38650.1 receptor-like protein kinase precursor, putative, expressed 2.193768 1.388587 3.613617 

LOC_Os08g28050.1 retrotransposon protein, putative, Ty1-copia subclass 2.849546 0.70318 0.681723 
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LOC_Os06g43150.1 retrotransposon protein, putative, unclassified -4.27869 -3.87947 -4.73366 

LOC_Os07g05440.1 retrotransposon protein, putative, unclassified, expressed -3.22081 -4.13589 -4.25039 

LOC_Os07g14514.3 retrotransposon protein, putative, unclassified, expressed -1.82471 -2.05712 -3.34636 

LOC_Os07g14514.6 retrotransposon protein, putative, unclassified, expressed -1.95544 -3.84402 -3.92694 

LOC_Os10g34884.1 RIPER7 - Ripening-related family protein precursor, expressed -2.86252 -1.11366 -1.96814 

LOC_Os09g19500.1 senescence-induced receptor-like serine/threonine-protein kinase 

precursor, putative 

-0.52152 -1.02975 -2.34717 

LOC_Os02g43110.1 sodium/calcium exchanger 1 precursor, putative, expressed -2.65321 -2.5491 -2.7149 

LOC_Os03g04500.2 tetratricopeptide repeat domain containing protein, expressed -2.2444 -0.82701 -1.08489 

LOC_Os11g42480.1 transferase family domain containing protein, expressed 1.910609 0.362161 3.522168 

LOC_Os05g36230.1 transposon protein, putative, CACTA, En/Spm sub-class -1.06838 -0.67859 -2.39426 

LOC_Os03g61870.1 transposon protein, putative, Mariner sub-class 2.075976 0.490669 0.689371 

LOC_Os06g39090.1 transposon protein, putative, unclassified -3.30187 -2.66019 -2.92295 

LOC_Os02g43370.1 transposon protein, putative, unclassified, expressed 0.862154 1.633074 2.590441 

LOC_Os05g50990.1 TTL3, putative, expressed -2.05235 -0.33272 -0.18517 

LOC_Os03g06460.1 type I inositol-1,4,5-trisphosphate 5-phosphatase, putative 2.062986 0.12364 3.528923 

LOC_Os11g42510.2 tyrosine aminotransferase, putative, expressed 1.864674 2.135048 1.951698 

LOC_Os07g46660.1 ubiquitin carboxyl-terminal hydrolase domain containing protein, 

expressed 

1.894504 2.867151 4.049469 

LOC_Os05g42040.1 UDP-glucoronosyl and UDP-glucosyl transferase domain containing 

protein, expressed 

3.459452 2.460186 2.66189 

LOC_Os05g42060.1 UDP-glucoronosyl/UDP-glucosyl transferase, putative, expressed 3.290321 1.810991 0.335875 

LOC_Os09g20390.1 uncharacterized glycosyl hydrolase Rv2006/MT2062, putative, expressed 0.135014 0.112583 5.012703 

LOC_Os09g20390.2 uncharacterized glycosyl hydrolase Rv2006/MT2062, putative, expressed 0.144629 0.148214 4.087343 

LOC_Os09g20390.3 uncharacterized glycosyl hydrolase Rv2006/MT2062, putative, expressed 0.137037 0.21946 3.088164 

LOC_Os07g37454.1 urate anion exchanger, putative, expressed -3.05437 0.113914 -0.25094 

LOC_Os07g30980.1 uvrD/REP helicase family protein, putative, expressed -3.48131 -2.95705 -3.80947 

LOC_Os11g46850.1 wall-associated kinase, putative 3.000758 1.130686 1.118614 

LOC_Os11g46860.1 wall-associated receptor kinase-like 4 precursor, putative, expressed 5.00399 1.938128 3.903878 
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Suplementary Table 6: 188 DEGs induced in comparison between IRBB67 and IR24 after Xoo inoculation under high (H) 

temperature  

 

 

 

DEGs ID 

 

 

 

Description H
-3

h
p

i 

H
-7

2h
p

i 

H
-1

20
h

p
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LOC_Os01g11670.1 OsSCP2 - Putative Serine Carboxypeptidase homologue, expressed -2.65 -1.27 -1.65 

LOC_Os01g24820.1 NB-ARC domain containing protein -0.53 -2.33 -1.92 

LOC_Os01g66310.1 expressed protein -2.28 -1.91 -2.72 

LOC_Os01g70850.1 esterase, putative, expressed -0.04 -1.82 -2.17 

LOC_Os02g12130.1 cysteine-rich receptor-like protein kinase 35 precursor, putative, expressed -3.27 -1.25 -1.53 

LOC_Os02g23939.1 expressed protein 1.26 2.11 2.21 

LOC_Os02g38780.2 protein phosphatase 2C containing protein, expressed 2.50 2.72 3.14 

LOC_Os02g40130.1 leucine-rich, putative, expressed 2.84 1.50 2.04 

LOC_Os02g40180.1 receptor-like protein kinase 5 precursor, putative, expressed -4.35 -3.43 -3.40 

LOC_Os02g40190.1 receptor kinase, putative 2.44 3.60 3.69 

LOC_Os02g40330.3 retrotransposon protein, putative, Ty3-gypsy subclass, expressed -1.89 -1.41 -3.03 

LOC_Os02g40340.1 expressed protein -0.45 -0.59 -2.04 

LOC_Os02g42810.1 oxidoreductase, short chain dehydrogenase/reductase family domain containing protein, expressed -3.42 -2.23 -3.06 

LOC_Os02g43080.1 PPR repeat domain containing protein, putative -2.09 -2.50 -2.76 

LOC_Os02g43100.1 hypothetical protein -2.46 -2.18 -2.70 

LOC_Os02g43110.1 sodium/calcium exchanger 1 precursor, putative, expressed -3.09 -2.89 -3.07 

LOC_Os02g43860.2 amino acid permease, putative, expressed -1.09 -1.73 -2.42 

LOC_Os02g44155.1 expressed protein 0.78 1.61 2.07 

LOC_Os03g02514.2 hydrolase, alpha/beta fold family protein, putative, expressed -0.13 0.02 -2.07 

LOC_Os03g04580.1 expressed protein 0.89 1.99 2.31 

LOC_Os03g04930.1 expressed protein 4.66 5.58 5.16 

LOC_Os03g04930.2 expressed protein -4.61 -4.42 -3.35 

LOC_Os03g05860.1 expressed protein -2.91 -0.75 -0.54 

LOC_Os03g05920.1 expressed protein -2.07 -0.43 -0.82 

LOC_Os03g06460.1 type I inositol-1,4,5-trisphosphate 5-phosphatase, putative 2.24 3.31 4.40 
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LOC_Os03g06835.1 expressed protein 3.17 2.70 2.90 

LOC_Os03g06850.5 B3 DNA binding domain containing protein, expressed 0.51 2.04 1.93 

LOC_Os03g07270.1 glycine-rich cell wall protein, putative, expressed 3.96 4.86 5.71 

LOC_Os03g07410.1 expressed protein 2.05 2.20 3.09 

LOC_Os03g07410.2 expressed protein 0.88 2.30 1.50 

LOC_Os03g07430.4 protein kinase domain containing protein, expressed -2.23 -2.09 -1.44 

LOC_Os03g08490.1 AP2 domain containing protein, expressed -2.56 -2.14 -2.86 

LOC_Os03g08840.1 zinc finger protein, putative, expressed -1.99 -2.05 -2.33 

LOC_Os03g08900.1 MATE efflux family protein, putative, expressed -0.85 -1.60 -2.26 

LOC_Os03g09020.1 dehydrogenase, putative, expressed 3.16 2.79 3.10 

LOC_Os03g10540.1 OsFBX78 - F-box domain containing protein, expressed -2.02 -1.63 -1.87 

LOC_Os03g10650.1 cyclin, putative, expressed 3.46 2.04 2.01 

LOC_Os03g38940.1 expressed protein -0.47 -2.40 -2.33 

LOC_Os03g53800.2 periplasmic beta-glucosidase precursor, putative, expressed -0.68 -0.35 -2.72 

LOC_Os03g54240.1 expressed protein -2.15 -2.78 -3.05 

LOC_Os03g55150.2 eukaryotic translation initiation factor 5A, putative, expressed 2.65 0.43 0.84 

LOC_Os03g55150.4 eukaryotic translation initiation factor 5A, putative, expressed 2.64 0.44 0.89 

LOC_Os03g61500.1 uncharacterized Cys-rich domain containing protein, putative -0.20 0.01 -2.75 

LOC_Os05g01330.1 expressed protein -2.60 -2.86 -3.15 

LOC_Os05g03320.1 expressed protein -4.74 -5.18 -5.03 

LOC_Os05g03390.1 expressed protein -1.79 -2.06 -2.03 

LOC_Os05g03390.3 expressed protein -1.78 -2.06 -1.36 

LOC_Os05g36230.1 transposon protein, putative, CACTA, En/Spm sub-class -1.71 -1.60 -2.63 

LOC_Os05g41240.3 Myb-like DNA-binding domain containing protein, putative, expressed 1.40 2.31 1.65 

LOC_Os05g41950.1 protein kinase, putative, expressed 2.00 1.60 1.46 

LOC_Os05g42040.1 UDP-glucoronosyl and UDP-glucosyl transferase domain containing protein, expressed 4.67 3.30 3.26 

LOC_Os05g42060.1 UDP-glucoronosyl/UDP-glucosyl transferase, putative, expressed 3.17 3.84 4.30 

LOC_Os05g42210.1 serine/threonine-protein kinase receptor precursor, putative, expressed 2.23 1.55 1.23 

LOC_Os05g45170.1 glucosyl transferase, putative, expressed 2.14 -0.35 0.65 

LOC_Os05g45954.1 AP2 domain containing protein, expressed 1.28 2.59 2.76 

LOC_Os05g45980.1 hypothetical protein 2.05 0.40 1.12 
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LOC_Os05g46090.1 Leucine Rich Repeat domain containing protein -1.46 -1.82 -2.76 

LOC_Os05g46240.1 green ripe-like, putative, expressed 2.23 2.54 3.22 

LOC_Os05g46240.2 green ripe-like, putative, expressed 3.11 3.10 3.82 

LOC_Os05g46240.3 green ripe-like, putative, expressed 3.41 2.52 3.06 

LOC_Os05g46360.2 possible lysine decarboxylase domain containing protein, expressed 3.47 2.63 2.68 

LOC_Os05g46470.1 expressed protein -1.86 -2.45 -1.64 

LOC_Os05g46630.1 expressed protein 3.11 2.96 3.34 

LOC_Os05g47520.1 hypothetical protein -2.63 -1.90 -2.27 

LOC_Os05g47540.3 CPuORF26 - conserved peptide uORF-containing transcript, expressed -3.95 -1.55 -1.16 

LOC_Os05g47540.5 CPuORF26 - conserved peptide uORF-containing transcript, expressed 2.00 0.98 1.66 

LOC_Os05g48790.2 expressed protein 0.65 2.92 2.76 

LOC_Os05g48790.3 expressed protein 2.89 4.76 5.09 

LOC_Os05g49440.2 DUF1264 domain containing protein, putative, expressed 2.87 1.16 -0.16 

LOC_Os05g50390.1 expressed protein 2.51 1.26 2.10 

LOC_Os05g50990.1 TTL3, putative, expressed -2.74 -0.26 -0.02 

LOC_Os06g10750.1 integral membrane protein DUF6 containing protein, expressed 0.11 -0.08 -2.01 

LOC_Os06g12455.1 expressed protein 2.06 2.32 2.74 

LOC_Os06g12460.1 CSLA3 - cellulose synthase-like family A; mannan synthase, expressed 0.84 1.62 2.31 

LOC_Os06g12630.2 glutathione S-transferase, N-terminal domain containing protein, expressed 1.40 1.80 3.35 

LOC_Os06g12790.1 ras-related protein, putative, expressed 2.67 1.17 1.60 

LOC_Os06g12790.2 ras-related protein, putative, expressed -1.27 -2.42 -2.04 

LOC_Os06g12940.1 conserved hypothetical protein -3.41 -1.13 -1.27 

LOC_Os06g15680.1 cytochrome P450 71A6, putative 2.17 2.12 2.43 

LOC_Os06g16140.1 expressed protein -2.22 -2.44 -2.63 

LOC_Os06g16300.1 BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 precursor, putative, expressed -2.76 -2.23 -1.46 

LOC_Os06g16640.1 carboxyl-terminal peptidase, putative, expressed -2.84 -1.15 -0.38 

LOC_Os06g35165.1 expressed protein -2.28 -2.82 -2.48 

LOC_Os06g37140.1 retrotransposon protein, putative, Ty3-gypsy subclass, expressed -1.85 -0.78 -2.37 

LOC_Os06g37140.2 retrotransposon protein, putative, Ty3-gypsy subclass, expressed -1.07 -0.66 -2.40 

LOC_Os06g37150.1 L-ascorbate oxidase precursor, putative, expressed 0.62 -2.50 -0.42 

LOC_Os06g38110.1 expressed protein 3.70 0.88 1.17 
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LOC_Os06g38120.1 low-affinity cation transporter, putative, expressed 3.96 0.61 1.21 

LOC_Os06g38210.1 expressed protein 7.12 7.13 7.50 

LOC_Os06g38210.2 expressed protein 6.33 5.14 6.45 

LOC_Os06g38594.1 expressed protein 2.36 2.43 2.65 

LOC_Os06g38640.1 receptor-like protein kinase precursor, putative 0.90 1.89 2.44 

LOC_Os06g38650.1 receptor-like protein kinase precursor, putative, expressed 2.82 3.88 4.49 

LOC_Os06g38660.1 expressed protein -1.69 -1.15 -3.08 

LOC_Os06g38670.1 receptor-like protein kinase precursor, putative -3.55 -0.98 -2.33 

LOC_Os06g38680.1 expressed protein -3.33 -2.41 -3.12 

LOC_Os06g39090.1 transposon protein, putative, unclassified -3.45 -3.02 -3.25 

LOC_Os06g39120.1 expressed protein -2.63 -5.26 -3.82 

LOC_Os06g42060.2 expressed protein 4.40 5.23 5.91 

LOC_Os06g42650.1 hypothetical protein -4.81 -1.72 -3.93 

LOC_Os06g43150.1 retrotransposon protein, putative, unclassified -4.50 -5.11 -5.35 

LOC_Os06g45080.2 rabGAP/TBC domain-containing protein, putative, expressed -1.35 -1.52 -2.32 

LOC_Os07g02570.1 NB-ARC domain containing protein -3.57 -2.05 -2.83 

LOC_Os07g03920.1 lectin-like receptor kinase 7, putative 3.28 3.49 5.17 

LOC_Os07g03970.1 lectin-like receptor kinase 7, putative 1.54 2.92 3.40 

LOC_Os07g05400.1 ferredoxin--NADP reductase, chloroplast precursor, putative, expressed 5.64 6.17 7.11 

LOC_Os07g05440.1 retrotransposon protein, putative, unclassified, expressed -3.48 -4.99 -4.78 

LOC_Os07g05510.1 expressed protein 1.92 2.71 2.94 

LOC_Os07g14514.1 retrotransposon protein, putative, unclassified, expressed -0.70 -1.95 -2.38 

LOC_Os07g14514.2 retrotransposon protein, putative, unclassified, expressed -1.15 -1.85 -2.45 

LOC_Os07g14514.3 retrotransposon protein, putative, unclassified, expressed -2.20 -3.80 -4.09 

LOC_Os07g14514.6 retrotransposon protein, putative, unclassified, expressed -2.36 -4.12 -4.29 

LOC_Os07g29960.1 cytochrome P450, putative, expressed 0.05 0.93 2.04 

LOC_Os07g30240.1 mutS family domain IV containing protein 0.92 2.66 2.92 

LOC_Os07g30980.1 uvrD/REP helicase family protein, putative, expressed -3.98 -3.88 -3.77 

LOC_Os07g31870.1 expressed protein 0.57 2.27 2.82 

LOC_Os07g37454.1 urate anion exchanger, putative, expressed -2.25 0.10 0.26 

LOC_Os07g38280.2 insulin-degrading enzyme, putative, expressed 0.94 1.61 2.08 
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LOC_Os07g41350.1 B12D protein, putative, expressed 0.51 0.67 -2.02 

LOC_Os07g46660.1 ubiquitin carboxyl-terminal hydrolase domain containing protein, expressed 4.63 4.02 4.63 

LOC_Os08g04210.1 cysteine-rich repeat secretory protein 55 precursor, putative, expressed   -0.27 -2.37 

LOC_Os08g14195.1 expressed protein -2.28 -1.97 -2.63 

LOC_Os08g28050.1 retrotransposon protein, putative, Ty1-copia subclass 2.17 0.56 0.49 

LOC_Os08g43120.1 Plant PDR ABC transporter associated domain containing protein, expressed -0.52 -0.30 -2.00 

LOC_Os09g17152.1 OsFBX319 - F-box domain containing protein, expressed -2.08 -0.56 -1.76 

LOC_Os09g17329.2 expressed protein 2.71 3.49 4.10 

LOC_Os09g17870.1 cytidylyltransferase domain containing protein, expressed 2.18 2.18 2.12 

LOC_Os09g18159.1 light repressible receptor protein kinase, putative, expressed 1.97 4.20 4.61 

LOC_Os09g18594.1 protein kinase domain containing protein, expressed -1.22 -2.40 -1.83 

LOC_Os09g19160.1 serine/threonine-protein kinase, putative, expressed 2.00 2.25 2.21 

LOC_Os09g19280.1 retrotransposon protein, putative, unclassified 2.70 0.89 1.88 

LOC_Os09g19380.1 receptor-like protein kinase precursor, putative, expressed 0.38 1.40 3.51 

LOC_Os09g19390.1 senescence-induced receptor-like serine/threonine-protein kinase precursor, putative, expressed 0.53 1.28 3.58 

LOC_Os09g19400.1 senescence-induced receptor-like serine/threonine-protein kinase precursor, putative 1.08 1.83 3.38 

LOC_Os09g20390.1 uncharacterized glycosyl hydrolase Rv2006/MT2062, putative, expressed 7.73 4.69 5.70 

LOC_Os09g20390.2 uncharacterized glycosyl hydrolase Rv2006/MT2062, putative, expressed 7.41 4.30 5.26 

LOC_Os09g20390.3 uncharacterized glycosyl hydrolase Rv2006/MT2062, putative, expressed 7.70 3.58 4.28 

LOC_Os09g27135.1 expressed protein 0.90 1.84 2.30 

LOC_Os10g04170.1 hypothetical protein -1.49 -1.95 -2.21 

LOC_Os10g07970.1 anthocyanidin 5,3-O-glucosyltransferase, putative, expressed -0.96 -1.62 -2.40 

LOC_Os10g34884.1 RIPER7 - Ripening-related family protein precursor, expressed -5.96 -2.73 -2.46 

LOC_Os10g36100.1 LTPL157 - Protease inhibitor/seed storage/LTP family protein precursor, expressed -0.04 -0.18 -2.09 

LOC_Os10g42210.1 enoyl-CoA-hydratase, putative, expressed -3.09 -1.91 -2.37 

LOC_Os10g42220.1 enoyl-CoA hydratase/isomerase family protein, putative -3.11 -2.13 -2.56 

LOC_Os11g09979.2 expressed protein -1.74 -1.66 -2.25 

LOC_Os11g17650.1 hypothetical protein -2.47 -1.27 -1.75 

LOC_Os11g29090.1 NB-ARC/LRR disease resistance protein, putative 3.58 2.77 3.32 

LOC_Os11g29110.1 Leucine Rich Repeat family protein, expressed 4.86 5.17 5.31 

LOC_Os11g29490.1 plasma membrane ATPase, putative, expressed -2.01 -1.12 -2.78 
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LOC_Os11g29500.1 expressed protein -4.64 -4.83 -5.16 

LOC_Os11g29790.1 receptor kinase, putative -2.29 -0.31 -0.23 

LOC_Os11g31190.1 nodulin MtN3 family protein, putative, expressed -0.09 -0.13 -2.36 

LOC_Os11g41410.1 expressed protein -1.45 -2.40 -2.02 

LOC_Os11g42390.1 OsSCP64 - Putative Serine Carboxypeptidase homologue, expressed -1.04 -0.40 -2.60 

LOC_Os11g42480.1 transferase family domain containing protein, expressed 2.44 4.37 4.36 

LOC_Os11g42510.2 tyrosine aminotransferase, putative, expressed 2.87 1.89 1.80 

LOC_Os11g42580.1 Leucine Rich Repeat family protein 1.26 1.83 2.42 

LOC_Os11g42590.1 conserved hypothetical protein 1.05 2.04 2.44 

LOC_Os11g42720.1 retrotransposon protein, putative, unclassified 0.82 1.82 2.04 

LOC_Os11g42850.1 expressed protein -1.77 -2.94 -2.93 

LOC_Os11g42850.2 expressed protein -1.56 -2.75 -3.05 

LOC_Os11g43390.1 expressed protein 2.07 2.41 2.80 

LOC_Os11g43790.1 DUF581 domain containing protein, expressed 2.04 3.34 2.37 

LOC_Os11g43800.1 PPR repeat domain containing protein, putative -1.26 -1.53 -2.07 

LOC_Os11g43860.2 sodium/calcium exchanger protein, putative, expressed 1.78 2.03 2.13 

LOC_Os11g43895.1 expressed protein -3.05 -3.53 -3.70 

LOC_Os11g43990.1 expressed protein -3.48 -2.23 -3.00 

LOC_Os11g44310.1 calmodulin binding protein, putative, expressed -5.72 -4.10 -3.90 

LOC_Os11g44340.1 calmodulin binding protein, putative -4.62 -1.81 -1.73 

LOC_Os11g44380.1 expressed protein -7.55 -5.29 -5.69 

LOC_Os11g44430.1 protein kinase, putative, expressed -2.97 0.05 0.06 

LOC_Os11g44680.1 calmodulin binding protein, putative, expressed -2.53 -1.79 -1.45 

LOC_Os11g44800.1 expressed protein -2.17 -1.71 -2.14 

LOC_Os11g44950.2 glycosyl hydrolase family 3 protein, putative, expressed 1.08 2.03 0.16 

LOC_Os11g44990.1 NB-ARC domain containing protein, expressed 1.17 2.42 3.79 

LOC_Os11g45090.1 NB-ARC domain containing protein, expressed 0.61 1.62 2.71 

LOC_Os11g45840.1 expressed protein 0.93 1.69 2.76 

LOC_Os11g46210.1 NB-ARC domain containing protein, expressed -3.80 -3.96 -4.48 

LOC_Os11g46850.1 wall-associated kinase, putative 2.23 1.53 1.34 

LOC_Os11g46860.1 wall-associated receptor kinase-like 4 precursor, putative, expressed 4.44 2.91 3.85 
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LOC_Os11g47120.1 DEFL48 - Defensin and Defensin-like DEFL family, expressed -0.87 -1.88 -2.06 

LOC_Os11g47140.1 OsWAK123 - OsWAK receptor-like protein kinase, expressed 3.71 4.11 3.96 

LOC_Os11g47370.1 expressed protein -5.55 -5.85 -5.98 

LOC_Os11g47400.1 hypothetical protein -1.46 -1.90 -2.03 

LOC_Os11g47500.1 glycosyl hydrolase, putative, expressed 0.54 -1.99 -3.69 

LOC_Os11g47600.1 glycosyl hydrolase, putative, expressed -0.09 -0.03 -2.07 

LOC_Os11g47910.1 SCARECROW, putative -1.65 -1.61 -2.24 
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Supplementary Figure 1: A) bacterial blight lesion length progression under low temperature regime; B) bacterial blight lesion 

length progression under high temperature regimes 
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Supplementary Figure 2: Venn diagram showing distribution of temperature and temperature combined with Xoo response genes. 
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Supplementary Figure 3: Phylorelationship between PXO145 and other Xoo and Xoc strain BLS256 based on whole genome 

alignment generated using MAUVE v2.3.1.
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Chapter 6: Conclusion and future perspectives 

Climate change impact on host-plant resistance to pathogens reveals complex. This study 

presents a comprehensive analysis of rice response to bacterial blight under high temperature 

and also under drought stress treatment. The results demonstrate that high temperature or 

drought stress may have positive or negative effects on rice response to bacterial blight. The 

outcome of the interaction varied according to the presence or absence of R genes which 

recognize the corresponding avirulence protein of the pathogen, revealing the Xa4 mediated 

resistance compromised under abiotic stress, while Xa7 mediated resistance became more 

effective. Moreover, the results highlighted that a rice genotype with a single Xa4 R gene or 

Xa4 combined with drought qDTY is affected by drought stress, while genotypes with single 

qDTY are drought tolerant, but are susceptible to bacterial blight. Comparing qDTY lines to 

IRBB NILs and Xa4+qDTY lines, drought qDTY lines were more susceptible to bacterial blight 

under drought stress conditions. The phenotypes of IRBB7 and IRBB67 suggest that the Xa7 R 

gene may be involved in both biotic and abiotic stress response pathways.  

The use of wild type rice genotypes remains an important approach for new discoveries of 

resistance or tolerance genes. Oryza glaberrima accessions have shown their resistance 

enhanced under high temperature as shown in this study. Although no Xa resistance gene 

was detected, the Oryza glaberrima phenotype suggests that these accessions may possess BB 

resistance genes which could be different from the known Xa R genes. High temperature has 

shown the complementary effects of rice Xa4 to Xa7 in the pyramided line IRBB67 with 

complete restriction of Xoo spread in planta beyond the symptomatic area. Time course 

transcriptome profiles of IRBB67 and IR24 suggest that IRBB67 responds with higher 

resistance to Xoo infection under high temperature than under low temperature. The results 

from transcriptome profiling also suggest that IRBB67, in response to heat and Xoo, maintains 

homeostasis in cation efflux which supports cell membrane integrity. Additionally, 

regulation of glucose metabolism by OsTPP6 gene contributes to coping with heat stress and 
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allows the host plant to respond efficiently to the invader. IRBB7 with Xa7 R gene showed 

resistance to BB under high temperature, but also under drought stress, suggesting that this 

genome may be important in breeding for abiotic and biotic stress tolerance, such as BB and 

high temperature or BB and drought stress tolerance. Prediction of TAL effectors from Xoo 

strain PXO145 provides additional information to understand the rice-Xoo pathosystem. The 

PXO145 genome sequence showed close relatedness to PXO86 in term of whole genome 

similarity and also TAL effector occurrence. Further study of the PXO145 TAL effectors’ 

target genes would provide insight into the rice-Xoo interaction and provide additional 

information for the use of genome editing in engineering genotypes with broad spectrum 

resistance. 
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