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Abbreviations 

%   Percent 

≈   Approximately 

°C   Degree Celsius 

µg   Microgram 

µl   Microlitre 

aa   Amino acid 

AAV   Adeno-associated virus 

ACTB   β-Actin 

ADMSC  Adipose-tissue derived mesenchymal stem cells  

AP   Alkaline phosphatase 

AR   Androgen receptor 

AuNP   Gold nano particle 

BMSC   Bone marrow mesenchymal stem cells 

bp   Base pairs 

CCND2  Cyclin D2 

CDH1   E-cadherin 

CDS   Coding sequence 

c-Myc   Myc 

CSC   Cancer stem cells 

CT    Cycle threshold 

DNA   Deoxyribonucleic acid 

DNase  Deoxyribonucelase 

EGFP   Eukaryotic green fluorescent protein 

EMT   Epithelial-to-mesenchymal transition 

FCS   Fetal calf serum 

Fig.   Figure 

FolH1   Folate hydrolase 1 

g   G-force 

h   Hour 

HIPK2   Homeodomain-interacting protein kinase 2 

HMGA  High mobility group A 

HMGA1  High mobility group AT-Hook 1 
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HMGA2  High mobility group AT-Hook 2 

HMGB1  High mobility group Box 1 

HPRT1  Hypoxynthine guanine phosphoribosyltransferase 1 

HRAS   V-HA-RAS Harvey rat sarcoma viral oncogene homolog 

IARC   International Agency for Research on Cancer 

IL6   Interleukin 6 

kDa   Kilo Dalton 

Klf4   Kruppel-like factor factor 4 

KRAS   V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog 

let-7   Lethal-7 

MAPK   Mitogen-activated protein kinase 

min   Minute 

miRNA  Micro RNA 

mRNA   Messenger RNA 

MSC   Mesenchymal stem cells 

NFκB   Nuclear factor kappa-B 

ng   Nanogram 

NHL   Non-Hodgkin lymphoma 

NRAS   Neuroblastoma ras viral oncogene homolog 

nt   Nucleotide 

p53   Tumor protein p53 

PC   Prostate cancer 

PCR   Polymerase chain reaction 

PI3KCA  Phosphatidylinositol 3-kinase, catalytic, alpha 

PIN   Prostatic intraepithelial neoplasias 

PSA   Kallikrein-related peptidase 3 

PSMA   Prostate specific membrane antigen 

PTEN   Phosphatase and tensin homolog 

PTGS   Post-transcriptional gene scilencing 

qRT-PCR  Quantitative real-time PCR 

rAAV   Recombinant adeno-associated virus 

RAGE   Advanced glycosylation end product-specific receptor 

RISC   RNA induced silencing complex 
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rpm   Revolutions per minute 

SDS-PAG  Sodium dodecyl sulfate polyacrylamide gel 

SDS-PAGE  Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

siRNA   Short interfering RNA 

SNAI1   Snail  

SNAI2   Slug 

Tab.   Table 

TLR   Toll-like receptor 

TM   Annealing temperature 

UN   United nations 

US   United States 

UTR   Untranslated region 

VG   Viral genome 

WB   Western Blot 

WHO   World Health Organisation  



Zusammenfassung 

8 

 

Zusammenfassung 

Die Entwicklung von neuen Diagnose- und Therapieverfahren gegen 

Tumorerkrankungen hängt in hohem Maße von einem detaillierten Verständnis der 

molekularbiologischen Veränderungen, die zur Entstehung und zum Fortschreiten 

von malignen Tumoren beitragen, ab. In diesem Zusammenhang hat sich der Hund 

als geeignetes Großtiermodell für verschiedene Erkrankungen des Menschen 

etabliert, da zahlreiche Tumoren, die beim Menschen eine Rolle spielen, auch beim 

Hund spontan auftreten. 

In der vorliegenden Arbeit wurden Expressionsanalysen von mehreren in humanen 

Neoplasien deregulierten Genen am Modell Hund untersucht. Hierbei stand 

einerseits die miRNA let-7, aber auch die let-7 regulierten Gene HMGA1 und 

HMGA2 im Fokus. Zusätzlich wurde die Expression von weiteren direkt von let-7 

regulierten und assoziierten Genen analysiert.  

Die let-7 Genfamilie gehört zu den miRNAs die während der embryonalen 

Entwicklung und in Stammzellen kaum exprimiert werden. Erst mit der 

fortschreitenden Entwicklung des Organismus nimmt die let-7 Expression stetig zu 

und erreicht ein relativ hohes Niveau in ausdifferenzierten Zellen. Eine Abnahme 

der let-7 Expression hat zur Folge, dass die von let-7 negativ regulierten Gene 

zunehmend exprimiert werden, wie es in zahlreichen malignen Neoplasien 

beobachtet wurde.  

Hierzu wurde die Expression von let-7a und der let-7 assoziierten Gene CCND2, 

c-Myc, FolH1, HMGA1, HMGA2, HMGB1, IL6, Klf4, MAPK1, NRAS, PTEN, und 

PI3K in caninen Prostataproben untersucht. Dabei zeigte sich sowohl die let-7a als 

auch die HMGA2-Transkriptzahl in hyperplastischem und malignem 

Prostatagewebe sowie in mehreren untersuchten prostatischen Zelllinien signifikant 

erhöht. Zusätzlich war die Expression der HMGB1- und MAPK1-Gene deutlich 

niedriger in malignen neoplastischen Geweben verglichen mit gesundem 

Prostatagewebe.  

Außerdem wurde die HMGA1- und HMGA2-Genexpression in caninen Lymphomen 

analysiert. Dabei war die HMGA1-Transkriptzahl in B-Zell-, aber nicht in 

T-Zell-Lymphomen des Hundes erhöht. Die HMGA2-Expression wies ein zu 

HMGA1 reziprokes Profil auf, sie war in den T-Zell-Lymphomen erhöht und in den 

B-Zell-Lymphomen sehr niedrig. 
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Weiterhin wurden strukturelle und funktionelle Untersuchungen an den 

HMGA-Genen und deren Produkten durchgeführt, welche eine große Ähnlichkeit zu 

den humanen Molekülen in Genstruktur und Proteinfunktion offenbarten.  

Da der nächste Schritt nach der Identifizierung und Charakterisierung von 

potentiellen Tumormarkern die gezielte Modifikation der jeweiligen Geneexpression 

ist, wurden mehrere let-7 kodierende Plasmide konstruiert, die auch zur Produktion 

von adeno-assoziierten Viren geeignet sind. 

Zusätzlich wurde ein neues Protokoll zur Isolierung von Genomen 

adeno-assoziierter Viren etabliert, welches die nachfolgende reproduzierbare und 

genaue Quantifizierung der Virengenome ermöglicht. 

Für in vitro Anwendungen wurde eine neue, Gold-Nanopartikel-basierte Methode 

zur effizienten und zellschonenden Transfektion von unterschiedlichen Zelltypen 

entwickelt. 

Schließlich wurde die Kreuzreaktivität eines PSMA Antikörpers mit dem caninen 

PSMA Protein evaluiert, welcher vergleichende Proteinanalysen zwischen Mensch 

und Hund ermöglicht. 

 

Schlagworte: Vergleichende Onkologie, Expressionsanalysen, molekulare Marker 
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Abstract 

The development of diagnostic and therapeutic modalities depends highly on the 

understanding of the genetic and epigenetic alterations which favor cancer. In this 

regard the domesticated dog qualifies as a potent large animal model for many 

human cancer entities, as these occur spontaneously in man and dog.  

In the present thesis expression analyses of tumor associated genes were carried 

out paying particular attention to the miRNA let-7 family and its direct target genes 

HMGA1 and HMGA2. Furthermore, additional directly by let-7 regulated targets as 

well as associated genes were analyzed. 

The miRNA let-7 gene family is barely expressed during embryogenesis but 

increases constantly during organismal development. Interestingly, several 

members of the miRNA let-7 family were found to be down regulated in various 

cancer entities. 

Owing to that the expression of let-7a and of the let-7 associated genes CCND2, 

c-Myc, FolH1, HMGA1, HMGA2, HMGB1, IL6, Klf4, MAPK1, NRAS, PTEN, and 

PI3K, which have also been described to be deregulated in a variety of human 

neoplasias, was analyzed in canine prostate cancer. The analyses revealed 

elevated let-7a and HMGA2 levels in canine hyperplastic and malignant prostatic 

tissues as well as in three analyzed prostate cancer cell lines. Additionally a 

significant HMGB1 and MAPK1 down-regulation was found in the cancerous 

prostatic tissues.  

Furthermore, HMGA1 and HMGA2 expression was investigated in canine healthy 

and diseased lymph node samples, presenting elevated HMGA1 levels in B-cell 

lymphomas and increased HMGA2 levels in T-cell lymphomas.  

The knowledge of the target expression, structure and function is important for the 

successful engagement of let-7 based therapeutics. Owing to that structural and 

functional analyses of the canine HMGA genes were carried out, revealing a similar 

HMGA1 gene structure. The analyses of the HMGA protein activity and impact on 

gene expression and cell growth showed as well high similarities between human 

and canine protein homologs. 

As the next step after successful identification and characterization of potential 

molecular tumor markers is the modification of gene expression, various let-7 

encoding expression plasmids were constructed. Some of these plasmids are as 
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well suitable for the production of adeno-associated viruses for therapeutic 

approaches. 

For in vivo cell modifications viruses are still the most potent vehicles, but depend 

highly on pure and exactly titered vectors. Thus a novel viral genome isolation 

protocol was evaluated allowing a more accurate and highly reproducible viral 

genome quantification by subsequent real-time PCR. 

Additionally a new nanoparticle mediated laser transfection method was established 

enabling efficient, up-scalable modification of different cell types in vitro.  

Finally, cross-reactivity of a human PSMA (FolH1) specific antibody was evaluated 

for the canine homolog enabling ongoing comparative cancer research between 

man and dog. 

 

Keywords: Comparative oncology, gene expression analyses, molecular marker 
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1. Introduction 

1.1. Cancer 

Cancer is a major global health burden of mankind, worldwide it is one of the leading 

causes of death especially in economically developed countries (Ferlay et al., 2010).  

In December 2013, the specialized cancer agency of the World Health Organization 

(WHO), the International Agency for Research on Cancer (IARC) published the 

latest data set on cancer incidence and mortality (http://www.uicc.org) (Fig. 1), 

according to which the IARC estimates a rising of the global burden of cancer to 

14.1 million new cases and 8.2 million cancer deaths in 2012 

(http://globocan.iarc.fr). These data indicate that lung, breast, colorectal and 

prostate cancers are among the most frequent malignant neoplasias worldwide 

followed by cancers of the stomach, liver, cervix uteri, bladder and many others  

(Fig. 1). 

Compared to the IARC estimates for the year 2008 the number of cancer related 

deaths and diagnosed cases increased by ≈ 8 % and ≈ 11 % respectively 

(GLOBOCAN 2008 - GLOBOCAN 2012, IARC). In contrast, according to the UN 

World Population Prospects, the world population grew only by approximately 5 % 

in this period (http://esa.un.org). The non-proportionally increasing numbers of new 

cancer cases and deaths compared to the world population highlight the need for 

better molecular diagnostic, prognostic and therapeutic approaches.  

However, the detection of molecular cancer biomarkers and the development of 

more effective drugs are still hampered by the limited knowledge of the genetic and 

epigenetic factors implicated in cancer etiology and additionally by the great 

diversity of tumors.  

Studies on model organisms greatly contribute to the deciphering of these factors 

and to the development of novel treatment modalities. However, the translation from 

bench-to-bedside is often hindered by the lack of appropriate in vivo animal models 

(Mitsiades et al., 2003).  

In this thesis analyses of the micro RNA (miRNA) let-7 and several associated 

genes, which are commonly deregulated in human cancers, were performed. To 

achieve this goal the expression of these genes was analyzed exemplarily in two 

canine cancer entities: the prostate cancer and Non-Hodgkin lymphoma. 

http://www.uicc.org/
http://globocan.iarc.fr/
http://esa.un.org/wpp/Excel-Data/population.htm
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Figure 1 Estimated incidence and mortality rates in both sexes for the most common human cancer 

entities in 2012 (derived from http://www.cancer.org). 

 

1.1.1. Prostate cancer 

Prostate cancer (PC) is the 2nd most common cancerous disease in men 

(GLOBOCAN 2012, IARC), ranging from an asymptomatic to a rapid, fatal systemic 

malignancy (Kopper and Timar, 2005). In the year 2012 worldwide more than a 

million men were estimated to be diagnosed with this disorder and 307,471 died 

from it (GLOBOCAN 2012, IARC) (Fig. 1).  

The development of PC is believed to be a multi-step process initiated by genetic 

and epigenetic alterations (Kopper and Timar, 2005). At early stage human PC is 

accepted to be an androgen dependent tumor (Kopper and Timar, 2005). Survival 

rates of advanced human PCs are very low (http://www.cancer.org) as these, 

treated according to the androgen deprivation therapy, become in the majority of 

patients resistant to castration (Divrik et al., 2012).  

Beside man, the dog is the only domesticated large mammal developing PC 

http://www.cancer.org/
http://www.cancer.org/
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spontaneously (Withrow and Vail, 2012). Remarkably, this disorder occurs more 

often in older individuals of both species (Waters et al., 1996), shares many 

functional and morphological features (Leroy and Northrup, 2009) and shows similar 

clinical manifestations of advanced disease by spreading to lymph nodes, lungs, 

bones and liver (Leav and Ling, 1968; Cornell et al., 2000). Like humans, dogs 

develop benign prostatic hyperplasia (Coffey and Walsh, 1990) and high-grade 

prostatic intraepithelial neoplasias (PIN). Notably, PINs are speculated to be a likely 

precursor of human PC (Waters et al., 1997).  

Opposing the situation in men, canine PC presents a natural incidence rate of less 

than 1 % (Withrow and Vail, 2012) but appears androgen-independent similarly to 

the human hormone refractory disease (Teske et al., 2002; Kopper and Timar, 

2005). As dogs are usually presented with clinically advanced disease, the 

treatment remains palliative (Waters et al., 1998; Leroy and Northrup, 2009). Thus 

the understanding of the molecular changes contributing to canine PC and 

identification of molecular markers might not only improve treatment options for the 

canine patients, but also accelerate the establishment of preclinical approaches in 

human medicine using the dog as model.  

 

1.1.2. Lymphoma 

The second cancer entity investigated in this study are Non-Hodgkin lymphomas 

(NHL). NHL is a non-specific term that encompasses a wide variety of 

lymphoproliferative malignant diseases with varying clinical and histological 

appearances as well as incidence patterns (Evans and Hancock, 2003; Jemal et al., 

2011). 

For the year 2012 it was estimated that 385,741 new NHL cases occurred worldwide 

and 199,630 people died from it (GLOBOCAN 2012, IARC).  

Accounting for ≈ 40% of all NHLs, B-cell lymphomas are most common in western 

countries (Alexander et al., 2007). Similar to other types of cancer environmental 

factors, life style and genetic predisposition are discussed to promote NHL 

development (Boffetta, 2011).  

As NHL etiology remains obscure and humans and canines present similar disease 

progression and response to chemotherapy-based regimen, the dog is a very 

important large animal model (Rowell et al., 2011).  
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Canine lymphomas are estimated to occur in 13 to 24 cases per 100,000 dogs each 

year with rising up to 84 cases annually per 100,000 in the group of 10 to 11 years 

old animals (Withrow and Vail, 2012). According to a previous study, approximately 

60 % of the canine lymphomas are B-cell lymphomas and one third is represented 

by T-cell lymphomas (Ponce et al., 2010).  

The value of the canine model depends on the possibility to discriminate between 

these spontaneously occurring lymphoma subgroups (Ponce et al., 2010) thus 

identification of molecular markers is of great interest not only for veterinarians but 

also for research on comparative oncology.  

 

1.1.3. miRNA biogenesis and function 

Micro RNAs (miRNA) are small non-protein-coding endogenously expressed RNA 

molecules. The primary miRNA (pri-miRNA) transcripts form, owing to an intrinsic 

self-complementarity, a hairpin structure consisting of a “loop-” and a “stem”-region. 

The nuclear enzyme Drosha cuts the pri-miRNA precursor, which can be up to 

several kilo bases in length, between the flanking sequences and the “stem” (Fig. 

2). The nascent precursor, the precursor-miRNA (pre-miRNA, approximately 70 nt 

in length) is exported by Exportin-5 into the cytoplasm where it is further processed 

by Dicer into the mature double-stranded miRNA (approximately 20 bp in length). 

The “guide strand” of the mature miRNA is loaded into the RNA induced silencing 

complex (RISC) which recognizes the 5’-, the 3’-untranslated region (UTR) or in 

some cases exon regions of the target mRNA leading to translational repression 

(Mondol and Pasquinelli, 2012). The second strand, the “passenger strand” is 

usually degraded (Filipowicz et al., 2008) (Fig. 2).  
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Figure 2 Schematic overview of the miRNA biogenesis and mode of action (Wagner et al., 2014). 

The endogenous miRNA precursors form a hairpin structure due to the intrinsic self-complementarity. 

The nuclear enzyme Drosha cuts the hairpin between the “stem” and the flanking regions, the 

released precursor miRNA is transported by Exportin-5 into the cytoplasm. After export the precursor 

is further processed by Dicer into the mature double stranded miRNA consisting of a “guide” and 

“passenger” strand. In the following the “guide” strand is incorporated into RISC, the passenger 

strand is usually degraded. RISC recognizes with the incorporated miRNA strand the target mRNA 

and blocks its translation into the protein.  

 

miRNAs regulate diverse biological processes such as development (Zhao et al., 

2005), differentiation (Kawasaki and Taira, 2003), proliferation (Viticchie et al., 

2011), apoptosis (Cimmino et al., 2005), and stress response (Croce and Calin, 

2005). It is remarkable that a single miRNA can orchestrate the expression of 

several genes as well as a single gene can be regulated by a set of different miRNAs 

(Reinhart et al., 2000; Winter et al., 2009; Chen et al., 2011).  

In the last decades numerous miRNA encoding genes were described, many of 

these were reported to be implicated in cardiovascular diseases (Filipowicz et al., 

2008; Creemers et al., 2010), muscular disorders (Cacchiarelli et al., 2010; Mizuno 

et al., 2011), diabetes (Kantharidis et al., 2011), renal fibrosis (Li et al., 2013) and 

various cancer entities such as melanoma (Noguchi et al., 2013), mammary cancer 
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(Boggs et al., 2008), lymphoma (Di Lisio et al., 2012) and prostate cancer (Kong et 

al., 2012; Ru et al., 2012). 

 

1.1.4. miRNA let-7 and associated genes 

One of the large class of miRNAs is let-7, which was the second miRNA discovered 

and designated as lethal-7 (let-7) according to the phenotype of a let-7 deficient C. 

elegans mutant (Reinhart et al., 2000). Soon thereafter, in a variety of species 

further let-7 homologs were identified (Pasquinelli et al., 2000). 

Compared to “less complex” organisms such as worms, vertebrates possess a 

higher number of let-7 isoforms (Mondol and Pasquinelli, 2012). Until now 13 human 

let-7 family members were described (let-7a-1, let-7a-2, let-7a-3, let-7b, let-7c, 

let-7d, let-7e, let-7f1, let-7f2, let-7g, let-7i, miR-98 and mir-202). These miRNA 

precursors code for 10 diverse mature let-7 miRNAs (Wang et al., 2012). Even 

though the role of the let-7 family is still not fully deciphered yet, it is evident that 

these molecules have a distinct expression pattern in developmental processes of 

animals (Pasquinelli et al., 2000). Being barely detectable at the embryonic stage, 

the let-7 miRNAs present higher levels in differentiated adult tissues (Reinhart et al., 

2000; Thomson et al., 2006).  

An aberrant let-7 expression was found in several malignant neoplasias such as 

lung cancer (Johnson et al., 2007; Tay et al., 2014), prostate cancer (Dong et al., 

2010; Liu et al., 2012a; Nadiminty et al., 2012b), lymphoma (Sampson et al., 2007) 

and many more (Boyerinas et al., 2010; Sterenczak et al., 2014).  

Remarkably, several of the direct let-7 target genes such as HMGA1 (Rahman et 

al., 2009; Joetzke et al., 2010; Schubert et al., 2013), HMGA2 (Mayr et al., 2007; 

Winkler et al., 2007; Joetzke et al., 2010; Sterenczak et al., 2014), c-Myc (Sampson 

et al., 2007; Liu et al., 2012b), CCND2 (Dong et al., 2010), IL6 (Iliopoulos et al., 

2009) and NRAS (Gideon et al., 1992; Johnson et al., 2005; Fernandez-Medarde 

and Santos, 2011) are as well commonly deregulated or affected by mutations in a 

variety of human and canine cancers. These protein-encoding targets in turn spread 

the signal wave further on and modify the biogenesis and activity of other, often in 

cancer aberrantly expressed genes such as AR (Boonyaratanakornkit et al., 1998; 

Attard et al., 2009; Lyu et al., 2013), FolH1 (Colombatti et al., 2009; Bouchelouche 

et al., 2010; Cho and Szabo, 2013), HMGB1 (Pierantoni et al., 2007; Tang et al., 
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2010; Ueda and Yoshida, 2010), Klf4 (Klaewsongkram et al., 2007; Le Magnen et 

al., 2012), MAPK1 (Dhillon et al., 2007; Gerits et al., 2008), PI3KCA (Engelman et 

al., 2006; Castellano and Downward, 2011), and PTEN (Ma et al., 2009). 

Remarkably, all these genes are tightly interwoven with each other and the miRNA 

let-7 family appears to be one of the major players in the controlled expression of 

these genes in healthy cells. For a better overview, the complex interactions are 

indicated in the figure 3. 

 

 

Figure 3 Schematic overview of the interactions of the miRNA let-7 and its direct and downstream 

targets. All the shown genes are commonly deregulated in human cancers. The indicated interactions 

are on transcriptional, post-transcriptional or post-translational level (Wagner et al., 2014). Targets 

which were analyzed within this thesis are depicted in white, bold typed letters. 
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1.2. Model organism dog 

As mentioned before, deeper knowledge of the molecular processes in human and 

animal cells is important and would not only improve the choice of the best suited 

animal model for a certain kind of cancer but as well advance progress in the 

identification and evaltion of the most effective molecular drugs and targets.  

Although the commonly used murine xenografts with induced tumors are a valuable 

model for cancer research, closing the missing link between cell culture experiments 

and studies on the canine model (Pinho et al., 2012), they bear major limitations. 

Among these are the lacking influence of an intact immune system, tumor growth 

over long periods of time, the significant heterogeneity in tumor cell populations and 

the tumor microenvironment (Waters et al., 1997; Leroy and Northrup, 2009; Pinho 

et al., 2012).  

In this regard, the domesticated dog qualifies as a large animal model for various 

human diseases (Eaton et al., 1995; Lin et al., 1999; Rofina et al., 2003; Lohi et al., 

2005; Ionut et al., 2008; Shan et al., 2009; Mizuno et al., 2011) including mammary 

cancer (Boggs et al., 2008), osteosarcoma (Mueller et al., 2007), melanoma 

(Noguchi et al., 2011), prostate cancer (Cornell et al., 2000; Winkler et al., 2007) 

and lymphoma (Joetzke et al., 2010; Sterenczak et al., 2010; Uhl et al., 2011). In 

this context it is remarkable that ≈ 1 million pet dog cancer cases are diagnosed 

each year in the United States (Paoloni and Khanna, 2008). As dogs often live side 

by side with their owners and are part of the family (Rowell et al., 2011) this offers 

a great number of patients with intensively monitored disease progression enabling 

comparative cancer studies. 

Taken together, the dog shares many features with man, including tumor genetics, 

molecular targets, histological appearance, response to conventional therapies (Vail 

and MacEwen, 2000; Withrow and MacEwen, 2001; Paoloni and Khanna, 2008; 

Pinho et al., 2012) and a similar clinical manifestation of many neoplasias 

(Ostrander et al., 2000; Sutter and Ostrander, 2004; Ponce et al., 2010). Additionally 

the mentioned let-7 associated genes present high sequence homologies. The 

mature let-7 miRNAs are even up to 100 % identical between man and dog.  

Thus it is of major interest to decipher the role of the miRNA let-7 family and 

associated genes, which will as well shed light on the situation in human neoplasias 
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and enable the development of novel more effective strategies to treat cancer in 

both species. 
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2. Aims of the thesis 

The analysis of the canine miRNA let-7 and its direct target genes, the HMGAs was 

the focus of the present thesis. For that purpose the expression pattern, structure 

and function of these genes and their products were investigated in the context of 

canine prostate cancer, lymphomas and stem cells.  

In addition, based on the notion that these genes were found to be deregulated in 

various cancer entities, several tools/methods were constructed/established to 

modify their expression in vitro and in vivo. Finally, tools for target expression 

analyses were evaluated. 

 

2.1.1. Expression analyses 

→ Identification of potential molecular tumor markers for canine prostate cancer  

→ Quantitative analyses of the HMGA1 and HMGA2 genes in canine B-cell and 

T-cell lymphomas 

 

2.1.2. Structural and functional HMGA analyses 

→ Characterization of the canine HMGA1 gene structure 

→ Analysis of the HMGA2 impact on HMGA2/let-7 axis an cell growth in prostate 

cancer  

→ Investigation of the HMGA1 and HMGA2 protein impact on adipose-derived 

mesenchymal stem cells 

 

2.1.3. Tools for modification and detection of gene expression 

→ Construction of let-7 encoding vectors for modification of gene expression 

→ Establishment of an adeno-associated virus (AAV) genome purification 

protocol for subsequent accurate AAV quantification 

→ Evaluation of a gold-nanoparticle mediated laser-transfection method for in 

vitro approaches 

→ PSMA antibody (clone YPSMA-1) evaluation for cross-reactivity with the 

canine protein homolog in WB and target verification by mass spectrometry 
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4. Results 

4.1. Gene expression analyses 

4.1.1. Prostate cancer 

Human PC is accepted to be a hormone dependent tumor. The androgen 

deprivation therapy is thus the standard palliative treatment modality of primary 

advanced tumors. Nevertheless, the majority of the patients relapse subsequently 

due to castration resistance (Divrik et al., 2012). 

Although much progress in diagnosis and therapy of PC has been made there are 

still many men with potentially indolent disease being treated. On the other hand 

this malignancy contributed to approximately 310,000 cases of cancer-related 

deaths in 2012 (GLOBOCAN 2012, IARC) highlighting the importance of molecular 

PC markers. 

As PC occurs spontaneously in human and dog (Withrow and Vail, 2012) and 

additionally shares many functional and morphological features (Leroy and 

Northrup, 2009) the following section deals with the analyses of gene expression in 

canine PC.  

To provide an overview about the genes involved in PC the first review article in this 

section highlights the role of the miRNA let-7 and associated genes in the human 

malignancy. In the second experimental study the expression of several genes 

deregulated in human PC and other neoplasias was analyzed in canine prostatic 

samples. 

 

I.  Role of miRNA let-7 and its major targets in prostate cancer. 

 

Wagner et al., Biomed Research International, 2014 

 

In the following review article the molecular interactions between the miRNA let-7 

family members, its direct targets and regulators HMGA1, HMGA2, CCND2, IL6, AR 

and RAS as well as the downstream target HMGB1, which is implicated in all 

proposed hallmarks of cancer, were described. The role of these genes, which were 

previously shown to be deregulated in a variety of human malignant neoplasias was 
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critically reviewed in the context of prostate cancer etiology with miRNA let-7 being 

the central point. 



Results 

26 

 

 

 

I. 

 

 

 

Role of miRNA let-7 and its major targets in prostate 

cancer 

 

Siegfried Wagner, Anaclet Ngezahayo, Hugo Murua Escobar, Ingo Nolte 

 

Hindawi, Biomed Research International, 2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Own contribution: 

- Literature search and data analyses 

- Partial manuscript drafting 

- Preparation of all figures 



Results 

27 

 



Results 

28 

 



Results 

29 

 



Results 

30 

 



Results 

31 

 



Results 

32 

 



Results 

33 

 



Results 

34 

 



Results 

35 

 



Results 

36 

 



Results 

37 

 



Results 

38 

 



Results 

39 

 



Results 

40 

 

 

 

 



Results 

41 

 

IX.  Let-7 and associated genes in canine prostate cancer. 

 

Wagner et al., in preparation for submission. 

 

As previously reviewed by us deregulation of the miRNA family let-7 and associated 

genes is likely to be an important factor in PC. Thus the expression of HMGA1, 

HMGA2, HMGB1, CCND2, FolH1, NRAS, c-Myc, MAPK1, PI3KCA, PTEN, IL6, Klf4 

and let-7a was analyzed in a set of 14 canine prostatic samples. Prior to the 

screening analyses eight novel real-time PCR assays for the canine CCND2, FolH1, 

NRAS, c-Myc, MAPK1, PI3KCA, PTEN, and IL6  genes were evaluated. 

The screening of the canine targets revealed elevated let-7a levels in the diseased 

specimen compared to the non-neoplastic tissues. HMGA2 was highly 

overexpressed in all adenocarcinoma derived tissues and cell lines, whereas 

MAPK1 and HMGB1 were decreased in the malignant samples.  

In summary, four potential molecular marker for canine prostate cancer were 

identified building the basis for ongoing comparative cancer research. 
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4.1.2. Lymphoma 

Non-Hodgkin lymphoma treatment strategies depend on the specific type of 

lymphoma, in this regard the value of the canine model depends on the possibility 

to discriminate between the lymphoma subgroups (Ponce et al., 2010).  

This section deals with expression analyses of the let-7 regulated HMGA1 and 

HMGA2 genes in canine B- and T-cell lymphomas. The following research study 

provides information concerning the potency of these two genes as marker for 

canine lymphoma. This knowledge is precondition for the following 

development/application of miRNA let-7 based therapeutic approaches.  

 

V.  Expression of the high mobility group A1 (HMGA1) and A2 (HMGA2) 

genes in canine lymphoma: analysis of 23 cases and comparison to 

control cases.  

 

Joetzke et al., Veterinary and Comparative Oncology, 2010 

 

Aberrant HMGA1 and HMGA2 expression was found in many human malignancies 

but their precise role in canine hematopoietic cancer was not addressed so far. 

By that reason the potential of the HMGA genes as diagnostic and therapeutic 

targets in lymphomas was evaluated in the following study analyzing the expression 

pattern of HMGA1 and HMGA2 in canine samples. 

HMGA expression in lymph node specimens of 23 dogs with lymphoma was 

compared to three samples from dogs euthanized by the reason of other diseases. 

It could be shown by quantitative real-time PCR that the median HMGA1 expression 

was significantly higher in lymph nodes of lymphoma patients compared to the 

control specimens. In contrary to HMGA1, HMGA2 did not show significant 

differences in expression levels between the lymphoma-affected and non-affected 

groups. However, HMGA2 levels were found to be increased in the T-cell 

lymphomas subpopulation. 

In conclusion the observed HMGA deregulation in the analyzed set of canine 

lymphomas indicates an important role of the HMGA genes as differentiation 

markers in canine lymphomas. The herein presented study provides the basis for 
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future comparative research dealing with prognostic, diagnostic and therapeutic 

approaches. 
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Vet Comp Oncol. 2010 Jun;8(2):87-95. 
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4.1.3. Comparison of non-coding RNAs in human and canine cancer 

The microRNA (miRNA) family let-7 appears to play a major role in human and 

canine cancer. Thus deciphering the mode of action and regulation of let-7 but also 

of other miRNAs will greatly contribute to the development of novel cancer treatment 

strategies. 

The post-transcriptional gene silencing (PTGS) is a conserved phenomenon 

triggered among others by miRNAs. These are highly conserved among eukaryotes 

and influence diverse biological processes by regulating genes on 

post-transcriptional and evidently on transcriptional level. Owing to their high 

stability in body fluids (Brase et al., 2010) and involvement in various diseases 

miRNAs bear great potential for the development of novel prognostic, diagnostic 

and treatment modalities. 

 

III.  Comparison of non-coding RNAs in human and canine cancer.  

 

Wagner et al., Frontiers in Genetics, 2013. 

 

Herein the previously described miRNA expression patterns in non-neoplastic 

diseases and malignant neoplasias of the human and the domesticated dog were 

reviewed and compared.  

Additionally, all known human and canine mature miRNA sequences listed in the 

miRBase data base (Sanger Institute, version 16.0) were aligned with each other.  

The in silico analyses revealed that more than 2/3 of the listed canine miRNAs 

present absolute sequence complementarity to the human homologs, indicating a 

similar function in human and dog as evidenced by similar expression pattern in the 

analyzed malignancies. 

Finally the potential and advantages of the canine model for tumor research were 

highlighted. 
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4.2. Structural and functional HMGA analyses 

As it was shown in the previous sections and previously described by other groups 

the miRNA let-7 family appears to be one of the key players in gene regulation. Thus 

let-7 based therapeutic approaches might be an option to treat cancer in future. 

However, before treating a defined cancer entity with let-7 based/modifying 

therapeutics it is precondition to know why let-7 regulated genes are aberrantly 

expressed and what is their function in a cell.  

Thus the gene structure of the canine HMGA1 gene was analyzed in this part of the 

thesis. Additionally the influence of HMGA2 on the HMGA2/let-7 axis in a canine 

prostatic cell line was investigated. And finally the potency of the HMGA1 and 

HMGA2 proteins on maintenance of the stem-cell character was evaluated.  

 

VI.  Genomic characterisation, chromosomal assignment and in vivo 

localisation of the canine high mobility group A1 (HMGA1) gene the 

Canine High Mobility Group A1 (HMGA1) Gene.  

 

Beuing et al., BMC Genetics, 2008 

 

Herein the canine HMGA1 gene was characterized revealing a structure consisting 

of seven exons and six introns lacking the equivalent to the human exon 4. 

Additionally, the canine HMGA1 gene which spans in total 9524 nt was assigned to 

the chromosome 12 (CFA 12q11). Furthermore the canine HMGA1 protein was 

localized in the nucleus of canine cells.  

Finally, 55 Dachshunds were screened for a previously described exon 6 mutation 

of the HMGA1 gene. The results indicate that the previously found mutation of this 

locus seems not to be a frequent, breed specific event in the Dachshund population. 

The obtained results will enable comparative analysis of the human and canine 

HMGA1 products, thereby providing the basis for ongoing investigations of HMGA1 

related diseases. 
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Own contribution: 

- HMGA1 gene amplification, cloning and characterization 

- Transfection experiments 

- Localization and documentation of the recombinant EGFP-HMGA1 fusion 
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- Partial figure preparation (Fig. 2)  
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II.  Generation and Characterisation of a Canine EGFP-HMGA2 Prostate 

Cancer In Vitro Model.  

 

Willenbrock et al., PLoS One, 2014  

 

HMGA2 re-expression was found in several cancer entities including canine 

prostate cancer. Additionally the balance between HMGA2 and its regulator the 

micro RNA let-7 is discussed to play a major role in tumor etiology. Thus the canine 

prostatic cell line CT1258-EGFP-HMGA2 stably overexpressing HMGA2, which was 

fused to EGFP and additionally the reference cell line CT1258-EGFP, which 

expresses solely the green fluorescent protein EGFP, were established and 

characterized by flow cytometry, fluorescence microscopy, immunocytochemistry, 

quantitative real-time PCR, karyotype analyses and proliferation assays. 

Both cell lines presented hyperdiploid karyotypes as described for the native 

prostate cell line CT1258. HMGA2 transcript over expression in 

CT1258-EGFP-HMGA2 was confirmed by quantitative real-time PCR, nuclear 

HMGA2 protein accumulation was verified by fluorescence microscopy and 

immunocytochemistry. Proliferation tests revealed a positive HMGA2 impact on cell 

growth. Analyses by qRT-PCR showed a statistically significant positive effect on 

the miRNA let-7a and HMGA1 levels but not on the other analyzed HMGA2 

associated genes. 
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- Partial manuscript drafting 
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4.2.1. HMGA protein impact analyses on stem cells 

Well defined and reproducible cell culture conditions that allow large-scale 

production of stem cells whilst maintaining their characteristic features are of great 

interest in the field of tissue engineering.  

In addition, as cancer stem cells (CSC) are hypothesized to contribute to cancer 

aggressiveness (Adams and Strasser, 2008) and are difficult to enrich, basic cancer 

research relies as well on alternative stem cell sources. 

Multipotency and self-renewal are believed to be the most important features of 

stem cells enabling persistence in adult tissues throughout life. Therefore the 

proliferation impacting role of the let-7 regulated transcription factors HMGA1 and 

HMGA2 on adipose-tissue-derived mesenchymal stem cells (ADMSCs), were 

analyzed in the following study. 

 

IV.  Effects of High-Mobility Group A Protein Application on Canine 

Adipose-Derived Mesenchymal Stem Cells In Vitro.  

 

Ismail et al., Veterinary Medicine International, 2010 

 

The multilineage differentiation potential of the used canine ADMSCs was 

demonstrated by induced differentiation into osteogenic, chondrogenic and 

adipogenic cell lineages.  

The effect of the ectopic HMGA1 and HMGA2 proteins on the proliferation rate of 

the treated canine ADMSCs was investigated in vitro with a colorimetric BrdU cell 

proliferation ELISA. Growths analysis revealed a negative HMGA1 effect on the 

ADMSCs at all tested concentrations (10 – 200 ng/ml). The combined cell treatment 

with HMGA1 and HMGA2 (100, 200 ng/ml) presented as well as in HMGA1 

stimulated cells an anti-proliferative effect. The application of HMGA2 alone in the 

same concentrations as HMGA1 had no measurable impact on canine ADMSC 

proliferation.  

The in vitro HMGA2 impact on the expression of the multi-potency factors Klf4, 

SOX2, c-Myc, OCT4, and additionally endogenic HMGA2 was analyzed by a 

quantitative two-step real-time PCR. Treatment with ectopic HMGA2 was 
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demonstrated to have no measurable influence on the expression these genes in 

canine ADMSCs. 
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4.3. Tools for modification and detection of gene expression  

Following cancer diagnosis and identification of deregulated genes, gene 

therapeutic approaches can be harnessed to reconstitute or suppress the targets of 

interest. For that purpose several let-7 encoding expression vectors were 

constructed herein.  

The successful treatment with gene constructs or products depend highly on the 

efficient transfer of the corresponding molecules into the cell of interest and 

additionally on exact titer.  

As the commonly used transduction and transfection techniques have to be further 

optimized a new gold nanoparticle based transfection method was evaluated. 

Additionally, for the accurate quantification of adeno-associated viruses (AAV) a 

novel viral genome purification protocol for the subsequent analyses by real-time 

PCR was established.  

Finally, following gene expression modification it is necessary to have appropriated 

tools to monitor the target protein expression, thus cross-reactivity of a PSMA 

antibody was evaluated with the canine PSMA protein. 

 

4.3.1. Generation of miRNA let-7 constructs 

For coming analyses of the canine miRNA let-7 family members let-7a1, let-7a2, let-

7b, let-7c, let-7d, let-7e, let-7f, let-7g and let-7i the precursor encoding sequences 

of were successfully amplified and cloned into the commercially available 

pGEM-T-Easy vector (Tab. 1).  

Additionally the let-7a1, let-7a2 and let-7b variants were cloned into the 

multiple-cloning site of a commercially available pAAV-MCS vector. The expression 

cassette of these vectors is flanked by inverted-terminal repeats (ITRs). When using 

this vector for AAV production the part between the ITRs will be packaged into the 

viral particles (Tab. 1).  

Moreover the canine let-7a1, let-7a2 variants as well as a non-sense “scrambled” 

control sequence and an artificial let-7a encoding construct were cloned into the 

commercially available pEP-has-let-7a2 vector replacing the intrinsic human let-7a2 

precursor. The expression cassette of this plasmid has an EF1α-promoter and 

carries additionally a puromycin resistance gene, enabling stable transfection of 
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cells. In the following these expression cassettes were used to replace the part 

between the ITR of the pAAV-MCS vector (Tab. 1). 

  

Table 1 let-7 encoding vectors 

Vector name Insert 
pGEM-T-Easy-cfa-let-7a1 Canine let-7a1  

pGEM-T-Easy-cfa-let-7a2 Canine let-7a2 

pGEM-T-Easy-cfa-let-7b Canine let-7b 

pGEM-T-Easy-cfa-let-7c Canine let-7c 

pGEM-T-Easy-cfa-let-7d Canine let-7d 

pGEM-T-Easy-cfa-let-7e Canine let-7e 

pGEM-T-Easy-cfa-let-7f Canine let-7f 

pGEM-T-Easy-cfa-let-7g Canine let-7g 

pGEM-T-Easy-cfa-let-7i Canine let-7i 

pAAV-CMV-let-7a1 Canine let-7a1 

pAAV-CMV-let-7a2 Canine let-7a2 

pAAV-CMV-let-7b Canine let-7b 

pEP-cfa-let-7a1 Canine let-7a1 

pEP-cfa-let-7a2 Canine let-7a2 

pEP-scrambled Non-sense DNA 

pEP-AMPM-let-7a Artificial let-7a construct 

pAAV-EF1α-cfa-let-7a1 Canine let-7a1 

pAAV-EF1α -cfa-let-7a2 Canine let-7a2 

pAAV-EF1α -scrambled Non-sense DNA 

pAAV-EF1α -AMPM-let-7a Artificial let-7a construct 
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4.3.2. AAV genome isolation for quantification by absolute real-time PCR 

Successful gene therapy approaches depend highly on the efficient transfer of the 

gene of interest into a cell.  

One of the commonly harnessed viral vectors is the adeno-associated virus (AAV) 

family, which bears many advantages like a broad tropism, the disability of 

self-replication and especially a low immune response (Berns and Bohenzky, 1987; 

Snyder and Flotte, 2002; Nathwani et al., 2011; Shin et al., 2013). Although the 

maximal size of the AAV genome is limited (~ 4.7 kilo bases) (Srivastava et al., 

1983) it is sufficient for the therapeutic delivery of small genes such as miRNAs 

(Kota et al., 2009; Mueller et al., 2012). 

Accordingly, major steps were taken aiming to optimize the recombinant AAV 

generation, purification and titration methods. However, these protocols need still 

further optimization, especially the quantification techniques should not be 

overlooked as the correct viral titer is prerequisite for the reproducibility of an 

experiment and a safe application in therapy. 

 

X.  Improved rAAV genome isolation for quantification by absolute 

real-time PCR.  

 

Wagner et al., in preparation for submission. 

 

In the following technical note a novel AAV genome purification protocol is 

presented. For that purpose recombinant serotype 2 AAVs carrying the beta-

galactosidase gene, were produced. In the next step the AAV genomes were 

isolated according to the novel protocol and to two commonly used procedures. 

Finally, all AAV genomes were quantified by absolute quantitative-real time PCR as 

previously described by Dr. Jan Soller (doctoral thesis entitled “Strukturelle und 

funktionelle Analyse ausgewählter High Mobility Group Gene des Haushundes”).  

It could be demonstrated, that the novel protocol is less prone to errors and most 

importantly the measured AAV genome titers are more accurate compared to the 

other two tested protocols. 
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- Figure preparation (real-time PCR results) 
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4.3.3. AuNP based laser-transfection 

Biotechnological advances in the last decades enabled the use of genes as drugs 

and targets, and the manipulation of eukaryotic cells for therapeutic approaches. 

Nevertheless, the efficiency, safety, and toxicity of the commonly used transduction 

and transfection techniques have to be further optimized especially for sensitive cell 

types. 

 

VII.  Characterization of Nanoparticle Mediated Lasertransfection by 

Femtosecond Laser Pulses for Applications in Molecular Medicine.  

 

Schomaker et al., Journal of Nanobiotechnology, 2015. 

 

In the following research article the evaluation of an alternative gold nanoparticle 

mediated laser transfection protocol was described, offering a novel procedure for 

a highly efficient, minimally cell-toxic and up scalable in vitro manipulation of 

mammalian cells. 

Basically, the inflow of extracellular molecules into cells was achieved by fs-laser 

excitation of cell-membrane-adhered spherical gold nanoparticles inducing a 

localized membrane permeabilization. To explore the initial mechanism of 

membrane perforation theoretical simulations and laser induced effects were 

experimentally investigated by spectrometric and microscopic analysis. The 

obtained results indicate that near field effects are the initial mechanisms of 

membrane permeabilization.  

For proof of principle the canine prostatic adenocarcinoma derived cell line CT1258, 

which highly overexpresses the oncogene HMGA2, was transfected with 

fluorophore-labeled short interfering RNAs (siRNAs). The intake of the siRNAs was 

controlled by flow cytometry revealing a transfection efficacy of about 90 % and a 

cell viability of 93 %. Finally, siRNA functionality was analyzed by transfection of the 

same cell line with anti-HMGA2 short interfering RNAs (siRNAs). A target mRNA 

down regulation of approximately 40 % could be detected by quantitative real-time 

PCR. 
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4.3.4. Verification of a canine PSMA (FolH1) antibody 

Prostate cancer is a highly aggressive malignancy in pet dogs. In contrast to man 

currently neither standard screening strategies nor curative therapeutic options are 

available for dogs. In human medicine PSMA is successfully used as therapeutic 

target for human prostate cancer (Ikegami et al., 2006; Milowsky et al., 2007). 

However, in dogs the studies on PSMA expression in prostatic tissues are 

contradictory (Aggarwal et al., 2006; Lai et al., 2008) concerning their specificity for 

PSMA detection.  

Despite the high amino acid homology of 91 % between the human and canine 

PSMA (Schmidt et al., 2013), validated data on cross-reactive antibodies are still 

missing.  

 

VIII.  Verification of a canine PSMA (FolH1) antibody.  

 

Wagner et al., Anticancer Research, 2015. 

 

By this reason in the following manuscript a monoclonal antibody, reactive with 

human PSMA protein was evaluated for cross-reactivity with the canine counterpart 

in Western Blot (WB) analysis. Antibody cross-reactivity with the canine protein in 

WB was confirmed by mass spectrometry proofing the YPSMA-1 antibody clone 

specificity for canine PSMA. This antibody represents a reliable tool for coming 

comparative PSMA studies. 
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Copyrighted publication (http://www.ncbi.nlm.nih.gov/pubmed/25550545).  

http://www.ncbi.nlm.nih.gov/pubmed/25550545
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5. Discussion 

Cancer is a group of malignant diseases spontaneously occurring in human and 

animals. Except hereditary an unhealthy life style, poor nutrition and environmental 

risk factors are favoring molecular deregulations and mutations, which contribute to 

the malfunction of genes (American Cancer Society. Cancer Facts & Figures 2013). 

In the last decades a huge number of genes were identified with many of them being 

frequently deregulated in malignant neoplasias. On this basis various molecular 

diagnostic, prognostic and therapeutic approaches for cancer treatment were 

developed. Nevertheless, a large percentage of patients still die after developing 

cancer despite of an aggressive treatment regimen (Goldblatt and Lee, 2010), 

highlighting the need for better therapeutic agents and for biomarkers enabling early 

diagnosis. 

The development of novel, more effective cancer treatment strategies relies on a 

better knowledge of the genetic and epigenetic changes contributing to this kind of 

malignancy. In this regard model organisms play a great role.  

As pet dogs meet many of the criteria constituting a good model for different human 

cancer entities, the aim of the present thesis was the analysis of several canine 

orthologous genes in the context of canine malignant neoplasias. 

 

5.1. Gene expression analyses 

5.1.1. Prostate cancer 

Although the knowledge of the molecular changes in PC has significantly increased 

in the last decades, its diagnosis and therapy are still challenging. Additionally, 

actually no reliable molecular marker for treatment of canine PC exist thus the 

treatment is mostly palliative (Leroy and Northrup, 2009) similarly to the human 

hormone refractory PC (Divrik et al., 2012).  

Within the first review article presented within this thesis it was highlighted that the 

miRNA let-7 family, the directly by let-7 regulated protein-encoding genes CCND2, 

HMGA1, HMGA2, IL6, RAS as well as the downstream targets AR and HMGB1, all 

of which are commonly deregulated in human prostate cancer and other neoplasias, 

are not acting in solitude but are closely interwoven with each other. Additionally, it 

is of special interest that the miRNA let-7 family members are major players in the 
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regulation of these genes and appear to contribute greatly to the maintenance of the 

“Ying and Yang” in non-neoplastic cells. For that reason the complex intra- and 

intercellular genetic interactions of the let-7 family and associated genes must be 

further investigated. 

Owing to that the second presented study deals with the expression analysis of 

HMGA1, HMGA2, their regulator the miRNA let-7a, additionally the other above 

mentioned let-7 targets and the associated genes FolH1, Klf4, MAPK1, PI3KCA, 

and PTEN in canine PC. The expression of the canine AR was not quantified as the 

transcripts encoded by this gene were not adequately characterized.  

In accordance with a previous study from Winkler and colleagues (Winkler et al., 

2007), HMGA2 was statistically significantly over expressed in all herein analyzed 

adenocarcinoma derived tissues of the canine prostate gland and in the 

adenocarcinoma derived prostatic cell lines CT1258 and DT08/46. On the other 

hand low HMGA2 levels were measured in all non-neoplastic samples. This is in 

accordance with the previous observation that in humans HMGA2 expression is low 

or barely detectable in most adult tissues (Rommel et al., 1997). 

Compared to non-neoplastic tissue specimens elevated levels of the HMGA2 

regulator let-7a were present in the hyperplastic and malignant tissues as well as in 

the three cell lines CT1258, DT08/40 and DT08/46. Remarkably, a similar 

observation, previously made by our group, was that in canine oral squamous cell 

carcinomas HMGA2 and let-7a expression was as well up regulated (Sterenczak et 

al., 2014). This are interesting similarities, as the regulator and target gene do not 

show a reciprocal correlation as described in human lung cancer (Lee and Dutta, 

2007).  

However if the elevated let-7a levels are a cellular response to elevated oncogene 

levels, which are regulated by let-7a or if cancer develops as a consequence of the 

let-7a up regulation needs to be clarified. 

Human PC-3 cells were previously reported to exhibit a defective MAPK pathway. 

Reconstitution of this pathway by expression of a constitutively active, recombinant 

MAPK1 effectively reversed the neoplastic phenotype and prevented aberrant cell 

proliferation (Moro et al., 2007). In accordance, lowest MAPK1 levels were found in 

all malignant canine PC samples. On the other hand MAPK1 up regulation was 
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monitored to be associated with survival of castrate-resistant human PC (Mukherjee 

et al., 2011).  

Similarly to MAPK1, HMGB1 expression was statistically significantly lower in the 

malignant tissues as well as in two of three cell lines. In contrast to the expression 

in the herein analyzed canine PC samples, previous studies reported elevated 

HMGB1 levels among others in human PC (Ishiguro et al., 2005; Tang et al., 2010).  

The expression analyses of the other protein-encoding genes did not present a 

correlation with canine PC. However, as the total number of prostatic samples used 

in this study was very low (n=14) and tumors are often an accumulation of 

heterogenic cells, it cannot be excluded that analysis of additional samples or 

cellular sub-fractions would produce more obvious results. 

Additionally, another limitation of this study is that the obtained results do not give 

any information about the presence of mutations within the analyzed transcripts. 

These changes might destroy or change the function of the gene products thus 

having dramatic impact on the cell equilibrium without being visible in quantitative 

real-time PCR (qRT-PCR) analyses. Nevertheless, the obtained data are 

encouraging further studies with the canine model. 

 

5.1.2. Lymphoma 

The canine HMGA2 gene appears to be associated with cancer of the prostate gland 

as reported by Winkler et al. (Winkler et al., 2007) and as confirmed herein. Owing 

to that the expression of this promising molecular target as well of its sister gene 

HMGA1 was investigated in canine hematopoietic cancer.  

In the herein presented study from Joetzke et al. 2010 a statistically significant 

HMGA1 up regulation was observed in lymph nodes from dogs with B-cell but not 

T-cell lymphomas. It is notable that HMGA2 presented a reciprocal expression 

pattern to HMGA1, with low transcript levels in specimen with B-cell but elevated 

levels in T-cell lymphomas. Also the increased HMGA2 levels in T-cell lymphomas 

were not statistically significant (possibly due to low T-cell lymphomas sample 

number, n=3) these two architectural transcription factors bear great potential as 

molecular therapeutic targets for the respective lymphoma subgroup but may as 

well be valuable differentiation markers for canine lymphomas. Additionally, owing 

to the fact that the HMGA1 as well as the HMGA2 genes are direct let-7 targets, 
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these canine cancer entities could be potentially treated with let-7 based 

therapeutics. 

However, as the sample number in this study was very low the potency of the 

HMGAs as molecular marker for canine lymphoma has to be proofed using a greater 

set of tissue specimen. 

 

5.1.3. Comparison of non-coding RNAs in human and canine cancer 

Once dismissed as genomic refuse as transcribed from “junk DNA”, micro RNAs 

(miRNAs) were discovered to regulate gene expression at post-transcriptional level 

(Tomari and Zamore, 2005; Schubert et al., 2013) and are furthermore discussed to 

be involved in the transcriptional regulation of genes (Chen et al., 2012).  

The discovery of the post-transcriptional gene silencing (PTGS) mediated by 

miRNAs is considered as a major breakthrough in biology. Nevertheless, the precise 

role of this mechanism in cell biology is still poorly understood. Thus comparative 

studies between different species are essential for cancer research.  

As described in Wagner et al. 2012 more than 200 canine mature miRNAs 

(approximately 2/3) were found to present full sequence homology to the published 

human miRNAs (Sanger Institute, version 16.0) (Kozomara and Griffiths-Jones, 

2011) enabling the use of human miRNA assays for research on canine cells.  

As a great number of human and canine miRNAs are evolutionary conserved and 

many of these are involved in similar diseases of both species, it is likely that the 

expression patterns are also similar. Nevertheless, homologous miRNAs presenting 

similar expression pattern in different species, should be considered with care as 

their functions could still deviate strongly depending on other factors. Even individual 

miRNAs in the same species can have oncogene suppressive functions or act 

oncogenic depending on diverse tissues and different time points in development 

(Boggs et al., 2008). 

However, an aberrant miRNA expression is partially postulated to be an early event 

in human tumorigenesis (Cortez et al., 2012). Thus many miRNAs bear great 

potential as non-invasive biomarkers for different clinically relevant types of human 

(Hao et al., 2011; Cortez et al., 2012; Shore et al., 2012) and as well canine cancers 

(von Deetzen et al., 2013). Additionally, they present a potent target for gene 

manipulation in therapeutic approaches.  
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5.2. Structural and functional HMGA analyses 

Chromosomal alterations of the HMGAs are as well discussed to be an early event 

in tumor development (Ingraham et al., 2006; Fusco and Fedele, 2007). 

Rearrangements of the human chromosome 6 (6p21) and 12 (12q15), which harbor 

the HMGA1 and HMGA2 gene respectively (Manfioletti et al., 1991) were associated 

with benign human lipomas (Italiano et al., 2007), pulmonary chondroid hamartomas 

(Tallini et al., 2000), uterine leiomyoma (Kazmierczak et al., 1996; Nezhad et al., 

2010) and myeloid malignancies (Odero et al., 2005). Remarkably, HMGA 

re-expression is as well associated with a variety of human malignant neoplasias 

such pancreatic cancer (Watanabe et al., 2009), breast cancer (Shah et al., 2013), 

lung cancer (Di Cello et al., 2008), retionoblastomas (Mu et al., 2010) and 

lymphomas (Wood et al., 2000; Baldassarre et al., 2001). Additionally, Winkler et al. 

described a correlation between HMGA2 and canine prostate cancer (Winkler et al., 

2007). 

HMGA1 expression was reported to be post-transcriptionally regulated in a negative 

way by members of the let-7 family (Rahman et al., 2009; Schubert et al., 2013). Its 

sister gene HMGA2 is as well a let-7 target (Mayr et al., 2007). Interestingly, the 

HMGA2 mRNA bears seven let-7 miRNA binding sites in its 3’-untranslated region 

(3’-UTR) enabling efficient translational repression (Mayr et al., 2007). 

As abnormal HMGA gene expression appears to play a role in the investigated 

canine epithelial and hematopoietic cancer entities, the knowledge of their gene 

structure is of great value for ongoing studies. Thus the canine HMGA1 gene 

structure, which was not completely known until the year 2008, was investigated 

herein.  

Structural analysis of the canine HMGA1 gene as described in Beuing et al. 2008 

revealed the lack of the equivalent to the human exon 4 similarly to the mouse 

genome, which additionally lacks the equivalent to the human exon 3 (Pedulla et al., 

2001). Accordingly, the canine HMGA1, which is located on chromosome 12 

(CFA12q11), consists of seven exons and six introns spanning in total 9524 bp. 

These specification induced evolutionary changes appear not to have altered the 

translation and function of the protein potentially owing to the fact that the absent 

exons are not part of the protein coding sequence (Friedmann et al., 1993). 
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However, a context dependent impact on transcriptional or post-transcriptional 

regulation in the dog cannot be excluded. 

Interestingly, the canine HMGA1 gene was previously reported to map a region, 

which is not frequently affected by chromosomal alterations (Becker et al., 2003) 

thus uncontrolled expression of the canine homolog is likely triggered by other 

mechanisms such as point mutations, post-transcriptional or post-translational 

modifications. 

In this context a small nucleotide polymorphism was previously found in the exon 6 

of the HMGA1 gene of a Dachshund (Murua Escobar et al., 2004). Therefore herein 

55 Dachshund samples were screened for HMGA1 point mutations in the respective 

exon. A breed specific predisposition was not found. However, while the presented 

study focused on mutations lying within the exon 6, breed specific mutations in other 

regions of the gene cannot be excluded.  

Another possible mode of HMGA deregulation was indicated by a study from 

Dement and colleagues, who observed a cell cycle dependent translocation of the 

HMGA1 protein from the nucleus to the cytoplasm and mitochondria in the mouse 

embryonic fibroblast cells NIH3T3 and the human transgenic MCF7 cell line 

(Dement et al., 2005). These findings demonstrate a highly dynamic cellular HMGA1 

protein function, the spatially aberrant expression of which is potentially able to 

trigger cancer development. 

Thus the cellular localization of the canine HMGA1 and HMGA2 proteins was 

analyzed in the herein presented studies from Beuing et al. 2008 and Willenbrock 

et al. 2014.  

Recombinant HMGA1 and HMGA2 proteins were found to be localized in the 

nucleus of canine cells, similarly to the human (Disney et al., 1989; Hristov et al., 

2009; Chiefari et al., 2012) and murine orthologs (Disney et al., 1989) presenting as 

well an irregular distribution (Harrer et al., 2004; Henriksen et al., 2010). The 

HMGAs are highly conserved among species (Reeves and Beckerbauer, 2001), 

owing to that it is likely that they have as well very similar roles in different 

organisms. Accordingly, the nuclear localization of the canine HMGA proteins 

implies an identical role as architectural transcription factors as reported for other 

mammalia (Narita et al., 2006; Henriksen et al., 2010). 

According to the above presented results HMGA2 and its regulator the miRNA let-7a 



Discussion 

175 

 

seem to play an important role in neoplasias of the prostate gland thus their 

relationship in PC etiology is of special interest. For more detailed analyses of the 

HMGA/let-7 axis, the canine PC derived cell line CT1258 was used to establish the 

stably transfected cell line CT1258-EGFP-HMGA2 and the control cell line 

CT1258-EGFP as described in Willenbrock et al. 2014.  

CT1258-EGFP-HMGA2 cells present an in vitro model system, which highly 

overexpresses an EGFP-HMGA2 fusion protein. Notably, the recombinant HMGA2 

transcript lacks the 3’-UTR. This is an interesting feature as native HMGA2 mRNAs 

bear seven let-7 binding sites in its 3’-UTR (Mayr et al., 2007). In accordance, native 

HMGA2 transcripts were previously reported to be negatively regulated by several 

members of the let-7 family (Park et al., 2007; Shi et al., 2009), which were 

described to be deregulated in human PC (Dong et al., 2010; Nadiminty et al., 

2012a; Nadiminty et al., 2012b). A truncated HMGA2 transcript lacking the 3’-UTR 

escapes the negative regulation by let-7 resulting in elevated HMGA2 levels (Lee 

and Dutta, 2007; Mayr et al., 2007; Young and Narita, 2007). 

As well of interest is the fact that HMGA2 transcripts were recently reported to 

modulate the let-7 impact on the global gene expression by acting as competing 

endogenous RNAs (ceRNA) (Kumar et al., 2014) potentially favoring over 

expression of other direct let-7 targets such as CCND2 (Dong et al., 2010), c-Myc 

(Sampson et al., 2007), and NRAS (Johnson et al., 2005). Furthermore, HMGA2 

suppression was previously suggested to impact the down regulation of its sister 

gene HMGA1 (Berlingieri et al., 1995), which in turn is as well negatively regulated 

by let-7 (Schubert et al., 2013) and was additionally found to be aberrantly 

expressed in human PC (Takaha et al., 2004; Takeuchi et al., 2012).  

Herein a positive influence on HMGA1 levels by ectopic EGFP-HMGA2 expression 

in CT1258-EGFP-HMGA2 cells was observed. In addition, HMGA2 over expression 

appears to positively impact mature let-7a miRNA levels, but not the transcript 

quantity of the analyzed HMGA2 controlled targets SNAI1, SNAI2 and CDH1. These 

results are remarkable as they demonstrate the complexity of the HMGA2/let-7 axis.  

A possible explanation for the increase of the mature let-7a levels following 

recombinant HMGA2 expression could be a response of the cells trying to down 

regulate HMGA2. Another plausible explanation could be that the endogenous 

HMGA2 was down regulated upon ectopic HMGA2 over expression. Consequently 
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there would be less native HMGA2 transcripts able to act as ceRNAs resulting in 

increased mature let-7a levels.  

In the performed qRT-PCR the total HMGA2 levels were shown to be elevated in 

the cell line CT1258-EGFP-HMGA2 according to the over expression of the 

EGFP-HMGA2 transcripts when compared to CT1258. However, the total HMGA2 

levels do not reflect the percentage of endogenous to ectopic transcripts as the used 

assay was not able to discriminate between these two transcript variants. 

Moreover, a positive EGFP-HMGA2 effect on growth of canine cells was detected 

as previously described for HMGA proteins in other species (Di Cello et al., 2013; 

Keane and de Magalhaes, 2013). This is remarkable as the positive effect on cell 

proliferation could be further stimulated by ectopic HMGA2 over expression 

regardless of the already very high HMGA2 levels in the native CT1258 cells.  

Furthermore, cytogenetic analyses of both fluorescent cell lines 

CT1258-EGFP-HMGA2 and CT1258-EGFP were performed as stable transfection 

might change the chromosomal structure. In addition exogenous HMGA2 over 

expression was reported to induce chromosomal aberrations following DNA 

damage (Li et al., 2009).  

The herein presented study revealed a comparable hyperdiploid karyotype for both 

derived fluorescent cell lines as described for the native CT1258 cells (Winkler et 

al., 2005). These results indicate two things: First of all the observed effects on cells 

are not triggered by global chromosomal rearrangements but likely induced by 

ectopic HMGA2 over expression. Secondly, the ectopically highly over expressed 

HMGA2 did not induce chromosomal aberrations as reported by Li et al. (Li et al., 

2009). Though, the difference to the experiments done by Li and colleagues is that 

in the presented study no DNA damage was induced in cells ectopically over 

expressing HMGA2. Finally, the native CT1258 cells are potentially adapted to 

elevated HMGA2 levels as this protein was already highly expressed in this cell line. 

As the spatial HMGA expression appears to be a dynamic process and the HMGA2 

related HMGB1 protein was described to have a cytokine like function (Muller et al., 

2001) it is tempting to hypothesize an extracellular role for the HMGAs as well. In 

fact, the extracellular HMGA protein application on porcine chondrocytes was found 

to have a positive effect on cell growth in vitro (Richter et al., 2009). Thus 

extracellular HMGA proteins actively or passively secreted by cancer cells could 
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potentially stimulate tumor growth in vivo. On the other hand due to the fact that the 

HMGAs are highly expressed during embryogenesis (Chiappetta et al., 1996) but 

are barely detectable in most adult tissues (Manfioletti et al., 1991; Chiappetta et 

al., 1996; Rommel et al., 1997) they might be a valuable tool for cell modification 

when expressed in the correct context.  

To investigate if the HMGA proteins hold potential to preserve multi-potent cells from 

differentiation in cell culture, and to evaluate their potential extracellular role, 

recombinant HMGAs were applied onto canine adipose-tissue derived 

mesenchymal stem cells (ADMSCs). Subsequently, the impact of the HMGA1 and 

HMGA2 proteins on the phenotype, multipotency factors and proliferation rate of 

canine ADMSCs was analyzed.  

Multi-potency and self-renewal are the most important characteristics of stem cells 

and several factors such as the HMGA protein family were described to impact these 

features (Shah et al., 2012).  

Within the herein presented study from Ismail et al. 2012 it could be shown that 

recombinant HMGA1 protein application alone or in combination with HMGA2 had 

a positive effect on the proliferation of multi-potent canine ADMSCs. In contrast to 

HMGA1, the HMGA2 application alone had no effect, neither on cell growth nor on 

stem cell marker expression. This is astonishing as Richter et al. reported a 

growth-promoting effect of synthetic HMGA2 peptides on canine ADMSCs (Richter 

et al., 2011). One possible explanation for these controversial results is that the 

peptides used by Richter and colleagues were much smaller and had no 

post-translational modifications as the herein used recombinant proteins. Thus, 

these could potentially be easier taken up by the cells. The assumption that the 

molecule size contributes to this discrepancy is probable as the HMGAs are 

architectural transcription factors (Narita et al., 2006; Henriksen et al., 2010) and 

were not found yet to act as extracellular signal mediators. Owing to that it is unlikely 

that HMGA2 specific receptors on the cell surface exist. Another aspect is the cell 

identity due to the fact that the ADMSCs used by Richter et al. 2011 were not 

proofed to be able to differentiate into other lineages as it was described in the 

herein discussed study from Ismail et al. 2012. The passage number of the cells 

could influence the protein impact on cells as well. An additional explanation could 

be that Richter et al. 2011 used lower concentrations of fetal calf serum (FCS) in the 
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used growth medium, which potentially contains bovine HMGA2. The bovine protein 

homolog might have competed with the used recombinant HMGA2 proteins. 

However, when accepting that HMGA2 is unspecifically taken up by the cells and 

the bovine HMGA2, which is potentially present in the used FCS, can abolish the 

effects of recombinant HMGA2 the following doubt still remains. As described in the 

study from Willenbrock et al. 2014 ectopic EGFP-HMGA2 over expression in 

CT1258 cells, which were as well cultivated in growth medium containing 10 % FCS, 

could still enhance the proliferation rate of the prostatic cells despite the 

endogenous HMGA2 over expression. However, this was another cell type thus 

additional studies are necessary to investigate these discrepancies in results.  

Concerning HMGA1, the observed results indicate that it can be taken up by the 

ADMSCs as an enhanced growth rate could be observed. This offers the possibility 

to modify ADMSC proliferation by extracellular HMGA1 application without 

introduction of genetic material into cells and avoiding the associated side effects 

such as the biological risk of insertional mutagenesis.  

However, although the exact mechanisms of HMGA uptake in ADMSCs or other cell 

types need further clarification, it could offer new opportunities for regenerative 

medicine. Additionally the knowledge of the HMGA biogenesis and function in stem 

cells could provide valuable information in the context of cancer as cancer stem cells 

(CSC) are hypothesized to contribute to cancer aggressiveness (Adams and 

Strasser, 2008). In addition, as this type of cells represent as few as 1 in 104 to 107 

of the tumor cells, depending on the type and advancement of the tumor (Adams 

and Strasser, 2008) and is often difficult to enrich in adequate quantities, basic 

research in this field relies as well on alternative stem cell sources such as ADMSCs.  

 

5.3. Tools for modification and detection of gene expression  

Ectopically expressed naturally occurring miRNAs or protein-encoding genes have 

the capability to act therapeutically in an organism. Therefore adequate vehicles are 

needed to efficiently transport the gene products or the molecules encoding the 

respective gene into the cell of interest. For that reason it is of major interest to 

further optimize or evaluate techniques enabling therapeutic approaches in vitro and 

in vivo and to establish tools enabling the monitoring of the target expression. 
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5.3.1. Generation of miRNA let-7 constructs 

As presented herein the miRNA family let-7 might be a powerful tool for the 

modification of the global gene expression and therapeutic approaches. Thus 

several expression vectors encoding different members of the let-7 family were 

constructed. 

As shown in the gene expression studies with the canine prostate cancer and 

lymphomas at least one of the direct let-7 targets HMGA1 or HMGA2 was over 

expressed. Thus these cancer entities potentially represent valuable candidates for 

the evaluation of let-7 based therapeutic approaches in future. 

 

5.3.2. rAAV genome isolation for quantification by absolute real-time PCR 

Adeno-associated viruses (AAV) are commonly harnessed as vehicles for the 

efficient delivery of genetic material. 

As the success and reproducibility of AAV mediated therapies depend among others 

on exact viral titers, a novel viral genome (VG) purification protocol was evaluated 

for the following sensitive and highly reproducible quantification by absolute real-

time PCR.  

The novel protocol for VG isolation proved to be superior compared to the commonly 

used NaOH or DNaseI/proteinase K protocols.  

The NaOH pretreatment of the viral particles and the following neutralization with 

HCl have to be seen critically. As it could be observed in our previous experiments, 

the measured titers varied greatly in the triplica analyses. The explanation for the 

inter- and intra-experimental titer variances are likely caused by incomplete 

”digestion” of the AAV particles, which should release the viral genomes during the 

first denaturation step of the following qRT-PCR. Additionally, often very low titers 

were measured, which could be explained by “over digestion” with NaOH. Previous 

non presented experiments confirmed that naked plasmid DNA degrades 

completely when incubated in 1 M NaOH for a short time. However, to long or to 

short NaOH pretreatment leads to inaccurate titers, which appear to be lower than 

they really are. 

The other commonly used method for AAV genome isolation is basically similar to 

the herein presented protocol but lacks the final on-column VG purification, which 
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may as well result in lower titers as the VGs are degraded by the residual DNaseI 

activity or the qRT-PCR inhibited by residual proteinase K activity. 

 

5.3.3. AuNP based laser-transfection 

Transfection techniques represent a good, up-scalable tool for in vitro applications 

as they enable direct modification of gene expression, which is crucial to establish 

therapeutic approaches in oncology and other areas of biomedical research.  

The herein presented AuNP based laser transfection technique proves to be a very 

good alternative, when transferring small molecules, to conventional transfection 

techniques as it is theoretically cell type independent, non-toxic and up-scalable.  

For proof of principle this novel method was harnessed to transfect anti-HMGA2 

short interfering RNAs (siRNAs) into the canine prostatic cell line CT1258. As this 

cell line expresses extremely high HMGA2 levels compared to healthy tissue it is 

remarkable that it was possible to down regulate the HMGA2 mRNA-levels by up to 

≈40 %. It is notable that previous transfection experiments (not presented herein) 

with the same siRNAs and a chemical transfection reagent were less effective 

concerning target down regulation despite a transfection efficiency of over 60 %. 

The so far achieved results indicate great potential for in vitro applications of siRNAs 

or miRNAs.  

 

5.3.4. Verification of a canine PSMA (FolH1) antibody 

After manipulating gene expression in cells it is necessary to monitor the expression 

of the ectopically expressed gene or the regulated target. This can be easily done 

by different PCR techniques but as mRNA-levels are not always proportional to the 

translated protein product it is often necessary to analyze the protein expression.  

In this regard biotechnologically produced antibodies must always be tested for their 

specific reactivity. 

Owing to the lack of a specific canine PSMA (FOLH1) antibody and the still not 

entirely clear situation of the PSMA expression in canine prostate cancer, the 

antibody clone YPSMA-1, which was raised against a human peptide, was tested 

herein.  

In detail, the specific reaction of the monoclonal antibody was demonstrated with 

the canine ortholog in western blot (WB) analysis using lysates of the previously 
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described canine prostatic cell lines CT1258, DT08/40 and DT08/46. Additionally 

the human prostatic cell lines VCaP, LnCaP, and PC-3 were used as positive 

controls.  

The expected size of the human FolH1 homodimer in a SDS-PAG separation has a 

size of ≈100 kDa (Schulke et al., 2003). The WB analysis of the human control 

samples revealed two prominent PSMA bands of ≈50 kDa and ≈100 kDa in size. 

The analysis of the canine CT1258 and DT08/40 lysates showed as well two protein 

bands matching the size of the human counterparts. In the DT08/46 cell lysates no 

protein bands were detected. 

In conclusion to previous studies the PSMA expression was lowest in the cell line 

PC-3 among the human cell lines. In the canine cell lines CT1258 and DT08/40 the 

PSMA levels were low similarly to PC-3. The low protein levels in the canine cell 

lines reflect the very low FolH1 mRNA levels with a CT over 35 measured by qRT-

PCR in the presented manuscript “Let-7 and associated genes in canine prostate 

cancer”.  

However, regardless of the target levels in the cell lines the evaluated antibody was 

shown to react in WB with the canine PSMA. Cross-reactivity with canine PSMA 

was exemplarily confirmed by mass spectrometric analyses of the recovered 

CT1258 protein bands. In conclusion, the previous immunohistochemistry 

evaluation (Lai et al., 2008) and especially the herein presented WB as well as mass 

spectrometric analyses prove that the YPSMA-1 clone represents a reliable tool for 

coming PSMA studies in the dog. 
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6. Outlook 

Tumors are believed to evolve through the gradual accumulation of genetic and 

epigenetic alterations. Chromosomal aberrations and nucleotide mutations account 

to the genetic changes and contribute, beside the genetic and epigenetic 

constitution of individuals, to the diversity of cancer cells. This heterogeneity makes 

it difficult or even impossible to identify omnipotent molecular cancer markers and 

is responsible for often confusing and contradictory results as well as for 

unpredictable disease outcome following therapy.  

However, although the influence of a single molecular disease marker on cancer 

etiology in individuals can vary greatly due to the mentioned variability and stage of 

organismal development, this knowledge is crucial for the understanding of 

molecular processes. Moreover, as in future whole genome and transcriptome 

sequencing will provide information on individual molecular changes for lower costs, 

harnessing this technique for cancer research and especially for medical routine will 

highly depend on the knowledge where to look at in the obtained huge datasets. 

Owing to the described similarities between species and due to ethical reasons 

comparative studies as presented herein are very important for the development of 

successful cancer treatment strategies. 
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