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Abstract

The analysis and understanding of human movement is central to many applications such as sports
science, medical diagnosis and movie production. The ability to automatically monitor human ac-
tivity in security sensitive areas such as airports, lobbies or borders is of great practical importance.
Furthermore, automatic pose estimation from images leverages the processing and understanding of
massive digital libraries available on the Internet. We build upon a model based approach where the
human shape is modeled with a surface mesh and the motion is parameterized by a kinematic chain.
We then seek for the pose of the model that best explains the available observations coming from
different sensors.

In a first scenario, we consider a calibrated multiview setup in an indoor studio. To obtain very
accurate results, we propose a novel tracker that combines information coming from video and a small
set of Inertial Measurement Units (IMUs). We do so by locally optimizing a joint energy consisting
of a term that measures the likelihood of the video data and a term for the IMU data. This is the
first work to successfully combine video and IMUs information for full body pose estimation. When
compared to commercial marker based systems the proposed solution is more cost efficient and less
intrusive for the user.

In a second scenario, we relax the assumption of an indoor studio and we tackle outdoor scenes with
background clutter, illumination changes, large recording volumes and difficult motions of people
interacting with objects. Again, we combine information from video and IMUs. Here we employ
a particle based optimization approach that allows us to be more robust to tracking failures. To
satisfy the orientation constraints imposed by the IMUs, we derive an analytic Inverse Kinematics
(IK) procedure to sample from the manifold of valid poses. The generated hypothesis come from a
lower dimensional manifold and therefore the computational cost can be reduced. Experiments on
challenging sequences suggest the proposed tracker can be applied to capture in outdoor scenarios.
Furthermore, the proposed IK sampling procedure can be used to integrate any kind of constraints
derived from the environment.

Finally, we consider the most challenging possible scenario: pose estimation of monocular images.
Here, we argue that estimating the pose to the degree of accuracy as in an engineered environment
is too ambitious with the current technology. Therefore, we propose to extract meaningful semantic
information about the pose directly from image features in a discriminative fashion. In particular,
we introduce posebits which are semantic pose descriptors about the geometric relationships between
parts in the body. The experiments show that the intermediate step of inferring posebits from images
can improve pose estimation from monocular imagery. Furthermore, posebits can be very useful as
input feature for many computer vision algorithms.

Keywords: human pose estimation, model based pose estimation, inertial sensors, posebits.
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Zusammenfassung

Die Analyse und Interpretation menschlicher Bewegungsabläufe ist ein wichtiger Bestandteil vieler
Anwendungen zum Beispiel in der Sportwissenschaft, der medizinischer Diagnosestellung und der
Filmindustrie. Die Überwachung von sicherheitskritischen Bereichen wie Flughäfen, Lobbys oder
Grenzübergängen ist ebenfalls von großer praktischer Relevanz. Auch macht es die automatische
Bewegungsschätzung möglich riesige (personenbezogene) Datenmengen des Internets zu verarbeiten
und zu verstehen. Die vorgestellten Verfahren wählen einen Modell-gestützten Zugang, bei dem die
menschliche Gestalt mit einem Polygonnetz als Oberfläche und die Bewegung über eine kinema-
tische Kette parametrisiert wird. Es wird diejenige Konfiguration gewählt, die am besten mit den
beobachteten Sensordaten übereinstimmt.

Zu Beginn wird ein kalibriertes Mehrkamerasystem in einer Studioumgebung betrachtet. Hierfür
wird ein Nachführsystem vorgestellt, welches auf hohe Präzision abzielt und die Informationen aus
Video und Orientierungs- und Beschleunigungssensoren (Inertial Measurement Units, IMUs) zusam-
menführt. Die verwendete, lokal optimierte, Energiefunktion setzt sich jeweils aus einem Term für
die Wahrscheinlichkeit einer Pose, passend zu den Videodaten, und einen Zweiten, für die IMU
Daten, zusammen. Dies führt zur erfolgreichen Anwendung, die Video- und IMU-Daten für die
Lageschätzung des gesamte Körpers kombiniert. Im Vergleich zu kommerziellen Marker-basierten
Systemen ist das vorgestellte Verfahren kostengünstiger und weniger invasiv.

Im Anschluss werden Außenaufnahmen mit komplexen Hintergrund,
Beleuchtungsveränderungen und anspruchsvollen menschlichen Bewegungen mit Objektinteraktion
betrachtet und damit die Anforderung an die Umgebung des Systems gelockert. Wieder werden
Videodaten und IMU-Daten gemeinsam genutzt. Ein Partikel-basiertes Optimierungsverfahren hilft
hier die Robustheit gegenüber Nachführfehlern zu erhöhen. Die von den IMUs gestellten Orien-
tierungsnebenbedingungen werden durch ein analytisches inverses Kinematik-Verfahren (IK) geloest,
das zufällig Köperkonfigurationen aus der zugrundeliegenden Mannigfaltigkeit der gültigen Konfig-
urationen zieht. Die generierten Hyphothesen sind Elemente eines niedrigdimensionalen Hypothe-
senraums und reduzieren damit den notwendigen tatsächlichen Suchraum. Mehrere Experimente
zeigen, dass das vorgestellte Nachführsystem zuverlässig und robust funktioniert. Desweiteren kann
die vorgestellte IK-Methode dazu genutzt werden, jede Art von Nebenbedingungen der Umgebung
zu berücksichtigen.

Schlussendlich betrachten wir den anspruchsvollen Fall der menschlichen Lageschätz-
ung aus monokularen Bildern. Es ist anzunehmen, dass eine Genauigkeit, die mit einer Qualität in
einer kontrollierten Umgebung vergleichbar wäre, mit den momentanen technischen Möglichkeiten
ein zu ambitioniertes Ziel darstellt. Deshalb werden weitere aussagekräftige semantische Informa-
tionen über die Lage direkt aus dem Bild extrahiert. Es werden Posebits eingeführt, semantische
Gestaltdeskriptoren, die das geometrische Verhältnis der Körperteile zueinander beschreiben. Die Ex-
perimente belegen, dass der vorgelagerte Schritt der Posebit-Schätzung aus Bildern die menschliche
Lageschätzung von monokularen Bildern verbessert. Desweiteren stellen sich Posebits auch als ein
sehr nützliches Eingabemerkmal für andere Bilderkennungsalgorithmen heraus.

Schlagwörter: Menschlichen Bewegungen, Model-Basiertes Pose-Schätzung, Beschleunigungssen-
soren, Posebits.
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1

1 Introduction

1.1 Problem Statement

In this thesis we address the problem of estimating the pose of humans from images and inertial sen-
sors. The pose of a human is determined by the location of the joints and bones in the body. The level
of detail of the pose is application dependent: for applications such as sports science and medical
studies a sub-centimeter accuracy is necessary but for applications such as scene understanding or
action recognition a coarse representation of the pose might be enough. In this thesis, we introduce
two solutions for pose estimation at different levels of detail. The first uses a multicamera setup and
Inertial Measurement Units (IMUs) to obtain a very high degree of accuracy. The second solution
extracts qualitative pose information from a single image. This qualitative representation of pose
consists of bits with information about relative position of body parts, e.g., the left leg is in front of
the right leg, the left hand is above the head etc.

Commercial systems such as Vicon, Simi, Qualisys for (MoCap) are marker-based, which limit
their applicability in outdoor scenarios where engineered rooms are not an option. Hence, many of
approaches have been proposed to estimate the pose from images. Unfortunately, the accuracy of such
approaches is still far from the accuracy achieved by commercial systems, specially in uncontrolled
outdoor scenarios. This is mostly due to the image ambiguities present in outdoor environments. By
contrast, we propose a hybrid tracking system that combines information from video and inertial sen-
sors to obtain much more accurate results. To make the system as un-invasive as possible, we limit
the number of IMU’s to be used to five which are attached at the back and the lower extremities. We
formulate several solutions to fuse image and orientation cues efficiently exploiting the advantages of
each sensor type. The accuracy of our hybrid system is competitive with marker based systems even
in outdoor environments where extracting reliable image cues is very challenging.
Unfortunately, for certain applications neither IMUs nor multiview images are available, for exam-
ple in video surveillance, motion capture of live events or motion capture of video archives in video
collections. In such scenarios the only available information comes from a single monocular image.
However, in many cases the artificial intelligence system might to perceive only an abstract represen-
tation of the human pose to understand and interact with the physical world. Hence, we also propose
an inference system that extracts semantic pose information directly from monocular images.

1.2 Motivation

Recognizing and understanding the pose of humans has many potential applications Fig. 1.1. For
an artificial system interacting with humans it is essential to perceive and understand the human
pose. Indeed, several studies show that at least 60% of communication comes from body language.
A system capable to understand the human pose in real time enables man-machine interaction, i.e.,
controlling and interacting with the artificial intelligence systems through gestures. In the movie
and gaming industry Motion Capture (MoCap) data is used for character animation, see Fig. 1.2.
Notable movies using cutting edge performance capture technology are Avatar, The Adventures of

1Image sources: (a) Credit: James Martin/CNET Networks, (b) www.qualysis.com, (c) Microsoft Gaming Studios
2Image sources: (a)(b) http://www.lordoftherings.com/



2 1 Introduction

(a) (b) (c)

Figure 1.1: Applications: human motion capture has many potential applications in different fields
such as (a) sports science, (b) medical diagnosis and rehabilitation, (c) gaming and man-
machine interaction 1.

(a) (b)

Figure 1.2: Marker based Motion Capture: a series of markers are tracked by several cameras to
reconstruct the 3D motion. We show making-off of the movies (a) The Lord of the Rings,
and (b) Avatar. 2

Tintin, or video games such as L.A. Noir. Commercial systems typically use marker-based systems.
Human motion analysis also has numerous applications in the fields of sport science and medicine,
see Fig. 1.1. The reconstruction of accurate 3D human motion helps clinicians diagnose potential
injuries and helps them monitor recovery. Athletes also benefit from MoCap analysis to improve
economy and performance.

1.3 Motion Capture from Image and Inertial Sensors

Current commercial MoCap systems are marker based such as Vicon 3, Simi 4 and Qualisys 5. Typ-
ically, the subject has to wear a tight suit with retro-reflective markers that are tracked by several
cameras, see Fig. 1.2. Given the 3D location of the markers, the human motion can be reconstructed.
The placement of markers is tedious and time consuming and requires a long setup time. Further-
more, optical marker based systems are very expensive. Perhaps, the most limiting factor is that
marker based systems usually require an engineered controlled indoor studio. MoCap outdoors is
appealing because the human motion of certain activities can be captured in its natural environment,
i.e., one can track a tennis player in the court itself. Furthermore, it is unpractical for man-machine
interaction to be limited to engineered intelligent rooms. MoCap systems based only on IMUs such
as XSens 6 also exist and are very appealing because they are portable outdoors and are more cost

3www.vicon.com
4www.simi.com
5www.qualisys.com
6www.xsens.com
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efficient. However, the subject has to wear a suit with at least 17 sensors which hampers the range
of motion. The main limitation though is that IMUs are sensitive to magnetic disturbances and suf-
fer from drift. This results in tracking failure during continuous operation. Nonetheless, IMUs are
appealing because they are inexpensive and they are integrated in most mobile devices. Therefore,
inexpensive solutions that allow MoCap in uncontrolled environments are needed.
Hence, our first main contribution consists of a hybrid system that integrates information from a small
set of IMUs and at least 2 consumer cameras which enables accurate pose reconstruction outdoors.
The main motivation is that 3D orientation is difficult to reconstruct from images due to rotational
ambiguities and is directly measurable by a IMU device. On the other hand, accurate joint locations
are difficult to recover from IMUs and relatively easier to obtain from images. Therefore, an intelli-
gent system combining both sensor types can recover human motion by compensating the drawbacks
of each sensor type. For applications such as character animation or medical image analysis accurate
pose is necessary and engineering the system is reasonable as long as it does not become uncom-
fortable for the subject and it permits capture outside of the lab. Therefore, our solution is a good
trade-off between accuracy and engineering.
In some applications however, it is necessary to understand pose from a single image. This is the
case if we want to interact through the camera mounted in mobile devices, or if we want to under-
stand scenes in video collections from the Internet. Unfortunately, accurate 3D pose recovery from a
single image is an extremely difficult problem because some degrees of freedom are not observable
due to the projection into the image plane. Fortunately, accurate estimation of the pose might not
be necessary for many of these applications. This motivates our second major contribution. Recent
studies show that humans do not perceive absolute joint locations very accurately. However, humans
are extremely good at extracting semantic information, i.e., they can distinguish whether the arms
are crossed, whether one hand is over the head or whether the head is tilted. This is probably due
to the fact that body language is more closely related to relative location between body parts rather
than absolute positions. Therefore, we propose a discriminative inference algorithm that extracts this
semantic attributes directly from the images. This inferred bits of information can be used directly as
input for the understanding of the physical world or as a prior for a more fine detailed accurate pose
estimator.

1.4 Challenges

The problem of estimating pose from video images and inertial sensors is a very challenging one. We
briefly summarize the main technical difficulties below:

• Image: An image is the projection of the 3D world onto a 2D image plane. Hence, the depth
information is lost during the process.

– Depth and Orientation Ambiguities: The depth information is lost during the image for-
mation process. Recovering it implies hallucinating some degrees of freedom. The fact
that multiple 3D hypothesis explain the image well makes the energy minimization formu-
lations multi-modal. In particular, axial rotations are very difficult to observe from images
since they project to almost the same image.

– Occlusions: Parts of the body can be partially occluded by other objects in the world or
some parts might be occluded by the body itself (self-occlusions).

– Appearance Changes: People appear in images in different clothing, different illumina-
tions, shapes and backgrounds. A true generative method should model all the intricacies
of the image formation process. Obviously the high appearance variability makes it dif-
ficult to model. On the one hand, a very detailed model might work best for a specific
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Figure 1.3: Challenges in image based pose estimation: The high variability in human shape, clothing,
appearance, illumination, background and the high dimensionality of the pose space make
the problem extremely challenging.

instance but might not generalize well to other scenes. On the other hand, a very coarse
model will not truthfully synthesize the image.

• IMUs: an inertial measurement unit is a device that measures orientation and acceleration of
the local coordinate system w.r.t. a global coordinate system.

– Drifting: The orientation measurements are obtained by merging the data coming from a
gyroscope a compass and an accelerometer in a Kalman filter. To obtain orientation the
gyroscope data needs to be integrated which can cause drift in continuous operation.

– Magnetic Disturbances: the data can corrupted by magnetic disturbances produced by
electronic equipment in the surroundings.

– Latency : Since the orientation data comes as the output of a Kalman filter, there exists a
non negligible latency. This is specially noticeable during fast motions.

• Synchronization: One of the main problems with sensor fusion is proper synchronization. The
inertial sensors and the cameras operate at different frame rates. Furhtermore, we do not assume
any kind of communication between sensors. Synchronization between the cameras and the
IMUs is specially an isssue during fast motions.

• High-dimensional search space: there are more than 206 bones in the human body. Usually,
the search space is constrained to 20 to 60 joint angles that determine the pose configuration
through a skeletton model. Even with this rather coarse representation the search space is very
high dimensional. Therefore, efficient optimization and search strategies are needed. A further
complication is that only a few regions of parameter space correspond to valid human poses.

Some of these difficulties are also illustrated in Fig. 1.3.
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1.5 Generative versus Discriminative

Most approaches to pose estimation from images can be classified as generative or discriminative.
Generative approaches aim at modeling all the intricacies of the image formation process. A truly
generative method would model human pose, shape, clothing, illumination and even background.
In practice, generative methods only model image features that are easy and efficient to extract and
to synthesize. By focusing on features that are relatively invariant to clothing and illumination, re-
searchers circumvent the burden of building very truthful models. As such, samples from such models
are hardly indicative of what one can observe in a real image. Nonetheless, such models are useful
for inference and are known to generalize well to different motion patterns and different appearance
conditions. Generative methods usually define an energy function that has to be optimized w.r.t. to
the pose parameters. The energy measures the consistency between the model and the observations.
The hope is that the global optimum corresponds to the true pose. Since evaluating this energy is
typically expensive and the search space is huge, generative methods are only feasible when some
initialization is provided (e.g., the pose in the previous frame in a video sequence).
Discriminative models learn a direct mapping from image features to the pose space using training
data. In contrast to generative methods, discriminative methods are more direct and are therefore eas-
ier to implement. When the distribution of the training is similar to the distribution of the testing such
methods perform very well. However, generalization to instances unseen in the training data is often
a challenge. Furthermore, obtaining training pairs of 3D poses and images in different backgrounds
and for different motions is not a trivial task. There is no consensus in which of the two approaches
performs best because each method has its advantages and shortcomings. However, although these
two lines of approaches have been mostly investigated separately, they can complement each other.
Discriminative methods can provide rough idea about the pose and generative methods can provide
the fine detail. It is reasonable to believe that there is some discriminative and some generative pro-
cess in the visual system. While the first two tracking systems described in Chap. 4 and Chap. 5 are
purely generative, the method presented in Chap. 6 can be seen as a hybrid combining ideas from
discriminative and generative methods.

1.6 Related Work

Given the wide range of applications of Motion Capture, it is not surprising that it has received a lot
of attention in the computer vision community during the last two decades. While a vast number of
papers have been published in the area of pose estimation from images, much fewer papers can found
on human pose from IMUs. The work presented in this thesis one of the first to combine images
and IMUs for full body pose estimation. The literature on pose from images is vast and an extensive
survey is out of the scope of this thesis. For a more thorough review paper, we refer the reader to [1].
We give here a brief review of recent related papers on the subject.
We divide the related work in three subgroups: image based pose estimation methods, inertial sensor
trackers and finally, methods that, like our semantic attribute description, propose alternative repre-
sentation of pose.

1.6.1 Image based Pose Estimation

Generative methods consist of a likelihood model, a search space strategy [2], and a prior [3]. Since
sampling directly from the posterior is difficult, the problem is typically inverted to model the like-
lihood of the image features given a pose configuration. The likelihood models must be easy to
compute and are usually based on edges, histograms or silhouette overlap terms [4, 5, 6]. The dif-
ficulties arise from multi-modality and ambiguous data association. Some works deal with the data
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association by introducing more robust matching costs [7, 8]. More sophisticated likelihoods that
include illumination and shadows [9, 10, 11] and color appearance [12, 13].

Multi-modality occurs when the likelihood model scores well different pose configurations in 3D.
This has been addressed in the past by building activity specific priors [14, 15, 12, 16, 17, 18]. By
sampling from an activity specific manifold ambiguities are reduced at the cost of limited applica-
bility to track general human motions. While approaches exist to account for transitions between
different types of motion [19, 20, 21, 22], general human motion is highly unpredictable and difficult
to be modeled by pre-specified action classes. Our work is nonetheless related to [19, 21, 22] in that
we also define an intermediate pose representation. However, posebits are more flexible than action
classes because they are compositional and do not suffer from big intra-class variability. Some works
have shown that under certain features, it is possible to sample directly from the posterior, or at least
to sample in regions of high likelihood probability [23, 24]. In [25] we propose to sample directly
from the manifold of poses that satisfy a set of kinematic constraints derived from measurements. In
[26] they showed that given the 2D joint locations and known limb proportions, the pose can be re-
constructed up to a flip forward-backward ambiguity for every limb. The works of [23, 27, 24] exploit
this property by sampling proposals in 3D that project to a given 2D joint location and propagate this
multiple modes during tracking.
Discriminative methods model a mapping from image features to the pose space by using training
examples. Approaches are either based on nearest neighbors (KNN) schemes [28, 29] or global para-
metric predictors [30, 31]. Since it is difficult or even impossible to fit a single mapping across the
joint feature and pose space, recent works [32, 33, 34] build online local models from a subset of
training exemplars found using e.g., KNN or decision trees [35]. Another way to correlate the in-
put features with the output poses is through shared latent variables [17, 21, 34]. Similarly, posebits
can be interpreted as a mid-layer latent variable that links the feature and pose spaces with the main
difference that posebits have a semantic meaning interpretable by humans. In contrast to fully dis-
criminative methods our proposed algorithm does not require training pairs of images and poses which
enables easy annotation and data collection at large in natural scenes.

1.6.2 Inertial Sensor Trackers

Recently, inertial sensors (e.g. gyroscopes and accelerometers) have become popular for human mo-
tion analysis. Often, sensors are used for medical applications, see, e.g., [36] where accelerometer
and gyroscope data is fused. However, their application concentrates on the estimation of the lower
limb orientation in the sagital plane. In [37], a combination of inertial sensors and visual data is re-
stricted to the tracking of a single limb (the arm). Moreover, only a simple red arm band is used as
image feature. In [38], data obtained from few accelerometers is used to retrieve and play back human
motions from a database. [39] presents a system to capture full-body motion using only inertial and
magnetic sensors. While the system in [39] is very appealing because it does not require cameras
for tracking, the subject has to wear a suit with at least 17 inertial sensors, which might hamper the
movement of the subject. In addition, long preparation time before recording is needed. Moreover,
inertial sensors suffer from severe drift problems and cannot provide accurate position information in
continuous operation.

1.6.3 Representations of Pose

The pose is typically represented by a set of joint angles or joint positions that have to be inferred
from observations. Very few works have explored alternative representations of pose. Recent works
have used attribute representations for object categorization [40, 41], and human action recognition
[42, 43] with a special emphasis on transfer learning between classes. Similar semantic attributes as
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the ones we introduce in this thesis have been used for content based retrieval of motion capture data
[44], where they noted that similar motions may be numerically not similar. In [19], they also used
attributes for retrieving motion priors to stabilize tracking. They do it in an iterative scheme in which
they start tracking with no prior knowledge and use noisy tracking estimates to retrieve action specific
priors. Our work is also inspired by [45] where they introduce poselets. A poselet is a new notion of
part, they noted that parts need not to correspond to physical body parts as in [46, 47, 48]. Instead,
they argue that detecting subgroups of body parts in a certain configuration is easier.

1.7 Contributions

In this thesis we have developed several of techniques to recover the pose from images and IMUs at
different levels of pose detail in both indoor and outdoor scenarios. In particular, we try to answer the
following two research questions:

1. What cues are necessary for accurate pose estimation in uncontrolled environments?

2. What is a suitable representation of the pose?

The answer to these questions is application dependent as we will see. Bearing the application re-
quirements in mind, the main novel techniques developed can be summarized as:

1. Local Hybrid Tracker (LHT) : We have developed a system to recover the highly accurate
pose from multiview images and IMUs in indoor scenarios, see Chap. 4. This is the first work
on pose estimation to combine information from images with information from IMU for full
body pose estimation. The method integrates image cues such as silhouettes and edges with
orientation cues coming from 5 inertial sensors attached at the body extremities, see Fig. 1.4.
In indoor scenarios relatively clean silhouettes can be obtained using background subtraction
techniques. Therefore, the approach relies on local optimization to integrate the cues which is
fast and efficient. In contrast to existing approaches we can not only recover accurate body part
locations but also accurate body part orientations which are very difficult to estimate from only
image cues. Body part orientation is equally important for applications such as sports science,
medicine or character animation.

2. Inverse Kinematics Sampling Tracker (IKST) : We have developed a method to recover
the pose in outdoor scenarios from multiview images and IMUs see Chap. 5. Here the main
challenge are the limited noisy and ambiguous image cues that can be extracted in outdoor
scenarios. Background clutter, inaccurate segmentation, occlusions and fast motions make the
problem even more challenging. To this end, we propose and efficient sampling procedure that
can be interred in particle based optimization methods. The main idea is a strategy to sample
pose hypothesis that satisfy the set of orientation constraints imposed by the sensors. This in
turn, reduces the dimension of the state space. That is achieved using an efficient sampling
procedure that uses inverse kinematics to satisfy a set of constraints, Fig. 1.5. The method also
incorporates a novel model to cope with sensor noise. The method enables high accurate pose
estimation in outdoor scenarios using only 4 consumer cameras in combination with 5 IMUs.

3. Posebits Pose Estimator (PPE): We have developed a novel approach to estimate the pose
from monocular images, see Chap. 6. Here we rely on the idea that human perception of poses
is more semantic than numeric. Ours is one of the first works that proposes a more qualita-
tive description of pose as opposed to common numeric representations seen in the literature.
We introduce the concept of posebits. Posebits are units of information that resolve typical
ambiguities in monocular imagery. They are boolean geometric relationships between body
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parts designed to mimic human perception of poses (e.g. left-leg in front of right-leg or hands
close to each other). In this way, the pose is described by a string of posebits. A classifier
is trained using structural SVM (Support Vector Machines) to infer these bits of information
directly form image features, see Fig. 1.6. We further propose a method to generate posebits
automatically and a selection algorithm inspired by decision trees to retain a good set. We fur-
ther show how to use these bits as a powerful feature for applications such as content based
retrieval. Furthermore, we show that once these bits of information are known, the problem of
monocular pose estimation becomes easier and less ambiguous.
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Figure 1.4: Hybrid local tracker: Information coming from video cameras and the orientation data
coming from 5 IMU sensors attached at the body extremities is combined to obtain high
accurate pose estimation results. We formulate an energy that measures the pose con-
sistency with the image observations as well as the IMUs orientations. Since in indoor
scenarios good quality segmentation is possible we opt here to fuse the information using
a local optimization method which is very efficient.

Figure 1.5: Inverse Kinematics sampler: to deal with background clutter and image ambiguities in
outdoors scenarios we build upon a particle-based optimization method. The key idea is
an efficient sampling procedure based on inverse kinematics to generate pose hypothesis
that satisfy the set of orientation constraints imposed by the sensors.
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Figure 1.6: Posebits Pose Estimator: (a) Posebits are bits of information that disambiguate poses.
Examples of posebits are: Is the left foot from the right foot,is right knee bent or is the
right arm extended. The advantage to represent the pose as set of posebits is two fold:
first, collecting training data simplifies to answering a set of yes/no questions and second
inference should be significantly easier than estimating exact 3D joint locations. In (b)
we show an approach to generate a pose prior given a set of inferred posebits. This pose
prior can be used in a standard generative tracker to reduce uncertainty. Given training
set of annotated images, image classifiers are trained to infer posebits. Posebits can also
be used to cluster MoCap data in semantically meaningful classes (right of (b). The pose
prior is obtained by querying the MoCap database with the inferred image posebits. In
(c) we show a diagram of the proposed algorithm: posebits are inferred bottom-up. These
posebits are leveraged to draw likely pose proposals that are evaluated against the image
top-down.
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1.8 Overview

• Chapter 1. Introduction: Problem Statement, motivation challenges and contributions.

• Chapter 2. Generative Pose Estimation: the foundations to build a generative pose track-
ing system are explained in this chapter. It includes dedicated sections on model generation,
parametrization, likelihood modeling and optimization strategies.

• Chapter 3. Inertial Sensors: Brief description of hardware specifications and IMU data ac-
quisition and synchronization.

• Chapter 4. Indoor Motion Capture from Video and Inertial Sensors: A hybrid tracking
system that integrates information from cameras and IMUs is presented. The main applicabil-
ity is for accurate pose estimation in indoor scenarios is described. The tracker is based on
local optimization and is therefore very efficient. The system allows to capture accurate joint
locations and to estimate accurate limb orientation for a wide range of complex motions.

• Chapter 5. Outdoor Motion Capture from Video and Inertial Sensors: A hybrid tracking
system that integrates information from cameras and IMUs is presented. The main features
of the tracker are its applicability in outdoor scenarios for a wide range of complex motions,
including interaction with objects. To deal with the uncertainties in the data in outdoors this
tracker is based on particle based optimization. The main novelty is an efficient sampling
procedure to generate hypothesis consistent with the orientation constraints imposed by the
IMUs. A novel noise model based on the von Mises-Fisher distribution is also introduced. The
main applicability is MoCap of activities that are best performed outdoors.

• Chapter 6. Posebits for Monocular Pose Estimation: A method to infer useful semantic pose
information (posebits) from single monocular images is described here. The model infers se-
mantic pose information discriminatively directly from image features. We show how posebits
can be used as input for a generative tracker. We note that posebits are a powerful source of
information that can be useful for many vision based intelligence tasks, such as man-machine
interaction, action and gesture recognition or scene understanding.

• Chapter 7. Conclusions: Summary the contributions of this work and proposed extensions
and future directions of research.
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2 Generative Pose Estimation

Model-based pose estimation algorithms aim at recovering human motion from one or more camera
views and a 3D model representation of the human body. The model pose is usually parameterized
with a kinematic chain and thereby the pose is represented by a vector of joint angles. The majority
of algorithms are based on minimizing an error function that measures how well the 3D model fits
the image. This category of algorithms usually have two main stages, namely defining the model and
fitting the model to image observations. In the first section, the reader is introduced to the different
kinematic parametrization of human motion. In the second section, the most commonly used repre-
sentations of human shape are described. The third section is dedicated to the description of different
error functions proposed in the literature and on common optimization techniques used for human
pose estimation. Specifically, local optimization and particle based optimization and filtering are dis-
cussed and compared. The chapter concludes with a discussion of the state-of-the-art in model-based
pose estimation, current limitations and future directions.

2.1 Kinematic Parametrization
In this chapter our main concern will be on estimating the human pose from images. Human motion
is mostly articulated, i.e., it can be accurately modeled by a set of connected rigid segments. A
segment is a set of points that move rigidly together. To determine the pose, we must first find an
appropriate parametrization of the human motion. For the task of estimating human motion a good
parametrization must have the following attributes:

Attributes of a good parametrization for human motion:

• Pose configurations are represented with the minimum number of parameters.

• Human motion constraints, such as articulated motion, are naturally described.

• Singularities can be avoided during optimization.

• Easy computation of derivatives of segment positions and orientations w.r.t. the parameters.

• Simple rules for concatenating motions.

A commonly used parametrization that meets most of the above requirements is a kinematic chain,
which encodes the motion of a body segment as the motion of the previous segment in the chain and
an angular motion about a body joint. For example, the motion of the lower arm is parametrized as the
motion of the upper arm and a rotation about the elbow, see Fig. 2.3. The motion of a body segment
relative to the previous one is parametrized by a rotation. Parameterizing rotations can be tricky since
it is a non-Euclidean group, which means that if we travel any integer number of loops around an axis
in space we will end up in the same point. We now briefly review the different parametrization of
rotations that have been used for human tracking.

2.1.1 Rotation Matrices

A rotation matrix R3×3 is an element of SO(3). Elements of R ∈ SO(3) are the group of 3 × 3
orthonormal matrices with det (R) = 1 that represent rotations [61]. A rotation matrix encodes the
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orientation of a frame B that we call body frame relative to a second one S that we call spatial frame.
Given a point p with body coordinates, pb = (λx, λy, λz)T , we might write the point p in spatial
coordinates as

ps = λxxBs + λyyBs + λzzBs , (2.1)
where xBs ,yBs ,zBs are the principal axis of the body frame B written in spatial coordinates. We may
also write the relationship between the spatial and body frame coordinates in matrix form as ps =
Rsb pb. From this it follows that the rotation matrix is given by

Rsb =
[
xBs yBs zBs

]
(2.2)

Now consider a frame B whose origin is translated w.r.t. frame S by ts (the translation vector written
in spatial coordinates). In this case, the coordinates of frames S and B are related by a rotation and
a translation, ps = Rsbpb + ts. Hence, a pair (R ∈ SO(3),t ∈ R3) determines the configuration
of a frame B relative to another S and is the product space of R3 with SO(3) denoted as SE(3) =
R3 × SO(3). Elements of SE(3) are g = {R,t}. Equivalently, writing the point in homogeneous

coordinates p̄b =
[
pb
1

]
allows us to use the more compact notation The rigid body motion is then

completely represented by the matrix Gsb which is the homogeneous representation of gsb. The
reader unfamiliar with rotation matrices might be surprised because the definitions given here for
rotation and rigid motion do not represent motion of points in a fixed frame but rather transformations
between coordinate systems. This does not correspond to our informal understanding of rotations.
Consequently, do rotations and rigid body motion represent coordinate transformations or motion?

B

S
Gsb

B

S

ps(0)

ps(1)Gsbp

Figure 2.1: Left: rigid body motion seen as a coordinate transformation, Right: rigid body motion
seen as a relative motion in time

The answer is both. To see this, consider a point p in a rigid body, see Figure 2.1, and imagine that
the body and spatial frames coincide at t = 0 see Figure 2.1 right, consequently ps(0) = pb. At this
time we apply the rigid body motion to the point such that the point now moves to a new position
ps(1). We can write it as,

p̄s(1) = Gsb p̄s(0) (2.3)
where the coordinates of ps(1) and ps(0) are both relative to the spatial frame. This new interpre-
tation of rigid motion will be very useful when we talk about human motion in the next section.
Both interpretations of rigid motion are correct and depending on the context one is preferable over
the other, (e.g., to think about world-to-camera mapping it is better to interpret it as a coordinate
transformation but when we think of human motion it is most of the times more intuitive to think
of rigid motion as the relative motion between temporal instants). Rotations can be combined by
simple matrix multiplication. However, representing rotations with rotation matrices is suboptimal
for optimization problems. This is because from the 9 numbers composing the matrix, 6 additional
constraints must be imposed during optimization in order to ensure that the matrix is orthonormal.
Therefore, representing angular motions with rotation matrices is problematic for motion tracking
because we need more parameters than strictly needed.
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2.1.2 Euler Angles

One method for describing the orientation of a frame B relative to another frame S is as follows: start
with frame B coincident with frame S, rotate B α degrees about the x-axis of frame S, then rotate β
degrees about the y-axis of frame S and finally rotate γ degrees about the z-axis (of frame S again).
This corresponds to the x,y,z Euler angles defined in frame S. There are several conventions on the
order in which these rotations are carried out; for example, it is also possible to perform the rotation
in the order z,y,z. Therefore, when we talk about Euler angles the order of the rotations must be
specified. It is very important to note with respect to which frame the rotations are defined, they
can be defined on the fixed reference frame S or alternatively on the moving frame B. Therefore,
rotation matrix can always be written as the composition of three rotations around the x,y,z axes Eq.
(2.4). Note that had we chosen the rotations to be defined in the moving frame B, the order would be
inverted.

R =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


cos(β) 0 − sin(β))

0 1 0
sin(β) 0 cos(β)


1 0 0

0 cos(α) − sin(α)
0 sin(α) cos(α)

 (2.4)

In this manner, a rotation is completely defined by a triplet of Euler angles (α,β,γ). The derivatives
of a rotation with respect to the Euler angles are easy to compute. Additionally, differential equation
integration in parameter space is straightforward, for example to update one of the three angles:
αt = αt−1 + α̇. Unfortunately, Euler angles have a well known problem: when two of the rotation
axis align one of the rotations is lost. This well known singularity of Euler parametrization is called
gimbal lock. For more details we refer to [61].

2.1.3 Quaternions

Quaternions generalize complex numbers and can be used to represent 3D rotations the same way
as complex numbers can be used to represent planar rotations. Formally, a quaternion is a vector
quantity of the form q = qw + qx · i + qy · j + qz · k with i2 = j2 = k2 = i · j · k = −1, see [62].
They can also be interpreted as a scalar qw plus a 3-vector (qw,v). The square root of the product of
the quaternion and its conjugate is the norm

‖q‖ =
√

qq̄ =
√
q2
w + q2

x + q2
y + q2

z (2.5)

where q̄ = (qw, − v) is the complex conjugate of q. Unit length quaternions, i.e., ‖q‖ = 1 form a
set called S3 which can be used to carry out rotations [62]. One nice property about quaternions is
that rotations can be carried out in parameter space via quaternion product. Given two quaternions
q1 = (qw,1,v1) and q2 = (qw,2,v2) the quaternion product dennoted by (◦) is defined as

q1 ◦ q2 = (qw,1qw,2 − v1 · v2 , qw,1v2 + qw,2v1 + v1 × v2). (2.6)

If we want to rotate a vector a we can simply use the quaternion product. Thereby, a rotation by an
angle θ about an axis ω is represented by the quaternion:

q = [qw,qx,qy,qz]T =
(

cos
(
θ

2

)
,ω sin

(
θ

2

))
(2.7)

and the vector a is rotated with

a′ = Rotate(a) = q ◦ ã ◦ q̄ (2.8)
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where ◦ denotes quaternion product, ã = [0, a] is a zero scalar component appended with the original
vector a and q̄ = (qw,− v) is the complex conjugate of q. Additionally, there exist simple formulae
for computing the rotation matrix from a quaternion and vice versa [62]

R =

1− 2q2
y − 2z2 2qxqy + 2qwqz 2qxqz − 2qwqy

2qxqy − 2qwqz 1− 2q2
x − 2q2

z 2qyqz + 2qwqx
2qxqz 2qyqz − 2qwqx 1− 2q2

x − 2q2
y

 (2.9)

.
Furthermore, the four partial derivatives ∂R

∂qw
, ∂R
∂qx

, ∂R
∂qy

, ∂R
∂qz

exist and are linearly independent in S3

which means there are no singularities. Probably this last property is the most interesting but this
comes at the expense of using 4 numbers instead of just 3. This means that during optimization we
must impose a quadratic constraint so that the quaternion keeps unit length. Integrating Ordinary
differential equations (ODEs) can also be problematic since the quaternion velocity q̇ generally lies
in the tangent space 1 of S3 and any movement in the tangent plane will push the quaternion off
S3. Nonetheless, there exist solutions to these limitations [63, 62]. Since unit quaternions directly
represent the space of rotations and are free of singularities they provide an efficient representation of
rotations. Particularly, quaternions have proven to be very useful for the interpolation of key-frame
poses because they respect SO(3) geometry.

2.1.4 Axis-angle

To model human joint motion it is often needed to specify the axis of rotation of the joint. For example
we might want to specify the motion of the knee joint as a rotation about an axis perpendicular to the
leg and parallel to the hips. Therefore, for our purpose the axis-angle representation is optimal because
rotations are described as an angle θ and an axis in space ω ∈ R3 where θ determines the amount of
rotation about ω. Unlike quaternions the axis-angle, requires only 3 parameters θω to describe a
rotation. It does not suffer from gimbal lock and their singularities occur in a region of parameter
space that can be easily avoided. Since it will be our parametrization of choice to model human joint
motion we will give a brief introduction to the formulation of twists and exponential maps. For a
more detailed description we refer the reader to [61].

The Exponential Formula

Every rotation R can be written in exponential form in terms of the axis of rotation ω ∈ R3, s.t.
‖ω‖ = 1 and the angle of rotation θ as

R = exp(θω̂) (2.10)

where ω̂ ∈ so(3) is the skew symmetric matrix constructed from ω. The elements of so(3) are skew
symmetric matrices i.e., matrices that verify {A ∈ R3×3|A = −AT}. Given the vector θ(ω1,ω2, ω3)
the skew symmetric matrix is constructed with the wedge operator ∧ as follows:

θω̂ = θ

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (2.11)

By definition, the multiplication of the matrix ω̂ with a point p is equivalent to the cross-product of
the vector ω with the point.

1This will be described in more detail in Sec. 2.1.4]
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Figure 2.2: Screw motion, left: the cross product of the scaled axis θω and the vector (ps−q) results
in the tangential velocity of the point ṗs = θω × (ps − q). Equivalently, the tangential
velocity may be written using the twist ṗs = ξ̂ ps. Right: generalized screw motion with
rotation and translation along the axis

To derive the exponential formula in Eq. (2.10) consider a 3D point p rotating about an axis ω
intersecting the origin at a unit constant angular velocity. Recall from elementary physics that the
tangential velocity of the point may be written as

ṗ(t) = ω × p(t) = ω̂p(t) (2.12)

which is a differential equation that we can integrate to obtain

p(t) = exp(ω̂t)p(0) (2.13)

It follows that if we rotate θ units of time the net rotation is given by:

R(θ,ω) = exp(θω̂) (2.14)

The exponential map of a matrix A ∈ R3×3 is analogous to the exponential used for real numbers
a ∈ R. In particular the Taylor expansion of the exponential has the same form:

exp (θω̂) = e(θω̂) = I + θω̂ + θ2

2! ω̂
2 + θ3

3! ω̂
3 + . . . (2.15)

Exploiting the fact that (θω̂) is screw symmetric, we can easily compute the exponential of the matrix
ω̂ in closed form using the Rodriguez formula:

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1− cos(θ)) (2.16)

where only the square of the matrix ω̂ and sine and cosine of real numbers have to be computed. Note
that this formula allows us to reconstruct the rotation matrix from the angle θ and the axis of rotation ω
by simple operations and this is probably the main justification of using the axis-angle representation
at all.

Exponential Maps for Rigid Body Motions

The exponential map formulation can be extended to represent rigid body motions, namely any motion
composed by a rotation R and a translation t. This is done by extending the parameters θω with



20 2 Generative Pose Estimation

θv ∈ R3 which is related to the translation along the axis of rotation and the location of the axis,
see Fig. 2.2 This six parameters form the twist coordinates θξ = θ(v1,v2,v3,ω1,ω2, ω3) of a twist.
Analogous to Eq. (2.10), any rigid motion G ∈ R4×4 can be written in exponential form as:

G(θ,ω) =
[
R3×3 t3×1
01×3 1

]
= exp(θξ̂) (2.17)

where the 4 × 4 matrix θξ̂ ∈ se(3) is the twist action and is a generalization of the screw symmetric
matrix θω̂ of Eq. (2.11). The twist action is constructed from the twist coordinates θξ ∈ R6 using the
wedge operator ∧

[θξ]∧ = θξ̂ = θ


0 −ω3 ω2 v1
ω3 0 −ω1 v2
−ω2 ω1 0 v3

0 0 0 0

 (2.18)

and its exponential can be computed using the following formula

exp(θξ̂) =
[
exp(θω̂) (I − exp(θω̂))(ω × v + ωωTvθ)

01×3 1

]
(2.19)

with exp(θω̂) computed by using the Rodriguez formula Eq. (2.16) as explained before.

The Logarithm

For human tracking it is sometimes needed to obtain the twist parameters given a transformation
matrix G. In particular if we want to obtain the resulting twist of two consecutive twists this oper-
ation is needed. In [61], a constructive way is given to compute the twist which generates a given
transformation matrix G. For the case R = I, the twist is given by

θξ = θ(0,0,0, t
‖t‖

), θ = ‖t‖ (2.20)

For the other cases, the motion velocity θ and the rotation axis ω are given by

θ = cos−1
[
tr(R)−1

2

]
, ω = 1

2 sin(θ)

R32 −R23
R13 −R31
R21 −R12

 (2.21)

From Eq. (2.19) it follows that to obtain v, the matrix,

A = (I − exp(θω̂))ω̂ + ωωT θ (2.22)

needs to be inverted and multiplied with the translation vector t,

v = A−1t (2.23)

We call this transformation from a rigid motion G ∈ SE(3) to a twist θξ ∈ R6 the logarithm,
θξ = log(G), see [61].
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Adjoint Transformation

Given a twist ξb = (vb,ωb) ∈ R6 with coordinates in the body frame B, we can find the coordinates
of the twist in the spatial frame S. Given that the configuration of B relative to frame S is the rigid
motion g = (R,t) ∈ SE(3), the twist coordinates in the spatial frame are given by

ξs = Adg ξb Adg =
[

R t∧R
03×3 R

]
(2.24)

where Adg is the adjoint transformation associated with g, see [61]. To see this, note that the angular
components are related by the rotation ωs = R ωb (the same way we rotate points we can rotate the
axes). From this it follows that vs = R vb + t∧Rωb. Equivalently, the action ξ̂s of a twist with twist
coordinates ξs is related to the action ξ̂b with twist coordinates ξb by

ξ̂s = G ξ̂b G−1 (2.25)

Recall that the product of a twist ξ̂ by a point results in the velocity of the point vp, see Figure 2.2.
Furthermore, a twist with twist coordinates ξa in a given frame A, applies on points pa defined in
the same frame A and this results in the velocity of the point relative to frame A vpa . Thus, we can
interpret Eq. (2.25) the following way: the velocity in spatial coordinates of a point ps is obtained by
first transforming the point to body coordinates ps 7→ pb with G−1, then finding the velocity of the
point in body coordinates vpb using the twist action ξ̂b and finally transforming the velocity back to
spatial coordinates vps with G. One can prove that indeed this results in the spatial velocity

v̄ps = (G ξ̂b G−1) p̄s = (G ξ̂b G−1) G p̄b = G ξ̂b p̄b = G v̄pb , (2.26)

where v̄ps = [vps0] are the homogeneous coordinates of the vector vps . An interesting property that
stems from (2.25) and (2.26) is that G can be shifted inside the exponential

exp(ξ̂s) = G exp(ξ̂b) G−1 = exp(G ξ̂b G−1) (2.27)

which means that to express a rigid body motion exp(ξ) in another coordinate system we can simply
transform the corresponding twist action with G. The same way we can interpret a rigid motion
applied to a point as a coordinate transformation or as a relative motion, we can interpret the adjoint
transform applied to twists as a transformation that brings a twist from their initial coordinates ξ to
their coordinates ξ′ (defined in the same frame) after the rigid motion g is applied, see Figure 2.3.
Indeed, we will make frequent use of this interpretation in the next sections when we have to keep
track of human joints locations and orientations during tracking.

2.1.5 Rotation Derivatives and Rigid Body Velocity
Rotation derivatives do not have a direct physical meaning. Indeed, we will see that it is more mean-
ingful to think about the twist or screw associated with a rigid motion rather than on infinitesimal
rotations. Consider a point following a trajectory defined by the rigid motion G(θ,ω)

p(θ,ω) = G(θ,ω)p̄(0) (2.28)

Given a rigid motion controlled by the parameters θ,ω, it is useful to know the derivatives of a point
trajectory w.r.t. the parameters. Suppose, the axis of rotation ω is fixed and therefore the motion is
fully described by the parameter θ. In that case, the derivatives would be

∆p(θ)
∆θ = ∆G(θ)

∆θ p̄(0). (2.29)



22 2 Generative Pose Estimation

The quantity ∆G
∆θ is a 4 × 4 matrix and represents an infinitesimal rigid transformation. If the rigid

motion is parameterized by more parameters, then the Jacobian would correspond to a tensor of
dimensions 4 × 4 × D where D is the number of parameters. The problem is that the quantity ∆G

∆θ
does not have any physical meaning. We can obtain a more meaningful derivative by multiplying the
right hand side by G−1(θ)G(θ) since G−1(θ)G(θ) = I, obtaining

∆p̄(θ)
∆θ = ∆G(θ)

∆θ G(θ)−1G(θ)p̄(0) = ∆G(θ)
∆θ G(θ)−1p̄(θ). (2.30)

where the product ∆G(θ)
∆θ G(θ)−1 ∈ se(3) is the twist ξ̂ with axis of rotation ω.

Given that θ follows a trajectory over time θ(t), ∆θ(t)
∆t ξ̂ equals the rigid body velocity. However,

we will often omit the dependency of time, as for optimization we are generally only interested in
knowing how infinitesimal changes in parameter space relate to physical quantities in the world.
From Eq. (2.30) it follows that

ξ̂ = ∆G(θ)
∆θ G(θ)−1 (2.31)

is a matrix that when multiplied by a point in a given configuration θ maps to the tangential space
of the point trajectory ∆p

∆θ = ξ̂∆θp̄(θ). Since the twist has a physical meaning we will always seek
for derivatives that map infinitesimal changes in parameter space to the tangential space of the rigid
motion se(3).

2.1.6 A Note on Linearization of Rotational Motion

Linearizing functions that map to SO(3) can often be confusing. Consider the following simple
inverse kinematics problem: find the the angle of rotation θ about a fixed axis ω such that the rotating
point p(θ) is closest to the target point q. Mathematically, this is expressed as

exp(θω̂)p(0) = q. (2.32)

This equation can be linearized using a first order Taylor expansion at the current configuration f(θ+
∆θ) = f(θ) + ∆f(θ)

∆θ ∆θ. Thereafter, we can find the optimal step ∆θ

(exp(θω̂) + ∆θω̂ exp(θω̂) p(0) = (I + ∆θω̂)p(θ) = q (2.33)

An alternative way formulation that leads to exactly the same linear equations is to exploit the
fact that f(θ + ∆θ) = exp(∆θω)f(θ) = (I + ∆θω)f(θ). That implies that given an estimate of θ
we can rotate the point in a rest configuration by θ degrees obtaining p(θ) = exp(θω)p(0). Given
this estimate we can iteratively find the infinitesimal rotation that will bring the point in the current
configuration p(θ) closest to the target. This can be written as

exp(∆θω̂) exp(θω̂)p(0) = exp(∆θω̂)p(θ) = q (2.34)

where the infinitesimal rotation can be approximated with the Taylor expansion around the origin

(I + ∆θω̂)p(θ) = q. (2.35)

Note that both derivations lead to the same equations in Eq. (2.33),(2.33). This implies that at any
given point during optimization we can update points p 7→ p(θ) in the model and solve by linearizing
around the current solution.
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2.1.7 Metrics on SO(3)

For the problem of human pose estimation often we need to evaluate the distance between rotation
matrices. Since the distance should be invariant to the chosen coordinate frame we are mostly inter-
ested in bi-invariant distances. A distance on SO(3), dSO(3) : SO(3) × SO(3) 7→ R+ is said to be
invariant when dSO(3)(R1,R2) = dSO(3)(SR1,SR2), where R1,R2,S are elements of SO(3). In the
context of rotations in SO(3) the natural geodesic metric is equal to the angle between two rotations,
R1 and R2. As we have seen already in Sec. 2.1.4 a rotation can be expressed as an axis ω and an
angle θ. In this context the angular distance is

dgeo(R1,R2) = ‖ log(R1RT
2 )‖ = θ (2.36)

where θ is the rotation angle between the relative rotation R1RT
2 . Another commonly used metric is

the chordal distance, which consists of the Euclidean distance between them in the embedding space
R3×3 = R9

dchord(R1,R2) = ‖R1 −R2‖F (2.37)

where ‖ · ‖F represents the Frobenius norm of the matrix. This distance can easily be related to the
angular distance using Rodriguez formula 2.16. Specifically, let R1RT

2 = exp(θω̂). Exploiting that
‖ω̂‖2

F = ‖ω̂2‖2
F = 2 and the fact that ω̂ and ω̂2 are orthogonal w.r.t to the Frobenius norm we have

d2
chord(R1,R2) = ‖R1 −R2‖2

F = ‖R1RT
2 − I)‖2

F (2.38)
= ‖I + sin(θ)ω̂ + (1− cos(θ))ω̂2 − I‖2

F (2.39)
= 2(sin2(θ) + (1− cos(θ))2) (2.40)
= 8 sin2(θ) (2.41)

from which we get the relationship

dchord = 2
√

2 sin(θ/2). (2.42)

Another important metric is the quaternion distance. Let q1 and q2 be the quaternion representation
of two rotations, then the distance is defined as the Euclidean distance between them

dquat = ‖q1 − q2‖ (2.43)

The quaternion distance can also be easily related to the angular distance. Let qid = (1,0,0,0)T be
the identity quaternion, and qr = q1 ◦ q−12 the relative rotation with rotation angle θ. Then we can
write

d2
quat(q1,q2) = d2

quat(qr,qid) (2.44)

= ‖qr‖2 − 2 〈qr,qid〉+ ‖qid‖2 (2.45)
= 2(1− cos(θ/2)) (2.46)

and using the identity cos(θ/2) = 1− 2 sin2(θ/4) we obtain the relationship

dquat = 2 sin(θ/4). (2.47)

Another distance often used is the scalar product between quaternions which equals cos(θ/2). This
can be easily seen since 〈q1,q2〉 = 〈qr,qid〉 = cos(θ/2)
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Figure 2.3: Kinematic chain: the motion is given by the concatenation of joint angular motions. Note
how the twists ξ are transformed to ξ′ when parent articulations move

2.1.8 Kinematic Chains
Human motion is articulated and we want to model the motion taking all the joints into account at
the same time. For example, consider the motion of the hand, this motion will be the concatenation
of motions of their parent joints, wrist, elbow, shoulder and root. To formulate this we now define
two coordinate frames, the spatial frame S, which is usually fixed and the body frame B, which is the
coordinate system attached to the segment of interest. Note that the body frame moves along with
the segment and therefore a control point in the segment in body coordinates pb is always constant.
Consider the arm in Figure 2.3 with two segments and only two degrees of freedom. To obtain the
coordinates of a control point in the hand in spatial coordinates ps from their body coordinates pb we
can concatenate the rigid motions along the chain:

p̄s = Gsbp̄b = G1G2Gsb(0)p̄b (2.48)

where G1,G2 are the rigid motion matrices of the upper and lower arm respectively and Gsb(0) is the
transformation between B and S at the zero pose. By using the fact that the motion of each individual
joint is generated by a twist associated with a joint axis (see Figure 2.3) we can write the spatial
coordinates of a point in the body as a function of the joint angles in the chain:

p̄s = Gsb(θ1,θ2) = eξ̂1θ1eξ̂2θ2Gsb(0)p̄b (2.49)

Any new articulation joint will represent an additional twist in the chain, see Figure 2.3. If we gen-
eralize this procedure for any limb of the human body we can define what is known in the robotics
literature as the forward kinematics map. The forward kinematics is then defined as the mapping be-
tween the vector of joint angles Θ = (θ1,θ2, . . . , θn)T to the transformation matrix between the spatial
and body frames Gsb. If we define Q as the space of joint angle vectors, then the forward kinematics
Gsb : Q→ SE(3) is given by:

Gsb(Θ) = eξ̂1θ1eξ̂2θ2 . . . eξ̂nθnGsb(0) (2.50)

where ξ are constant twists in the reference configuration, i.e., the starting zero pose. For human
tracking it is usual to take Gsb(0) to be the identity, i.e., the body and spatial frame are coincident at
the beginning for every single limb on the human body.

The Articulated Jacobian

The articulated Jacobian2 is a matrix J(Θ) ∈ R6×n that maps joint velocities to a rigid body motion
velocity J(Θ) : RD 7→ se(3) represented by a twist and it may be written as

JΘ = [ξ1 ξ′2 . . . ξ′n] (2.51)
2We call it articulated Jacobian and not manipulator Jacobian as in Murray et al. [61] because we find it more appro-

priate in this context
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where ξ′i = Ad(
eξ̂1θ1 ...eξ̂i−1θi−1

)ξi is the i-th joint twist transformed to the current pose, Figure 2.3. To

obtain ξ′i an option is to update at every time step the twists with the accumulated motion of parent
joints in the chain. Note that the form of the Jacobian is different for every limb in the body since
different body parts are influenced by different joints. Now given a pose determined by Θ and point
in the body in spatial coordinates ps we can obtain the increment ∆ps in position as a function of the
increment in parameter space ∆Θ as

∆p̄s = [ JΘ ·∆Θ ]∧ p̄s = [ξ1∆θ1 + ξ′2∆θ2 + . . .+ ξ′n∆θn]∧p̄s (2.52)

where ∧ is the wedge operator defined in Eq. (2.18) and we drop the homogeneous component
after the multiplication of [ JΘ · ∆Θ ]∧ p̄s. We can interpret the formula as follows: the total
displacement of the point ps is the sum of individual displacements generated by the angle increments
∆θi in upper joints keeping the others fixed. It is very important to note that the result of [ JΘ ·∆Θ ]
are the twist coordinates ξs of the rotational ω and “linear velocity“ v of the body expressed in the
spatial frame. Note that the product ξ̂sp̄s results in the point increment in homogeneous coordinates
∆p̄s =

[
∆ps 0

]
. Since we are not interested in the last homogeneous component, in the following

we will confuse ∆p̄s with ∆ps by dropping the homogeneous component after the multiplication
ξ̂sps.

2.1.9 Human Pose Parametrization
Now we have the necessary mathematical tools to model all the joints in the human model. We
identify three kinds of joints in the human body according the DoF (degrees of freedom, see Table
2.1. The root joint that determines the overall orientation and position of the body has 6 DoF and
can be modeled as a twist θξ with the six components as free parameters. Ball joints capable of
any rotation with no translation can be efficiently modeled as twist with known joint location q and
unknown axis of rotation θω [52]. Finally, simple revolute joints are only capable of rotations about
a fixed known axis. For revolute joints the twist is constant and is given by

ξ =
[
−ω × q

ω

]
(2.53)

and the only unknown is the rotation angle θ, see Figure 2.2 for a geometrical interpretation. This last
category is very convenient to constrain the motion of 1 DoF joints (e.g., the knee). In the literature

Table 2.1: Table of existing joints to model human motion
Joint DoF Unknown parameter Example
Root 6 ξ = θ[v ω]T All body
Ball 3 θω Hips
Saddle 2 θ1,θ2 Wrist
Revolute 1 θ Knee

the common choice is to model the root joint with six free parameters and to model all the other
joints with the concatenation of revolute joints. A saddle joint is modeled as the concatenation of
two one DoF joints. A ball joint can be modeled by 3 consecutive revolute joints, i.e., 3 consecutive
rotations about 3 fixed axes. The free parameters are then the angles about each of the 3 axes θ1,θ2,θ3.
This parametrization is very similar to the Euler angles and has the same limitations in terms of
singularities, i.e., it is not free of gimbal lock. However, to keep the notation simple, in the following
we assume that we parametrize ball joints as 3 consecutive revolute joints. For a description of the
parametrization of ball joints using a single free axis of rotation we refer the reader to [52].
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Therefore, the pose configuration of the human is usually encoded with a scaled twist ξ for the root
joint and a vector of n joint angles for the rest of the joints. Let us denote the state vector of pose
parameters at time t, as

xt := (ξ,Θ) Θ := (θ1 θ2 . . . θn). (2.54)

Thereby, a human pose is totally determined by a D-dimensional state vector xt ∈ RD, with D =
6 + n.

The Pose Jacobian

For local optimization it is necessary to know the relationship between increments in the pose param-
eters and increments in the position of a point in a body segment. This relationship is given by the
pose Jacobian Jp(x; ps) = ∆ps

∆x . In this paragraph, we derive the analytical expression for the pose
Jacobian. We start our derivation from the expression of the point increment of Eq. (2.52). Let us
denote with ∆ξ = [ ∆v1 ∆v2 ∆v3 ∆ω1 ∆ω2 ∆ω3 ] the relative twist corresponding to the root joint.
The six coordinates of the scaled relative twist ∆ξ are now free parameters we will want to estimate.
By using the following identity [u + w]∧ = û + ŵ we can rewrite equation Eq. (2.52) as increments
in pose parameter space

∆ps = [∆ξ + ξ′1∆θ1 + . . .+ ξ′n∆θn]∧p̄s

= ∆̂ξ p̄s + ξ̂′1 p̄s ∆θ1 + . . .+ ξ̂′n p̄s ∆θn (2.55)

where we can isolate the parameters of the root joint ∆ξ rewriting ∆̂ξ p̄s

∆̂ξ p̄s = ∆v + ∆ω × ps = ∆ v − p∧s ∆ω =
[

I[3×3] | −p∧s
]

∆ξ (2.56)

and substituting this expression in equation Eq. (2.55) again

∆ps =
[

I[3×3] | −p∧s
]

∆ξ + ξ̂′2 p̄s ∆θ2 + . . .+ ξ̂′n p̄s ∆θn

= Jp(x; ps) ∆x, (2.57)

where ∆x = [ ∆ξ ∆Θ ] is the differential vector of pose parameters and

Jp(x; ps) =

 I[3×3] −p∧s ξ̂1 p̄s ξ̂′2 p̄s . . . ξ̂′n p̄s

 (2.58)

is the positional Jacobian Jp(x; ps) ∈ R3×D of a point ps with respect to the pose parameters which
we denote as pose Jacobian. For a given point in the body ps in a configuration x, Jp(x; ps) : RD 7→
R3 maps an increment of the pose parameters ∆x to a positional increment of the point ∆ps. We
identify two main blocks in the pose Jacobian: the first 6 columns that correspond to the non constant
relative twist ∆ξ of the root joint, and the rest of the columns (joint columns) that correspond to the
point velocity contribution of each joint angle. Consequently, the column entries of joints that are not
parents of the point are simply zero 03×1. The analytical pose Jacobian derived here is general and
will appear in every local optimization method using the parametrization described in Eq. (2.54).

2.2 Other Pose Representations
Although the kinematic representation and joint angle parametrization are the most common for 3D
human pose estimation, other parameterizations have been used in the literature. There is no consen-
sus on what is the best representation of poses since each one comes with advantages and disadvan-
tages.
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2.2.1 Part based
Part based parameterizations are a collection of parts l1 that are loosely connected. The pose is thus
described by a collection of parts xparts := (l1 . . . ln). Each part li is parameterized independently
usually by position, scale and rotation parameters. In this way, part is defined as li = [xi,yi,si,θi]T .
The kinematic constraints are enforced using soft constraints or spring forces between connected
parts. Typically deformation potentials are used to penalize strong deviations in position and scale
between connected parts. Typically an energy function such as

p(xparts) ∝
L∑
i=1

Eimage(I,li) +
L∑

∀i,j∈E
Edeformation(li,lj) (2.59)

is minimized, where Eimage is the likelihood term, Edeformation is the deformation potential, and E is
the set of edges in the kinematic tree. Note that this allows one to evaluate the likelihood term of
each part independently of the others, thus reducing the expensive combinatorial search. The main
advantage of this formulation is that inference can be performed in closed form efficiently using DP.
Furthermore, computing marginals probabilities on any node in the graph conditioned any observed
nodes can be efficiently performed using belief propagation or sum product. This allows to efficiently
sample poses conditioned on any observed nodes. For a more detailed description on part based
models we refer the reader to [64]. Examples of part based representations of pose can be seen in
Fig. 2.4.

2.2.2 Joint Positions
Another obvious representation is given by a collection of joint coordinates,
x = [p1, . . .pn], where pj = [xj,yj,zj]T are the coordinates of the j-th joint. Presumably the advan-
tage is that it allows one to work on the Euclidean space as opposed to working on the joint angle
space. However, the kinematic constraints such as bone-length preservation and connected parts have
to be imposed during optimization. At least two constraints need to be integrated, namely

• Bone length preservation: mathematically this is takes the form ‖pi − pj‖ = lbone where lbone
denotes bone length, and pi,pj belong to the same rigid part. At least one of this constraints
per rigid bone in the body needs to be included in the optimization problem.

• Articulated constraints: these are integrated as a penalty for deviation of adjacent joints, i.e.,
Epenalty = ‖pi − pj‖p,∀i,j ∈ E, where E is the connectivity graph which is typically a tree.

Both types of constraints are more commonly included as soft constraints to allow for non-rigid
motion. This has the advantage of allowing limbs to be loosely connected. The main disadvantage
is that a strategy is needed to satisfy the constraints during optimization which might be difficult in
practice. By contrast, using a kinematic chain representation such constraints are naturally fulfilled. A
joint position representation has been commonly used in discriminative methods because presumably
prediction does not involve so many non-linearities.

2.2.3 Posebits
Humans rarely describe the pose of a person in terms of joint angles or absolute joint positions.
Typically, we describe a pose in terms of relative positions between parts. For example we might
say (e.g. left-leg in front of right-leg or hands close to each other, hands above the head). We argue
that the pose might be well represented by a set of such descriptions. Such representation will be
explained in detail in Chap. 6 where we introduce the concept of posebit. In contrast to numerical
representations of pose, the posebit representation is semantic, which makes it more intuitive for
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(a) (b) (c) (d) (e) (f) (g)

Figure 2.4: Models for human pose estimation can be classified according to the level of detail: in
2D people usually use a set of connected rectangles (a)(b), in 3D a variety of geometric
primitives have been used, from cylinders (c)(d) to ellipsoids (e)(f) or Gaussian Blobs (g).
From left to right images courtesy of [65][46][66][12][67][68][69]

humans. Indeed, some poses might be perceived as similar by humans while having very distinct
numerical representations. Some of the advantages of such description are: annotation of training
data is easier and allows to cluster poses in semantic classes.

2.3 Model Creation

To track and estimate the pose of humans in images, one needs a model of the person shape. The goal
is then to fit the model of shape to the image observations, typically by maximizing the likelihood of
the image observations given a pose. The representations of pose explained in the previous section
determine how the model can move. It is obvious that having a realistic representation of the human
shape is a crucial step in the pose estimation pipeline. This modeling involves the initialization of
the 3D surface mesh and the skeletal kinematic structure. We can roughly classify the approaches
for shape initialization according to the level of detail. We find three main classes, methods that
approximate the human body using geometric primitives, methods that use a subject specific body
scan to build a 3D mesh model and finally methods that estimate detailed shape from images without
a body scan of the subject.

2.3.1 Geometric Primitives

A wide variety of geometric primitives have been used to approximate the body shape. Early works
used a simplified body model-based on a collection of articulated planar rectangles [70]. More so-
phisticated models have used cylinders [12], truncated cones, ellipsoids [68] or Gaussian blobs [71].
These geometric primitives can then be parametrized using very few numbers e.g., the shape of the
cylinders is encoded as the height and radius. Thereby, if not initialized manually, the vector of
shape parameters φ is estimated from images in a calibration step. The parameters include internal
proportions, limb lengths and volumes.

2.3.2 Detailed Body Scans

Whole-body 3D scans provide a very accurate measurement of the surface shape. However, the model
creation from a 3D scan is more involved than using simple geometric primitives. The output from a
3D scans is usually a dense 3D point cloud and a triangulated mesh. However, the triangulated mesh
contains holes due to self occlusions. To initialize the model for tracking three main pre-processing
steps are needed, (i) fit a template mesh to the 3D point cloud of the scanner, (ii) create a skeleton and



2.3 Model Creation 29

Figure 2.5: Processing pipeline for model rigging from a body scan; from left to right: body scan
surface, down-sampled 3D point cloud, skeleton with the twist axis orientations in black,
registered template mesh, skinned model and animated model

(iii) bind skin to the skeleton bones. The last is known as skinning and the whole process is known as
rigging.

• Template mesh registration: Since the triangulated mesh from the laser scan contains holes, a
template mesh has to be morphed to fit the point cloud. This can be done with standard non-
rigid registration techniques [72, 73]. Current non-rigid registration techniques require a set
corresponding control points between the template mesh and the scan. The correspondences can
be obtained, for example, with the Correlated Correspondence technique which matches similar
looking surface regions while minimizing the deformation [74]. Given the correspondences
non-rigid registration is used to fit the template to the scan.

• Skeleton fitting: The skeleton determines the motion of the model. For the creation of the
skeleton we must choose the number of joint articulations and the degrees of freedom for every
joint. Rough human models use only 15 degrees of freedom while models used for movie
production contain over 60. For human pose estimation from images many researchers use
between 20-30 DoF [68, 75, 5, 76, 8, 77] which gives a good compromise between degree of
realism and robustness. For every joint we must determine two things: the location and the
orientation of the axis of rotation ω, see Figure 2.5. The skeleton is usually edited manually
before tracking.

• Skinning: Given the registered template mesh and the skeleton we have to determine for every
vertex in the surface to which body part it belongs, i.e.we must assign a joint index to every
vertex. For realistic animations, however, the representation of human motion as rigid parts is
too simplistic, specially for regions close to the articulations. To obtain a smooth deformation
an option is to use linear blend skinning [78], which approximates the motion of points close to
a joint by a weighted linear combination of neighboring joints. For example the motion of the
shoulder vertices would be given by a combination of the torso and arm motions. The motion
of a point ps(0) in the reference pose is then given by

p̄s =
∑
i∈N

wi Gi
sb(xt) p̄s(0) (2.60)

where i ∈ N are the indicesinid of their neighboring joints, and wi are the weights. A simple
rule to set the weights is to make them inversely proportional to the distance to neighboring
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Figure 2.6: Features are extracted from multiview images. In this example we show how silhouettes
are obtained using background subtraction. A mesh model is used to synthesize the ex-
tracted features. One seeks for the pose parameters that best explain the image evidence.

joint locations wi = 1/di. However, this produces severe artifacts. Several algorithms from the
graphics community attempt to solve the skinning problem. As a matter of fact, open source
software is available to compute the weights given a mesh and a skeleton [79]. Nevertheless, to
keep notation simple, throughout this chapter we assume each point is assigned a single joint
with weight equal one. We want to emphasize, however, that linear blend skinning does not
change the formulation on kinematic chains described in the previous section since it is based
on linear combinations of rigid motions.

The whole pipeline for mesh registration and rigging is shown in Figure 2.5.

2.3.3 Detailed Shape from Images

Body scan models are limited by the availability of range scanners. To overcome this limitation a
recent research direction has focused on the estimation of detailed shape from images [9, 80]. This
is achieved by finding parametrization learned from a database of human scans that encodes human
shape and pose variation across individuals [81, 82, 83]. All subjects in the database are scanned in
different poses to account for both shape and pose deformation. The pose is usually encoded by a
combination of rigid and non rigid deformations, and the shape variation is modeled with a set of
PCA (Principal component analysis) coefficients learned from the database.

As a final comment, there exist approaches that use neither a skeleton nor shape knowledge from
a database [84, 85]. In contrast, such approaches directly deform the mesh geometry by non rigid
deformation to fit a set of multiview silhouettes. While impressive results are achieved with such
methods, high quality silhouettes are needed and at least 8 cameras are used.

2.4 Likelihood function

One of the key ingredients of a generative tracker is the image likelihood function. Typically, a set of
observations will be extracted from the image. Given a predictive model the likelihood measures the
consistency between the predictions and the actual observations. Ideally, a truly generative approach
should model all the intricacies that generate the image of the moving person: this includes lighting,
appearance, shape, pose, shadows etc. Intuitively, the higher the level of detail the higher the fidelity
of the likelihood. This should result in less multimodality and a narrower peak at the optimal pose.
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Figure 2.7: Likelihood by varying the torso angle. In (a) we show the sampled poses. For each of this
poses we compute the likelihood in each of the four available cameras (b). The landscape
of the likelihood can be seen in (c) The vertical axis corresponds to the (unnormalized)
likelihood values and the horizontal axis corresponds to the torso angle. Although there
exists a clear mode regardless of the camera used one can see that the profile views,
(camera 1 and camera 2), results in peakier likelihoods.

Unfortunately, this is both difficult and computationally expensive. For this reason, researchers typi-
cally model observations that are both easy to extract from the image and easy to synthesize given a
model [12, 65, 8, 49, 25, 86, 18, 87, 88, 24, 66].

2.4.1 Image based cues
Appearance

If the camera is in a fixed location and the scene is relatively static, then it is reasonable to build a
background model B(x,y) of the scene, where (x,y) denote the pixel location in the image. This
can then be substracted from the image and thresholded to obtain the foreground region or human
silhouette S(x,y). S(x,y) = 1 if |I(x,y)−B(x,y)| > ε and S(x,y) = 0 otherwise. Given a silhouette
and a model template T(x,y|x) generated by projecting the model geometry in a given pose x to the
image (see Fig. 2.6), the likelihood can be formulated as an overlap measure such as

p(S|x) = 1
C

∏
(x,y)

exp(−|S(x,y)−T(x,y|x)|) (2.61)

whereC is a normalizing constant. In Figs. 2.7 and 2.8, we show the log-likelihood p(S|x) by varying
the torso angle and the arm angle. We show the likelihood values using four different cameras and all
of them. As one can see, the shape of the likelihood strongly depends on the motion relative to the
camera. Motions in the direction facing the camera produce little variations in the likelihood. That
is due to the intrinsic ambiguities of the images. One can observe for example that the likelihood
landscape is much flatter varying the arm Fig. 2.7 than when varying the torso Fig. 2.7. Flatter
likelihoods will obviously be more difficult to optimize. In practice, it may be difficult to find a
satisfactory threshold ε value. To overcome this limitation one can assume background pixels are
corrupted with zero-mean additive Gaussian noise. This yields the following likelihood function

p(I|x) =
∏

(x,y)
pB(I(x,y))1−T(x,y|x), (2.62)
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Figure 2.8: Likelihood by varying the arm angle. In (a) we show the sampled poses. For each of this
poses we compute the likelihood in each of the four available cameras (b). The landscape
of the likelihood can be seen in (c). (c) The vertical axis corresponds to the (unnormalized)
likelihood values and the horizontal axis corresponds to the arm angle. This reflects why
the arms are usually the most difficult part to estimate, because the likelihood typically
does not have clear modes in that direction of parameter space.

(a) (b) (c)

Figure 2.9: Log-likelihood using a background model (b). Hotter colors correspond to more likely
values, i.e., in that case more likely to belong to the foreground. In (c) we show the
log-likelihood ratio when using a foreground and background model. In that case, hotter
colors correspond to pixels where the foreground is significantly better explained by the
foreground model than by the background model, i.e., the log-odds. Explicitly modeling
of the foreground helps when the foreground and the background have similar appear-
ances. This can be observed in the region of the trousers that are better separated when
modeling the foreground as well [89]

where pB(I(x,y) is the probability of a pixel I(x,y) belonging to the background. To model pB
a one can model every background pixel independently with a Gaussian. Alternatively, one could
use a mixture of Gaussian model or a non parametric histogram to model the background intensities
of the background, see Fig 2.9. In our experience, if the background is relatively static, modeling
the statistics of each pixel independently works much better than building a single model for all
background pixels. For a review of background subtraction methods we refer the interested reader
to [90]. When parts of the foreground appearance are similar to the background, then such models
penalize severely that part. In such situations it is beneficial to also model the foreground model. This
leads to an appearance model for the foreground pF . If the body figure is homogeneous in appearance
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one can use a single model for all the body. This yields the following likelihood function

p(I|x) =
∏

(x,y)
pB(I(x,y))1−T(x,y|x)pF (I(x,y)|x)T(x,y|x) (2.63)

As this is rarely the case it is often more convenient to have a different foreground model for every
body part, see Fig. 2.10. The foreground model is typically more difficult than the background due to
non rigid deformation of the body and due to clothing. Simple foreground models are either learned
offline from pixels where the model projects in an initialization pose [5, 13] or from multiple frames
[65]. One major challenge with appearance models is to handle illumination changes and different
lighting conditions. A major consideration with appearance based likelihood is computational cost.
Note that Eq. 2.63 involves a product over all pixels in the image. Fortunately, likelihoods can be
defined up to a normalizing constant. Hence, one can choose to divide the likelihood by the product
of all pixels background probabilities. Using this trick many terms cancel out and yields the equivalent
likelihood

p(I|x) ∝
∏

(x,y) s.t. T(x,y|x)=1

pF (I(x,y)|x)T(x,y|x)

pB(I(x,y))1−T(x,y|x) , (2.64)

which is commonly referred to as likelihood ratio. This results in significant computational savings
since the product in Eq. (2.64) is only over the projected model geometry. Nonetheless, evaluating
appearance based likelihoods is significantly more expensive computationally than evaluating simple
likelihoods based on overlap measures, points or edges. To be invariant to illumination changes
scores based on HOG features could also be used to model appearance although synthesizing HOG
descriptors is not straightforward. Alternatively, shading and illumination could be taken into account
as an additional cue to build robust appearance models [10].

Points

One of the simplest ways to constrain a 3D pose is with a set of image locations that correspond
to known 3D model points. In this case, the observations are a set of 2D points ypoints = {ri}N1
that correspond to a set of model points pis. Likelihoods based on points are fairly common because
likelihoods based on features, edges or silhouettes boil down to finding a set of model-image point
matches. If we assume that observations are conditionally independent and are corrupted by Gaussian
noise, we have the following likelihood

p(ypoints|x) =
N∏
i=1

1√
2πσ

exp
(
−‖r̃i(xt)− ri‖2

2σ2

)
(2.65)

where r̃i = Pc(pi) are the model point projections and Pc() is the camera projection model.

Edges

Edges together with silhouettes are perhaps the most common features used for pose estimation. They
are easy to extract, are fairly invariant to different lighting conditions and clothing deformations. This
models assume that a high gradient exists at the boundary of the person body. One way to integrate
edges is to compute correspondences (r̃i,ri) ∈ C between the model occluding contours r̃i ∈ O and
the image edges ri ∈ E . The likelihood of every correspondence is modeled as a Gaussian centered
at the image edge point. Assuming independence among the correspondences the likelihood can be
written as a product of Gaussians as in Eq. 2.65. where the parameter σ controls how much penalty
we have to pay for deviations between model points and image edges. In practice, recomputing
correspondences during optimization can be expensive. One option is to pre-compute an edge. That
is, a binary edge image is first obtained by thresholding and then the image is blurred by convolving it
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(a) (b)

(c) (d)

Figure 2.10: Appearance likelihood. The log-likelihood ratio log
(
pF
pB

)
is shown for different appear-

ance models of different body parts: (a) all body, (b) torso, (c) upper-legs and (d) lower
arms. Notice that modeling the appearance of the foreground makes it easier to segment
each body part. For example the lower legs have almost the same likelihood as the back-
ground when the foreground model is used using all the body. In contrast, they are better
separated when a part specific model is built.

with a Gaussian mask. Alternatively, one can compute a distance transform on the binary edge image,
see Fig. 2.11. Given a map D(x,y) the likelihood can be computed efficiently by simple look ups

p(D|x) =
∏

(x,y)∈O

1
2πσ exp

(
−‖D(x,y)‖2

2σ2

)
. (2.66)

Although using a distance map is computationally more efficient, this approach is problematic be-
cause it sums over model points only which can lead to degeneracy. A bidirectional likelihood that
sums over both image and model points is much more robust. Unfortunately, computing a distance
map for the model projection during optimization is more expensive than simply computing corre-
spondences. Therefore, correspondences are a good trade-off between robustness and computational
cost.
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(a) (b) (c) (d)

Figure 2.11: Different features: A likelihood including multiple image features should be more ro-
bust. Here we show commonly used features such as silhouettes, edges and distance
transforms due to their relative robustness to illumination changes. (a) Original image,
(b) silhouette image from background substraction, (c) edge map and (d) distance trans-
form.

Features

A problem with edges and silhouettes is that only correspondences at the boundary are obtained. This
can be problematic during strong self occlusions. To overcome this limitation sparse correspondences
can be obtained by computing SIFT, [91] features. Correspondences can be obtained by matching
features from consecutive frames (r(t)i),r(t + 1)i) ∈ F . At the current frame every feature location
corresponds to a model point r(t)i, therefore in order to maximize the likelihood the pose has to bring
the model points into correspondence with the matches of the next frame r(t + 1)i. However, this
approach can lead to drift and tracking failure if errors accumulate. A better option is to collect feature
descriptors from image locations where the model points project in an offline stage [92]. Then the
descriptors are matched against the extracted features in the new frames.

Optic flow

One way to exploit temporal consistency is optical flow. Optical flow is the apparent motion in the
image projection of 3D object in the world. The displacement [u v] of every pixel [x y] from one
frame to the next one is computed assuming that the intensity remains constant. This is known as the
brightness constancy assumption and it may be written as I(x,y,t− 1) = I(x+ u,y+ v,t). Again, we
can formulate it in probabilistic terms by modeling brightness variations with a Gaussian density

p(U,V|x) =
∏

(x,y)∈T

1√
2πσ

exp
(
−‖I(x+ u,y + v,t)− I(x,y,t+ 1)‖2

2σ2

)
(2.67)

where U,V are the horizontal and vertical flow fields respectively and T is the region delimited by
the projected model geometry as defined earlier. The trick is to parametrize the flow field U,V using
with the pose parameters x. That is, the motion model for the optical flow is the human motion model
projected to the image plane; more details are in given in the Sec. 2.6. Unfortunately, approaches rely-
ing exclusively on optical flow have two main drawbacks. First, when the motion is large, the Taylor
expansion in Eq. (2.84) produces large estimate errors. Second, while image features like edges
and silhouettes provide an absolute measurement, relying on optical flow causes error accumulation
which results in drift and tracking failure [93]. Nevertheless, [76] was the first work in human pose
estimation to use the elegant twists and exponential maps formulation from the robotics community.
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2.4.2 Inertial Sensor based cues

A major limitation of image based based cues is that one third of the degrees of freedom are not
observable. Particularly, axial rotations of the limbs are practically unobservable in the image. If the
application at hand allows the person to be tracked to wear a small set of inertial sensors the accuracy
of the pose estimation can be significantly improved as we will show in the next chapter. Inertial
sensors are miniature devices that provide orientation and acceleration measurements.

Orientation cues

The orientation data from inertial sensors represent a very strong cue for pose estimation. Specifically,
it is a true 3D measurement that can resolve many of the ambiguities present in 2D images. Let us
denote the set of sensor orientations as Osens = {Rs}Nss=1. Assuming the orientation errors are zero
mean and Gaussian, the likelihood can be written as

p(Osens|x) =
Ns∏
s=1

1√
2πσ

exp
(
dSO(3)(Rs,R(x))

2σ2

)
(2.68)

where dSO(3)(; , :) : SO(3)× SO(3) 7→ R+ is a distance metric on S0(3), see Sec. 2.1.7.

Acceleration cues

Inertial sensors also provide acceleration measurements. The acceleration data provided by the sen-
sors is given in the coordinates of the local inertial sensor frame. Using the orientation data one can
transform the acceleration data to find the coordinates in the spatial coordinate frame. However, we
find that the acceleration data is too noisy and too sensitive to disturbances to be useful for pose esti-
mation. Numerical integration to obtain either position or velocity is too unstable. Therefore, we only
use it to synchronize the images with the inertial sensors as it will be explained in future sections.

2.5 Multiple cues

There is no consensus on what cues are optimal for pose estimation. If computational time is not a
constraint combining cues should lead to more robustness and more accuracy. For simplicity separate
measurements are usually assumed to be independent given the pose parameters x. This allows one
to factorize the likelihood and write it as a product of individual likelihoods. Given two different sets
of measurements y1,y1 the likelihood can expressed as the following product

p(y1,y2|x) = p(y1|x)p(y2|x). (2.69)

Log-likelihood

Given a likelihood function one seeks for the pose parameters x that maximize it. Let yt = {yit}Ni=1
dennote a random vector containing multiple cues at time t (observations can be 2D point locations,
lines, 3D points, feature descriptors, appearance, ...) and let xt dennote the pose parameters at time
t. If likelihood of the errors associated with the observations are independent and have a Gaussian
distribution, the likelihood takes the form

p(yt|xt) = 1
C

N∏
i=1

p(yit|xt) = 1
C

exp
(
−

N∑
i=1

‖ei(x)‖2

2σi

)
(2.70)



2.6 Optimization 37

where ei(xt) denotes the error associated with observation yit. Taking the negative of the logarithm
yields an error function which has better properties for minimization

e(xt) = − log (p(yt|xt)) = − log
( 1
C

)
+

N∑
i=1

‖ei(xt)‖2

2σi
(2.71)

where the constant − log
(

1
C

)
does not depend on the pose parameters xt and therefore can be dis-

regarded. Although Bayes rule of probability is the most common model to combine measurements,
other models exists such as the Dempster-Shafer theory of evidence [94, 95]. Note that the error
function in Eq. (2.71) is a sum of squared errors for which efficient optimizers exist as we will see
in Sec. 2.6. Ideally, one should seek the maximum a posteriori (MAP) estimate, which includes prior
knowledge about the pose

xt,MAP = arg max
xt

p(xt|yt) = arg max
xt

p(yt|xt)p(xt) (2.72)

where p(yt|xt) is the likelihood of the observations for a given pose xt and p(xt) is the prior knowl-
edge we have about human motion which will be discussed in Sec. 2.7. Similarly, the MAP estimate
can be obtained by taking the negative logarithm which yields an error term e(xt) for the likelihood
plus and additional prior term ep(xt)

xMAP = arg min
xt
− log (p(yt|xt))− log (p(xt)) = arg min

xt
e(xt) + ep(xt). (2.73)

where e2
i (yit|xt) is the individual error for a given image observation. Consequently, the error function

should be designed to model the cost density associated with the observations [68]. This interpretation
will be particularly useful when we see optimization methods based in stochastic search. Given a good
likelihood model we need a suited optimization strategy in order to obtain a good pose estimate as we
will see in Sec.2.6.

2.6 Optimization
Our aim is to recover this motion form one or multiview images. Given a model and a likelihood
function one seeks for the pose parameters that maximize it. Model based algorithms are classified
as generative approaches because independently of the optimization scheme used, they all model
the likelihood of the observations for a given configuration of pose parameters. The pose that best
explains the observations is typically found by minimizing an error function that measures how well
the model fits the image data. Even using multiple cameras and relatively simple background settings
this poses a hard optimization problem. Difficulties arise from model-image matching ambiguities,
depth ambiguities and the high dimensionality of the state space. An additional difficulty is that the
space of plausible poses only represents a small region of the full parameter space RD.

The key components for successful tracking, that we will describe here, are: the design of the
cost or likelihood function and the optimization strategy. In this section we describe the different
optimization strategies for human pose estimation and the type of error functions used.

2.6.1 Local Optimization
Given an initial estimate, local optimization methods are based on iteratively linearizing the error
function to find a descent direction. Usually, these methods converge to a local optimum and conse-
quently their performance strongly depends on the initialization. During tracking, the knowledge of
the estimates in previous frames can simplify the task: in the simplest case the initial estimate is given
by the pose obtained in the previous frame, or alternatively motion models can be used to make good
predictions closer to the true pose. We distinguish three main families of local optimization methods
for human pose estimation: methods based on correspondences, optical flow and regions.
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Figure 2.12: From left to right: original image, silhouette from background subtraction, rendering of
the projected mesh at the current pose, correspondences by contour matching, animated
model seen from a virtual view.

Correspondence based

Almost all early approaches for 3D human pose estimation were correspondence based and still it
remain one of the most popular strategies. A reason for that is that these approaches are computa-
tionally efficient while providing very accurate results in many situations. The key idea is to collect a
set of correspondences between 3D points pi of the model and the image observations ri. Then, the
distance between the projection of the 3D model points r̃i (predictions) and the image observations is
minimized with respect to the pose parameters xt. Hence, correspondence based algorithms consist
of three main stages

1. Feature extraction: extract image observations (e.g.silhouettes, edges, SIFT features)

2. Model image association: match the model 3D points with the image observations and collect
this correspondences

3. Descent strategy: find the pose parameters that bring the model points into correspondence with
the image observations

Feature extraction: Different features like image silhouettes, image edges, and SIFT have been used
and combined for human pose estimation. Edge and silhouettes where used in very early works and
continue to be dominant for human pose estimation because they are relatively easy to extract and are
stable to illumination changes. Therefore, we will explain in detail a motion capture system based
on silhouettes and then the integration of additional features like SIFT will become obvious. In the
context of human tracking a silhouette is a binary image with white pixels indicating the foreground
i.e., the region of the subject we want to track. In indoor environments, silhouettes can be obtained
with great accuracy via background subtraction techniques [90]. In outdoor environments, it is con-
siderably more challenging but also possible if background images are available. Once the silhouettes
are obtained, the image contour is obtained with an edge detector.

Model image association: For the correspondences, since we want to predict the image contour, only
points belonging to the occluding contour are considered. A point belongs to the occluding contour
pi ∈ O if its surface normal n̂ is perpendicular to the line L connecting the camera center O and
the point. In other words, the occluding contour is the set of points in the mesh that project to the
silhouette contour of the projected mesh.
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To find the points of the occluding contour there are two main strategies, the first and the simplest
one is to test for every point in the mesh if the surface normal is perpendicular to the projection ray:

p ∈ O if n̂ · (p−C) < ε (2.74)

where ε is a small positive threshold. In practice, however, this approach is problematic since the
accuracy of n̂ strongly depends on the mesh resolution (number of vertices of the mesh). One solu-
tion is to look for sign changes of the angle between the triangle normal and the projection ray. The
second strategy is to first render a binary silhouette projection on the image, project all the vertices
of the mesh and retain only those on the silhouette boundary. To render the silhouette image, all the
visible surface triangles are projected to the image and filled using typical graphics raster-scan algo-
rithms. Alternatively, the rendering can be very efficiently performed on the GPU using OpenGL3.
At this point we have two sets of points, the 3D points in the occluding contour pi ∈ O and the 2D
points from the image contour ri ∈ I, The correspondences can be found by finding for every point
projection r̃i = Pc(pi) the k-nearest neighbors in the image contour [68, 96, 77, 52, 8, 49]. This
will result in a set of 3D-2D correspondences (pi,ri) or 2D-2D correspondences (r̃i,ri). We note that
finding correct correspondences is a hard problem with probably many local minima. To leverage
this, additional terms based on overlap between the model and image silhouette can be included into
the matching cost [7].

Descent strategies: Collecting many of these correspondences (r̃i,ri) one may define a likelihood
function based on points as explained in Sec. 2.4.1. Maximizing of the likelihood in Sec. 2.4.1 is
equivalent to minimizing the error function e : RD 7→ R consisting of a sum of squared re-projection
errors in the image

e(xt) =
N∑
i

e2
i (xt) =

N∑
i

‖r̃i(xt)− ri‖2 (2.75)

which we want to minimize with respect to the pose parameters xt. Note that in the case of 2D-2D
correspondences the individual residual errors ei ∈ R2 are 2D error vectors ei = (∆ri,x,∆ri,y). Eq.
(2.75) is a classical non-linear least squares that can be re-written in vector form as

e(xt) = eTe (2.76)

where e ∈ R2N is the total residual error e = (eT1 ,eT2 , . . . , eTN). Eq. (2.76) can be efficiently mini-
mized using a Gauss-Newton style minimization. The trick is to iteratively linearize the vector func-
tion e ∈ R2N around the solution with the Jacobian matrix Jt to find a descent step. In the literature,
the expression for the Jacobian matrix is often omitted due to space limitations. Therefore, we repro-
duce here how to derive the analytical expression of the Jacobian matrix Jt ∈ R2N×D of the residual
error e. We start by deriving the expression for the Jacobian of the error of a single correspondence
Jt,i = ei

∆x . It is straightforward to see that individual error Jacobian equals the prediction Jacobian
Jt,i = ei

∆x = r̃i
∆x because only the prediction r̃i depends on the pose parameters. Recall that the

matrix Jt,i ∈ R2×D maps increments in the pose parameters ∆x to increments in the predictions ∆r̃i.
To compute the Jacobian it is useful to identify the set of transformations applied to a point ps(0) in
the reference pose to the final projection in the image r̃, see Sec. 3.1. We can visualize this with the
following diagram

ps(0)
Gsb(xt)

−−−−−−−−→ ps
gc:= Mext

−−−−−−−−→ pc
gp:=f(X

Z
+ox,XZ +oy)

−−−−−−−−−−−−→ r̃

where Gsb(xt) is the concatenation of rigid motions in the kinematic chain given by the pose parame-
ters xt, gc(p) 7→Mext p is the extrinsic camera matrix that transforms a point from spatial coordinates

3www.opengl.org
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ps to camera coordinates pc and gp(X,Y,Z) 7→ (f X
Z

+ ox, f
X
Z

+ oy) is the perspective projection
of 3D point in camera coordinates onto the image plane (with f denoting the focal length, (ox,oy)
the principal point and we assume squared pixels with no skew). Now we can compute the Jacobians
Jc ∈ R3×3,Jgp ∈ R2×3 of the functions gc,gp separately as

gc : R3 → R3 pic = Mext p̄is = Rcs pis + tcs =

XY
Z

 Jc = Rcs

gp : R3 → R2 r̃i = gp(pic) = (f X
Z

+ ox, f
Y
Z

+ oy) Jgp = f


1
Z

0 − X
Z2

0 1
Z

− Y
Z2


where the Jacobian of gc is directly the rotational component of the extrinsics, Rcs because it is a
linear map and the Jacobian of gp is computed by direct application of the definition of the Jacobian
matrix [97]. By applying the chain rule, the Jacobian of the composed mapping Jt,i might be written
as

Jt,i = ∆r̃i
∆xt

= ∆r̃i
∆pc

· ∆pc
∆ps

· ∆ps
∆xt

= Jgp Rcs Jp(x; pis), (2.77)

where Jp(x; pis) is the pose Jacobian derived earlier in equation Eq. (2.58). It is straightforward to
see that the Jacobian of total residual error Jt ∈ R2N×D may be written by stacking the individual
point Jacobians Jt,i ∈ R2×D

Jt = ∆e
∆x

=


Jt,1
Jt,2

...
Jt,N

 . (2.78)

With the analytical expression of the residual Jacobian the Gauss-Newton method calculates the de-
scent step as follows

∆x = arg min
∆x

1
2 eT (xt + ∆x) e(xt + ∆x)

= arg min
∆x

1
2 (e + Jt∆x)T (e + Jt∆x)

= arg min
∆x

1
2eTe + ∆xTJTt e + 1

2∆xT JTt Jt ∆x

(2.79)

where e = e(xt)T and Jt = Jt(xt) are evaluated at the current estimation xt. Finally, derivating with
respect to ∆x and equating to zero we find that the descent step is:

∆x = −(JTt Jt)−1 JTt e (2.80)

At every iteration of the Gauss-Newton algorithm the step is computed using equation Eq. (2.80) and
the pose parameters are updated xt+1 = xt + ∆x. This procedure is repeated until the algorithm
converges. The step ∆x always decreases the error function e(xt) as long as the Jacobian matrix Jt
has full rank. In the Levenberg-Marquadt algorithm, the Gauss-Newton step is modified

∆x = −(JTt Jt + µI)−1 JTt e (2.81)

by introducing an additional dynamically chosen parameter µI that improves the performance. If
the step decreases the error, the step is accepted and the value of µ is reduced. If the step increases
the error, µ is increased and a new step is computed. When µ is large the method performs like



2.6 Optimization 41

Figure 2.13: Different error functions, from left to right: minimization of reprojection error (2D-2D
correspondences), point to line distance error minimization (2D-3D correspondences),
point to point distance error minimization (3D-3D correspondences) and region based
tracker

standard gradient descent, slow but guaranteed to converge. When µ is small it performs like Gauss-
Newton. Once the algorithm has converged the obtained pose estimate is used as initialization for
the next frame, new correspondences are found in the new image and the process is repeated. For
large motions it is often needed to reproject the model to the image several times to obtain refined
correspondences, similar to the standard ICP (iterative closest point) registration method [98, 99].

Different error functions: Different error functions have been proposed in the literature. For exam-
ple, in [77] they directly minimize the sum of squared distances between 3D model points pis and the
projection rays Li casted by the corresponding 2D image observations ri. Writing the projection line
in Plücker coordinates Li = (mi,ni) the error may be written as

e(xt) =
N∑
i

e2
i (xt) =

N∑
i

‖pis(xt)× ni −mi‖2 (2.82)

where the residuals are 3D distance error vectors ei ∈ R3. In this case it is straightforward to show
that the Jacobian of the error of one correspondence pair is given by Jt,i = n∧i Jx(pis) ∈ R3×D.

Another alternative used by several authors [100, 88] is to first reconstruct the visual hull [101]
from the multiview images obtaining a rough volume of the human shape. Then the matching is done
between the model points and the points from the visual hull resulting in a set of 3D-3D correspon-
dences (pis,qis). The error function is then simply the distance between 3D points

e(xt) =
N∑
i

e2
i (xt) =

N∑
i

‖pis(xt)− qis‖2 (2.83)

with ei ∈ R3 where in this case the Jacobian is directly Jt,i = Jx(pis).
In Figure 2.13 an illustration of common error functions is shown.

Combining features: Other kind of features like SIFT or optical flow can be integrated as additional
correspondences into this framework as long as they can be predicted given a pose estimate. The
combination of features should robustify the tracker [102].

Optical flow based

Optical flow is the apparent motion in the image projection of 3D object in the world. The displace-
ment [u v] of every pixel [x y] from one frame to the next one is computed assuming that the intensity
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(a) (b)

Figure 2.14: Error functions: (a) Region based error function and (b) optical flow based error func-
tion. Region based likelihoods can be optimized locally by taking the gradient direction
in pose space that best separates the foreground from background. Similarly, optical
flow can be integrated in local methods by parameterizing the flow using the the human
motion model.

remains constant. This is known as the brightness constancy assumption and it may be written as
I(x,y,t − 1) = I(x + u,y + v,t). The first order Taylor expansion of the right hand side of the
equation leads to the remarkable normal optical flow constraint equation [103],[

Ix Iy
]
·
[
u
v

]
− It = 0 (2.84)

where Ix,Iy and It are the spatial and temporal derivatives of the image. Generally, neighboring
pixels are assumed to move together according to a given motion model. Bregler et al. [104, 76] used
a human motion model to parameterize the motion flow [u v]. Specifically, he finds for every pixel in
the image the corresponding 3D point in the human model ps. Then the motion [u v] is simply given
by the projection of the 3D point displacement ∆ps onto the image plane. This can be written as[

Ix Iy
]
· Pc(∆ps)− It = 0 (2.85)

where recall that Pc() dennotes projection on the image plane (in [104, 76] an orthographic camera
projection is assumed), and the point displacement is given by ∆ps = Jx∆xt Eq. (2.57). Note
that the error function in Eq. 2.85 derives from the likelihood explained in Sec. 2.4.1. Eq. (2.85)
can alternatively be interpreted as a dense correspondence error function where the following error
ei(xt) = I(x + u,y + v,t) − I(x,y) for one correspondence is linearized. Here only [u v] depend
on the pose parameters. The total error function e(xt) can be interpreted then as the sum of squared
pixel intensity differences. Unfortunately, approaches relying exclusively on optical flow have two
main drawbacks. First, when the motion is large, the Taylor expansion in Eq. (2.84) produces large
estimate errors. Second, while image features like edges and silhouettes provide an absolute mea-
surement, relying on optical flow causes error accumulation which results in drift and tracking failure
[93]. Nevertheless, [76] was the first work in human pose estimation to use the elegant twists and
exponential maps formulation from the robotics community.

Region based

Region based methods are based on separating the foreground figure (the human silhouette) from the
background by maximizing the dissimilarity between region density functions (usually the density
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functions are approximated by simple histograms of pixel intensities and colors). Popular approaches
to achieve this are level sets or graph-cuts [105, 106]. This process can be coupled with human
pose estimation in an Expectation-Maximization scheme. An initial human pose estimate defines
two regions in the image, namely the interior of the projected silhouette and the exterior. This ini-
tial boundary is then used as a shape prior for a levelset segmentation. Thereafter, correspondences
between the segmentation and the projected silhouette are obtained and the pose is estimated using
a correspondence-based method. This process of pose estimation and segmentation is iterated until
convergence. Some works have coupled the feature extraction and the descent strategy. The work by
[87, 107] skips the segmentation step and directly shifts the points belonging to the occluding contour
r̃ ∈ O inwards or outwards (orthogonal to the contour line) according to the posterior probability den-
sities. If the foreground posterior is bigger than the background posterior the point is shifted outwards,
otherwise the point is shifted inwards, see Figure 2.13. This implicitly generates correspondence pairs
between points and shifted points which feed a correspondence based tracker.

2.6.2 Particle-based Optimization and Filtering
A well known problem of local optimization methods is that since they are based on propagating a
single pose hypothesis, when there is a tracking error the system can in general not recover from
it. To overcome this limitation, stochastic search techniques have been introduced for human pose
estimation. This group of methods are based on approximating the likelihood of the image given the
pose parameters by propagating a set of particles from one time step to the next one.

Particle Filter

Problems in human pose estimation arise from kinematic singularities, depth and orientation ambigu-
ities and occlusions. For all this reasons the posterior density p(xt|y1:t) and the observation process
p(yt|xt) are highly peaked and highly multimodal. The image likelihood p(yt|xt) is the probability of
observing certain image features given a pose xt, and p(xt|y1:t) is the probability of the pose parame-
ters considering the history of all observations from previous images 1 : t. To see this multimodality,
note that many configurations in pose parameter space x explain well the observations y1:t (for exam-
ple any rotation by an angle α about the axis of a limb will project to almost the same image location).
It is well known that in this case a Kalman filter will fail. In these cases the posterior can be approx-
imated by a particle filter (PF). Samples are generated using Markov Chain Monte Carlo. A particle
filter approximates the posterior p(xt|y1:t) by a set of particles {π(i)

t ,x
(i)
t }Ni=1 where the weights are

normalized so that
∑
N π

(i)
t = 1. Each particle x(i)

t corresponds to one configuration of pose parame-
ters Eq. (2.54), and the weights are chosen to be proportional to the likelihood π(i) ∝ p(yt|xt = x(i)

t ).
At each time step the pose parameters can be estimated by the mean of the weighted particles,

x∗t = Ex[xt] '
∑
N

π
(i)
t x(i)

t . (2.86)

or by the mode of the particle set x∗t = Mx[xt] = x(i)
t with π(i)

t = max
(
π

(n)
t

)
.

Assuming a first order Markov process (p(xt|x1:t−1) = p(xt|xt−1)) the posterior distribution can
be updated recursively

p(xt|y1:t) ∝ p(yt|xt)p(xt)
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2.87)

where the integral computes the pose prediction from the previous time step posterior p(xt−1|y1:t−1)
propagated with the dynamical model p(xt|xt−1). The prediction is then weighted by the likelihood
function p(yt|xt) times the prior p(xt) if available. In a particle filter setting, Eq. (2.87) is approxi-
mated by importance sampling, see for example [108].
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particle silhouette chamfer distance of 
image silhouette

Figure 2.15: Particle Filter: on the left the weighting function is shown as a function of the pose
parameters. The function is multimodal and it is difficult to tell where the maximum
is from the particle distribution. On the right: the weighting function is evaluated for
every particle x(i)

t . The weighting function should be fast to evaluate, in this example,
it consists of a simple overlap measure between the particle silhouette and the chamfer
distance transformed image silhouette.

Given a set of weighted particles approximating the posterior in the previous frame P+
t−1 :=

{π(i)
t−1,x

(i)
t−1}Ni=1, N particles are drawn from Pt−1 with replacement and probability proportional to

their weights obtaining a new set of unweighted particles {x̃(i)
t−1}Ni=1. Thereafter, the particles are

propagated to the next frame by sampling from the dynamical model p(xt|x̃(i)
t−1) producing a new

unweighted set of predictions P−t := {x(i)
t }Ni=1. Finally, every particle in P−t is weighted according to

the likelihood in the new frame π(i)
t = p(yt|x(i)

t ) obtaining the final weighted setP+
t := {π(i)

t ,x
(i)
t }Ni=1

that approximates the updated posterior p(xt|y1:t).

Likelihood functions: Ideally, to model the observation process p(yt|xt) the complicated image
formation process has to be synthesized, i.e., illumination, human appearance rendering on the im-
age, clothing, occlusions, shadows, etc. Since p(yt|xt) has to be evaluated for every particle in
the set p(yt|xt = x(i)

t ), this is obviously computationally infeasible. In practice, to make the prob-
lem tractable an intuitive function w(yt,xt = x(i)

t ) is constructed that approximates the probability
p(yt|x = x(i)

k ). This function takes into account only image observations yt that can be modeled easy
and efficiently (e.g., edges, coarse foreground appearance or silhouettes). Actually, the error functions
e(xt) described for local optimization might be used to set the weights w as

w(yt,xt = x(i)
t ) = exp

(
−e

(
x(i)
t

))
(2.88)

where, as explained before in Section 2.5, we interpret the error as the cost density associated with
the observations. To gain in efficiency, a chamfer distance can be pre-computed in the original image
silhouette or edge map, see Figure 2.15. Then, simple overlap measures between the synthesized
particle silhouette and the chamfer distance image are computed [4, 5, 6]. Another commonly used
feature in the weighting function is appearance, whose associated cost can be evaluated with his-
togram comparison [5, 12]. For a comparative study of the influence of different likelihood/weighting
functions we refer the reader to [109]. Nonetheless, the computation of w(yt,xt = x(i)

t ) is a very
expensive operation if it has to be evaluated for many particles. In addition, the number of particles
required to approximate p(xt|y1:t) grows exponentially with the dimensionality of x which makes
the particle filter intractable for realistic human models with more than 30 DoF . Furthermore, even
using a large number of particles the search can be misdirected if many local modes are present in
w(yt,xt = x(i)

t ), see Figure 2.15.



2.6 Optimization 45

Annealed Particle Filter

The annealed particle filter (APF)is a modification of the particle filter and it was introduced for
human pose estimation by Deutscher et al.[4]. The goal here is to modify the particle filter such that
the number of needed particles is drastically reduced and the particles do not congregate around local
maxima. The APF is motivated from simulated annealing methods designed for global optimization
of multimodal functions [110]. The key idea is to gradually introduce the influence of narrow peaks
in the weighting function w(yt,xt). This is achieved by starting a search run in successive layers
gradually changing the weighting function as for β0 > β1 > . . . > βM . The run is started at layer M ,
where wM is broad and reflects the overall trend of w without the influence of so many local maxima.
As we move to the next layer, β increases and therefore the local peaks become more accentuated. For
initialization, an initial set of samples is drawn from a proposal distribution qM+1. During tracking
we might choose this distribution to be the set of particles from the previous frame or the propagated
particles if we use a motion model. For initialization in the first frame the distribution should be spread
with a high variance, see for example [111]. Once the algorithm is initialized the optimization consists
of the following steps executed at every layer: weighting, resampling and diffusion, see Figure 2.16
and the pseudo code in Algorithm 1.

Algorithm 1 Annealed particle filter
Require: number of layers M, number of samples N , initial distribution qM+1,

Initialize: Draw N initial samples from q → x(i)
t,m

for layer m = M to 0 do
1. WEIGHTING
start from the set of un-weighted particles of the previous layer
for i = 1 to N do

compute wt,m(yt,x(i)
t,m)βm

set π(i)
t,m ∝ wt,m(yt,x(i)

t,m)βm
end for
set qm = {π(i)

t,m,x
(i)
t,m}Ni=1

2. RESAMPLING
draw N samples from qt,m → x(i)

t,m {Can be done with multinomial sampling}
3. DIFFUSION
x(i)
t,m−1= x(i)

t,m + Bt,m {Bt,m is a sample from a multivariate Gaussian with N (0,Σ)}
end for

• Weighting: The surviving particles of the previous layer are assigned new weightswt,m(yt,x(i)
t,m)βm

with the new annealing scheme βm. At this point a new proposal distribution has been formed
qm = {π(i)

t,m,x
(i)
t,m}Ni=1.

• Resampling: N new samples are drawn from the distribution qm with probability equal to the
weights, this can be efficiently done with multinomial sampling. Note that particles with high
weight (low error) will be selected with higher probability and therefore a higher number of
particles concentrate around the maximum of the weighting function. Gall et al.[112, 5] pro-
poses a generalization of the resampling strategy that improves the performance of the APF. In
this modification, particles with high weight are with high probability retained in the set without
replacement.

• Diffusion: In order to explore the search space the particles are diffused by some function. A
common choice is to shift every particle by adding a sample from a multivariate Gaussian with
covariance Σm. The covariance Σm can be chosen to be proportional to the particle set variance
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since this provides a measure of uncertainty (The more uncertainty, the farther away we have
to explore the search space). The run in the layer terminates with the diffusion step and the
particles are used to initialize the weighting step of the next layer.

weighting

resampling

diffusion

Figure 2.16: Annealed particle filter: At each layer the weighting, resampling and diffusion steps
are performed. The influence of the peaks is gradually introduced into the weighting
function wm. Consequently, the particles converge at the global maximum in the last
layerw0 and do not get trapped in local maxima peaks as opposed to the standard particle
filter. Additionally, on the left column, the distribution of the particles projected to the
image is shown, where particles with higher weights are brighter (left column images are
courtesy of Gall et al.[5]).
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wm(yt,xt) = w(yt,xt)βm, (2.89)

Once the algorithm has finished the last annealing run, the pose estimate is obtained by the mean of
the final set of particles of the last layer, x∗t = Ext [q0] = ∑

i π
(i)
t,0 x(i)

t,0. Although the APF can be used
recursively as the standard PF in Eq. (2.87) using some heuristics, it can be considered a single frame
global optimization algorithm. While the APF is computationally more efficient in locating global
minima in the likelihood function p(yt|xt) than the particle filter, the main disadvantage is not being
able to work within a robust Bayesian framework [4]. The reason for that is that the set of particles
of q0 congregate only around one maximum of the observation process p(yt|xt) at the current frame
t. Therefore, the particles are not well distributed for the next frame and usually a heuristic has to
be used to spread them to search in the next frame. By contrast, in the PF (which needs much more
samples) the final particle set represents the total posterior p(xt|y1:t) which might contain multiple
maxima. Therefore the PF can represent inherent ambiguities by maintaining multiple modes at the
expense of a significant loss in accuracy.
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Tailored Optimization Methods

Although an exhaustive survey of the proposed sampling methods and likelihood functions used in
the literature for human tracking is out of the scope of this chapter, it is worth to highlight some op-
timization procedures tailored for the problem of human pose estimation. Choo and Fleet [113] use
a Markov Chain similar to Eq. (2.87) but use every particle as initialization for local optimization on
the likelihood function. Similarly, Sminchisescu and Triggs [68] also combine particle based sam-
pling with local optimization, but additionally sample along the most uncertain directions calculated
from the local likelihood Hessian matrix at the fitted optima. Along this lines, importance samplers
have been proposed that focus samples on regions likely to contain transitions states leading to nearby
minima [7]. Another way to locate multiple optima in monocular images is to exploit the geometry of
the problem to deterministically enumerate the set of poses that result in the same projection [26, 23].
To make the sampling tractable in the high dimensional space, state partitions have also been used
[114, 115]. These partitions are either specified manually by sequentially tracking different kinematic
branches (e.g. torso, limbs and head) [114] or selected automatically from the parameter variances in
the particle set [115]. Every optimization scheme has its own advantages/disadvantages but a common
key component in all of them for successful tracking is a good background subtraction.

2.7 Prior Knowledge

2.7.1 Joint Limits
The kinematic structure of the human body permits a limited range of motion in each joint. Knees
and elbows for example can not be hyper-extended. A simple way to integrate such constraints is
to include joint limits. This is enforced including a set of linear inequalities for every joint angle
lb < θi < ub for i = 1, . . . ,n, where lb and ub are the lower and upper bound joint limits. In a particle
based optimization scheme, satisfying joint limits can be easily achieved by sampling on the valid
interval only. In a local optimization scheme, after linearization of the objective function the step ∆x
is found by solving quadratic programing (QP) problem

min ‖J ∆x + e‖2

subject to C∆x = dj for j = 1, . . . ,m Inequality constraints

where J is the Jacobian of the residuals vector e and C is a matrix of constraints.

2.7.2 Collision Avoidance
Another desirable restriction is to avoid self-penetration in the human model. Testing for self-
penetration during optimization can be too expensive if a fully triangulated mesh is used. A simple
but very effective approach is to approximate each body part by a geometric primitive. In that case,
intersection can be tested very fast. Typically, when an intersection is detected one includes a penalty
in the objective function as in [68, 116, 51].

2.7.3 Motion Models
Another way to constraint the human pose is with motion models. The reasoning is that the poses
should vary smoothly over time. Perhaps the most simple prior model of human motion is a smooth,
low-order Markov process. Typically, a first order model assumes that the pose at xt+1 equals the
pose at the previous frame up to additive Gaussian noise:

xt+1 = xt + w (2.90)
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Global Opt. vs HybridLocal Opt. vs Hybrid Outdoor Motion Capture

Figure 2.17: left: current approaches, either local or global optimization can not capture axial rotation
accurately; the combination of a video based tracker with inertial sensors (hybrid tracker)
allows to capture detailed motion. Right: motion capture in uncontrolled scenarios is one
of the principal future challenges (outdoor images on the right are courtesy of Hasler et
al.[118])

The process noise w is assumed to be zero mean, with covariance Σ, i.e., has a distributionN (w; 0,Σ).
Equivalently, it follows that p(xt+1|xt) = N (xt+1; xt,Σ). More generally one can use an L-th order
linear-Gaussian Dynamical system LDS of the form:

xt+1 =
L∑
τ=1

Aτxt−τ+1 + w (2.91)

The matrices Aτ can be set by hand, e.g., assuming them to be diagonal and fixing the process noise
covariance to be also diagonal. Alternatively, one can learn dynamical models from MoCap data
[117]. This allows to capture coupling between joints. The problem is that the number of parameters
to learn is quadratic with the dimension of the pose parameters which leads to over-fitting. To over-
come this, it is also possible to learn a low dimensional latent paramterization using dimensionality
reduction techniques such as PCA, GPLVM or GPDM. Then one can learn the dynamics on the latent
space [16, 17]. A common problem is that the dynamics can vary a lot depending on the motion
pattern. One way around this is to use switching linear dynamical models SLDS.For more details on
motion models for people tracking, we refer the reader to [3].

2.8 Limitations of Pure Image Based Methods

The basic mathematical tools necessary for anyone who wants to implement a human pose estimation
system have been introduced, namely kinematic structure representation and model creation. A uni-
fied formulation has been presented for the most common model-based pose estimation algorithms
seen in the literature. We have seen that the model image association problem for pose estimation is
usually formulated as the minimization/maximization of an error/likelihood function. The two main
strategies have been described, namely local and particle based optimization. Local optimization
methods are faster and more accurate but in practice, if there are visual ambiguities, or really fast
motions, the tracker might fail catastrophically. To achieve more robustness, particle filters can be
used because they can represent uncertainty through a rigorous Bayesian paradigm. The problem
here is that the number of particles needed to achieve reasonable results grows exponentially with the
dimensionality of the pose parameter space which makes them unpractical for human models with
more than 20 DoF . To reduce the number of needed particles, the annealed particle filter can be used
at the expense of not being able to work in a fully Bayesian framework. A further problem of global
optimization methods is that while robust, they do not provide a single temporally consistent motion
but rather a jittery motion which must be post-processed to obtain visually acceptable results. Com-
binations of global and local optimization have also been proposed to compensate for the drawbacks
of each strategy [68, 113, 5]. Nonetheless, current approaches do not capture detailed movement such
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as hand orientation or axial arm rotation. This stems from depth and orientation ambiguities inherent
in the images (i.e., any rotation about a limb axis projects to the same image). To overcome this lim-
itations we propose a hybrid tracker that combines correspondence based local optimization with a
small set of inertial sensors placed at body extremities to obtain a much accurate and detailed human
tracker, see Figure 2.17. The key idea is to fuse both sensor types in a joint optimization to exploit the
advantages of each sensor type (accurate position from images and accurate orientation from inertial
sensors). This will be explained in the next Chap. 4 and Chap. 5.
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3 Inertial Sensors and Camera Calibration

3.1 Camera Model

We use a perspective camera projection model. A projection model maps points in the 3D world to
pixel locations in the image. Mathematically, the image formation can be defined as the projection of
the 3D space onto the image plane, see Fig. 3.1.

A point in world coordinates p̄ is projected to a 2D point r = [u v]T in the image with the following
equation

r̄ = 1
Z

Mp̄ (3.1)

(3.2)

where Z is the depth of point, r̄ = [u,v,1]T , and p̄ = [X,Y,Z,1]T are the homogenous coordinates of
the points and M is the camera projection matrix where

M = K [R|t] . (3.3)

where

• K is the 3× 3 camera calibration matrix that depends on the internal parameters of the camera:
focal length and distortion parameters of the lenses.

• [R|t] is the 3 × 4 external camera matrix that contains the rigid transformation between the
world coordinate system and the camera coordinate system.

The image formation process is illustrated in Fig. 3.1. Let m1,m2,m3 be the rows of M. Since the
depth Z = mT

3 ps we can alternatively write

u = mT
1 ps

mT
3 ps

(3.4)

v = mT
2 ps

mT
3 ps

(3.5)

3.1.1 Internal Camera Matrix

Given a point in camera coordinates, pc = [X,Y,Z]T , its projection r = [u v]T in the image is given
by

u = kuf
X

Z
+ u0 (3.6)

v = kvf
Y

Z
+ v0 (3.7)

where

• f is the focal length of the camera.
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Figure 3.1: Camera perspective model on the right, formed image on the left. The following trans-
formations take place: 1) From world coordinates to camera coordinates, 2) perspective
projection onto the image plane, 3) from image plane coordinates to pixels. The scaling
factor and the principal point determine how plane coordinates are mapped to the final
pixels. The final image in pixels is shown on the left.

• where ku,kv are the number of pixels per unit distance in the normalized plane (u,v) in the u-
and v- directions respectively.

• c = [u0,v0]T is called the principal point which is the intersection between the optical axis and
the image plane expressed in image coordinates.

This can be expressed in matrix form as r̄ = 1
Z

Kpc, where

K =

kuf 0 u0
0 kvf v0
0 0 1

 (3.8)

is the intrinsics camera matrix. We assume the cameras have no skew parameters, additionally if the
pixels are assumed to be square we have that ku and kv are equal.

3.1.2 Extrinsics Camera Matrix
The 3× 4 external parameters simply represents the transformation from camera to world coordinate
system. That is, a point in the world coordinate ps is mapped to a point in camera coordinates pc
through

ps = [R|t]p̄c = Rpc + t (3.9)

From this relation it is straight-forward to extract the camera center ocenter in world coordinates as
ocenter = −RT t.

3.1.3 Camera Calibration
The parameters of the camera projection M are estimated from point correspondences between known
world points pi and their corresponding 2d image coordinates ri. Clearing the denominators in
Eq. 3.5, we see that every correspondence leads to the following linear equation

(mT
1 − ui mT

3 ) · pi = 0 (3.10)
(mT

2 − vi mT
3 ) · pi = 0 (3.11)

Collecting enough correspondences one can estimate M from the overconstrained linear system. The
parameters can then be infered from the projection matrix, see [97].
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(a) (b)

Figure 3.2: IMUS: (a) XSens inertial measurement unit and (b) Xbus Kit consisting of Xbus Master
and 5 units. The master synchronizes the 5 sensors with a trigger signal, collects the raw
data from the units and sends it to a computer.

3.2 IMUs

An Inertial Measurement Unit or IMU is an electronic device that measures and orientation and grav-
itational forces, using a combination of accelerometers and gyroscopes, sometimes also magnetome-
ters. In all our experiments we use the MTx device provided by XSens [119]. An MTx unit consists
of 3 rate gyroscopes, a magnetometer and an accelerometer. This information is fused using a propri-
etary algorithm to provide 3D acceleration and 3D orientation. The unit’s dimensions are 38x53x21
mm and weights 30g. The accuracy of the orientation is lower than 1 deg with an angular resolution
of 0.05 deg1. The maximum frame rate is 512 Hz provided that all the bandwidth is used by a single
sensor. In our experiments, since we are using up to 10 units we record at a frame-rate of 40 Hz.

3.2.1 Sensor Data

In our experiments, we use an orientation estimation device MTx provided by XSens [119]. An Xsens
MTx unit provides two different streams of data: three dimensional local linear acceleration ~aS and
local rate of turn or angular velocity ωS . In Fig. 3.2 we show an MTx unit (a) and the full set including
the XBus master (b) which collects data and synchronizes several IMUs. Orientation data can be
obtained from the angular velocity ω(k) provided by the sensor units. Besides angular velocity, the
MTx units provide a proprietary algorithm that can accurately calculate absolute orientations relative
to a static global frame F I , which we will refer to as inertial frame. The inertial frame F I is computed
internally in each of the sensor units in an initial static position and is defined as follows: The Z axis
is the negative direction of gravity measured by the internal accelerometer. TheX axis is the direction
of the magnetic north pole measured by a magnetometer. Finally, the Y axis is defined by the cross
product Z ×X . For each sensor, the absolute orientation data is provided by a stream of quaternions
that define, at every frame, the map or coordinate transformation from the local sensor coordinate
system to the global one RIS(t) : F S ⇒ F I . In Fig. 3.3 we show how the 5 sensors are attached to
the extremities, we also show the local coordinate frame of each unit that coincides with the box main
axes.

3.2.2 Limitations of IMUs

IMUs are very appealing because they provide a direct 3D measurement in contrast to images where
the 3D information needs to be hallucinated. Furthermore, IMUs do not suffer from occlusions/self-
occlusions. However, they have some limitations:

1Specifications provided by the manufacturer
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Figure 3.3: Sensor placement: The five sensors are attached at the body extremities. We show the
local coordinate frame axes of each of the five sensors used.

• Wearing many IMU is intrusive for the subject.

• IMUs suffer from drift in continous operation. The lack of direct positional information makes
IMUs inaccurate. One could in principle derive position from the acceleration measurements
but we have found this to be numerically very unstable.

• The orientation data provided by IMUs suffers from lag. That is due to the fact that orientation
data is obtained as the output of a Kalman filter that integrates accleration, magnetetometer and
gyroscope information together. This is lag is specially problematic during fast motions.

Hence, we introduce in Chap. 4 a hybrid tracker that fuses information coming from a small set of
IMUs (we use 5) and information coming from video cameras to compensate for the drawbacks of
each sensor type. To this end, we synchronize a set of video cameras with a set of IMUs as explained
below.

3.3 Calibration and Synchronization with the Video
Cameras

Unfortunately, the world frame defined in our tracking system differs from the global inertial frame.
The tracking coordinate frame F T is defined by a calibration cube placed in the recording volume, in
contrast to the inertial coordinate frame which is defined by the gravity and magnetic north directions.
Therefore, in order to be able to integrate the orientation data from the inertial sensors into our tracking
system, we must know the rotational offset RTI between both worlds, see Figure 3.4. Since the Y
axis of the cube is perpendicular to the ground and so is gravity, the Y axis of the tracking frame
and the Z axis of the inertial frame are aligned. Therefore, RTI is a one parametric planar rotation
that can be estimated beforehand using a calibration sequence [58]. Thus, we can easily adapt the
transformations so that they define a map from the local sensor frame to the tracking frame F T :

RTS = RTIRIS (3.12)

This calibration step can be avoided if the global tracking frame coincides with the inertial global
frame. This can be achieved by placing a calibration cube on the ground so that one of the axis is
aligned with gravity direction and orientating the cube so that its X-axis aligns with the magnetic
north. This can easily be accomplished using a compass. The 3D coordinates of 21 keypoints in
the cube are known. By clicking those points in the images we obtain a set of 3D points with its
corresponding 2D image projections from which we obtain the camera projection matrices [97]. In
Fig. 3.5 we show the calibration cube placement to calibrate four cameras in an outdoor setup.
The MTx units are synchronized with a trigger signal that comes from the master, see Fig. 3.2. The

cameras are synchronized with a trigger signal in the indoor setups and synchronized using the audio
signals in outdoor setups where we use conventional cameras. To synchronize the cameras with the
IMU we start the sequences using a clapping motion. The clapping produces a clear peak in both the
camera audio signals and the IMU’s acceleration signal which can be easily detected.
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Figure 3.4: Global frames: tracking frame F T and inertial frame F I . Local frame: sensor frame F S .

(a) (b) (c) (d)

(e)

Figure 3.5: Camera calibration: by placing a calibration cube on the ground and aligning one of its
axis to the magnetic north we obtain a tracking coordinate system that coincides with
the global coordinate system defined by XSens sensors. In (a),(b),(c),(d) we show each
camera view with the projected coordinate system on the image plane. In (e) we show the
arrangement of the cameras calculated from calibration.
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4 Local Hybrid Tracker

We describe in this chapter an approach to fuse video with orientation data obtained from extended in-
ertial sensors to improve and stabilize full-body human motion capture [49]. Even though the method
video data is a strong cue for motion analysis, tracking artifacts occur frequently due to ambiguities
in the images, rapid motions, occlusions or noise. As a complementary data source, inertial sensors
allow for drift-free estimation of limb orientations even under fast motions. However, accurate posi-
tion information cannot be obtained in continuous operation. As explained in the previous chapter,
we propose a hybrid tracker that combines video with a small number of inertial units, see Fig. 4.1, to
compensate for the drawbacks of each sensor type. On the one hand, we obtain drift-free and accurate
position information from video data and, on the other hand, we obtain accurate limb orientations and
good performance under fast motions from inertial sensors. In several experiments we demonstrate
the increased performance and stability of our human motion tracker.

4.1 Introduction

As described in Sec. 2.7 in Chap. 2, one way to overcome image ambiguities is to include prior
knowledge, such as human motion constraints. There are several ways to employ such a priori knowl-
edge to human tracking. One option is to learn the space of plausible human poses and motions
[19, 9, 120, 121, 12, 28]. Another option is to learn a direct mapping from image features to the
pose space [30, 122, 28, 123]. To constrain the high dimensional space of kinematic models, a major
theme of recent research on human tracking has been dealing with dimensionality reduction [16, 17].
Here, the idea is that a typical motion pattern like walking should be a rather simple trajectory in
a lower dimensional manifold. Therefore, prior distributions are learned in this lower dimensional
space. Such methods are believed to generalize well with only little training data. Inspired by the
same ideas of dimensionality reduction, physical and illumination models have been recently pro-
posed to constrain and to represent human motion in a more realistic way [18, 9, 10, 124]. A current
trend of research tries to estimate shape deformations from images besides the body pose by either
directly deforming the mesh geometry [85] or by a combination of skeleton-based pose estimation
with surface deformation [125].

Even using learned priors from MoCap data, obtaining limb orientations from video is a difficult
problem. Intuitively, because of the cylindrical shape of human limbs, different limb orientations
project to very similar silhouettes in the images. These orientation ambiguities can be easily captured
by the inertial sensors but accurate positions cannot be obtained. Therefore, we propose to use a
small number of sensors (we use only five) fixed at the body extremities (neck, wrists and ankles) as
a complementary data source to visual information. One the one hand, we obtain stable and drift-
free accurate position information from video data and, on the other hand, we obtain accurate limb
orientations from the inertial sensors. We show how to integrate orientation data from sensors in
a contour-based video motion capture algorithm. In several experiments, we show the improved
performance of tracking with additional small number of sensors.

Recently, inertial sensors (e.g. gyroscopes and accelerometers) have become popular for human
motion analysis. Often, sensors are used for medical applications, see, e. g., [36] where accelerometer
and gyroscope data is fused. However, their application concentrates on the estimation of the lower
limb orientation in the sagittal plane. In [37], a combination of inertial sensors and visual data is
restricted to the tracking of a single limb (the arm). Moreover, only a simple red arm band is used as
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Figure 4.1: Hybrid local tracker: Information coming from video cameras and the orientation data
coming from 5 IMU sensors attached at the body extremities is combined to obtain high
accurate pose estimation results. We formulate an energy that measures the pose con-
sistency with the image observations as well as the IMUs orientations. Since in indoor
scenarios good quality segmentations are possible we opt here to fuse the information
using a local optimization method which is very efficient.

(a) (b)

Figure 4.2: Tracking result for one frame using (a) Video-based tracker. (b) Our proposed hybrid
tracker.

image feature. In [38], data obtained from few accelerometers is used to retrieve and play back human
motions from a database. [126] presents a system to capture full-body motion using only inertial and
magnetic sensors. While the system in [126] is very appealing because it does not require cameras
for tracking, the subject has to wear a suit with at least 17 inertial sensors, which might hamper the
movement of the subject. In addition, long preparation time before recording is needed. Moreover,
inertial sensors suffer from severe drift problems and cannot provide accurate position information in
continuous operation.

4.1.1 Pose Parameterization

We very breifly recall the basic foundations to model human motion using a kinematic chain, for more
details see Sec. 2.1.

The dynamics of the subject are modeled by a kinematic chain F , which describes the motion
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constraints of an articulated rigid body such as the human skeleton. The underlying idea behind a
kinematic chain is that the motion of a body segment is given by the motion of the previous body
segment in the chain and an angular rotation around a joint axis. Specifically, the kinematic chain is
defined with a 6 DoF (degree of freedom) root joint representing the global rigid body motion and a
set of 1 DoF revolute joints describing the angular motion of the limbs. Joints with higher degrees of
freedom like hips or shoulders are represented by concatenating two or three 1 DoF revolute joints.
The root joint is expressed as a twist of the form θξ with the rotation axis orientation, location, and
angle as free parameters. Revolute joints are expressed as special twists with no pitch of the from θjξj
with known ξj (the location and orientation of the rotation axis as part of the model representation).
Therefore, the full configuration of the kinematic chain is completely defined by a (6 + n) vector of
free parameters

x := (θξ,θ1, . . . ,θn) (4.1)

similar to [77]. Now, for a given point p ∈ R3 on the kinematic chain, we define J (p) ⊆ {1, . . . ,n}
to be the ordered set that encodes the joint transformations influencing p. Let p̄s = p

1 be the homo-
geneous coordinate of p and denote Pc() as the associated projection with Pc(p̄) = p. Then, the
transformation of a point p using the kinematic chain F(x; p) and a parameter vector x is defined by

F(x; p) = Ph
(
GTB(x)p̄s(0)

)
= Ph

exp(θξ̂)
∏

j∈J (x)
exp(θj ξ̂j)

 p̄s(0)
 . (4.2)

Here, F(x; p) : R3 → R3 is the function representing the total rigid body motion GTB(x) of the seg-
ment in the chain where p belongs. Equation (4.2) is commonly known as the product of exponentials
formula [61], denoted as F(x;).

4.2 Video-based Tracker

The video based tracker is correspondence based as explained in Sec. 2.6.1. In order to relate the
surface model to the human’s images we find correspondences between the 3D surface vertices and
the 2D image contours obtained with background subtraction, see Fig. 4.3.

(a) (b) (c)

Figure 4.3: (a) Original Image, (b) Background subtracted image, (c) Projected surface mesh after
convergence.

We first collect 2D-2D correspondences by matching the projected surface silhouette with the back-
ground subtracted image contour as described in Sec. 2.4 and Sec. 2.6. Thereby, we obtain a collec-
tion of 2D-3D correspondences since we know the 3D counterparts of the projected 2D points of
the silhouette. In the presented experiments we only use the silhouettes as image features.We then
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Figure 4.4: Energy corresponding to video data: we minimize the sum of squared distances between
model points and the projection rays of their corresponding 2D correspondences.

minimize the distance ei between the transformed 3D points F(x; pi(0)) and the projection rays de-
fined by the 2D points pi. This gives us a point-to-line constraint for each correspondence. Defining
Li = (ni,mi) as the 3D Plücker line with unit direction ni and moment mi of the corresponding 2D
point ri = [xi,yi], the point to line distance residual ei can be expressed as

ei = ‖F(x; pi)× ni −mi‖ (4.3)

Similar to Bregler et al.[76] we now linearize the Equation by using exp(θξ̂) = ∑∞
k=0

(θξ̂)k
k! . With I as

identity matrix, this results in

(I + ∆ξ +
∑

j∈J (x)
∆θj ξ̂′j)) pi(x))× ni −mi = 0 . (4.4)

Having N correspondences, the energy we minimize Evideo is the sum of squared point-to-line dis-
tances ei

arg min
x
Evideo(x) =

N∑
i=1
‖di‖2 = arg min

x

N∑
i=1
‖F(x; pi)× ni −mi‖2 (4.5)

which can be locally optimized. After linearization, Eq. (4.5) can be re-ordered into an equation of
the form Jvideo(x)∆x = evideo as explained in Sec. 2.6.1, see also Fig. 4.5. Collecting a set of such
equations leads to an over-determined system of equations, which can be solved using numerical
methods like the Householder algorithm. The pose parameters are then updated as xk+1 = xk + ∆x.
The Rodriguez formula can be applied to reconstruct the group action g from the estimated twists θjξj .
Then, the 3D points can be transformed and the process is iterated until convergence as explained in
Sec. 2.6.

4.3 Hybrid Tracker

The input of our tracking system consists of:

• Rigid surface mesh of the actor obtained from a laser scanner (Sec. 2.3).

• Multi-view images obtained by a set of calibrated and synchronized cameras (Sec. 3.3).

• Global orientation data coming from the sensors (Sec. 3.2.1).
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Sensor Orientations
3D-3D Vector Correspondences

Image Silhouettes
2D-3D Point Correspondences

Figure 4.5: We optimize a joint energy including a term for the video data and a term for the IMU sen-
sor data. The IMU orientation constraints are integrated as 3D-3D vector correspondences
and the video data as 2D-3D point correspondences.

We used five inertial sensors fixed at the body extremities (wrists, lower legs, and neck). We define a
joint energyEhybrid that measures the consistency between poes estimates with measurements coming
from video and inertial sensors:

arg min
x
Ehybrid(x) = Evideo(x) + λEsens(x) (4.6)

where Evideo(x) is the energy cost corresponding to the video measurements defined in Eq. 4.5 and
λEsens(x) is the cost associated with the IMU orientation measurements. To have a balanced energy
we normalize the individual terms in the range of [0,1]. In all our experiments we set λ = 0.5 to have
an equal influence of both terms. As we will see in Sec.4.4.2, Esens(x) can also be expressed as a sum
of squared errors. This allows us to use numerical optimization techniques such Newton-Raphson or
Lebendberg-Marquadt. Let evideo : RD 7→ R3N be the vector valued function of residuals of image
correspondences and esens : RD 7→ R9Ns the function of orientation residuals, whereNs is the number
of available sensors. Now, we can express the energy in Eq. (4.6) as

arg min
x

eThybrid(x)ehybrid(x) = evideo(x)evideo(x) +
√
λeTsens(x)

√
λesens(x). (4.7)

Eq. (4.7) is then iteratively linearized and the step ∆x is found by solving the following linear system[
Jvideo(x)√
λJsens(x)

]
∆x =

[
evideo(x)√
λ esens(x)

]
(4.8)

The pose parameters are then updated as xk = xk−1 + ∆x. The term corresponding to the video data
is explained in the previous section. The term for the IMU is explained in Sec. 4.4.2.

4.4 Integration of Sensor Data

4.4.1 Sensor Data
In our experiments, we use an orientation estimation device MTx provided by XSens [119]. As
explained in Chap. 3.2 each MTx unit provides the orientation of the local coordinate system w.r.t. a
global and is dennoted as RTS .

4.4.2 Integration of Orientation Data into the Video-based Tracker
In this section we explain how to integrate the orientation data from the sensors as additional equations
that can be appended into the big linear system, see Figure 4.5. Here we have to be very careful and
know, at all times, in which frame the rotation matrices are defined. Three coordinate systems are
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involved: the global tracking frame F T , the body frame FB (the local frame of a segment in the
chain, e.g. the leg), and the sensor frame F S . Recall from Sect. 4.4.1 that the orientation data is
given as a rotation matrix RTS(t) : F S → F T defining the transformation from the local sensor
frame F S to the global tracking frame F T , which we will refer to as ground-truth orientation. In
order to relate the orientation data to the differential twist parameters x, we will compare the ground-
truth orientations RTS(t) of each of the sensors with the estimated sensor orientations from the
tracking procedure R̂TS(x), which we will denote as tracking orientation. Let RTS be the 3 × 3
rotation matrix of the ground-truth orientation RTS (quaternions can be easily transformed to rotation
matrices [62]). The columns of the rotation matrix RTS are simply the sensor basis axes in world
coordinates. Let us also define RTB(x(t)) as the total accumulated motion of a body segment at
time t, i.e., R(xt) : FB → F T . For the sake of clarity we will drop the time subindex xt and just
write RTB(x). The transformation from the sensor frame to the body frame RBS(t) : F S → FB is
constant during tracking because the sensor and body frame are rigidly attached to the body segment
and move together. Thus, we can compute this rotational displacement RBS in the first frame

RBS = RTB(0)−1RTS(0) , (4.9)

where RTB(0) is the configuration of the body part B in the first frame. For every sensor we can
minimize the angular distance, see Sec. 2.1.7, between the rotation given by the sensor measurement
RTS(t) and the rotation estimated by our tracking system R̂TS(x) = RTB(x)RBS

arg min
x
‖RTB(x)RBS −RTS(t)‖2

F = ‖RTB(x)−RTS(t)RSB‖2
F (4.10)

where we have used the fact that the Frobenius norm is bi-invariant, see Sec. 2.1.7 . Similarly as
we did for point correspondences we can linearize. Here we have to be more careful since we have
to compute derivatives of rotation matrices. Fortunately, those can be expressed in terms of twists.
Linearizing Eq. (4.10) we can find the optimal step ∆x

arg min
∆x
‖RTB(x) + ∆RTB(x)

∆x
∆x−RTS(t)RSB‖2

F (4.11)

Let Jori : RD 7→ so(3) be the Jacobian of the orientation forward kinematics map F : RD 7→ SO(3).
The orientation Jacobian maps an increment in parameter space to the equivalent screw ωeq ∈ so(3)
of the rigid motion. Now by expressing the rotation derivatives in terms of the associated screw, we
obtain the following expression, see Sec. 2.1.5,

∆RTB

∆x
∆x = ω̂eqR(x)TB = [Jori∆x]∧RTB(x) (4.12)

which we can substitute back in the original objective function Eq. (4.11)

arg min
∆x
‖RTB(x) + [Jori∆x]∧RTB(x)−RTS(t)RSB‖2

F. (4.13)

Since this is essentialy a least squares problem, the step can be found by solving the following linear
equations

[Jori∆x]∧RTB(x) = RTS(t)RSB −RTB(x) (4.14)

which can be re-arranged as 9 linear equations of the form∆ω′ +
∑

j∈J (x)
∆θjω̂′j

 rTB1 (x) = rTS1 (t)rSB1 − rTB1 (x) (4.15)

∆ω′ +
∑

j∈J (x)
∆θjω̂′j

 rTB2 (x) = rTS2 (t)rSB2 − rTB2 (x) (4.16)

∆ω′ +
∑

j∈J (x)
∆θjω̂′j

 rTB3 (x) = rTS3 (t)rSB3 − rTB3 (x) (4.17)
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Figure 4.6: Integration of orientation data into the video-based tracker. Ground-truth orientation:
clockwise down path from F S at time t to F T . Tracking orientation: anti-clockwise
upper path from F S at time t to F T .

where ri denotes the i-th column of matrix R. This last equations can more conveniently be expressed
in matrix form as Jsens(x; rTBi )∆x = esens,i for i = {1 . . . 3} . Here Jsens : RD 7→ R3 has almost
the same structure as the positional pose Jacobian except that it does not depend on the translational
motion nor the location of the joints. Note also that it takes a vector r as input as opposed to a point.
Also, note the difference between Jsens which are the derivatives of a rotating vector r and is therefore
local, and Jori which maps to the tangential space so(3).

4.4.3 A Geometric Derivation

The previous derivation allows us to integrate the additional equations which are then linearized and
appended with the equations corresponding to the cost associated with the image evidence. It is
however interesting to derive the same equations form a more geometric point of view. Consider the
local infinitesimal rotation RB(∆x) of frame FB, see Fig. 4.6. RB(∆x) is defined in the body frame
and represents the transformation from F TB(x + ∆x) to F TB(x). Let us also dennote with R(∆x)
the instantaneous rotation in the global frame.

We interpret this local rotation R(∆x) as a rigid motion and not as a transformation between
coordinate systems, see Sec. 2.1.1. That is, R(x) defines the motion of a point in the body from
configuration x to configuration x + ∆x, ps(x + ∆x) = R(∆x)ps(x).

The rotation RB(x) defined in the body frame is related to the rotation R(x) defined in the tracking
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frame by the adjoint transformation AdR−1(x), 2.1.4.

RB(∆x) = RTB(x)−1R(∆x)RTB(x) (4.18)

Thereby, the tracking orientation R̂TS is given by the longer path F S RBS

=⇒ FB(x + ∆x) RB

=⇒
FB

x+∆x
RTB(x)=⇒ F T , see Figure 4.6. Now we can compare this transformation matrix to the ground-

truth orientation given by the sensors RTS

RTB(x)RB(∆x)RBS = RTS(t) . (4.19)

Substituting RB(x) by its expression in (4.18) it simplifies to

R(∆x)RTB(x)RBS = RTS(t) . (4.20)

Therefore, for each sensor s, we can minimize the squared Frobenius norm of both matrices with
respect to x

arg min
∆x

5∑
s=1

∥∥∥Rs(∆x)RTB
s (x)RBS

s −RTS
s (x)

∥∥∥2
. (4.21)

Equation (4.21) can again be linearized using and integrated into the linear system as soft constrains,
see Figure 4.5. Nonetheless, it is interesting to take a closer look at equation (4.20). Substituting the
rotational displacement RBS in equation (4.20) by its expression in Eq. (4.9) we obtain

R(∆x)RTB(x)RTB(0)−1RTS(0) = RTS(t) . (4.22)

Now let R(t) denote the instantaneous rotation from frame t to frame t + 1. Hence, we can write
RTB(x) in terms of instantaneous rotations

R(∆x)(
0∏

j=t−1
R(j))R(0)−1RTS(0) = RTS(t) . (4.23)

Simplifying R(0)−1 we obtain

R(∆x)(
1∏

j=t−1
R(j))RTS(0) = RTS(t) . (4.24)

This last equation has a very nice interpretation because the columns of the matrix (
1∏

j=t−1
R(j))RT S(0)

are simply the coordinates of the sensor axis in the first frame (columns of RTS(0)), rotated by the
accumulated tracking motion from the first frame forward (i.e. not including the initialization motion
in frame 0). This last result was very much expected and the interpretation is the following: if we
have our rotation matrices defined in a reference frame F T , we can just take the sensor axes in global
coordinates in the first frame (columns of RTS(0)) and rotate them at every frame by the instantaneous
rotational motions of the tracking. This will result in the estimated sensor axes in world coordinates,
which is exactly the tracking orientation defined earlier in this Section. Therefore, the problem can be
simplified to additional 3D-vector to 3D-vector constraint equations which can be very conveniently
integrated in our twist formulation. Being r̂TS1 (x),r̂TS2 (x),r̂TS3 (x) the tracking orientation basis axes
at configuration x, and x(t),y(t),z(t) ground-truth orientation basis axes in the current frame t, the
constraint equations are

R(∆x)

r̂TS1 (x) r̂TS2 (x) r̂TS3 (x)

=
rTS1 (t) rTS2 (t) rTS3 (t)

 (4.25)
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which can be linearized similarly as we did in the video-based tracker with image points to mesh
points correspondences (2D-point to 3D-point). The difference now is that since we rotate vectors,
only the rotational component of the twists is needed. Each additional sensor results in an additional
9 equations in the linear systemI + ∆ω′ +

∑
j∈J (x)

∆θjω̂′j

 r̂TS1 (x) = rTS1 (t) (4.26)

I + ∆ω′ +
∑

j∈J (x)
∆θjω̂′j

 r̂TS2 (x) = rTS2 (t) (4.27)

I + ∆ω′ +
∑

j∈J (x)
∆θjω̂′j

 r̂TS3 (x) = rTS3 (t) (4.28)

which depends only on θjω̂j . In other words, the constraint equations do not depend at all on the joint
axis location nor in the translational motion of the body. This implies that we can integrate the sensor
information into the tracking system independently of the initial sensor orientation and location at the
body limb. Note that Eq. (4.28) and Eq. (4.17) are equivalent.

4.5 Experiments
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Figure 4.7: Error curves for video-based tracking (red) and hybrid tracking (black), referring to the
orientations of the left lower leg for a hopping and jumping motion sequence.

In this section, we evaluate our multisensor-fusion approach for motion tracking by comparing
the video-based tracker with our proposed hybrid tracker. Learning-based stabilization methods or
joint angle limits can also be integrated into the video-based tracker. However, we did not include
further constraints into the video-based tracker to demonstrate a general weakness of silhouette-based
approaches. We note that the video-based tracker works well for many sequences, however in these
experiments we focus on the occasions where it fails. Even though benchmarks for video-based
tracking are publicly available [109], so far no data set comprising video as well as inertial data exist
for free use. Therefore, for our experiments, we generated the MPI08 data set consisting of 54 takes
each having a length of roughly 15 seconds. We made the dataset publicly available for the scientific
community [127]. In total, more than 10 minutes of tracking results were used for our validation
study, which amounts to more than 24 thousand frames at a frame rate of 40 Hz. All takes have been
recorded in a lab environment using eight calibrated video cameras and five inertial sensors fixed at
the two lower legs, the two hands, and the neck. Our evaluation data set comprises various actions
including standard motions such as walking, sitting down and standing up as well as fast and complex
motions such as jumping, throwing, arm rotations, and cartwheels. For each of the involved four
actors, we also generated a 3D mesh model using a laser scanner.
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(a) (b)

Figure 4.8: Tracking result for video-based tracking (a) and hybrid tracking (b) for frame 450 of the
motion sequence used in Figure 4.7. Ground-truth orientations in solid lines and tracking
orientations in by dashed lines.

For a given tracking procedure, we introduce a framewise error measure by considering the angular
distance between the two orientations RTS and R̂TS , see Sec. 4.4.2. To compute the error measure
we first transform the rotation matrices R to its quaternion representation denoted as q This angular
distance measured in degrees is defined by the formula, see Sec. 2.1.7

dang(qTS, ˆqTS) = 360
π

arccos
∣∣∣〈qTS,q̂TS〉∣∣∣ . (4.29)

For a given motion sequence, we compute the error measure for each frame yielding an error curve.
In Figure 4.7, such error curves are shown for two different tracking procedures using the original

video-based tracker (red) and the enhanced hybrid tracker (black). For the video-based tracking, there
are large deviations between the ground-truth orientations and tracking orientations roughly starting
with frame 200. Actually, as a manual inspection revealed, the actor performs in this moment a sudden
turn resulting in a failure of the video-based tracking, where the left leg was erroneously twisted by
almost 180 degrees. In contrast, the hybrid tracker could successfully track the entire sequence. This
is also illustrated by Figure 4.8. Similarly, the figure also shows a tracking error in the right hand,
which is corrected by the hybrid tracker as well. As a second example, we consider a very fast motion,
where an actor first rotates his right and afterwards his left arm. Figure 4.9 shows the error curves
for left and right hand for each of the tracking procedures. The curves reveal that the video-based
tracker produced significant orientation errors in both hands. This shows that the hand orientations
cannot be captured well considering only visual cues such as silhouettes. Again, the hybrid tracker
considerably improved the tracking results, see also Figure 4.10. These examples demonstrate how
the additional orientation priors resolve ambiguities from image cues. To estimate the quality of our
hybrid tracker on more sequences, we computed the error measures (for lower legs, the two hands,
and the neck) for each of the five sensors for all sequences and each actor of the data set. A total
of 120210 error measures were computed separately for the hybrid and video tracker. We denote
mean values and standard deviations of our error measure by µV , σV and µH , σH for the video-
based and hybrid tracker, respectively. As summarized in Table 4.1, the sequences of each actor have
been improved significantly, dropping the mean error from 30◦ to 13◦. This is also supported by the
standard deviations. Let τ(s) denote the percentage of frames where at least one of the five sensors
shows an error of more than s degrees. To show the percentage of corrected severe tracking errors,
we computed τV (45) and τH(45) for every actor, see Tab. 4.1. As it turns out, most of the tracking
errors are corrected, dropping the percentage of erroneously tracked frames from 19.29% to 2.51% of
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Figure 4.9: Error curves for video-based tracking (red) and hybrid tracking (black) obtained for an
arm rotation sequence (first performed by the right and then by the left arm). Top: Left
hand. Bottom: Right hand.

(a) (b) (c) (d)

Figure 4.10: Tracking result and orientations for two selected frames of the sequence used in Fig-
ure 4.9. (a),(c) Video-based tracking. (b),(d) Hybrid tracking.

all frames. These findings are supported by the normalized histograms of the occurring values of the
error measure, see Fig. 4.11. Furthermore, the hybrid tracker does not increase the computation time
of the video-based tracker which is less than 4 s per frame.

One reason for the large amount of corrected errors is that the orientation of limbs is hard to estimate
from silhouettes, since the cylindrical shape projects to the same silhouettes in many orientations. By
combining the visual with orientation cues, these ambiguities are resolved, resulting in a largely
improved performance with the hybrid tracker.

4.6 Summary

We presented an approach for stabilizing full-body markerless human motion capturing using a small
number of additional inertial sensors. Generally, the goal of reconstructing a 3D pose from 2D video
data suffers from inherent ambiguities. We showed that a hybrid approach combining information
of multiple sensor types can resolve such ambiguities, significantly improving the tracking quality.
In particular, our orientation-based approach could correct tracking errors arising from rotationally
symmetric limbs. Using only a small number of inertial sensors fixed at outer extremities stabilized
the tracking for the entire underlying kinematic chain.

In the next chapter, we introduce an alternative solution that enables tracking in outdoor settings,
for fast motions, and in the presence of occlusions. To this end, we need suitable strategies that do not
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Figure 4.11: Normalized histogram, for each actor, of quaternion distances comparison for the whole

database.

Table 4.1: Mean values µ and standard deviations σ for video-based (V ) and hybrid (H) tracker for all
sequences of the database, separated by actor. Percentage of large tracking errors denoted
by τ(45).

Actor 1 Actor 2 Actor 3 Actor 4 Average
µV [deg] 26.10 40.80 26.20 31.10 30.29
µH [deg] 11.50 14.86 13.98 13.85 13.47
σV [deg] 33.79 46.99 29.23 38.07 37.08
σH [deg] 9.89 13.01 12.25 14.43 12.28

τV (45) [%] 14.27 29.50 16.53 19.42 19.29
τH(45) [%] 0.47 3.33 2.12 6.45 2.51

destabilize the tracking process in the presence of sensor noise and local artifacts. The multimodal
data set used is publicly available at [127] to further support this line of research.
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Figure 4.12: Examples of tracking results with our proposed hybrid tracker
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Challenges outdoors: In outdoor scenarios the problem is significantly more difficult due
to several factors (a) background clutter, (b) illumination changes, (c) self-occlusions,
(d) fast motions and the inherent difficulties in human pose estimation, that is (e) high
dimensional space and (f) orientation ambiguities.

5 Inverse Kinematics Sampler

The local hybrid tracker is efficient and performs well when small background and low noise is present
in the image term. Unfortunately, in outdoor scenarios, there are a number of additional challenges:
noisy silhouettes, illumination changes, calibration errors and miss-synchronization make the prob-
lem significantly more difficult. Any tracker based on local optimization will not successfully recover
from local minima. In order to deal with uncertainties we rely here on a particle based optimiza-
tion tracker that is capable of dealing with uncertainties. Specifically, we introduce a novel hybrid
HMC system that combines video input with sparse inertial sensor input. Employing an annealing
particle-based optimization scheme, our idea is to use orientation cues derived from the inertial input
to sample particles from the manifold of valid poses. Then, visual cues derived from the video input
are used to weight these particles and to iteratively derive the final pose. As our main contribution,
we propose an efficient sampling procedure where the particles are derived analytically using inverse
kinematics on the orientation cues. Additionally, we introduce a novel sensor noise model to ac-
count for uncertainties based on the von Mises-Fisher distribution. Doing so, orientation constraints
are naturally fulfilled and the number of needed particles can be kept very small. More generally,
our method can be used to sample poses that fulfill arbitrary orientation or positional kinematic con-
straints. In the experiments, we show that our system can track even highly dynamic motions in an
outdoor environment with changing illumination, background clutter, and shadows.

5.1 Introduction
Recovering 3D human motion from 2D video footage is an active field of research [128, 9, 129, 5, 130,
16]. Although extensive work on human motion capturing (HMC) from multiview image sequences
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Figure 5.2: Orientation cues extracted from inertial sensors are used to efficiently sample valid poses
using inverse kinematics. The generated samples are evaluated against image cues in a
particle filter framework to yield the final pose.

has been pursued for decades, there are only few works, e.g. [118], that handle challenging motions
in outdoor scenes.

To make tracking feasible in complex scenarios, motion priors are often learned to constrain the
search space [14, 15, 28, 12, 16]. On the downside, such priors impose certain assumptions on the
motions to be tracked, thus limiting the applicability of the tracker to general human motions. While
approaches exist to account for transitions between different types of motion [19, 20, 22], general
human motion is highly unpredictable and difficult to be modeled by pre-specified action classes.

Even under the use of strong priors, video HMC is limited by current technology: depth ambigu-
ities, occlusions, changes in illumination, as well as shadows and background clutter are frequent in
outdoor scenes and make state-of-the-art algorithms break down. Using many cameras does not re-
solve the main difficulty in outdoor scenes, namely extracting reliable image features. Strong lighting
conditions also rule out the use of depth cameras. Inertial sensors (IMU) do not suffer from such lim-
itations but they are intrusive by nature: at least 17 units must be attached to the body which poses a
problem from bio-mechanical studies and sports sciences. Additionally, IMU’s alone fail to measure
accurately translational motion and suffer from drift. Therefore, similar to [25, 49, 37], we argue for a
hybrid approach where visual cues are supplemented by orientation cues obtained by a small number
of additional inertial sensors. While in [37] only arm motions are considered, the focus in [49] is on
indoor motions in a studio environment where the cameras and sensors can be very accurately cali-
brated and the images are nearly noise- and clutter-free. By contrast, we consider full-body tracking
in an outdoor setting where difficult lighting conditions, background clutter, and calibration issues
pose additional challenges.

We introduce a novel hybrid tracker that combines video input from four consumer cameras with
orientation data from five inertial sensors, see Fig. 5.2. Within a probabilistic optimization framework,
we present several contributions that enable robust tracking in challenging outdoor scenarios:

• We show a strategy based on Inverse Kinematics (IK) to sample from the lower dimensional
manifold of poses that satisfy the orientation constraints imposed by the sensors.

• We introduce a closed form solution for (IK) based on the Paden-Kahan subproblems

• We show how to integrate a sensor noise model based on the von Mises-Fisher distribution
[131].

By sampling from a lower dimensional manifold we gain in efficiency and the kinematic constraints
are naturally fulfilled. By including a sensor noise model we can deal with orientation ambiguities

In the experiments, Sec. 5.5, we demonstrate that our approach can track even highly dynamic
motions in complex outdoor settings with changing illumination, background clutter, and shadows.
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We can resolve typical tracking errors such as miss-estimated orientations of limbs and swapped legs
that often occur in pure video-based trackers. Moreover, we compare it with three different alternative
methods to integrate orientation data. The challenging dataset and sample code used is made available
for scientific use [132]

5.2 Related Work

For solving the high-dimensional pose optimization problem, many approaches rely on local opti-
mization techniques [76, 118, 8], where recovery from false local minima is a major issue. Under
challenging conditions, global optimization techniques based on particle filters [129, 5, 133, 2] have
proved to be more robust against ambiguities in the data. Thus, we build upon the particle-based
annealing optimization scheme described in [5]. Here, one drawback is the computational complexity
which constitutes a bottleneck when optimizing in high-dimensional pose spaces.

Several approaches show that constraining particles using external pose information sources can
reduce ambiguities [134, 75, 114, 135, 136, 137, 23]. For example, [136] uses the known position
of an object a human actor is interacting with and [134, 137] use hand detectors to constrain the
pose hypotheses. To integrate such constraints into a particle-based framework, several solutions
are possible. Firstly, the cost function that weights the particles can be augmented by additional
terms that account for the constraints. Although robustness is added, no benefits in efficiency are
achieved, since the dimensionality of the search space is not reduced. Secondly, rejection sampling,
as used in [136], discards invalid particles that do not fulfill the constraints. Unfortunately, rejection
sampling can be very inefficient and does not scale well with the number of constraints as we will
show. Thirdly, approaches such as [138, 75, 24, 23] suggest to explicitly generate valid particles by
solving an IK problem on detected body parts. While the proposals in [24, 23] are tailored to deal
with depth ambiguities in monocular imagery, [75] relies on local optimization which is not suited
for outdoor scenes as we will show. In the context of particle filters, the von Mises-Fisher distribution
has been used as prior distribution for extracting white matter fiber pathways from MRI data [139].

In contrast to previous work, our method can be used to sample particles that fulfill arbitrary kine-
matic constraints by reducing the dimension of the state space. Furthermore, none of the existing
approaches perform a probabilistic optimization in a constrained low-dimensional manifold. We in-
troduce an IK based on the Paden-Kahan sub-problems and model rotation noise with the von Mises-
Fisher distribution.

5.3 Global Optimization with Sensors

To temporally align and calibrate the input data obtained from a set of uncalibrated and unsynchro-
nized cameras and from a set of orientation sensors, we apply preprocessing steps as explained in
Section 5.3.1. Then, we define orientation data within a human motion model (Section 5.3.2) and
explain the probabilistic integration of image and orientation cues into a particle-based optimization
framework (Section 5.3.3).

5.3.1 Calibration and Synchronization

We recorded several motion sequences of subjects wearing 10 inertial sensors (we used XSens [119])
which we split in two groups of 5: the tracking sensors which we use for tracking and the validation
sensors which we use for evaluation. According to the specifications, the IMU orientation accuracy is
around 2◦ for smooth motions and in absence of magnetic field. In practice, unfortunately, the error is
much higher due to different sources of uncertainty, see Sect.5.4.3. The tracking sensors are placed in
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5 IMU for tracking

5 IMU for validation
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Figure 5.3: (a) IMU placement in the body, 5 for tracking and 5 for validation. (b) Camera-IMU
calibration is achieved by placing a calibration cube with one of the axis aligned with the
magnetic north.

the back and the lower limbs and the validation sensors are placed on the chest and the upper limbs.
In the process of calibrating the camera, the global tracking coordinate system F T is defined by a
calibration cube placed into the recording volume see Sec. 3.2.1 for more details. In order to bring F I

and F T into correspondence, we carefully place the calibration cube such that the axes of F T directly
correspond to the axes of the known F I using a compass. Like this, the orientation data RIS

s (t) also
directly maps from the local sensor coordinate system F S

s to the global tracking coordinate system
F T and we note RTS := RIS . Note that there might be slight missalignments between the tracking
and inertial frame for which we compensate bt introducing a sensor noise model, see Sec. 5.4.3.
In this Chapter, we refer to the sensor orientations by RTS and, where appropriate, by using the
corresponding quaternion representation [62], see Sec. 2.1.3. qTS .

The video sequences recorded with four off-the-shelf consumer cameras are synchronized by cross
correlating the audio signals as proposed in [118]. Finally, we synchronize the IMU’s with the cam-
eras using a clapping motion, which can be detected in the audio data as well as in the acceleration
data measured by IMU’s.

5.3.2 Human Motion Model

Here again the motion of a human by a skeletal kinematic chain containing N = 25 joints that are
connected by rigid bones. As before, the configuration of the body is then fully described by the
vector of pose parameters x = (ξ0,Θ).

We now describe the relative rigid motion matrix Gi that expresses the relative transformation
introduced by the rotation in the i− th joint

Gi = exp(θiξ̂i). (5.1)

Let Ji ⊆ {1, . . . ,n} be the ordered set of parent joint indices of the i−th bone. The total rigid motion
GTB
i of the bone is given by concatenating the global transformation matrix G0 = exp(ξ̂0) and the

relative rigid motions matrices Gi along the chain by

GTB
i = G0

∏
j∈Ji

exp(θj ξ̂j). (5.2)
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The rotation part of GTB
i is referred to as tracking bone orientation of the i− th bone. In the standard

configuration of the kinematic chain, i.e., the zero pose, we choose the local frames of each bone to
be coincident with the global frame of reference F T . Thus, GTB

i also determines the orientation of
the bone relative to F T . A surface mesh of the actor is attached to the kinematic chain by assigning
every vertex of the mesh to one of the bones. Let p̄ be the homogeneous coordinate of a mesh vertex
p in the zero pose associated to the i − th bone. For a configuration x of the kinematic chain, the
vertex is transformed to p̄′ using p̄′ = GTB

i p̄.

5.3.3 Optimization Procedure
If several cues are available, e.g., image silhouettes and sensor orientation z = (zim, zsens), the likeli-
hood is commonly factored in two independent terms, see Sec. 2.5,

arg max
x

p(x|zim, zsens) = p(zim|x)p(zsens|x)p(x) (5.3)

where it is assumed that the measurements zim and zsens are conditionally independent given that the
pose x is known. The human pose x can then be found by minimizing the negative log-likelihood
which yields a weighted combination of cost functions for both terms as in [49]. Since in outdoor
scenarios the sensors are not perfectly calibrated and the observations are noisy, fine tuning of the
weighting parameters would be necessary to achieve good performance. Furthermore, the orientation
information is not used to reduce the state space, and thus the optimization cost and ambiguities.
Hence, we propose a different probabilistic formulation of the problem:

p(x|zim, zsens) = p(zim,zsens|x)p(x)
p(zim,zsens) = p(zim|x)p(zsens|x)p(x)

p(zim)p(zsens) (5.4)

where we assumed independence between sensors and using

p(x|zsens) = p(zsens|x)p(x)
p(zsens)

we obtain the following factorized posterior

p(x|zim, zsens) ∝ p(zim|x)p(x|zsens). (5.5)

that can be optimized globally and efficiently. We disregard the normalization factor p(zim) since it
does not depend on the pose x. The weighting function p(zim|x) can be modeled by any image-based
likelihood function. Our proposed model of p(x|zsens), as introduced in Section 5.4, integrates uncer-
tainties in the sensor data and constrains the poses to be evaluated to a lower dimensional manifold.
For single frame pose estimation, optimization is typically performed by importance sampling [108],
i.e.sampling from the prior p(x) and weighting by the likelihood function p(zim|x). The problem
with this is that the prior is broad compared to p(zim|x) that is peaky and typically multivalued. By
drawing proposals directly from p(x|zsens) we are effectively reducing the number of wasted sam-
ples, i.e.we are concentrating samples on the likelihood region. For optimization, we use the method
proposed in [5]; the implementation details are given in Section 5.4.4.

5.4 Manifold Sampling
Assuming that the orientation data zsens of the Ns orientation sensors is accurate and that each sensor
has 3 DoF that are not redundant 1, the D dimensional pose x can be reconstructed from a lower

1Since the sensors are placed in different body parts they are not redundant because they explain different DoF in the
kinematic chain
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Figure 5.4: Graphical model of the approach. The measurements zim and zsens are shown as shaded
nodes because they are observable during inference. The manifold coordinates, xa, the
full state pose x and the true orientations zgt are hidden. To infer the full state pose x
we optimize the manifold coordinates and marginalize out zgt. To integrate out zgt, we
assume it follows a von-Mises-Fisher distribution with mean direction µ = zsens.

dimensional vector xa ∈ Rd where d = D − 3Ns. In our experiments, a 31 DoF model can be
represented by a 16 dimensional manifold using 5 inertial sensors as shown in Fig. 5.7 (a). The
mapping is denoted by x = g−1(xa,zsens) and is described in Section 5.4.1. In this setting, Eq. (5.3)
can be rewritten as

arg max
xa

p
(
zim|g−1(xa,zsens)

)
. (5.6)

Since the orientation data zsens is not always accurate due to sensor noise and calibration errors,
we introduce a term p(zsens

gt |zsens) that models the sensor uncertainty, i.e., the probability of the true
orientation zsens

gt given the sensor data zsens. We assume the conditional probability p(zsens
gt |zsens)

follows a von-Mises Fisher distribution and it is described in detail Section 5.4.3. Hence, we get the
final objective function:

arg max
xa

∫
p
(
zim|g−1(xa,zsens

gt )
)
p
(
zsens
gt |zsens

)
dzsens

gt . (5.7)

where we marginalize out the sensor noise and optimize the manifold coordinates. The integral can
be approximated by importance sampling, i.e., drawing particles from p(zsens

gt |zsens) and weighting
them by p(zim|x). Consequently, we can efficiently concentrate the search space in the neighborhood
region of a low dimensional manifold. In addition, we can guarantee that the kinematic constraints
are satisfied.

5.4.1 Inverse Kinematics using Inertial Sensors

For solving Eq. (5.7), we derive an analytical solution for the map g : RD 7→ RD−3Ns and its inverse
g−1. Here, g projects x ∈ RD to a lower dimensional space and its inverse function g−1 uses the
sensor orientations and the coordinates in the lower dimensional space xa ∈ RD−3Ns to reconstruct
the parameters of the full pose, i.e.,

g(x) = xa g−1(xa,zsens) = x. (5.8)

To derive a set of minimal coordinates, we observe that given the full set of parameters x and the
kinematic constraints placed by the sensor orientations, a subset of these parameters can be written
as a function f(·) of the others, see Fig. 5.5 for an intuitive illustration. Specifically, the full set of
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Figure 5.5: Toy example to illustrate our idea to sample from lower dimensional manifolds. For this
simple kinematic chain the state vector has 2 DoF , x = (α, β). If we impose the con-
straint that the cake plate must be perpendicular to the ground the true state vector has
dimensionality 1. The constraint is α + β = π and therefore the state vector can be re-
parameterized as x = (α, π − α). For the problem of human pose estimation however the
constraints are non-linear and therefore re-parametrization is achieved by solving small
Inverse Kinematics subproblems.

parameters is decomposed into a set of active parameters xa which we want to optimize according to
Eq. (5.7) and a set of passive parameters xp that can be derived from the constraint equations and the
active set. Writing the state as x = (xa,xp) with xa ∈ Rd and xp ∈ RD−d we have

f(xa,zsens) = xp =⇒ g−1(xa,zsens) = (xa,f(xa,zsens)). (5.9)

Thereby, the direct mapping g is trivial since from the full set only the active parameters are retained.
The inverse mapping g−1 can be found by solving inverse kinematics (IK) sub-problems. Several
choices for the decomposition into active and passive set are possible. To guarantee the existence
of solution for all cases, we choose the passive parameters to be the set of 3 DoF joints that lie on
the kinematic branches where a sensor is placed. In our experiments using 5 sensors, we choose
the passive parameters to be the two shoulder joints, the two hips and the root joint adding up to a
total of 15 parameters which corresponds to 3Ns constraint equations, see Fig. 5.7 (a). Hence, the
passive parameters consist of Ns triplets of joint angles xp = (θj1 ,θj2 ,θj3)T , j ∈ {1 . . . Ns} with
corresponding rotation matrices Rj . Since each sensor s ∈ {1 . . . Ns} is rigidly attached to a bone,
there exists a constant rotational offset RSB

s between the i-th bone and the local coordinate system
F S
s of the sensor attached to it. This offset can be computed from the tracking bone orientation RTB

i,0
in the first frame and the sensor orientation RTS

s,0

RSB
s = (RTS

s,0 )TRTB
i,0 . (5.10)

At each frame t, we obtain sensor bone orientations RTS
s,t RSB

s by applying the rotational offset. In
the absence of sensor noise, it is desired to enforce that the tracking bone orientation and the sensor
bone orientation are equal:

RTB
i,t = RTS

s,t RSB
s (5.11)

In Section 5.4.3 we show how to deal with noise in the measurements. Let Rj be the relative rotation
of the j-th joint given by the rotational part of Eq. (5.1). The relative rotation Rj associated with
the passive parameters can be isolated from Eq. (5.11). To this end, we expand the tracking bone
orientation RTB

i,t to the product of 3 relative rotations2 Rp
j , the total rotation motion of parent joints in

the chain, Rj , the unknown rotation of the joint associated with the passive parameters, and Rc
j , the

relative motion between the j-th joint and the i-th joint where the sensor is placed:

Rp
jRjRc

j = RTS
s RSB

s (5.12)

2The temporal index t is omitted for the sake of clarity
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(a) (b) (c)

Figure 5.6: Manifold Sampling: (a) Original image. (b) Full space sampling. (c) Manifold sampling.
Note that the generated samples in (c) have parallel end-effector orientations because they
satisfy the constraints and uncertainty is therefore reduced.

Note that Rp
j and Rc

j are constructed from the active set of parameters xa using the product of expo-
nentials formula (5.2). From Eq. (5.12), we obtain the relative rotation matrix

Rj = (Rp
j )TRTS

s RSB
s (Rc

j)T . (5.13)

Having Rj and the known fixed rotation axes ωj1 ,ωj2 ,ωj3 of the j-th joint, the rotation angles θj1 ,θj2 ,θj3 ,
i.e., the passive parameters, must be determined such that

exp(θj1ω̂j1) exp(θj2ω̂j2) exp(θj3ω̂j3) = Rj. (5.14)

This problem can be solved by decomposing it into sub-problems [140], see Sec. 5.4.2. By solv-
ing these sub-problems for every sensor, we are able to reconstruct the full state x using only a
subset of the parameters xa and the sensor measurements zsens. In this way, the inverse mapping
g−1(xa,zsens) = x is fully defined and we can efficiently sample from the manifold, see Fig. 5.6.

5.4.2 Paden-Kahan subproblems
We are interested in solving the following problem:

exp(θ1ω̂1) exp(θ2ω̂2) exp(θ3ω̂3) = Rj. (5.15)

This problem can be solved by decomposing it into sub-problems as proposed in [140]. A compre-
hensive description of the Paden-Kahan subproblems applied to several inverse kinematic problems
can also be found in [61]. The basic technique for simplification is to apply the kinematic equations
to specific points. By using the property that the rotation of a point on the rotation axis is the point
itself, we can pick a point p on the third axis ω3 and apply it to both sides of Eq. (5.15) to obtain

exp(θ1ω̂1) exp(θ2ω̂2)p = Rjp = q (5.16)

which is known as the Paden-Kahan sub-problem 2. For our problem the 3 rotation axes intersect
at the same joint location. Consequently, since we are only interested in the orientations, we can
translate the joint location to the origin qj = O = (0,0,0)T . In this way, any point p = λω3 with
λ ∈ R, λ 6= 0 is a valid choice for p. Eq. (5.16) can decomposed in two subproblems

exp(θ2ω̂2)p = c and exp(−θ1ω̂1)q = c, (5.17)

where c is the intersection point between the circles created by the rotating point p around axis ω2
and the point q rotating around axis ω1 as shown in Fig. 5.7 (b). In order for Eq. (5.17) to have a
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(a) (b) (c)

Figure 5.7: Inverse Kinematics: (a) decomposition into active (yellow) and passive (green) parame-
ters. Paden-Kahan sub-problem 2 (b) and sub-problem 1 (c).

solution, the points p, c must lie in the same plane perpendicular to ω2, and q, c must lie in the same
plane perpendicular to ω1. This implies that the projection of the position vectors 3 p,c,q onto the
span of ω1,ω2 respectively must be equal, see Fig. 5.8

ωT2 p = ωT2 c and ωT1 q = ωT1 c (5.18)

Additionally, the norm of a vector is preserved after rotation and therefore

‖p‖ = ‖c‖ = ‖q‖ (5.19)

Since ω1 and ω2 are not parallel, the vectors ω1, ω2, ω1×ω2 form a basis that span R3. Hence, we can
write c in the new basis as

c = αω1 + βω2 + γ(ω1 × ω2) (5.20)

where α, β,γ are the new coordinates of c. Now, using the fact that ω2 ⊥ ω1 × ω2 and ω1 ⊥ ω1 × ω2,
we can substitute Eq. (5.20) into Eq. (5.18) to obtain a system of two equations with two unknowns
(α,β)

ωT2 p = αωT2 ω1 + β

ωT1 q = α + βωT1 ω2 (5.21)

from which we can isolate the first two coordinates of c

α = (ωT1 ω2)ωT2 p− ωT1 q
(ωT1 ω2)2 − 1

β = (ωT1 ω2)ωT1 q − ωT2 p
(ωT1 ω2)2 − 1 . (5.22)

From Eq. (5.19) and Eq. (5.20) we can write

‖p‖2 = ‖c‖2 = α2 + β2 + 2αβωT1 ω2 + γ2‖ω1 × ω2‖2 (5.23)

and obtain the third coordinate γ as

γ2 = ‖p‖
2 − α2 − β2 − 2αβωT1 ω2

‖ω1 × ω2‖2 (5.24)
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(a) (b)

Figure 5.8: Paden-Kahan subproblem 1: (a) the projection length of p and c onto ω2 must be equal,
(b) the projection of the vectors p and c onto the orthogonal plane to the rotation axes ω2

This last equation has no solution when the circles do not intersect, one solution when the circles are
tangential and two solutions when the circles intersect at two points. For our choice of decomposition,
the passive parameters correspond to 3DoF joints which are modeled as 3 concatenated revolute
joints whose axis are mutually orthogonal. Therefore, there always exists a solution [61]. We note
that the inverse kinematic solutions presented here are also valid for other decompositions, e.g.one
could choose as passive parameters two rotation axes of the shoulder joint and one rotation axis of the
elbow joints. However, the existence of solution should then be checked during the sampling process.
Once we have the new coordinates (α, β, γ) we can obtain the intersection point c in the original
coordinates using equation Eq. (5.20). Thereafter, Eq. (5.17) can be decomposed into two problems
of the form

exp(θ2ω̂2)p = c
exp(−θ1ω̂1)q = c (5.25)

which simplifies to finding the rotation angle about a fixed axis that brings a point p to a second one
c, which is known as Paden-Kahan sub-problem 1

exp(θ2ω̂2)p = c. (5.26)

This problem has a solution when the projections of the vectors p and c onto the orthogonal plane to
ω2 have equal lengths. Let p′ and c′ be the projections of p, c onto the plane perpendicular to ω2, see
Fig. 5.8,

p′ = p− ω2ω
T
2 p and c′ = c− ω2ω

T
2 c. (5.27)

If the projections have equal lengths ‖p′‖ = ‖c′‖ then the problem is as simple as finding the angle
between the two vectors

ωT2 (p′ × c′) = sin θ2‖p′‖‖c′‖
p′ · c′ = cos θ2‖p′‖‖c′‖ (5.28)

By dividing the equations we finally obtain the rotation angle using the arc tangent

θ2 = atan2(ωT2 (p′ × c′),p′ · c′). (5.29)

3Since we translated the joint location to the origin we can consider the points as vectors with origin at the joint location
qj .
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(a) (b) (c) (d)

Figure 5.9: Sensor noise model. (a) Points disturbed with rotations sampled from a von Mises-Fisher
distribution. (b) The orientation of the particles can deviate from the sensor measure-
ments. Tracking without (c) and with (d) sensor noise model.

We can find θ1 using the same procedure. Finally, θ3 is obtained from Eq. (5.15) after substituting θ1
and θ2

exp(θ3ω̂3) = exp(θ1ω̂1)T exp(θ2ω̂2)TRj = R (5.30)

where the rotation matrix R is known. The rotation angle θ3 satisfies

2 cos θ3 = (trace(R)− 1) (5.31)
2 sin θ3 = ωT3 r (5.32)

where r = (R32 − R23,R13 − R31,R21 − R12) (page 584 of [141]). Finally, the rotation angle θ3
can be computed from cos θ3 and sin θ3 using atan2. By solving these sub-problems for every sensor,
we are able to reconstruct the full state x using only a subset of the parameters xa and the sensor
measurements zsens. The good property of this geometric algorithms for solving inverse kinematics
is that they are numerically very stable. More importantly, the same principle can be applied to solve
more complex IK problems involving a number of positional and orientational constraints.

5.4.3 Sensor Noise Model

In practice, perfect alignment and synchronization of inertial and video data is not possible. In fact,
there are at least four sources of uncertainty in the inertial sensor measurements, namely inherent
sensor noise from the device, temporal unsynchronization with the images, small alignment errors
between the tracking coordinate frame F T and the inertial frame F I , and errors in the estimation
of RSB

s . Hence, we introduce a noise model p(zsens
gt |zsens) in our objective function (5.7). Rotation

errors are typically modeled by assuming that the measured rotations are distributed according to a
Gaussian in the tangent spaces which is implemented by adding Gaussian noise vi on the parameter
components, i.e., x̃j = xj + vi. The topological structure of the elements, a 3-sphere S3 in case of
quaternions, is therefore ignored. The von Mises-Fisher (MF) distribution models errors of elements
that lie on a unit sphere Sp−1 [131] and is defined as

fp(x;µ,κ) = κp/2−1

(2π)p/2Id/2−1(κ) exp(κµTx) (5.33)
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where Iv denotes the modified Bessel function of the first kind, µ is the mean direction, and κ is
a concentration parameter that determines the dispersion form the true position. The distribution is
illustrated in Fig. 5.9. For our problem, p = 4 and thus the elements x are quaternions. Therefore,
on the one hand samples of the MF distribution are quaternions whose corresponding axis of rotation
are uniformly distributed in all directions. On the other hand, the sample concentration decays with
the angle of rotation. To see this, observe that the distribution can be expressed as a function of the
angular rotation θ from the mean µ where we replaced the inner product µTx by cos

(
θ
2

)
( the inner

prodcut between two quaternions results in cos( θ2), where θ is the geodesic angle distance between
rotations).
In order to approximate the integral in Eq. (5.7) by importance sampling, we use the method proposed
in [142] to draw samples qw from the von Mises-Fisher distribution with p = 4 and µ = (1,0,0,0)T ,
which is the quaternion representation of the identity. We use a fixed dispersion parameter of κ =
1000. The sensor quaternions are then rotated by the random samples qw:

q̃TSs = qTSs ◦ qw (5.34)

where ◦ denotes quaternion multiplication. In this way, for every particle, samples q̃TSs are drawn
from p(zsens

gt |zsens) using Eq. (5.34) obtaining a set of distributed measurements z̃sens =
(
q̃TS1 . . . q̃TSNs

)
.

This can be interpreted as the analogous of additive Gaussian Noise where qw is a rotation noise sam-
ple. Thereafter, the full pose is reconstructed from the newly computed orientations with g−1(xa,z̃sens)
as explained in Section 5.4.1 and weighted by p(zim|x).
In Fig. 5.10, we compare the inverse kinematic solutions of 500 samples i ∈ {1 . . . 500} by simply
adding Gaussian noise only on the passive parameters {g−1(xa,zsens) + vi}i and by modeling sensor
noise with the von Mises-Fisher distribution {g−1(xa,z̃sens,i)}i. For the generated samples, we fixed
the vector of manifold coordinates xa and we used equivalent dispersion parameters for both methods.
To visualize the reconstructed poses we only show, for each sample, the elbow location represented
as a point in the sphere. This example shows that simply adding Gaussian noise on the parameters
is biased towards one direction that depends on the current pose x. By contrast, the samples using
von Mises-Fisher are uniformly distributed in all directions and the concentration decays with the
angular error from the mean. Note, however, that Fig. 5.10 is a 3D visualization, in reality the bone
orientations of the reconstructed poses should be visualized as points in a 3-sphere S3.

fp(θ;κ) = κp/2−1

(2π)p/2Id/2−1(κ) exp
(
κ cos

(
θ

2

))
(5.35)

5.4.4 Implementation Details
To optimize Eq. (5.7), we have implemented ISA (Interacted Simulated Annealing), the global opti-
mization approach that has been proposed in [5] and use only the first stage of the algorithm, i.e.we
do not locally optimize. ISA is based on simulated annealing which is a stochastic optimization tech-
nique to locate a good approximation of the global optimum of a cost function in a large search space.
In the remainder of this chapter we will use the term global optimization whenever ISA was used for
optimization to make the distinction with local optimization methods. As cost function, we use the
silhouette and color terms

E(x) = λ1Esilh(x) + λ2Eapp(x) (5.36)

with the setting λ1 = 2 and λ2 = 40. Although a good likelihood model is essential for good
performance, it is not the focus of our work and we refer the interested reader to [2] for more details.
During tracking, the initial particles {xia}i are predicted from the particles in the previous frame using
a 3rd order autoregression and projected to the low-dimensional manifold using the mapping g; see
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(a) (b)

Figure 5.10: Sensor noise model. 500 samples of the IK elbow location are shown as points using:
(a) added Gaussian noise and (b) noise from the von Mises-Fisher distribution.

Figure 5.11: Tracking with background clutter.

Section 5.4.1. The optimization is performed only over the active parameters xa ∈ RD−3Ns , i.e., the
diffusion step is performed in RD−3Ns . Specifically, diffusion is performed with a Gaussian kernel
with zero mean and covariance matrix

Σa,k = αΣ

N − 1

(
ρI +

N∑
i

(x(i)
a,k − µa,k)(x

(i)
a,k − µa,k)T

)
(5.37)

proportional to the sampling covariance matrix scaled by αΣ where µk is the particle set mean at the
current iteration k.

For the weighting step, we use the approach described in Section 5.4.3 to generate a sample z̃sens,i

from p(zsens
gt |zsens) for each particle xia. Consequently, we can map each particle back to the full space

using xi = g−1(xia,z̃sens,i) and weight it by

π
(i)
k = exp

(
−βk · E

(
g−1(xia,k,z̃sens)

))
, (5.38)

where βk is the inverse temperature of the annealing scheme at iteration k and E(·) is the image
cost function defined in Eq. (5.36). From the obtained set of weighted particles {π(i)

k ,x
(i)
a,k}Ni=1 we
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draw a new set of particles with resampling and probability equal to the normalized weights. The
weighting, resampling and diffusion step are iterated M times before going to the next frame. In our
experiments, we used 15 iterations for optimization. Finally, the pose estimate is obtained from the
remaining particle set at the last iteration as

x̂t =
∑
i

π
(i)
k g−1(x(i)

a,k,z̃sens,i). (5.39)

The steps of our proposed sampling scheme are outlined in Algorithm 1.
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Dynamics: To model the dynamics we use a 3rd order auto-regression using Gaussian Process
regression that provides a prediction xpred and a covariance matrix Σpred related with the confidence
of the prediction. Thereby, the particles from the previous frame are drifted towards the predicted
mean xpred and diffused with a Gaussian kernel with zero mean and covariance Σpred. In order to
obtain the low dimensional particle set, every particle is projected g(xit) = x(i)

a,t
4. We note that we

do not learn a mapping directly in the low dimensional space since the previous estimates of passive
parameters xp,t−4:t−1 are in general also correlated with the active parameters xa,t. The particle set is
used as the initial proposal distribution for the first iteration of ISA.

Algorithm 2 Proposed algorithm
Require: number of layers M , number of samples N , initial distribution L0, sensor orientations

zsens, image cost function E(·)
Initialize: Draw N initial samples from L0 → ~x

(i)
a,k

for layer k = 0 to M do
1. MANIFOLD SAMPLING
start from the set of un-weighted particles of the previous layer
for i = 1 to N do

1.1 SENSOR NOISE
/* draw a sample z̃sens,i from p(zsens

gt zsens) */
for s = 1 to Ns do

draw sample from von-Mises Fisher fp(µ,κ)→ qw
q̃TSs = qTSs ◦ qw

end for
set z̃sens,i = (q̃TS1 . . . q̃TSNs )T
1.1 INVERSE KINEMATICS
/* computation of x(i)

k = g−1(xia,k,z̃sens) */
for j = 1 to Ns do

compute: RTS
s = quat2mat(q̃TSj )

compute: F(xa)→ Rp
j ,Rc

j

set: Rj = (Rp
j )TRTS

s RSB
s (Rc

j)T
solve: exp(θj1ω̂j1) exp(θj2ω̂j2) exp(θj3ω̂j3) = Rj

end for
set: π(i)

k = exp
(
−βk · E

(
x(i)
k

))
end for
set: Lk = {π(i)

k ,x
(i)
a,k}Ni=1

2. RESAMPLING
draw N samples from Lk → ~x

(i)
a,k

3. DIFFUSION
x(i)
a,k+1= x(i)

a,k + ~Bk { ~Bk is a sample from N (0,Σa)}
end for

5.5 Experiments
The standard benchmark for human motion capture is HumanEva that consists of indoor sequences.
However, no outdoor benchmark data comprising video as well as inertial data exists for free use
yet. Therefore, we recorded eight sequences of two subjects performing four different activities,

4Since the basic Gaussian process does not take the correlation of the output variables into account the process is
equivalent to a 3rd order regression from previous full state estimates to the manifold coordinates
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Figure 5.12: Tracking with strong illumination

namely walking, karate, basketball and soccer. Multiview image sequences are recorded using four
unsynchronized off-the-shelf video cameras. To record orientation data, we used an Xsens Xbus Kit
[119] with 10 sensors, see Sec. 5.3.1. Five of the sensors, placed at the lower limbs and the back,
were used for tracking, and five of the sensors, placed at the upper limbs and at the chest, were used
for validation. As for any comparison measurements taken from sensors or marker-based systems,
the accuracy of the validation data is not perfect but is useful to evaluate the performance of a given
approach. The eight sequences in the data set comprise over 3 minutes of footage sampled at 25 Hz.
Note that the sequences are significantly more difficult than the sequences of HumanEva since they
include fast motions, illumination changes, shadows, reflections and background clutter. For the
validation of the proposed method, we additionally implemented five baseline trackers: two video-
based trackers based on local (L) and global optimization (G) respectively and three hybrid trackers
that also integrate orientation data: local optimization (LS), global optimization (GS) and rejection
sampling (RS) which we briefly describe here

• (L): Local optimization tracker. The model is projected to the image to find correspondences
between the image silhouette contours and the model points. Then, the non-linear least squares
problem is solved using a variant of Levenberg-Marquardt algorithm, see [118, 52] for more
details.

• (G): Global Particle based optimization. Optimization here is performed by means of simulated
annealing, i.e., pose hypotheses are generated and weighted with progressively smooth versions
of the image likelihood. The final pose is obtained as the average of the particle set in the last
annealing layer, see [4, 5] for more details.

• (LS): Local optimization + inertial Sensors. Optimization is again performed by means of non-
linear least squares but the cost function to be minimized consists of an image term and a term
that models the likelihood of the inertial sensor measurements as explained in Chap. 4

E(x) = µ1E
im(x) + µ2E

sens
1 (x)
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where Esens
1 (x) is defined as the squared Frobenious norm between the sensor and the tracking

bone orientation matrices. Both the model-image Jacobian and the orientational Jacobian are
derived analytically for better accuracy and efficiency. The algorithm is the based on [49].

• (GS): Global particle based optimization with Sensors. Like the (G) method but including the
inertial sensor measurements in the weighting function. We optimize a cost function

E(x) = µ1E
im(x) + µ2E

sens
2 (x)

where the image term Eim(x) is the one defined in Eq. (5.36) and is chosen to be to be a piece-
wise increasing linear function of the angular error between the tracking and the sensor bone
orientations. That is, for angular errors bigger than 10 degrees we scale the cost by a factor
of 5. Big deviations from the orientation measurement could in principle be penalized with a
quadratic function but this yields to many particles being rejected in early stages and results in
lower performance. Note that although µ2E

sens
2 (x) and µ2E

sens
1 (x) are not identical they are

both functions of distance metrics for rotations and are thus equivalent. For (LS) we optimize
µ2E

sens
1 (x) because derivatives are easier to compute. We hand tuned the influence weights

µ1,µ2 to obtain the best possible performance.

• (RS): Rejection Sampling. This method is commonly used to sample hypotheses that satisfy
a set of constraints. The method works by sampling hypotheses and rejecting hypotheses that
do not satisfy the constraints up to a certain tolerance. It was for example used in [136] to
integrate object interaction constraints. For our problem, to combine inertial data with video
images we draw particles directly from p(xt|zsens) using a rejection sampling scheme. In our
implementation of (RS), we reject a particle when the angular error for any of the constraints is
bigger than 10 degrees.

For a comprehensive overview of model based methods for human pose estimation we refer the inter-
ested reader to [2].

Let the validation set be the set of quaternions representing the sensor bone orientations not used
for tracking as vsens = {qval1 , . . . ,qval5 }. Let is, s ∈ {1 . . . t} be the corresponding bone index, and
qTBis the quaternions of the tracking bone orientation (Section 5.3.2). We define the error measure
as the average geodesic angle between the sensor bone orientation and the tracking orientation for a
sequence of T frames as

dquat = 1
5 T

5∑
s=1

T∑
t=1

180◦
π

2 arccos
∣∣∣〈qvals (t),qTBis (t)

〉∣∣∣ . (5.40)

Comparison with video and local trackers: We compare the performance of four different tracking
algorithms using the distance measure, namely (L), (G), (LS) and our proposed approach (P). We
show dquat for the eight sequences and each of the four trackers in Fig. 5.14. For (G) and (P) we used
the same number of particles N = 200. As it is apparent from the results, local optimization is not
suitable for outdoor scenes as it gets trapped in local minima almost immediately. Our experiments
show that LS as proposed in [49] works well until there is a tracking failure in which case the tracker
recovers only by chance. Even using (G), the results are unstable since the video-based cues are
too ambiguous and the motions too fast to obtain reliable pose estimates. By contrast, our proposed
tracker achieves an average error of 10.78 ◦ ± 8.5◦ and clearly outperforms the pure video-based
trackers and (LS).

Comparison with GS: In Fig. 5.15 (a), we show dquat for a varying number of particles using the
(GS) and our proposed algorithm (P) for a walking sequence.

The error values show that optimizing a combined cost function leads to bigger errors for the same
number of particles when compared to our method. This was an expected result since we reduce
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Figure 5.13: Tracking results of a karate sequence
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Figure 5.14: Mean orientation error of our 8 sequences (2 subjects) for methods (bars left to right)

L (local optimization in red), LS (local+sensors in blue), GL (global optimization in
green), and ours P (proposed in black).
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Figure 5.15: (a): Orientation error with respect to number of particles with (red) the GS method and
(black) our algorithm. (b): Running time per frame of rejection sampling (RS) with
respect to number of constraints. By contrast our proposed method takes 0.016 seconds
for 15 DoF constraints. The time to evaluate the image likelihood is excluded as it is
independent of the algorithm.
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Figure 5.16: Angular error for the left hip of a walking motion with (red) no sensor noise model (NN),

(blue) Gaussian noise model (GN) and (black) our proposed (MFN).

Figure 5.17: Tracking results of a soccer sequence

the dimension of the search space by sampling from the manifold and consequently less particles
are needed for equal accuracy. Most importantly, the visual quality of the 3D animation deteriorates
more rapidly with (GS) as the number of particles are reduced5. This is partly due to the fact that the
constraints are not always satisfied when additional error terms guide the optimization.

5see the video for a comparison of the estimated motions at http://www.tnt.uni-hannover.de/∼pons/
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Comparison with Rejection Sampling (RS): Another option for combining inertial data with
video images is to draw particles directly from p(xt|zsens) using a simple rejection sampling scheme.
In our implementation of (RS), we reject a particle when the angular error is bigger than 10 degrees.
Unfortunately, this approach can be very inefficient especially if the manifold of poses that fulfill the
constraints lies in a narrow region of the parameter space. This is illustrated in Fig. 5.15 (b) where we
show the processing time per frame (excluding image likelihood evaluation) using 200 particles as
a function of the number of constraints. Unsurprisingly, rejection sampling does not scale well with
the number of constraints taking as much as 100 minutes for 15 DoF constraints imposed by the 5
sensors. By contrast, our proposed sampling method takes in the worst case (using 5 sensors) 0.016
seconds per frame. These findings show that sampling directly from the manifold of valid poses is a
much more efficient alternative.

Sensor Noise Model: To evaluate the influence of the sensor noise model, we tracked one of the
walking sequences in our dataset using no noise (NN), additive Gaussian noise (GN) in the passive
parameters and noise from the von Mises-Fisher (MFN) distribution as proposed in Section 5.4.3. In
Fig. 5.16 we show the angular error of the left hip using each of the three methods. With (NN) error
peaks occur when the left leg is matched with the right leg during walking, see Fig. 5.9. This typical
example shows that slight misalignment (as little as 5◦ − 10◦) between video and sensor data can
miss-guide the tracker if no noise model is used. The error measure was 26.8◦ with no noise model,
13◦ using Gaussian noise and 7.3◦ with the proposed model. The error is reduced by 43% with (MFN)
compared to (GN) which indicates that the von Mises-Fisher is a more suited distribution to explore
orientation spaces than the commonly used Gaussian. This last result might be of relevance not only
to model sensor noise but to any particle-based HMC approach. Finally, pose estimation results for
typical sequences of our dataset are shown in Fig. 5.11, 5.12, 5.13 and 5.17. A video of the proposed
approach along with tracking results can be found in [132].

5.6 Discussion and limitations

State-of-the-art video trackers, either based on local or global optimization, suffer from 3D ambigui-
ties inherent in video and usually fail to recover from errors. Our experiments reveal that video based
pose estimation algorithms benefit from using a set of small IMUs, specially in outdoor scenarios
where the image observation models are weak and ambiguous. Nonetheless, combining inertial and
video measurements poses a difficult optimization problem that has to be dealt efficiently. Local op-
timization is fast and accurate in indoor scenarios. However, our findings indicate that to integrate
orientation, (LS) is not suited in outdoor scenarios because it suffers from tracking failures that oc-
cur frequently. Optimizing a global cost function (GS) is also not the best choice since it yields an
optimization in a high dimensional space which is computationally more expensive. In particular, a
high number of hypotheses have to be generated since the search space volume is huge. Rejection
sampling (RS) is not suited because it scales very poorly with the number of constraints and the com-
putational time grows exponentially. Finally, we showed that the commonly used Gaussian Noise is
outperformed by the proposed von Mises-Fisher noise model when it comes to modeling orientation
ambiguities. The reason is that spherical sampling in the joint angle domain does not yield spatially
spherical joint configurations as opposed to sampling using (MF). Our proposed method overcomes
much of the described limitations: on the one hand the search space is explored only in the region that
satisfies the constraints, and on the other hand sampling using Inverse Kinematics has a reinitializa-
tion power that overcomes tracking failures in many occasions. Unfortunately, the proposed method
is limited by the availability of IMUs. Even though the IMUs are very small and we use only five, they
are unavailable in several applications such as surveillance or MoCap and scene understanding from
video archives. Another issue that requires improvement is robustness to unsynchronization produced
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by the IMUs lag during fast motions. The performance of our proposed tracker is still affected from
such unsynchronization between IMUs and the video cameras. Since IMUs do not provide any posi-
tional measurement, our tracker fails when the body limbs (specially the arms) are not detectable due
to long term occlusions. Finally, even though we achieve considerable computational gains w.r.t op-
timizing the full state space, evaluating the image cost function for every sample is still a bottle neck.
To further reduce computational time, an option would be to use very few particles e.g.25 and then
locally optimize to obtain better accuracy. Although in this work we have presented an algorithm to
combine IMUs with video, the ideas shown here are of significant relevance for the computer vision
community. Firstly, the Inverse Kinematics sampling scheme can be used to generate pose hypotheses
that satisfy a set of kinematic constraints (we leave extensions to positional constraints as interesting
future work). Secondly, the proposed sensor noise model can be used in any problem that involves
modeling or optimization of rotation elements.

5.7 Summary
By combining video with IMU input, we introduced a novel particle-based hybrid tracker that en-
ables robust 3D pose estimation of arbitrary human motions in outdoor scenarios. As the two main
contributions, we first presented an analytic procedure based on Inverse Kinematics for efficiently
sampling from the manifold of poses that fulfill orientation constraints. Notably, we show how the IK
can be solved in closed form by solving smaller Paden-Kahan subproblems. Secondly, robustness to
uncertainties in the orientation data was achieved by introducing a sensor noise model based on the
von Mises-Fisher distribution instead of the commonly used Gaussian distribution. Our experiments
on diverse complex outdoor video sequences reveal major improvements in the stability and time
performance compared to other state-of-the art trackers. Although in this work we focused on the
integration of constraints derived from IMU, the proposed sampling scheme can be used to integrate
general kinematic constraints.
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6 Posebits for Monocular Pose Estimation

We have seen in the previous sections that the combination of image data with inertial sensors results
in significant accuracy gains. These approaches are very suitable for applications such as biomechan-
ics or character animation where accuracy is the main requirement.
Unfortunately, a vast amount of visual data is already available on the Internet and this data typically
consists of monocular videos. In order to analyze and understand this data, reliable human pose es-
timation algorithms that can operate on monocular images are necessary. However, monocular pose
estimation is an extremely hard problem due to inherent depth ambiguities corresponding to bits of
information that are not observable by typical generative trackers.
We tackle this by introducing posebits. Posebits are units of information that resolve typical ambigui-
ties in monocular imagery. They are boolean geometric relationships between body parts designed to
mimic human perception of poses (e.g. left-leg in front of right-leg or hands close to each other). We
use classifiers trained discriminatively to infer posebits from image features. This has the advantage
of being able to focus on the little details that can disambiguate the multi-modality of typical like-
lihood models. Furthermore, using posebits as a mid-layer representation for inference has several
other advantages: Firstly, pose estimation becomes a much simpler task conditioned on these bits
of information. Secondly, annotation simplifies to answering a small set of simple yes/no questions,
and 3D MoCap data can be easily clustered in semantically similar classes. This allows for fast data
collection at large in contrast to manual annotation of 3D poses from images. In Chap. 5 we have
introduced a scheme to sample pose hypotheses consistent with orientation data. By contrast, here
we introduce a scheme to sample pose hypotheses consistent with a set of inferred posebits. There
exist several new potential applications of posebits, in this chapter we show how they can be used
successfully to estimate pose from a single image and for semantic retrieval of related images.

The posebits pose estimator proposed here could be used to initialize the previously described
hybrid trackers. Furthermore, since the the method proposed in this chapter works on single images,
it may also be used to stabilize tracking and prevent drifting.

6.1 Introduction

While tremendous effort has focused on the extraction of metric 3D pose from images and video, in
this work we consider the estimation of qualitative pose information, called posebits. Posebits are
attributes about the pose that specify the relative positions between some parts in the body. They have
the advantage that they can be inferred from images reliably, ground truth posebit labels are easy to
collect to build significant training datasets, and posebits provide extremely useful information for
resolving pose ambiguities in subsequent pose inference.
Generative methods [12, 9, 76, 4, 143, 5] model the complex image formation process which typically
involves careful modeling of shape and motion models. While such methods are powerful when there
is sufficient image evidence and can generalize better, they typically fail when the data is incomplete
as in the monocular scenarios studied here. The main limitation is that the likelihood models used are
weak and therefore are highly multi-modal. Discriminative methods are more direct and learn direct
mappings from image features to 3D poses. This group of algorithms are powerful when the data
term is weak and partially observable. However, they require well aligned training pairs of image
features and 3D poses which are difficult to obtain in practice. One option to obtain such training
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Figure 6.1: We propose to describe poses through semantic descriptions such as: the left foot is far
from the right foot or the right hand is on the right of the shoulder. This has the advantage
of encoding semantic relationships more closely related to how humans perceive poses.

Image classifierInput Image

Posebits

a= (1 0 1 0 ...1) Semantic Pose Prior

Is the right foot in front of the torso ? 

Is the left elbow bent ? 

Is the right hand in front the torso ? 

MoCap DatabaseAnnotated Image Database

Figure 6.2: By representing poses using posebits we can be readily obtain annotations from humans,
in contrast to skillful and laborious work that is required to annotate 3D positions. We have
collected a database of annotated images using Amazon Mechanical Turk from which
we can learn a classifier to infer posebits directly from image features. Additionally,
posebits can be easily computed from MoCap data, which allows us to cluster poses in
semantically meaningful classes. Given the inferred posebits we can draw proposals that
are semantically related to the image content. Our work facilitates the complicated task
of obtaining 3D pose information of humans in natural scenes.

sets is to use commercial marker-based MoCap systems(e.g.Vicon) synchronized with video cameras
[109]. The problem here is that the images obtained are limited to indoor lab environments which are
far from capturing the true variability seen in natural scenes [144]. A second option is to manually
annotate the 3D pose from images but this is obviously time consuming and prone to errors [45, 145].
We argue that it would be extremely practical and powerful to learn useful 3D information directly
from training pairs that can be easily annotated by humans. It appears that people perceive poses
as relative positions between body parts, see Fig. 6.1 rather than absolute positions or joint angle
representations commonly used for pose estimation. For example, common human verbalizations of
pose are : the left leg in front of right leg, left hand in front of the torso. Therefore, we adopt such
high-level representation of poses and we refer to as posebits. A posebit is an attribute about the pose
that determines the relative positions between some parts in the body. It turns out that once some
of this posebits of information are known, the difficult monocular pose estimation problem becomes
much less ambiguous. The main contribution of our work is to introduce posebits which constitute
a semantically powerful pose descriptor that can be inferred from the images. We select a subset of
posebits out of a large pool of candidates. Inspired by works on feature selection and decision trees we
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propose a selection method that greedily selects a set of attributes by maximizing information gain. In
contrast to traditional decision trees, we also account for uncertainty in the estimation of features. For
inference we use structural SVMs [146] and learn a single discriminant function that exploits both the
correlation among classes as well as co-occurrences of posebits. We show that conditioning on the
inferred posebits we can draw pose proposals that are semantically with the image and we are able to
infer poses from single images.

6.2 Related Work
To deal with monocular ambiguities and multimodality generative approaches have relied on strong
action specific motion priors. Our work is partially related to these works [19, 21, 22] in that we
also define an intermediate pose representation. However, posebits are more flexible than action
classes because they are compositional and do not suffer from big intra-class variability. Discrimi-
native methods model a mapping from image features to the pose space by using training examples.
Approaches are either based on nearest neighbors (KNN) schemes [28, 29] or global parametric pre-
dictors [31]. Recent works [32, 33, 34] build online local models from a subset of training exemplars
found using e.g., KNN or decision trees [35]. Another way to correlate the input features with the
output poses is through shared latent variables [21, 34]. In contrast to fully discriminative methods
our proposed algorithm does not require training pairs of images and poses which enables easy anno-
tation and data collection at large in natural scenes.
Attributes: Our work is also related, at least conceptually, to recent works using attribute represen-
tations. The advantages of using attributes have been demonstrated for object categorization [40, 41],
and human action recognition [42, 43] with a special emphasis on transfer learning between classes.
Similar attributes as the ones we propose here have been used for content based retrieval of motion
capture data [44], where they noted that similar motions may be numerically not similar. In [19], they
also used attributes for retrieving motion priors to stabilize tracking. They do it in an iterative scheme
in which they start tracking with no prior knowledge and use noisy tracking estimates to retrieve ac-
tion specific priors. None of these works infer attributes directly from images as we do. Our work
is also inspired by [45] where they introduce poselets. A poselet is a new notion of part, they noted
that parts need not to correspond to physical body parts as in [46, 47, 48]. Instead, they argue that
detecting subgroups of body parts in a certain configuration is easier. However, whereas poselets have
shown good performance for people detection, here we focus on estimating the pose from monocular
images. Furthermore, we do not require 3D annotations for training. Posebits provide the bridge
between the pose and the image space and at the same time allow to build conditional class models of
semantically similar poses.

6.3 Posebits
The use of posebits for pose estimation comprises the following two problems that are tightly cou-
pled: 1) How to define posebit candidates and select them, and how to infer them from images, and
2) given that we can extract posebits, how we can use them to help pose estimation.
Provided with a set of selected posebits, we infer them from image features using a structural SVM
classifier, (Sec. 6.3.2). This allows one to build a proposal distribution of poses conditioned on the
extracted posebits, (Sec. 6.3.3). The main advantage is that by sampling from this proposal distribu-
tion, many ambiguities in the 3D pose are removed. In this way, the final pose is obtained by scoring
the proposals using an image based likelihood, (Sec. 6.4). Generation of posebit candidates and sub-
sequent selection criteria depends on both the inference method (Sec. 6.3.2) used and on the pose
proposal distribution (Sec. 6.3.3). Hence, we explain later in Sec. 6.3.4 how to automatically generate
and select posebit candidates.
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Figure 6.3: The 3 basic posebit types: From left to right, parts distance, articulation angle and relative
position. In this example the posebit of type 3 (right image) checks whether the right
hand is on the right of the shoulder. The plane is centered at the shoulder and the normal
direction is obtained from the vector going from the chest to the shoulder joint.

6.3.1 Automatic Posebit Generation
Every posebit is a bit of information about the pose: it describes the geometric relationship between
body parts. To avoid the tedious work of defining each posebit manually we define 3 posebits types
that constitute the basis for generating many specific instances. The three kind of posebits are:

1. Parts distance: Posebits of the first kind check whether two joints in the body are closer or
further than a given threshold.

2. Articulation angle: Posebits of the second kind are activated when a given articulation is bent
more than α degrees.

3. Relative position: Posebits of the third kind check whether a body part A is to the left, right,
above, below in front or behind relative to a second body part B. To compute this kind of
posebits the signed distance between body part A and a plane centered at body part B is com-
puted. By looking at the sign of the distance we can determine in which half-space of the plane
A is located. The plane is always computed from reference points in the body.

Given these three rules, see also Fig. 6.3, we automatically generate a random set of 30 posebits. Our
selection Sec. 6.3.4 will rank and retain a set of M posebits out of the pool of candidates. While it
may be useful to have an overcomplete set, it requires longer times to label images. As we will see in
the experiments 8− 10 posebits are a good trade-off between accuracy and annotation effort.

6.3.2 Learning
We assume here a set of m poseibts generated and selected by our method (Sec. 6.3.4). We infer
the set a = (a1, . . . .am) ∈ Am, directly from raw image features r ∈ Rd using a model based
on structural SVM [146], where A = {a|a ∈ {−1,1}}. For convenience we refer to the vector of
posebits a as posebyte although we are not restricted to using 8 posebits. Assuming a bounding box
of the person, we construct the feature vector r by computing spatial pyramid features [147], which
are spatially localized HOG (Histogram of Oriented Gradients) over increasing cells of sizes 8, 16, 32
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and 64 pixels. Histograming over larger windows adds robustness to miss-alignments in the training
data. For learning we only require an image dataset with posebit labels I = {ri, ai} ∈ Rd ×Am.
The image dataset consist of image-posebits pairs. Annotations are obtained using Amazon Me-
chanical Turk [148] as explained in Sec. 6.6. The structural SVM [146] learns discriminant function
F : XD ×A 7→ R that provides a score for the values the posebyte can take. The posebit can be then
estimated by maximizing this function

â = arg max
ai

F (r,ai,wai) = wT
ai
φ(ai,r) (6.1)

where φ(ai,r) = ai wT
ai

r is the joint feature map of input and output. However, for m number of
posebits, this leads to 2m potential number of classes. Posebits are not independent and we wish
to exploit the shared information among classes , i.e., classes with similar posebit strings will be
semantically more similar in pose space. Therefore, we learn a discriminant functionG : XD×Am 7→
R over input output pairs from which we can derive prediction by maximizing over the response
variable a for a given input r. The joint SVM scoring function reads:

â = arg max
a∈Am

G(r,a,βa) = aTB r + bTψ(a) (6.2)

where the rows of matrix B are separating hyperplanes to each of the posebits and ψ(a) is a prior that
captures co-occurrences of posebits. For efficiency and to prevent over-fitting we factorize the prior
in pair-wise terms

G(r,a,βa) =
m∑
i

bTaiφ(r,ai) +
∑
i

∑
k

bai,akψ(ai,ak) (6.3)

where βa is the vector of weights that we want to learn, bTai is the i-th row of B providing the score
of posebit ai and ψ(ai,ak) is the pairwise potential computed from mean and variance normalized
histograms learned from mocap data. Since the prior only depends on the output variable it can be
precomputed resulting in big computational savings. The expression above can be written as a scalar
product Ψ(r,a,βa) = 〈βa,Φ(r,a)〉 which gives us a score for a given training input output pair (r,ai).
Having zero training error means that the model scores better the true outputs than any other output.
Learning the model weights βa involves solving the following quadratic optimization problem:

min
βa,ξ

1
2‖βa‖2 + C

n

n∑
i=1

ξi

s.t ∀i, ∀a ∈ Am\ai, ξi > 0

〈βa,Φ(ri,ai)− Φ(ri,a)〉 ≥ 1− ξi
∆(ai,a)

The above constraint states that the true output ai should score at least a unit better (the margin)
than the best runner-up. The objective function penalizes violations of these constraints using slack
variables ξi. Intuitively, violating a margin constraint involving a 6= ai with a high loss ∆(ai,a)
should be penalized more severely. This can be accomplished by scaling the slack variables with the
inverse loss ∆(ai,a). The loss function is the Hamming distance (∆(ai,aj) = ai

⊕ aj) that measures
how many posebits are different.

6.3.3 Single frame proposals

Before explaining our method for selecting a good set of posebits it is important to understand how
the pose proposals are generated. Therefore, we describe here our method to generate pose proposals
given a set m of selected posebits. Hence, we assume that the set of m posebits has been selected
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already and that a classifier has been trained. Our goal is to draw pose proposals that are semantically
similar to the pose observed in the image. The first step of our algorithm is to discriminatively infer
a set of posebits denoted as a from image features. Although our framework is not limited to using
8 posebits, let us denote a string of posebits a = (a1, . . . .am) ∈ Am as a posebyte. The posebits
inferred from the raw image features are not always reliable. Let x denote a 3D pose. Then, we
introduce the following proposal distribution that takes into account the uncertainty in the classifier
estimation of a:

Qa(x) =
∑
Am

p(x|a)p(a|r) (6.4)

where p(a|r) is the probability of the posebyte given the raw image feature r, and p(x|a) is the
conditional pose probability given a posebyte. The integral should be computed for every possible
posebyte which in the worst case equals 2m. We approximate the probability p(a|r) using the trained
classifier scores. Let G : XD × Am 7→ R denote the classifier scoring function that given the
raw image feature XD provides a score for every posebyte a ∈ Am. For computational efficiency
we only consider the top N ranked posebytes and approximate p(a|r) as a multinomial distribution
p(a|r) = ∑

i πiδ(a − ai) with probabilities proportional to the classifier scores πi ∝ G(ai,r).
Specifically, probabilities are computed using soft-max on the top ranked posebytes

πi = exp (G(ai,r)/τ)∑
j exp (G(aj,r/τ))) . (6.5)

where τ is the temperature parameter. For τ 7→ ∞ all posebytes are equally probable and for τ 7→ 0+

all the probability mass is allocated on the top ranked posebyte. In this setting, the integral in Eq. (6.4)
becomes a conditional class mixture model with weights proportional to the posebyte probabilities

Qa(x) =
∑
Am

p(x|a)p(a|r) da ∼
N∑
n

πanp(x|an) (6.6)

In the simplest case, p(a|r) is a single delta with probability one at the maximum score p(a|r) =
δ(a − amax). Note that in the ideal scenario where posebits can be perfectly determined by the
image feature r with no uncertainty the mixture model approaches the true conditional distribution
Qa(x) → Qopt

a (x) = p(x|agt) given the ground truth posebyte agt. This observation will be impor-
tant for the selection of posebits, see Sec. 6.3.4.

Sampling: Provided a model for p(x|a), sampling from the mixture model is straightforward. One
can draw samples using Monte Carlo simulations, i.e., sampling a posebyte ãi with probability πai
and sampling a pose from p(x|ãi) ∼ x̃i.
To build a model for p(x|a) we segment the poses in a MoCap database in 2m classes, one for each
posebyte. We then represent each class distribution by computing k-medoids obtaining K repre-
sentatives {xk,an}Kk=1 for class an. To avoid unwanted bias we assume the K poses are equally
probable, i.e., p(x|an) = ∑K

k=1
1
K
δ(x − xk,an). In this way, we always sample a fixed set of K code-

poses per class, see Fig. 6.4. Therefore, the distribution is modeled by K × N weighted samples
Q(x|r) = {wk,an ,xk,an}, with k ∈ {1 . . . K} and n ∈ {1 . . . N}, with weights wk,an = 1

K
πan .

6.3.4 Posebits selection
For selecting a good set of posebits we assume small set of training pairs of images and 3D poses
and typically bigger set of 3D poses with no image pairs. The task is to retain m attributes out of
candidate set of M . Let L = (ri,xi) ∈ Rd × XD denote the labeled set and U = (xi) ∈ Rd denote
the unlabeled set of 3D poses. The core inference algorithm does not make use of training pairs L.
Conceptually, one would like to retain the set posebits that satisfy the following criteria:
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Figure 6.4: Pose estimation results in the HumanEva dataset. We show the input image on the right,
the pose proposals in the center and the inferred 3D pose (in black bones) on the right.
In the center, each row corresponds to one mixture in our mixture model, where the red
poses are the K code poses of the class model.

1. Reliability: Attributes that can be correctly inferred from the images. More precisely we want
the attributes that better approximate the true conditional class distributions p(x|a) given only
image features.

2. Clustering: Attributes that minimize uncertainty about the underlying pose. Therefore, at-
tributes that create tight clusters.

More formally, to satisfy 1) we want our mixture model Qa to approximate Qopt
a (x) the optimal con-

ditional distribution. Mathematically, this amounts to maximize the expected KL-divergence (DKL)
between distributions Er{DKL(Qopt

a (x),Qa(x))}, where the expectation is over the image features r.
This enforces either to select posebits with low classification errors or posebits with classification
errors that have a low impact on the conditional pose distributions. To satisfy the second criteria we
have to minimize the entropy of the conditional distributions. When selecting posebits there are sev-
eral things to consider, for example a posebit might be very useful in its own but become redundant
given another, or vice-versa. There might be different subsets of posebits that are suited for pose
estimation; obtaining the optimal set involves a big combinatorial problem that we want to avoid.
Therefore, we select them greedily using a forward selection method based on information gain sim-
ilar to decision trees. Let SA denote the pool of posebits from which we want to retain a small subset
Sm. The goal is to maximize the information gain every time we include an additional attribute. The
objective function is

a∗i = arg max
ai∈SA

Ii = ICi + µ · IRi (6.7)

where Ii is the mixed information gain at the i-th level of the tree consisting of a reliability IRi term
and a clustering ICi term.



100 6 Posebits for Monocular Pose Estimation

(a)

−0.2 0 0.2 0.4

−0.2

0

0.2

0.4

0.6

(b)
−0.05 0 0.05 0.1

−0.04

−0.02

0

0.02

0.04

(c)

Figure 6.5: At the top the tree the entropy is high and the poses have high variance, at the bottom, not
only the variance is vastly reduced but also the poses are clustered in semantic classes.
On the top left we show a few poses conditioned on a single posebit, on the top right
we show the poses conditioned on 10 posebits. On the bottom row we show the PCA
projection of the cluster poses, black dots are poses and the red dots are the k-medoids of
the cluster. The variance is vastly reduced, notice the scale of the axis differs by one order
of magnitude.

Clustering Every time we add a posebit to the set, the expected clustering information gain is

ICi = Hi−1 −Hi (6.8)

where Hi is the expected entropy at the i-th level computed as

Ep(c){Hi} =
2i∑
c=1

|Syc |
|Syi |

H(Syc ) (6.9)

where Syc ⊆ (U ∩ L) denotes the subset of poses xi in cluster c. Here, H(S) is the continuous
differential entropy of the pose density at the cluster. In practice, however that is difficult to estimate;
therefore we follow the standard approach of minimizing the cluster variance. While this is a very
crude assumption specially at the first levels of the tree, it is a measure of cluster compactness and
works well in practice. In Fig. 6.5 we show how the entropy in the poses is drastically reduced as we
traverse the tree to the bottom.

Reliability It is also desirable that posebits can be inferred reliably from image features. To mea-
sure the information loss of using our mixture model Qa(x) as opposed to Qopt

a (x) we use the KL-
divergence between the two distributions. Let Di

KL denote the expected KL distance at level i of the
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Left foot in frontRight foot in front

Figure 6.6: Reliability objective: Posebits that can be correctly inferred from images should be pre-
ferred. However, certain miss-classifications have a more severe loss in the pose estima-
tion. Consider the simple example for a posebit that checks whether the right foot is in
front of the left foot. The two test poses shown above x1,x2 both belong to the right class
(blue): left foot in front. A miss-classification error for pose y2 clearly results in a bad
pose prior. A miss-classification error for pose y1 on the other hand is not so important
since pose y1 is also relatively well explained by the other class.

tree
Di

KL = Er{DKL(Qopt
a (x),Qa(x))} with a ∈ Ai. (6.10)

The reliability information gain of adding an additional posebit to the string is then IC = Di−1
KL −Di

KL
which measures how much closer we get to the ground truth distribution. When this quantity is
negative it means that the approximation gets worse as we go down the tree. Note that although
Qopt

a (x) is harder to approximate as we go down the tree, the information gain increases as Qopt
a (x)

carries much more information about the pose. We compute the discrete KL-divergence using training
examples in the labeled set L = {ai,xi,ri}

Di
KL =

∑
i∈L

Qopt
a (xi) log

(
Qopt

a (xi)
Qa(xi)

)

=
∑
i∈L

p(xi|ai) log
(

p(xi|ai)∑N
n πanp(xi|an)

)
(6.11)

This penalizes posebits with classification errors far away from the border between classes more
severely 1. This, in turn, will favor potentially very useful posebits despite having only modest clas-
sification accuracies as we will see in the experimental section. Note that this measure is also related
to maximum likelihood.

1To avoid having to train a structural SVM every time we test a new posebit, during selection we use a mixture with only
one component which allows us to use a precomputed single svm classifier.
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Figure 6.7: Diagram of the proposed pose estimation method: Posebits are inferred directly from
image features bottom-up. These posebits are then used to constraint the pose space and
sample plausible hypothesis. The likelihood of the hypotheses are finally evaluated against
the image top-down.

6.4 3D Pose Estimation
We show here how the proposal distribution Q(x|r) (Sec. 6.3.3) can be used to improve pose estima-
tion. We formulate pose estimation in a top-down generative model where the proposal distribution
Q(x|r) is used to generate the hypotheses. In tracking, hypotheses are typically sampled from a
proposal distribution given past measurements in a sequence. In our setting however, the proposal
distribution is formed from the posebits inferred bottom-up from the image. Given image observa-
tions z, of different nature than r (the ones we used for posebit inference), the posterior can be written
as

p(x|z,r) ∝ p(z|x,r)p(x|r) ' p(z|x)Q(x|r) (6.12)

where we assume that z and r are conditionally independent given that the pose x is known, analogous
to filtering where it is assumed that z is independent of previous measurements given the state.

Image Likelihood: A number of excellent papers can be found focusing on the design of high
fidelity likelihood models such as [149]. Although the likelihood is a key ingredient in pose estimation
it is not the focus of our work. Therefore, we assume here that unlabeled 2D joint locations are
available. 2D locations could be obtained from a 2D pose estimation algorithm for example. Hence,
the additional image features z = (m1 . . .mJ) consist of a collection of 2D points mi ∈ R2. Let
F(x; j) : XD 7→ R3 be a function that maps a pose x to the j-th 3D joint position. We model p(z|x)
in Eq. (6.12) as a product of isotropic 2D Gaussians centered at the joint locations

p(z|x) = 1
C

exp
(
−

P∑
i

e2(mi|x)
)

(6.13)

where C is a normalization constant, and e(mi|x) is the Euclidean distance between the part location
and the closest projected 3D joint location in the image,

e(mi|x) = min
j
‖mi − Proj(F(x; j))‖2. (6.14)
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Here, Proj is the function projecting 3D points to the image plane. We assume an orthographic camera
model where the scale is set to match the person’s height in the image plane. We find the pose estimate
as the mode of the posterior p(x|z,r) in Eq. (6.12) by evaluating the K × N poses of the proposal
distribution Q(x|r) = {xk,an ,wk,an}. Recall, that Q(x|r) was represented by K poses for each of
the N classes of the top ranked posebytes. The root orientation is estimated by uniformly sampling
the rotation angle θroot about the vertical axis at 32 equally spaced angles. LetM(θ; x) denote the
function that rotates a pose x by θ degrees. Then, the pose estimate is obtained by maximizing

x∗ = arg maxxk,an

(
max
θroot

(p (z|M(θroot; xk,an))wk,an)
)

where xk,an is the k-th pose of the class corresponding to posebyte an and wk,an ∝ p(x|r) are the
importance sampling weights explained in Sec. 6.3.3. Further implementation details are given in
Sec. 6.7

6.5 Posebits database
To evaluate our method we collected a new database that we call the The Posebits Database PbDb.
The Posebits Database PbDb supplements previously published databases with posebit annotations.
Specifically, it contains images from HumanEva-I [109], HMODB [25], Fashion [150] and Parse
datasets [48]. To test our proposed method we collected a new database that we call posebits database
(PbDb), which consists of two independent sets: about 5000 annotated images and a MoCap corpora
that is segmented in semantic clusters driven by the selected posebits. We collected the images from
4 publicly available databases: 1500 images Human-Eva [109], 1500 images from HMODB [25],
685 images Fashion[150] and 305 images from Parse [48]. Human-Eva and HMODB contain image-
3D pose pairs which we used to simulate the annotations. For the Fashion and Parse datasets we
collected annotations from Amazon Mechanical Turk. We split the image datasets in two subsets of
2500 images for training and testing. Every image contains an annotation consisting of 30 semantic
questions(posebits). We automatically generated a pool of 30 posebits. We define 3 core rules that
generate 3 different kind of posebit instances: 1) a posebit of the first kind checks whether two body
parts are close or far apart, 2) a posebit of the second kind is activated when a given articulation
is bent. The third type checks the spatial arrangement between two parts in the body, that is, to the
left,right, in front or behind. Although we are more interested in semantic pose inference, Human-Eva
is a standard benchmark for pose estimation algorithms.

Specifically, (PbDb) consists of two independent databases, see also Tabl. 6.1, 6.2:

1. Posebit Annotated Image Database: This database consists of a set of images with correspond-
ing posebit annotations. Each image is annotated with 30 posebits. The images have been
annotated by workers using Amazon Mechanical Turk [148]. For the databases that contain 3D
pose information we have simulated the posebits directly from the 3D poses.

2. Posebit MoCap Database: This database consists of a set of MoCap poses obtained from the
HumanEva-I and HMODB databases. Given a subset of m selected posebits this database
contains poses clustered in 2m separate classes.

These are two independent sets that are both used at test time during inference. It is important to note
that in contrast to previous databases, PbDb does not make use of training pairs of poses and images.
The poses in the Posebit MoCap database are all scaled to a unit pose, i.e., all bones are re-scaled
to the size of a template pose. In addition, all poses are centered to the origin and the yaw angle 2

is removed. This pre-processing step has proven crucial to compute the clustering objective during
posebit selection. One nice feature of PdDb is that it allows to do semantic queries, see Fig. 6.13.

2The viewpoint w.r.t. the camera is arbitrary
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Table 6.1: Posebits Annotated Image Database: we show, for each database, the number of frames,
the type of posebit annotations available and rank each database according to its level of
pose variability and background clutter.

Database Number of frames Posebit Annotation Pose variability Background clutter
HumanEva-I 10350 Simulated Little Little
HMODB 12370 Simulated Very high High
Parse 305 Human Annotation Very high Very High
Fashion 685 Human Annotation Moderate High

Table 6.2: Posebits MoCap Database: we show for each database the number of poses.
Database Number of Poses Motion Patterns
HumanEva-I 29722 Walking, Jogging, Gestures, Throw and Catch and Boxing

HMODB 12370
Walking, Running, Kicking, Rotate Arm
Gymnastics, Tennis, Soccer and Basket

6.6 Annotation with Amazon Mechanical Turk
For HumanEva-I and HMODB, since we have 3D pose information, for each image we can easily
simulate the image annotations. Unfortunately, it is a very laborious and difficult task to capture
such databases since synchronization of MoCap and image data is difficult. Most importantly, motion
capture systems are intrusive and is therefore almost impossible to obtain 3D pose of people into the
wild, i.e., in the streets, in the office or during sport events. Annotating posebits in images on the other
hand simplifies the task to answering simple yes/no questions for which we use Amazon Mechanical
Turk [148].
We split the set of 30 automatically generated posebits into 3 sets of 10 questions. Hence, a worker
in AMT is shown an image along with 10 simple questions to answer, see Fig. 6.8. The interface
questions and layout is also automatically generated from the list of posebits. It takes on average
from 20 to 40 seconds for untrained workers to annotate one image. This shows that collection of
data is substantially easier than annotating 3D pose which for trained users takes well over 5 minutes.

6.7 Setup and Parameter Settings
In this section we detail the parameter settings and experimental setup we used for posebit selection,
learning and pose estimation.

6.7.1 Learning of Posebits Classifier

To obtain a more balanced set across the 4 different databases: HumanEva, HMODB, Parse and
Fashion, we sub-sampled a subset of images to train our image classifier. Specially, we used a subset
of 1500 images from HumanEva training set, 1500 images from HMODB, 305 from Parse and 685
from the Fashion dataset making a total of 3990 images. We further split it into two equal sets of 1995
images for training and 1995 images for testing. The image classifiers used in all the experiments were
trained on these 1995 training images. For the validation our image classifier we used the test set of
1995 images. Our input features r, are spatial pyramid features [147], which are spatially localized
HOG (Histogram of Oriented Gradients) over increasing cells of 8,16,32 and 64. Histograming over
larger windows adds robustness to miss-alignments in the training data.
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(a)

(b)

Figure 6.8: Mechanical Turk annotation interface: (a) Helpers shown to workers, (b) The interface,
10 simple questions to be answered by annotators.
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6.7.2 Posebit Selection

We use two criteria to select the posebits greedily: clustering and reliability.

Reliability: To compute the reliability objective we use a labeled set of image-pose pairs L =
(ri, xi) ∈ Rd × XD. The labeled set L consists of 2000 additional images taken from HumanEva-I
and HMODB. These images are only used for selection. To avoid having to train a structural SVM
every time we test a new posebit, we pre-train a single SVM for each of the 30 posebit candidates
using the same subset of 1995 images from the Posebit Annotated Image Database. Then, for every
training example in the labeled set L we run the learned classifier obtaining a score π for every possi-
ble posebyte string in the set {an,πan}n=2m

n=1 . For computational efficiency, during selection, we take
the top ranked posebyte with weight πamax = 1. To evaluate Eq. (6.11) we compute the likelihood of
pose xi under our estimated single mixture distribution Qa(x) and under the ground truth distribution
Qopt

a (x), see Fig. 6.6
NOTE: In a scenario where a labeled set is not available, one option is to directly use the classifier ac-
curacies on a validation set to compute a related measure. We also have found good results following
this approach. We wish however to penalize more severely errors for poses that are not on the border
between classes but clearly belong to one class.

Clustering: Additionally, to compute the clustering information gain we use the a set of 5000 un-
labeled poses from the Posebit Mocap Database U = (xi) ∈ Rd. To compute this objective the cluster
pose entropy or a related measure needs to be calculated.
NOTE: Here we considered several options: one could for example use kernel density estimation
(KDE) or fit a mixture of Gaussians (GMM) to the cluster samples. Unfortunately, it is well known
that KDE is problematic in high dimensional spaces and GMM is computationally expensive and
one would have to resort to approximations of the entropy as there exists no closed form solu-
tion. In decision trees, people often make the working assumption of Gaussian distribution at the
leafs because it is fast to compute and the Gaussian has a closed form solution for the entropy
H (N (µ; Σ)) = log (det(Σ), where det (Σ(Syc )) is the determinant of the covariance matrix of the
subset. However, we found the Gaussian approximation to be numerically unstable when the covari-
ance was singular or close to singular.
Therefore, since we are not concerned in estimating the entropy very accurately but rather in select-
ing good posebit candidates we follow a standard pose variance minimization which proved to be
numerically much more stable.

6.7.3 3D Pose Estimation

Our likelihood model defined in Eq. 6.13 is as simple as it can be: we simulate a set 2D joint locations
detections in the image by projecting the ground truth 3D pose locations on the image. We take as
input this set of 2D locations without any body part label. While working with real 2D joint detections
makes the problem harder, the problem we tackle here is still heavily i-ll conditioned, the depth and
left right ambiguities still persist. For the validation of our pose estimator we used the validation set
of the HumanEva-I, which roughly amounts to 4000 images. Here we note that we needed to test our
algorithm in the validation set because we are currently using projected 2D joint locations as input for
our image likelihood. For our mixture model in Eq. 6.6 we use a fixed number of 4 mixtures with the
temperature parameter of soft-max τ set to 0.5. Every class is described by K = 10 representatives.
To compute the likelihood, for every mixture, every codepose in the mixture class is projected to the
image at 32 uniformly sampled yaw angle locations. The scale is estimated from the ratio between the
unit size train pose and the image plane height. The image plane height is estimated as the maximum
minus the minimum 2D joint locations in the image. We note that the likelihood model is a very
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important ingredient for pose estimation; it is however not the focus of our work and therefore we use
the simplest model here.

6.8 Experiments

We show here several experiments in order to answer the following questions:

1. Selection: Are the posebits retained by our selection method better for inference than a random
subset?

2. Classification: Is it possible to infer posebits directly from image features with sufficient accu-
racy?

3. Pose Estimation: Are the prior poses qualitatively similar to the observed pose ?

4. Pose Estimation: Are posebits improving the pose estimation accuracy ?

To validate our proposed method we present two potential applications of posebit inference: 1) for
monocular pose estimation, 2) for semantic pose estimation and retrieval.

Selection To understand the influence of posebit selection we compared the performance of our 10
ranked posebits with the performance of picking random subsets of 10 posebits. For this experiment
we tested our method using 20 different random subsets of 10 posebits and averaged the results. We
can see in Fig. 6.9 we perfom significantly better on average which means that the selection provides
a good set of posebits to use. It is important to note that the selected posebits are not necessarily
the ones with better classification scores as those might be uninformative or redundant together with
others. This is reflected in Fig 6.11 where we show the classification accuracy for the pool of 30
posebits. Other combinations might work equally well but due to computational constraints we are
not seeking for the optimal subset but rather a good set.

Classification In Fig 6.10 we show the classification accuracies in the test sets of the 4 datasets,
Heva, HMODB, Fashion and Parse. As we can observe, our model can predict posebits from images
with remarkably high accuracies (70-90%). The dataset where we perform more modestly is Parse.
That is probably due to the high variability in pose and appearance and due to the fact that we only use
150 images for training which is one order than magnitude less than for the other datasets. In Fig. 6.14
we show a few examples of poses sampled from our mixture model for different test images of the
PbDb. We perform significantly better in the images from HumanEva-I, HMODB and Fashion both in
classification accuracies and semantic quality of the 3D estimation results. This is due to the fact that
the data has more redundancy and therefore learning works better. In addition, our MoCap database
is still limited. To improve our predictions we are currently extending both the Annotated Image
Database and the MoCap database to cover a wider range of poses and appearances. In Fig. 6.11 we
show the accuracies of the pool of 30 posebits. Notice that our algorithm selects the most informative
posebits (according to the criteria explained in the selection section) which are not necessarily the
ones with the better classification accuracies. It is interesting to see that our selection method selects
a subset of symmetric posebits (i.e., left and right counterparts) which is what intuitively one might
expect.

3D Pose Estimation: First of all, we want to demonstrate the usefulness of using posebits to
cluster poses in semantic classes. In Fig. 6.13 we query the PbDb for 3 posebits. As it can be seen in
Fig. 6.13 as little as 3 posebits already cluster poses in qualitatively similar classes. This allows us to
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Figure 6.9: Posebit selection: 3D error (mm), we show in red the error using 10 selected posebits, in
green we show the average error of 20 different random subsets of 10. We also include in
blue the accuracy given the ground truth posebits to see the impact of classification errors
in the final pose results.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
ie

s

H-Eva HMODB Parse Fashion
Figure 6.10: Classification accuracies for top 10 ranked posebits selected by our algorithm. The

average classification accuracy is shown in black. We group the results according to
databases, from left to right: Human-Eva, HMODB, Parse and Fashion. As we can
obseve we obtain very good accuracies for Human-eva, HMODB and Fashion. On the
Parse datasets some of the posebits can not be reliably detected due to the high variability
in the poses seen in the images.
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Posebit Accuracies
1 is wrist right Above hips
2 is ankle right Front torso
3 is ankle left Front torso
4 is wrist left Above hips
5 is wrist right Above neck
6 is ankle left Left hip left
7 is wrist left Left shoulder left
8 is wrist right Right shoulder right
9 is knee right Bent
10 is ankle right Right hip right
11 is ankle left Far From ankle right
12 is knee left Bent
13 is wrist right Front torso
14 is elbow left Bent
15 is ankle right Front ankle left
16 is wrist left Far From wrist right
17 is elbow right Right shoulder right
18 is wrist right Close To hip right
19 is ankle left Close To ankle right
20 is elbow left Left shoulder left
21 is torso Upright
22 is elbow right Bent
23 is wrist left Front torso
24 is wrist left Close To hip left
25 is wrist left Close To chest
26 is wrist right Left shoulder right
27 is wrist left Close To wrist right
28 is wrist right Close To chest
29 is wrist left Right shoulder left
30 is wrist left Above neck

40 50 60 70 80 90 100

Figure 6.11: Posebit accuracies on the test set including images from HumanEva, HMODB, Parse
and Fashion. Posebits are sorted from top to bottom according to the ranking assigned
by our selection algorithm. As it can be seen, posebits with very high accuracies are not
necessarily selected; they might carry little information about the pose or they might be
redundant with other posebits. One example of this is the posebit is the torso upright?
which ranked very well on its own but did not add any further information when the
posebits 2 and 3 is the left/right ankle in front of the torso were included. That is because
when the feet are both above the torso it usually corresponds to a non-upright torso, see
the last row of Fig. 6.14. We show in red the 10 top ranked posebits that we use in most
of our pose estimation results.
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Figure 6.12: We show here the mean 3D pose error (mm) as a function of the number of posebits.
Notice the significant improvement decreasing the error from 110 mm down to almost 70
mm when using 12 posebits. This clearly demonstrates the usefulness of using posebits
during inference.

either retrieve similar images or similar poses. In Fig. 6.14 we show how the inferred posebits can be
used to retrieve poses that are qualitatively similar to the observed image. This forms the basis of our
algorithm to deal with typical monocular ambiguities.
To obtain a quantitative validation, we reserved a set of 4000 images from Heva for testing our model.
The test set includes images from all motion patterns and actors. In Fig. 6.12 we show the mean
pose error as a function of the number of posebits. As expected, the more posebits we use, the more
clustered the proposals are and the less ambiguity, hence a much better performance is obtained. The
best results are obtained using 12 posebits; nonetheless in the next experiments we used only 10 as we
believe it is a good trade-off between accuracy and annotation effort to collect training data. Notice
the big drop in pose error as we increase the number of posebits. Posebits can also potentially reduce
the computational burden, the more bits of information we infer beforehand the less poses have to
be evaluated against the image for the same error requirements. Our current unoptimized Matlab
implementation runs at an average of 22 frames per second using 10 posebits, 4 mixtures and 10
code-poses per cluster.

Image Retrieval: Finally, we show another potential application of posebits for image retrieval
of images related semantically by the pose. The top ranked posebytes by our classifier are used to
retrieve annotated images in the database with the similar posebyte strings, see Fig 6.15.

6.9 Discussion

Our model is still limited to images where the full pose is visible. In addition, we do not have yet
enough variation in our training data to obtain excellent performance in very difficult images with
occlusions and lots of background clutter. Also, retaining a fixed subset of posebits has the advantage
that a powerful model can be learned but is less flexible than choosing posebits at test time. Indeed,
some preliminary experiments reveal that the posebit confidences are strongly correlated to accura-
cies. Therefore, one strategy we are also analyzing is to choose a variable subset of posebits at test
time. We are currently extending both the Annotated Image Database and the MoCap database to
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Figure 6.13: Semantic queries: in this example we queried the Posebit database for 3 posebits: left
foot to the left of the hip, right foot to the right of the hip and left foot far from the right
foot. On the top row we show a few example poses retrieved from the MoCap database
and on the bottom rows we show examples retrieved from the Annotated Image database.
Notice that the poses are already quite clustered semantically by just fixing as little as 3
posebits .

cover a wider range of poses and appearances. We have demonstrated that posebits can also improve
3D estimation accuracy. We want to emphasize however, that for many applications a semantic infer-
ence of pose might be sufficient or even more powerful. This first results are very encouraging and
we strongly believe that posebits open a promising line of research in the pose estimation field.

6.10 Summary and Future Work
We have introduced posebits which constitute a semantically powerful pose descriptor. Experiments
show that our selection method learns a good set of posebits, i.e., retains the ones that can be reliably
inferred from images and are informative about the pose. We have also shown that using posebits
as a mid-layer representation can improve monocular pose estimation. One of the main advantages
of the proposed method is that annotation is easier and more intuitive for the human observer. This
enables easy collection of training data. The experiments reveal that posebits can resolve many of the
monocular ambiguities and can be useful as basis for many potential applications. In particular, we
do not see posebits as a competitor to existing approaches but rather as a powerful complementary
feature. For future work, we plan on annotating more data, and to explore more posebit applications.
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Figure 6.14: Examples poses drawn from our mixture model. Here we used the top 10 ranked posebits
and 4 mixtures. Even when there are several miss-classifications we can retrieve mean-
ingful poses thanks to our mixture model and to the fact that in many cases a few posebits
already cluster the poses significantly. We note that in the fourth row most posebits are
correctly classified and nonetheless the poses are not very similar to the image. That is
because our MoCap database is still limited, we plan to add more poses from our own
recordings, from CMU [151] and 3.6M [152] Database.
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Queries Retrieved semantically related poses

(a)

Figure 6.15: We can use the inferred posebits from the image to retrieve images in our database with
similar posebit annotations. In particular, here we retrieve images with posebyte annota-
tions that match any of the top 2 ranked posbytes given by our model. We show the query
images on the left and the retrieved images on the right. Notice the sematic similarity in
the images.
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7 Conclusions

In this thesis we have addressed the problem of human pose estimation from video and IMUs in in-
door controlled, outdoors semi-controlled and uncontrolled environments such as monocular images.
The design of a human pose estimation system should be application dependent. The application
will determine which sensors are available for the task and the required level of detail of the pose.
In turn, this will condition the inference techniques to be used. Some applications such as character
animation for movie production or motion analysis for medical applications require high degree of
accuracy. Other applications such as scene understanding, or action recognition require only a coarse
knowledge of the pose. In addition, certain applications allow to engineer the recording room. For
movie production for example, asking the subject to wear a small set of inertial sensors does not
suppose a major limitation. Similarly, multiple camera setups are realistic scenarios for such applica-
tions. However, if the pose estimation algorithm has to work on monocular images that one can find
on the Internet, one can not assume for example orientation data coming from IMUs is available.
Different scenarios require different inference techniques. For example, if multiple cameras with
high quality silhouettes and IMUs are available, one can achieve very good performance using lo-
cal optimization. If however, the image cues are ambiguous and contain lots of background clutter,
occlusions and illumination changes local optimization fails because it can not recover from errors
during tracking. In such scenarios, inference using particle based optimization techniques can be
more reliable. In particular, particle based optimization algorithms allow to propagate multiple pose
hypotheses over time and therefore can potentially recover from tracking errors. When the data is
even weaker, as in monocular imagery, one can not expect to recover the pose with a very high degree
of accuracy. Indeed, although humans can resolve most of the depth ambiguities from monocular
imagery, our reconstruction of pose is more qualitative than quantitative. In such scenarios, we aim
at recovering a coarse semantic representation of the pose as opposed to highly accurate estimates.
To summarize, to design a human pose estimation system, one should answer the following two ap-
plication dependent questions:

• Which sensors are available ? To what extent does the application allow to engineer the record-
ings ?

• What level of detail is required or what is a realistic level of detail that can be inferred from the
available observations ?

The first question will determine the inference method to be used, and the second one will determine
the chosen representation of the pose. Bearing this in mind, we have presented three novel track-
ing systems at different levels of pose detail that operate in different scenarios. We summarize the
significance of the proposed tracking systems below.

7.1 Local Optimization

We presented an approach for stabilizing full-body markerless human motion capturing using a small
number of additional inertial sensors. Generally, the goal of reconstructing a 3D pose from 2D video
data suffers from inherent ambiguities. We showed that a hybrid approach combining information
of multiple sensor types can resolve such ambiguities, significantly improving the tracking quality.
Information from the video input and the IMUs is integrated by jointly optimizing a combined energy.
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Pose IMU Pose

Local Hybrid Tracker Inverse Kinematics 
Sampling Tracker

Posebits Pose 
Estimator

Input: Multiple cameras + IMU Input: Multiple cameras + IMU Input: Single Image

Inference: Top-down, local 
optimization

Inference: Top-down, particle 
based optimization

Inference: Bottom-up structural 
SVM, Top-down, particle based 
optimization

Images IMU Images Images

Pose Posebits

Figure 7.1: Summary table of the proposed pose estimation algorithms. On the first row we specify
the input data and the main inference techniques used by our methods. On the bottom row
we show the variables involved during inference: observed variables are shown in orange
and hidden variables are shown in blue.

Since the scenarios we deal with here are indoor and the video data is relatively clean, we can use
local optimization. We showed that the energy term corresponding to the orientation goals can be
linearized in a similar way as the energy corresponding to positional goals. Since the kinematics
are constrained by positional and orientation goals we could correct tracking errors arising from
rotationally symmetric limbs. Using only a small number of inertial sensors fixed at outer extremities
stabilized the tracking for the entire underlying kinematic chain. Several experiments for different
motion patterns demonstrate that the proposed hybrid tracker results in much more accurate pose
estimation results than a pure markerless motion capture system. In particular, our tracker can capture
very accurately limb orientation which is very important for many applications. In addition, since the
proposed tracker is based on local optimization it is very efficient making real time motion capture
possible.

Application scenarios The proposed hybrid local tracker can be used for any application where
a high degree of accuracy is required. An obvious example is for character animation where the
recordings are usually made in indoor setups and a lot of accuracy is required. The proposed system
is much more cost efficient than commercial based motion capture systems based on optical markers.
At the same time it is much less intrusive which allows subjects to move more freely resulting in more
natural motions.

7.2 Inverse Kinematics Sampling Tracker

The hybrid local tracker is very efficient and results in very accurate results in indoor multi-camera
setups. Some applications however, require to make the MoCap recordings outdoors. This allows to
capture motions in their natural environment, e.g. it allows to capture the movement a soccer player
on the field itself where he can move freely. Motion capture outdoors is significantly more challeng-
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ing as the video data term is ambiguous and high quality segmentation is not feasible. In addition,
we considered scenarios with highly dynamic motions of people interacting with objects which cre-
ates many self-occlusions. Here we again argue that combining video data with a small number of
sensors can greatly improve performance and enable tracking in challenging outdoor scenarios. The
additional difficulties outdoors require a tracker that can recover from errors or at least that can prop-
agate multiple hypothesis over time. This rules out the use of local optimization that provides a single
estimate per frame and is prone to get trapped in local minima. A more robust alternative is to use
particle based optimization. The main problem here is that the pose search space is high dimensional
and a large number of particles are needed which makes it computationally very expensive. Further-
more, it is not clear how to successfully integrate the kinematic constraints imposed by the sensors
in this framework. Therefore, we introduced a novel particle-based hybrid tracker that enables robust
3D pose estimation of arbitrary human motions in outdoor scenarios. We first presented an analytic
procedure based on Inverse Kinematics for efficiently sampling from the manifold of poses that fulfill
orientation constraints. Notably, we show how the IK can be solved in closed form by solving smaller
Paden-Kahan subproblems. By sampling from the manifold, the dimension of the search space is re-
duced and the constraints are naturally full-filed. This, in turn, allows us to achieve good performance
with far fewer particles. Secondly, robustness to uncertainties in the orientation data was achieved by
introducing a sensor noise model based on the von Mises-Fisher distribution instead of the commonly
used Gaussian distribution. Our experiments on diverse complex outdoor video sequences reveal
major improvements in the stability and time performance compared to other state-of-the art trackers.

Application scenarios The proposed tracker can be used to perform motion capture of highly
dynamic motions in outdoor scenarios. Again, the setup requires as few as 2 consumer cameras and
a set of inertial sensors (we used five) 1. This constitutes a cost efficient alternative to marker-based
systems which do not work well outdoors and are much more expensive. Pure inertial systems exist
but they typically drift over time. Capturing outdoors is important for applications such as sports sci-
ence or movie production. Although in this work we focused on the integration of constraints derived
from IMU, the proposed sampling scheme can be used to integrate general kinematic constraints.
Kinematic constraints can be derived from the environment, e.g. one might want to impose that the
feet touch the ground or that the hands are in contact with an object.

7.3 Posebits Pose Estimator
The two previous trackers achieve a high degree of accuracy which is needed for many applications.
However, they are relatively intrusive, the subject needs to wear a set of IMUs and at least two cameras
are required. Certain scenarios, require to be able to extract pose information from images into the
wild. That is, images of people in natural photographs we can find on Internet archives. For this
task, we usually have a single image. We argue here that since the problem is extremely ill-posed and
under-constrained one should first extract high level qualitative information about the pose. To this
end, we have introduced posebits which constitute a semantically powerful pose descriptor. Posebits
describe relationships between parts in the body, e.g. a posebit determines whether the right hand is
above the head. We show how to select a set of good posebits using a method based on decision trees.
Given a set of selected posebits we infer them from image features using a discriminative structural
SVM predictor. The inferred posebits serve to constrain the pose space, i.e., we sample poses that
satisfy the estimated posebits. We argue that this semantic pose prior facilitates pose estimation under
difficult ambiguities present in monocular images.

One of the main advantages of the proposed method is that 3D pose-image pairs are no longer
needed which enables easy collection of training data. This is due to the fact that labeling images with

1To achieve good results at least 4 cameras should be used
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posebits is an easy task that humans can quickly perform. The experiments show that posebits can be
estimated from images with good accuracy, even when training using different datasets. This results
in improved pose estimation performance. Posebits can resolve many of the monocular ambiguities
and can be useful as basis for many potential applications.

Applications The pose estimation method based on posebits is suited for monocular imagery
where the data is very weak and many ambiguities are present. The proposed posebits however
can be used as a useful pose feature which may constitute the input for many algorithms. They could
for example be used as input for action recognition, scene understanding or image retrieval. Posebits
are also useful to segment mocap data in semantic classes.

7.4 Future Work

7.4.1 Multiple Cues

In this thesis we have used relatively simple image cues such as edges, silhouettes and color his-
tograms. Modeling texture, clothing, shading and illumination [10] should make the problem less
under-constrained. Other sensors such as depth cameras, or the inexpensive Kinect sensor can make
the problem significantly easier since they provide 3D measurements. Indeed, excellent performance
has been achieved using such sensors [116, 51].

7.4.2 More Detail

Although human motion is well approximated by an articulated skeleton, in reality human motion
is non rigid: muscle bulging occurs when we move, and the body fat motion is very non-rigid. To
achieve a high degree of realism, the human shape can also be captured. There exist models to capture
human shape from images. When multiple cameras are available one can resort to performance
capture [85], where every triangle in the surface can deform independently under some smoothness
constraints. The real challenge however is to capture fine shape deformations from a few or a single
camera. In that case, lower dimensional models of human shape learned from 3D scans such as
SCAPE [82] can be very useful. However, people’s shape is usually covered by clothing [153, 154].
In order to accurately estimate shape one probably needs to estimate clothing. Actually, estimating
clothing shape and material properties is itself of great practical importance for the Online Shopping
industry. Here again, since clothing deformations are very complex, data-driven methods as in [155]
will be required to constrain the problem.

7.4.3 Multiple People and the Environment

People appear in images interacting with the environment. We think that future algorithms will have
to exploit the geometry of the scene to constrain the pose of the people. The objects in the scene,
such as tables, chairs and also smaller objects such as cups and cellphones can be seen as nuisance
because they produce occlusions. However, they can impose strong kinematic constraints on the pose,
e.g., there are not many ways one can sit on a chair. Constraints derived from the scene layout could
be integrated using our Inverse Kinematics sampling scheme. We assumed in this thesis a single
person to be tracked at a time. Tracking multiple people simultaneously could potentially facilitate
the task since people interact in predetermined way, e.g., hand shakes, hugs. Indeed, pose estimation
algorithms can be coupled with multiple people tracking algorithms [55, 54] in a straightforward way.
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7.4.4 Monocular Pose Estimation
The problem of monocular pose estimation is heavily under-constrained since there are multiple 3D
poses that could explain a given image under the likelihood models we are currently using. Per-
formance would improve with richer likelihood models, including more realistic models. However,
putting too much effort modeling little details before not knowing anything about the scene might not
be the most effective approach. For example, trying to infer the configuration of the fingers in the
hands without even knowing where the hands are might not be the best way to approach it. There-
fore, it is often useful to extract high level information about the scene. This high level information
might be whether there is a person or more, whether the scene is in an office or in an outdoor nature
environment or whether the person is sitting or standing. This sort of high level information can be
extracted using discriminative methods that use training data to map image features to this labels. Our
posebits tracker is a first step into this direction. Actually, it is likely that successful algorithms will
have a bottom-up (discriminative) process to extract high level information and a top-down (genera-
tive) process to recover and explain the little details of the scene. Discriminative models are effective
because they are very task specific but they suffer from poor generalization. Generative models on
the other hand generalize better but are require much more modeling effort and inference is often
intractable. Hence, a promising approach is a generative model conditioned on high level information
latent variables inferred discriminatingly.

7.4.5 Putting the Pieces Together
To summarize, we believe pose estimation algorithms have to become more intelligent. It is not likely
that computer algorithms will see a significant improvement if they do not integrate many sources of
information together. Therefore, we think pose estimation algorithms should be one more piece of
a computer vision system. Indeed, pose estimation can be leveraged by jointly inferring the objects,
the scene layout, people interactions and the context. All this pieces of information together should
reduce the ambiguities and make the monocular pose estimation problem more complex yet more
feasible.
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Glossary

2D Two dimensional 140

3D Three dimensional 140

belief propagation Distributed algorithm for inference on graphical models, which is optimal for
tree-structured graphs. Variants include the sum-product algorithm and max-product algorithm
31, 140

body frame The body frame is a frame of reference fixed at the moving body 26, 140

discriminative Discriminative models typically model a conditional distribution of target outputs
given a set of inputs. Discriminative models differ from generatives in that they do not allow one
to generate samples from the joint distribution over inputs and outputs (and/or hidden variables).
Discriminative models are particularly well suited for input-output tasks such as classification
or regression. 6, 140

DP Dynamic Programming. A combinatorial algorithm for optimizing decomposable objective func-
tions recursively 31, 140

EM Acronym for Expectation-Maximization 140

Expectation-Maximization In statistics, an expectation-maximization (EM) algorithm is a method
for finding maximum likelihood or maximum a posteriori (MAP) estimates of parameters in
statistical models, where the model depends on unobserved latent variables 51, 140

forward kinematics Given an articulated body parameterized by joint angles Θ ∈ Q, the forward
kinematics is defined as the mapping from the vector of joint angles to the position and orien-
tation of the body segment Gsb : Q→ SE(3) 27, 140

generative Generative models are models capable of generating (synthesizing) observable data.
Generative models are able to model joint probability distributions over the input, output and
hidden variables in the model. During inference generative models are often used as an inter-
mediate step in forming conditional distribution of interest. Generative models, in contrast to
discriminatives, provide a full probabilistic model over all variables, whereas a discriminative
provides a model over the target output variable(s) conditioned on the input variables 6, 44, 140

gimbal lock Gimbal lock is the loss of one of the three DoF of a rotation parameterized by either
Euler angles or three concatenated revolute joints. It occurs when two of the axis of rotation
align and therefore one degree of freedom is lost 19, 20, 29, 140

GP A Gaussian Process is a continuous stochastic process defined on a real-valued domain (e.g.,
time). It defines a Gaussian distribution over functions, and is fully characterized by a mean
function and a covariance function. In addition any realization at a finite set of points in the
domain (e.g., time instants) form a multivariate Gaussian density 140

GPDM A Gaussian Process Dynamical Model is an extension of the GPLVM to handle high-dimensional
time series data. In addition to the probabilistic generative mapping from latent positions to the
observation in the GPLVM, it includes a dynamical model that models the temporal evolution
of the data in terms of a latent dynamical model 58, 140
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GPLVM A Gaussian Process Latent Variable Model is a probabilistic generative model that is learned
from high-dimensional data. It can be used as a probabilistic dimensionality reduction, where
the latent variables capture the structure (latent causes) of the high-dimensional training data.
It is a generalization of probabilistic PCA to nonlinear mappings 58, 140, 141

Hessian matrix Matrix of second-order partial derivatives of a function of several variables. It
describes the local curvature of a function. Suppose a function f : Rn 7→ R, f(x1,x2, . . . ,xn)
then the Hessian matrix is :

Hf =



∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xn

∂2f
∂x2 ∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2 ∂xn

...
... . . . ...

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

· · · ∂2f
∂x2
n


57, 140

HOG Histograms of Oriented Gradients. Common gradient-based descriptor for an image. 39, 140

homogeneous coordinates Homogeneous coordinates are a system of coordinates used in pro-
jective geometry with applications in computer vision and computer graphics. Rigid transfor-
mation of points and vectors have a simpler representation in those coordinates than in the
typical Euclidean coordinates. Let us define the following notation:
Homogeneous coordinates of a point p ∈ R3 are p̄ = [p 1].
Homogeneous coordinates of a vector v ∈ R3 are v̄ = [v 0].

Homogeneous coordinates of a rigid motion g = (R,t) are G =
[
R[3×3] t[3×1]
0[1×3] 1

]
Thereby, a

point is transformed by g with simple matrix multiplication p̄1 = Gp̄0 17, 140

human pose Relative orientation and position of the human body limbs w.r.t some reference coor-
dinate system 16, 140

ICP Iterative Closest Point is an algorithm to align or register two sets of points. The algorithm
iterates the following steps: (i) collect correspondences from the two sets of points by the
nearest neighbor criterion, (ii) estimate the transformation between both sets. (iii) transform
the points with the computed transformation. This procedure is iterated until congergence 48,
140

image contour Image contour features are edge features that are on the outer extremity of the
object. In other words, it is a sub-set of edge features on the outline of the object (as opposed
to internal edge features) 45, 140

image edge Image edges are defined as pixels in the image where there exists a discontinuities
in the pixel brightness. Image edges are common features used in vision as they are easy to
compute and are largely invariant to lighting 45, 140

image likelihood Given an observed image (or images), I , image likelihood, p(I|x), measures the
probability of that image(s) being observed given a set of input parameters x 35, 51, 140, 144
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image silhouette Image silhouette corresponds to a binary image where pixels that are 0 are as-
sumed to be part of the background and pixels that have value of 1 are part of the foreground
object of interest. Binary image features are most often obtained through the process of back-
ground subtraction 45, 140

IMU Inertial Measurement Unit. Device to measure local orientation and acceleration of a moving
body. 62, 140

inverse kinematics Inverse kinematics is the process of determining the parameters (joint angles)
of a parameterized articulated object in order to achieve a desired goal. Goals are configurations
of position and/or orientation of typically end-effector segments (such as the hands) 82, 140

Jacobian matrix Matrix of all first order derivatives of a vector or scalar-valued function with re-
spect to another vector. Suppose F : Rn → Rm given by
y1(x1, . . . , xn), . . . ,ym(x1, . . . ,xn), then the Jacobian matrix is:

JF =


∂y1

∂x1
· · · ∂y1

∂xn... . . . ...
∂ym
∂x1

· · · ∂ym
∂xn


46, 47, 140

Kalman filter Kalman filter is an algorithm for efficiently doing exact inference in a linear dynam-
ical system (LDS), where all latent and observed variables have a Gaussian (or multivariate
Gaussian) distribution 51, 140

kinematic chain Parameterization commonly used to represent the motion of articulated figures.
The orientation and position of an end-efector segment is determined by the orientation and
position of the previous segment in the chain and an angular rotation about a joint axis 16, 140

kinematic singularity In the context of human pose estimation a kinematic singularity refers to
the fact that multiple configurations of joint angles result in the same human pose 51, 140

LDS A Linear Dynamical System is used to refer to a linear-Gaussian Markov process. In such a
process the state evolution is modeled as a linear transformation plus Gaussian process noise.
A first-order LDS on state x, for matrix A, is given by xt = Axt−1 + η where η is a Gaussian
random variable that is independent of x and IID through time 58, 140, 143, 145

MAP Acronym for maximum a posteriori estimate 43, 140

Markov Chain Monte Carlo A general framework for generating samples from a graphical model,
of which is a popular special case 51, 140

Markov process A Markov process (or Markov chain) is a time-varying stochastic process that sat-
isfies the Markov property. An nth-order Markov process, (x1,x2,x3, · · · ), satisfies p(xt |x1, · · · ,xt−1) =
p(xt |xt−1, · · · ,xt−n). That is, conditioned on the previous n states, the current state is inde-
pendent of all other previous states 52, 140

maximum a posteriori In Bayesian statistics, a maximum a posteriori probability (MAP) estimate
is defined as a mode of the posterior distribution. 140, 143
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maximum likelihood Maximum likelihood estimation is a method for estimating parameters of a
statistical model. For a fixed set of data and underlying statistical model, the method of max-
imum likelihood selects values of the model parameters that produce a distribution that gives
the observed data the greatest probability (i.e., parameters that maximize the image likelihood
function). 140, 144

mixture of Gaussian A method to approximate a distribution as a sum of Gaussian distributions.
37, 140

ML Acronym for maximum likelihood 140

MoCap Acronym for motion capture 140

motion capture The process of recording movement and translating that movement to a digital
model. MoCap technology has numerous applications in entertainment, sports and medical
applications 140, 144

optical flow Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene caused by the relative motion between an observer (an eye or a camera)
and the scene 41, 49, 140

particle filter The particle filters, also known as sequential Monte Carlo methods (SMC), approxi-
mate the posterior with a set of typically weighted samples 51, 140

PCA Principal Component Analysis is a method for dimensionality reduction, wherein high-dimensional
data are projected onto a linear subspace with an orthogonal matrix. It can be formulated as the
orthogonal linear mapping that maximizes the variance of projection in the subspace. Proba-
bilistic PCA is a closely related latent variable model that specifies a linear-Gaussian generative
process 35, 58, 140, 141

pep, pixel picture element, image point 140

posterior Posterior probability of a random event is the conditional probability once all the relavent
evidence is taken into account. According to Bayesian statistical theory posterior can be ex-
prezssed as a product of the the prior and likelihood, i.e., p(x|I) ∝ p(I|x)p(x) 51, 140, 143

prior A prior probability measures the likelihood of an event before any observable data evidence is
taken into account 43, 140

QP Quadratic Program. This is a convex optimization problem for which large-scale solvers exist.
A support-vector machine SVM can be trained with a quadratic program. 57, 140

rigging In computer graphics, given mesh representation of an articulated body rigging is the pro-
cess of inserting a skeletton with a bone hierarchy and skinning the mesh. Rigging is the
standard way to animate characters or mechanical objects 33, 140

rigid body motion refers to the motion of a set of particles that move rigidly together i.e., the
distance between any two points in the rigid body is constant over time. Therefore, the position
of a rigid body is completely determined by the position of a reference point in the body and its
orientation 17, 140

SGD Stochastic Gradient Descent. This is an online algorithm for optimizing objective functions
defined on large training sets. 140
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SIFT Scale-Invariant Feature Transform. Common method for generating a sparse set of invariant
keypoints and descriptors from an image 41, 45, 49, 140

singularity In mathematics, a singularity is in general a point at which a given mathematical ob-
ject is not defined, or a point where it fails to be well-behaved in some particular way. For
a given function examples of singularities are points where the function is not defined or not
differentiable 19, 140

skinning In computer graphics, given a surface mesh of the body and a skeletton, skinning is the
process of binding skin to the skeleton bones. Every vertex in the mesh has to be assigned to
one of the bones. It can be thought of as a segmentation of an articulated body in a number of
rigid segments 33, 140

SLDS A Switching Linear Dynamical System is a collection ofN LDS models along with a discrete
switching variable, s ∈ {1, · · · , N}. The switching variable identifies which LDS should be
active at each time step. As a probabilistic generative model, each LDS is a linear-Gaussian
model, and on maintains a multinomial distribution for s. SLDS models are used to approximate
nonlinear dynamical processes in terms of piecewise linear state evolution 58, 140

spatial frame The spatial frame is an inertial frame of reference which is fixed to the enviroment
26, 140

statistical independence Two events are said to be statistically independent if occurrence of one
event does not make the other event more or less probable 140

sum product Distributed algorithm for inference on graphical models, which is optimal for tree-
structured graphs. 31, 140

SVM Support Vector Machine. This is a linear classifier that is trained using a max-margin objective
function. Extensions include nonlinear classifiers trained with kernel mappings, and “soft”-
margin constraints using a hinge-loss objective. 10, 140, 144

wedge operator The wedge operator (∧) for a point or vector ω ∈ R3 is defined as (ω)∧ = 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 . Thorough the book, we will often use ω̂ as a replacement for ω∧. The

notation ω[×] is also commonly used in the computer vision literature to dennote the wedge op-

erator. Analogously the operator for the full twist coordinates ξ ∈ R6 is defined as ξ̂ =
[
v
ω

]∧
=[

ω̂ v
~0 0

]
and is used to construct the twist action ξ̂ ∈ se(3) 20, 22, 140
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Notation

I Image matrix of pixel intensities

J Jacobian matrix

x Pose parameters

a Posebit

a Posebyte

θ Joint angle

Θ Joint angles

F(x;) Forward Kinematics

ξ Twist coordinates

ξ̂ Twist with twist coordinates ξ

ω Axis of rotation

ω̂ Screw symetric matrix resulting from the rotation axis ω

R Rotation matrix

B Body frame

S Spatial frame

q Quaternion representation of rotation

g Rigid motion, g = (R,t)

G Rigid motion, homogenous coordinates, G = (R,t)

R Set of real numbers

Σ Covariance matrix

N (·|µ,σ2) Gaussian distribution

µ Mean of a distribution

p() Probability density

σ Standard deviation





Index

adjoint transformation, 23
annealed particle filter (APF), 54
axis angle, 20

body frame, 26

camera model, 47, 60
correspondence, 44, 69

Euler angles, 18
expectation-maximization (EM), 51
exponential map, 21

Gauss-Newton optimization, 46, 48
gimbal lock, 19

homogeneous coordinates, 17

image contour, 40, 69
image edge, 40
image features, 41
image likelihood, 36, 69, 97, 119
image silhouette, 97
importance sampling, 52
IMU, 42, 62
inverse kinematics, 89
iterative closest point (ICP), 48

joint
ball (3D), 28
revolute (3D), 28
root (6D), 28, 28

joint limits, 57

kinematic chain, 16, 26

Levenberg-Marquadt optimization, 48
likelihood, 35, 43, 71, 87
linear dynamical systems (LDS), 58

Markov process, 52

non-linear least squares, 46

optical flow, 41, 44, 49

particle filter (PF), 51, 51
pose Jacobian, 30, 45
pose parameters, 28
principal component analysis (PCA), 35

quaterion, 19
quaternion product, 19

rigging, 33, 34
rigid body motion, 17
Rodriguez formula, 21
rotation matrix, 17

simulated annealing, 54
skinning, 33
spatial frame, 26
switching linear dynamical systems (SLDS), 58

twist action, 22
twist coordinates, 22

wedge operator, 28
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