
 

Evasion of Innate Immunity by the Rhesus 

Cytomegalovirus (RhCMV) and development of a 

RhCMV based Vaccine Vector 

 

 

 

 

Von der Naturwissenschaftlichen Fakultät  

der Gottfried Wilhelm Leibniz Universität Hannover 

zur Erlangung des Grades 

Doktor der Naturwissenschaften 

Dr. rer. nat. 

genehmigte Dissertation 

von 

 

 

 

 

Dipl.-Biochem. Daniel Malouli 

geboren am 17. August 1978 in Offenbach am Main 

 

 

2015 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: Prof. Dr. Martin Messerle 

Korreferent: Prof. Dr. Dr. Luka Cicin-Sain 

Weiterer Korreferent: PD Dr. Sebastian Voigt 

Tag der Promotion: 11.05.2015 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“An inefficient virus kills its host. 

A clever virus stays with it.” 

 

James Lovelock 

  



  



Contents                  I 

 

Contents 

Contents ..............................................................................................................................  00I 

List of Tables ......................................................................................................................  0IV 

List of Figures ...................................................................................................................... 00V 

List of Abbreviations .......................................................................................................... VII 

Kurzzusammenfassung ...................................................................................................... 001 

Abstract ................................................................................................................................ 003 

Extended Summary ............................................................................................................ 005 

1. General Introduction .................................................................................................. 005 

1.1 Herpesviruses ................................................................................................................ 005 

1.2 HHV5 (human cytomegalovirus, HCMV) ................................................................... 007 

1.3 Lytic replication of the human cytomegalovirus ........................................................... 009 

1.4 CMV Latency ................................................................................................................ 011 

1.5 Immune evasion of the Cytomegalovirus ..................................................................... 012 

1.5.1 Evasion of the innate immune response ....................................................................013 

1.5.2 Evasion of the intrinsic immune response ................................................................ 017 

1.5.3 CMV evasion of natural killer (NK) cells ................................................................. 020 

1.5.4 Evasion of the complement system ...........................................................................023 

1.5.5 Evasion of the adaptive T-cell response ................................................................... 025 

1.5.6 Evasion of the humeral immune response ................................................................ 027 

1.6 In vivo models for HCMV ............................................................................................. 028 

1.7 Great Ape and Non-Human Primate (NHP) CMVs ...................................................... 030 

1.8 Utilizing CMV as a vaccine vector ............................................................................... 032 

2. Main aims of this thesis ............................................................................................... 036 

3. Reevaluation of the Coding Potential and Proteomic Analysis of the BAC- 

Derived Rhesus Cytomegalovirus Strain 68-1 .......................................................... 038 

3.1 Abstract ......................................................................................................................... 039 

3.2 Introduction ................................................................................................................... 040 

3.3 Materials and Methods .................................................................................................. 043 

3.3.1 Cells, viruses, and reagents ....................................................................................... 043 

3.3.2 454 sequencing and annotation of the BAC-cloned RhCMV 68-1 genome ............. 043 



Contents                  II 

 

3.3.3 RhCMV particle purification procedures ..................................................................043 

3.3.4 Tryptic digestion of RhCMV particles ..................................................................... 044 

3.3.5 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis ............ 044 

3.3.6 Data analysis ............................................................................................................. 044 

3.3.7 Nucleotide sequence accession number .................................................................... 045 

3.4 Results............................................................................................................................ 046 

3.4.1 Determining the full-length sequence of the RhCMV 68-1 BAC ............................ 046 

3.4.2 BAC-carried ORFs containing mutations ................................................................. 048 

3.4.3 Reevaluating the RhCMV genome ........................................................................... 051 

3.4.4 Validating ORF predictions by proteomics .............................................................. 059 

3.5 Discussion ..................................................................................................................... 064 

3.6 Acknowledgements ....................................................................................................... 068 

4. Tegument protein pp65 is dispensable for cytomegalovirus persistence and  

immunity ...................................................................................................................... 069 

4.1 Abstract ......................................................................................................................... 070 

4.2 Introduction ................................................................................................................... 071 

4.3 Methods ......................................................................................................................... 073 

4.3.1 Cells and reagents. .................................................................................................... 073 

4.3.2 Viruses and construction of recombinant mutants. ................................................... 073 

4.3.3 RhCMV particle purification procedures. ................................................................. 074 

4.3.4 Quantitative proteomic analysis. ............................................................................... 075 

4.3.5 RMs. .......................................................................................................................... 075 

4.3.6 Nested real-time PCR. .............................................................................................. 076 

4.3.7 Viral detection in urine by coculture. ....................................................................... 077 

4.3.8 Immunologic assays. ................................................................................................. 078 

4.3.9 Measuring RhCMV-specific antibody responses by ELISA. ................................... 078 

4.3.10 Measuring RhCMV-specific antibody responses by SDS-PAGE and Western 

blotting. ..................................................................................................................... 079 

4.3.11 Ethics statement. ....................................................................................................... 079 

4.3.12 Statistics. ................................................................................................................... 079 

4.3.13 Study approval. ......................................................................................................... 079 



Contents                  III 

 

4.4 Results ........................................................................................................................... 080 

4.4.1 RhCMV Δpp65ab shows delayed growth kinetics at low MOI ............................... 080 

4.4.2 Characterization of ∆pp65ab virions ........................................................................ 081 

4.4.3 Infection of rhesus macaques with ∆pp65ab ............................................................ 087 

4.4.4 Vaccine-induced pp65-specific T cells do not recapitulate the protective effect 

of T cells induced by natural infection ..................................................................... 089 

4.4.5 pp65 limits dissemination of RhCMV in vivo .......................................................... 095 

4.5 Discussion ..................................................................................................................... 097 

4.6 Acknowledgements ....................................................................................................... 102 

5. Discussion and Future Perspectives .......................................................................... 103 

5.1 Characterization of the real protein coding content of RhCMV .................................. 104 

5.2 Use of attenuated RhCMV vectors in vaccine development. ....................................... 107 

5.3 Developing a pp71 deletion virus into a 2nd generation CMV vaccine vector. ............ 112 

5.4 The bright future (or where to go from here). ............................................................... 121 

Acknowledgments ............................................................................................................... 125 

References ............................................................................................................................ 129 

Supplementary Material .................................................................................................... 174 

Curriculum Vitae ................................................................................................................ 218 

Declaration ...........................................................................................................................220 

Erklärung ............................................................................................................................ 220 

List of Publications ............................................................................................................. 221 

Conference Presentations ................................................................................................... 223 

Oral Presentations .............................................................................................................. 223 

Poster Presentations ............................................................................................................224 

 



List of Tables                                           IV 

List of Tables 

Table 1: Changes in the nucleotide sequence of the RhCMV 68-1 BAC compared to the parental 

virus 

Table 2: Nucleotide changes affecting the lengths or sequences of predicted ORFs in BAC-derived 

RhCMV 68-1 

Table 3: HCMV ORFs not found in rhesus or OWM CMVs 

Table 4: Comparison of viral proteins contained in WT and Δpp65ab virions. 

Table 5: Relative abundance of the 5 functionally different groups of viral proteins in RhCMV 

WT and Δpp65ab. 

Table 6: Copy numbers of RhCMV WT-gag and Δpp65ab-retanef genomes in CMV+ RMs  

Table 7: Genome copies of RhCMV 68-1 WT-gag in CMV+ RMs  

Table 8: Copy numbers of RhCMV WT-gag and Δpp65ab-retanef genomes in CMV-naive RMs 

Table 9: Genome copy numbers of RhCMV Δpp65ab RTN and RhCMV Δdpp71 GAG + Δpp65ab 

CMV-naive RMs. 

 



List of Figures                                           V 

List of Figures 

Fig.1: Cladogram depicting relationships among viruses in the order Herpesvirales, based on the 

conserved regions of the terminase gene.  

Fig.2: Herpesvirus genomes.  

Fig.3: Structure of a herpesviral particle.  

Fig.4: CMV disease mechanisms.  

Fig.5: Life cycle of HCMV in a human cell. 

Fig.6: Herpesviruses encode proteins that help them to evade detection by pattern recognition 

receptors (PRRs). 

Fig.7: Activation of HCMV and HSV-1 viral gene expression.  

Fig.8: MCMV and HCMV proteins interfere with expression of NKG2D ligands and host 

recognition of virally infected cells. 

Fig.9: Activation of the complement cascade via the classical (A), lectin (B) or alternative (C) 

pathway results in the initiation of the terminal complement pathway (D), leading to the formation 

of membrane attack complexes.  

Fig.10: Immunoevasins of the murine- and the human cytomegalovirus.  

Fig.11: Phylogenetic tree of (A) gB and (B) the viral DNA polymerase for great ape and monkey 

CMVs.  

Fig.12: Phylogenetic tree of some primates.  

Fig.13: Combined FCICA and surface phenotype analysis of CD4+ (a) and CD8+ (b) peripheral 

blood T cells responding to wild-type (WT) RhCMV lysate, SIV Gag or Rev-Tat-Nef–overlapping 

15-mer peptides.  

Fig.14: RhCMV vector–elicited and conventional SIVgag-specific CD8+ T cell responses differ 

in epitope breadth and promiscuity. 

Fig.15: Alignment of Rh13.1 (RL13) from different species of Old World monkey 

cytomegaloviruses.  

Fig .16: Phylogenetic trees of the major capsid protein (UL48) and the viral DNA polymerase 

(UL54) of Old World primate cytomegaloviruses.  

Fig.17: Conservation of RhCMV ORFs compared to those of OWM, chimpanzee, and human 

CMVs.  

Fig.18: Annotated genome map of a hypothetical low-passage-number RhCMV isolate.  



List of Figures                                           VI 

Fig.19: Phylogenetic tree of the OWM CMV Rh165/Rh166 gene family. UL138 of HCMV strain 

Merlin was used as an outgroup because it showed some homology to the Rh165/Rh166 gene 

family. The phylogenetic tree was generated in Geneious Pro 5.5.2. 

Fig.20: Annotated genome map of the RhCMV 68-1 BAC.  

Fig.21: Isolation and purification of RhCMV virions.  

Fig.22: Protein composition of BAC-derived RhCMV 68-1 virions.  

Fig.23: Characterization of RhCMVΔpp65ab in vitro.  

Fig.24: Intact and defective viral particles are secreted from fibroblasts infected with Δpp65ab.  

Fig.25: Δpp65ab establishes primary and secondary infections and protects against superinfection 

with ΔUS2-11. 

Fig.26: RhCMVΔpp65ab is persistently secreted from infected animals.  

Fig.27: T cells induced by heterologous prime-boost vaccination with pp65b do not protect against 

superinfection with ΔUS2-11.  

Fig.28: Subcellular localization of tegument-delivered pp71 determines whether HCMV initiates 

lytic replication or establishes quiescent, latent-like infections.  

Fig.29. Growth kinetics of wt and mutant viruses.  

Fig.30: Multi-step growth curve of HCMV AD169 ΔUL82 (pp71).  

Fig.31: Growths kinetics of complemented and uncomplemented RhCMV 68-1 Δpp71 deletion 

mutants compares to 68-1 WT.  

Fig.32: RhCMV 68-1 Δpp71 is not shed by infected animals. 

Fig.33: RhCMV 68-1 ΔRh110 (pp71) infects naïve RMs normally and protects against RhCMV 

68-1 ΔRh182 (US2)-Δ189 (US11) GAG + ΔRh178 superinfection.  



List of Abbreviations                            VII 

List of Abbreviations 

%: percent 

°C: degree Celsius 

AA: amino acid 

AAV: adeno-associated virus 

ABI: Applied Biosystems 

Ad5: adenovirus vector based on the human adenovirus type 5 (HAdV-5). 

AIDS: acquired immune deficiency syndrome 

APOBEC3G: apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G 

ATP: adenosine triphosphate 

AtriCMV: owl monkey (Aotus trivirgatus) cytomegalovirus  

ATRX: alpha thalassemia/mental retardation syndrome X-linked 

BAC: bacterial artificial chromosome 

BaCMV: babbon (Papio) cytomegalovirus 

BAL: bronchoalveolar lavage 

Bcl-AF1: Bcl-2-associated transcription factor 1 

BHK-21: baby hamster kidney fibroblasts 

bp: base pair 

BTM: basal transcriptional machinery 

CCMV: chimpanzee (Pan troglodytes) cytomegalovirus 

CCR7: C-C chemokine receptor type 7 

CD: cluster of differentiation 

CD3: T-cell co-receptor 

CD3ζ: T-cell receptor zeta chain 

CD4: T-cell surface glycoprotein 

CD8: T-cell surface glycoprotein 

CD28: T-cell-specific surface glycoprotein 

CD34: hematopoietic progenitor cell antigen  

CD46: complement regulatory protein  

CD49d: Integrin, alpha 4 

CD55: complement decay-accelerating factor  



List of Abbreviations                            VIII 

CD56: Neural Cell Adhesion Molecule (NCAM) 

CD59: MAC-inhibitory protein (MAC-IP) 

CD69: early T-cell activation antigen P60 

CD94: killer cell lectin-like receptor subfamily D, member 1 (KLRD1) 

CD95: FAS receptor (FasR) or apoptosis antigen 1 (APO-1)  

CD96: T cell activation, increased late expression (TACTILE) 

CD112: herpesvirus entry mediator B (HVEM) 

CD155: poliovirus receptor  

CD226: DNAX Accessory Molecule-1 (DNAM-1) 

cDNA: complementary DNA  

CgueCMV: mantled guereza (Colobus guereza) cytomegalovirus 

cm: centimeter 

Cm: chloramphenicol 

CMV: cytomegalovirus 

CNPRC: California National Primate Research Center 

COX-2: cyclooxygenase-2 

CPE: cytopathic effect  

CT: computed tomography  

CTL: cytotoxic T lymphocyte 

CyCMV: cynomolgus (Macaca fascicularis) cytomegalovirus  

d: day  

Da: dalton 

DAI: Z-DNA binding protein 1 

DAXX: death-associated protein 6 

ddH2O: double-distilled water 

DMEM: Dulbecco's modified Eagle's medium 

DNA: deoxyribonucleic acid 

DOE: Department of Energy 

dpi: days post infection  

dsRNA: Double-stranded RNA 

DTT: dithiothreitol 



List of Abbreviations                            IX 

E. coli: Escherichia coli 

E: early 

EBV: Epstein–Barr virus 

EC: endothelial cell   

ECL: enhanced chemiluminescence 

EDTA: ethylenediaminetetraacetic acid 

EF1α: eukaryotic translation elongation factor 1 alpha 

ELISA: enzyme-linked immunosorbent assay 

EM: electron microscopy  

emPAI: exponentially modified protein abundance index 

ER: endoplasmic reticulum  

ERGIC: ER-Golgi intermediate compartment 

ExPASy: Expert Protein Analysis System 

FBS: fetal bovine serum  

Fc region: fragment crystallizable region 

FCICA: flow cytometry intracellular cytokine assay 

FLP recombinase: flippase recombinase  

FTICR: Fourier transform ion cyclotron resonance  

g: gram 

gag: group-specific antigen  

GAPDH: glyceraldehyde 3-phosphate dehydrogenase 

GgorCMV: gorilla (Gorilla gorilla) cytomagalovirus  

H: histones 

h: hour  

H60: histocompatibility antigen 60 

HCF: host-cell factor  

HCMV: human (homo sapiens) cytomegalovirus 

HDAC: histone deacetylase 

HHV: human herpes virus  

HIV: human immunodeficiency virus 

HLA: human leukocyte antigen 



List of Abbreviations                            X 

HRP: horseradish peroxidase 

HSV: herpes simplex virus  

IACUC: Institutional Animal Care and Use Committee 

ICP0: infected cell polypeptide 0 

ICP34.5: infected cell polypeptide 34.5 

IE: immediate-early  

IE1 (IE72): immediate early protein 1 (72kDa)   

IE2 (IE86): immediate early protein 2 (86kDa) 

IFI16: gamma-interferon-inducible protein IFI-16 

IFN: interferon  

IFNAR: interferon α/β receptor  

IFNβ: interferon β 

IgA: immunoglobulin A 

IgG: immunoglobulin G 

IgM: immunoglobulin M  

IKK-α: inhibitor of nuclear factor kappa-B kinase subunit alpha 

IKK-β: inhibitor of nuclear factor kappa-B kinase subunit beta 

IL6: interleukin 6 

IL8: interleukin 8 

IOM: Institute of Medicine 

IRF3: interferon regulatory factor 3 

IRF9: interferon regulatory factor 9 

ISG: interferon stimulated gene  

ISGF3: interferon stimulated gene factor 3  

ISRE: interferon-stimulated response element 

IκB: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor 

J Clin Invest.: Journal of Clinical Investigation 

J Virol.: Journal of Virology 

JAK1: Janus kinase 1 

Kan: kanamycin 

Kanr: kanamycin resistance 



List of Abbreviations                            XI 

kDa: kilodalton 

KIR: killer-cell immunoglobulin-like receptor 

L: late 

lb/in2: pound-force per square inch 

LB: lysogeny broth (a.k.a. Luria-Bertani medium)  

LC-MS/MS: liquid chromatography-tandem mass spectrometry  

LIR-1: leukocyte immunoglobulin-like receptor-1 

LPS: lipopolysaccharides 

Ly49: killer cell lectin-like receptor, subfamily A, member 2 

Ly49H: killer cell lectin-like receptor, subfamily A, member 8  

M: molar 

MAC: membrane attack complexes 

MCMV: murine (Mus musculus) cytomegalovirus 

MDA-5: melanoma differentiation-associated protein 5 

mg: milligram  

MHC class I: major histocompatibility complex class I  

MHC class II: major histocompatibility complex class II  

MICA: MHC class I polypeptide-related sequence A 

MICB: MHC class I polypeptide-related sequence B 

MIEP: major immediate-early promoter 

min: minute  

miR: microRNA  

ml: millilitre 

mM: nanomolar  

MOI: multiplicity of infection 

mol%: molar percentage 

MOPS: 3-(N-morpholino) propanesulfonic acid 

MRI: magnetic resonance imaging 

mRNA: messenger RNA 

MS/MS: tandem mass spectrometry 

MS-GF: mass spectrum-generating function)  



List of Abbreviations                            XII 

MsphCMV: mandrill (Mandrillus sphinx) cytomegalovirus  

MULT1: murine ULBP-Like Transcript 1 

MVA: Modified Vaccinia Ankara  

MVSC: Molecular Virology Support Core 

NAS: National Academy of Sciences 

NCBI: National Center for Biotechnology Information  

NCLDV: nucleocytoplasmic large DNA viruses 

NCRR: National Center for Research Resources  

ND10: nuclear domain 10 

NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells 

NGS: next-genration sequencing 

NHP: non-human primate 

NIEP: noninfectious enveloped particle  

NIGMS: National Institute of General Medical Sciences  

NIH: National Institutes of Health 

NK cell: natural killer cell 

NKG2A: killer cell lectin-like receptor subfamily C, member 1 (a.k.a. CD159a) 

NKG2D: killer cell lectin-like receptor subfamily K, member 1 (a.k.a. CD314) 

NKp40: activating natural cytotoxicity receptor (NCR) 

NKp46: natural cytotoxicity triggering receptor 1 (a.k.a. CD335) 

nl/min: nanolitre per minute 

NQ: not quantified  

NWM: new world monkey 

OD: optical density 

OHSU: Oregon Health and Science University 

ONPRC: Oregon National Primate Research Center  

ORF: open reading frame 

ORIP: Office of Research Infrastructure Programs 

OSU: Oregon State University 

OWM: old world monkey 

PAGE: polyacrylamide gel electrophoresis 

http://en.wikipedia.org/wiki/Old_World_monkey


List of Abbreviations                            XIII 

PAMP: pathogen-associated molecular pattern 

PBMC: peripheral blood mononuclear cell 

PBS: phosphate buffered saline 

PCR: polymerase chain reaction 

PFU: plaque-forming unit 

pH: negative decadic logarithm of H3O
+ concentration 

PID: postinoculation day 

PKR: protein kinase R 

PML: promyelocytic leukaemia protein 

PNNL: Pacific Northwest National Laboratory 

pp65: 65kDa phosphoprotein 

pp71: 71kDa phosphoprotein 

ppm: part per million 

PpygCMV: Bornean orangutan (Pongo pygmaeus) cytomegalovirus 

PRR: pattern recognition receptor 

RAE-1: ribonucleic acid export 1 

Rb: retinoblastoma protein 

RCA: regulators of complement activation  

ref/tat/nef (retanef, RTN): SIVmac239 ref, tet and nef fusion protein  

RhCMV: rhesus (Macaca mulatta) cytomegalovirus 

RIG-I: retinoic acid-inducible gene 1  

RM: rhesus macaques  

rMVA: recombinant Modified Vaccinia Ankara 

RNA: ribonucleic acid 

RT-PCR: reverse transcription polymerase chain reaction 

s.c.: subcutaneous  

SCMV: simian (African green monkey, Chlorocebus), cytomegalovirus  

SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SHP2: Src homology region 2 domain-containing phosphatase 2 

SIV: simian immunodeficiency virus  

SIVMAC239: highly pathogenic SIV strain mac239 



List of Abbreviations                            XIV 

SP100: nuclear dot-associated speckled 100 kDa protein 

SPF: specific-pathogen free 

SsciCMV: squirrel monkey (Saimiri sciureus) cytomegalovirus 

STAT1: Signal transducer and activator of transcription 1, 91kDa 

STAT2:  Signal transducer and activator of transcription 2, 113kDa 

STDEV (or SD): standard deviation 

SUMO1: small ubiquitin-like modifier 1 

TAP: transporter for antigen processing  

Taq: DNA polymerase from Thermus aquaticus 

TBST: Tris-buffered saline plus 0.2% Tween 

TCM: central memory T-cell 

TEM: effector memory T-cell  

TF: transcription factor  

TLR: toll like receptor 

TNF: tumor necrosis factors 

tRFs: telomerized rhesus fibroblasts  

TRIM5α: tripartite interaction motif five, splice variant α 

Tyk2: tyrosine kinase 2 

U/ml: units per milliliter 

UCD: University of California, Davis 

UL: unique long 

ULBP1: UL16 binding protein 1 

ULBP2: UL16 binding protein 2 

ULBP3: UL16 binding protein 3 

US: unique short  

USA: United States of America  

V: volt 

vCOX-2: viral cyclooxygenase-2 

vCXCL2: viral Chemokine (C-X-C motif) ligand 2 

vCXCL3: viral Chemokine (C-X-C motif) ligand 3 

vCXCL4: viral Chemokine (C-X-C motif) ligand 4 



List of Abbreviations                            XV 

VGTI: Vaccine Gene Therapy Institute 

vICA: Viral inhibitor of caspase-8-induced apoptosis (UL36) 

VIHCE: viral inhibitor of heavy chain expression  

VV: vaccinia virus  

VZV: Varicella zoster virus 

WB: Western blot  

WSSV: white spot syndrome virus 

WT: wildtype  

μF: microfarad 

μg/ml: microgram per millilitre 

μl: microlitre 



Kurzzusammenfassung                                1 

Kurzzusammenfassung 

Das humane Zytomagalovirus (HCMV) ist weit verbreitet, und mehr als die Hälfte der 

Bevölkerung in den entwickelten Ländern und fast die gesamte Bevölkerung in den 

Entwicklungsländern ist mit dem Virus infiziert. Es ist somit eines der erfolgreichsten und am 

weitesten verbreiteten humanen Pathogene. Obwohl sehr viel Arbeit und Energie in die 

Erforschung des Viruses investiert wurden, sind sehr viele Fragen bezüglich seiner Biologie noch 

immer offen, welches teilweise durch sein für Viren riesiges Genom und damit einhergehende 

immense Kodierungskapazität und Komplexität erklärt werden kann. Ein großer Teil der vom 

Virus kodierten Proteine sind bisher noch nicht funktionell charakterisiert worden, allerdings 

haben vorhergehende Studien gezeigt, dass nur eine Minderheit aller CMV Proteine essentiell für 

die virale Replikation sind, wohingegen die überwältigende Mehrheit der viralen open reading 

frames (ORFs), besonders in den terminalen Regionen des Genoms, für Proteine kodieren, deren 

Aufgabe es ist, dem Wirtsimmunsystem entgegen zu wirken. Das Virus ist durch Millionen von 

Jahren von Ko-evolution so gut an den Wirt angepasst, dass das Überstehen der Infektion und die 

Beseitigung des Virus durch das Immunsystem dem Wirt keinen Schutz gegen Reinfektion 

verleihen. Wegen dieser langen Ko-evolution sind CMVs, isoliert von verschiedenen Spezies, 

außerdem ausgesprochen speziesspezifisch und HCMV kann keine Versuchstiere infizieren. 

Deshalb müssen die Zytomegalievieren der entsprechenden Versuchstiermodelle als Modell 

System für in vivo Studien verwendet werden. In dieser Studie präsentieren wir eine umfassende 

Charakterisiereng des Rhesus-Zytomegalovirus (RhCMV), welches das am nächsten verwandte, 

verwendbare Model zur Untersuchung von HCMV darstellt. Zur genaueren Beschreibung des 

publizierten RhCMV BAC (bacterial artifical chromosom) (Stamm 68-1), welcher die Grundlage 

für alle hergestellten RhCMV Mutanten darstellt, wurde dieser von uns unter Einsatz von next-

generation sequencing (NGS) sequenziert und die kodierten ORFs mittels vergleichender 

Genomuntersuchungen neu bestimmt. Hierdurch waren wir in der Lage zu zeigen, dass dieses 

CMV deutlich größere Homologie zur humanen Variante hat als bisher angenommen, da sich die 

meisten ORFs ohne Homologie zu HCMV ORFs nicht bestätigen ließen. Darüber hinaus konnten 

wir nun, auf unseren vorherigen Studien zur Etablierung von RhCMV als viralem Vektor zur 

Entwicklung von T-Zell Vakzinen aufbauend, das neu annotierte RhCMV 68-1 Genom zur 

Konstruktion von mehreren Deletionsmutanten mit erhöhter in vitro und in vivo Attenuierung 

verwenden, um einen Impfvektor der zweiten Generation zu entwickeln. Das Ziel war, weiterhin 
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eine starke und andauernde Immunantwort, besonders gegen die eingefügten fremden Antigene, 

zu induzieren, aber zur gleichen Zeit eine reduzierte Pathogenität und Ausbreitung des Impfvektors 

zu erreichen. Unsere ersten Kandidaten waren die RhCMV Homologe des HCMV pp65 Proteins, 

pp65 a und b. Unglücklicher Weise führte eine Deletion dieser ORFs nicht zu einer erhöhten 

Sicherheit des Vektors. Ganz im Gegenteil, diese Mutante replizierte in vivo zu deutlich höheren 

viralen Genomkopien verglichen mit dem Wildtyp, die Deletionsmutante zeigte also eine höhere 

Virulenz verglichen mit dem parentalen Virus. Dieser Unterscheid lässt sich höchstwahrscheinlich 

mit der Abwesenheit von pp65 spezifischen CD8+ T-Zellen nach Infektion mit der Mutante 

erklären. pp65 ist das Hauptantigen für T-Zellen, und die Mehrheit der CMV spezifischen T-Zellen 

erkennen Epitope dieses Proteins. In Abwesenheit von pp65 spezifischen T-Zellen in der frühen 

Phasen der Infektion ist es dem Immunsystems des Wirtes unmöglich die virale Replikation zu 

kontrollieren und die Deletionsmutants kann ungehemmt replizieren. Ein weiterer potentieller 

Kandidat für einen attenuierten RhCMV Vektor war ein anderes wichtiges Tegumentprotein, pp71, 

ein Protein, welches in der Evasion der intrinsischen Immunantwort eine Rolle spielt, indem es die 

in den PML-bodies enthaltenden Proteine Daxx, Bcl-AF1, Rb und ATRX degradiert. Diese 

Mutante zeigte eindeutig höhere Attenuierung verglichen mit der pp65 Deletionsmutante und 

unsere in vivo Resultate deuten an, dass, obwohl dieses Virus eine sehr starke T-Zell Antwort 

gegen die eingefügten SIV Antigene induziert, es nicht von den geimpften Affen im Urin 

ausgeschieden wird und dass es auch nicht von einem CMV-positiven auf einen naiven Rhesus 

Makaken mittels adoptivem Leukozyten Transfer übertragen werden kann. All diese Ergebnisse 

implizieren pp71 als vielversprechenden Kandidaten für die Entwicklung eines auf attenuiertem 

HCMV basierenden HIV-Impfstoffs für klinische Studien in der näheren Zukunft. 

 

Schlagworte: 

Zytomegalievirus, CMV, Rhesusmakaken, Impfstoff, Vektoren 
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Abstract 

Human cytomegalovirus (HCMV) infects half of the population in the developed world and nearly 

every person of the developing world, making it one of the most successful and widespread human 

pathogens. Although a lot of research has been conducted to unravel the biological properties of 

this virus, there is still a lot of work to be done given the high complexity of the virus due to its 

huge genome size and coding capacity. While most virally encoded proteins have not been 

functionally characterized or properly mapped, it is nevertheless apparent that only a minority of 

all CMV proteins are essential for viral replication in vitro. However, most viral open readings 

frames (ORFs), especially in the terminal regions of the genome, encode for proteins involved in 

evading the host adaptive and innate immune systems. This results in a universal inability of the 

infected host to clear the virus despite ongoing immunological responses directed at CMV as well 

as no protective immunity against re-infection. These immune evasion mechanisms are the product 

of millions of year of virus-host coevolution that have additionally resulted in tight species 

specificity that thoroughly precludes infection of non-host species and complicates in vivo studies. 

Here we further characterize the rhesus cytomegalovirus (RhCMV) as the closest, usable in vivo 

model presently available for understanding HCMV. We resequenced the RhCMV strain 68-1 

BAC and re-annotated the entire genome using comparative genomics. By doing so, we were able 

to show that this CMV shows substantially higher homology to the human version than previously 

assumed, because most ORFs without homologues in HCMV could not be confirmed by our 

system. Furthermore, given our previous work establishing RhCMV as a delivery vector for the 

development of T-cell vaccines, we now used our newly annotated genome of RhCMV 68-1 to 

construct several deletion mutants with increasing in vitro and in vivo attenuation with the goal to 

create a 2nd generation vaccine vector that retains high and long lasting immunogenicity, especially 

against the inserted foreign antigens, but at the same time shows reduced pathogenicity and spread. 

Our first deletion candidates, the RhCMV homologues of HCMV pp65, RhCMV pp65 a and b, 

did not achieve the goal of superior safety. On the contrary, the virus replicated in vivo to 

significantly higher viral copy number compared to the WT, describing the first observed case in 

RhCMV where a deletion mutant showed higher virulence than the parental virus. This increase is 

most likely connected to the absence of pp65 specific CD8+ T-cells in the deletion mutant. Pp65 

is the major T cell antigen and the majority of CMV specific T-cells are directed against this very 

protein, underlying its importance for the generation of a strong anti-CMV immune response and 
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explaining why the virus is more virulent in the absence of pp65 specific T-cells early in infection. 

Our second deletion candidate was another important tegument protein, pp71, a protein involved 

in intrinsic immune evasion through degradation of the PML-body associated proteins DAXX, 

Bcl-AF1, Rb and ATRX. This virus showed substantially higher attenuation than the pp65 deletion 

mutant and our in vivo results indicate that although the virus induces a very strong T-cell response 

against the inserted SIV antigens, it is not shed in the urine of vaccinated monkeys and cannot be 

transferred to CMV naïve animals by adoptively transferring leukocytes from a vaccinated 

monkey. All these results imply pp71 as a promising potential candidate for the development of 

an attenuated HCMV based HIV-vaccine for clinical trials in the foreseeable future. 

 

Key words: 

Cytomegalovirus, CMV, Rhesus macaques, Vaccine, Vectors 
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Extended Summary 

1. General Introduction 

1.1 Herpesviruses 

Herpesviruses form the family herpesviridae within the order herpesvirales, an order of large 

double stranded DNA viruses with a broad host spectrum ranging from molluscs 

(malacoherpesviridae) over fish and amphibians (alloherpesviridae) to birds, reptiles and 

mammals (herpesviridae), including humans [1, 2] (for a recent review see [3]). The origin of the 

family is not fully certain, but genetic similarities point to a relationship with the order 

caudovirales, a diverse order of double stranded DNA bacteriophages, indicating that the earliest 

ancestors of herpesviruses might have evolved more than 2 billion years ago [4, 5]. 

 

 

Fig.1: Cladogram depicting relationships among viruses in the order Herpesvirales, based on the conserved 

regions of the terminase gene. The Bayesian maximum-likelihood tree was rooted by using bacteriophages T4 and 

RB69. Numbers at each node represent the posterior probabilities (values >90 shown) of the Bayesian analysis. (Figure 

taken from Michel et al., Emerg Infect Dis 16(12), 1835-1843 (2010) [6]). 

 

The herpesviridae can be further subdivided into 3 subfamilies, the alpha-, beta- and 

gammaherpesvirinae, which in turn are each made up of 4 genera. All in all, there are 8 known 

 

http://en.wikipedia.org/wiki/Alphaherpesvirinae
http://en.wikipedia.org/wiki/Alphaherpesvirinae
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human herpes viruses (HHV1 – HHV8) to date, members of which can be found in all subfamilies. 

These subfamilies show significant differences in cell tropism, latency and pathogenesis, whereas 

the genome organization, general virion composition and appearance and the core proteins are 

largely conserved throughout the entire family. With a genome size ranging from 124 – 230 kb in 

length [7], herpesviruses contain some of the largest viral genomes for eukaryotic viruses and are 

surpassed only by some members of the nucleocytoplasmic large DNA viruses (NCLDVs, e.g. 

pox- or mimiviridae) and white spot syndrome virus (WSSV) a member of the family nimaviridae 

[8]. The genome exists as a monopartite, linear, dsDNA, made up of repeated sequences in direct 

or inverted orientation separated by non-repeated (unique) segments. For most alpha- and beta-

herpesviruses, the genome structure presents in the classical herpesviral form with two unique 

regions (UL, unique long) and (US, unique short) divided by terminal and internal repeats, whereas 

the genome of gammaherpesviruses contains variable numbers of internal repeats [9]. 

 
 

Fig.2: Herpesvirus genomes. Large genetic repeat sequences are boxed. Direct repeat DNA sequences are shown in 

blue, indirect repeat DNA sequences are shown in red; UL (long unique region); US (short unique region). The genome 

of HSV and CMV have two sections, the unique long (UL) and the unique short (US), each of which is bracketed by 

two sets of inverted repeats of DNA. The inverted repeats facilitate the replication of the genome but also allow the 

UL and the US regions to invert independently of each other to give four different genome configurations or isomers. 

VZV has only one set of inverted repeats and can form two isomers. EBV exists in only one configuration with several 

unique regions surrounded by direct repeats. (Figure taken from Prof. Dr. Gehan Aly El-Sherbeny, Part (3): Medical 

Virology, Chapter (10) Laboratory Diagnosis of Viral Disease, 

http://dc231.4shared.com/doc/1OJVQm4w/preview.html). 

 

The orientation of the unique segments within the genome is variable, and during the viral 

genome replication, up to 4 different isomers can be produced. Depending on the virus these 

http://en.wikipedia.org/wiki/Mimiviridae
http://dc231.4shared.com/doc/1OJVQm4w/preview.html
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different isomers can be produces in equal (e.g. HSV-1) (stoichiometric) or varying (e.g. VZV) 

ratios [10-15]. The members of this viral family form enveloped virions of spherical to 

pleomorphic appearance which are 150-200 nm in diameter. The envelope contains numerous 

glycoproteins necessary for budding and entry and surrounds a capsid with T=16 icosahedral 

symmetry consisting of 162 capsomers [16] and a layer of an amorphous mixture of proteins called 

the tegument separating the envelop and the capsid [17]. All in all, these virions are a highly 

intricate structure comprising potentially more than 60 different structural proteins [18]. 

 

 

Fig.3: Structure of a herpesviral particle. (Figure taken from the from ExPASy’s web-resource ViralZone, 

subsection Herpesviridae, http://viralzone.expasy.org/all_by_species/176.html). 

 

Herpesviruses have co-evolved with their respective hosts for millions of years, maybe even 

since the evolution of their host species, so they show a high degree of species specificity and 

zoonotic infection are rare [19-21]. 

 

1.2 HHV5 (human cytomegalovirus, HCMV)  

The prototypic member of the β-herpesvirus subfamily is HHV5, commonly known as the human 

cytomegalovirus (HCMV). This virus is highly widespread reaching seroprevalence levels of 

around 50% in the United States [22] and close to 100% in the developing world [23, 24]. 

Seroprevalence increases with age, and more that 90% of tested individuals aged 80 or older in the 

US are CMV positive [25]. 

http://viralzone.expasy.org/all_by_species/176.html
http://en.wikipedia.org/wiki/United_States
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Fig.4: CMV disease mechanisms. In addition to CMV antigenemia, a common indicator of active infection, examples 

of end CMV organ disease commonly occurring in AIDS patients and in transplant recipients are shown. Image 

credits: antigenemia, pp65+ cell in a leukocyte cytospin preparation (M. Boeckh); retinitis, ophthalmoscopic view of 

retinal hemorrhage and inflammation (E. Chuang); ependymitis, periventricular inflammation detected by MRI (left; 

reproduced from Drew and Bates: Cytomegalovirus. In: Sexually Transmitted Diseases, Holmes K., Sparling P., 

Mardh P.A. et al. (Eds). McGraw-Hill Professional, New York, NY, 313-326 (1999) [26] with permission from 

McGraw Hill) and postmortem brain specimen (right; C. Marra); hepatitis, microabscesses associated with CMV 

hepatitis (A. Limaye); esophagitis, endoscopic view of shallow esophageal ulcers (G. McDonald); colitis, deep ulcer 

in a colonic biopsy (G. McDonald); pneumonia, chest CT scan of CMV pneumonia (M. Boeckh). (Figure taken from 

Boeckh and Geballe, J Clin Invest 121(5), 1673-1680 (2011) [27]). 
 

While the primary infection is generally asymptomatic, some patients can present with 

mononucleosis-like clinical symptoms, including fatigue, fever and myalgia [28, 29]. The threat 

this virus poses is not to the fully immunocompetent, but to individuals with an 

immunocompromised immune system like AIDS patients and transplant recipients. Here the 

symptoms are significantly more severe and can include retinitis even as severe as to cause 

blindness, pneumonia, diarrhea, ulcers in the digestive tract, hepatitis, encephalitis, behavioral 

changes, seizures and coma [27]. Complications resulting from these symptoms can be fatal [30, 

31]. Additionally, the virus poses a severe threat to transplant recipients, because primary CMV 

infection or CMV re-activation from either the patient or the transplant can lead to graft rejection 

[32]. Another group of immunocompromised individuals that are at high risk of suffering from 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Boeckh%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Geballe%20AP%22%5BAuthor%5D
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severe consequences from CMV infection are neonates. Here, the virus is the leading 

environmental cause of childhood hearing loss, the most common sequelae following congenital 

CMV infection [33-35], accounting for approximately 15%-21% of all hearing loss at birth in the 

United States [36, 37]. CMV-related hearing does not manifest immediately after birth, and 

children with potential congenital CMV infection have to be continually monitored for progressive 

or late-onset hearing defects. Additionally, congenital CMV infection is as common a cause of 

serious developmental disability as are Down syndrome and neural tube defects [38]. Given that 

Cytomegalovirus (CMV) is one of the most frequently transmitted intrauterine infections, 

detectable in an estimated 0.64%-0.70% of live births worldwide [39, 40], the number of families 

impacted by this virus is enormous and the cost put on the US health care system astronomical, 

estimated to be upwards of 2 billion dollars annually [41]. Given the hardship caused by the virus, 

it is not surprising that the Institute of Medicine (IOM) of the National Academy of Sciences 

(USA) has declared the development of a CMV vaccine the highest priority in 1999 [42], but so 

far none of the multiple studies performed resulted in the successful development of an effective 

vaccine candidate [43-56]. 

 

1.3 Cell Entry and Gene Expression  

The viral lifecycle of the cytomegalovirus begins with the attachment to the target cell via the 

glycoproteins on the viral membrane. Multiple glycoproteins are involved in this step and the exact 

details are still elusive [57]. The same is true for the actual receptor the virus uses to enter the host 

cell. Multiple different proteins have been proposes as CMV receptors and the downregulation of 

many of these candidates indicated a role in virus entry as the amount of virus that was able to 

enter the cell was significantly diminished in these cells compared to control cells, but virus entry 

was not completely abrogated, identifying the proteins as potential co-receptors, but not as the 

main receptor for virus entry [58-63]. This situation is complicated by the fact that the virus seems 

to employ seperate strategies to enter different cell types. Whereas a complex formed by the 

glycoproteins gH/gL/gO together with gB is needed for entry into fibroblasts through attachment, 

receptor binding and subsequent membrane fusion [64-66], the mechanism by which the virus 

enters endothelial cells utilizes a pentameric complex made up of gH/gL/UL128/UL130/UL131A 
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to attach to the target cell and enter it by receptor mediated endocytosis and subsequent membrane 

fusion of the viral membrane with the endosome [60, 65, 67]. In either case, the virus enters the 

cell and the viral capsid and tegument are released into the cytoplasm [64]. Multiple early immune 

evasive functions are connected to the tegument proteins that are brought into the infected cell by 

the virus, so the release of the viral tegument represents an immediate early viral step to avoid 

detection by manipulating the host’s intrinsic immunity [68]. After the capsid is released into the 

cytosol, it is further transported along microtubules to the nucleus, where the viral DNA is injected 

through the nuclear pore [69, 70], and viral gene expression can occur. In all herpesviruses, gene 

expression is a highly regulated process in which the viral genes are expressed in three subsequent 

cascades (Immediate Early (IE, α), Early (E, β) and Late (L, γ)). The immediate early genes are 

the first genes to be expressed. Their expression is amplified by tegument proteins brought into 

the cell within the virion, but not solely dependent on them [71-73]. The IE genes have multiple 

functions including evading the innate immune response (see below), arresting the cell cycle at a 

point favorable for the viral replication [74-77] and, last but not least, transactivating the 

expression of the next stage of viral gene expression, expression of the E genes [78-83]. The E 

genes comprise the majority of the viral genes expressed throughout the lytic viral replication. 

Generally, the definition for an E gene is a gene that is not expressed without prior IE gene 

expression, but is not dependent on viral DNA replication like L genes [84]. Functionally E genes 

are highly diverse, and almost every nonstructural function known for herpesviruses is carried out 

by one or even multiple genes expressed with early kinetics. Additionally, genes involved in viral 

DNA replication will also be expressed with early kinetics, and the hereby initiated viral genome 

replication will in turn induce L gene expression [85, 86]. This last phase of viral genes expression 

can be subdivided into an early (E-L) and a late (L) phase (also termed γ1 and γ2). Most of the 

structural genes are expressed with late kinetics, and the assembly of new capsids will start in the 

nucleus at this point. These newly synthesized capsids, termed A capsids will mature to B capsids 

by incorporating the assembly protein (UL80.5), through which the viral DNA will be channeled 

into the immature capsid [87-92]. The now fully mature C capsid is exported by the nuclear egress 

complex through the nuclear membrane into the cytosol, where tegument proteins have 

accumulated [93, 94]. The capsid is coated in an inner and an outer layer of different tegument 

protein and further matures through the endoplasmic reticulum (ER). All viral glycoprotein 

expressed during viral replication have been synthesized into the ER and further mature through 
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the Golgi until they are anchored into trans-Golgi cisternae [95] or early endosomes [96-98]. When 

the virus now enters the ER, the immature capsids are transported through the ER and Golgi and 

the mature virions are enveloped in the trans-Golgi or the early endosomes from where they will 

be released through exocytosis [96].  

 

Fig.5: Life cycle of HCMV in a human cell. HCMV enters human cells either through direct fusion or through the 

endocytic pathway. The virus attaches to the cell via interactions between viral glycoproteins (e.g., gB and gH) and a 

specific surface receptor(s) (e.g., platelet-derived growth factor α), followed by the fusion of the envelope with the 

cellular membrane to release nucleocapsids into the cytoplasm. These nucleocapsids are translocated into the nucleus, 

where viral DNA is released. This initiates the expression of IE-1/IE-2 genes. Viral replication and maturation follow 

the stimulation and parallel accumulation of viral synthesis function. This process involves the encapsulation of 

replicated viral DNA as capsids, which are then transported from the nucleus to the cytoplasm. Secondary 

envelopment occurs in the cytoplasm at the endoplasmic reticulum (ER)-Golgi intermediate compartment. This is 

followed by a complex two-stage final envelopment and egress process that leads to virion release by exocytosis at 

the plasma membrane.  (Figure taken from Crough and Khanna, Clin Microbiol Rev 22(1), 76-98, (2009) [99]). 

 

1.4 CMV Latency 

Besides this lytic replication in which the virus will eventually kill the host cell, herpesviruses can 

also enter a latent phase in which the viral genome will persist in the host. The pattern of viral gene 

expression will shift substantially from genes that are highly expressed in lytic infection to specific 

latency associated genes expressed during latency [100]. All Herpesviruses have the ability to 

persist in their respective host for the entire lifetime of the host after primary infection [101], but 

the appearance, the location and extend of latency varies greatly between the different subfamilies. 

Whereas gammaherpesviruses enter latency shortly after infection of B cells [102-104], 

alphaherpesviruses will enter latency as efficiently in neurons like the trigeminal ganglia in case 
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of HSV-1 and VZV [105-107]. The Cytomegalovirus, the prototypical betaherpesviruse on the 

other hand, is thought to have a very different form of latency in which it infects monocytes, white 

blood cells produced in the bone marrow, that serve as precursors to macrophages and dendritic 

cells [108-110]. CMV is capable of infecting these cells, but it is not able to fully replicate in 

monocytes and to produce virus progeny, so the viral genome is maintained as an episome in the 

infected cell and the virus remains latent. When these infected monocytes are activated and mature 

to macrophages, the cells become fully permissible to lytic viral replication and the virus 

reactivates and produces new infectious viral particles, so the infected monocytes serve as a 

reservoir for constant viral re-activation [111, 112]. Although a change in gene expression patterns 

has not been reported in this instance, CMV does express genes that will be preferentially 

expressed during latency as was shown for a clinical isolate of CMV infecting CD34+ stem cells 

[113-116]. In this experiment, the expression pattern changed towards the expression of UL133–

UL138, genes encoded in the viral ULb’ region, a region not present in some fibroblast adapted 

strains of HCMV like AD169. This constant switch between lytic replication and latency is a 

characteristic and important feature for all herpesviruses, because it characterizes their biological 

niche as opportunistic pathogens. 

 

1.5  Immune evasion by Cytomegalovirus 

The development of an effective CMV vaccine proved to be more challenging than initially 

assumed due to the fact that even a pre-existing primary CMV infection does not confer protective 

immunity against re-infection, not against the same clade, the same strain or even the same isolate 

[117-120]. This interesting phenomenon severely complicates the creation of an effective vaccine, 

because if successfully fighting the infection does not generate protective immunity, how can an 

attenuated life virus or a subunit vaccine change this outcome? The reason for not establishing a 

sufficient immune response to avoid reinfection is even more curios given that the virus will indeed 

induce a very strong B- and T-cell response [121, 122], but although up to 10% of all T-cells in an 

individual can be directed against various CMV epitopes [121], it still does not prevent re-infection 

or re-activation. This can lead to individuals being infected by multiple strains of CMV either 

simultaneously or seqeuentially, something that has been observed not only in humans [117-120], 

but also in wild mice infected with multiple strains of MCMV [123]. After decades of research the 
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explanation for the efficient evasion of the host immune system by the virus was found in dozens 

of viral genes expressed during the viral life cycle, directed against every single aspect of the 

immune response to insure viral survival and persistence [124]. Although all herpesviruses encode 

for immune evasion genes, many of these genes are encoded in the terminal regions of the viral 

genome. Whereas the genes encoded in the central part of the genome in a given herpesvirus show 

fairly well conservation not only between members of the same subfamily but to a certain degree 

even between all herpesviruses [125] this does not hold true for viral proteins encoded in the 

terminal regions of the genome. These genes are mostly virus specific and are not conserved even 

throughout members of the same subfamily. As a result of this, every single member of the 

herpesvirus family encodes for its own set of viral immune evasion genes. 

 

1.5.1 Evasion of the innate immune response 

One of the earliest steps for the host to fight entering viruses is the innate immunity, a collection 

of broad, pathogen unspecific defense mechanism. These defense mechanisms are triggered by the 

pathogen either by interacting with a pattern recognition receptor (PRR) on the cell surface, like 

certain toll like receptors (TLRs), or by triggering a response by engaging an intracellular toll like 

receptors receptor or other intracellular receptors like MDA-5 and RIG-I [126]. All these receptors 

will recognize pathogen-associated molecular patterns (PAMPs) including DNA, RNA, 

Glycoproteins or LPS, so that the entire range of potential pathogen trying to infiltrate the cell will 

be detected by the cellular immunity [126]. Triggering a PRR will activate different, very intricate 

signaling cascades resulting in the activation of several pathways including the NF-κB-pathway 

[127], the IRF3- pathway [128] and eventually the JAK/STAT-pathway [128], all leading to the 

specific expression of cellular genes with anti-viral, anti-microbial or pro-inflammatory activity. 

Furthermore, some of the proteins synthesized by the cell in response to the detection of an 

infecting pathogen will be secreted and can signal in either an autocrine- or paracrine fashion to 

alert the neighboring cells and to attract different cells of the immune system [129]. 

This unspecific arm of the immune system is essential for the host in controlling viral 

infections and pathogenesis. As can be shown in several in vivo models and in humans with certain 

mutations of the IFN receptors or associated signaling molecules, lack of an effective  interferon 
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response will lead to a higher susceptibility, and to more severe viral infections shown for various 

different herpes viruses [130-133]. On the other hand, pretreatment of cells with interferon will 

put the cells into an antiviral state, impairing the ability of the virus to replicate to high titers [134, 

135]. As a result of this finding, recombinant IFN α has been used therapeutically to successfully 

control HCMV-induced retinitis during AIDS [136] and to control viremia following congenital 

infections [137]. 

To activate the NF-κB-pathway, triggering a PRR will lead to the phosphorylation of IKK-

α and IKK-β, two serine/threonine protein kinase whose activation will in turn lead to the 

phosphorylation and subsequent ubiquitination of the IκB protein complex [138]. IκB binds to 

both NF-κB subunits and inhibits their nuclear localization [139]. Ubiquitination of IκB will result 

in its proteosomal degradation [138], allowing NF-κB to translocate into the nucleus and to induce 

the transcription of important chemokines and cytokines like IL6, IL8 and IFNβ, all involved in 

activating and alerting other cell of the innate and adaptive immune system [140-144]. This protein 

expression is inhibited in the presence of HCMV, and further research revealed the immediate 

early protein 2 (IE2, IE86) was needed and sufficient for this blockage [145, 146], so HCMV 

developed a mechanism to efficiently undermine signaling through this important host defense 

pathway. 

NF-κB signaling can not only be inhibiting at its last step by inhibiting the synthesis of 

newly synthesized antiviral proteins, but also by interfering with cellular PRRs siganlling through 

the NF-κB-pathway. Protein Kinase R is an intracellular receptor activated by dsRNA which will 

be synthesized during transcription of complementary strands of the CMV genome. HCMV not 

only encodes for one, but two proteins (TRS1 and IRS1) with the capability to bind dsRNA. By 

hiding the dsRNA from the cellular receptor, the virus can ensure viral gene expression without 

triggering the PRR and alarming the innate immune response. TRS1 and IRS1 can substitute for 

the vaccinia virus (VV) RNA binding protein [147, 148], however, the role of these proteins in the 

context of HMCV infection has not been evaluated [149]. 

 Similar to the NF-κB-pathway, signaling through the IRF3-pathway also needs prior 

triggering of a PRR by the entering pathogen. The resulting phosphorylation cascade will lead to 

the phosphorylation of IRF3, which can now homodimerize and relocate to the nucleus where the 

dimer binds to its recognition site on the DNA, inducing the expression of a whole range of 

different proteins, including many with shown antiviral activity and the important cytokine IFNβ 

http://en.wikipedia.org/wiki/Serine/threonine-specific_protein_kinase
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[150]. Although reports exists describing HCMV pp65 as a potential inhibitor of IRF3 signaling 

[151, 152], these results were called into question, because the mutant virus used in both studies 

was a full deletion of the entire UL83 open reading frame effecting the expression of the upstream 

UL82 (pp71) ORF and resulting in an attenuated virus with significantly delayed gene expression 

[153]. A second pp65 deletion mutant with introduced stop codons instead of a full deletion did 

not inhibit IFNβ expression [153]. RhCMV on the other hand has been shown to effectively inhibit 

IRF3 phosphorylation, dimerization and nuclear localization completely abrogating any IRF3 

dependent signaling [148]. The viral protein for this phenotype has not been identified, but 

interestingly RhCMV is only capable to inhibit IRF3 signaling in rhesus fibroblasts, whereas 

human fibroblast infected with RhCMV show no inhibition of IRF3 nuclear localization or IRF3 

dependent gene expression (Malouli et al., unpublished data). 

 After the infected cell synthesizes IFNβ, either through the NF-κB- or the IRF3-pathway, 

this cytokine will be released from the cell where it can now signal either in a paracrine (to a 

different cell) or in an autocrine (to itself) fashion [144]. The interferon will bind the interferon-

α/β receptor (IFNAR), a cell surface protein that will bind all type I interferons and which is 

associated with the JAK1 and Tyk2 tyrosine kinases [144]. Upon ligand receptor binding, these 

two kinases autophosphorylate and phosphorylate the IFNAR, which will lead to the 

phosphorylation of two different Signal Transducer and Activator of Transcription (STAT) 

proteins, STAT1 and STAT2. Upon phosphorylation these two proteins dimerize and complex 

with IRF9 to form the ISGF3 (Interferon Stimulated Gene Factor 3) complex [144]. This protein 

complex relocates to the nucleus where it can bind to multiple ISRE (Interferon-Stimulated 

Response Element) promoters to induce the expression of interferon stimulated genes (ISGs) 

[144]. Like the genes expressed upon IRF3 signaling, many of these ISGs have proven antiviral 

activity [154], and successful JAK-STAT signaling transfers the cell into an anti-viral state [155]. 

This underlines the importance for CMV to inhibit JAK-STAT signalling, because if the virus was 

not inhibiting this signaling cascade, the infected cell would alarm all neighboring cells through 

the release of type I interferon rendering them less infectious and prepared for a potential infection. 

The human CMV immediate early protein 1 (IE1, IE72) can inhibit the binding of ISGF3 to the 

ISRE and by that block signaling through the JAK/STAT pathway [156]. The region of IE1 

responsible for this inhibition has been mapped, although different studies disagree about the exact 

http://en.wikipedia.org/wiki/Tyrosine_kinase
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location of the active region [157, 158] and this function of IE1 is also conserved in RhCMV 

(Malouli et al, unpublished data). 

 Besides blocking of ISG synthesis by inhibiting the binding of the ISGF3 to the ISRE, 

CMV has developed multiple independent mechanisms to undermine signaling through the 

JAK/STAT pathway. Impaired Interferon signaling in cells infected with cytomegalovirus has 

been described independently by multiple groups [156, 159, 160], but different phenotypes 

explaining the compromised interferon response were found. Degradation [160-162] as well as 

absence of phosphorylation [160] has been described for many kinases and signaling molecules in 

the pathway, including JAK1, IRF9, STAT1 and STAT2. Interestingly, proteasome-dependent 

STAT2 degradation late in HCMV infection has been described for multiple different viral strains 

except HCMV Towne [161], but an explanation for this interstrain difference has not yet been 

found. Because the various signaling molecules and kinases are part of multiple independent 

JAK/STAT signaling pathways, degradation of single signaling molecules can effect stimulation 

by diffident cytokines. Type II interferon (IFNγ) induced JAK/STAT signaling through the IFNGR 

is also blocked by HCMV through the inhibition of phosphorylation and proteasomal degradation 

of multiple important players in the signaling pathway [162]. The viral proteins responsible for all 

the described phenotypes have not been identified so far. 

 Finally, there are two more described mechanisms utilized by the virus to derail the innate 

immune response. One involves the feedback loop that the JAK-STAT pathway has evolved in 

response to newly synthesized interferon that can signal in an autocrine fashion to restimulate the 

pathway. The pathway is negatively regulated by various cellular proteins [163], among them 

protein tyrosine phosphatases that will dephosphorylate proteins in the pathway, effectively 

shutting down the signaling. Lack of phosphorylation has been shown after HCMV infection and 

IFNγ stimulation [164] and the cellular tyrosine phosphatase SHP2 (Src homology region 2 

domain-containing phosphatase 2) has been shown to be involved in this phenomenon [164, 165]. 

What this implies is that HCMV evolves the capability to selectively activate the cellular tyrosine 

phosphatases SHP2 to manipulate IFN-induced phosphorylation of JAK1 and by that to diminish 

or shut down all JAK/STAT signaling pathways involving this kinase. 

  



Intoduction                                          17 

 

Fig.6: Herpesviruses encode proteins that help them to evade detection by pattern recognition receptors 

(PRRs). For example, the herpes simplex virus type 1 (HSV-1) proteins ICP34.5 and virion host shut-off protein (Vhs) 

prevent the recognition of viral nucleic acids by inhibiting autophagy and degrading viral RNA, respectively. 

Herpesviruses also inhibit signalling through PRRs using multiple mechanisms. Some are specific to individual PRRs; 

for example: HSV-1 ICP0 protein inhibits Toll-like receptor 2 (TLR2) signalling by stimulating the degradation of 

TLR adaptor molecules; and murine cytomegalovirus (MCMV) M45 protein inhibits the recruitment of receptor-

interacting protein 1 (RIP1) to DNA-dependent activator of IFN-regulatory factors (DAI). There are also more general 

mechanisms that target all PRRs; for example, human herpesvirus 8 (HHV8) ORF45 protein interacts with IFN 

regulatory factor 7 (IRF7) and inhibits its phosphorylation and nuclear translocation. Finally, several herpesvirus-

encoded proteins (such as HHV8 v-IRF3) inhibit transcription by interacting with nuclear factor-κB (NF-κB) and 

IRF3 and/or IRF7 in the nucleus. This prevents the interaction of these transcription factors with DNA, and the 

assembly of functional transcriptional complexes. (Figure taken from Paludan et al., Nature reviews. Immunology 

11(2), 143-154 (2011) [166]). 

 

 

1.5.2 Evasion of the intrinsic immune response 

The very first line of defense against any intracellular infection is always the intrinsic immunity. 

This immunity differs from the innate immunity, in that the proteins of the intrinsic immunity are 

constantly expressed and ready within a cell [167], whereas the expression of anti-viral interferon 

stimulated genes (ISGs) for instance, has to be induced after a given pathogen triggers a pattern 

recognition receptors (PRRs) like a toll like receptor [168, 169]. The best described members of 

http://www.nature.com/nri/journal/v11/n2/fig_tab/nri2937_F3.html
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the intrinsic immunity have been found in connection with anti-HIV research, where cellular 

proteins like TRIM5α (Tripartite interaction motif five, splice variant α), a cellular protein capable 

of preventing retroviral uncoating, and APOBEC3G (Apolipoprotein editing complex 3 G), a 

cytidine deaminase that will randomly introduce cytidine to uracil nucleotide changes into the viral 

genome during retroviral reverse transcription leaving the resulting provirus inviable due to the 

multitude on nonsense mutations [170, 171], have been found to possess substantial antiviral 

activity. 

 In connection with herpesviruses, the part of the intrinsic immunity that has been shown to 

effectively inhibit viral propagation and spread is a protein complex that forms small dot like 

structure in the cellular nucleus, and that is known as ND10- or PML bodies [172, 173]. This 

protein complex consists permanently or transiently of more than 50 different cellular proteins 

[174], and many of them are involved in such diverse cellular functions as the DNA damage 

response, chromatin modification, the stress response, senescence, and protein stability, and there 

is growing scientific evidence linking ND10 function and protein modification with small 

ubiquitin-like modifier (SUMO) family members [173, 175, 176]. After intensive research, some 

of these proteins have been shown to directly interact with intruding viruses, including the 

promyelocytic leukaemia protein (PML), the small ubiquitin-like modifier 1 (SUMO1), the SP100 

nuclear antigen, the Death-associated protein 6 (DAXX) and ATRX, the protein responsible for 

alpha-thalassemia X-linked mental retardation when mutated [177]. The assembly of ND10-bodies 

is coordinated by sumoylated PML, and by SUMO interaction motif (SIM)-dependent interactions 

between PML and other sumoylated proteins [178], which in turn will lead to the recruitment of 

other important protein complex constituents like DAXX and ATRX [179-183]. These two 

proteins will locate to histones, where they are involved in chromatin modification functions. This 

is also the site were herpesvirus genomes are located immediately after infection and where virus 

transcription and DNA replication are initiated [184-190]. Experimental RNA knockdown of PML 

or DAXX or a combination of both proteins lead to a significantly increased HCMV of HSV-1 

replication [191-194], indicating why it is advantageous for CMV to disrupt ND10 bodies during 

infection [195-199]. The virus employs multiple strategies to ensure dispersal and degradation of 

the host proteins with intrinsic antiviral activity. PML and Sp100 will be dispersed and degraded 

by the immediate early protein 1 (IE1) [198-203], which will locate to PML bodies shortly after 

infection, whereas the immediate early protein 2 (IE2) will co-localize with CMV genomes 
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adjacent to ND10-bodies [204]. Additionally, the tegument protein pp71 interacts with Daxx, 

which leads to its dispersal and partial degradation [205-208]. Other ND10 body components 

directly affected by pp71 include ATRX [192], BclAF1 [209] and Rb protein family members 

[210]. Due to this importance of pp71 in degrading or delocalizing multiple proteins involved in 

anti-viral intrinsic immunity, it is not surprising that viral propagation and spread are substantially 

reduced in human fibroblasts after low MOI infection with an HCMV pp71 deletion mutant, given 

that the mutant virus is no longer able to ensure efficient viral DNA replication [211]. 

 

Fig.7: Activation of HCMV and HSV-1 viral gene expression. (A) Upon HCMV fusion and content delivery to the 

infected cell, the tegument protein pp71 binds to and induces the degradation of Daxx (1). This de-represses the viral 

MIEP and promotes the expression of the IE genes (2). IE1 disrupts the remaining PML-NB proteins by 

preventing/disrupting the SUMOylation status of PML, and possibly Sp100, further increasing IE gene expression (3). 

Both IE1 and IE2 negate the effect of HDACs by binding to and sequestering them away from viral promoters (4). 

Finally, the IE proteins can recruit BTM and TFs to early and late viral promoters to activate their respective genes 

(5). (B) Upon HSV-1 fusion and content delivery to the infected cells, the tegument protein VP16 binds to the cellular 

Oct1 and HCF proteins and targets to the viral IE promoter, where it displaces cellular H (1), and activates viral gene 
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expression by recruiting the BTM (2). ICP0 has multiple functions to activate subsequent viral gene expression, 

including dissociating HDAC complexes (3) and inducing the degradation of PML and Sp100 (4). ICP4 promotes the 

expression of early and late viral genes by recruiting BTM to targeted promoters (5). BTM: Basal transcriptional 

machinery; E/L: Early/late; H: Histones; HCF: Host-cell factor; HCMV: Human cytomegalovirus; HDAC: Histone 

deacetylase; HSV: Herpes simplex virus; IE: Immediate-early; MIEP: Major immediate-early promoter; PML: 

Promyelocytic leukemia; PML-NB: PML-nuclear body; TF: Transcription factor. (Figure taken from Saffert and 

Kalejta, Future Virol. 1;3(3):265-277 (2008) [212]). 

 

 

 

1.5.3 CMV evasion of natural killer (NK) cells 

One very important part of the innate immune response are natural killer (NK) cells, which can be 

classified as a heterologous group of CD3- and CD56+ cells and which represent about 15% of 

peripheral blood lymphocytes [213, 214]. As members of the innate immune response their activity 

is generally unspecific, but studies in mice indicated that an NK cell subset with immunological 

memory might exist [215, 216]. NK cells area activated in response to type I interferons and induce 

the lysis of malignant or virally infected cells, thereby containing the viral replication early in 

infection. Although they act at a very early stage of infection before B- or T-cells can mount an 

immune response, NK cells play a pivotal role in bridging the innate and adaptive immune 

response by regulating the development of the adaptive immunity [217, 218] through the secretion 

of cytokines and chemokines [219]. Unlike members of the adaptive immune response, NK cells 

do not detect pathogenic antigens through specific receptors but express a complex network of 

activation and inhibitory receptors that interact with different cellular molecules expressed on the 

target cell [220]. The overall combined stimulus transmitted through this signaling network 

determines the activation status of the NK cell and the fate of the target cell, and many pathogens 

have developed mechanisms to alter the signaling to NK cells in their favor to ensure their 

replication and survival. HCMV is a prime example of this as it encodes for multiple genes 

interfering with NK signaling and activation [221, 222]. 

 The need for viruses to interfere with NK cell activity becomes apparent when case studies 

of humans with NK cell deficiencies are considered [223, 224]. These patients suffer from 

numerous viral infections including multiple herpes viruses and similar effects were seen in 

patients suffering from immunodeficiencies with impaired NK cell numbers and function, where 

infections with HSV, VZV and CMV among others where frequent [225-227]. 

 The first set of activation receptors expressed on NK cells is a family of protein comprising 
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three members, NKp46, NKp40 and NKp30 [228]. Their cellular ligand is unknown, although 

several viral and tumor associated interaction partners have been identified [229]. One of them is 

the HCMV tegument protein pp65, which can interact with NKp30, leading to the dissociation of 

the linked CD3ζ from NKp30 and subsequently the inhibition of NK cell mediated killing [230]. 

A second important set of receptors are the killer immunoglobulin-like receptors (KIRs), 

the human homologues to the mouse Ly49 C-type lectin-like receptors. KIRs interact with specific 

allotypes of the classical (HLA-A, HLA-B and HLA-C) and nonclassical (HLA-G) human 

leukocyte antigen class I receptors and interaction of the target cell MHC class I with the NK-cell 

KIR will deliver either an activating or inhibitory signal depending on the KIR involved [231]. 

HCMV encodes for multiple proteins with structural homology to MHC-class I that can bind to 

inhibitory KIRs and prohibit NK cell activation. Furthermore, the HCMV protein UL18 can serve 

as a ligand for the leukocyte immunoglobulin-like receptor 1 (LIR-1), another related inhibitory 

NK cell receptor, which will also prevent NK cell activation [232, 233]. 

One last, very well described group, of NK cell receptors is a family of C-type lectins 

abundantly expressed on the cell surface of many lymphocytes. Members of this receptor family 

can deliver activating or inhibitory signals. For instance NKG2A binds to the non-classical HLA-

E molecule loaded with peptides derived from other HLA class I molecules. By doing so the NK 

cell is controlling for “missing self”, for the downregulation of MHC class I molecules during viral 

infection. If the level of MHC class I signal peptides presented on HLA-E goes below a certain 

threshold, then the inhibitory signal to the NK cell will not be strong enough anymore to prevent 

NK cell activation and the activated NK cell will lyse the target cell. HCMV has developed a very 

interesting mechanism to counter this immune defense. The virus encodes for a proteins (UL40) 

that contains a signal sequence with high homology to the HLA-A signal sequence, so that the 

UL40 signal sequence can be loaded onto HLA-E molecules instead of the HLA-A signal 

sequence, tricking the NKG2A receptor into believing that the cell is still expressing the classical 

MHC class I molecules at normal levels on the cell surface [234]. Even the viral proteins involved 

in CD8+ T-cell evasion do not interfere with the transport of the UL40 signal peptide loaded HLA-

E protein complex to the cell surface, so that even in the midst of a full blown lytic infection, the 

outer appearance of the cell to the inhibitory NKG2A receptor is still normal. 

Another member of the same NK cell receptor family is the highly expressed NKG2D 

protein, which forms a heterodimer with CD94 [235]. The ligands for the human version of this 
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receptor are a group of cellular proteins including MICA, MICB and the UL16 binding proteins 

ULBP1-6, all of which are upregulated during the cellular stress response in malignant cells or 

after viral infection [221, 222]. HCMV encodes for several proteins that will interfere with the 

expression of the NKG2D ligands of the cell surface of infected cells. UL16 can bind to MICB, 

ULBP1 and ULBP2, leading to the intracellular retention of these proteins [236, 237]. MICA is 

also retained in the same compartment, albeit by a different viral protein, UL142, a protein that 

was initially missed because it was lost during passage in HCMV laboratory strains like AD169 

[222, 238]. In addition to viral proteins, HCMV also encodes for a viral microRNA termed miR-

UL112 that can downregulate the expression of MICB leading to decreased binding of NKG2D 

and reduced killing by NK cells [239, 240]. 

 

Fig.8: MCMV and HCMV proteins interfere with expression of NKG2D ligands and host recognition of virally 

infected cells. (A) MCMV-encoded glycoproteins (shown in orange) inhibit the expression of mouse NKG2D ligands: 

m152 interferes with expression of all five members of the RAE-1 family, m145 prevents surface expression of 

MULT1, m155 causes degradation of H60, and m138 assists to block expression of RAE-1ε, MULT1, and H60. (B) 

HCMV-encoded components (shown in red) also inhibit the expression of NKG2D ligands: UL142 inhibits MICA 

expression, UL16 binds MICB, ULBP1, and ULBP2 in the Golgi, and the miR-UL112 microRNA targets MICB 

mRNA for degradation leading to diminished cell surface expression of MICB. (Figure taken from Sun and Lanier, 

Viruses 1(3), 362 (2009) [222]). 

 

  Viral NK cell evasion is a field of research that has gotten a lot of attention in the 



Intoduction                                          23 

past due to its impact on pathogenesis and vaccine development and reviews summarizing the vast 

amount of research data surrounding this topic have been published over the years [241]. 

 

1.5.4 Evasion of the complement system 

Another integral part of the innate immunity is the complement system [242], a network of plasma 

proteins involved in direct lysis of infected cells and in amplifying the inflammatory response 

effectively bridging the innate and the adaptive immune response [243-247]. The complement 

system can be activated through different pathways (see Fig.9) either by binding antibody antigen 

complexes or by directly binding to the surface of pathogens or infected cells. In either case, this 

activation will ultimately lead to the formation of membrane attack complexes (MACs), which 

will integrate into the lipid cellular membranes and disrupt the cell by increasing the osmotic 

pressure [248]. Besides the formation of the MACs, activation of the complement will also lead to 

the expression of several anaphylatoxins (C3a, C4a and C5a), which are involved in the 

recruitment of antibodies, further complement proteins and leukocytes to the site of infection, and 

even direct interaction of complement proteins with viral virions has been reported and has a 

neutralizing effects [249-253].  

Multiple viral families have evolved means to evade the complement system, and HCMV-

infected cells have been shown to resist complement mediated cell lysis shortly after infection 

suggesting a viral mechanism to evade this host defense mechanism [254, 255]. One way the virus 

is able to achieve this, is by inhibiting complement activation through the classical pathway by 

avoiding complement binding to antibody–antigen complexes through the expression of viral Fc 

receptors on the surfaces of virally infected cells. As will be described later (see evasion of the 

humoral immune response), HCMV encodes for at least four functional viral Fc receptors which 

not only impair the humoral response, but also the activation of the complement system and so 

ultimately complement mediated cell lysis [256-258]. 
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Fig.9: Activation of the complement cascade via the classical (A), lectin (B) or alternative (C) pathway results 

in the initiation of the terminal complement pathway (D), leading to the formation of membrane attack 

complexes. (Taken from Favoreel et al., J Gen Virol 84(Pt 1), 1-15 (2003) [259]). 

 

Cells on the other hand will express ‘regulators of complement activation’ (RCA) like the 

membrane cofactor protein CD46, complement decay-accelerating factor CD55, and CD59 

(protectin), which will allow them to inhibit the complement system to a certain extent [260-262]. 

While CMV does not encode for a viral homologues of any of these RCAs like other viruses, it 

does incorporate cellular CD55 and CD59 into its virion [263] and it will also upregulate the 

expression of CD46 and CD55 on the surface of infected cells [264]. Both of these viral strategies 

have been shown to inhibit complement mediated cell lysis of HCMV infected fibroblasts [263-

265] increasing viral replication and survival. Members of the viral US6 family known to be 
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involves in CD8+ T cell evasion were examined as potential candidates for HCMV proteins 

responsible for the upregulation of CD59 and other RCA proteins, and all family members were 

shown to either increase the total expression or the number of cells that express at least one RCA. 

Furthermore, overexpression of US2 was shown to reduce cellular lysis by the complement system 

in a functional assay indicating a role of the protein in in vivo complement evasion [266]. 

 

 

1.5.5 Evasion of the adaptive T-cell response 

The second important arm of the immune response countering invading pathogens is the adaptive 

immunity. Here, T-cells, and for the defense against intracellular parasites like viruses, especially 

CD8+ cytotoxic T lymphocytes (CTLs), which patrol the body in search in infected cells, play a 

vital part in controlling the spread of previously encountered pathogens. Infected cells will be 

recognize by the CTLs through the peptides presented by the host cells on the plasma membrane 

by MHC-class I complexes. These peptides are derived from proteins degraded in the proteasomes, 

and virally infected cells will present peptides derived from virus proteins in addition to host 

peptides [267-269]. These foreign peptides will be recognized by the CTLs, which in turn will 

force the infected host cell into apoptosis to prevent spread of the infection and to avoid harm to 

the host. To counteract this host defense mechanism, CMV encodes for an entire family of proteins, 

termed the US6 family of proteins that will prevent viral recognition and secure survival of the 

virally infected cell. The four members of the US6 family are US2, US3, US6 and US11, and they 

interfere at different time points post infection with different steps of the MHC class I antigen 

presentation pathway [270]. Expression of US2 and US11 will lead to relocation of major 

histocompatibility complex class I heavy chains from the ER to the cytosol, where they are 

deglycosylated and subsequently degraded by the proteasome [271], whereas US6 acts as a TAP 

inhibitor, preventing the loading of MHC class I complexes with proteasomally derived peptides 

prevents ATP hydrolysis [272]. Finally, US3, the only US6 family member expressed with IE 

kinetics [273], retains MHC class I complexes in the ER [274]. Interestingly, RhCMV, the rhesus 

macaques counterpart of HCMV, contains locational and functional homologues to all four HCMV 

US6 family members [275], which enables in vivo research into the importance of these proteins 

in an animal infection model. When the US6 homologues of RhCMV (Rh182-Rh189) were deleted 
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from the viral genome, the mutant virus was still able to persistently infect naïve animals, but was 

incapable of infecting CMV positive macaques [276].  

 

Fig.10: Immunoevasins of the murine- and the human cytomegalovirus. A) Immunoevasins of murine 

cytomegalovirus (mCMV). m04 binds to MHC class I molecules in the endoplasmic reticulum (ER) and escorts them 

to the cell surface. The complex does not seem to be recognized by CD8+ T cells. It is unclear whether the complexed 

MHC molecules do not present peptide or whether the bound m04 prevents recognition. m04-mediated surface display 

of MHC class I molecules might silence natural killer (NK) cells. m06 binds through a lumenal domain to peptide-

loaded MHC class I molecules in the ER and reroutes the resulting complex to a late endosomal/lysosomal 

compartment for degradation. m152 triggers the retention and accumulation of peptide-loaded MHC class I molecules 

in the ER Golgi intermediate compartment (ERGIC). B) Immunoevasins of human cytomegalovirus (hCMV). US6 

blocks peptide translocation through the transporter for antigen processing (TAP) by interaction with the lumenal 

surfaces of both subunits of the TAP1–TAP2 heterodimer in the transient peptide-loading complex — which consists 

of TAP, the MHC class I complex and ER-resident chaperones. US3 is an immediate-early (IE) protein that causes 

retention of peptide-loaded MHC class I molecules in the ER. US3-bound complexes are degraded in the early (E) 

phase by US2- and/or US11-mediated mechanisms. US2 and US11 both induce rapid proteasomal degradation of 

MHC class I -chains by mediating retrograde translocation from the ER to the cytosol. Unlike US11, which remains 

in the ER membrane, US2 seems to be co-dislocated and to escort the MHC class I -chain to the cytosol. (Figure 

taken from Reddehase, Nature reviews. Immunology 2(11), 831-844 (2002) [277]). 

 

 

This underlines the importance of the virally encoded T-cell evasion genes, especially in the 

context of re-activation and re-infection, when the virus has to overcome a pre-existing T-cell 

response in order to establish a productive infection and persistence. This was additionally proven 

http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=6890
http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=6891
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when CMV positive rhesus macaques were CD8+ T-cell depleted, which now enabled the US6 

family deleted mutant to establish an infection [276]. Additionally, the viral Rh189 (US11) protein 

is responsible for a change in the T-cell epitope presentation. Whereas infection of macaques with 

SIV or SIV protein containing commonly used viral vectors (Ad5, MVA, etc.) leads to a 

presentation of canonical SIV epitopes, well characterized epitopes presented by all monkeys of a 

given MHC I allotype, RhCMV vectors will lead to the complete absence of canonical epitopes 

and the presentation of new, non-canonical SIV epitopes [278] Deletion of US11 from the RhCMV 

vaccine vector will restore the presentation of canonical epitopes, suggesting another active 

mechanism of the virus in derailing CTL response through inhibiting the presentation of highly 

active epitopes on the infected cell. One significant difference between RhCMV and HCMV is 

that RhCMV encodes for a fifth T-cell evasion gene that does not have a homologue in HCMV 

called Rh178 or VIHCE (Viral Inhibitor of Heavy Chain Expression) [279, 280]. This protein 

binds to the signal peptide of newly synthesized MHC class I heavy chains and inhibits the 

translation of the protein on ER bound ribosomes into the ER.  

 

1.5.6 Evasion of the humoral immune response 

Besides the T-cell response, B-cells and the antibodies they produce represent the second 

important arm of the adaptive immune response to fight invading pathogens and to develop an 

immunological memory to prevent reinfection with most formally encountered viruses. In the case 

of the human cytomegalovirus, protective immunity does not exist, and that even in the face of not 

only and incredible strong T-cell response to the virus [121] but also a strong and broad B-cell 

response against multiple glycoproteins and proteins complexes on the viral membrane [281-285]. 

An infected human will even produce neutralizing antibodies, mostly against the gB glycoprotein, 

but also against the pentameric complex needed for viral endocytosis into endothelial cells [286-

293], not resulting in complete sterilizing immunity, but in significantly reduced infectivity [56, 

294-298]. There is clinical evidence for a role of antibodies in limiting HCMV infection in vivo 

[299], which is why nowadays most proposed subunit vaccines have a T-cell (pp65 or IE1)- and a 

B-cell (gB or the pentameric complex) stimulating component, and this also explains why it is 

advantageous for the virus to encode for proteins counteracting the humoral immune response. 



Intoduction                                          28 

Like other viruses, HCMV does this by encoding for its own Fc-receptors [300, 301], which are 

thought to prevent antiviral immunoglobulin G (IgG) from neutralizing free virus and engaging in 

antibody-dependent cellular cytotoxicity (ADCC) against infected cells [302]. Initially, two such 

receptor have been described for HCMV, first the RL11 protein, which encodes for a 34kDa 

glycoprotein expressed with early kinetics.[256], and second the spliced UL119/UL118 protein 

which encodes for a glycoprotein of 68kDa [257]. Interestingly, although both well described 

virally encoded Fc-receptors show strong homology to human Fc-receptors, they resemble 

different host Fc-receptors. UL119-UL118 relates most closely to the third domain of Fcγ-receptor 

I, whereas RL11 is reminiscent of the second domain of Fcγ-receptor II/III [257], again 

emphasizing the importance to effectively evade the neutralizing antibody response, given that the 

virus independently integrated homologues to two different human Fcγ-receptor into its genome. 

Recently, further Fcγ-receptors have been discovered in the viral genome. RL13, a protein 

described to limit viral replication of primary isolates on human fibroblasts in vitro [303] has been 

shown to function as an Fcγ-receptor, as well as a third RL11 family member, RL12 [258]. 

 

1.6 In vivo models for HCMV 

 

Due to the strict species specificity of CMV and most herpesviruses, animal model have to be 

applied to study the virus in vivo [304]. Fortunately, CMVs are widespread and it is plausible that 

most species co-evolved with their own form of the virus, so establishing a wide array of different 

animal models is theoretically possible. In reality, only very few animal models have been pursued, 

the mouse model with its version of CMV the murine Cytomegalovirus (MCMV) being the most 

widely explored and utilized [305]. MCMV has been first isolated in 1954 by Margaret Smith from 

the salivary gland tissue of infected laboratory mice [306] and has since then been extensively 

examined in vitro and in vivo [307-311]. The virus also has been cloned as a bacterial artificial 

chromosome (BAC) [312], which enabled research groups to design and construct mutants for 

further characterization of the encoded viral proteins. Additionally, the mouse host has also been 

extensively characterized and might represent the mammal with the best described and analyzed 

molecular biology and biochemistry other than humans, and, moreover, mice are available as 

inbred mouse strains, increasing the reproducibility of achieved research data by decreasing the 
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background of variability in the host. Furthermore, the production of a range of genetically 

engineered mice enables the dissection of viral functions in vivo by selectively knocking out single 

pathways and by analyzing the effect these pathways have on the virus. The major problem of the 

mouse-model as a model system for HCMV is the distant relationship between the hosts and the 

viruses alike. While the two viral species share high homology in their coding content and in the 

pathogenicity they cause in their respective host, the differences are most apparent and important 

findings cannot be extrapolated without verification. Furthermore, although the two viruses show 

similar behavior regarding infection, replication and pathogenesis, MCMV will confer protective 

immunity against re-infection, at least under laboratory conditions using inbred mouse strains and 

laboratory MCMV strains, a result not achievable with HCMV. Also, the biggest threat to humans 

posed by HCMV is to unborn children through congenital infection, leading to severe neurological 

damage (see above), something that has never been observed in newborn mice, so the model cannot 

be applied to study this route of infection, which, unfortunately, is also true for another widely 

used animal model established for HCMV, rat CMV. RCMV is grouped into the same genus as 

MCMV (Muromegalovirus). Genome organization and infectious behavior mirror MCMV. One 

significant different between the two rodent CMV species is, that two of the isolated and sequenced 

RCMV strains differ so substantially that they are considered different species, which would mean 

that the rat has co-evolved with two different but equally virulent species of CMV [313, 314]. Still, 

for the investigation of congenital HCMV infection another in vivo model had to be developed, 

and it was finally found in the guinea pig and the guinea pig cytomegalovirus (GPCMV), a virus 

that does cross the placenta causing infection and disease in utero in unborn guinea pigs [315]. 

Although the commonly used strain of GPCMV is resistant to Ganciclovir, the drug of choice for 

treatment of CMV infections [316, 317], the model is widely usable for the in vivo testing of 

potential anti-herpesviral compounds, as well as for toxicity studies. 

 

1.7  Great Ape and Non-Human Primate (NHP) CMVs 

Besides the few rodent isolates mentioned above, cytomegaloviruses have been preferentially 

isolated from great apes and nonhuman primates (NHP) because of the close evolutionary 

connection to humans [318-328].  
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Fig.11: Phylogenetic tree of (A) gB and (B) the viral DNA polymerase for great ape and monkey CMVs. 
Accession numbers of the protein sequences used to make this figure are HCMV (X17403), CCMV (NC_003521), 

GgorCMV (FJ538490), PpygCMV (AY129396), RhCMV (AY186194), BaCMV (AC090446), SCMV (FJ483968), 

CyCMV (AY728171), MsphCMV (AY129399), CgueCMV (AY129397), AtriCMV (FJ483970) and SsciCMV 

(FJ483967). MCMV (GU305914) was used as an outgroup in both graphs. The phylogenetic trees were made using 

Geneious Pro 5.5.2. (Figure taken from Früh et al., In: Cytomegaloviruses: From Molecular Pathogenesis to 

Intervention, Caister Academic Press, 463-496 (2013) [329]). 

 

As can be seen in Fig.11, CMVs have been characterized from many different species of Great 

Apes as well as old- and new world NHP. Phylogenetically, the old world NHP CMVs are closer 

related to HCMV then the new world NHP CMVs which mirrors the relationship between the host 

species where the separation point between apes (Hominidea) and old world monkeys 

(Cercopithecidae, the superfamilies Hominidea and Cercopithecidae form the parvorder 

Catarrhini) on one side and new world monkeys (Platyrrhini) on the other was estimated around 

about 35 million years ago [330-334]. Interestingly, this would be substantially after the African 

and the South American continents divided, indicating that the two higher primates parvorders did 

not separated geographically with the continental divide, but that the new world NHP migrated to 

the American continent at a later timepoint [335, 336]. The divide within the parvorder Catarrhini 

between Old World monkeys and apes occurred more recently at about 23 million years ago [337] 

and the latest separation between the genera homo (humans) and pan (chimpanzees) occurred 

roughly 5 – 7.5 million years ago [338-341]. 

http://www.softpedia.com/progViewOpinions/Geneious-Pro-74534,.html
http://en.wikipedia.org/wiki/Simian
http://en.wikipedia.org/wiki/Old_World_monkey
http://en.wikipedia.org/wiki/Ape
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Fig.12: Phylogenetic tree of some primates. The Old world monkeys split from the New world monkeys +/-35mya. 

The Human-Chimp-Gorilla-Orangutan lineage split from that of the rhesus macaque lineage after the last major 

genomic infection (+/-25mya). Then the Human-Chimp-Gorilla lineage split from the Orangutan lineage (+/-12mya), 

and then the Human-Chimp lineage split from the Gorilla lineage (+/-7mya), and finally Humans and Chimps diverged 

+/-6mya. (Taken from Blogs24 (http://blogs.24.com/insilico/2011/10/page/2/#_edn3), but adapted from Polavarapu 

et al., Genome Biol. 2006;7(6):R51.Nov;81(22):12210-7 [342]). 

 

The closest relatives to HCMV can be found in the closest relatives to man, the chimpanzees 

and gorillas as well as the Orang-Utans, but due to ethical and economical concerns and the fact 

that many of these species are endangered and protected, it is impossible to establish in vivo models 

in Great Apes. This is different for old world monkeys, which are widely utilized in biomedical 

research in primate centers all around the world. The most commonly kept species are rhesus 

macaques, cynomolgus macaques, mangabeys and baboons, all of which have been used in SIV 

models for HIV and AIDS and other related areas. Out of these monkey species, the rhesus 

macaque has the most extensively characterizes CMV, the rhesus cytomegalovirus RhCMV. In 

fact, two independent strain of RhCMV have been isolated and fully sequenced (68-1 [343] and 

180.92 [319]), and RhCMV 68-1 has been cloned as a BAC [344], so it can now be used to create 

mutants through homologous recombination. The coding potential of both isolated RhCMV strains 

differ, because both strains seem to have acquired deletions during serial passage on rhesus 

fibroblast [345], leading to the loss of multiple kilobases of coding DNA and to deletions similar 

to what has been described earlier for fibroblast adapted strains of HCMV like AD169 or Towne 

[346]. The published coding potential of RhCMV is estimated around 230 - 260 ORFs [319, 343, 

345], which exceeds the coding potential for all other published CMV genomes by at least 60 

http://blogs.24.com/insilico/2011/10/page/2/#_edn3
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ORFs [346-351]. If all of the to date annotated RhCMV ORFs are indeed coding, then 60% of the 

encoded proteins have homologues to HCMV proteins, whereas 40% of all ORFs are old world 

monkey or even RhCMV specific [343]. To date only very few RhCMV genes not found in HCMV 

have been verifies and described (vCOX-2 [352], VIHCE [279, 280]). 

 

 

1.8 Utilizing CMV as a vaccine vector 

Given the remarkable feature of RhCMV to induce a strong B- and T- cell response without 

generating a sterilizing immunity opens up another interesting application for the virus, namely as 

a vector for the development of new vaccines. It is well established that T-cell epitopes introduced 

into CMV can generate strong in vivo T-cell responses [353] and given the non-sterilizing 

immunity, at least in HCMV and in NHP model systems, the same CMV vectors could be used 

over and over again to boost the initially primed immune responses to achieve an even greater 

number of cells of the adaptive immune response directed against a selected foreign antigen 

introduced into the CMV vector. The idea of using one virus as a vaccine vector to vaccinate 

against a second pathogen is not new and different viral families have been considered prospective 

candidates. Extensive research has been conducted using Adenovirus [354] or Parvoviruses (AAV, 

Adeno associated viruses) [355], and they proofed promising for some aspects of vaccine 

development, but they failed for the development of T-cell based vaccines against important 

human pathogens like HIV (Step study, Phambili study (HVTN 503) and HVTN 505 study) [356-

358]. It became apparent that CMV has some important attributes that makes it superior to all 

previously considered viral vectors for the development of T-cell based vaccines. First of all, CMV 

establishes a persistent infection. But it reactivates from this latency constantly, challenging the 

existing anti-CMV immune response over and over again, precluding the CTLs from reaching their 

central memory phenotype (TCM) and keeping them as effector memory T-cells (TEM) [353]. This 

means, that the T-cells against CMV and the inserted foreign antigen will be constantly activated 

and alarmed, and ready to fight the real infection immediately should they ever encounter it, 

whereas with other vaccine strategies, the CTLs would move on to central memory T-cells, from 

where they will have to be re-activated upon stimulation, and this delay of 1-2 week compared to 

the CMV vaccine strategy makes all the difference. In vivo experiments in rhesus macaques 
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showed no protective effect when using Ad5 based α-SIV vaccine vectors [359], but RhCMV 68-

1 based vaccine vectors enables 50% of the monkeys to control the viral infection and the 

associated viremia even after repeated SIV challenge [359], showing the first successful vaccine 

approach against SIV in a monkey model. Additionally, even though these monkeys initially were 

infected with SIV and then moved on to show elite controller phenotype in that they were able to 

control the infection with no significant viral load without any treatment, further experiments 

showed that they actually cleared the virus and adoptive transfer of leukocytes from these monkeys 

to SIV negative monkeys did not results in seroconversion [360]. 

 
Fig.13: (a,b) Combined FCICA and surface phenotype analysis of CD4+ (a) and CD8+ (b) peripheral blood T 

cells responding to wild-type (WT) RhCMV lysate, SIV Gag or Rev-Tat-Nef–overlapping 15-mer peptides. The 

graphs compare the CD28 versus CCR7 phenotype of RhCMV and SIV antigen-responsive CD4+ or CD8+ T cells 

(CD69+TNF+) in a representative initially RhCMV-positive rhesus macaque that was inoculated 595 d and 330 d 

earlier with RhCMV-Retanef and RhCMV-Gag, respectively (left and middle). They also compare the SIV Gag 

response of this rhesus macaque to another rhesus macaque that received a Gag protein prime and Ad5(Gag) boost 

(105 d after the boost; right). (Figure taken from Hansen et al., Nat Med 15(3), 293-299 (2009) [353]). 

 

Additionally, when SIV gag was introduced into several different viral delivery vectors 

and rhesus macaques were infected with all these different constructs, it was noticed that the T-

cell epitopes presented by RhCMV 68-1 were substantially different than in any other examined 

construct (Ad5, MVA, DNA, SIV) [278]. Our RhCMV vectors based on the laboratory adapted 

strain 68-1 that does not have a functional pentameric complex, presented substantially more and 

different, non-overlapping epitopes than were observed in all control samples (32 compared to 14) 

and 2/3 of these epitopes were actually MHC class II dependent [278], which had not been 

observed before. To top everything off, some of the epitopes were presented in all examined 

monkeys independent either by MHC class I or MHC class II and that independent of the MHC 

alleles encoded by the individual monkeys. These highly promiscuous peptides are extremely 

unusual and have not been described in connection with viral infections before. Because these 

newly discovered epitopes where so promiscuous and where found in all examined animals, they 
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were termed “supertopes” and they, in combination with the MHC class II dependent CD8+ T cells 

generated by the RhCMV 68-1 vaccine vector, could play a crucial role in the protection seen in 

SIV challenge experiments with SIV after RhCMV vector vaccination. A broader T-cell response 

against more epitopes essentially spanning the entire protein makes it substantially harder for the 

virus to evade the pressure of the immune system by mutation, even in the case of a highly variable 

and highly mutagenic virus like SIV (or HIV). The overall impact of the altered epitope repertoire 

being presented in regard to protection against challenge is still the matter of intensive research 

and preliminary data suggests, that restoration of the pentameric complex in 68-1 abrogated the 

generation of supertopes and MHC class II dependent CD8+ T cells [278], but deletion of single 

members of this complex did not lead to the restoration of the RhCMV 68-1 phenotype, although 

the tropism specificity induced by a fully functional pentameric complex is lost (unpublished data). 

This indicates that it is not the entire complex or the tropism that is responsible for the appearance 

of supertopes and MHC class II dependent CD8+ T cells, but a combination of single members of 

the complex.  

 As mentioned above, Rh189 (US11) also has an effect on the T cell epitopes that are being 

presented by the infected cell. In the presence on US11, the epitopes that are presented do not 

resemble the epitopes found in a natural SIV infection or after vaccination with any viral vector 

expression SIV gag other than RhCMV. Because these epitope are so common in SIV infection, 

they are termed canonical epitopes and the epitopes that are presented in the presence of US11 are 

termed non-canonical epitopes [278]. Interestingly, if US11 is deleted, the canonical epitopes will 

also be presented in the context of RhCMV as the delivery vector for gag [278], indicating that the 

exact design of the RhCMV vector has a deep and profound impact on the T cell response that will 

be generated against the viral vector as well as against the inserted foreign antigen. All these 

incredible findings enable us now to exactly customize the T-cell response we wish to achieve by 

constructing vectors containing or lacking certain genes involved in T-cell epitope generation and 

presentation. This immense flexibility has only been achieved with RhCMV vectors so far, and 

further steps are being undertaken right now to characterize the different T-cell responses 

generated to determine what vector configuration works best for the generation of a strong and 

broad immune response without sacrificing the viability and infectivity of the viral vector. With 

further animal studies planned, we hope that the protection achieved in our first published RhCMV 

vector study where 50% of the challenged rhesus macaques were protected from SIV challenge 
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[359] can be extended so that the number of protected animals, and further down the road humans, 

can be maximizes to protect as many individual as possible. 

 

 

Fig.14: RhCMV vector–elicited and conventional SIVgag-specific CD8+ T cell responses differ in epitope 

breadth and promiscuity. CD8+ T cell responses to SIVgag were epitope-mapped using flow cytometric ICS to 

detect recognition of 125 consecutive 15mer gag peptides (with an 11–amino acid overlap) in macaques vaccinated 

with strain 68-1 RhCMV/gag vectors [*BAC-derived RhCMV/gag; **non–BAC-derived RhCMV/gag(L); n = 14], 

electroporated DNA/gag + IL-12 vectors (n = 4), Ad5/gag vectors (n = 3), and MVA/gag vectors (n = 3) and in SIV+ 

macaques with controlled infection (n = 5). Peptides resulting in above-background CD8+ T cell responses are 

indicated by a colored box, with the total number of these positive responses and the minimal number of independent 

epitopes potentially contained within these reactive peptides in each macaque designated at right. P < 0.0001, epitope 

breadth of RhCMV/gag-vaccinated macaques compared to macaques pooled over the other groups, using two-tailed 

Wilcoxon rank sum tests. (Figure taken from Hansen et al., Science 340(6135), 1237874 (2013) [278].
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2. Main aims of this thesis 

In our previous studies, we were able to establish RhCMV as an in vivo model system for HCMV 

infection, and more importantly, we were able to establish RhCMV as a new viral delivery vector 

for T-cell vaccines against SIV and potentially against a wide range of different other deadly 

human pathogens [353, 359]. Our generated data was so promising, that the main focus now shifted 

towards the generation of an attenuated viral vaccine vector. This RhCMV mutant should still have 

the capability of inducing a strong T-cell response against the virus as well as against the inserted 

transgenes and should still re-activate occasionally to re-stimulate the virally induced T-cells to 

keep them in effector memory phenotype (TEM) instead of allowing them to progress to central 

memory T-cells (TCM). On the other hand, it should demonstrate reduced viral shedding to preclude 

transmission from animal to animal and most importantly, should not display any signs of 

pathogenesis even in the immunocompromised host, a point highly important for FDA approval 

of a potential HCMV counterpart of our RhCMV model virus for future human clinical trials. 

Attenuation of our viral delivery vectors should be achieved by generating deletion mutants 

lacking genes needed for efficient viral replication, effectively slowing down the viral replication 

and spread in vivo. As a result, the host’s immune system should be able to control the virus better, 

and should be capable to control the virus before it can cause any detectable medical condition. 

The reduced viral replication should also lead to reduced shedding of the virus in saliva and urine 

leading to significantly diminished horizontal transmission between animals. The first step in 

generating targeted viral deletions is actually a step back. Given the relative novelty of the RhCMV 

model system and the very limited use in the scientific community due to money restraints and 

lack of accessibility, the virus is not well characterized and further detailed characterization of the 

viral genome and the viral coding capacity is needed to generate a reliable genome map of RhCMV 

that can be used as a starting point for all further recombineering steps. To achieve this, the only 

existing RhCMV BAC of strain 68-1 has to be fully sequenced and the preliminary open reading 

frame (ORF) annotation has to be re-analyzed and either verified or dismissed for every single 

ORF. After generating the new viral genome map, target proteins can be chosen for deletion to 

create attenuated viral mutants. An import prerequisite for every potential RhCMV candidate ORF 

is, that it has to have an HCMV homologue, because RhCMV naturally only serves as a model 

system for HCMV and all the data generated in our model system must be translatable into HMCV 

http://dict.leo.org/ende/index_de.html#/search=prerequisite&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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for future human clinical trials, which would exclude 40% of all annotated RhCMV ORFs [343]. 

Many different levels of attenuation can be achievable. Slight attenuation should lead to a vector 

that should be easily propagated in tissue culture to high viral titers, but this level of attenuation 

might not be sufficient to achieve enhance safety in vivo. This could be achieved by deleting a 

gene with higher importance during viral replication leading to a more attenuated virus, but the 

problem here might be the viral propagation in vitro, which might have to be achieved by 

complementing the virus in trans on a stable, complementing cell line. Lastly, the highest level of 

attenuation could be achieved by deleting a gene essential for viral replication. Such a mutant 

would have to be grown on a complementing cell line, creating a single step virus that generates 

infectious viral particles on complementing cells with high efficiency but is unable to generate 

infectious particles on non-complementing cells or in vivo. Although examples for single step 

viruses in CMV exist (i.e. gL deletion mutants in MCMV [361] and RhCMV [362]) it is not known 

whether these viruses are capable of creating a persistent infection in vivo, or if this level of 

attenuation will lead to an immediate clearance of the virus from the infected host. In a first step 

we will focus on the generation of mildly and moderately attenuated mutant viruses by deleting 

the major viral tegument proteins pp65a and b or pp71. These viral protein serve not only as 

structural proteins in the viral tegument, but also play an important role in the evasion of the 

intrinsic- and innate immune response immediately after viral infection of the host cell [363]. The 

resulting deletion mutants should show significant attenuation in vivo hopefully leading to better 

control of the viral vectors by the host immune response leading to improved safety.
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3.1 Abstract 

Cytomegaloviruses are highly host restricted, resulting in cospeciation with their hosts. As a 

natural pathogen of rhesus macaques (RM), rhesus cytomegalovirus (RhCMV) has therefore 

emerged as a highly relevant experimental model for pathogenesis and vaccine development due 

to its close evolutionary relationship to human CMV (HCMV). Most in vivo experiments 

performed with RhCMV employed strain 68-1 cloned as a bacterial artificial chromosome (BAC). 

However, the complete genome sequence of the 68-1 BAC has not been determined. Furthermore, 

the gene content of the RhCMV genome is unknown, and previous open reading frame (ORF) 

predictions relied solely on uninterrupted ORFs with an arbitrary cutoff of 300 bp. To obtain a 

more precise picture of the actual proteins encoded by the most commonly used molecular clone 

of RhCMV, we reevaluated the RhCMV 68-1 BAC genome by whole-genome shotgun sequencing 

and determined the protein content of the resulting RhCMV virions by proteomics. By comparing 

the RhCMV genome to those of several related Old World monkey (OWM) CMVs, we were able 

to filter out many unlikely ORFs and obtain a simplified map of the RhCMV genome. This 

comparative genomics analysis suggests a high degree of ORF conservation among OWM CMVs, 

thus decreasing the likelihood that ORFs found only in RhCMV comprise true genes. Moreover, 

virion proteomics independently validated the revised ORF predictions, since only proteins that 

were conserved across OWM CMVs could be detected. Taken together, these data suggest a much 

higher conservation of genome and virion structure between CMVs of humans, apes, and OWMs 

than previously assumed.  
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3.2 Introduction 

Human cytomegalovirus (HCMV), a member of the Herpesviridae subfamily Betaherpesvirinae, 

is a large DNA virus of about 235 kb [346] encoding approximately 165 different proteins [364]. 

It is widespread in the developing world, with infection rates of close to 100%, but is also very 

common in the developed world, where about 60% of the population is CMV positive [365]. CMV 

infection is generally asymptomatic in healthy, immunocompetent individuals but can cause severe 

diseases in immunodeficient patients. It is the major viral cause for congenital birth defects such 

as mental retardation and deafness in the United States [366]. HCMV can also cause disease in 

solid organ and bone marrow transplant recipients, where the virus can reactivate from either the 

transplanted organ or the CMV-positive recipient and lead to disease or graft rejection [367]. The 

Institute of Medicine (IOM) of the U.S. National Academy of Sciences declared the development 

of a CMV vaccine a high priority in 1999 [42]. However, attempts to develop a vaccine against 

HCMV have had limited success so far (for a recent review, see reference [368]. One of the 

challenges of vaccine development is that HCMV is strictly species specific and cannot infect 

immunocompetent animals that could serve as a model system. In fact, reports of CMVs infecting 

species other than their natural hosts are very rare and occur only under artificial circumstances 

such as laboratory infections or xenotransplantations [369-372]. There are no reports of proven 

natural zoonotic infections of humans by animal CMVs.  

Due to this species specificity, most current animal models employ CMVs that naturally 

infect the respective animal. Since the relatedness of CMVs generally mirrors the evolutionary 

relatedness of their hosts, many of the genes and gene families present in HCMV are absent in 

CMVs of small animals, thus limiting their usefulness in predicting the in vivo function of HCMV 

genes. The closest relatives to HCMV are CMVs of human primates. However, due to ethical and 

financial reasons, gorilla or chimpanzee models of CMV are not practical. Therefore, CMVs 

infecting nonhuman primate (NHP) species are the best alternative to those infecting small animals 

to study CMV pathogenesis and the establishment and maintenance of persistent infection [373]. 

In particular, rhesus CMV (RhCMV) has emerged as an attractive model for studying CMV 

infection, pathogenesis, and immunology [374, 375]. This model was further used for the 

development of CMV as a new vaccine vector platform against HIV [353, 359, 374]. In order to 

correlate results from in vivo studies using wild-type (WT) and recombinant RhCMVs with 

potential outcomes for HCMV, it is important to accurately predict the locations and potential 
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functions of open reading frames (ORFs) carried by RhCMV and their relationship to HCMV-

carried ORFs, as well as to have exact knowledge of the genome content of RhCMV used in each 

of the studies.  

Two different strains of RhCMV, 68-1 and 180.92, have been fully sequenced previously 

[319, 343], and partial sequences of various regions of the genome from low-passage-number 

isolates have been published [345]. However, many of the in vivo experiments performed to date, 

particularly those involving recombinant CMVs, employed RhCMV strain 68-1 cloned as a self-

excisable bacterial artificial chromosome (BAC) [344]. The previously determined RhCMV 68-1 

sequence was obtained by cosmid cloning from the original strain [343]. Since viable virus was 

not reconstructed from the individual cosmids, it is not known whether the respective genome 

sequence is infectious. During BAC cloning, a molecular clone of a selected virus strain is fixed 

as a genome and thus might differ in its genome content from the parental strain, which likely 

contains a mixture of molecular clones. For instance, the 68-1 BAC is known to contain a mutation 

in Rh61/Rh60, the RhCMV homologue of UL36, which is not present in the published RhCMV 

68-1 sequence [376]. Moreover, the extensive in vitro propagation required for BAC cloning might 

select for additional tissue culture adaptations compared to the original strain.  

For these reasons, we determined the full genome sequence of the RhCMV 68-1 BAC by 

whole-genome shotgun sequencing. Compared to the previously determined 68-1 sequence, 

several mutations in ORFs distributed across the entire genome were found and confirmed. To 

determine the potential impact of these mutations on the predicted function of RhCMV ORFs, we 

further reannotated the RhCMV genome by comparative genomics using recently completed 

CMVs of closely related Old World monkeys (OWM), thus creating a prototypical wild-type 

RhCMV sequence. We further experimentally verified the expression of a number of ORFs by 

proteomics. Our analysis revealed that RhCMV, as well as all other OWM CMVs, is much more 

closely related to ape and human CMVs than previously assumed, since almost all of the ORFs 

previously categorized as “RhCMV specific,” i.e., found exclusively in RhCMV, were rendered 

unlikely by this combined genomics, in silico, and proteomics approach. Most of the remaining 

ORFs are conserved in HCMV, and almost all RhCMV ORFs have closely related orthologues in 

OWM CMV genomes. The close relatedness to HCMV is also reflected in the fact that BAC-

derived RhCMV shows fibroblast adaptations that are remarkably similar to those of HCMV. In 

addition to the previously noted mutations in the RhCMV 68-1 orthologues of the endothelial cell 
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(EC) tropism-determining glycoprotein complex gH/gL/UL128/UL130/UL131A and the 

apoptosis inhibitor UL36, our analysis also suggests that all known RhCMV sequences and most 

OWM CMV sequences contain independent mutations in genes homologous to RL13, which was 

recently shown to limit HCMV growth in fibroblasts [303]. Despite these mutations, however, 

BAC-derived RhCMV is able to establish and maintain persistent infections upon experimental 

inoculation of CMV-naïve or CMV-positive rhesus macaques (RM) suggesting that persistent viral 

infection occurs despite multiple attenuating mutations.  
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3.3 Materials and Methods 

3.3.1 Cells, viruses, and reagents. Telomerized rhesus fibroblasts (TRFs) [377] were 

maintained in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum and 

were grown at 37°C in humidified air with 5% CO2. Generation of the RhCMV 68-1 BAC was 

previously described [344]. To derive the virus, TRFs were transformed via electroporation (250 

V, 950 μF) with BAC DNA and cytopathic effect (CPE) was observed after 7 to 10 days.  

 

3.3.2 454 sequencing and annotation of the BAC-cloned RhCMV 68-1 genome. RhCMV 68-

1 BAC DNA was prepared using the NucleoBond AX kit (Macherey-Nagel, Düren, Germany) 

following the manufacturer's instructions. 454 sequencing was carried out on a GS FLX instrument 

using titanium series chemistry by Eurofins MWG Operon (Huntsville, AL). Gap closure was 

performed by Sanger sequencing on an ABI 3730XL sequencer. The other genomes used in this 

study to annotate the RhCMV 68-1 BAC sequence were RhCMV 68-1 (accession number 

AY186194), RhCMV 180.92 (DQ120516), RhCMV CNPRC (EF990255), cynomolgus CMV 

(CyCMV) Ottawa (JN227533), SCMV GR2715 (FJ483968), simian CMV (SCMV) Colburn 

(FJ483969), SCMV Stealth virus 1 (U27883, U27627, U27469, U27770, U27471, and U27238), 

baboon CMV (BaCMV) OCOM4-37 (AC090446), chimpanzee CMV (CCMV) Heberling 

(AF480884), and HCMV Merlin (AY446894).  

 

3.3.3 RhCMV particle purification procedures. RhCMV 68-1 BAC-derived particles were 

purified as described before[18]. The virus was isolated from the culture medium of infected TRFs 

when the cells displayed maximal cytopathic effect. The cellular supernatants were first clarified 

by centrifugation at 7,500 × g for 15 min. The clarified medium was layered over a sorbitol cushion 

(20% d-sorbitol, 50 mM Tris [pH 7.4], 1 mM MgCl2), and virus was pelleted by centrifugation at 

64,000 × g for 1 h at 4°C in a Beckman SW28 rotor. The virus pellet was resuspended in TNE 

buffer (50 mM Tris [pH 7.4], 100 mM NaCl, and 10 mM EDTA). The virus particles were further 

purified by layering them over a discontinuous 5% to 50% Nycodenz (Sigma) gradient in TNE 

buffer and centrifuged at 111,000 × g for 2 h at 4°C in a Beckman SW 41 Ti rotor. The virion band 

in the gradient was isolated with a syringe through the side of the centrifuge tube, and the particles 

were pelleted in a Beckman TLA-45 rotor in a Beckman Optima TL 100 ultracentrifuge at 40,000 

× g for 1 h and washed twice with TNE buffer. The pellet was resuspended in TNE buffer, and 

http://jvi.asm.org/external-ref?link_type=GEN&access_num=AY186194
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electron microscopy was performed to confirm the purity of the sample. In order to assess the 

protein content of the purified virions, a denatured protein preparation was separated on a 

NuPAGE morpholinepropanesulfonic acid (MOPS) gradient gel (Invitrogen, Carlsbad, CA) and 

visualized by Coomassie brilliant blue and silver staining.  

 

3.3.4 Tryptic digestion of RhCMV particles. RhCMV particles were denatured in 8 M urea–

100 mM NH4HCO3–5 mM dithiothreitol (DTT) at 56°C for 30 min. The cysteine residues were 

then alkylated by adding iodoacetamide to a final concentration of 10 mM and incubating in the 

dark at room temperature for 2 h. The sample was then diluted 4-fold with 25 mM NH4HCO3, and 

CaCl2 was added to 1 mM. Methylated, sequencing-grade porcine trypsin (Promega, Madison, 

WI) was added at a substrate-to-enzyme ratio of 20:1 (mass/mass) and incubated at 37°C for 15 h. 

The digested peptides were cleaned up with C18 cartridges, as previously described [378].  

 

3.3.5 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Peptides 

were loaded onto capillary columns (75 μm by 65 cm; Polymicro) packed with C18 beads (3-μm 

particles; Phenomenex) connected to a custom-made 4-column liquid chromatography system. 

The elution was performed in an exponential gradient from 0 to 100% solvent B (solvent A, 0.1% 

formaldehyde; solvent B, 90% acetonitrile–0.1% formaldehyde) over 100 min with a constant 

pressure of 10,000 lb/in2 and a flow rate of ∼400 nl/min. Alternatively, the separation was 

performed in a nanoAcquity instrument (Waters) using a longer capillary column (75 μm by 100 

cm; Polymicro) with a gradient of 0 to 45% solvent B over 10 h at a constant flow rate of 150 

nl/min. Eluted peptides were analyzed online in a linear ion trap Orbitrap mass spectrometer (LTQ 

Orbitrap XL; Thermo Scientific, San Jose, CA). Peptides were measured over a 400 to 2000 m/z 

range, and the 6 most intense ions were selected for collision-induced dissociation (isolation width 

of 3 Da and 35% normalized collision energy) in the linear ion trap. Each parent mass was 

fragmented once before being dynamically excluded for 60 s. 

 

3.3.6 Data analysis. LC-MS/MS spectra were converted into DTA files using default parameters 

and submitted for SEQUEST (v27.12) [379] searches against the RhCMV open reading frames 

(275 sequences) or stop-to-stop reads (4,304 sequences, ≥30 amino acid residues), the Macaca 

mulatta Ensembl database (21,905 sequences, downloaded from www.ensembl.org on 15 

http://www.ensembl.org/
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November 2010), and 186 common contaminant sequences (downloaded from 

www.ncbi.nlm.nih.gov/protein in August 2006). All sequences were searched in both the correct 

and reverse orientations (i.e., for a total of 44,732 or 52,790 searched sequences). Parameters 

employed for searches were as follows: (i) 50 ppm and 1 Da for peptide and fragment mass 

tolerance, respectively; (ii) tryptic digestion; (iii) maximum of two missed cleavage sites; and (iv) 

cysteine carbamidomethylation and methionine oxidation as static and variable modifications, 

respectively. Peptide-to-spectrum matches were then filtered with a mass spectrum-generating 

function (MS-GF) score of ≤1 × 10−8, and each protein was required to have at least one peptide 

with an MS-GF score of ≤1 × 10−10, which resulted in less than 1% of reverse sequences. Protein 

abundances were estimated with the exponentially modified protein abundance index (emPAI) as 

previously described [380].  

 

3.3.7 Nucleotide sequence accession number. The final BAC sequence determined in this work 

was submitted to GenBank under accession number JQ795930.  

  

http://www.ncbi.nlm.nih.gov/protein
http://jvi.asm.org/external-ref?link_type=GEN&access_num=JQ795930
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3.4 Results 

3.4.1 Determining the full-length sequence of the RhCMV 68-1 BAC. 

The rhesus cytomegalovirus strain 68-1 was cloned as a self-excisable bacterial artificial 

chromosome [344]. The BAC-derived virus showed essentially the same growth kinetics as the 

parental strain in vitro and retained pathogenicity in vivo [344]. Furthermore, BAC-derived viruses 

used as vaccine vectors against simian immunodeficiency virus (SIV) established and maintained 

persistent infection as indicated by shedding from infected animals as well as long-term effector 

memory T cell responses indicative of the continuous presence of viral antigens ([359],[353]). 

Previously, a full-length sequence of RhCMV 68-1 was assembled from individually sequenced 

cosmids. To determine whether the molecular clone preserved as a BAC was identical to this 

parental strain, DNA of the RhCMV BAC was obtained from Escherichia coli (EL250) ([381]) 

and subjected to shotgun sequencing on a GS FLX instrument using titanium series chemistry 

(Eurofins MWG Operon, Huntsville, AL). The resulting DNA contigs were assembled in silico, 

and gap closure was performed by Sanger sequencing technology on an ABI 3730XL sequencer. 

The final BAC sequence was aligned against the published RhCMV 68-1 sequence (accession 

number AY186194), and the differences in the DNA sequences between the viral genomes were 

resequenced for independent confirmation. By this analysis, a total of 39 DNA changes in the 68-

1 BAC compared to the published 68-1 sequence were confirmed, of which 18 were substitutions, 

9 were deletions, and 12 were insertions (Table 1). Out of the 39 mutations detected, 31 were 

located in regions predicted to encode a viral protein, whereas 8 mutations were in noncoding 

regions. To distinguish between true mutations present in the BAC but not in the parental 68-1 

sequence and sequence differences due to errors in the published 68-1 sequence, we also compared 

the BAC sequence to the second fully sequenced RhCMV genome of strain 180.92 

(DQ120516)[319]. If the BAC sequence was identical to that of 180.92 but different from that of 

68-1, the change was considered a sequencing error in the previous 68-1 sequence. In contrast, if 

the BAC sequence differed from both the 68-1 sequence and the 180.92 sequence, the new 

sequence was considered a mutation acquired during molecular cloning of the BAC. According to 

this analysis, only 13 true mutations are present in the BAC-derived genome compared to the 

parental genome, i.e., 10 point mutations, 1 insertion of a single base, 1 insertion of two bases, and 

1 deletion of a single base. These mutations cause amino acid changes in the following ORFs: 

Rh08 (RL11 family), Rh13.1 (RL13), Rh61/Rh60 (UL36), Rh67.1 (UL41A), Rh72 (UL45), 

http://jvi.asm.org/external-ref?link_type=GEN&access_num=AY186194
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R152/Rh151 (UL119/UL118), Rh164 (UL141), Rh194 (US14), and Rh197 (US14) (Table 1; see 

Fig.S1A to I in the supplemental material). Overall, this result suggests that only a very limited 

number of changes occurred in the RhCMV genome despite extensive tissue culture and repeated 

plaque purification that occurred during BAC cloning.  

 

Change 
No. 

Nucleotide 
No. 

Change ORF AA 
Change 

Cause 

1 2487 G → A Rh01 G → E Sequencing Error 

2 3931 C → T Rh05 A → V Sequencing Error 

3 4642 G → A none none Sequencing Error 

4 4650 G → A none none Sequencing Error 

5 5369 C → T Rh07 silent Sequencing Error 

6 6126 G → A Rh08 silent Sequencing Error 

7 6327 A → - Rh08 Frameshift Mutation 

8 9869 - → C Rh10 Frameshift Sequencing Error 

9 9877 G → - Rh10 Frameshift Sequencing Error 

10 9958 - → A none none Sequencing Error 

11 10846 - → A none none Sequencing Error 

12 10951 T → - none none Sequencing Error 

13 12415 A → G Rh13.1 Stop → W Mutation 

14 12820 - → CT Rh13.1 Frameshift Mutation 

15 45935 C → - Rh57 Frameshift Sequencing Error 

16 48651 - → T Rh61/Rh60 Frameshift Mutation 

17 52900 C → A Rh67.1 W → C Mutation 

18 57844 C → T Rh72 E → K Mutation 

19 57848 C → T Rh72 C → Y Mutation 

20 78626 C → G Rh89 C → S Sequencing Error 

21 78687 G → T Rh89 Q → K Sequencing Error 

22 95620 C → - Rh100.1 Frameshift Sequencing Error 

23 98911 A → G none none Mutation 

24 153493 C → T Rh152/Rh151 W → Stop Mutation 

25 162589 – 162610 
- → 

AGACTAATTTGACCCGTCTCTC 
none none Sequencing Error 

26 169753 G → A Rh164 P → L Mutation 

27 184466 T → G none none Mutation 

28 202215 G → A Rh194 S → F Mutation 

29 204412 C → T Rh197 W → Stop Mutation 

30 206264 - → A Rh199 Frameshift Sequencing Error 

http://jvi.asm.org/content/86/17/8959.long#T1
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31 219638 T → - Rh216 Frameshift Sequencing Error 

32 219641 A → - Rh216 Frameshift Sequencing Error 

33 219642 C → - Rh216 Frameshift Sequencing Error 

34 219645 C → - Rh216 Frameshift Sequencing Error 

35 219728 - → G Rh216 Frameshift Sequencing Error 

36 219729 - → C Rh216 Frameshift Sequencing Error 

37 219730 - → T Rh216 Frameshift Sequencing Error 

38 219732 - → A Rh216 Frameshift Sequencing Error 

39 219733 - → C Rh216 Frameshift Sequencing Error 

 

Table 1: Changes in the nucleotide sequence of the RhCMV 68-1 BAC compared to the parental virus 

 

3.4.2 BAC-carried ORFs containing mutations. 

Mutations in BAC ORFs could be divided into two categories: terminal mutations that changed 

the length of a given ORF and internal mutations that resulted in single amino acid changes within 

protein sequences (Table 2). As described previously[376], a point mutation in Rh61/Rh60 of the 

BAC introduces a premature stop codon resulting in a truncated, nonfunctional protein. Rh61/60 

encodes the RhCMV homologue of UL36, also called viral inhibitor of caspase-8-induced 

apoptosis (vICA). The full-length RhCMV protein was shown to be fully functional, whereas the 

shortened mutant is not, leaving the virus vulnerable to induced premature apoptosis in vitro.  

 

ORF (RhCMV) ORF    (HCMV) 
bp 

RhCMV 
68-1 

AA 
RhCMV 

68-1 

bp 
RhCMV 

68-1 BAC 

AA 
RhCMV 

68-1 BAC 

Rh08 RL11 family 516 171 507 168 

Rh13.1 RL13 300 99 969 322 

Rh61/Rh60 UL36 1416 471 765 254 

Rh67.1 UL41A 240 79 240 79 

Rh72 UL45 2550 849 2550 849 

Rh152/Rh151 UL119/UL118 1272 423 1212 403 

Rh164 UL141 1293 430 1293 430 

Rh194 US14 834 277 834 277 

Rh197 US14 726 241 702 233 

 

Table 2: Nucleotide changes affecting the lengths or sequences of predicted ORFs in BAC-derived RhCMV 68-1 
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Rh08 and Rh13.1, two members of the viral RL11 family, contain mutations in the RhCMV 

68-1 BAC. Since the RL11 family of proteins shows a very high degree of sequence variability 

even within a CMV species [382], the most closely related HCMV protein for Rh08 is difficult to 

define. The highest degree of homology is displayed by HCMV UL1, a predicted glycoprotein 

with unknown function. Figure S1A in the supplemental material shows a comparison of the Rh08 

proteins encoded by the RhCMV 68-1 BAC, the RhCMV 68-1 virus, and the RhCMV 180-92 

strain. The N-terminal portion of the protein is almost completely conserved between all 

sequences, whereas the C-terminal tail is entirely different in all published sequences. This finding 

suggests that the N terminus is functionally more important.  

Rh13.1 contains an A → G substitution in the BAC, which mutates the ORF's stop codon 

into a tryptophan codon, prolonging the entire ORF to 969 bp, more than three times the length of 

the ORF carried by the original strain 68-1. The BAC-encoded Rh13.1 now displays a significant 

homology to HCMV RL13 in both length and sequence, whereas both RhCMV 68-1 and RhCMV 

180.92 seem to carry truncated versions of this ORF. A closer inspection of the 68-1 and 180.92 

Rh13.1 sequences suggests that each virus contains a premature stop codon due to a single-base-

pair substitution, since the Rh13.1 ORF continues beyond the stop codon, encoding a highly 

conserved protein sequence (Fig.15). Similarly, SCMV strain GR2715 contains a full-length RL13 

homologue, whereas SCMV Colburn encodes a truncated version of the protein due to a premature 

stop codon. Similar to the case for RhCMV, the Colburn ORF continues beyond the stop codon, 

encoding an RL13-homologous protein fragment that is almost identical to the protein sequence 

encoded by strain GR2715. For HCMV, it was recently demonstrated that full-length RL13 protein 

inhibits viral replication in fibroblasts [303], resulting in the rapid selection of nonfunctional RL13 

variants in vitro. Therefore, it seems likely that the truncated RL13 ORFs found in several OWM 

CMVs represent such fibroblast adaptation mutants. Interestingly, despite the fact that the RL13 

homologue carried by the BAC seems to be full length, it is likely nonfunctional since it contains 

multiple mutations that frameshift part of the protein's C terminus. As a result, the predicted amino 

acid sequence of this protein part differs substantially from those of all other RL13 proteins 

encoded by OWM CMVs (Fig.15). It was previously shown that the BAC-derived virus shows the 

same growth characteristics in fibroblasts as the parental 68-1 strain [344]. The fact that all three 

currently sequenced RhCMV genomes contain independent mutations in this ORF that likely 
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render it nonfunctional suggests that, similar to the case for HCMV RL13, native Rh13.1 likely 

limits growth in fibroblasts.  

 

Fig.15: Alignment of Rh13.1 (RL13) from different species of Old World monkey cytomegaloviruses. (A) RL13 is 

mutated in most Old World NHP CMV isolates. The Rh13.1 (RL13) ORFs of the RhCMV 68-1 BAC, RhCMV 68-1, 

RhCMV 180.92, SCMV GR2715, and SCMV Colburn were aligned. Conserved amino acids are shown in yellow, 

whereas nonconserved amino acids are shown in red. Truncations due to premature stop codons are shown in green. 

(B) RL13 is highly conserved in Old World NHP CMVs. Stop codons were ignored for in silico translation, and an 

alignment of the resulting sequences is shown. A hypothetical consensus sequence for full-length Rh13.1 of RhCMV 

is also included. Both CLUSTAL format alignments were generated using MAFFT L-INS-i (v6.860b).  

 

Two members of the US12 family of proteins, Rh194 and Rh197, show mutations in the 

BAC compared to either 68-1 or 180.92 (see Fig.S1H and I in the supplemental material). Whereas 

the mutation in Rh194 is a single point mutation leading to a serine-to-phenylalanine substitution, 

Rh197 is truncated by 8 amino acids (aa) in the BAC due to point mutations resulting in a 

premature stop codon. Whether these mutations affect protein function is uncertain. The US12 

family is found only in primate CMVs [383] and encodes predicted seven-transmembrane-domain 

proteins that have some features in common with G-protein-coupled receptors [384]. Both Rh194 

and Rh197 are homologues of HCMV US14 which is additionally homologous to Rh195 and 

Rh196. Since US14 and other US12 family members locate to the cytoplasmic virion assembly 
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compartment (AC) in some cells [385], a possible role for these proteins in the process of virion 

maturation and egress is suspected.  

The ORFs Rh152/Rh151 encode the RhCMV homologue of the spliced viral Fcγ receptor 

UL119-UL118 (gp68) of HCMV [257]. In the BAC, a C → T substitution results in a premature 

stop codon, thus truncating the predicted Rh152/Rh151 protein by 20 aa. It is possible that this 

truncation affects the function of BAC-derived Rh152/Rh151, which is expected to be involved in 

counteracting the humoral immune response, similarly to gp68 of HCMV [300, 301].  

Three additional ORFs in the RhCMV 68-1 BAC show internal point mutations: Rh67.1, 

Rh72, and Rh164, the homologues of HCMV UL41A, UL45, and UL141, respectively (see 

Fig.S1D, E, and G in the supplemental material). UL41A is a protein of unknown function with a 

potential transmembrane domain [346]. UL45 of HCMV is homologous to the R1 subunit of the 

cellular ribonucleotide reductases and forms a complex with the cellular R2 subunit, effectively 

forming a mixed viral-cellular enzyme [386]. HCMV lacking UL45 showed a growth defect at 

low multiplicity of infection (MOI) in fibroblasts [387] but not at high MOI in endothelial cells 

[388], whereas the MCMV homologue of M45 is essential for viral replication in endothelial cells 

[389]. UL141 mediates NK cell immune evasion by downregulating CD155 and CD112, ligands 

of the NK cell receptors DNAM-1 (CD226) and TACTILE (CD96) [390, 391]. The UL141 

homologue Rh164 is absent in RhCMV 180.92 due to genomic rearrangements during fibroblast 

adaptation [319, 345]. Whether any of the point mutations found in the BAC-derived RhCMV 

genome affects protein function remains to be determined.  

 

3.4.3 Reevaluating the RhCMV genome. 

We further wanted to determine which ORFs were mutated in the BAC compared to a prototypical 

wild-type RhCMV sequence. To assemble the ORF map of such a RhCMV prototype, we initially 

recapitulated previous ORF identification methods using a 300-bp cutoff and the NCBI software 

ORF Finder [392] for full-length RhCMV genomes (strain 68-1 [343] and strain 180.92 [319]) and 

the ULb′ region of low-passage-number isolate RhCMV CNPRC (accession number EF990255) 

[345]. By this count, RhCMV 68-1 had 268 predicted ORFs, RhCMV 180.92 had 261 predicted 

ORFs, and the ULb′ region from the low-passage-number isolate of RhCMV had 19 ORFs (see 

Fig.S2 in the supplemental material). This analysis predicted 12 new genes, including Rh00 and 

Rh00.1 in RhCMV 180.92 and Rh142.4 and Rh220.1 in RhCMV 68-1. The new ORFs Rh00.2, 
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Rh94.1, Rh96.1, Rh228.1, and Rh231 are predicted for both RhCMV strains, whereas ORFs 

Rh163.1, Rh165.1, and Rh166.1 are conserved between RhCMV 68-1 and the ULb′ region of the 

low-passage-number isolate RhCMV CNPRC as described previously [345]. However, the total 

number of ORFs predicted by this method for either RhCMV strain was substantially higher than 

that for any other published CMV genome (HCMV [347], CCMV [346], mouse CMV [MCMV] 

[348], rat CMV [RCMV] [349], and guinea pig CMV [GPCMV] [350, 351]). Moreover, this 

annotation predicted that eight ORFs were unique to RhCMV 68-1 (Rh09, Rh39, Rh61, Rh93, 

Rh94, Rh142.4, Rh153, and Rh220.1) and that four ORFs were unique to RhCMV 180.92 (Rh13.1, 

Rh106.1, Rh142.3, and Rh178.2). This analysis raised the question whether RhCMV indeed had 

a higher number of ORFs than other primate CMVs and whether different strains of RhCMV 

differed substantially in their ORF content or whether these RhCMV-specific and strain-specific 

ORFs were, in fact, artifacts of the annotation method used and in reality do not encode proteins.  

 

 

Fig .16: Phylogenetic trees of the major capsid protein (UL48) and the viral DNA polymerase (UL54) of Old World 

primate cytomegaloviruses. MCMV K181 M48 (A) (CAP08095) and M54 (B) (CAP08103) were used for comparison 

in the graphs. The phylogenetic trees were generated using Geneious Pro 5.5.2.  
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Fig.17: Conservation of RhCMV ORFs compared to those of OWM, chimpanzee, and human CMVs. Comparison of 

different RhCMV and OWM CMV genomes reveals the hypothetical ORF composition of wild-type RhCMV. 

Conserved ORFs are shown in green. ORFs in yellow are members of the RL11 family in HCMV, a gene family that 

is conserved albeit highly polymorphic so that homologies between single family members cannot be clearly assigned. 

Genes in red are either absent from the indicated OWM CMVs or not conserved in human and great ape CMVs. Gray 

indicates missing sequence information. Shown in light green are two ORFs (BaCMV UL30 and UL144) that show 

strong sequence homology to their respective RhCMV and HCMV homologues but lack a start codon. ORFs 

highlighted in orange in the leftmost column were identified by proteomics in RhCMV virions.  
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To obtain a higher level of confidence in our ORF predictions, we took advantage of the 

recently determined full-length genome sequences for CMVs from OWM species that are 

evolutionarily closely related to rhesus macaques: cynomolgus CMV Ottawa (JN227533), simian 

CMV GR2715 (FJ483968), simian CMV Colburn (FJ483969), simian CMV Stealth virus 1 

(U27883, U27627, U27469, U27770, U27471, and U27238), and baboon CMV OCOM4-37 

(AC090446) (Fig.16). When the ORF predictions for the two RhCMV strains were compared to 

the ORF predictions for these other OWM CMVs (Fig.17), it immediately became apparent that 

almost all of the “RhCMV-specific” ORFs (i.e., ORFs only found in RhCMV) were not conserved 

in other OWM CMVs. Moreover, these RhCMV-specific ORFs were mostly or entirely carried 

within other ORFs on either the same or the opposite DNA strand of the RhCMV genome (Fig.17; 

see Fig.S2 in the supplemental material). Furthermore, most of these RhCMV-specific ORFs were 

rather small, with an average size of 417 bp. Therefore, we conclude that these ORFs most likely 

do not represent true genes, i.e., that they do not encode unique proteins. Removal of these small 

and overlapping ORFs from the ORF list results in a prediction of 167 ORFs for RhCMV strain 

68-1 and 160 ORFs for RhCMV 180.92. Taking this together with the BAC sequence and the 

RhCMV CNPRC sequence, it was now possible to generate a new ORF map for a prototypical 

wild-type RhCMV that contains 172 ORFs (Fig.18). Two different nomenclatures are in use for 

the various ORFs annotated in RhCMV [319, 343]. In Fig.18 we used the nomenclature introduced 

by Hansen et al. [343] for all ORFs. For ORFs first described by Rivailler et al. [319] or by us in 

this study, we chose names according to the original nomenclature by Hansen et al. to simplify the 

nomenclature. Additionally, a nomenclature is used that was recently introduced by Davison et al. 

[3] to underline the close relationship of most RhCMV proteins to their HCMV or OWM CMV 

homologues. Comparison of the prototypical RhCMV genome to those of chimpanzee CMV 

(Heberling, AF480884) and human CMV (Merlin, AY446894) reveals that 80% of the RhCMV 

ORFs have identifiable homologues in HCMV or CCMV and that 90% of the RhCMV ORFs show 

conservation at least at the protein family level (RL11 family) (Fig.17). In fact, almost every ORF 

carried between Rh31 (UL13) and Rh164 (UL141) of RhCMV is homologous to a corresponding 

gene in ape and human CMVs. Only two regions within the RhCMV genome diverged 

substantially from CMVs of humans and apes. The first region comprises the RL11 gene family, 

which shows an extremely high sequence variation even within a given CMV species such as 

HCMV [382]. The second unique genome region in RhCMV is homologous to the ULb′ region of 
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HCMV. This region contains a number of genes found only in OWM CMVs between the ORFs 

encoding homologues of UL141 and US1. In HCMV, this region also contains internal repeats that 

are lacking in RhCMV (e.g., IRS1) (Table 3). As previously described, laboratory strains of both 

HCMV and RhCMV display multiple deletions and mutations in this region due to fibroblast 

adaption [345]. Although diverging substantially between RhCMV and great ape CMVs, this area 

of the genome is highly conserved within the OWM CMVs with the exception of Rh165. The 

ORFs Rh165 and Rh166 are conserved among all RhCMV strains and also among the closely 

related CyCMV strain Ottawa, whereas SCMV and BaCMV carry only one copy of this gene, 

which shows stronger homology to Rh166 than to Rh165. As shown in Fig.19, Rh166 and Rh165 

are closely related and most likely represent the result of a recent gene duplication event. The 

Rh165 ORF is thus the only bona fide RhCMV-specific ORF when our filtering criteria are 

applied. Rh166 shows weak homology to UL133 and UL138 of HCMV [393]. The UL133-UL138 

locus in HCMV has been implicated in latency [113], and it has been hypothesized that the region 

Rh166-Rh171 performs a similar function in RhCMV [393]. However, the functions of these genes 

as well as those of most OWM CMV-specific genes in the ULb′ region remain to be determined. 

The only gene product in this region that has been characterized is Rh178 (VIHCE), which was 

shown to inhibit expression of the major histocompatibility complex class I (MHC-I) heavy chain 

[279, 280]. This region also carries several ORFs encoding predicted chemokines [345, 394]. 

HCMV ORF Function Reference 

RL5A no known function  

RL6 no known function  

RL8A no known function  

RL9A no known function  

RL10 no known function  

RL11 type 1 membrane protein; binds IgG Fc; involved in immune regulation 
Lilley et al., [256]; Atalay et al., 

[257] 

RL12 RL11 family, no known function  

UL1 RL11 family, no known function  

UL2 no known function  

UL4 RL11 family, no known function  

UL5 RL11 family, no known function  

UL7 RL11 family, no known function  

UL8 RL11 family, no known function  

UL9 RL11 family, no known function  

UL10 RL11 family, no known function  

UL15A no known function  
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UL16 
NK-cell evasion through intracellular retention of NKG2D ligands MICB, 

ULBP1, and ULBP2 
Dunn et al., [236]; Welte et al., [395] 

UL18 
MHC-I homologue, NK cell inhibition through binding  to the inhibitory NK 

cell receptor LIR-1 

Cosman et al., [396]; Reyburn et al., 

[397]; Prod’homme et al., [233] 

UL22A binds CC chemokine RANTES; involved in immune regulation (predicted)  

UL30A no known function  

UL74A no known function  

UL147A no known function  

UL142 
NK-cell evasion through intracellular retention of NKG2D ligands MICA 

and ULBP3 

Chalupny et al., [238]; Bennett et al., 

[398] 

UL140 no known function  

UL139 

highly polymorphic type I membrane glycoprotein; shared sequence 

homology with human CD24, a signal transducer modulating B-cell 

activation responses 

Qi et al., [399]; Bradley et al., [400] 

UL138 needed to establish latency in vitro in CD34  hematopoietic progenitor cells Goodrum et al., [113] 

UL136 support of pUL138 expression Grainger et al., [114] 

UL135 support of pUL138 expression Grainger et al., [114] 

UL133 support of pUL138 expression Grainger et al., [114] 

UL148A no known function  

UL148B no known function  

UL148C no known function  

UL148D no known function  

UL150 no known function  

UL150A no known function  

IRS1 

transcriptional activator; blocks phosphorylation of eIF2alpha and host 

shutoff of protein synthesis; binds dsRNA; involved in gene regulation; 

involved in translational regulation 

Hakki et al., [401] 

US7 no known function  

US9 
cytoplasmic glycoprotein dispensable for growth in tissue culture, no 

undisputed function 
Huber et al., [402]; Mandic et al., 

[403] 

US15 
type 3 membrane protein; 7 transmembrane domains; possibly involved in 

virion morphogenesis (predicted) 
 

US16 
type 3 membrane protein; 7 transmembrane domains; possibly involved in 

virion morphogenesis (predicted) 
 

US27 
7 transmembrane domains; putative chemokine receptor; possibly involved 

in intracellular signaling (predicted) 
 

US33A no known function  

US34 Expressed, no known function Scott et al., [404] 

US34A no known function  

 

Table 3: HCMV ORFs not found in rhesus or OWM CMVs 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Scott%20GM%22%5BAuthor%5D
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Fig.18: Annotated genome map of a hypothetical low-passage-number RhCMV isolate. The genome of this 

hypothetical RhCMV strain was generated as a consensus sequence between the fully sequenced strains 68-1 and 

180.92 and the ULb′ region of low-passage-number isolate RhCMV CNPRC. It contains all ORFs found in a low-

passage-number RhCMV isolate in their correct order. The nomenclature is based on the original nomenclature 

introduced by Hansen et al. ([359]), whereas the nomenclature in parentheses was newly introduced by Davison et al. 

([3]) and was slightly modified by us. The genomic map was generated using Geneious Pro 5.5.2.  

 

 

Besides the RL11 and ULb′ regions, only a small number of predicted genes are unique to the 

OWM CMV subfamily. One characterized gene is Rh10 (vCOX-2), a viral homologue to the gene 

for the host cyclooxygenase-2 enzyme (COX-2), which is a member of the eicosanoid synthetic 

pathway. Unlike HCMV ([405], [406],[407]), RhCMV does not induce cellular COX-2 

expression, suggesting that the virus encodes its own copy of the protein to compensate for this 

lack. vCox-2 was shown to facilitate growth in endothelial cells ([352]). Other ORFs not found in 

great ape and human CMVs are Rh04, Rh188, Rh228, and Rh228.1, which have not been 

characterized to date.  
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Fig.19: Phylogenetic tree of the OWM CMV Rh165/Rh166 gene family. UL138 of HCMV strain Merlin was used as 

an outgroup because it showed some homology to the Rh165/Rh166 gene family. The phylogenetic tree was generated 

in Geneious Pro 5.5.2. 

  

HCMV-specific ORFs that are absent in RhCMV are summarized in Table 3, using the 

HCMV strain Merlin as the prototype HCMV strain [347, 364]. While most gene families are 

conserved between ape CMVs and monkey CMVs, individual family members might differ. 

Examples are the RL11, UL146/147, and US12 families of proteins. The latter comprises 10 

members in HCMV from US12 to US21, of which the ORFs UL15 and UL16 have no homologue 

in RhCMV. No function is known for the two proteins encoded by these ORFs.  

Interestingly, all OWM CMVs lack several known HCMV antagonists of NK cell function, 

including UL16, which retains the NKG2D ligands MICB, ULBP1, and ULBP2 [236, 395], 

UL141, which retains the NKG2D ligands MICA and ULBP3 [238, 398, 408], and UL18, which 

encodes an MHC-I homologue that binds to the inhibitory NK cell receptor LIR-1 [233, 396, 397]. 

Since evasion of NK cell immunity is conserved in MCMV [409], it is likely that OWM CMV-

specific genes will encode NK cell evasins.  
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In addition to the HCMV-specific ORFs absent from WT RhCMV, the RhCMV 68-1 BAC 

lacks the endothelial cells tropism genes Rh157.5 (UL128) and Rh157.4 (UL130) [345], the above-

mentioned UL36, and the viral chemokine genes Rh158.2 (vCXCL4), Rh158.3 (vCXCL3), and 

Rh161.1 (vCXCL2) (Fig.20).  

 

 

Fig.20: Annotated genome map of the RhCMV 68-1 BAC. The genome map shows the genomic organization of the 

RhCMV 68-1 BAC. Viral ORFs are shown in orange, and BAC genes are shown in green. Approximate locations of 

mutations described in Table 1 are shown as red arrows, and RhCMV ORFs mutated compared to the RhCMV 68-1 

parental virus sequence are shown in pink. The ORF annotation is based on the filtered ORF analysis discussed in the 

text. The sequence is available in GenBank (accession number JQ795930). The genome map was generated using 

Geneious Pro 5.5.2.  

 

3.4.4 Validating ORF predictions by proteomics. 

To verify our ORF predictions in an unbiased manner, we determined the proteome of RhCMV 

virions. While this approach is limited to verifying ORFs that are incorporated into virions, 

http://jvi.asm.org/content/86/17/8959.long#T1
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previous analysis of HCMV (59 proteins) ([18]) and MCMV (58 proteins) ([410]) virions revealed 

that more than a third of all predicted ORFs are contained in virus particles.  

 

Fig.21: Isolation and purification of RhCMV virions. (a) RhCMV virions were purified from the supernatant of 

telomerized rhesus fibroblasts infected with BAC-derived RhCMV 68-1 (MOI of 0.01) until complete cytopathic 

effect was reached (10 days). Virus particles were separated and concentrated using a Nycodenz gradient as described 

in Materials and Methods. The single band isolated from the gradient was enriched for herpesvirus-like particles of 

170 nm to 200 nm with an icosahedral capsid of 80 nm to 90 nm in diameter as revealed by electron microscopy. (b) 

Gradient-purified virus particles were highly enriched and contained only minor contaminations of cellular debris. No 

dense bodies or NIEPs could be identified. (c) Purified virions were lysed, and 10 μg of proteins were 

electrophoretically separated using NuPAGE MOPS gradient gels and visualized by Coomassie blue or silver staining.  
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Fig.22: Protein composition of BAC-derived RhCMV 68-1 virions. (A) Shown are all proteins identified in at least 

one of six MS/MS runs (two biological repeats and four technical repeats; see Fig.S2 in the supplemental material). 

Red bars indicate the ranked average abundance relative to total virion proteins of all virus proteins identified in three 

repeat runs of the same sample (repeats B01, B02, and B03 of biological repeat B). The standard deviation (STDEV) 

is shown for the mean abundance of the three technical repeats. Proteins identified in other experiments are included 

but were not quantified (NQ). If applicable, the HCMV nomenclature for the identified proteins is shown in addition 

to the RhCMV nomenclature. (B) The proteins shown in panel A were grouped according to function and/or 

localization within the virion.  

 

The RhCMV BAC-derived virions were isolated from the supernatant of infected 

telomerized rhesus fibroblasts as described earlier for HCMV ([18]). Virions formed a single band 

on the Nycodenz gradient (Fig.21a), and the most abundant proteins contained in this fraction 

migrated at very similar molecular weights as and displayed abundances comparable to those of 

previously reported HCMV virion proteins upon NuPAGE (Fig.21c) ([18]). Additionally, we 

performed electron microscopy (EM) to visualize the particles and to verify the purity of the 

sample (Fig.21a and b). RhCMV virions displayed a diameter ranging from 170 nm to 200 nm, 

with an icosahedral capsid of about 80 nm to 90 nm in diameter. While some cell debris 

contamination was visible (Fig.21b), all viral particles were highly similar in appearance, 

indicating that the virion preparation was rather homogeneous. 
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The samples were then analyzed by one-dimensional (1D) LC-MS/MS and searched 

against stop-to-stop translated sequences of the RhCMV 68-1 BAC genome for ORFs encoding 

proteins of ≥30 aa. The virion preparation was analyzed by MS/MS upon elution from a 0 to 100% 

acetonitrile gradient over 100 min. This analysis was repeated three times, and the protein content 

in each experiment was quantified. The average percentage of these results is shown in Fig.22 (red 

bars). Additional proteins that were identified in independent virion preparations or upon MS/MS 

from samples eluted over a longer time period (10 h) from a 0 to 40% nanoAcquity gradient are 

also shown, but these proteins were not included in the quantification. In total, peptides of 70 

different viral proteins could be identified in at least one of the MS/MS analyses (Fig.22A; see 

Tables S1 and S2 in the supplemental material). All of these proteins were predicted by the filtered 

ORFs (Fig.20), with the exception of Rh164.1, which was not included in our prediction due to its 

small size. However, similar to the case for other predicted ORFs, Rh164.1 is highly conserved in 

OWM CMVs (O11). In contrast, “RhCMV-specific” ORFs predicted by ORFinder (see Fig.S2 in 

the supplemental material) were notably absent from the virion proteome. The proteomics analysis 

thus further supported our conclusion that most, if not all, RhCMV ORFs are shared among OWM 

CMVs. Of the 70 proteins identified in RhCMV virions, 61 are homologous to HCMV, and these 

homologues corresponded to 99 mol% of virion proteins. Thus, RhCMV virions consist largely of 

proteins conserved in HCMV. The most abundant protein was pp65b (Rh112, UL83b). With 7.24 

mol%, pp65b was almost twice as abundant as the second pp65 homologue, pp65a (Rh111, 

UL83a), with 3.76 mol%. Interestingly, this correlates with the finding that Rh112 induces stronger 

humoral and cellular immune responses in vivo than Rh111 [343, 411]. Overall, 22.03 mol% of 

the proteins can be categorized as capsid proteins, 45.09 mol% as tegument proteins, 22.38 mol% 

as envelope or glycoproteins, and 5.58 mol% as proteins of the transcription-replication 

machinery, and 4.92 mol% are uncharacterized proteins with unknown function and localization 

(Fig.22B). These ratios are remarkably similar to ratios determined by Varnum et al. [18] for 

HCMV AD169, where the virion was comprised of 30% capsid proteins, 50% tegument proteins, 

13% envelope proteins, and 7% undefined proteins. The only major difference between HCMV 

and RhCMV is that capsid proteins were comprised of larger amounts of UL48A and UL80 (12.6% 

and 7.7%, respectively) in HCMV, whereas among the RhCMV capsid proteins they comprised 

only 2.34 mol% and 0.10 mol%. 
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3.5 Discussion 

By combining genomic sequencing, comparative genomics, and virion proteomics, we generated 

a simplified ORF map of rhesus CMV in general and of a molecular clone derived from strain 68-

1 in particular. This approach filtered out many ORFs previously annotated as RhCMV specific, 

resulting in a much larger percentage of RhCMV ORFs being homologous to HCMV ORFs than 

previous ORF annotations had indicated. Our results thus further support the notion that infection 

of rhesus macaques by RhCMV is the closest animal model for infection of humans with HCMV. 

Molecular cloning of viral strains as a BAC singles out a viral genome as the starting point 

for the generation of all subsequent recombinant viruses. Thus, any initial genomic variability that 

was present in the original isolate will be lost upon BAC cloning. Moreover, the in vitro 

manipulation and selection occurring during BAC cloning might further result in divergence from 

the BAC-derived genome of the parental sequence. However, the sequence relationship between 

parental CMV isolates and their BAC offspring has, so far, been studied in only one example: the 

HCMV isolate Merlin. In that instance, the BAC clone of Merlin contained 12 differences 

compared to the parental isolate [303]. For RhCMV, we concluded that the BAC-derived sequence 

contained 13 nucleotide differences compared to strain 68-1. Thus, it seems that the genetic 

variability present within a given CMV strain or isolate is rather limited and that BAC-derived 

molecular clones contain a very limited set of mutations. In contrast, recent deep-sequencing 

results for CMV genomes ex vivo revealed the presence of an unexpectedly complex mixture of 

viral genomes within a given host [412]. However, once an isolate is established in vitro, the 

genomic variability seems to be quite limited, consistent with a low error rate during genome 

replication.  

Interestingly, the adaptations that do occur as a consequence of adaptation to in vitro 

culture of CMV isolates in fibroblasts are remarkably similar in HCMV and RhCMV. Five of the 

12 mutations occurring in the Merlin BAC clustered in UL36 [303]. Similarly, the UL36 

homologue Rh61/Rh60 is mutated in the RhCMV BAC compared to the parental 68-1 strain 

([376]). The independent mutation of this gene upon BAC cloning in two different CMV species 

indicates that expression of UL36 might represent a growth disadvantage in vitro despite its 

antiapoptotic function. In addition, the Merlin BAC contained mutations in RL13, and repairing 

this gene decreased growth kinetics in fibroblasts [303]. The RhCMV BAC contained frameshift 

mutations in the RL13 homologue Rh13.1. Since this gene is truncated in the parental 68-1 strain, 
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it seems that several independent Rh13.1 mutants were present in the original isolate. A detailed 

analysis of HCMV adaptations to tissue culture revealed that RL13 is rapidly mutated ([413]) even 

when starting with a molecular clone [303]. Thus, RL13 seems to be rapidly selected against in 

both HCMV and RhCMV. Finally, the gene UL128 is mutated even prior to BAC cloning both in 

RhCMV and in many HCMV isolates, including Merlin, as discussed elsewhere [414]. Thus, 

compared to their original wild-type strains, BAC clones of both HCMV and RhCMV share 

mutations in three loci: RL13, UL36, and UL128. In previous work, two of these genes, UL36 and 

UL128, were repaired in RhCMV [415], and it was demonstrated that the repaired virus grew 

better in epithelial cells. In contrast, repair of RL13 would be expected to decrease the ability of 

RhCMV to grow in tissue culture as reported for HCMV.  

The impact of these tissue culture adaptations on viral pathogenesis in vivo is not known 

for HCMV, but a recent side-by-side comparison of BAC-derived RhCMV and a low-passage-

number isolate of RhCMV revealed clear signs of attenuation, such as lower plasma titers and 

shedding [416]. However, these attenuations do not prevent BAC-derived RhCMV vectors from 

establishing persistent infections, even in CMV-positive hosts, as evident from persistent immune 

stimulation and long-term, low-level shedding of RhCMV expressing heterologous antigens [353, 

359]. Moreover, RhCMV 68-1 and BAC-derived vectors retain their pathogenicity in fetal 

macaques [417]; P. A. Barry, unpublished data). Therefore, it seems that while tissue culture 

adaptations render BAC-derived viruses less fit, they still seem to retain the ability to establish and 

maintain persistent infection.  

With a total of 173 ORFs, the number of ORFs in the simplified ORF map of RhCMV is 

now in the same range as that reported for other primate CMVs. As shown previously for CCMV 

and HCMV [346], the comparison of closely related CMV genomes greatly facilitates genome 

annotations. By taking into account recently completed full genome sequences of CMVs from Old 

World monkey (OWM) species such as African green monkey (Cercopithecus aethiops), baboon 

(Papio anubis), and cynomolgus macaque (Macaca fascicularis) [321, 418], we constructed a 

hypothetical WT genome. This was facilitated by the fact that the genomes of OWM CMVs are 

highly conserved across different species, with only very minor differences. Most previously 

annotated RhCMV-specific genes are now absent from our prediction. We believe that these ORFs 

are unlikely to encode unique proteins, since most of them are shorter than average and are carried 

within other ORFs on either the same or the opposite DNA strand. Moreover, all ORFs identified 
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by proteomics analysis are conserved among OWM CMVs despite the fact that the peptides were 

compared to an unbiased database consisting of stop-to-stop translated sequences of the RhCMV 

68-1 BAC genome for ORFs encoding ≥30 aa. While it is conceivable that virion proteomics shows 

a bias toward highly conserved ORFs compared to proteomics of the infected cell, our analysis 

detected more than one-third of the predicted ORFs, including many ORFs not conserved in ape 

or human CMV or with low homology. Thus, while the proteomics analysis does not formally rule 

out that RhCMV-specific ORFs exist, the results suggest that such ORFs must be rather rare.  

Taken together, this analysis suggested a high degree of conservation between OWM 

CMVs and HCMV, not only with respect to genome structure but also for the virion composition, 

since the relative abundances of many proteins and the abundance rankings of the proteins were 

very similar in RhCMV 68-1 and HCMV AD169. Moreover, some of the differences detected 

might be due to experimental differences in virion preparations and data analysis. For instance, the 

large amounts of UL80.5 detected in HCMV virions might indicate the presence of noninfectious 

particles (NIEPs) in the HCMV virion preparations, since NIEPs were not separated by the 

gradient used. Moreover, the method we used to determine the relative abundance of proteins in 

our sample was different from the technique used in the previous study. Whereas Varnum et al. 

[18] averaged the intensities of the Fourier transform ion cyclotron resonance (FTICR) MS spectra 

of the most abundant peptides for each protein to determine the relative quantities of the viral 

proteins, we transformed our raw peptide data into molarities and ranked the proteins as moles 

percent of the entire protein amount, taking into account only viral proteins.  

In summary, the combined analysis of BAC sequence, comparative genome analysis, and 

virion proteomics performed here revealed a much closer evolutionary relationship between rhesus 

and human CMVs than previously assumed. These results thus further validate the importance of 

RhCMV as a model system for HCMV, because the close genomic relationship facilitates 

deciphering the role of individual genes and gene families found only in primate CMVs for 

infection, spread, and pathogenesis as well as for shaping and evading the host's immune response. 

Together with the close relationship of the host species, this similarity aids the development of 

therapeutic and preventative approaches for HCMV as well as the development and evaluation of 

novel CMV-based vaccine vector systems.  
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4.1 Abstract 

The most abundantly produced virion protein in human cytomegalovirus (HCMV) is the 

immunodominant phosphoprotein 65 (pp65), which is frequently included in CMV vaccines. 

Although it is nonessential for in vitro CMV growth, pp65 displays immunomodulatory functions 

that support a potential role in primary and/or persistent infection. To determine the contribution 

of pp65 to CMV infection and immunity, we generated a rhesus CMV lacking both pp65 orthologs 

(RhCMVΔpp65ab). While deletion of pp65ab slightly reduced growth in vitro and increased 

defective particle formation, the protein composition of secreted virions was largely unchanged. 

Interestingly, pp65 was not required for primary and persistent infection in animals. Immune 

responses induced by RhCMVΔpp65ab did not prevent reinfection with rhesus CMV; however, 

reinfection with RhCMVΔUS2-11, which lacks viral-encoded MHC-I antigen presentation 

inhibitors, was prevented. Unexpectedly, induction of pp65b-specific T cells alone did not protect 

against RhCMVΔUS2-11 challenge, suggesting that T cells targeting multiple CMV antigens are 

required for protection. However, pp65-specific immunity was crucial for controlling viral 

dissemination during primary infection, as indicated by the marked increase of RhCMVΔpp65ab 

genome copies in CMV-naive, but not CMV-immune, animals. Our data provide rationale for 

inclusion of pp65 into CMV vaccines but also demonstrate that pp65-induced T cell responses 

alone do not recapitulate the protective effect of natural infection. 
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4.2 Introduction 

Human cytomegalovirus (HCMV) persistently infects most of humanity [419]. While the vast 

majority of these infections are asymptomatic and not associated with any pathologic consequence, 

HCMV can cause serious disease in the setting of immune deficiency or immaturity, including 

late-stage AIDS, iatrogenic immune suppression (particularly, organ and stem cell 

transplantation), and fetal infection (where infection can cause hearing loss and mental retardation) 

[420, 421]. In maternal-to-fetal transmission and, to a certain extent, with transplantation, the most 

serious disease appears to arise in the setting of primary HCMV infection [421-423]. Therefore, 

vaccination has been proposed as potential intervention to ameliorate these poor outcomes [41]. 

Although it was initially thought that an effective HCMV vaccine might prevent acquisition of 

HCMV altogether, accumulating data indicate that even the potent natural immunity elicited by 

persistent HCMV infection of healthy subjects is, at best, only partially protective against 

superinfection [424]. Thus, conceptually, the most realistic goal of an HCMV vaccine would be to 

establish a similar level of immunity as present in typical HCMV+ individuals, in HCMV– females 

prior to pregnancy, or all HCMV– subjects prior to transplantation with HCMV+ cells or tissue, so 

as to prevent the potentially severe consequences of primary infection in these subjects. Indeed, 

due to the importance of HCMV in causing congenital disease and complications in transplant 

recipients, vaccine development efforts have been given high priority by the Institute of Medicine 

of the National Academy of Sciences [42].  

While initial approaches to CMV vaccines focused on the development of an attenuated 

strain of HCMV (Towne) [425, 426], more recently, the focus has shifted toward the development 

of subunit vaccines [427], either single antigen vaccines [56] or cocktails of antibody-inducing 

and T cell–inducing subunits [428]. A frequently used T cell–inducing subunit in the development 

of CMV vaccines is the phosphoprotein 65 (pp65), which is consistently a major target for the T 

cell response in infected individuals [121, 429-431]. HCMV pp65 is part of the viral tegument and 

the most abundant virion protein [18]. Multiple functions in modulation of innate and intrinsic 

immunity [151, 152, 432] as well as adaptive immune responses [230, 433, 434] have been 

assigned to HCMV pp65. Moreover, pp65 has been shown to modulate the activity of 

serine/threonine kinases [435-437], Polo-like kinase 1 [438], and the viral UL97 serine/threonine 

kinase [439]. Nevertheless, pp65 is dispensable for viral replication in HCMV-infected fibroblasts 
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[440], but pp65-deleted HCMV showed decreased virus production in monocyte-derived 

macrophages [441].  

The role of pp65 for the establishment and maintenance of persistent infection by HCMV 

is unknown, due to the strict species specificity of HCMV that does not infect immunocompetent 

experimental animals. Thus, animal CMVs are generally used as models to study CMV and CMV 

vaccines [374, 442, 443]. Since host restriction resulted in coevolution of CMVs with their 

respective hosts, infection of rhesus macaques (RMs) with rhesus CMV (RhCMV) represents an 

animal model that closely resembles infection of humans with HCMV [375]. We therefore used 

this model to study the role of RhCMV pp65 in infection and immunity. RhCMV encodes 2 ORFs, 

Rh111 and Rh112, with comparable homology to HCMV pp65 (pp65a ~34%, pp65b ~40%) and 

40% identity to each other [343, 411]. The 2 proteins combined comprise approximately 11% of 

the entire viral proteome in RhCMV virions [444], which is similar to HCMV, in which the single 

pp65 protein makes up 15% of the virion proteins [18]. To examine the function of pp65 in vitro 

and in vivo, we deleted both pp65 homologs from the genome of RhCMV. We characterized the 

impact of pp65 deletion on viral growth in vitro and on the composition of the virion proteome. 

We then determined the role of pp65 for the ability of RhCMV to establish primary or secondary 

persistent infection in RhCMV+ or RhCMV– animals, respectively. By challenging with 

recombinant RhCMV lacking the immunoevasins US2, 3, 6, and 11, a virus incapable of 

superinfecting, we further evaluated whether pp65-specific T cells are required for the protective 

effect of preexisting CMV infection or sufficient to recapitulate T cell–mediated protection 

induced by natural infection. Our observations demonstrate a unique physiologic role for pp65 in 

CMV biology and, moreover, have implications for the use of pp65 as a subunit vaccine.  
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4.3 Methods 

4.3.1 Cells and reagents. TRFs [377] were maintained in DMEM with 10% fetal bovine serum, 

100 U/ml penicillin, and 100 μg/ml streptomycin and were grown at 37°C in humidified air with 

5% CO2.  

 

4.3.2 Viruses and construction of recombinant mutants. BAC-derived RhCMV 68-1 [344] 

was reconstituted by electroporating BAC DNA into TRFs (250 V, 950 μF), and cytopathic effect 

was observed after 7 to 10 days. Recombinant RhCMV mutants were created by homologous 

recombination [445, 446] in E. coli strain EL250, which contains heat-inducible λ-recombination 

(rec) genes and an arabinose-inducible FLP recombinase [381]. Bacterial cultures were grown in 

LB at 30°C until an OD of 0.35 at 600 nm was reached, and the rec genes were induced through 

heat induction by shaking the culture at 42°C in a water bath for 15 minutes. The bacteria were 

subsequently chilled on ice for 10 minutes and made electrocompetent by washing them 4 times 

with cold, deionized water. Electrocompetent EL250 were always made and used fresh to increase 

the recombination efficiency.  

To construct the pp65a and pp65b (RhCMV-Δpp65ab) double-deletion virus, 

recombination primers containing 50 bp homology to regions flanking the pp65 ORFs (forward 

mutagenesis primer 5′-

GAAATAAGTGTGCGGTCTCGGGGGATTGGGGTTTTTATATAGGTATGGGT-3′ and 

reverse mutagenesis primer 5′-

ATGAGCCAAGTTGCGCAGCTCAGTCGGCGGTGTCGCCAAAGTCAGACAAC-3′) were 

used to amplify a kanamycin (Kan) resistance cassette from plasmid pCP015 [447]. The pCP015 

forward primer binding site (5′gtaaaacgacggccagt) and reverse primer binding site 

(5′gaaacagctatgaccatg) were added to the 3′ end of the mutagenesis primers.  

Competent EL250 bacteria containing WT RhCMV BAC were then electroporated with the PCR 

product for recombination using a MicroPulser (Bio-Rad) and selected for Kan and 

chloramphenicol (Cm) resistance at 30°C on LB agar. To induce the FLP recombinase excising 

the Kanr cassette, clones were grown in LB with Cm until they reached an OD of 0.5 at 600 nm 

and incubated with 1 mg/ml arabinose for 1 hour. The bacteria were streaked out on an LB plate 

with Cm selection using an inoculation loop and incubated overnight at 30°C. After colonies were 

visible, clones were replica plated on LB agar with Kan and Cm and LB agar with Cm only, and 
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colonies were selected that had lost Kanr and characterized by restriction digest, Southern blot, 

and partial sequencing. Virus was reconstituted by electroporation of TRFs with 5 to 10 μg of BAC 

DNA.  

To construct the second pp65ab double-deletion mutant containing the SIV ref/tat/nef 

(retanef) fusion protein, which was driven by the EF1α promoter and inserted in place of the 

pp65ab proteins, recombination primers containing the same 50 bp homology to regions flanking 

the pp65 ORFs as before were used to amplify a Kan resistance cassette from plasmid 

pCP015rtndx [353]. The pCP015rtndx forward primer binding site (5′gtaaaacgacggccagt) and 

reverse primer binding site (5′gtatgttgtgtggaattgtgag) were added to the 3′ end of the mutagenesis 

primers. All subsequent steps to generate the final mutant virus were the same as described above. 

The lack of expected genes in the recombinant viruses and lack of WT contamination was 

confirmed by Western blot analysis of purified viral stocks (Fig.24D) and RT-PCR of cDNA from 

virally infected cells (Fig.23A). The antibodies used in this study to confirm the presence or 

absence of RhCMV viral proteins were generated at the VGTI Monoclonal Antibody Core (mouse 

α-RhCMV pp65a clone 3H3.1.2, mouse α-RhCMV pp65b clone 19C12.2, and mouse α-RhCMV 

clone 6H7.3).  

 

4.3.3 RhCMV particle purification procedures. RhCMVΔpp65ab virions were purified over 

a discontinuous Nycodenz gradient, as described before for HCMV AD169 [18] and RhCMV 68-

1 BAC-derived WT [444]. The virus was isolated from the culture medium of infected TRFs when 

the cells displayed maximal cytopathic effect. The cellular supernatants were first clarified by 

centrifugation at 7,500 g for 15 minutes. The clarified medium was layered over a sorbitol cushion 

(20% D-sorbitol, 50 mM Tris [pH 7.4], 1 mM MgCl2), and virus was pelleted by centrifugation at 

64,000 g for 1 hour at 4°C in a Beckman SW28 rotor. The virus pellet was resuspended in TNE 

buffer (50 mM Tris [pH 7.4], 100 mM NaCl, and 10 mM EDTA). The virus particles were further 

purified by layering them over a discontinuous 5% to 50% Nycodenz gradient (Sigma-Aldrich) in 

TNE buffer and centrifuging at 111,000 g for 2 hours at 4°C in a Beckman SW41 Ti rotor. The 

virion bands in the gradient were isolated with a syringe through the side of the centrifuge tube, 

and the particles were pelleted in a Beckman TLA-45 rotor in a Beckman Optima TL 100 

Ultracentrifuge at 40,000 g for 1 hour and washed twice with TNE buffer. The pellet was 

resuspended in TNE buffer, and electron microscopy was performed to confirm the purity of the 
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sample. In order to assess the protein content of the purified RhCMVΔpp65ab virions, especially 

in comparison to a parental RhCMV WT sample, a denatured protein preparation was separated 

on a NuPAGE morpholine propanesulfonic acid (MOPS) gradient gel (Invitrogen) and visualized 

by Coomassie brilliant blue staining (Fig.24C).  

 

4.3.4 Quantitative proteomic analysis. The quantitative proteomic analysis was performed as 

previously described in detail [444]. Briefly, RhCMV particles were denatured in 8 M urea, 100 

mM NH4HCO3, and 5 mM DTT, and the cysteine residues were alkylated with 10 mM 

iodoacetamide. Then, the samples were 4-fold diluted with 25 mM NH4HCO3 and 1 mM CaCl2 

and digested overnight with a 1:20 (mass/mass) trypsin-to-protein ratio. The digested peptides 

were desalted with C18 cartridges and dried in a vacuum centrifuge before being separated in 

capillary columns (75 μm × 65 cm capillary [Polymicro] packed with 3-μm C18 particles 

[Phenomenex]) connected to a custom-made 4-column liquid chromatography LC system [448] or 

a longer capillary column (75 μm × 100 cm) connected to a nanoAcquity system (Waters). Eluting 

peptides were analyzed directly in a linear ion-trap orbitrap mass spectrometer (LTQ Orbitrap XL, 

Thermo Scientific).  

Collected MS/MS spectra were searched against forward and reverse sequences of the 

RhCMV ORFs (275 sequences), Macaca mulatta Ensembl database (21,905 sequences, 

downloaded from http://www.ensembl.org on November 15, 2010), and 186 common 

contaminants (downloaded from http://www.ncbi.nlm.nih.gov/protein on August, 2006). 

Identified peptides were first filtered with a mass spectrum–generating function (MS-GF) [449] 

probability of ≤ 1 × 10–8 and, to ensure a low false discovery rate, each protein was required to 

have at least one peptide with MS-GF ≤ 1 × 10–10. Protein abundances were estimated by 

exponentially modified protein abundance index as previously described [380]. Data are available 

at Pacific Northwest National Laboratory ( http://omics.pnl.gov) and in the PeptideAtlas online 

database ( http://www.peptideatlas.org; dataset identifier: PASS00367).  

 

4.3.5 RMs. A total of 9 male and 4 female purpose-bred juvenile RMs (M. mulatta) of Indian 

genetic background were used in this study. All RMs were specific-pathogen free (SPF), as defined 

by being free of cercopithecine herpesvirus 1, D-type simian retrovirus, simian T lymphotrophic 

virus type 1, SIV, rhesus rhadinovirus, Mycobacterium tuberculosis, and RhCMV infection at the 

http://www.jci.org/articles/view/67420#F2
http://www.ncbi.nlm.nih.gov/protein
http://omics.pnl.gov/
http://www.peptideatlas.org/
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start of the study. The Δpp65ab-deleted RhCMV vector was tested in vitro by administering the 

deletant virus s.c. at a dose of 1 × 107 PFUs to 2 SPF (defined above) RMs. To test whether the 

immune responses generated by the primary infection with Δpp65ab were sufficient to prevent 

superinfection, the same 2 RMs were inoculated with the same 1 × 107 PFUs dose with 

ΔVIHCEΔUS2-11gag, followed by superinfection with RhCMVgag and later with 

Δpp65ab(retanef).  

To determine whether vaccine-induced pp65-specifc T cells could prevent CMV infection, 

3 SPF RMs were vaccinated intramuscularly with 1.0 mg pND/pp65b DNA followed by an 

intramuscular boost using 5 × 108 PFUs pp65b-MVA at week 6 and 12 after DNA vaccination. 

For a control in these experiments, 3 additional SPF RMs were vaccinated following the same 

vaccine strategy using pND (empty) and MVA (empty), respectively [450, 451]. The plasmids 

pND and pND/pp65b were provided by Peter A. Barry, UCD, Davis, California, USA [450]; the 

empty MVA as well as the pp65b-expressing recombinant MVA were provided by Don J. 

Diamond, City of Hope, Duarte, California, USA. As a first step, the gene encoding RhCMV 68-

1 pp65-2 was amplified from previously described plasmid expression vectors and engineered into 

the pZWIIA MVA transfer vector using established protocols [451]. rMVA expressing RhCMV 

pp65-2 (Rhpp65-MVA) was generated on BHK-21 cells via homologous recombination. The 

protein expression levels for RhCMV pp65-2 in infected BHK-21 cells were confirmed by Western 

blot using polyclonal antibodies to RhCMV pp65-2 by chemiluminescence detection (ECL, 

Amersham Pharmacia Biotech). The plasmid DNA of pND and pND/pp65-2 was isolated using 

the EndoFree Plasmid Mega Kit (Qiagen) to avoid any endotoxin contamination of the DNA. 

Vaccinated animals were challenged s.c. 18 weeks after the initial DNA vaccination with 107 PFUs 

RhCMV ΔUS2-11gag.  

BAL fluid, peripheral blood, and urine samples were collected at specified time points (see 

Fig.25-27) throughout the entire experiment. Isolated CD4+ and CD8+ T cells from BAL fluid and 

peripheral blood were stimulated with antigen-specific peptides to examine the immune response 

induced by the initial vaccination and the subsequent viral challenge.  

 

4.3.6 Nested real-time PCR. To determine the viral copy numbers of RhCMV 68-1 GAG and 

RhCMVΔpp65ab retanef, 3 naive and 2 CMV+ RMs were infected s.c. with 107 PFUs of each virus 

in the opposite arm on the same day. Blood samples were taken once a week to monitor CD4+ and 
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CD8+ T cell responses and to determine the presence of cell-free virus in PBMCs. At the indicated 

time points after infection, the macaques were necropsied and tissues were harvested. DNA was 

isolated from the samples by ONPRC’s Molecular Virology Support Core (MVSC). Tissue 

samples (<100 mg) were prepared using FastPrep (MP Biomedicals) in 1 ml TriReagent 

(Molecular Research Center Inc.). 100 μl bromochloropropane (MRC Inc.) was added to each 

homogenized tissue sample to enhance phase separation. 0.5 ml DNA back-extraction buffer (4 M 

guanidine thiocyanate, 50 mM sodium citrate, and 1 M Tris) was added to the organic phase and 

interphase materials, which was then mixed by vortexing. The samples were centrifuged at 14,000 

g for 15 minutes, and the aqueous phase was transferred to a clean microfuge tube containing 240 

μg glycogen and 0.4 ml isopropanol and centrifuged for 15 minutes at 14,000 g. The DNA 

precipitate was washed twice with 70% ethanol and resuspended in 100 to 500 μl ddH2O. Nested 

real-time PCR was performed with primer and probe sets for the inserted SIV proteins GAG (first 

round: for-GAAACCATGCCGAAGACCTCTC and rev-CTCGTTGATGATGTCACGGATG; 

second round: for-CAACTACGTCCACCTGCCACTGTC, rev-

TCCAACGCAGTTCAGCATCTGG, and probe-

CCGAGAACCCTGAACGCTTGGGTCAAGC-FAM) and SIVretanef (first round: for-

CGGAAGCAGAACATGGACGAC and rev-CCCCTTCTCCTTGATGAAGTGC; second round: 

for-CGACGAGGAGGACGACGACTTA, rev-CCAACTTGTACGACATCGTCCG, and probe-

TCTCAGTGCGGCCGAAGGTCCC-FAM). For each DNA sample, 10 individual replicates (5 

μg each) were amplified by first-round PCR synthesis (12 cycles of 95°C for 30 seconds and 60°C 

for 1 minute) using Platinum Taq in 50 μl reactions. Then, 5 μl of each replicate was analyzed by 

nested quantitative PCR (45 cycles of 95°C for 15 seconds and 60°C for 1 minute) using Fast 

Advanced Master Mix (ABI Life Technologies) in an ABI StepOnePlus Real-Time PCR machine. 

The results for all 10 replicates were analyzed by Poisson distribution and expressed as copies per 

cell equivalents [452].  

 

4.3.7 Viral detection in urine by coculture. We centrifuged filter-sterilized (0.4 mm) urine at 

16,000 g for 1 hour at 4°C to concentrate virus for coculture on rhesus fibroblasts. Cell lysates 

were prepared after we observed extensive cytopathic effects or after 42 days of coculture if 

cytopathic effects were minimal or not observed. The prepared cell lysates were assessed for the 
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presence of RhCMV on the basis of expression of RhCMV- or SIV-specific antigens by Western 

immunoblotting.  

 

4.3.8 Immunologic assays. RhCMV- and SIV-specific CD4+ and CD8+ T cell responses were 

measured in mononuclear cell preparations from blood and BAL fluid by flow cytometric 

intracellular cytokine analysis, as previously described [353]. Briefly, sequential 15-mer peptides 

(overlapping by 11 amino acids) comprising the SIVMAC239Gag, or Rev/Nef/Tat and RhCMV 

68.1pp65ab, or IE1/2 were used in the presence of costimulatory CD28 and CD49d monoclonal 

antibodies (BD Biosciences). Cells were incubated with antigen and costimulatory molecules 

alone for 1 hour, followed by addition of Brefeldin A (Sigma-Aldrich) for an additional 8 hours. 

Costimulation without antigen served as a background control. Cells were then stained with 

fluorochrome-conjugated monoclonal antibodies, flow cytometric data were collected on a LSR II 

(BD Biosciences), and data were analyzed using the FlowJo software program (version 8.8.7; Tree 

Star). Responses frequencies (CD69+/TNF+ and/or CD69+/IFN+) were first determined in the 

overall CD4+ and CD8+ population and then memory corrected (with memory T cell subset 

populations delineated on the basis of CD28 and CD95 expression).  

 

4.3.9 Measuring RhCMV-specific antibody responses by ELISA. Antibody levels to RhCMV 

were measured in circulating plasma of RMs by standard ELISA using plates coated with lysates 

of fibroblasts infected with either WT-RhCMV or RhCMV-Δpp65 at 10 μg total protein per well. 

Nonspecific binding sites were blocked with 2% milk powder resuspended in PBS. Serial 2-fold 

dilutions of plasma were incubated for 1.5 hours prior to washing 3 times with ELISA wash buffer 

(PBS with 0.1% Tween-20; 200 μl per well). Primary antibody binding was detected and quantified 

with HRP-conjugated anti-rhesus IgG/IgA/IgM secondary antibody and addition of o-

phenylenediamine chromogen substrate. A log-log transformation was performed on the linear 

portion of the curve and end point titers were calculated using 0.1 OD units as the cutoff point. 

Each plate contained a positive control sample to normalize ELISA titers between assays and a 

negative control sample to ensure assay specificity and to subtract background. Graphical data was 

generated using Prism GraphPad software. 
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4.3.10 Measuring RhCMV-specific antibody responses by SDS-PAGE and Western blotting. 

Rhesus fibroblasts infected with WT-RhCMV or RhCMV-Δpp65 were solubilized in 2× 

Laemmeli’s sample buffer, and 200 μg total protein per lane were loaded onto NuPAGE 4%–12% 

Bis-Tris gradient gels (Invitrogen, Life Technologies) and run in MOPS buffer. Proteins were 

transferred to Immobilon-P blotting membrane, and nonspecific binding sites were blocked in 2% 

milk powder in Tris-buffered saline with 0.02% Tween-20 for 60 minutes. Primary rhesus monkey 

polyclonal antisera was added at 1:700 dilution in blocking buffer for 60 minutes, and membranes 

were washed 3 times for 10 minutes each in Tris-buffered saline plus 0.2% Tween (TBST). 

Secondary goat anti-rhesus-HRP conjugate was added at 1:5,000 in blocking buffer for 30 minutes, 

and membranes were washed 3 times for 10 minutes each in TBST. Membranes were developed 

using ECL Advance Lumigen-TNA (GE Healthcare) for 1 minute and exposed to Biomax Light 

Film (Kodak) at various exposure times. 

 

4.3.11 Ethics statement. All RMs were handled in accordance with good animal practice, as 

defined by relevant national and/or local animal welfare bodies. The use of nonhuman primates 

was approved by the ONPRC Institutional Animal Care and Use Committee (IACUC no. 0691). 

The ONPRC is fully accredited by the Assessment and Accreditation of Laboratory Animal Care 

International. For blood and BAL collection, monkeys were anesthetized with ketamine by 

intramuscular injection. Monkeys were humanely euthanized by the veterinary staff at ONPRC in 

accordance with end point policies. Euthanasia was conducted under anesthesia with ketamine, 

followed by overdose with sodium pentobarbital. This method is consistent with the 

recommendation of the American Veterinary Medical Association. 

 

4.3.12 Statistics. All P values in this study were determined using a 1-tailed unpaired Student’s t 

test. The cutoff for statistical significance was defined as P < 0.05 unless otherwise specified. All 

error bars shown in all presented figures represent mean ± SD.  

 

4.3.13 Study approval. All animals in the presented study were used with approval of the 

ONPRC Animal Care and Use Committee, under the standards of the US NIH Guide for the Care 

and Use of Laboratory Animals. 
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4.4 Results 

4.4.1 RhCMVΔpp65ab shows delayed growth kinetics at low MOI. To study the function of 

pp65 in RMs, we deleted the pp65a- and pp65b-encoding genes Rh111 and Rh112 in the RhCMV 

strain 68-1–derived BAC [344] to generate Δpp65ab. Upon reconstitution of recombinant virus in 

telomerized rhesus fibroblasts (TRFs), we verified that genes Rh111 and Rh112 were absent, 

whereas the neighboring genes Rh110 (UL82 [pp71] homolog) and Rh114 (UL84 homolog) were 

still expressed (Fig.23A).  

 

Fig.23: Characterization of RhCMVΔpp65ab in vitro. (A) RT-PCR results for cDNA of infected TRFs showing 

the expression of pp65a (Rh111) and pp65b (Rh112) and their neighboring ORFs Rh110 (pp71) and Rh114. IE1 and 

GAPDH were included as controls. (B) Single-step (MOI of 3) and (C) multistep (MOI of 0.01) growth curves of 

RhCMV WT and RhCMVΔpp65ab on TRFs. *P < 0.05, Student’s t test; **P < 0.01, Student’s t test.  
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To determine whether pp65 deletion affected in vitro growth properties of RhCMV, we 

compared the growth kinetics of Δpp65ab with those of BAC-derived RhCMV 68-1 (herein 

referred to as WT control). TRFs were infected with Δpp65ab or WT either at a high MOI of 3 to 

generate a single-step growth curve or at a low MOI of 0.01 to measure multistep growth. 

Supernatants collected at high MOI contained similar titers of the 2 viruses, with a peak titer 

reached on and after 4 days postinfection (dpi) (Fig.23B). However, when multiple rounds of 

infection were measured, Δpp65ab displayed a modest, but significant, delay in viral growth, 

ultimately reaching the same peak titer as WT (Fig.23C).  

 

4.4.2 Characterization of Δpp65ab virions. Since previous reports suggested that pp65 in 

HCMV affected viral assembly and thus the incorporation of other viral proteins [441], we studied 

the structure and protein composition of Δpp65ab virions. Using mass spectrometry, we 

demonstrated recently a remarkable similarity between the predominant viral proteins found in 

both RhCMV and HCMV, with respect to protein ratios and protein abundance [444]. To similarly 

determine the proteome of Δpp65ab virions, we concentrated viral particles from the supernatant 

of infected TRFs followed by purification over a discontinuous Nycodenz gradient (see Methods). 

Compared with WT, we observed an increased appearance of particles that sedimented with higher 

density in virion preparation of Δpp65ab (Fig.24A). Electron microscopy of this high-density band 

revealed abnormal structures consistent with capsidless (defective) viral particles. However, the 

lower density virion band contained an essentially pure preparation of particles with the same 

general structure as WT RhCMV, including an icosahedral capsid containing the viral DNA as the 

core of the virion surrounded by a tegument layer and enveloped by a lipid membrane (Fig.24B). 

NuPAGE and Western blot analysis of gradient-purified WT and Δpp65ab mutant virions 

demonstrated the absence of pp65a and pp65b in the deletion mutant (Fig.24, C and D). 

Comparison of the dimensions of the WT versus Δpp65ab virions revealed an overall reduced 

diameter of Δpp65ab virions (173.4 nm) compared with that of WT virions (222.5 nm) (Fig.24E). 

This reduction in particle size was primarily due to a significant reduction of the viral tegument 

layer (38.4 nm [Δpp65ab] compared with 61.2 nm [WT]), consistent with the fact that pp65a and 

pp65b constitute a major portion of the viral tegument in WT (approximately 24.4%; ref.[444]). 

In addition, the capsid appeared to be diminished in size, although to a lesser degree (89.7 nm 
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[Δpp65ab] compared with 100.2 nm [WT]). Thus, both phenotypically normal, but smaller, virions 

and defective particles were recovered from the supernatant of cells infected with Δpp65ab.  

 

Fig.24: Intact and defective viral particles are secreted from fibroblasts infected with Δpp65ab. (A) Image of a 

Nycodenz gradient loaded with RhCMVΔpp65ab, and electron microscope images of virions (top image) and 

defective particles (bottom image) contained in the visible bands of the gradient. (B) Electron microscope image of 

purified RhCMVΔpp65ab virions showing the purity of the sample. (C) Purified RhCMV WT and Δpp65ab virions 

were lysed, and 10 μg protein was electrophoretically separated using NuPAGE MOPS gradient gels and visualized 

by Coomassie blue staining. (D) Western blots of 5 μg gradient-purified RhCMV 68-1 WT and viral mutant Δpp65ab 

stained for RhCMV pp65a, pp65b, or a RhCMV-specific antibody. (E) Various electron microscopy images of 

purified WT and Δpp65ab virions were taken, and the diameters of virions, capsids, and the tegument were determined 

in multiple images and magnifications (WT, n = 39; Δpp65ab, n = 45). The mean diameters with their respective SDs 

are shown, and Student’s t tests were performed to determine the P values. Scale bars: 100 nm.  

 

To further characterize the proteome of the virions contained in the upper band by mass 

spectrometry, the recovered material was digested with trypsin and analyzed by 1D LC-MS/MS. 

The resulting mass spectra were initially searched against stop-to-stop translated sequences of the 

RhCMV 68-1 BAC genome for ORFs ≥30 amino acids. Since all proteins identified by this method 
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corresponded to proteins contained in our recently published reannotation of the RhCMV 68-1 

BAC genome [444], we also used a protein library based on the revised annotation for further 

analysis of protein abundance. The virion preparation was analyzed by LC-MS/MS upon elution 

from 0% to 100% acetonitrile gradient over 100 minutes, and 5 technical repeats were performed. 

68.5 mol% of all identified proteins and 69.9 mol% of all identified peptides corresponded to viral 

proteins, whereas 31.5 mol% of the proteins and 30.1% of the peptides were derived from the host 

(Supplemental Figure 3B; supplemental material available online with this article; doi: 

10.1172/JCI67420DS1). This result is similar to that previously obtained for WT (64.8 mol% viral 

proteins, 63.4% viral peptides and 35.2 mol% host proteins, 36.6% host peptides), suggesting a 

similar level of sample purity. As expected, peptides corresponding to pp65a or pp65b were not 

detected in the Δpp65ab virion preparation (Table 4). However, a total of 50 different viral proteins 

could be identified for Δpp65ab, which is comparable to that for WT virions, for which 53 different 

viral proteins were identified. Every capsid protein found in WT virions was found in the deletion 

mutant, and besides the deleted pp65 proteins, this also holds true for the tegument proteins (Table 

4). Similarly, all major glycoproteins were present in Δpp65ab in equal abundance compared to 

WT. In fact, most proteins that differed in their abundance between Δpp65ab virions compared 

with WT were low-abundance proteins, suggesting that these proteins might not be consistently 

part of the virions or that they were missed in our analysis due to low abundance. If an abundance 

threshold of 0.25 mol% is applied, 8 proteins differ between Δpp65ab and WT: Rh17 (RL11 

family), Rh131 (UL96), Rh211 (US26), and Rh214 (US28) are decreased in the Δpp65ab mutant 

compared with the WT, whereas Rh05 (RL11 family), Rh13.1 (RL13), Rh173 (RL11 family), and 

Rh218 (US28) were increased in the Δpp65ab mutant compared with the WT (Fig.25). Of those, 

Rh211 is the only protein with a substantial presence with 0.85 mol% in WT virions that is 

completely absent in mutant virions. Rh211 is the homolog of HCMV US26, whose function is 

unknown. Thus, our proteomics analysis revealed that only 8 proteins with a higher abundance 

than 0.25 mol% showed marked changes of more than 2-fold between the WT and the pp65ab 

deletion mutant, with most of these being low-abundance proteins. 

http://dx.doi.org/10.1172/JCI67420DS1
http://dx.doi.org/10.1172/JCI67420DS1
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 Fig.25: Δpp65ab establishes primary and secondary infections and protects against superinfection with ΔUS2-

11. (i) Two RhCMV seronegative male RMs (filled circles, Rh22037; open circles, Rh23016) were infected s.c. with 

107 PFUs of Δpp65ab at day 1. CD4+ (blue) and CD8+ (red) T cell responses were monitored in peripheral blood 

(PBMCs) by intracellular cytokine staining at the indicated days using overlapping peptides of pp65ab and IE1/2. (ii) 

On day 659, the 2 animals were inoculated s.c. with 107 PFUs of ΔUS2-11gag (green dotted line), and the T cell 

response to SIVgag was measured in addition. Note the absence of a T cell response to SIVgag or pp65 and a lack of 

boosting of responses to IE1. (iii) On day 876, the 2 RMs were inoculated with 107 PFUs of WTgag (black dotted 

line), and the T cell response was monitored by intracellular cytokine staining. Note the appearance of de novo 

responses to SIVgag and pp65 and a boosting of the T cell response to IE1. (iv) On day 1,107, the 2 RMs were 

inoculated with 107 PFUs of Δpp65ab-rtn (blue dotted line). Using overlapping 15-mer peptides, a de novo response 

to SIVretanef was detectable, indicating superinfection. Also note a boosting of the IE1 response but not of pp65- or 

SIVgag-specific responses. The corresponding T cell responses obtained from BAL fluid are shown in Supplemental 

Figure 4. 
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Table 4: Comparison of viral proteins contained in WT and Δpp65ab virions. 
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In general, there was surprisingly little impact of pp65ab deletion on the presence of other 

proteins in the virions. There was no substantial difference among nonstructural proteins 

(transcription/replication machinery or uncharacterized category), whereas the quantities of most 

structural proteins (capsid, envelope, glycoproteins) were, in fact, slightly elevated in Δpp65ab 

compared with those in WT (Table 5). Moreover, we did not observe a decrease in specific, non-

pp65 tegument proteins, but rather, we saw a decrease in the abundance of all non-pp65 tegument 

proteins in Δpp65ab virions. This is in contrast to a previous report for HCMV, describing selective 

lack of specific tegument proteins in pp65-deleted virions [441]. Thus, it seems that RhCMV 

virions assembled normally but with an overall reduced tegument. Indeed, when virion protein 

abundance is adjusted for the absence of pp65ab by normalizing to a total of 89% (11% of the WT 

virion is made up by pp65a and pp65b combined), protein quantities are very similar to those of 

WT (Tables 4 and 5). Despite the lack of major tegument proteins that normally represent 11% of 

the viral particle mass, there was little change in virion composition.  

Table 5: Relative abundance of the 5 functionally different groups of viral proteins in RhCMV WT and 

Δpp65ab. 

 

In contrast to the limited impact of pp65ab deletion on virion proteins, a number of host 

proteins were substantially different between WT and Δpp65ab (Supplemental Figure 3). 279 host 

proteins were identified in WT, whereas 240 host proteins were identified in Δpp65ab. Only 172 

host proteins were identified in both viral samples, with the remaining proteins being unique to 

each sample. The role of host cell proteins in CMV virions is unknown, but it seems likely that 

these proteins reflect the source or host cell membrane used for envelopment. The differential 

presence of host cell proteins could thus indicate that envelopment of pp65ab-deleted viruses 

differs somewhat from that of WT virus. This would be consistent with the increased production 
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of defective particles described above. The differential incorporation of host cell proteins likely 

reflects changes in viral assembly pathways but is less likely of consequence for virion function. 

 

4.4.3 Infection of RMs with Δpp65ab. To determine whether pp65ab-deleted viruses would be 

infectious, we inoculated 2 seronegative male RMs with 107 PFUs of Δpp65ab and monitored the 

CMV-specific T cell response using overlapping peptides to the RhCMV proteins IE1/2 and, as 

control, to pp65ab for about 22 months. We also monitored viral shedding by coculture of urine 

samples with rhesus fibroblasts. In previous experiments, we showed that infection of RhCMV-

negative RMs results in the appearance of peak T cell responses within the first 2 weeks of 

infection, followed by a contraction and stabilization of the T cell response at a level that remains 

more or less constant for the duration of the life of the animal [353, 453]. The maintenance of such 

a long-lived effector memory T cell response reflects the establishment of persistent infection. 

Similarly, both animals infected with Δpp65ab responded vigorously to IE1/2, with a peak CD4+ 

and CD8+ T cell response in PBMCs and bronchoalveolar lavage (BAL) fluid at 2 weeks, followed 

by a slow decline and stabilization of the response that lasted for the entire time (Fig.25, i, and 

Supplemental Figure 4A). Importantly, T cell responses to pp65ab were not observed, which is 

consistent with the IE1/2 responses being induced by the pp65ab-deleted virus. The stable T cell 

response to IE1/2 suggested that the pp65-deleted virus established persistent infection. 

Persistence was further confirmed by coculture of urine samples with TRFs, in which IE1 was 

detected in urine cocultures of Δpp65ab-infected animals but pp65 was not detected, confirming 

that there was no contamination with WT virus (Fig.26). Thus, these data suggest that RhCMV is 

able to establish and maintain a persistent infection despite the absence of pp65ab.  

Although pp65 is one of the major targets of the CMV-specific T cell response in both 

humans and monkeys [121, 411, 429-431], the contribution of pp65-specific T cells to control of 

CMV replication is not known. Indeed, the experimental determination of the efficacy of RhCMV-

specific T cell responses is complicated by the fact that RhCMV readily superinfects RhCMV+ 

RMs, overcoming preexisting T cell responses due to the presence of viral proteins that inhibit 

MHC-I antigen presentation [276]. However, RhCMV lacking the genes encoding for homologs 

of the HCMV US2, 3, 6, and 11 immunoevasins is unable to superinfect CMV+ RMs but is capable 

of establishing persistent infection in CMV-naive animals or upon depletion of CD8+ T cells from 

CMV-immune animals [276]. Thus, the ability to protect against superinfection with ΔUS2-11 
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RhCMV is a convenient surrogate marker for the quality of T cell responses, i.e., a T cell response 

that is as efficient as that induced by natural infection. To test whether the T cell responses induced 

by Δpp65ab to antigens other than pp65 would be sufficient to prevent superinfection with 

immunoevasins-deleted virus, we inoculated the 2 Δpp65ab-infected RMs with ΔVIHCEΔUS2-

11gag, a previously described recombinant virus that expresses the SIVgag as immunological 

marker. In addition to US2-11, this virus lacks the RhCMV-specific viral inhibitor of heavy chain 

expression (VIHCE), which is not required for superinfection [276]. As observed for RMs 

naturally infected with RhCMV, ΔVIHCEΔUS2-11 was unable to superinfect Δpp65ab-infected 

animals, as evident from the absence of an immune response to SIVgag as well as a lack of a 

boosting response to IE or a de novo response to pp65 (Fig.25, ii, and Supplemental Figure 4B). 

In fact, T cell responses to IE1/2 remained stable for the entire duration of this experiment (200 

days). Thus, the T cell responses generated by Δpp65ab were as efficacious as T cell responses 

induced by WT in protecting against immunoevasins-deleted virus challenge, indicating that a 

pp65-specific T cell response is not required for an effective anti-RhCMV immune response and 

that T cells specific for other codominant or subdominant antigens are sufficient for protection. 

 

Fig.26: RhCMVΔpp65ab is persistently secreted from infected animals. (A) The time line depicts the time points 

of inoculation with different RhCMV constructs and the days when cocultures were started from urine. Time points 

marked with asterisks indicate additional days in which cocultures were positive for Δpp65ab, but the data are not 

shown. PID, postinoculation day. (B) Immunoblot for the indicated antigens in lysates from representative viral 

cocultures with urine collected on the indicated dpi. The presence of RhCMV-IE1, RhCMV-pp65b, SIVgag, and 

SIVretanef in cell lysates was detected by immunoblot using antibodies specific for the respective antigens (IE, pp65) 

or for epitope tags fused to SIVgag or SIVretanef. Note that, initially, secreted RhCMV expressed IE, but not pp65, 

whereas superinfection with WTgag and Δpp65retanef is indicated by the appearance of pp65-containing virus 

expressing the respective antigens. As positive control (Con), coculture lysates from a RM inoculated with WTgag 

and WTretanef is included.  
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To determine whether animals infected with Δpp65ab are resistant to superinfection by WT 

RhCMV, we inoculated both RMs with WT-gag, a previously described virus that carries SIVgag 

inserted into the ORF Rh211 between hypothetical ORFs 213 and 214 [353]. Upon inoculation of 

107 PFUS WT-gag, both animals displayed clear signs of superinfection, as evident by the 

development of de novo responses to SIVgag and pp65ab and by boosting of the preexisting T cell 

response to IE1/2 (Fig.25, iii, and Supplemental Figure 4C). Moreover, cocultures of urine samples 

from these animals contained SIVgag-expressing virus (Fig.26). These data thus demonstrate that 

the immune responses induced by Δpp65ab, like those elicited by WT RhCMV, are unable to 

protect against superinfection with WT RhCMV.  

Given the role of HCMV pp65 as modulator of several immune response pathways 

(including protecting against IE-specific T cells [23] and NK cells [22]), it was possible that pp65 

itself contributed to the ability of WT to overcome preexisting immune responses. In fact, our 

previous finding that evasion of T cell responses plays a central role in overcoming preexisting 

immune responses does not rule out that evasion of other immune response components, e.g., B 

cells and NK cells, might also contribute to superinfection [276]. To examine whether RhCMV 

lacking pp65ab would be able to superinfect CMV-positive animals, we inserted an expression 

cassette for SIVretanef (a fusion protein of rev, int, tat, and nef; refs. [353, 454]) into the RhCMV 

genome by replacing the pp65-encoding genes Rh111 and Rh112. After confirming pp65 deletion, 

in vitro growth properties, and expression of SIVretanef (data not shown), we inoculated the 2 

RMs previously infected with Δpp65ab and WT-gag with Δpp65ab-retanef and monitored the 

immune response to SIVretanef. As shown in Fig.25, iv (Supplemental Figure 4D), both animals 

showed clear signs of superinfection, as evident from the development of a de novo T cell response 

to SIVretanef and a boosting of the preexisting IE1/2 response. Note that the T cell responses to 

pp65ab and SIVgag were not boosted, confirming the lack of pp65ab and SIVgag. We thus 

conclude that pp65ab is dispensable for the establishment of both primary and secondary persistent 

infections.  

 

4.4.4 Vaccine-induced pp65-specific T cells do not recapitulate the protective effect of T 

cells induced by natural infection. In the RM model, it was previously demonstrated that 

vaccination with subunit vaccines consisting of pp65b (with or without IE1) as T cell–inducing 

components and gB as neutralizing antibody-inducing component reduced RhCMV viremia and 
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shedding [450, 451, 455]. However, our data also suggest that T cell responses to antigens other 

than pp65 play an important role in the protective effect of RhCMV infection against ΔUS2-11 

challenge. We were therefore wondering whether induction of a T cell response to pp65 alone 

would be sufficient to recapitulate the protective effect of preexisting infections against challenge 

with RhCMV lacking the US2-11 immunoevasins [276]. Therefore, we used a previously 

described heterologous prime-boost regimen to induce pp65b-specific T cell responses [450, 451]. 

Three animals were vaccinated with DNA encoding pp65b, followed by 2 boosts with pp65b-

expressing modified vaccinia Ankara (MVA). For control, we vaccinated 3 animals with antigen-

free plasmid and MVA. As shown in Fig.27A (Supplemental Figure 5), all 3 pp65b-vaccinated 

animals developed a robust CD4+ and CD8+ T cell response to pp65b after this prime-boost 

vaccination regimen that, in the 6 weeks following the final boost, was similar in magnitude and 

phenotype to pp65-specific T cell responses that develop in the context of RhCMV infection 

(Fig.25, iii and iv, and Supplemental Figure 4). As expected, pp65b-specific T cells were not 

observed in the control MVA-vaccinated group. Six weeks after the final MVA/pp65 versus 

control MVA boost, all animals were challenged with RhCMV lacking US2-11 and expressing 

SIVgag (ΔUS2-11gag). Similar to ΔVIHCEΔUS2-11gag, this virus is unable to overcome 

preexisting T cell immunity, despite the presence of the RhCMV-specific MHC-I inhibitor VIHCE 

[276]. All 3 control-vaccinated animals developed the expected T cell response to pp65 as well as 

SIVgag consistent with infection. However, the pp65-vaccinated animals also developed T cell 

responses to SIVgag with similar kinetics and magnitude compared with those in the control group. 

We further observed a boost of the T cell response to pp65b consistent with infection by ΔUS2-

11gag. These data indicate that pp65-specific T cells alone are unable to provide the level of 

protection against CMV afforded by natural infection or experimental infection with whole virus.  
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Fig.27: T cells induced by heterologous prime-boost vaccination with pp65b do not protect against 

superinfection with ΔUS2-11. (A) Three CMV-negative RMs were vaccinated with 1 mg pND/pp65b and boosted 

with 5 × 108 PFUs MVApp65b at 6 and 12 weeks after the initial vaccination (black). As controls, 3 CMV-negative 

RMs were vaccinated with the parental pND plasmid not expressing any antigen and boosted with WT MVA at 6 and 

12 weeks after the initial vaccination (green). At 18 weeks after the initial DNA vaccination, both groups of animals 

were challenged with 107 PFUs ΔUS2-11gag. The top row shows the specific T cell responses to pp65, whereas the 

bottom row shows specific T cell responses to SIVgag. T cells were isolated from peripheral blood (PBMCs). The 

corresponding T cell responses obtained from BAL fluid are shown in Supplemental Figure 5. The production of anti-

RhCMV antibodies in pp65-vaccinated animals (Rm23557, Rm27814, Rm27838) was compared to that in control-

vaccinated animals (Rm23672, Rm25052, Rm27821) prior to and upon challenge with RhCMV-ΔUS2-11. At the 

indicated time points, RhCMV-specific end point antibody (IgG, IgA, IgM) titers were measured in plasma from each 

animal by ELISA using lysates from fibroblasts infected with either (B) RhCMV-Δpp65 or (C) WT-RhCMV as the 

capture antigen. (D) Viral proteins recognized by the antibodies were detected by Western blotting. Lysates of cells 

infected with WT-RhCMV or RhCMV-Δpp65 were separated by SDS-PAGE and immunoblotted with antisera from 

the pp65-vaccinated animal (Rm27838) or a control-vaccinated animal (Rm23672). Asterisks denote the pp65 

proteins. The results from these 2 animals are representative of the responses observed in the other animals of each 

group.  

 

Conceivably, pp65 vaccination could affect the viral loads of ΔUS2-11gag, as has been 

reported for pp65/gB-vaccinated animals challenged with RhCMV [455]. Since primary infection 

with RhCMV 68-1 (the parental strain of ΔUS2-11gag) does not result in robust viremia (see 

below), direct measurements of viral loads were unlikely to be informative. Instead, we used the 

development of anti-CMV antibodies as a surrogate for CMV antigen load, because it was shown 

previously in the murine model that reduced viral spread correlates with reduced antibody 

responses but does not affect T cell responses [456]. However, when lysates of Δpp65-infected 

cells were used as antigen, a very modest antibody response was observed in all animals challenged 

with ΔUS2-11gag, and there was no difference in the kinetics or magnitude specificity of this 

response between pp65-vaccinated and control-vaccinated animals (Fig.27B), and we did not 

observe a difference in the specific antigens recognized by immunoblot (Fig.27D). Remarkably, 

when pp65-containing CMV lysate was used as antigen for our ELISA or immunoblot, we 

observed an extraordinary increase in the titers of pp65-specific antibodies induced by DNA/MVA 

vaccination. As shown in Fig.27B, pp65-specific antibodies were above background levels upon 

boosting with MVApp65. Moreover, subsequent challenge with ΔUS2-11gag increased these 

pp65-specific antibodies by several orders of magnitude. pp65 antigen was recognized in sera from 

pp65-vaccinated animals by immunoblot, and this response was strongly increased upon challenge. 

In contrast, control-vaccinated animals did not recognize the corresponding 65-kDa band even 

after ΔUS2-11 challenge (Fig.27D). These data indicate that pp65 vaccination did not affect ΔUS2-

11 viral load to a level that would affect the induction of CMV-specific antibodies, although a 
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modest reduction, as reported previously, cannot be ruled out. In addition, these observations 

suggest that antibody responses to pp65, and potentially to other antigens as well, are substantially 

boosted upon infection with ΔUS2-11 virus.  

 

 Table 6: Copy numbers of RhCMV WT-gag and Δpp65ab-retanef genomes in CMV+ RMs.  
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Table 7: Genome copies of RhCMV 68-1 WT-gag in CMV+ RMs.  

 

 

Table 8: Copy numbers of RhCMV WT-gag and Δpp65ab-retanef genomes in CMV-naive RMs. 
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4.4.5 pp65 limits dissemination of RhCMV in vivo. Taken together, these data suggest that 

neither pp65 itself nor the T cell response to pp65 have a major impact on the overall course of 

either primary or secondary RhCMV infection. However, it remained possible that the extent of 

RhCMV replication is affected by the presence or absence of pp65. If lack of pp65 delays RhCMV 

replication kinetics in vivo, as it does in vitro, infections with pp65-deleted RhCMV would be 

expected to proceed more slowly and/or manifest reduced spread or peak viral production relative 

to WT virus. On the other hand, if pp65-induced immune responses have superior efficacy, 

infections with pp65-deleted RhCMV would manifest greater viral replication and spread than WT 

RhCMV. To address these possibilities, we performed experiments in which genetically marked 

WT and Δpp65ab RhCMV constructs (using SIVgag and SIVretanef as the identifying markers, 

respectively) were simultaneously, but separately (right arm vs. left arm), inoculated into either 

RhCMV seropositive (n = 2) or RhCMV seronegative RMs (n = 3). These RMs were sacrificed 

and taken to necropsy at 14, 21, or 28 days after inoculation; DNA was isolated from the sites of 

inoculation and distant tissues; and the extent and magnitude of viral spread was determined by an 

ultrasensitive, nested quantitative PCR analysis using primers that specifically amplify fragments 

of the SIVgag versus SIVretanef inserts [359]. In the setting of superinfection, little tissue-

associated viral DNA was detected for either the WT or Δpp65ab constructs, with the former only 

identified in one of the inoculation sites in the RM analyzed at day 14 and the latter identified at 

very low level in inoculation sites and scattered distant tissues in both the RMs analyzed at day 14 

and day 28 after inoculation (Table 6). Although, in these 2 RMs, the extent of spread by the 

Δpp65ab RhCMV was greater than that of the coadministered WT RhCMV, the level of tissue-

associated virus observed in the Δpp65ab RhCMV superinfection was still within the range of that 

found in WT RhCMV superinfection in other RMs (Table 7), and thus, deletion of pp65 does not 

seem to significantly affect viral dissemination during superinfection. In striking contrast, the 

extent of Δpp65ab RhCMV replication in RhCMV-naive RMs was 3 to 4 logs higher than the 

simultaneously administered WT RhCMV (Table 8). Indeed, the degree of Δpp65ab RhCMV 

replication during primary infection was astonishing, reaching almost 108 DNA copies in the LN 

draining the injection site at day 14 after inoculation. Analyses of viral loads in blood indicate that 

the difference in WT versus Δpp65ab RhCMV replication by can be observed by day 7 after 

inoculation (Table 8). The levels of Δpp65ab RhCMV in blood and tissue declined dramatically at 

later time points, indicating that this virus is eventually brought under immune control. Taken 
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together, these data unequivocally indicate that expression of pp65 strongly limits primary viral 

dissemination over several orders of magnitude and suggest that, while RhCMV-specific T cells 

can control RhCMV in the absence of pp65, a rapid immune response to pp65 is necessary to limit 

viral spread during the early days of primary infection. 
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4.5 Discussion 

The goal of this study was to assess the role of one of the major structural components of the CMV 

virion in infection and immunity. Similar to HCMV, a large percentage (approximately 11%) of 

the protein mass of RhCMV virions consists of the 2 pp65 homologs [444]. Nevertheless, in both 

HCMV and RhCMV, pp65 is not essential for growth in vitro although increased production of 

defective particles occurs during infection with RhCMVΔpp65ab. This could be reflective of 

assembly defects due to the lack of pp65ab. For HCMV, it has been reported that pp65 is required 

for the incorporation of other virion proteins, most notably UL25, UL69, and UL97 [441]. 

However, we did not observe a major skewing in the protein composition of the viral tegument as 

would have been expected if pp65 selectively controls the incorporation of other viral proteins. 

Instead, the tegument composition seemed normal but without pp65 present. Conceivably, this 

could be due to a difference in virion assembly between HCMV and RhCMV. However, the overall 

virion proteome of RhCMV is highly similar to that of HCMV [444], and UL25, UL69, UL97 are 

highly conserved in RhCMV. Therefore, it seems more likely that effects of pp65 on incorporation 

of other tegument proteins are nonselective. The fact that virions are assembled, carrying the same 

ratios of viral proteins as WT, while lacking pp65, suggests that although pp65 might facilitate 

virus assembly, once the virus is assembled, the lack of pp65 does not affect the overall viral 

structure, except for a reduction on overall virion size due to a reduced tegument protein layer.  

In addition to viral assembly, pp65 has an immediate function upon release of the tegument 

into cells during membrane fusion. Similar to other tegument proteins (e.g., pp71 and UL35), pp65 

is thought to contribute to setting the stage for optimal viral replication by counteracting intrinsic 

and innate antiviral host response mechanisms [68]. HCMV lacking pp65 showed increased 

induction of IFN-stimulated genes (ISGs) [151, 152]. We reported previously that RhCMV 

particles inhibited ISG expression [148] and pp65 was a possible candidate for this inhibition. 

However, Δpp65ab did not induce ISGs, suggesting that inhibitory mechanisms mediated by other 

RhCMV proteins perform this function (data not shown). It has also been reported that HCMV 

pp65 binds to and induces the major immediate early promoter (MIEP) in conjunction with the 

cellular protein IFI16 [432]. We have not investigated in detail the impact of pp65 on IE expression 

in RhCMV. However, in this study, we did observe a delay in virus production in multistep growth 

curves (Fig.23C), consistent with this effect. Thus, RhCMV pp65 proteins appear to facilitate 
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optimal expression of viral genes in the early stages of cellular infection but are not required for 

productive infection.  

The role of HCMV pp65 for the establishment and maintenance of infection in vivo is 

unknown due to the strict species specificity of HCMV. The rationale for studying RhCMV pp65 

in the RM model was therefore the close evolutionary relationships of both the host to human and 

of the virus to HCMV. Given the multiple functions assigned to HCMV pp65, it was completely 

unexpected that deletion of both homologs in RhCMV did not only not affect the ability of RhCMV 

to establish and maintain a long-term infection in the rhesus host but, in fact, strongly increased 

the ability of RhCMV to replicate and disseminate during primary infection. In contrast, lack of 

the pp65 homologous genes M83/M84 and GP83 in murine CMV (MCMV) and guinea pig CMV, 

respectively, reduced peak viremia during primary infection [457-459]. In contrast to primary 

infection, differences in the replication and dissemination of Δpp65ab versus WT RhCMV were 

minimal, if not absent, in the setting of superinfection of CMV+ RMs, suggesting that once 

established, adaptive immune responses to antigens other than pp65 can effectively control the 

infection. These data suggest that pp65 likely acts as an “immunological brake” during the initial 

stages of primary infection to limit viral replication and dissemination. We therefore hypothesize 

that the main function of pp65 is not that of immune evasion, but immune induction, i.e., eliciting 

a rapid immune response that controls viremia. The most likely candidate mechanism for this effect 

is the pp65-specific effector T cell response, which, due to the abundance and immunogenicity of 

pp65 proteins, might appear earlier in primary infection than the response to other CMV proteins. 

Alternatively or additionally, pp65 might induce innate immune responses that limit viral 

replication in primary infection. This immune induction function of pp65 is reminiscent of the NK 

cell–stimulating protein m157 of MCMV, whose deletion or mutation increases viral replication 

and titers in mice carrying the NK cell receptor Ly49H for which m157 is a ligand [460, 461].  

The parental strain used to generate Δpp65ab, RhCMV 68-1, shows reduced secretion from 

infected animals, most likely due to the lack of genes in the ULb′-homology region required for 

tissue tropism [345]. Since RhCMV 68-1 does not generate robust plasma viremia in infected 

animals, the appearance of RhCMV-Δpp65ab in plasma samples became particularly striking. 

Thus, it is conceivable that the increased dissemination of Δpp65ab might be less pronounced in 

viruses carrying an intact ULb′ region. However, in preliminary observations, we did not observe 

increased dissemination of RhCMV 68-1.2, a virus that is repaired for tissue tropism [415]. Thus, 
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it is likely that pp65 deletion will have a similar effect on a repaired or low-passage viral 

background, although this still needs to be verified experimentally.  

T cells from HCMV-infected individuals recognize a broad spectrum of viral ORFs that 

are highly variable between individuals [121]. Although no ORFs are recognized by all 

seropositive people, pp65 is one of the most consistently recognized CMV proteins by both CD4+ 

and CD8+ T cells [121], a level of immunogenicity that has led vaccine developers to include pp65 

in HCMV vaccines [427, 462-466]. However, relatively little is known about the protective effect 

of pp65-specific T cells in humans, since vaccine trials generally involve a cocktail of proteins and 

efficacy cannot be directly correlated to pp65 alone [428]. The most direct evidence for a protective 

effect of pp65-specific T cells comes from adoptive T cell transfer experiments that used pp65-

derived peptides to expand HCMV-specific T cells [467-472]. In these studies, transfer of pp65-

specific T cells accelerated the restoration of antiviral immunity posttransplantation, without graft 

versus host side effects associated with nonspecific T cell transfer. Our finding that pp65-specific 

immunity seems to curtail viral dissemination in the early stages of infection would support the 

inclusion of pp65 in subunit vaccines, provided it is indeed the pp65-specific T cells that are 

responsible for this effect.  

On the other hand, our data also indicate that pp65-specific T cell responses are not 

sufficient to recapitulate the level of protective immunity generated by actual viral infection. To 

examine the protective effect of pp65-specific T cells or T cells specific to other CMV antigens 

we developed a novel challenge strategy. Our approach relies on our previous observation that 

viral genes encoding the RhCMV homologs of HCMV immunoevasins US2, 3, 6, and 11 are 

essential for RhCMV to superinfect RhCMV-positive animals [276, 278]. The ability to establish 

secondary persistent infections is also a common occurrence in HCMV, resulting in frequent 

coinfection with different strains of HCMV [424]. Since depletion of CD8+ T cells restores the 

ability of US2-11–deleted RhCMV to infect seropositive animals, infection with ΔUS2-11 viruses 

can be used to monitor the quality of a vaccine-induced T cell response. Moreover, the clear 

protection observed by natural infection allows these studies to take place in a very small group of 

animals, since the outcome of superinfection is binary. The results shown in Fig.25 are typical: 

both animals inoculated with Δpp65ab were clearly protected against superinfection with US2-11–

deleted RhCMV but not with WT. (In fact, we observed superinfection in more than 200 animals 
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inoculated with recombinant RhCMV.) Evidently, the T cell responses to antigens other than pp65 

are protective in this challenge model.  

Using the US2-11 challenge approach we were able to examine whether pp65-specific T 

cells elicited by heterologous prime-boost vaccination were sufficient to recapitulate the protective 

effect of T cells elicited by preexisting infection. We used a DNA-prime/MVA-boost protocol 

employed previously to vaccinate animals with a combination of pp65, IE1, and gB [455]. In this 

previous work, it was shown that this vaccination regimen, while unable to protect against 

superinfection with RhCMV, reduced local and systemic viremia as well as viral shedding. 

Moreover, reduction in shedding correlated with the magnitude of pp65-specific T cell responses 

[455]. In our hands, the heterologous prime-boost vaccination induced a robust CD4+ and CD8+ T 

cell response to pp65b that in the blood was similar in magnitude to pp65-specific T cell responses 

elicited by RhCMV infection. Although prime-boost vaccination would not be expected to 

maintain the effector-memory–biased T cells responses elicited by RhCMV infection over the long 

term [278, 353, 359], at the time of challenge (6 weeks after the final MVA boost), the responses 

generated by the prime-boost vaccine still manifested a predominant effector memory phenotype. 

Despite this, these vaccine-generated pp65-specific T cell responses were insufficient to protect 

against infection by ΔUS2-11gag virus, as shown by the induction of Gag-specific T cell responses 

and CMV-specific antibody responses. This suggests that T cells induced by pp65 alone do not 

reproduce the protective effect of T cells induced by ongoing persistent infections. Since the T cell 

response to pp65 was substantial in all 3 animals, it seems unlikely that a different vaccination 

strategy would have induced a better protection. Rather, it seems more likely that additional 

antigens might be required to recapitulate the protective effect of natural infection. Thus, our 

results caution against the use of pp65 as the only T cell stimulatory subunit in a CMV vaccine.  

The ΔUS2-11 challenge used in this study provides an excellent tool to evaluate the T cell 

component of subunit vaccines. Conceivably, a similar approach could be used in human clinical 

trials to specifically evaluate the T cell immunity generated by a given vaccine. Recently, challenge 

with the Towne strain was used to evaluate the efficacy of subunit vaccines by monitoring an 

anamnestic HCMV-specific immune response [465]. Conceivably, a US2-11–deleted Towne 

strain would not generate an anamnestic response, similar to our observation that IE1-specific 

responses were not boosted when RhCMVΔUS2-11 failed to superinfect (Fig.25). In this case, a 

second challenge with WT-Towne could be used to monitor protection and T cell boosting as 
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described previously [465]. In contrast, a boosting of the pp65-specific T cell and antibody 

responses, as observed in pp65-vaccinated animals (Fig.27), would be a clear indication of 

infection by US2-11–deleted Towne and lack of protection by the T cell component of a given 

vaccine. Furthermore, our observation that vaccine-induced antibody responses against pp65 were 

strongly boosted by inoculation with ΔUS2-11 virus suggests that a safe, US2-11–deleted HCMV 

could be used to boost antibody levels induced by a given vaccine. Since high levels of antibodies 

are a desired feature of many vaccine regimens, inclusion of CMV as a new tool to enhance 

antibodies should be considered.  

In summary, our work revealed a novel and surprising function of pp65, suggesting that 

this viral protein acts as an immune inducer that generates an immune response that stringently 

restricts viral replication during primary infection but that has little impact on long-term 

maintenance, immunogenicity, or viral shedding. A likely explanation for this finding is that the 

highly abundant and immunogenic protein pp65 induces a rapid T cell response that limits viral 

dissemination. Since an intact immune system is required for this “immunological brake” 

mechanism to function, the lack of pp65-mediated control likely contributes to the high level of 

dissemination observed in immunocompromised individuals, such as transplant recipients, or in 

fetuses with immature immune systems. In RMs, RhCMV can cause severe sequelae, including 

spontaneous abortions, when injected into the developing fetus [473, 474]. Since the immune-

dominance of pp65 is conserved in HCMV, it is likely that this “antivirulence” function is 

conserved as well. HCMV and RhCMV thus seem to use the adaptive immune response to limit 

their dissemination during primary infection. It is not immediately obvious why CMV would 

choose such a self-imposed restriction. However, since the establishment and maintenance of 

persistent infection, as well as persistent shedding from the infected host, is not affected by the 

presence or absence of pp65, it seems that the ultimate “goal” of CMV, to establish a benign 

infection that easily spreads through the human population, is unaffected by pp65. The pp65-

mediated immunological control of CMV dissemination might thus serve to soften the impact of 

primary infection on the host to ensure a healthy host that is able to maintain and transmit the virus 

for a long time.  
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5. Discussion and Future Perspectives 

In the study presented here, we tried to shed light on a fascinating new vaccine platform which 

showed promising results in protecting rhesus macaques against challenge with highly virulent 

SIVmac239 [359, 360]. RhCMV has been shown to induce unique T-cell responses substantially 

different from any other vaccine vector examined previously [278]. Due to the nature of the virus 

as a persistent pathogen, CMV will remain with the infected host for life and reactivate 

continuously from latency [475]. This chronic infection induces a massive T-cell response to 

proteins encoded by the CMV vector backbone as well as any introduced foreign antigens. T-cell 

frequencies can comprise as much as 10% or more of circulating memory T-cells in the host [121].  

These T-cells control the lytic viral infection and limit viral reactivation from latency. Upon 

depletion of T-cells from test animals or if the host becomes immunosuppressed, either due to 

disease or medication, the virus can reactivate and cause disseminated infections, observations that 

underline the importance of a persistent T-cell response to control cytomegalovirus. Due to 

repeated reactivation and the resulting constant challenge, the T-cells cannot progress to central 

memory (TCM) phenotype as they would after infection with non-persistent viruses (e.g. 

adenoviruses), but display effector memory (TEM) phenotype [353]. As such they remain 

polyfunctional and capable of CTL activity immediately upon encounter of their target antigen. 

Since effector memory T-cells do not proliferate in response to pathogen challenge they provide 

an immediate defense at the entry or reactivation sites of potential infections. Whereas CMV 

evolved mechanism to evade clearance by the host’s immune response [124], SIV and other 

pathogens do not have this capability, and by inserting SIV antigens into the RhCMV backbone  

the highly pathogenic SIV strain mac239 was eventually cleared by the CMV-induced immune 

response [360]. The significance of this finding cannot be stressed enough since for the first time 

these results suggest that a HIV vaccine might be possible which would save the life of millions 

of people. CMV is normally a benign infection causing only mild pathology in the naïve host [28]. 

Seropositivity in a population increases with age and is dependent on the location and the living 

conditions of an individual. Close to 100% of individuals will become seropositive during 

childhood in most developing countries whereas seronegative individuals can still be found in the 

highest age brackets in developed nations [22-24]. Given the almost universal distribution of the 

virus, utilizing this virus as a new vaccine delivery vector does not introduce a never before 

encountered pathogen into the human population. Thus, vaccinating with a live, un-attenuated 
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vaccine vector would not be different than exposing an individual to wildtype CMV. However, 

while this might be acceptable in individuals that are already infected by CMV, non-attenuated 

vectors would likely not be acceptable in CMV-negative vaccine recipients due to the risk of 

causing pathology upon immunosuppression or upon fetal infection. Therefore, current work in 

RhCMV focuses on modeling possible attenuation strategies by selecting potential candidate genes 

for deletion in the viral genome for future development of attenuated HCMV vaccine vectors. 

 

5.1 Characterization of the protein coding content of RhCMV 

To design a functional in vivo monkey model for HCMV, it is important to determine the exact 

coding potential of our RhCMV vaccine vector in comparison to HCMV. Multiple studies have 

tried to estimate the number of potential ORFs encoded by this virus, but some predictions 

increased the total number of putative viral proteins well above experimentally determined results 

achieved for other CMV family members like HCMV and MCMV [347, 348]. Therefore, it seemed 

likely that a significant number of predicted ORFs were false and non-coding. These predictions 

were based on very simple computer algorithms that only searched for potential proteins spanning 

more than 100 amino acids and encoding for a start and a stop codon, without further examining 

the validity of these proposed ORFs. For HCMV, one possible method to elucidate the true coding 

potential is to compare multiple different fully sequenced genomes and determine the ORFs 

conserved among all of them, since it is very unlikely that different full length isolates encode for 

vastly different proteins. The first step is to eliminate all strain-specific predictions. However, this 

approach cannot be used for RhCMV since only two RhCMV strains have been fully sequenced, 

and both appear to have undergone major tissue culture adaptations and deletion of ORFs [345]. 

Therefore, we started with the assumption that NHP CMV members are closely related so that 

sequence comparisons of isolates from different NHP species would reveal the likely coding 

content of a prototypical RhCMV isolate. This assumption is based on the fact that HCMV and 

CCMV show remarkable coding similarity [346] and that several NHP species are so closely 

related that they can produce fertile offspring [476-478]. 

 Alignment of several genomes of NHP CMVs of Asian and African origin showed high 

sequence similarity of the genomic DNA sequence, particularly in the central genome region 

encoding most of the structural proteins and proteins responsible for DNA replication. However, 

even the less-conserved terminal genome regions were remarkably conserved, not only among 
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NHP CMVs but also between human and NHP viruses, with 90% of all HCMV ORFs having 

homologues in NHP CMVs, at least on the protein family level. This conservation is substantially 

higher than predicted previously [343] supporting a close genetic relationship between non-human 

and human primate cytomegaloviruses. In contrast, MCMV, the most widely used animal model 

system for HCMV, shows very little homology to the human virus outside the core region with 

many genes having functional but not sequence or locational homologues. Our finding that 

RhCMV has true homologues to almost all HCMV ORFs thus highlights the potential of the virus 

as a valuable tool to determine in vivo functions of important HCMV proteins. A further difference 

between primate and murine CMV is the fact that MCMV provides its host with protective 

immunity after sublethal challenge of naïve mice [305], so the boosting of initially generated T-

cell responses with another MCMV based vaccine vector is impossible, although superinfections 

have been demonstrated in wild mice [479].  

Interestingly, there are small differences between CMVs derived from different primate 

species with evolutionary distances between the host species reflecting evolutionary distances 

between the corresponding CMVs (see Fig.11). In addition to differences in sequences of 

homologous proteins, there are also differences in the number of viral proteins encoded by 

individual genomes. For instance, NWM CMVs as well as great ape and human CMVs encode 

only one copy of the major tegument protein pp65, whereas all OWM CMV genomes, both Asian 

or African monkeys CMVs, encode two copies of the ORF [444]. These two copies are not fully 

equal, since we were able to show that the pp65b protein is twice as abundant in the viral virion as 

the pp65a protein [444].  

A further difference can be found in the number of viral CXCL chemokines encoded by 

the different viruses. HCMV encodes for two of these proteins (UL146 and UL147), whereas 

CCMV encodes for three (UL146, UL146A and UL147) [346]. OWM of Asian origin have six 

chemokine family members (UL146B, UL146C, UL146D, UL146F, UL146H and UL147) while 

OWM of African origin have eight of these proteins (UL146B, UL146C, UL146D, UL146E, 

UL146F, UL146G, UL146H and UL147) [444]. Finally, NWM, like HCMVs, only encode two 

viral CXCL chemokines [3].  

Besides differences in coding capability, homologous viral proteins from different CMV 

species can also exhibit altered functions. In HCMV, pp71 is an almost essential viral protein 

[211]. The virus does not replicate at low MOIs in the absence of this protein, since pp71 is 
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responsible for, among other things, the degradation of DAXX [480]. By doing so the viral protein 

enables viral gene expression and viral genome replication by hijacking the cellular DNA 

replication machinery. In an HCMV pp71 deletion mutant, DAXX is not degraded, leading to a 

severe attenuation of the virus at low MOI [194, 211]. RhCMV also encodes for a pp71 protein 

with significant identity to the HCMV protein. Like its HCMV homologue, it also degrades DAXX 

and other ND-10 body components (data not shown), but the virus only exhibits a moderate 

attenuation at low MOI in non-complementing cells (Fig.29-30). The probable explanation for this 

difference is that, other than in HCMV, a RhCMV pp71 deletion mutant still delocalizes and 

degrades DAXX efficiently (data not shown), indicating that RhCMV might encode a second 

DAXX-targeting protein that, in the absence of pp71, can partially compensate for this defect. 

Another example can be found in the viral NK cell evasion. For HCMV the viral proteins 

UL16 and UL142 as well as the viral miRNA miR-UL112 have been shown to interfere with the 

activating NKG2D ligands (MICA, MICB and the UL16-binding protein (ULBP) 1-6) by 

sequestering them in the ER or downregulating their expression [481]. Interestingly, neither of 

these proteins, nor the described miRNA is conserved in RhCMV [444]. In fact, only HCMV and 

CCMV have been described to encode for these proteins whereas OWM CMVs as well as NWM 

CMVs do not contain homologues of these proteins. This implies that these viruses must use other 

mechanisms to evade NK cells, since work in MCMV suggests that NK cell evasion is important 

for the viral replication in vivo [224, 482-485]. Work performed in our lab led to the idetification 

of Rh159 as the viral protein responsible for downregulating NKG2D ligands from the cell surface 

of infected cells by sequestering them in the ER (Sturgill et al, manuscript in preparation). This 

protein is conserved in all OWM and NWM CMVs and also has a homologue in HCMV and 

CCMV termed UL148 [444]. This conservation does not extend to rodent CMVs, indicating that 

this protein has been part of the primate CMV genome for at least before the separation of NWM 

(Platyrrhini) and OWM (Catarrhini) about 35 million years ago [330-334]. As mentioned above, 

UL16 and UL142 are specific to the human- and great ape CMVs which indicates that these genes 

entered the viral genome after the separation of OWM and apes about 23 million years ago [337] 

and before the separation of the genera homo (humans) and pan (chimpanzees) roughly 5 – 7.5 

million years ago [338-341]. This finding leads us to speculate, that the common ancestor of all 

primate CMVs contained a UL148 homologue as its main mean of NKG2D evasion whereas over 
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the course of millions of years of co-evolution with its host, the common ancestor of human and 

chimpanzee CMV acquired UL16 and UL142 after the species separated from the OWM.  

 To further determine which potential ORFs actually encode for proteins we decided to 

determine the protein content of purified RhCMV virions using mass spectrometry comparable to 

what has been published by Varnum et al. for HCMV AD169 [18]. Admittedly, this only enabled 

us to detect structural proteins of the viral virion and we were not able to detect nonstructural 

proteins involved in immune evasion since they are not integrated into the viral virion, but we 

nevertheless obtained insight into a substantial part of the viral proteome and, more importantly, 

we were able to determine the validity of our ORF prediction. If we had found multiple proteins 

in the virion that were not predicted by our prior bioinformatics analysis, this would have indicated 

that our analysis did not lead to a better and more reliable annotation of the viral genome as 

compared to the stop-to-stop analysis used previously. However, only a single protein (Rh164.1) 

identified in the virion was not predicted during our initial analysis (Fig.22) due to our arbitrary 

cutoff of 300bp. In addition, Rh164.1 does not have a homologue in HCMV, so it was excluded in 

our preliminary annotation. All other proteins identified in the virion were predicted by our 

analysis. Nevertheless, it is still possible that some of the genes we predicted will not give rise to 

proteins so that further work will be needed to generate the final finished genome map of the virus. 

Yet, the overall match between predicted and confirmed protein sequences indicates that our 

approach showed reliable results and that the predicted genes are likely to be coding. It is possible 

that we might have missed several viral ORFs, especially very small ORFs that were recently 

found in HCMV by ribosomal profiling [486]. However, since our predicted total of 175 ORFs is 

consistent with the number of ORFs predicted for all other CMVs we have a high degree of 

confidence in our new annotation. 

 

5.2 Use of attenuated RhCMV vectors in vaccine development 

To further improve our previously established RhCMV vaccine vectors for potential use in humans 

against HIV, tuberculosis (Tb) or any other potential pathogen, we had to confirm that the vaccine 

backbone itself was safe. To ensure this, we encountered the problem to design a vector construct 

that would generate a high and specific T cell response against the targeted organism without 

exhibiting any pathogenicity by itself in immunocompetent adult macaques. In the long run this 

vector should even have the potential to be used safely in immunocompromised individuals and 
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neonates, since these two target groups are most affected by the virus. Furthermore, it is of the 

utmost importance that our final vaccine vector cannot be transmitted either horizontally or 

vertically between individuals, but remains solely in the vaccinated individual. 

 As a first target for attenuation, we chose the two RhCMV homologues of the HCMV pp65 

protein (pp65a and pp65b). The HCMV pp65 protein is involved in the evasion of the innate [151, 

152, 432] as well as the adaptive immune response [230, 433, 434], but deletion of the protein 

from the virus does not affect virus growth in fibroblasts [440], so viral stocks of the deletion 

mutant can be grown on non-complementing cells, saving us the effort to generate a 

complementing cell line. Furthermore, as we have shown earlier, pp65 a and b are two of the most 

abundant members of the viral tegument [444], so deleting these ORFs and inserting a foreign 

antigen in its place under the endogenous viral promoter should lead to comparably high levels of 

targeted antigen expression while at the same time attenuating the virus in vivo. Generating the 

RhCMV deletion mutants proved to be unproblematic and the reconstituted virus showed similar 

in vitro growth characteristic as its previously described HCMV and MCMV counterparts [440, 

457]. The growth defect in vitro, even at low MOIs was minor, and only a short delay in peak viral 

titer was noticed whereas the viral peak titers were unchanged. 

 To evaluate the impact of the absence of both pp65 proteins on the viral virion, we gradient 

purified mutant virus and performed mass spectrometry on in 8M urea denatured virions. It has 

been noted for HCMV pp65 deletion mutants, that the absence of this major tegument protein 

affects the levels of other virion protein and that pp65 might play a significant role in the loading 

of proteins into the viral virion [441]. Contrary to this data and to data published in another study 

performed and published after the publication of our work [487], the total absence of both pp65 a 

and b had only a minor impact on the protein levels of other virion components. When we adjusted 

the relative protein abundances of all proteins found in the RhCMV virion to the absence of pp65 

a and b by adjusting the total relative amount of proteins to 89% (11% representing the absence 

pp65 proteins) to render the two datasets of the WT and the deletion mutant more comparable, we 

obsered that none of the more abundant proteins showed a significant increase or decrease in 

relative abundance between our two independent experiments. Significant changes can be found 

in proteins that show very low abundance, but it is unclear if theses changes reflect real differences 

in protein composition, or technical difficulties picking up trace amount of low abundance proteins 

using mass spectrometry. Additionally, when we examined the viral virions of RhCMV WT and 
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our pp65 deletion mutant by electron microscopy, no obvious structural differences were observed, 

A more detailed measure of the different virion dimensions (diameter of the virion, the capsid and 

the tegument layer) revealed that the overall size of the mutant virions was significantly reduced, 

and that this reduction is mostly due to a significantly smaller tegument layer, This data indicates 

that the virus does not compensate for the absence of the major tegument components pp65 a and 

b by inserting more of the other dominant tegument proteins into the virion, but that the absence 

of pp65 a and b simple leads to an overall decrease of tegument. The relative decrease of the 

tegument layer by ≈25% is in the same range as the percentage of tegument normally taken up by 

pp65a and b. Thus, the deletion of these proteins does not affect other tegument or virion protein 

significantly, but leads to a reduced tegument layers.  

 To determine the overall strength of the T-cell response generated by our potential vaccine 

vector in vivo in comparison to the RhCMV WT, we challenged the vaccinated animals with a 

previously described RhCMV 68-1 ΔUS2-ΔUS11 deletion mutant [276]. This mutant exhibits an 

interesting phenotype in that it infects naïve animals normally and establishes persistent infections 

in vivo in these animals, but is incapable of infecting seropositive animals, since these animals 

posses a pre-existing anti-RhCMV T-cell response. The proteins encoded within the US2-US11 

region are known T-cell immune evasion genes [124], and the virus cannot overcome the 

preexisting adaptive host T-cell response in the absence of these proteins [276]. We expected our 

pp65 deleted vaccine vector to induce a T-cell response with similar amplitude and efficacy as the 

T-cell response induce by the 68-1 WT, but since pp65 is a major target for CD8+ T-cells, its 

absence might weaken or misdirect the host immune response to the vector. Initial results in naïve 

rhesus macaques showed that the amplitude of the anti-CMV CD4+ and CD8+ T-cell responses in 

BAL as well as PBMCs were comparable to the overall levels achieved in WT infections. A 

RhCMV mutant lacking the US-US11 region was not able to overcome the T-cell response induced 

by the pp65 deletion mutant, indicating that the T-cells directed to proteins other than pp65 are 

capable of controlling RhCMV in re-infection or, potentially, re-activation. Vaccination with our 

deletion mutant did not protect against challenge with a 68-1 WT vaccine vector. This finding is 

not surprising, as vaccination with a WT vaccine vector does not protect against re-challenge with 

the same virus either [353]. Re-infections are common in the human as well as animal populations, 

and protective immunity does not exist in humans and primates after infection with their respective 

CMVs. Lastly, RhCMV 68-1 Δpp65ab was able to superinfect CMV positive animals. This 
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attribute is essential for every potential CMV vaccine vector, since superinfection is needed for its 

use as a vaccine vector, not only for the purpose of boosting established immune responses, but 

also to inoculate naturally HCMV positive individuals with CMV based vaccine vectors. Pre-

existing immunity can be an issue in vaccine trials as has been encountered in the use of HAdV-5 

based vaccine vectors, human vectors based on the human adenovirus type 5, a type widely 

common in the human population [488-490]. 

 Since pp65 is such a prominent target for the T cell response, the protein by itself has been 

proposed a potential subunit vaccine [491]. Several in vivo animal and human trials with pp65 as 

the sole constituent, or with pp65 as the T cell component or part of the T cell component in an 

anti-CMV subunit vaccine have been tested [455, 463, 465, 492, 493]. The results were in many 

cases promising, and future trials with different compositions are under way or have been 

proposed. Given that our RhCMV deletion mutant still protected against re-infection with a ΔUS2-

ΔUS11 deletion mutant, we wanted to examine whether pp65 responses by themselves could 

achieve similar results. Interestingly, although we were able to generate strong pp65b specific 

immune responses with our DNA prime MVA boost strategy, the T cell responses were not good 

enough to protect against our subsequent RhCMV ΔUS2-ΔUS11 challenge, indicating that not 

only the amplitude, but also a certain breadth in T-cell targets is needed to generate an effective 

anti-CMV T-cell response. This very interesting finding suggest, that subunit vaccine based on 

pp65 as their sole T-cell target, or even vaccines with two or three of the most prominent T-cell 

targets might not generate a T-cell response with the same breadth and hence the same efficacy as 

the WT infection does. Thus, it might be better to use a live attenuated or single cycle CMV vaccine 

vector, since these vectors, if constructed properly, should generate a broader and superior immune 

response. 

 Since viremia is the single-most determining factor in the pathogenesis in CMV-related 

diseases [494], we wanted to compare the virus load in tissues in infected animals. For this purpose, 

the same CMV naïve rhesus macaques were infected with a WT vaccine vector and Δpp65 deletion 

mutant expressing different SIV markers, and the animals were sacrificed at predetermined 

intervals after vaccination. Because of their different foreign antigens, the two vaccine vectors 

could be detected by nested PCR in the same samples and viral loads could be determined. RhCMV 

68-1 is a laboratory strain of RhCMV, and as such, has adapted to culture in rhesus fibroblasts. 

Similar to what has been observed in HCMV AD169 or HCMV Towne [495], genomic regions in 
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the co-called ULb’ region of HCMV have been lost in RhCMV 68-1 due to in vitro passaging. As 

a result, the virus lost its pentameric complex needed to infect cells through endocytosis and 

successively its ability to infect cells other than fibroblasts effectively [415]. Consequently, the 

virus is barely detectably in the saliva and urine of naïve rhesus macaques infected with the BAC 

derived virus early after infection compared to low passage clinical isolates [416], and we see very 

low copy numbers of vaccine vectors based on 68-1 in animal tissues, even the injection site, 2-3 

weeks post infection. Deleting pp65a and b from the 68-1 WT revealed a very different picture. 

The virus was easily detectable in almost all tissues of infected animals, whereas the WT was 

mostly restricted to the injection site and the nearest draining lymph node. Moreover, the viral 

loads of the pp65 deletion mutant were in some cases 6-7 logs higher than measured for the 68-1 

WT in the very same animals. Our data indicate that in vivo pp65 acts as a silencer or damper of 

its own viral replication in the context of a primary infection, probably limiting the virus to a viral 

load that will ensure the survival and well being of the host, so that the virus can establish a 

persistent infection and spread to other individuals who are in contact with the infected individual. 

This is the first time we encountered that a deletion mutant in on a somewhat benign parental virus 

led to a highly significant increase of viral replication and dissemination in vivo. Therefore, 

deleting pp65 from a potential vaccine vector is not an option.  

 

5.3 Developing a pp71 deletion virus into a 2nd generation CMV vaccine vector. 

Given that the pp65 deletion mutant did not achieve the expected results, we had to explore other 

options to create a safer vaccine vector platform with high immunogenicity. The second potential 

candidate was pp71, another structural virion protein found in the tegument [18, 444]. Like pp65, 

this protein was also shown to have immediate intrinsic immune evasion functions by degrading 

multiple proteins within ND10 bodies including DAXX and ATRX [192, 480], enabling the viral 

replication utilizing the host DNA replication machinery [208]. It also appears to be involved in 

viral reactivation, as the protein remains in the cytosol during latency, not affecting the endogenous 

DAXX levels, whereas re-entry into the nucleus seems to shift the virus from latency into lytic 

replication [68]. Preliminary data from our institute indicates that HCMV lacking pp71 can infect 

humanized mice normally and establishes latency but cannot reactivate from this state (Crawford 

et al., unpublished data). 
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Fig.28: Subcellular localization of tegument-delivered pp71 determines whether HCMV initiates lytic 

replication or establishes quiescent, latent-like infections. (A) Lytic replication initiates when tegument-delivered 

pp71 is allowed access to the nucleus. Capsids docked at nuclear pores release their DNA into the nucleus, and viral 

genomes associate with cellular histones (H). The Daxx protein, which rapidly dissociates from, and reassociates with, 

PML-NBs, accumulates around viral genomes, recruits an HDAC, and silences viral IE gene expression. Other PML-

NB components are also recruited and participate in the silencing of viral genomes. pp71 binds to Daxx in these newly 

formed PML-NBs, induces Daxx degradation, derepresses viral IE gene expression, and thus initiates the lytic 

replication cycle. (B) In cells where quiescent or latent infections are established, tegument-delivered pp71 remains 

in the cytoplasm. Daxx (and presumably other PML-NB proteins) silences viral gene expression in these cells (taken 

from Kalejta, Microbiol Mol Biol Rev. 2008 Jun;72(2):249-65.).  

 

 One fundamental problem with generating a pp71 deletion mutant is that this virus was 

shown to have a severe replication defect in HCMV at low MOIs. As a matter of fact, the virus 

barely replicated at all at an MOI of 0.01 in primary human fibroblasts, whereas viral replication 

an a high MOI of 3 did not seem to be affected as much (Fig.29) [211]. When we repeated these 

experiments ourselves with the same virus provided to us by the authors of the study, we achieved 

similar results (Fig.30). Interestingly, when we constructed a pp71 deletion mutant based on the 

RhCMV laboratory train 68-1, we were able to reconstitute the virus in non-complementing tRFs. 

To generate high titers of the virus, we established a complementing cell line conditionally 

expressing RhCMV pp71 controlled by a Tet-On operon [496]. Although expression of the protein 

should be inhibited in the absence of doxycycline, the regulation of the operon turned out to be 

leaky, and even uninduced cells expressed small amounts of the viral proteins, even enough to 

complement a full deletion mutant. Using this cell line, high titer stocks of the pp71 deletion mutant 

could be generated. Because the attenuation of the pp71 deletion is alleviated at high MOIs, stocks 

generated on complementing cell lines can subsequently be used to create new stocks of the 

deletion mutant on non-complementing cells by infected these cells at a high MOI. The hereby 
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generated virus is negative for pp71 in the genome as well as in its virion, since virus grown on 

complemented cells still contains pp71 expressed by the host cells in trans in its virion, giving it a 

replication advantage and WT appearance during its first round of replication. 

 

Fig.29. Growth kinetics of wt and mutant viruses. Human fibroblasts were infected (3 or 0.01 pfu per cell) with wt 

(closed circles), AD Sub UL82+UL82 (open circles), or AD Sub UL82-UL82 (closed triangles) virus. Cultures were 

harvested at the indicated times after infection, and infectious virus was quantified by plaque assay on WF28-71-HA 

cells (taken from Bresnahan and Shenk, Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14506-11.). 

 

Single and multistep growths curves performed at different MOIs on tRFs revealed that the 

RhCMV Δpp71 deletion mutant only showed a minor delay in viral titers at high MOI, independent 

of the virus being grown on complementing or non-complementing cells, whereas both version of 

the mutant showed significant attenuation at lower initial MOIs (Fig.31). It was surprising that the 

virus showed grew at low MOIs, even in the absence of pp71, given that a similar HCMV deletion 

mutant did not grow under these conditions [211].  
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Fig.30: Multi-step growth curve of HCMV AD169 ΔUL82 (pp71). Primary human foreskin fibroblasts (1°HFFs, 

solid squares) or telomerized human fibroblasts stably expressing HCMV UL82 (pp71) (tHFs + UL82, open squares) 

were infected with HCMV AD169 WT or HCMV AD169 ΔUL82 (pp71) at an MOI of 0.01. Supernatant was 

harvested in 3 day intervals, and the viral titers were determined by limited dilution assay. 

 

Further examination of the RhCMV pp71 protein revealed, that the protein is sufficient to 

delocalize DAXX and ATRX from the nucleus of transfected cells in a fashion similar to the 

HCMV pp71 protein. Interestingly, when we examined tRFs infected with our RhCMV Δpp71 

deletion mutant, DAXX as well as ATRX were still delocalized and DAXX was still degraded, 

indicating that RhCMV must encode for a second viral protein with a similar function as pp71 

(Marshall et al., unpublished data). This protein is, at least functionally, not conserved between 

RhCMV and HCMV, explaining why an HCMV Δpp71 deletion mutant can no longer degrade 

DAXX to transactivate viral gene expression and viral genome replication and why a deletion 

mutant in the human virus is more growth deficient in the absence of pp71 compared to 

homologues RhCMV constructs. While  this indicates that pp7-deleted RhCMV vectors are likely 

less attenuated in vivo compared to the corresponding HCMV mutant, any in vivo attenuation 

observed for RhCMV will most likely be conserved in HCMV since the HCMV version will be 

even more attenuated than the comparable RhCMV version.  

Although our deletion mutant only showed a moderate growth reduction in vitro at low 

MOIs compared to the HCMV Δpp71 construct, the level of in vivo attenuation achieved with this 

mutant was remarkable. After infection of naïve RMs with the construct, urine was collected from 
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the animals on a regular basis to detect secreted virus by co-culturing the urine on tRFs stabily 

expressing RhCMV pp71. RhCMV 68-1 based WT vaccine vectors can be detected by 

immunoblot from urine co-cultures by day 28, whereas we were not able to detect our RhCMV 

pp71 deletion at any time point up to day 231 in co-cultures on complementing cells (Fig.32). This 

indicates that the virus is not shed by the infected animals, which could indicate that the pp71 

deletion mutant, if used as the backbone for a future vaccine vector, probably cannot be transmitted 

horizontally between humans, since transmission generally occurs through secretion in bodily 

fluids. Given the more severe attenuation of the human deletion virus in vitro, it is very likely that 

we will see a similar effect for an HCMV Δpp71 deletion vector backbone, fulfilling one essential 

requirement for future use in the human population. 

 

Fig.31: Growths kinetics of complemented and uncomplemented RhCMV 68-1 Δpp71 deletion mutants 

compared to 68-1 WT. Telomerized rhesus fibroblasts (tRFs) were infected with RhCMV 68-1, RhCMV 68-1 Dpp71 

grown on complementing tRFs stably expressing pp71, or RhCMV 68-1 Dpp71 grown on non-complementing tRFs 

at an MOI of 3 (A), 0.1 (B), 0.01 (C) and 0.001 (D). Cell free supernatant was collected on the indicated time points 

and the viral titers were determined with limited dilution assays and graphed over time. 

 

Interestingly, while the deletion mutant was not shed by the infected naïve animals, 

indicating in vivo spread-deficiency compared to the WT, the immune response induced by the 

vector exhibited the same kinetics, amplitude and duration as the immune responses induced by 
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RhCMV 68-1 WT vectors (Fig.33). CD4+ and CD8+ T-cell responses against the immunodominant 

CMV proteins IE and pp65 (Fig.33A) or against complete CMV lysates (Fig.33B) are detectable 

in PBMC as well as BAL 7-14dpi and peek around 21dpi. Thereafter, the amplitude of the response 

declines and plateaus at a steady level around 56dpi where it remains ad infinitum. Similar to data 

generated with our pp65ab deletion vector, infection with a pp71 deletion vector induces an 

adaptive immune response strong enough to protect against re-infection with a ΔUS2-ΔUS11 

deleted RhCMV mutant. This shows a breadth in CD8+ T cells responses broader than achieved 

with pp65 alone (Fig.27) and potentially equally protective as responses generated by the WT 

vectors. 

 

 

Fig.32: RhCMV 68-1 Δpp71 is not shed by infected animals. (Upper panel) Naïve RMs were infected with RhCMV 

68-1 Δpp71 and urine was collected in 14 days intervals after infection. The urine samples were co-cultured on pp71 

expressing telomerized rhesus fibroblasts. 28 days after inoculation, the cells were lysed and Western blots were 

performed to detect the RhCMV IE protein. (Lower panel) CMV positive RMs were superinfected with RhCMV 68-

1 Δpp71 SIV RTN. Like described above, Urine was collected in 14 day intervals and co-cultures were performed on 

complementing cells. After 28 days of co-culture, cells were lysed and Western blots were performed to detect the V5 

tagged RTN transgene. 

 

The quality of the immune response is impressive especially considering the spread-

deficiency observed in vivo, but it indicates that this vector could work as a T-cell inducing vaccine 

vector. Moreover, also considering the required safety of the vaccine backbone, especially in CMV 

vulnerable populations like women of childbearing age and immunocompromised individuals, the 

combination of high immunogenicity paired with high attenuation and probably low pathogenicity 

would make this vectors design perfect for future human applications. 
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Fig.33: RhCMV 68-1 ΔRh110 (pp71) infects naïve RMs normally and protects against RhCMV 68-1 ΔRh182 

(US2)-Δ189 (US11) GAG + ΔRh178 superinfection. A) Two naïve RMs were infected with infected with RhCMV 

68-1 ΔRh110 on day 0. PBMCs (upper panel) and BAL (lower panel) were harvested in 7 day intervals and RhCMV 

IE and pp65 specific CD4+ (left panel, blue lines) and CD8+ (right panel, red lines) T-cell responses were determined 

by co-culturing isolated T-cells with APCs presenting specific peptides for IE and pp65. Results of prior experiments 

infecting naïve RMs with RhCMV 68-1 WT are shown for comparison (black lines). B) To determine broader RhCMV 

specific T cells responses, peptides from whole RhCMV lyses were loaded onto APCs and presented to T-cells isolated 

from PBMCs (upper panel) or BAL (lower panel). On day 231 post infection, the RMs were superinfected with 

RhCMV 68-1 ΔRh182 (US2)-Δ189 (US11) GAG + ΔRh178. As can be seen in all panels, no boost in CD4+ or CD8+ 

T cell responses was detected after superinfection, indicating, that the virus did not successfully superinfect. 
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 To determine just how powerful the level of attention of the pp71 deletion in vivo really is, 

we constructed a mutant virus lacking pp71 replaced with SIV GAG. On top of it, we subsequently 

deleted pp65 a and b from the viral genome creating a GAG expressing triple deletion mutant. The 

absence of pp65ab alone from the RhCMV backbone leads to a massive increase of viral 

replication in naïve animals with 3-6 logs increased viral loads of the mutants compared to the 68-

1 WT vectors in almost all tissues in the same animals (Table 8). This massive replication and the 

connected higher probability of increased CMV induced pathology led us to exclude pp65 as a 

potential candidate for attenuation of the WT vector. When we now co-infected naïve juvenile 

RMs with RhCMV Δpp65ab RTN and RhCMV Δdpp71 GAG + Δpp65ab deletion mutants and 

compared viral loads in tissues at 14 dpi, it became apparent, that while the pp65 deletion showed 

increased viral loads in the test animals, this phenotype was overcome by the additional deletion 

of pp71 (Table 9), reducing the viral loads to viral titers seen in similar experiments performed 

with pp71 deletion mutants (data not shown). Furthermore, deletion of pp71 also reduced the 

dissemination of the vaccine vector. Whereas the pp65ab deletion virus spreads to all major organs 

in the infected animals, the pp71 deletion restricts the viral spread mostly to the injection site and 

the nearest draining lymph nodes. All these factors further underline the potential of our pp71 

deletion to serve as an attenuation factor to create a safer CMV vaccine vector that retains the full 

CMV potential to induce a strong and lasting adaptive immune response against the vector as well 

as against any inserted foreign protein. In addition to the data presented here, we were also able to 

show that a pp71 deleted vector is still fully capable to re-infect CMV positive animals and that 

the virus induces T cells with TEM phenotype.  

As mentioned above, the TEM phenotype of the CD8+ T cells is likely the reason for the 

superior efficacy of our CMV-based T cell vaccine vectors compared to any other previously 

studied vaccine platforms, since these T cells do not have to proliferate like TCM after re-

encountering their target antigen, giving them a faster response time and a kinetic advantage 

against the initial encounter of invading pathogens. Additionally, we were able to demonstrate, 

that pp71 deleted vectors cause substantially reduced pathogenesis when directly injected into RM 

fetuses compared to WT vectors and especially clinical isolates with fewer incidents of 

spontaneous abortions and less severe or even total absence of virus induced pathology and viral 

titers in tissues. As shown in Fig.32 the vectors are not shed by infected animals, and by observing 
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a nursing mother vaccinated with multiple different pp71-based vaccine vectors, we were able to 

demonstrate that our vectors were not transmitted to the baby, and the young animals remained 

seronegative for all vaccine vectors for the entire time it was monitored (Marshall et al., 

unpublished data). Additionally, when we tried to adoptively transfer the RhCMV Δpp71 deletion 

mutant through isolated PBMCs from a vaccinated macaque to naïve animals, we failed, and the 

recipient animals never showed immune responses against SIV (Hansen et al, unpublished data). 

Using PBMCs from animals vaccinated with vaccine vectors based on the RhCMV 68-1 WT, 

horizontal transmission through adoptive transfer is easily achievable. 

 

Table 9: Genome copy numbers of RhCMV Δpp65ab RTN and RhCMV Δdpp71 GAG + Δpp65ab CMV-naive 

RMs. 

Taken all these data into consideration, this indicates that although pp71 deletion mutant 

are only moderately growth-deficient in vitro they are attenuated in vivo in regards to shedding 

Δpp65ab Δpp65ab/Δpp71 Δpp65ab Δpp65ab/Δpp71
Skin Injection Site (Left) 54 ND ND 2,080

Skin Injection Site (Right) 31,767 ND 173 ND

Axillary LN (Left) 1,338 34,044 ND 68,146

Axillary LN (Right) 6,289 ND 15,032 ND

 Iliosacral LN 44,447 ND ND 12

Tonsil ND 5 ND ND

Tracheobroncial LN 69,901 ND ND ND

Submandibular Salivary Gland (Left) 3 600 23 ND

Submandibular Salivary Gland (Right) 3,867 ND ND ND

Thyroid 3 ND 3 ND

Lung 7,843 ND 5 ND

Spleen 88,148 ND 528 ND

Kidney 4,475 ND ND ND

Esophagus ND ND 7 ND

Ileum 5 ND 1,725 ND

Colon 2,230 ND 72 ND

Liver 38,320 ND 946 ND

Ileocaecal ND ND 3 ND

Inguinal LN (Left) 417 452 ND ND

Inguinal LN (Right) 2,699 ND ND ND

 Inferior Mesenteric LN 491 ND ND ND

Medial Mesenteric LN 3 ND ND ND

Superior Mesenteric LN 1,147 ND 3 4,465

Urinary Bladder 32 ND 1,871 ND

Brain 17 ND ND ND

Spinal Cord (Thoracic) ND ND 4 ND

Spinal Cord (Cervical) 9 ND ND ND

Bone Marrow 7 ND ND ND

PBMC 100 ND ND ND

Tissue Type
Rh21112 Rh21979
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and horizontal transmission, they still induce T-cell responses that seem to be as frequent and 

effective as responses observed in animals infected with vaccine vectors based on the RhCMV 68-

1 WT virus. In fact, preliminary challenge studies resulted in similar levels of protection as 

observed previously [359] indicating that our pp71 deletion vectors achieve similar if not higher 

levels of protection and clearance in monkeys challenged with the virulent SIVmac239 strain. 

 

5.4 The bright future (or where to go from here). 

Our preliminary results shown here for vaccine vectors based on pp71 deletion mutants are very 

encouraging and warrant further studies and closer examination. But to push our vaccine platform 

from the bench and the animal model system into the real world and the human patient, it is also 

essential, in parallel to conducting further animal trials and studies, to generate a human version 

of our vaccine platform to facilitate future clinical trials. Several issues have to be overcome to 

achieve this goal. First and foremost, as was shown in previous publications and by us, a HCMV 

pp71 deletion mutant is severely attenuated and does not show spreading through tissue cultures 

at low MOIs [211], so generating stocks of vaccine vectors in HCMV is more challenging that it 

has been for the RhCMV Δpp71 mutant, since this virus still retains a medium level of spreading 

at low MOIs. Additionally, since the HCMV vaccine mutants are meant to be generated for future 

human trials, all steps of virus reconstitution from the BAC and generation of viral stocks have to 

comply with FDA guidelines and will have to be approved by this institution, further complicating 

an already challenging task. To this end, only MRC-5 fibroblast as host cells to grow our vaccine 

stocks for further in vivo trials in humans are FDA approved, whereas FDA approved pp71 

complementing cell lines currently do not exist. Thankfully due to the innovative efforts of 

multiple scientists in our group, we have succeeded in generating high titer stocks of HCMV pp71 

deletion mutants without the use of complementing cells, simple by inhibiting DAXX translation 

with specific siRNAs, a function performed by pp71 in the WT (van den Worm et al., unpublished 

data). These stocks can now be produced in our own facility under GRP conditions to generate 

research virus seed stocks. Final clinical trial material will be generated by contract manufacturing 

organizations specialized on generating GMP products. 

 In addition to solving the production issues with our vaccine platform, we also have to 

demonstrate immunogenicity of antigens introduced into our HCMV vectors, since data generated 

with RhCMV in rhesus macaques cannot be simply extrapolated. This is very problematic, since 
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all CMVs are considered to species specific, and no animal model other than humanized mice can 

be employed to test HCMV infections in vivo. This model system is used in our institute by 

engrafting human CD34+ stem cells into Nod/SCID/IL2Rγ k.o. mice. As mentioned above, 

HCMV WTs as well as pp71 deletion mutants based on the low passage HCMV strain TR (repaired 

for its US2-US11 deletion) are able to infect humanized mice and establish viral latency. More 

importantly, whereas all tested HCMV low passage WTs are capable of reactivating from latency, 

pp71 deletion mutants are not, indicating in vivo attenuation. However, this model is not suitable 

to study immunogenicity of HCMV-based vectors. To study immunogenicity an 

immunocompetent animal model is required that can be infected with HCMV. Jurak and Brune 

[497] were able to show that MCMV does not replicate in human cells, because the virus cannot 

counteract the virus-induced apoptosis like it would in mouse cells through its antiapoptotic 

proteins. Interestingly, when the antiapoptotic UL37x1 protein from HCMV is introduced into 

MCMV, the generated mutant is able to inhibit apoptosis and to replicate in human cells. 

Importantly, HCMV vectors based on clinical isolates containing full-length genomes, apart from 

deletions and mutations indroduced to attenuate the virus in vivo (like pp71), can infect rhesus 

macaques (Caposio et al., unpublished data). These data indicate that the species specificity is not 

absolute, and the virus can cross the species barrier, at least in the context of a forced s.c. injection. 

These infections do, in all likelihood, not occur naturally by co-hosting two different species 

together in close quarters. Prior reports show the isolation of African green monkey derived simian 

CMV (SCMV) from humans in two independent cases [370, 498, 499], without any examination 

regarding the source of the virus, but these cases were generally regarded to be anecdotal at best. 

We are now able to study the immunogenicity, and potentially efficacy against pathogen challenge, 

of our HCMV vaccine vectors in vivo in rhesus macaques, and we are able to determine the 

immunogenicity of attenuated mutants to select those most likely to succeed in humans prior to 

clinical trial, making our final construct more like lo prevail in this rigorous process. 

 As a second essential step to construct a new, marketable vaccine platform, it is more than 

desirable to have a technology that is applicable to more than one, although very important, 

pathogen. Most of our studies so far have been focused on SIV, and by extension HIV, but we 

have also explored other important human pathogens. RhCMV vector expressing Mycobacterium 

tuberculosis antigens have been generated and tested in vivo in several trials, and preliminary data 

indicates that the protection achieved by our vectors in the rhesus macaque model is superior to 
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the protection generated by the licensed BCG vaccine (Xu, Hansen and Picker, unpublished data). 

This is even more interesting given that in SIV, large regions of the viral genome were integrated 

into the different RhCMV vaccine vectors to generate broad T-cell responses against most of the 

major viral proteins, whereas in Tb, only a small fraction of the pathogen genome can be inserted 

given the immense size of the bacterial genome (4 million bp, 4000 genes, compared with 10000 

bp and 19 proteins in SIV). Still, by selecting the right combination of T-cell targets, protections 

can be achieved, even in the rhesus macaque model where infection with 25 CFU of Tb is lethal 

within months. Similarly, preliminary studies using vaccine vectors generated in RhCMV 

encoding for immunodominant protein of the liver stage (sporozoite) of the protozoan parasite 

Plasmodium, the infectious cause of malaria, showed a significant effect in vivo against challenge 

with P. knowlesi sporozoites (Scholz et al., unpublished data). However, given the immense size 

of the parasite’s genome (14 chromosomes, varying in size from 500 kb to 3500 kb, combined 

accumulating to 23Mb encoding for about 5300 genes), the major challenge is to find the right 

combination of potential T-cell targets to generate sterile immunity and further studies are needed 

to optimize antigen and vector backbone combinations. In addition to the aforementioned 

pathogens, a wide array of other human pathogenic viruses, bacteria and parasites as well as 

cancers are studied right now to broaden the applicability of our vaccine platform, and we are 

confident that our work will help to save and improve the lives of millions of people all around the 

globe in the future.  

 Finally, the last point of improvement we have to achieve to increase the applicability of 

our vaccine platform is its efficacy. In our SIV challenge studies, we were able to generate T-cell 

responses against SIV that enabled 50% of the vaccinated animals to not only control, but 

eventually clear the virus altogether [359, 360]. This is an impressive result and it is superior to all 

prior studies using other vaccine platforms, but it also means that 50% of the animals were not 

protected and that the vaccine was ineffective in these animals. We are still investigating the 

immunological differences between the animals that were protected and the animals in which the 

vaccine proved to be ineffective. Given the high virulence of SIV, it is important to stress, however, 

that 50% protection in animals does not necessarily predict 50% protection in humans. In addition 

to studying genetic or stochastic paramerters for this outcome, we are also evaluating the role of 

various vector backbones on this outcome because it became apparent over the course of our 

investigation that the vector design of our CMV vaccine construct has a tremendous effect on the 

http://en.wikipedia.org/wiki/Sporozoite
http://en.wikipedia.org/wiki/Plasmodium_knowlesi
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generated T-cell response and probably subsequently on the vaccine efficacy. As we were able to 

show, RhCMV vaccine vectors induce broad T-cell responses against foreign antigens with total 

numbers of specific, independent epitopes well above what has been achieve in natural SIV 

infections or with any other vaccine platform [278]. The T-cell epitope coverage of foreign 

antigens in the context of RhCMV is so high, that in the case of SIV-GAG epitopes spanning large 

parts of the viral protein are presented to T-cells [278]. This breadth alone makes it hard, even for 

a highly mutagenic pathogen like a retrovirus, to evade the T-cell response by mutating epitopes, 

since dozens of epitopes all across the genome would have to be mutated simultaneously. 

Furthermore, the T-cells responses in the context of a RhCMV infection differ significantly from 

the T-cell response seen with other vaccine approaches. RhCMV 68-1 does not induce canonical 

MHC class I restricted epitope normally seen in SIV infection or after vaccination with DNA or 

common vaccine vectors, but it introduces a collection of very unique and never before described 

responses [278]. About 2/3 of the epitopes presented to CD8+ T-cells are actually presented by 

MHC class-II molecules, violating an immunological dogma in which MHC class I presents to 

CD8+ T-cells and MHC class-II presents to CD4+ T-cells. The remaining 1/3 of epitopes are 

presented by MHC-class I, but not by classical HLA molecules, but by the non-classical HLA-E 

molecules (Hansen, Sacha and Picker, unpublished data). These molecules are known to present 

signal sequences of classical MHC class I alleles to NK-cells to counteract the “missing self” 

recognition and thereby preventing NK-cell mediated killing. In addition, some of the epitopes 

presented either on MHC class-I or class-II molecules are presented in all or almost all tested 

animals. This would not be that surprising in inbred mouse strains, but rhesus macaques represent 

an outbred population with a wide array of MHC haplotypes, and it should be impossible for an 

outbred population with different MHC alleles to present the same epitopes. We termed theses 

widely presented epitopes “supertopes”. In the context of MHC-II, these promiscuous epitopes can 

be presented by multiple different MHC class-II alleles (Sacha et al, unpublished data). In the 

context of MHC class I, the non-polymorphic nature of HLA E permits the universal presentation 

of the same peptides (Hansen, Sacha and Picker, unpublished data). In addition, deletion of the 

US11 protein from the vaccine backbone further increases the number of epitopes presented, since 

the deletion of this MHC class-I evasion gene now enables the presentation of canonical epitopes 

recognized by T cells in SIV infected animals, but not elicited in the context of US11-containing 

RhCMV. All theses different responses can be either generated or inhibited depending on the 
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makeup of the vaccine backbone. As mentioned above, canonical T cell responses can be generated 

by the deletion of US11, whereas MHC class-II restricted epitopes only appear in the absence of a 

functional pentameric complex. Supertopes and HLA-E responses are inhibited by simultaneously 

expressing functional UL128 and UL130 proteins, possibly due to their chemokine activity 

(Hansen, Malouli, Früh and Picker, unpublished data). Taken together, we are now able to generate 

custom vaccine vectors generating exactly the immune responses needed for a specific target 

pathogen. To date, it is not clear which of the aforementioned unique T-cell responses generated 

by CMV vector are responsible for the protection of our animals in the vaccine studies, but in 

ongoing studies we will determine the optimal vector combinations to fight SIV infections, which 

will hopefully further increase the effectiveness of our vaccine platform. 

 We conclude that our new and innovative approach might help save the lives of millions 

of peoples suffering from infectious diseases like HIV and Tb. Protecting the exposed population 

from these pathogen is a challenging task, but we are confident, that our vaccine platform will 

provide new hope to contain and hopefully eradicate HIV. Further steps have to be undertaken 

before human testing can begin, but our animal results show that we are able to not only enable 

vaccinated animals to control the viral infection, but also enable them to clear the virus altogether 

suggesting that our approach might be beneficial for already HIV positive individuals ultimately 

curing HIV. 
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Supplementary Material 

Supplemental Figure 1: Alignment of ORFs Rh08, Rh13.1, Rh61/Rh60, Rh67.1, Rh72, Rh152/Rh151, Rh164, 

Rh194 and Rh197 from RhCMV 68-1 (BAC), RhCMV 68-1 and RhCMV180.92. The amino acid sequences of 

the Rh08 (A), Rh13.1 (B), Rh61/Rh60 (C), Rh67.1 (D), Rh72 (E), Rh152/Rh151 (F), Rh164 (G), Rh194 (H) and 

Rh197 (I) from our BAC derived RhCMV 68-1 sequence discussed in this paper and from the two fully sequenced 

RhCMV strains 68-1 (AY186194) and 180.92 (DQ120516) (A-F and H-I) or RhCMV isolate CNPCR (EF990255) 

(G) were aligned using a CLUSTAL W (1.83) multiple sequence alignment. 

Supplemental Figure 1A: Alignment of ORF Rh08 from RhCMV 68-1 (BAC), RhCMV 68-1 

and RhCMV180.92 

 

 

 

 

 

 

Rh08 (RL11 family) 

 

 
68-1_BAC_        MNAYHTLISCLCFFILYAYITESTRVVTLQYVYNVSIGENVTLSKPDNLSFQLHSWFCNN 

68-1_Virus_      MNAYHTLISCLCFFILYAYITESTRVVTLQYVYNVSIGENVTLSKPDNLSFQLHSWFCNN 

180.92           MNAYHTLISCLCFFILYAYITESTRVVTLQYVYNVSIGENVTLSKPDNLSFQLHSWLCNN 

                 ********************************************************:*** 

 

68-1_BAC_        RASACNNPIMKLCEETAGNNKPNSYTRFQNNCHPPTFTCNTTGLYLYNVQETDPTTYTLT 

68-1_Virus_      RASACNNPIMKLCEETAGNNKPNSYTRFQNNCHPPTFTCNTTGLYLYNVQETDPTTYTLT 

180.92           RASACNNPIMKLCEETAGNNKPNSYTRFQNNCHPPTFTCNTTGLYLYNVQDTDPATYTLT 

                 **************************************************:***:***** 

 

68-1_BAC_        QRAGNGNITDRNTTYIIHFITSTTPPPVTNYICNLSSTSCTNTSNYQL------------ 

68-1_Virus_      QRAGNGNITDRNTTYIIHFITSTTPPPVTKLHMQFIFNQLHKHKQLPTIAT--------- 

180.92           QRAGNGNITDRNTTYIIHFITSTTPPPPLQTTYAIYLQPVAQTHATTNYSYITITLTVIT 

                 ***************************  :    :      :                   

 

68-1_BAC_        ---------------------------------------- 

68-1_Virus_      ---------------------------------------- 

180.92           LILFMLGAGYLKHRRSLKHYKQNTHKCTSLGESRYPESSI 
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Supplemental Figure 1B: Alignment of ORF Rh13.1 from RhCMV 68-1 (BAC), RhCMV 68-

1 and RhCMV180.92 

 

 

 

 

 

 

 

 

Rh13.1 (RL13) 

 

68-1_BAC_        MTKYTCFRSMSACGIFMLLINLALACDSQCACNSSCGFAYNVTHVSGYEHSNVTLHTSIS 

68-1_Virus_      MTKYTCFRSMSACGIFMLLINLALACDSQCACNSSCGFAYNVTHVSGYEHSNVTLHTSIS 

180.92           MTKYTCFRSMSACGIFMLLINLALACDPQCACNSSCGFAYNVTHVSGYEHSNVTLHTSIS 

                 ***************************.******************************** 

 

68-1_BAC_        HSNISHMNVGYWIRYNYPVNSYTICTVSGNNVASTKHNGWFFECNGTSLTLHNLNADHTG 

68-1_Virus_      HSNISHMNVGYWIRYNYPVNSYTICTVSGNNVASTKHNG--------------------- 

180.92           HSNISHMNVGYWIRYNYPVNSYTICTVSGNNVASTKHNGWFFECNGTSLTLHNLNADHTA 

                 ***************************************                      

 

68-1_BAC_        SYLFKNLLGLMEHYTVTVLPIPQPPAPQVTTVTNCSLTFFSEHLWRNATTRIITTTTQST 

68-1_Virus_      ------------------------------------------------------------ 

180.92           SYLFKNLL---------------------------------------------------- 

                                                                              

 

68-1_BAC_        STTTTRTTKPTTTTHRTTAGRVSTPTPEESSTSTTTEESTTTTWPPGRPKFISKYSLNSR 

68-1_Virus_      ------------------------------------------------------------ 

180.92           ------------------------------------------------------------ 
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Supplemental Figure 1C: Alignment of ORFs Rh61/Rh60 from RhCMV 68-1 (BAC), 

RhCMV 68-1 and RhCMV180.92 

 

 

 

Rh61/Rh60 (UL36) 

 

 
68-1_BAC_        MSYRLMSGMDDLRDTLMAYGCIAVRAQDPASLYTFVDQECGTKLHLAWPDNGYIQLRPRT 

68-1_Virus_      MSYRLMSGMDDLRDTLMAYGCIAVRAQDPASLYTFVDQECGTKLHLAWPDNGYIQLRPRT 

180.92           MSYRLMSGMDDLRDTLMAYGCIAVRAQDPASLYTFVDQECGTKLHLAWPDNGYIQLRPRT 

                 ************************************************************                                                             

 

68-1_BAC_        LMGPFSSKYYDVCCQGKYVCCNELMEPFGVVELSKLGFYQLVMMIGRSGAIYCYEETEKC 

68-1_Virus_      LMGPFSSKYYDVCCQGKYVCCNELMEPFGVVELSKLGFYQLVMMIGRSGAIYCYEETEKC 

180.92           LMGPFSSKYYDVCCQGKYVCCNELMEPFGVVELSKLSFYQLVMMIGRSGAIYCYEETEKC 

                 ************************************.*********************** 

 

68-1_BAC_        VYCLAPDMKSFIQLGLRRCDYLQKMELYQEPVIDCDEIIKELMIFNWDVDRISDVVAKNG 

68-1_Virus_      VYCLAPDMKSFIQLGLRRCDYLQKMELYQEPVIDCDEIIKELMIFNWDVDRISDVVAKNG 

180.92           VYCLAPDMKSFIQLGLRRCDYLQKMELYQEPVIDCDEIIKELMIFNWDVDRISDVVAKNG 

                 ************************************************************ 

 

68-1_BAC_        YRVYDIRDPLGEQVDSHFALWSSDSAVANFQDTSFSLMSPSGLRSFEIMVRCVARIVCVN 

68-1_Virus_      YRVYDIRDPLGEQVDSHFALWSSDSAVANFQDTSFSLMSPSGLRSFEIMVRCVARIVCVN 

180.92           YRVYDIRDPLGEQVDSHFALWSSDSAVANFQDTSFSLMSPSGLRSFEIMVRCVARIVCVN 

                 ************************************************************ 

 

68-1_BAC_        QLLGVLGCFRKEKK---------------------------------------------- 

68-1_Virus_      QLLGVLGCFRKEKNEFLVRLYVLVDKFGTIYGFDPALNSIYRLAENMRMFTCMMGKKGYR 

180.92           QLLGVLGCFRKEKNEFLVRLYVLVDKFGTIYGFDPALNSIYRLAENMRMFTCMMGKKGYR 

                 *************:                                               

 

68-1_BAC_        ------------------------------------------------------------ 

68-1_Virus_      NHRHDRRRTAIVRLEKVPYCMHGEEPSDPMIMFNDDSEDEKPPKTEADVVVGIYEAIKAD 

180.92           NHRHDRRRTAIVRLEKVPYCMHGEEPSDPMIMFNDDSEDEKPPKTEADVVVGIYEAIKAD 

                                                                              

 

68-1_BAC_        ------------------------------------------------------------ 

68-1_Virus_      IRFGVDMMMRDSSVTQKFWPQHLEALSDSPLLPSLIYDMEDVRSKMLGNIADMRAFDMSF 

180.92           IRFGVDMMMRDSSVTQKFWPQHLEALSDSPLLPSLIYDMEDVRSKMLGNIADMRAFDMSF 

                                                                              

 

68-1_BAC_        --------------------------------------------------- 

68-1_Virus_      VGLAEDNDSDREETVRGYLFDDTVCTRCVSSRRLRLFRSGRGMGRARVSYV 

180.92           VGLAEDNDSDREETVRGYLFDDTVCTRCVSSRRLRLFRSGRGMGRARVSYV 
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Supplemental Figure 1D: Alignment of ORF Rh67.1 from RhCMV 68-1 (BAC), RhCMV 68-

1 and RhCMV180.92 

 

 

 

 

 

 

 

 

 

 

 

 

Rh67.1(UL41a) 

 

 

68-1_BAC_        MMLLWCNASFTELRQNYFLPCPWLVGVGCFVLGLFLLIFACLMKTVWSRKKYHHLLTTDE 

68-1_Virus_      MMLLWCNASFTELRQNYFLPCPWLVGVGCFVLGLFLLIFACLMKTVWSRKKYHHLLTTDE 

180.92           MMLLWCNASFTELRQNYFLPCPWLVGVGCFVLGLFLLIFACLMKTVWSRKKYHHLLTTDE 

                 ************************************************************ 

 

68-1_BAC_        EEEDIVCEKKPLSTKDIEF 

68-1_Virus_      EEEDIVWEKKPLSTKDIEF 

180.92           EEEDIVWEKKPLSTKDIEF 

                 ****** ************ 
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Supplemental Figure 1E: Alignment of ORF Rh72 from RhCMV 68-1 (BAC), RhCMV 68-1 

and RhCMV180.92 

 

   Rh72(UL45) 

 

 

68-1_BAC_        MAQASLRNTGAGGLEAVMQEGSEGGDGGTEENGVEAMEVATSSPDAEQQQAQQQQQQPQV 

68-1_Virus_      MAQASLRNTGAGGLEAVMQEGSEGGDGGTEENGVEAMEVATSSPDAEQQQAQQQQQQPQV 

180.92           MAQASLRNTGAGGLEAVMQEGSEGGDGGTEENGVEAMEVATSSPDAEQQQAQQQQQQPQV 

                 ************************************************************ 

 

68-1_BAC_        GVHACWSLADQGTATSCRPDASSSLVQHMPAMNTVQLLMGKKCHCHGRWGKFRFCGVPDP 

68-1_Virus_      GVHACWSLADQGTATSCRPDASSSLVQHMPAMNTVQLLMGKKCHCHGRWGKFRFCGVPDP 

180.92           GVHACWSLADQGTATSCRPDASSSLVQHMPAMNTVQLLMGKKCHCHGRWGKFRFCGVPDP 

                 ************************************************************ 

 

68-1_BAC_        VKHVEDRATLWRDIDSASRQSGIRGAYRLFQMLMRYGPALIRQIPRSDLLIGRFYLKVNW 

68-1_Virus_      VKHVEDRATLWRDIDSASRQSGIRGAYRLFQMLMRYGPALIRQIPRSDLLIGRFYLKVNW 

180.92           VKHVEDRATLWRDIDSASRQSGIRGAYRLFQMLMRYGPALIRQIPRSDLLIGRFYLKVNW 

                 ************************************************************ 

 

68-1_BAC_        LRESRNALNYTSSMCEGPLRDFVMRHSEDLPKILADITRYLDLAGCWGFYGAIVLTDKVS 

68-1_Virus_      LRESRNALNYTSSMCEGPLRDFVMRHSEDLPKILADITRYLDLAGCWGFYGAIVLTDKVS 

180.92           LRESRNALNYTSSMCEGPLRDFVMRHSEDLPKILADITRYLDLAGCWGFYGAIVLTDKVS 

                 ************************************************************ 

 

68-1_BAC_        RQIYGQDESLGGIFLRISMAITLAIVSSPCARVYRFHMDCRHKYEVLESVVKRCRDGQLS 

68-1_Virus_      RQIYGQDESLGGIFLRISMAITLAIVSSPCARVYRFHMDCRHECEVLESVVKRCRDGQLS 

180.92           RQIYGQDESLGGIFLRISMAITLAIVSSPCARVYRFHMDCRHECEVLESVVKRCRDGQLS 

                 ******************************************: **************** 

 

68-1_BAC_        LTPFSMSNIGFVELPQYDYLISCDLYSREVDWLALHKWLYENLTRGVSLSINVTRFNVEA 

68-1_Virus_      LTPFSMSNIGFVELPQYDYLISCDLYSREVDWLALHKWLYENLTRGVSLSINVTRFNVEA 

180.92           LTPFSMSNIGFVELPQYDYLISCDLYSREVDWLALHKWLYENLTRGVSLSINVTRFNVEA 

                 ************************************************************ 

 

68-1_BAC_        ISVIRCIGGFCDMIREKEVHRPIVRIFVDLWDVAAIRVLNFVLKETDIIGIHYAFNIPSV 

68-1_Virus_      ISVIRCIGGFCDMIREKEVHRPIVRIFVDLWDVAAIRVLNFVLKETDIIGIHYAFNIPSV 

180.92           ISVIRCIGGFCDMIREKEVHRPIVRIFVDLWDVAAIRVLNFVLKETDIIGIHYAFNIPSV 

                 ************************************************************ 

 

68-1_BAC_        LMKRYRAQDSHYSLFGRTVSRKLSECGNEFAFEKEYVRYETTVPKVTVKASEFMRNMLFC 

68-1_Virus_      LMKRYRAQDSHYSLFGRTVSRKLSECGNEFAFEKEYVRYETTVPKVTVKASEFMRNMLFC 

180.92           LMKRYRAQDSHYSLFGRTVSRKLSECGNEFAFEKEYVRYETTVPKVTVKASEFMRNMLFC 

                 ************************************************************ 

 

68-1_BAC_        ALKGKCALVFVHHIVKYSVLTGNMPLPPCLGPDMASCHFGESDLPLQRLSINLTRCLFTR 

68-1_Virus_      ALKGKCALVFVHHIVKYSVLTGNMPLPPCLGPDMASCHFGESDLPLQRLSINLTRCLFTR 

180.92           ALKGKCALVFVHHIVKYSVLTGNMPLPPCLGPDMASCHFGESDLPLQRLSINLTRCLFTR 

                 ************************************************************ 

 

68-1_BAC_        TDDDVLCRDNVVLGNTRRYFDMQVLRTLVTEAVVWGNARLDALIRSGDWPLESAICKMRS 

68-1_Virus_      TDDDVLCRDNVVLGNTRRYFDMQVLRTLVTEAVVWGNARLDALIRSGDWPLESAICKMRS 

180.92           TDDDVLCRDNVVLGNTRRYFDMQVLRTLVTEAVVWGNARLDALIRSGDWPLESAICKMRS 

                 ************************************************************ 

 

68-1_BAC_        LNIGVTGLHTVLMRLGFTYFASWDLIERIFENMYYAALRTSVDLCKSGLPPCEWFDRTIY 

68-1_Virus_      LNIGVTGLHTVLMRLGFTYFASWDLIERIFENMYYAALRTSVDLCKSGLPPCEWFDRTIY 

180.92           LNIGVTGLHTVLMRLGFTYFASWDLIERIFENMYYAALRTSVDLCKSGLPPCEWFDRTIY 

                 ************************************************************ 

 

68-1_BAC_        KEGKFIFELYRKPHLSLPVAQWETLRTEMQEYGVRNAQLLSIAADEETAFLWNVTPSIWA 

68-1_Virus_      KEGKFIFELYRKPHLSLPVAQWETLRTEMQEYGVRNAQLLSIAADEETAFLWNVTPSIWA 

180.92           KEGKFIFELYRKPHLSLPVAQWETLRTEMQEYGVRNAQLLSIAADEETAFLWNVTPSIWA 

                 ************************************************************ 

 

68-1_BAC_        ARDRIVDEETVLPVSPPSDECYFPTVMQKHLKVPIINYAWIEHHDEVKAKSITQGTVQRA 

68-1_Virus_      ARDRIVDEETVLPVSPPSDECYFPTVMQKHLKVPIINYAWIEHHDEVKAKSITQGTVQRA 

180.92           ARDRIVDEETVLPVSPPSDECYFPTVMQKHLKVPIINYAWIEHHDEVKAKSITQGTVQRA 

                 ************************************************************ 

 

68-1_BAC_        DVPSCVFQRAAELQADVEMASVNVSMFVDQCVPLPFYYESSMTPDLLMKRMLKWYHLRCK 

68-1_Virus_      DVPSCVFQRAAELQADVEMASVNVSMFVDQCVPLPFYYESSMTPDLLMKRMLKWYHLRCK 

180.92           DVPSCVFQRAAELQADVEMASVNVSMFVDQCVPLPFYYESSMTPDLLMKRMLKWYHLRCK 

                 ************************************************************ 

 

68-1_BAC_        VGVYKYCAS 

68-1_Virus_      VGVYKYCAS 

180.92           VGVYKYCAS 

                 ********* 
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Supplemental Figure 1F: Alignment of ORFs Rh152/Rh151 from RhCMV 68-1 (BAC), 

RhCMV 68-1 and RhCMV180.92 

 

 

 

Rh152/Rh151 (UL119/UL118) 

 

68-1_BAC_        MLGTGHVLALAAAVLIAQQVIGGTSTTTAANTTSTTTAPSTSTVTSSATSVTTSLTSSSA 

68-1_Virus_      MLGTGHVLALAAAVLIAQQVIGGTSTTTAANTTSTTTAPSTSTVTSSATSVTTSLTSSSA 

180.92           MLGTGHVLALAAAVLIAQQVIGGTSTTTAANTTSATTAPSTSTVTSSPTSVTTSVASSSA 

                 **********************************:************.******::**** 

 

68-1_BAC_        AASSVTSSNAASSSTSGTATSTATSTQKTSTSNSSTDTGTQTTSSNTTTAPATTESATTS 

68-1_Virus_      AASSVTSSNAASSSTSGTATSTATSTQKTSTSNSSTDTGTQTTSSNTTTAPATTESATTS 

180.92           TASSVTSSSAAASTTSGTVTSTSK---------SSTDSSTQTTSSNTTTAPATTESATTS 

                 :*******.**:*:****.***:.         ****:.********************* 

 

68-1_BAC_        SNASDNSTTENSTVTTTADTT----------SDTSTAATSTTANKPRVPDIYVTCESAYS 

68-1_Virus_      SNASDNSTTENSTVTTTADTT----------SDTSTAATSTTANKPRVPDIYVTCESAYS 

180.92           SNASENSTTENSTVTTNATDSNATTDTTTAETTITAATNITTTTKPRVPDIYVTCESAYS 

                 ****:***********.*  :          :  ::*:. **:.**************** 

 

68-1_BAC_        YNYLVLQTTCQIHNMSHAQNVSRDLISIECFEQVGCDGNLTSIGSVTTSNTSHGMLYNIT 

68-1_Virus_      YNYLVLQTTCQIHNMSHAQNVSRDLISIECFEQVGCDGNLTSIGSVTTSNTSHGMLYNIT 

180.92           YNYLVLQTTCQIHNMSHAQNVSRDLISIECFEQVGCDGNLTSIGSVTTSNTSHGMLYNIT 

                 ************************************************************ 

 

68-1_BAC_        TQTFTMYRQAPNVTTQYSCRFIATGQTLNKSWEFLVMPIKAVFASPTNDSMIQLRVLVND 

68-1_Virus_      TQTFTMYRQAPNVTTQYSCRFIATGQTLNKSWEFLVMPIKAVFASPTNDSMIQLRVLVND 

180.92           TQTFTMYRQAPNVTTQYSCRFIATGQTLNKSWEFLVMPIKAVFASPTNDSMIQLRVLVND 

                 ************************************************************ 

 

68-1_BAC_        HPCTNETVYSSSKAFVYFGNTNHSSHKVQNITRHNQSLWEYIFHFTNHDLPNTAHMKILL 

68-1_Virus_      HPCTNETVYSSSKAFVYFGNTNHSSHKVQNITRHNQSLWEYIFHFTNHDLPNTAHMKILL 

180.92           HPCTNETVYSSSKAFVYFGNTNHSSHKVQNITRHNQSLWEYIFHFTNHDLPNTAHMKILL 

                 ************************************************************ 

 

68-1_BAC_        GDRYSVSTHVFIKRDPDEWPIIGTLGYIVLAFLLFMLFALLYITYVLMRQRNP------- 

68-1_Virus_      GDRYSVSTHVFIKRDPDEWPIIGTLGYIVLAFLLFMLFALLYITYVLMRQRNPWAYRRLD 

180.92           GDRYSVSTHVFIKRDPDEWPIIGTLGYIVLAFLLFMLFALLYITYVLMRQRNPWAYRRLD 

                 *****************************************************        

 

68-1_BAC_        ------------- 

68-1_Virus_      EEKPYPVPYFKQW 

180.92           EEKPYPVPYFKQW 



Supplementary Material                             178 

 

Supplemental Figure 1G: Alignment of ORF Rh164 form RhCMV 68-1 (BAC), RhCMV 68-

1 and RhCMV CNPRC 

 

 

 

Rh164(UL141) 

 

68-1_BAC_        MSYTVRFRKGFGRVSEEAETVQLLAEGQEGADSADAESASKRTIHDGPLRVKACTPVSAP 

68-1_virus_      MSYTVRFRKGFGRVSEEAETVQLLAEGQEGADSADAESASKRTIHDGPLRVKACTPVSAP 

clinical         MSYTVRFRKGFGRVSEEAETVQLLAEGQEGADSADAESASKRTIHDGPLRVKACTPVSAP 

                 ************************************************************ 

 

68-1_BAC_        RAAMWVRRAMVAITIVMVSLTPRVRGGSIDHTMWDECYEHNSPAPLIMPIGSQVTVPCAF 

68-1_virus_      RAAMWVRRAMVAITIVMVSLTPRVRGGSIDHTMWDECYEHNSPAPLIMPIGSQVTVPCAF 

clinical         RAAMWVRRAMVAITIVMVSLTPRVRGGSIDHTMWDECYEHNSPAPLIMPIGSQVTVPCAF 

                 ************************************************************ 

 

68-1_BAC_        LPHSWPMVSIRARFCQSEYGGYELKINATNGTVVDDDLTYRLINASWKFHDLAISHYVTL 

68-1_virus_      LPHSWPMVSIRARFCQSEYGGYELKINATNGTVVDDDLTYRLINASWKFHDLAISHYVTL 

clinical         LPHSWPMVSIRARFCQSEYGGYELKINATNGTVVDDDLTYRLINASWKFHDLAISHYVTL 

                 ************************************************************ 

 

68-1_BAC_        TMNISDNTTGMFDCVLRNATHGFLMTRFTIVTQIETLHRLGDPDCAPKLGFHADGKKIWS 

68-1_virus_      TMNISDNTTGMFDCVLRNATHGFLMTRFTIVTQIETLHRPGDPDCAPKLGFHADGKKIWS 

clinical         TMNISDNTTGMFDCMLRNATHGFLMTRFTIVTQIETLHRPGDPDCAPKLGFHADGKKIWS 

                 **************:************************ ******************** 

 

68-1_BAC_        AEYNEWQRHQCGTFYGFDRLYYYLAASNQSNTKPPCPPSEPDRCWPVLQQYVLDGDCFRS 

68-1_virus_      AEYNEWQRHQCGTFYGFDRLYYYLAASNQSNTKPPCPPSEPDRCWPVLQQYVLDGDCFRS 

clinical         AEYNEWQRHQCGTFYGFDRLYYYLAASNQSNTKPPCPPSEPDRCWPVLQQYVLDGDCFRS 

                 ************************************************************ 

 

68-1_BAC_        QNFRREPPLPTEKTPVPIFVIDWQWVSLGLTMMVIGGVCLGLVLVVRCACGEMCRNRERF 

68-1_virus_      QNFRREPPLPTEKTPVPIFVIDWQWVSLGLTMMVIGGVCLGLVLVVRCACGEMCRNRERF 

clinical         QNFRREPPLPTEKTPVPIFVIDWQWVSLGLTMMVIGGVCLGLVLVVRCACGEMCRNRERF 

                 ************************************************************ 

 

68-1_BAC_        QKKMNAYRPMSTHFMRPPGYEELYSVVDDESDSGYFEKEDRSESYNDLVDENVYDEVAVP 

68-1_virus_      QKKMNAYRPMSTHFMRPPGYEELYSVVDDESDSGYFEKEDRSESYNDLVDENVYDEVAVP 

clinical         QKKMNAYRPMSTHFMRPPGYEELYSVVDDESDSGYFEKEDRSESYNDLVDENVYDEVAVP 

                 ************************************************************ 

 

68-1_BAC_        PLYSKIKRRL 

68-1_virus_      PLYSKIKRRL 

clinical         PLYSKIKRRL 

                 ********** 
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Supplemental Figure 1H: Alignment of ORF Rh194 form RhCMV 68-1 (BAC), RhCMV 68-

1 and RhCMV180.92 

 

 

 

 

 

 

 

Rh194(US14) 

 

68-1_BAC_        MPFAPRLQPFTVHRPPAPMIQLDLDERSSLSWLRQHLPLASVYLCLLFVIAVCICSYGAF 

68-1_Virus_      MPFAPRLQPFTVHRPPAPMIQLDLDERSSLSWLRQHLPLASVYLCLLFVIAVCICSYGAF 

180.92           MPFAPRLQPFTVHRPPAPMIQLDLDERSSLSWLRQHLPLASVYLCLLFVIAVCICSYGAF 

                 ************************************************************ 

 

68-1_BAC_        KSQFHCMVFNTEICRMEPAFILIIVPVLLMFVWNMFDHRQDDMIHMGNGLLYIVVFACIG 

68-1_Virus_      KSQFHCMVFNTEICRMEPAFILIIVPVLLMFVWNMFDHRQDDMIHMGNGLLYIVVFACIG 

180.92           KSQFHCMVFNTEICRMEPAFILIIVPVLLMFVWNMFDHRQDDMIHMGNGLLYIVVFACIG 

                 ************************************************************ 

 

68-1_BAC_        FTLISFCTDGITAGLSLLFTATFFLTCSGLALWSSRPLPSKCRYVATLVSTFLLLLFYFG 

68-1_Virus_      STLISFCTDGITAGLSLLFTATFFLTCSGLALWSSRPLPSKCRYVATLVSTFLLLLFYFG 

180.92           STLISFCTDGITAGLSLLFTATFFLTCSGLALWSSRPLPSKCRYIATLVSTFLLLLFYFG 

                  *******************************************:*************** 

 

68-1_BAC_        QLSHSVMRNGLSIILHGSMGIIIWENIYITKFNLTMKHVVSACIVYVDILIVMYYMYVYL 

68-1_Virus_      QLSHSVMRNGLSIILHGSMGIIIWENIYITKFNLTMKHVVSACIVYVDILIVMYYMYVYL 

180.92           QLSHSVMRNGLSIILHGSMGIIIWENIYITKFNLTMKHVVSACIVYVDILIVMYYMYVYL 

                 ************************************************************ 

 

68-1_BAC_        LTPSLWTLDPHKMLTGVSQLWNGSFNRTFCSPSSVYG 

68-1_Virus_      LTPSLWTLDPHKMLTGVSQLWNGSFNRTFCSPSSVYG 

180.92           LTPSLWTLDPHKMLTGVSQLWNGSFNRTFCSPSSVYG 

                 ************************************* 
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Supplemental Figure 1I: Alignment of ORF Rh197 form RhCMV 68-1 (BAC), RhCMV 68-

1 and RhCMV180.92 

 

  

Rh197 (US14) 

 

68-1_BAC_        MVSKMVTKLTNHVIWLNRSIHVWSVYGWLAFQVSITVLVYGLVRCQQYLFDTCAQEPVRQ 

68-1_Virus_      MVSKMVTKLTNHVIWLNRSIHVWSVYGWLAFQVSITVLVYGLVRCQQYLFDTCAQEPVRQ 

180.92           MVSKMVTKLTNHVIWLNRSIHVWSVYGWLAFQVSITVLVYGLVRCQQYLFDTCAQEPVRQ 

                 ************************************************************ 

 

68-1_BAC_        IMITSPALVFIQESYINRVIRKVSLWKNCGVALFCVIHIAFSHVWFSGCVATWTVIQSWI 

68-1_Virus_      IMITSPALVFIQESYINRVIRKVSLWKNCGVALFCVIHIAFSHVWFSGCVATWTVIQSWI 

180.92           IMITSPALVFIQESYINRAIRKGSLWKNCGVALFCVIHIAFSHVWFSGCVATWTVIQSWI 

                 ******************.*** ************************************* 

 

68-1_BAC_        ATFCLFILMIYVSDGSNWKPFIERQVLSDMLCAGALAANCFVHSVTQPSVTLWWIAQTLY 

68-1_Virus_      ATFCLFILMIYVSDGSNWKPFIERQVLSDMLCAGALAANCFVHSVTQPSVTLWWIAQTLY 

180.92           ATFCLFILMIYVSDGSNWKPFIERQVLSDMLCAGALAANCFVHSVTQPSVTLWWIAQTLY 

                 ************************************************************ 

 

68-1_BAC_        IIGTVGFMNAMCLQLSNVRRQQRSNERAMSISLLLYCIFHLVHYNNVIMWSFP------- 

68-1_Virus_      IIGTVGFMNAMCLQLSNVRRQQRSNERAMSISLLLYCIFHLVHYNNVIMWSFPWKAEDPW 

180.92           IIGTVGFMNAMCLQLSNVRRQQRSNERAMSISLLLYCIFHLVHYNNVIMWSFPWKAEDPW 

                 *****************************************************        

 

68-1_BAC_        - 

68-1_Virus_      L 

180.92           L 
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Supplemental Figure 2: List of all predicted ORFs in the fully sequenced RhCMV strains 68-1 and 180.92 and 

the partial sequence for the ULb’-region from RhCMV CNPRC. The sequences of the two fully sequenced 

genomes for RhCMV 68-1 and 180.92 and the partial sequence for RhCMV CNPRC were analyzed for potential 

ORFs by entering the sequences into NCBI’s Open Reading Frame Fonder (ORF Finder). As a cutoff point we selected 

ORFs ≥300bp. The three different sequences are listed next to each other and the predicted ORFs are in the order they 

would be found in a low passage isolate. The nomenclature used for the different sequences was chosen according to 

their original publication, so the nomenclature for 68-1 is based on Hansen et al. (30), the nomenclature for 180.92 is 

based on Rivailler at al. (63) and the nomenclature for RhCMV CNPRC is based on Oxford et al.(50). ORFs not 

annotated by the original authors were named using the nomenclature created by Hansen et al. 

RhCMV strain 68-1 RhCMV strain 180.92 
RhCMV low passage isolate 

(ULb' region, partial sequence) 
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     Rh00 1 37 480 444      

     Rh00.1 2 164 637 474      

Rh00.2 3 864 1223 360 Rh00.2 2 866 1225 360      

Rh01 2 1040 2566 1527 RhRL1 1 1042 2568 1527      

Rh02 1 1486 2037 552 Rh02 3 1488 2039 552      

Rh02.1 3 2280 2606 327 Rh02.1 2 2282 2608 327      

Rh03 2 2618 3082 465 Rh03 1 2620 3084 465      

Rh04 -2 2703 3401 699 Rh04 -2 2705 3403 699      

Rh03.1 3 2751 3053 303 Rh03.1 2 2753 3055 303      

Rh03.2 1 3088 3465 378 Rh03.2 3 3090 3467 378      

Rh05 3 3528 4349 822 Rh05 2 3530 4351 822      

Rh06 3 4710 5198 489 Rh06 2 4712 5356 645      

Rh07 3 5325 5906 582 Rh07 3 5343 5921 579      

Rh08 1 5881 6396 516 Rh08 1 5896 6558 663      

Rh08.1 2 6578 7000 423 Rh08.1 3 6600 7148 549      

Rh09 -1 6724 7029 306           

Rh10(1) -1 8521 9027 507 Rh10(1) -2 8555 9061 507      

Rh10(2) -2 9267 9845 579 Rh10(2) -3 9301 9906 606      

Rh11 3 9462 9902 441 Rh11 1 9496 9936 441      

Rh10(3) -3 9806 10126 321 Rh10(3) -3 9979 10302 324      

Rh12 2 11225 11920 696 Rh12 1 11260 11952 693      

Rh13 -1 11233 11547 315 Rh13 -1 11268 11582 315      

     Rh13.1 1 12148 12534 387      

Rh14 2 12506 13087 582 Rh14 1 12538 13113 576      

Rh15 -1 12556 12879 324 Rh15 -1 12588 12911 324      

Rh16 -1 12937 13458 522 Rh16 -3 13165 13488 324      

Rh17 1 13525 14625 1101 Rh17 1 13555 14652 1098      

Rh18 -2 13557 13922 366 Rh18 -1 13587 13949 363      

Rh19 1 14707 15642 936 RhUL7 1 14734 15681 948      

Rh20 1 15700 16293 594 Rh20 3 15708 16337 630      

http://www.ncbi.nlm.nih.gov/gorf/gorf.html
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     Rh21(1) 3 16371 16712 342      

Rh21 1 16327 17004 678 Rh21(2) 2 16580 17038 459      

Rh22 2 17111 17818 708 Rh22 3 17145 17852 708      

Rh23 1 17716 18411 696 RhUL11 2 17750 18445 696      

Rh24 2 18428 18817 390 Rh24 3 18462 18851 390      

Rh25 2 18896 19570 675 Rh25 3 18930 19604 675      

Rh26 3 19554 20402 849 Rh26 1 19588 20436 849      

Rh27 3 20547 21152 606 Rh27 1 20581 21186 606      

Rh28 1 21154 21777 624 Rh28 2 21188 21811 624      

Rh29 2 21854 23239 1386 Rh29 2 21887 23245 1359      

Rh30 -3 23315 23638 324 Rh30 -2 23321 23632 312      

Rh31 3 23355 24662 1308 Rh31 3 23361 24671 1311      

Rh32 -2 23577 24029 453 Rh32 -1 23583 24035 453      

Rh33 3 24942 25838 897 RhUL14 1 24949 25860 912      

Rh34 -2 26718 27041 324 Rh34 -2 26726 27049 324      

Rh35 3 26778 27101 324 Rh35 2 26786 27109 324      

Rh36 1 27826 29172 1347 RhUL20 2 27833 29179 1347      

Rh37 -1 29275 29640 366 RhUL21a -2 29282 29647 366      

Rh38 3 29898 30251 354 Rh38 1 29905 30258 354      

Rh39 -2 29916 30380 465           

Rh40 -3 30731 31669 939 RhUL23 -2 30737 31675 939      

Rh41 3 31416 31796 381 Rh41 3 31422 31802 381      

Rh42 -1 31726 32652 927 RhUL24 -3 31732 32658 927      

Rh43 1 32719 34476 1758 RhUL25 1 32725 34485 1761      

Rh44 -1 34537 35283 747 RhUL26 -3 34546 35295 750      

Rh45 1 34897 35328 432 Rh45 1 34909 35340 432      

Rh46 -3 35237 36976 1740 RhUL27 -2 35249 36988 1740      

Rh47 -3 37064 38077 1014 RhUL28 -2 37076 38089 1014      

Rh48 2 37289 37786 498 Rh48 2 37301 37798 498      

Rh49 3 38190 38588 399 Rh49 3 38202 38600 399      

Rh50 -2 38208 39218 1011 RhUL29 -1 38220 39230 1011      

Rh51 -3 38351 38755 405 Rh51 -2 38363 38767 405      

Rh52 3 38925 39395 471 Rh52 3 38937 39407 471      

Rh53 -3 39548 39979 432 Rh53 -2 39560 39991 432      

Rh54 1 39865 41487 1623 RhUL31 1 39877 41499 1623      

Rh55 -3 41498 43615 2118 RhUL32 -2 41510 43627 2118      

Rh56 3 43983 44972 990 RhUL33 3 43995 44981 987      

Rh57 3 45177 45977 801 RhUL34 3 45186 46043 858      

Rh58 2 45491 45877 387 Rh58 2 45500 45886 387      

Rh59 3 46098 47870 1773 RhUL35 2 46106 47878 1773      

Rh60 -2 47988 49151 1164 RhUL36 -2 47996 49159 1164      

Rh61 -3 49115 49480 366           

Rh62 -2 49578 50396 819 RhUL37(1) -1 49587 50405 819      
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Rh63 3 50598 50981 384 Rh63 3 50607 50990 384      

Rh64 -3 50702 51583 882 rhUL38 -2 50711 51592 882      

Rh65 2 50768 51133 366 Rh65 2 50777 51142 366      

Rh66 -1 51625 51930 306 RhUL37(2) -3 51634 51939 306      

Rh67 -1 52255 52785 531 Rh67 -3 52264 52794 531      

Rh68 -2 53229 53621 393 RhUL42 -1 53238 53627 390      

Rh69 -1 53605 54606 1002 RhUL43 -3 53611 54612 1002      

Rh70 -1 54730 55902 1173 RhUL44 -3 54736 55908 1173      

Rh71 1 55132 55608 477 Rh71 1 55138 55614 477      

Rh72 -1 56143 58692 2550 RhUL45 -3 56149 58698 2550      

Rh73 1 56404 56829 426 Rh73 1 56410 56835 426      

Rh74 2 58181 58483 303 Rh74 2 58187 58489 303      

Rh75 -1 58711 59583 873 RhUL46 -3 58717 59589 873      

Rh76 2 59582 62458 2877 RhUL47 2 59588 62464 2877      

Rh77 -2 62052 62357 306 Rh77 -1 62058 62363 306      

Rh78 1 62479 69012 6534 RhUL48 1 62485 69018 6534      

Rh78.1 2 62978 63370 393 Rh78.1 2 62984 63376 393      

Rh79 1 69181 69846 666 Rh79 1 69187 69852 666      

Rh80 -1 69295 70764 1470 RhUL49 -3 69301 70770 1470      

Rh81 -3 70754 71629 876 RhUL50 -2 70760 71638 879      

Rh82 -2 71655 71990 336 RhUL51 -1 71664 71999 336      

Rh83 3 72069 73724 1656 RhUL52 3 72078 73733 1656      

Rh84 -3 72179 72484 306 Rh84 -2 72188 72493 306      

Rh85 1 73717 74583 867 RhUL53 1 73726 74592 867      

Rh86 -1 74128 74559 432 Rh86 -3 74137 74568 432      

Rh87 -3 74561 77668 3108 RhUL54 -2 74570 77677 3108      

Rh88 2 77489 77866 378 Rh88 2 77498 77875 378      

Rh89 -3 77687 80251 2565 RhUL55 -2 77696 80266 2571      

Rh90 2 79376 79822 447 Rh90 2 79322 79837 516      

Rh91 -2 80217 82523 2307 RhUL56 -1 80232 82538 2307      

Rh91.1 -1 81220 82587 1368 Rh91.1 -3 81235 82602 1368      

Rh92 -3 82670 86161 3492 RhUL57 -2 82685 86176 3492      

Rh93 -3 87380 87694 315           

Rh94 2 87758 88315 558           

Rh94.1 -2 87846 88319 474 Rh94.1 -1 87858 88331 474      

Rh95 -3 88049 88750 702 Rh95 -2 88061 88762 702      

Rh96 3 88116 89006 891 Rh96 3 88128 89018 891      

Rh96.1 1 88186 88560 375 Rh96.1 1 88198 88572 375      

Rh97 -2 90525 92858 2334 RhUL69 -1 90537 92867 2331      

Rh98 1 91522 91830 309 Rh98 1 91531 91839 309      

Rh99 3 92073 92855 783 Rh99 3 92082 92864 783      

Rh100 -3 92792 95644 2853 RhUL70 -2 92801 95539 2739      

Rh99.1 2 94067 94390 324 Rh99.1 2 94076 94399 324      
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Rh100.1 3 95610 96248 639 RhUL71 2 95552 96256 705      

Rh101 -1 96316 97347 1032 RhUL72 -1 96324 97355 1032      

Rh102 1 97342 97656 315 RhUL73 3 97350 97664 315      

Rh103 -3 97637 98806 1170 RhUL74 -3 97645 98814 1170      

Rh104 -3 99023 101185 2163 RhUL75 -3 99031 101193 2163      

Rh105 2 101318 102202 885 RhUL76 1 101326 102210 885      

Rh106 3 101871 103658 1788 RhUL77 2 101879 103666 1788      

     Rh106.1 -2 101975 102358 384      

Rh107 3 103785 104924 1140 RhUL78 2 103793 104932 1140      

Rh108 -3 105020 105820 801 RhUL79 -3 105028 105828 801      

Rh109 3 105819 107663 1845 RhUL80 2 105827 107671 1845      

Rh110 -1 107776 109422 1647 RhUL82 -1 107784 109430 1647      

Rh111 -1 109552 111171 1620 RhUL83a -1 109560 111179 1620      

Rh112 -2 111240 112868 1629 RhUL83b -2 111248 112879 1632      

Rh113 3 112041 112487 447 Rh113 2 112052 112498 447      

Rh114 -1 112990 114528 1539 RhUL84 -1 112998 114533 1536      

Rh115 2 113051 113419 369 Rh115 1 113059 113424 366      

     Rh115.1 -3 113125 113484 360      

Rh116 3 114270 114728 459 Rh116 2 114275 114733 459      

Rh117 -3 114443 115369 927 RhUL85 -3 114448 115374 927      

Rh118 -3 115430 119461 4032 RhUL86 -3 115435 119466 4032      

Rh119 3 115995 116309 315 Rh119 2 116000 116314 315      

Rh120 -2 116922 117656 735 Rh120 -2 116927 117661 735      

Rh121 2 117836 118309 474 Rh121 1 117841 118314 474      

Rh122 1 119476 122022 2547 RhUL87 3 119481 122027 2547      

Rh123 1 122035 123237 1203 RhUL88 3 122040 123242 1203      

Rh124(1) -2 123234 124181 948 RhUL89(1) -2 123239 124186 948      

Rh125 3 123897 124469 573 Rh125 2 123902 124477 576      

Rh126 1 124501 124803 303 RhUL91 3 124509 124820 312      

Rh127 2 124697 125401 705 RhUL92 1 124705 125418 714      

Rh128 3 125367 126932 1566 RhUL93 2 125384 126949 1566      

Rh128.1 2 125528 125848 321 Rh128.1 1 125545 125865 321      

Rh129 1 126808 127848 1041 RhUL94 3 126825 127865 1041      

Rh124(2) -2 127845 128768 924 RhUL89(2) -2 127862 128785 924      

Rh130 1 128767 130047 1281 RhUL95 3 128784 130061 1278      

Rh131 3 130044 130433 390 RhUL96 2 130058 130447 390      

Rh132 3 130491 132323 1833 RhUL97 2 130505 132331 1827      

Rh133 -2 131142 131456 315 Rh133 -2 131150 131464 315      

Rh134 2 132374 134044 1671 RhUL98 1 132382 134052 1671      

Rh135 -1 132886 133287 402 Rh135 -1 132894 133295 402      

Rh136 -3 133325 133918 594 Rh136 -3 133333 133926 594      

Rh137 1 133981 134436 456 RhUL99 3 133989 134444 456      

Rh138 -3 134603 135673 1071 RhUL100 -3 134611 135681 1071      
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Rh139 1 135862 138036 2175 RhUL102 3 135870 138044 2175      

Rh140 -1 138058 138813 756 RhUL103 -1 138066 138821 756      

Rh141 -3 138740 140707 1968 RhUL104 -3 138748 140715 1968      

Rh142 3 140544 143123 2580 RhUL105 2 140552 143131 2580      

Rh142.1 2 140693 140995 303 Rh142.1 1 140701 141003 303      

Rh142.2 -2 142185 142514 330 Rh142.2 -2 142193 142522 330      

Rh142.4 -2 142776 143243 468           

     Rh142.3 2 143999 144301 303      

Rh143 1 146491 146958 468 RhUL111a 3 146505 146966 462      

Rh144 1 147820 148620 801 RhUL112(1) 1 147838 148629 792      

Rh145 3 148719 149600 882 RhUL112(2) 3 148728 149609 882      

Rh146 -3 149714 150457 744 RhUL114 -2 149723 150466 744      

Rh147 -2 150420 151196 777 RhUL115 -1 150429 151205 777      

Rh148 -1 151207 152277 1071 RhUL116 -1 151503 152066 564      

Rh147.1 2 151808 152299 492 Rh147.1 1 151594 152088 495      

Rh149 -3 151952 152416 465 Rh149 -3 151726 152205 480      

Rh150 -2 152259 153407 1149 RhUL117 -2 152048 153196 1149      

Rh149.1 3 153243 153545 303 Rh149.1 2 153032 153334 303      

Rh151 -2 153432 154031 600 RhUL119(1) -2 153221 153820 600      

Rh152 -1 154111 154782 672 RhUL119(2) -1 153900 154574 675      

Rh153 -2 154260 154577 318           

     Rh151.1 1 154123 154524 402      

Rh154 -1 154831 155427 597 Rh154 -1 154623 155219 597      

Rh155 -3 155429 155977 549 Rh155 -3 155221 155769 549      

Rh156(1) -1 156229 157689 1461 RhUL122 -1 156027 157757 1731      

Rh156(2) -2 158214 159383 1170 RhUL123 -3 158017 159192 1176      

Rh156.1 1 159898 160200 303 Rh156.1 2 159707 160009 303      

Rh156.2 2 160052 160495 444 Rh156.2 3 159861 160307 447      

Rh156 -2 161559 162053 495 Rh157.1 -3 161371 161865 495      

Rh157 1 161947 162489 543 Rh157.3 -1 161571 162098 528      

Rh157.3 -3 161966 162286 321 Rh157 2 161759 162337 579      

Rh157.2 3 162081 162404 324 Rh157.2 1 161893 162198 306      

     RhUL128(1) -1 162726 163052 327 RhUL128(1) -1 722 1048 327 

     RhUL128(2) -1 163293 163631 339 RhUL128(2) -2 1288 1626 339 

     rhUL130 -3 163675 164364 690 RhUL130 -1 1628 2359 732 

Rh160 3 165417 166082 666 rhUL132 -3 165406 166071 666 RhUL132 -2 3403 4068 666 

Rh159 1 164371 165351 981      RhUL148 -3 4134 5114 981 

Rh158 1 163705 164166 462      RhUL147 -3 5319 5780 462 

Rh158.1 2 163289 163654 366      RhUL146 -1 5831 6175 345 

          RhUL146b -3 6738 7064 327 

          Rh161.1 -3 7188 7520 333 

Rh161 -2 167130 167570 441      Rh161.2 -3 7602 8117 516 

Rh162 -2 167655 167960 306      RhUL145 -3 8202 8507 306 
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Rh163 -2 168378 168893 516      RhUL144 -3 8925 9440 516 

Rh163.1 3 168912 169268 357      Rh163.1 3 9459 9815 357 

Rh164 -1 169096 170388 1293      RhUL141 -2 9643 10935 1293 

Rh165 -1 170857 171288 432      Rh165 -1 11396 11827 432 

Rh165.1 1 170872 171312 441      Rh165.1 2 11411 11851 441 

Rh166 -2 171333 171857 525      Rh166 -2 11872 12396 525 

Rh166.1 1 171772 172080 309      Rh166.1 2 12311 12619 309 

Rh167 -1 171988 172491 504 Rh167 -1 166137 166766 630 Rh167 -1 12527 13030 504 

Rh168 -3 172745 173401 657 Rh168 -3 167020 167676 657      

Rh168.1 2 173495 173926 432 Rh168.1 1 167773 168204 432      

Rh169 -3 173501 174064 564 Rh169 -3 167779 168342 564      

Rh170 -2 174198 174764 567 Rh170 -2 168476 169042 567      

Rh171 -2 174768 175607 840 Rh171 -2 169046 169885 840      

Rh172 -2 175806 176336 531 Rh172 -3 170083 170613 531      

Rh171.1 3 175839 176213 375 Rh171.1 1 170116 170490 375      

Rh173 -2 176388 177515 1128 Rh173 -3 170665 171786 1122      

Rh174 -2 178695 179774 1080 Rh174 -2 172913 173992 1080      

Rh175 2 180470 180922 453 Rh175 1 174688 175140 453      

Rh176 -1 180619 181260 642 Rh176 -1 174837 175478 642      

Rh177 -3 181226 181669 444 Rh177 -3 175444 175887 444      

Rh178 -2 181320 182060 741 Rh178 -2 175538 176278 741      

     Rh178.2 -3 176224 176544 321      

Rh178.1 3 182280 182642 363 Rh178.1 2 176498 176932 435      

Rh178.3 2 182609 182971 363 Rh178.3 1 176827 177189 363      

Rh179 3 183231 183746 516 Rh179 2 177449 177964 516      

Rh180 -3 183347 183670 324 Rh180 -3 177565 177888 324      

Rh181 -1 183766 184272 507 RhUS1 -3 177988 178623 636      

Rh180.1 2 184121 184447 327 Rh180.1 2 178343 178735 393      

Rh182 -3 184502 185092 591 Rh182 -1 178725 179315 591      

Rh183 1 185590 185952 363 Rh183 1 179818 180180 363      

Rh184 -1 185617 186159 543 Rh184 -3 179845 180387 543      

Rh185 -3 187133 187645 513 Rh185 -1 181392 181904 513      

Rh186 -3 187934 188638 705 Rh186 -1 182193 182897 705      

Rh187 -3 188879 189559 681 Rh187 -1 183138 183821 684      

Rh188 -2 189657 190031 375 Rh188 -3 183913 184287 375      

Rh189 -1 190318 191163 846 RhUS11 -2 184574 185416 843      

Rh190 -2 191367 192149 783 RhUS12 -2 185621 186403 783      

Rh191 -1 191524 191856 333 Rh191 -1 185778 186110 333      

Rh192 -2 192207 192971 765 RhUS13 -2 186461 187225 765      

Rh193 -3 192977 193462 486 Rh193 -3 187231 187716 486      

Rh194 -1 193084 193917 834 Rh194 -1 187338 188171 834      

Rh195 -3 194048 194791 744 Rh195 -3 188302 189045 744      

Rh196 -3 194864 195622 759 RhUS14 -3 189118 189876 759      
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Rh197 -3 195728 196453 726 Rh197 -3 189982 190707 726      

     Rh196.1 -2 190262 190576 315      

Rh198 -2 196431 197255 825 RhUS17 -2 190685 191509 825      

Rh199 -1 197605 198216 612 RhUS18 -2 191615 192415 801      

Rh200 -2 198336 199121 786 Rh200 -3 192535 193320 786      

Rh201 -2 199182 199943 762 RhUS20 -3 193381 194142 762      

Rh202 -3 199991 200677 687 RhUS21 -1 194190 194876 687      

Rh203 -1 200797 202521 1725 RhUS22 -2 194996 196720 1725      

Rh204 -2 202680 204548 1869 RhUS23 -3 196879 198750 1872      

Rh205 3 202743 203504 762 Rh205 1 196942 197706 765      

Rh206 -3 202979 203326 348 Rh206 -1 197178 197528 351      

Rh208 3 204333 204650 318 Rh208 1 198535 198852 318      

Rh209 -3 204572 206002 1431 RhUS24 -1 198774 200204 1431      

Rh210 2 205019 205594 576 Rh210 3 199221 199796 576      

Rh211 -3 206363 208156 1794 RhUS26 -1 200565 202358 1794      

Rh212 -1 206818 207132 315 Rh212 -2 201020 201334 315      

Rh213 2 206909 207424 516 Rh213 3 201111 201626 516      

Rh214 2 208328 209314 987 Rh214 3 202530 203516 987      

Rh215 2 209660 210673 1014 Rh215 3 203862 204875 1014      

Rh216(1) 2 210809 211138 330 Rh216 3 205011 206012 1002      

Rh216(2) 1 211078 211809 732           

Rh217 -2 211704 212006 303 Rh217 -2 205907 206209 303      

Rh218 1 211882 212901 1020 Rh218 3 206085 207104 1020      

Rh219 -1 212671 212976 306 Rh219 -1 206874 207179 306      

     RhUS28(1) 3 207249 207635 387      

Rh220 1 213046 214497 1452 RhUS28(2) 2 207794 208711 918      

Rh220.1 -2 213093 213440 348           

Rh221 3 214653 215978 1326 RhUS29 1 208867 210192 1326      

Rh222 1 215128 215451 324 Rh222 2 209342 209665 324      

Rh223 1 215896 216717 822 Rh223 2 210110 210931 822      

Rh224 -2 216579 217196 618 Rh224 -3 210793 211410 618      

Rh225 1 216793 217278 486 RhUS31 2 211007 211492 486      

Rh226 1 217405 217965 561 RhUS32 2 211619 212179 561      

Rh227 -3 217463 217879 417 Rh227 -1 211677 212093 417      

Rh228 1 218098 218403 306 Rh228 2 212312 212623 312      

Rh228.1 -2 218655 219032 378 Rh228.1 -1 212880 213257 378      

Rh229 -2 219051 219506 456 Rh229 -1 213276 213731 456      

Rh230 -1 219127 221214 2088 RhTRS1 -3 213352 215439 2088      

Rh231 -2 220326 220631 306 Rh231 -1 214551 214856 306      
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Supplemental Figure 3. Comparison of host proteins contained in WT and ∆pp65ab virions. A) The total number 

of host proteins found in RhCMV WT and Δpp65ab virions and the overlapping proteins found in both samples are 

shown. B) All peptides and proteins found in WT and Δpp65ab virions as shown here separated into either host or 

viral proteins dependent on their origin. C) Host proteins with a minimum abundance of 0.25mol% of the total amount 

of host proteins were ranked by abundance into two groups, proteins that had significant abundance in WT virions 

and were not found in Δpp65ab virions (upper panel) and host proteins that were found in both virions, but with at 

least two fold higher abundance in the WT. D) Similar to C), host proteins were ranked by abundance, but only proteins 

are shown that were either present in Δpp65ab virions and not in the WT (upper panel) or host proteins that were 

found in both virions, but with at least two fold higher abundance in Δpp65ab. 
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Supplemental Figure 4. ∆pp65ab establishes primary and secondary infections and protects against super-

infection with ΔUS2-11.. A) Two RhCMV sero-negative male RM (RM1 and RM2) were infected s.c with 107 PFU 

of ∆pp65ab at day 1. CD4+ (blue) and CD8+ (red) T-cell responses were monitored in broncho-alveolar lavages (BAL) 

by intracellular cytokine staining (ICCS) at the indicated days using overlapping peptides of pp65ab and IE1/2) On 

day 659 the two animals were inoculated s.c. with 107 PFU of ∆US2-11gag (green dotted line) and the T cell response 

to SIVgag was measured in addition. Note the absence of a T cell response to SIVgag or pp65 and a lack of boosting 

of responses to IE1. C) On day 876, the two RM were inoculated with 107 PFU of WTgag (black dotted line) and the 

T cell response was monitored by ICCS. Note the appearance of de novo responses to SIVgag and pp65 and a boosting 

of the T cell response to IE1. D) On day 1107 the two RM were inoculated with 107 PFU of ∆pp65ab-rtn (blue dotted 

line). Using overlapping 15mer peptides a de novo response to SIVrev/tat/nef was detectable indicating super-

infection. Also note a boosting of the IE1 response but not of pp65 or SIVgag-specific responses.  
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Supplemental Figure 5. T cells induced by heterologous prime/boost vaccination with pp65b do not protect 

against super-infection with ∆US2-11. Three CMV-negative RM were vaccinated with 1mg of pND/pp65b and 

boosted with MVApp65b at 6 and 12 weeks after the initial vaccination (black). As controls three CMV-negative RM 

were vaccinated with the parental pND plasmid not expressing any antigen and boosted with WT MVA at 6 and 12 

weeks after the initial vaccination (green). At 18 weeks after the initial DNA vaccination both groups of animals were 

challenged with 107 PFU of ∆US2-11gag. The left two panels show the specific T-cell responses to pp65 whereas the 

right two panes show specific T-cell responses to SIV gag. T-cells were isolated from broncho-alveolar lavages (BAL). 
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Supplemental Figure 6. Pp65b-specific T cells induced in naïve RM after DNA prime and MVA boost 

vaccination show mostly effector memory (TEM) phenotype at the time of RhCMV ∆U∆V challenge. T cells were 

isolated from peripheral blood drawn from the three RM described in Figure 6 (Supplemental Figure 3) at the times 

indicated above each dot plot.  The memory phenotype of the total pp65b response was determined by flow cytometry 

using the cell surface markers CD28 and CCR7 as previously described [353]. 
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