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Abstract

We focus on the task of secret communication using continuous quantum
key distribution protocols. This thesis is part of the collaboration Crypto on
Campus consisting of the theoretical Quantum Information group under Prof.
Dr. R. F. Werner and the experimental Quantum Interferometry group led by
Prof. Dr. R. Schnabel. The experiments were carried out at the Albert Ein-
stein Institute in Hannover. We connect the results of the experiments with
the theoretical analysis which we present in this thesis.

In the first section we start with a general runtime analysis of an experimental
realisation of quantum key distribution protocols. We show that it is conve-
nient to use protocols which allow for a non-uniform choice of measurement
basis in order to maximise the amount of secure key that can be generated
in one run of an experiment. Motivated by this we extend existing proto-
cols such that they allow for a non-uniform choice of the basis. We compare
the various protocols using the runtime analysis and experimental results to
show the importance of non-uniform-basis choice in quantum key distribu-
tion. The chapter closes with a discussion of an urban quantum key distri-
bution network using the new protocols which we developed.

In the second section we discuss the generation of an actual key in an exper-
iment and focus especially on classical reconciliation protocols, which are
needed to correct the errors between the raw keys of the legitimate partici-
pating parties. We show that the quantum key distribution protocols which
we discuss in this thesis raise special demands on the reconciliation schemes.
We propose a new reconciliation scheme (hybrid reconciliation) which is specif-
ically designed for the needs of these quantum key distribution protocols and
demonstrate its performance in an experiment. The chapter closes with a full
technical analysis of the performance of the hybrid reconciliation scheme.

Keywords: Continuous Variable Quantum Cryptography, Hybrid Reconcili-
ation, Runtime Analysis, Asymmetric Protocol





Zusammenfassung

Wir beschäftigen uns mit dem Austausch geheimer Nachrichten anhand quan-
tenkryptografischer Protokolle, die kontinuierliche Variablen verwenden. Die-
se Arbeit entstand im Zuge der Kollaboration Crypto on Campus der Arbeits-
gruppe Quanteninformation von Prof. Dr. R. F. Werner mit der Arbeitsgruppe
Quanteninterferometrie. Die Experimente wurden auf dem Gelände des Al-
bert Einstein Institus in Hannover durchgeführt. Wir verwenden die experi-
mentellen Ergebnisse und kombinieren sie mit den theoretischen Analysen,
die wir in dieser Arbeit präsentieren.

Zunächst beschäftigen wir uns im ersten Hauptkapitel mit der allgemeinen
Laufzeitanalyse von experimentellen Umsetzungen quantenkryptografischer
Protokolle. Dabei zeigen wir, dass Protokolle, die eine ungleiche Gewichtung
der Messbasen erlauben, die Schlüssellänge, die in einem Laufe eines Expe-
riments generiert werden kann, maximieren. Davon motiviert, erweitern wir
existierende quantenkryptografische Protokolle um genau diese Möglichkeit
der ungleichen Gewichtung der Messbasen. Anhand von Laufzeitanalysen
und Simulation vergleichen wir die neuen Protokolle mit ihren Vorgängern.
Abschließend diskutieren wir auf Grundlage der neuen quantenkryptografi-
schen Sicherheitsprotokolle ein kommunales Netzwerk, das physikalisch si-
chere Kommunikation ermöglicht.

Das zweite Hauptkapitel beschäftigt sich mit der Erzeugung eines sicheren
Schlüssels im Experiment. Dabei beschäftigen wir uns insbesondere mit der
klassischen Fehlerkorrektur, die benötigt wird, um einen sicheren Schlüssel
generieren zu können. Der Grund dafür ist, dass die quantenkryptografischen
Protokolle, die wir in dieser Arbeit untersuchen, spezielle Anforderungen an
die klassische Fehlerkorrektur stellen. Wir präsentieren eine hybride Fehler-
korrektur, die speziell für diese quantenkryptografischen Protokolle geeignet
ist und verwenden sie in einem Experiment. Abschließend zeigen wir die Effi-
zienz der hybriden Fehlerkorrektur anhand einer allgemeineren technischen
Analyse.

Stichworte: Quanten-Schlüsselerzeugung, Hybride Fehlerkorrektur, Laufzeit-
analyse, Asymmetrische Protokolle





Contents

1. Glossary 1

2. Introduction 5

2.1. Classical Secret Communication . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Quantum Key Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. Continuous Variable Quantum Key Distribution . . . . . . . . . . . . 9
2.4. Crypto on Campus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Preliminaries: Quantum Optics 13

3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2. Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1. Gaussian Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2. Squeezed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4. Theoretical Description of Experimental Parts . . . . . . . . . . . . . 24

3.4.1. Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2. Beam Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3. Gaussian Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.4. Coupling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.5. Balanced Homodyne Detection . . . . . . . . . . . . . . . . . . 34
3.4.6. Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.7. Detection Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5. Full Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4. Preliminaries: Continuous Variable Quantum Key Distribution 45

4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2. Security Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1. Composable Security . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2. Security Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3. Continuous Variable Quantum Key Distribution Protocol . . . . . 48
4.3.1. General Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2. Detailed Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



4.4. Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.1. Origin of Errors in the Raw Keys . . . . . . . . . . . . . . . . . . 56

4.5. Security against Collective Attacks . . . . . . . . . . . . . . . . . . . . . . 60
4.6. Security against Coherent Attacks . . . . . . . . . . . . . . . . . . . . . . 61
4.7. Classical Reconciliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7.1. Cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7.2. Binary Low Density Parity Check . . . . . . . . . . . . . . . . . . 65
4.7.3. Non-Binary Low Density Parity Check . . . . . . . . . . . . . . 67
4.7.4. Efficiency Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5. Runtime Analysis 71

5.1. Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3. Runtime Analysis: Quantum Key Distribution Protocols . . . . . . 72

5.3.1. Runtime Parameters of Experiment . . . . . . . . . . . . . . . . 73
5.3.2. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4. Asymmetric Continuous Variable Quantum Key Distribution
Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.1. Security against Collective Attacks . . . . . . . . . . . . . . . . 80

5.4.1.1. Security Analysis . . . . . . . . . . . . . . . . . . . . . . 81
5.4.1.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.1.3. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.2. Security against Coherent Attacks . . . . . . . . . . . . . . . . . 97
5.4.2.1. Security Analysis . . . . . . . . . . . . . . . . . . . . . . 97
5.4.2.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.2.3. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5. Analysis of Experimental Realisations . . . . . . . . . . . . . . . . . . . 109
5.5.1. Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5.2. Remote Bob (Fibre) . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6. Discussion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6. Key Generation 115

6.1. Overview and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.1. Experiment Secure Against Collective Attacks . . . . . . . . 116
6.3. Hybrid Reconciliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.1. General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.1.1. Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



6.3.1.2. Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.2. Analytic Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.3. Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.4. Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.6. Experiment Secure Against Coherent Attacks . . . . . . . . . 136
6.3.7. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.7.1. Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.7.2. Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . 140
6.3.7.3. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.7.4. Performance . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.7.5. Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.7.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.4. Outlook and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7. Conclusion 153

A. Appendix 155
A.1. Runtime Analysis for Three Bases . . . . . . . . . . . . . . . . . . . . . . 155

A.1.1. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.2. Keyrates with Hybrid Reconciliation . . . . . . . . . . . . . . . . . . . . 160

A.2.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.3. Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.3.1. Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.3.1.1. Conditional Entropy . . . . . . . . . . . . . . . . . . . . 166
A.3.1.2. Mutual Information . . . . . . . . . . . . . . . . . . . . 167

A.3.2. Von Neumann Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.3.3. (Smooth) Min-Max Entropies . . . . . . . . . . . . . . . . . . . . 168

B. List of Tables 171

Bibliography 183





1. Glossary

AEI Albert Einstein Institut
QIG Quantum Information Group
ITP Institut für Theoretische Physik
LUH Leibniz Universität Hannover
QKD Quantum Key Distribution
DV-QKD Discrete Variable QKD
CV-QKD Continuous Variable QKD
SHG Second Harmonic Generation
OPA Optical Parametric Amplification
BER Bit Error Rate
ABER Alphabet Error Rate
LDPC Low Density Parity Check
s-class Two Squeezed States
v-class One Squeezed State
sqz Squeezing
asqz Anti-Squeezing
SNR Signal to Noise Ratio
SNF Simon Normal Form
PPKTP Periodically Poled Potassium Titanyle Phosphate
LO Local Oscillator
i.i.d. Identically and Independently Distributed Random Variable
Tuples All Synchronised Measurements of Alice and Bob
Samples Synchronised and Correlated Measurements of Alice and Bob
FER Frame Error Rate
N Gaussian distribution
W Wishart Distribution
W Wigner Function
Trun Runtime
GF Galois Field
χ Alphabet
F e

m
Runtime Protocol Family

F e
m ,TM ,TS

Runtime Family with Independent Switching
F e

m ,TM S
Runtime Family without Independent Switching
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TM Time of Measurement
TS Time of Switching
Q General Quadrature
X Amplitude Quadrature
P Phase Quadrature
Q45 Linear Combination of X and P
qi Weight of i’th Basis
kpot Potential Secure Key Rate
ksec Extractable Secure Key Rate
γ General Covariance Matrix
γAB Bipartite Covariance Matrix
γX Amplitude Sub Phase Space
γP Phase Sub Phase Space
CX Amplitude Quadrature Correlation
CP Phase Quadrature Correlation
|ν〉 Squeezed State
|vac〉 Vacuum State
tr
�
ρ
�

Trace of State ρ
〈A〉 Expectation Value of A
δ Spacing Parameter
α Cut Off Parameter of CV-QKD Protocol
αEC Cut Off Parameter of Reconciliation Protocol
χKG Key Generation Alphabet
GKG Key Generation Grid
Ntot Number of Measurements of One Participant
Npe Number of Parameter Estimation Samples
NEC Number of Reconciliation Samples
Nsift Number of Samples Dropped by Sifting
Nkey Number of Key Generation Samples
MAB Measurement Samples of Alice and Bob
KAB Raw Key Samples of Alice and Bob
H (X ) Von Neumann Entropy of Variable X
S (X ) Shannon Entropy of Variable X
σ Uncertainty (Standard Deviation)
CǫS

Confidence Set
d0 Protocol Parameter of Coherent Protocol
∆Ts y n c Synchronisation Time Interval
ν Gaussian Damping
βEC Efficiency of Reconciliation
DN Classical Noise
∆φPN Phase Noise
I (XA : XB ) Mutual Information of XA Conditioned on XB

2



λ= Var (X ) Variance of Variable X
ǫ0 Permittivity of Vacuum
ǫC Correctness of QKD Protocol
ǫS Secrecy of QKD Protocol
Hmin Min Entropy
Hmax Max Entropy
H ε

min Smoothed Min Entropy
H ε

max Smoothed Max Entropy
ǫ
�
γAB

�
Peres-Horodecki-Simon Entanglement Criterion

ρi Correlation Coefficient with i ∈ {X , P }
µ
�
γAB

�
Purity

R Coding Rate
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2. Introduction

2.1. Classical Secret Communication

One prominent manifestation of our information age is the internet, which
was founded in 1969 by the US Government of Defence under the project ad-
vanced research project agency (ARPA) [Abb99]. It was initially designed to
link the resources of universities and research facilities. Since its further de-
velopment in the 1970’s and the parallel advancement in computer technol-
ogy, its usage has been enlarged more and more to the private and business
sectors, with servers connecting the computers of all the participants. For ex-
ample, nowadays people share private information via the internet using so-
cial platforms or mail and companies use it for presentation, advertisement,
taking order and market research. With this development, several levels of
security requirements arose because some of the participants do not want to
publicly share their information (secret communication). These classical in-
formation theory tasks lead to the development of new classical encryption
techniques like RSA (asymmetric) [RSA78] and AES (symmetric) [Inf01].

Let us focus on two parties participating in secret communication, who are
conventionally referred to as Alice and Bob. The information which is to be
secretly shared between the participants is encrypted by the sender before it
is sent over the insecure classical channel (the internet) to the receiver. The
receiver (Bob) then has to decrypt the message to make it readable again.

One important loophole of classical secret communication is the generation
of the keys used to encrypt and decrypt the message [DFSW10a, DFSW10b].
If only deterministic algorithms are used to generate the keys a possible at-
tacker could use them to break the security of the system with higher prob-
ability. Using random numbers in the process of key generation algorithms
circumvents this problem. Note that real randomness can in principle not
be found in classical physics, given full knowledge of the state, it is always
deterministic. This problem is partly circumvented by using very compli-
cated classical algorithms which are especially hard to predict. One could
also, for example, use thermal noise to generate the random numbers [Sai03].
Although thermal noise is, in principle, also deterministic it is very hard to
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predict the outcomes if the physical system is large enough. Note that, in this
sense, classical cryptography aims to maximise the key space using (prefer-
ably complicated) algorithms [Sin99].

Another way to increase the security of secret communication is to use a key
which is as long as the message (one-time pad). This avoids redundancies
in the encrypted message which necessarily occur when the key is shorter
than the message. The problem of such techniques is that the key must first
be distributed between the participants of the secret communication using
a secure classical channel and classical channels are, in principle, never re-
ally secure as information can, in classical physics, be copied arbitrarily often
without anyone noticing.

In 2013 a major attack on the whole internet was made public by Edward
Snowden, a former employee of the National Security Agency (NSA). He leaked
important information about a group of states (USA, Canada, United King-
dom, New Zealand, Australia) concerning large scale eavesdropping on the
internet. Some of their projects aim directly at storing, at minimum, the meta
data of entire countries for days or even months, while others allow for real-
time surveillance. One special project (Bullrun, USA) even attempts to make
encrypted texts readable in real-time. It attacks the certification and random
number generation of encryption protocols.

To summarise, one problem of classical ciphering is that it can, in principle,
always be decoded as there is no real randomness in classical theory. The
other problem is, that information can, in classical theory, be copied arbi-
trarily often. Quantum Key Distribution (QKD) offers an elegant way to cir-
cumvent classical drawbacks. It combines real randomness with the quan-
tification of the security of the one time pad, which is distributed between
Alice and Bob under the assumption of different classes of eavesdropping.
The security of QKD relies not on the computational complexity of the secret
communication but instead on the laws of quantum physics. The best strat-
egy to break the security under the assumption of different classes of eaves-
dropping is to either directly intrude the laboratories of the honest parties or
guessing the one time pad.

2.2. Quantum Key Distribution

The history of QKD can be traced back to a publication by Stephen Wiesner
[Wie84]. In that publication he presented a scheme which uses only fun-

6



damentals of quantum physics to render money uncopyable. He assumed,
that every banknote has a quantum memory containing a number of pho-
tons with a specific combination of polarisations (its serial number) which is
unique for that banknote and only known to the bank1.

Every time the banknote is used in transactions, the bank measures the state
of the polarisations of the photons in the banknote. Assuming an ideal quan-
tum memory, the polarisations of the photons carrying the serial number are
perfectly maintained. If someone tried to copy a banknote, he would nec-
essarily have to copy the polarisations of the photons (which are unknown
to him) too. It is very likely that he does not measure all the photons in the
correct measurement bases, which disturbs the state of the photons in the
original banknote. Furthermore, as the photons have not been measured
properly, the polarisations of the copied banknote are partly incorrect. This is
detected the next time the banknote is used in transactions. The major prob-
lem of Wiesner’s quantum money is the assumption of almost-ideal quan-
tum memories. Even today quantum-memories are at most stable only for
seconds [SAA+10].

In 1984 Bennett and Brassard presented the first QKD protocol [BB84], where
they used the ideas of Wiesner to certify the security of a quantum channel
used to share a secure key (one time pad) between two participating parties
(Alice and Bob). We call the attacker who eavesdrops on the quantum chan-
nel ’Eve’.

In this setting Alice prepares single photons randomly in one of the four states
of the two bases× and+ and sends them to Bob. Bob subsequently measures
the incoming states and stores his measurement outcomes. Afterwards, Alice
sends Bob the bases in which she prepared the photons over an authenticated
classical channel. Alice and Bob use this knowledge to quantify the amount
of secure information that can be shared and use the measurement tuples to
generate their raw keys. The raw keys have to be corrected as they are gen-
erally not perfectly correlated in an non-ideal setup. The raw keys are equal
after the classical reconciliation and are folded to the secure length, which
is determined by the secure key rate. Alice and Bob then use their secure
key as a one-time pad to perform secret communication. Alice encodes the
text which is to be secretly transmitted using her secure key and sends it over
an authenticated classical channel to Bob who decodes it. The first proof of
principle experiment was realised in 1992 [BBB+92].

1Wiesner proposed to use the horizontal 0◦ and vertical 90◦ basis (the + bases) and the
diagonal bases × with 45◦ and 135◦.
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QKD has become a mature branch of quantum information in the last 30
years of research. Many different protocols and setups have been proposed
and experimentally verified since then [SBPC+09]. They can generally be sor-
ted into four major fields [SBPC+09] as described in Figure 2.1. Some QKD
protocols generate the key from discrete variables (commonly the polarisa-
tion of light fields or single photons). Such protocols are called discrete vari-
able protocols (DV-QKD). The very first QKD protocol ([BB84]) uses the po-
larisation of single photons and is a good representative of a prepare and
measure DV-QKD protocol. There also exist entanglement-based DV-QKD
protocols which generate the key from the correlations of, for example, the
polarisation of entangled photons [Eke91]. One can additionally use contin-
uous variable systems to distribute the raw keys, as in, for example, Gaussian
modulated prepare and measure CV-QKD protocols [SBPC+09]. In this the-
sis we analyse CV-QKD protocols which use entangled coherent laser beams
and balanced homodyne detection to distribute the information from which
the one-time pad is generated. The raw keys are generated from the synchro-
nised and correlated amplitude or phase measurements of the two parties.

D
V

-Q
K

D
C

V
-Q

K
D

Prepare and

Measure

Entanglement

Based

BB84
[BB84]

E91
[Eke91]

Gaussian

Modulated
[SBPC+09]

"Crypto on

Campus"
[GHD+14]

Figure 2.1.: The classification of QKD protocols with examples.

The main difference between coherent laser beams and single photon pulses
is that single photons always have a finite but possibly very small probabil-
ity of arriving at the detector. In an ideal setting, single photon QKD allows
for arbitrary large distances depending only on how long one can or wants
to wait to generate a secure key. The maximum distance of experimental im-
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plementations is limited by dark counts of the detectors [BLMS00]. Coherent
laser beams experience some damping as they travel and the maximum dis-
tance of CV-QKD systems is thus defined by the maximum amount of noise
the system can sustain whilst still generating a positive raw key.

2.3. Continuous Variable Quantum Key

Distribution

Note that we focus in this thesis on a specific experimental realisation of CV-
QKD amongst many others [BvL05]. The experimental setup under consider-
ation uses entangled two-mode squeezed states and balanced homodyne de-
tection to generate the raw key [GHD+14]. The initially independent squeezed
states are generated using second harmonic generation and optical paramet-
ric down conversion in a cavity [MAE+11]. A bipartite entangled state of Alice
and Bob is realised by entangling the two squeezed Gaussian states using a
50 : 50 beam splitter. Alice and Bob perform synchronised homodyne de-
tection on their states to generate the measurement tuples which are used
later on in the CV-QKD protocol. The bases are chosen identically and in-
dependently using a quantum random number generator (see for example
[FWN+10]). Note that Alice’s and Bob’s Gaussian states may experience dif-
ferent physical effects before they are measured by homodyne detection. We
will explain the setup (see [EHS13]) in detail in Section 3.3 and assume that
Alice holds the source of the entangled bipartite state unless otherwise noted.

Let us focus on the usage of the experimental setup in CV-QKD protocols. The
measurement tuples are used for the tomography of the state and for raw key
generation [SBPC+09]. The tomography of the state allows us to compute the
secure rate ksec of the setup. The classical post processing corrects the errors
and folds the generated bit strings to the secure length ksec. The outcome is a
one-time pad which can be used to encrypt and decrypt a text which is then
sent over an authenticated classical channel (possibly the internet). The se-
curity of the one-time pad relies on the assumptions of the CV-QKD protocol
and is certified on the level of quantum physics.

2.4. Crypto on Campus

The motivation for this thesis was simultaneously the main topic of a cooper-
ation with the Quantum Interferometry group led by Prof. Dr. R. Schnabel at
the Albert Einstein Institute (Max-Planck Institute) Hannover [Sch]. The aim
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of the cooperation, named Crypto on Campus, was the experimental realisa-
tion of a CV-QKD experiment on the campus of the Leibniz University. It was
financed by the QUEST excellence cluster from 2008 - 2013 [WFD13] and the
DFG from 2013 - 2015 [WSDH14]. Figure 2.2 shows a part of the experiment
which was assembled during the collaboration and used for CV-QKD.

Figure 2.2.: A picture of the experimental setup. We thank the Albert Einstein

Institute in Hannover (i.e. Sandra Marschke) for the picture.

The mathematical Quantum Information Group (QIG) of Prof. Dr. R. F. Werner
[Wer] provided theoretical background and analysis as well as novel security
proofs [FFB+14] and new reconciliation algorithms [PMD+14]. The actual im-
plementation was realised by the group of Prof. Dr. R. Schnabel who was
able to provide the entangled states needed for this task [EHS13]. In addi-

10



tion, several theoretical and experimental side projects have been triggered
[HES+12, FFW11, Fur14].

Up to now four Ph.D. theses are directly concerned with this cooperation
[Fur12, Fra13, Ebe13] (and this one) and a fifth from Dipl.-Phys. Vitus Haend-
chen is yet to come. This thesis is related to the aforementioned publications
as it provides an overview of the whole process, the algorithms needed for its
successful accomplishment, and extensions of the protocols proposed by Dr.
F. Furrer et al. [FFB+14].

First we prepared for upcoming experiments showing that the setup is in-
formation theoretically secure against collective attacks in the limit of in-
finitely many measurements following the protocol of [DHF+07]. The QIG
began to develop new security proofs for the setup at hand, thereby exploiting
the characteristics of squeezed Gaussian states in the realm of the (smooth)
Min- Max-entropy formalism which was introduced by Prof. Dr. R. Renner
[Ren05]. This ansatz allows for a security analysis including finite-size effects
inevitable in experiment. Basic theoretical results on the first feasible proto-
col for CV-QKD are described in wide detail in the Ph.D.-theses of Dr. F. Furrer
[Fur12] and Dr. T. Franz [Fra13]. They describe a protocol under which the
actual experimental setup is information theoretically secure against most
general, so called coherent, attacks. They achieve this by including a finite
size analysis based on one-shot entropies and entropic uncertainty relations.
One-shot means in this sense one synchronised measurement tuple of Alice
and Bob.

Crypto on Campus ended when a key secure against coherent attacks was
generated from a table-top experiment as described in Section 6.3.6 and pub-
lished in [GHD+14]. In that experiment we used the new reconciliation scheme
which we present in this thesis in Chapter 6 to generate the secure key.

2.5. Contributions

We describe in this section the contributions of this thesis to the project Crypto
on Campus and to the field of QKD.

Chapter 5 explains how non-uniform weights of the two involved bases can
improve the key which is generated by a QKD protocol. The chapter begins
with a general investigation of the runtime of QKD protocols and shows that
asymmetric protocols generate more key than their symmetric variants in a
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given time interval. We use this as motivation for CV-QKD protocols which
allow for a non-uniform choice of the basis to be measured and extend the
symmetric protocols proposed in [FFB+14] to the level of asymmetric proto-
cols. The improvements of the new asymmetric protocols are shown in a sim-
ulation which is based on experimental results. The chapter concludes with
an investigation of the experimental realisation of an urban QKD network us-
ing the asymmetric protocols and closes with a discussion. Our publications
affiliated with the chapter are [EHD+13] and [EHD+11].

The nature of the CV-QKD protocols we used in the experiments raises special
demands on the reconciliation scheme which is needed to correct the errors
between the raw keys of Alice and Bob during the classical post processing.
Chapter 6 describes a reconciliation scheme which exploits exactly the cor-
relations on which the key generation of the protocols relies, thus achieving
high efficiency. We discuss the new reconciliation scheme in detail, together
with a numerical simulation of the algorithm, and show how it was used in
an experiment which generated a key secure against coherent attacks. The
reconciliation scheme is compared with standard non-binary reconciliation
using low density parity check matrices. The chapter closes with a full tech-
nical analysis of the new reconciliation scheme and a discussion. Our publi-
cations affiliated with the chapter are [GHD+14] and [PMD+14].

This thesis furthermore provides, in the introductory Chapters 3 and 4, a solid
connection between the theory and its realisation in an experiment. We also
provide an overview of the project Crypto on Campus.
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3. Preliminaries: Quantum Optics

3.1. Overview

We start in Section 3.2 with the basic phase-space theory needed for a full
quantum mechanical description of the setup under consideration. We de-
tail in Section 3.3 the experimental setup and continue with Section 3.4 where
we explain the experimental parts and their theoretical description. Section
3.5 explains the full tomography of a bipartite Gaussian state. We focus on
Gaussian bipartite states during the whole thesis and provide a detailed in-
troduction to the theoretical basics and the experimental realisations in this
chapter.

As this chapter is explicitly meant as an introduction we do not present any
novel physics in it, when not otherwise noted. Note that we provide a solid
connection between the theoretical background and the experimental setups
discussed within this section.

3.2. Theoretical Background

Before going into the details of the CV-QKD setup in Section 3.3 we introduce
the basic mathematical framework for the representation of Gaussian states
using the Wigner function [Wig32] in this section. Since we focus on Gaussian
states which can in very good approximation describe the laser beams used in
the experimental setup, the canonical Hilbert space is of infinite dimension,
which could hinder further analysis. One possible solution is the usage of
phase-space variables as they greatly simplify the description of the situation.
As the following chapters rely on this description, we will explain the theory
in more detail.

3.2.1. Gaussian Systems

We start with the general description of quantum states in the realm of un-
bounded canonical conjugated operators as described in [RS78] and con-
tinue with a specific selection of two canonically conjugated operators, namely
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the amplitude (position, X ) and phase (momentum, P ) quadrature opera-
tors. Good indroductions in this topic are also naturally the other Ph. D. the-
ses which have been written as part of the collaboration Crypto on Campus
[Fur12, Fra13, Ebe13]. We continue with a general description of Gaussian
states in phase-space using the Wigner function and close the section with
some functions which are needed to characterise Gaussian states.

Let us start with the expectation value of an operator F for a quantum state
ρ which is in general defined by

〈F 〉ρ ..= tr
�
F ρ

�
. (3.1)

As laser beams with many photons are at the center of our interest we now fo-
cus on quadrature measurements described by two canonically conjugated
operators. This can be realised by associating the system with a phase-space
together with an appropriate set of field operators, namely the aforemen-
tioned amplitude and the phase quadrature. Note that the operators en-
able a full description of the state by the Wigner quasi-probability function
Wρ(x , p ). For these states a Weyl-ordered function F (X , P ) of the canonical
conjugated variables exists. We can find for every F (X , P ) a classical function
f (x , p ) such that

〈F (X , P )〉ρ = tr
�
F ρ

�
=

∫
Wρ(x , p ) · f (x , p )dx dp ,

following the formulation of Wigner as described in [Wig32]. The formula-
tion was extended to all Weyl ordered functions in [Moy49].

In the commutation relation

[X , P ]ρ = 2i

the operators are chosen with ħh = 2. This is a common convention in quan-
tum optics and results in a variance of the vacuum state equal to one as we
will show later1. The two measurement operators are usually realised by ho-
modyne detection as we will describe in more detail in Section 3.4.5. Together
with the symplectic form

σ=

�
0 1
−1 0

�
(3.2)

1Note, that ħh = 1 is also sometimes used in quantum mechanics which results in a variance
of the vacuum state equal to 1/2.
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we can map the parameter space of one mode to a real plane which we call
the phase-space. As we are especially interested in entangled bipartite states,
we focus in the following on a multi-mode of several beams. Such a system
can be described by a 2n-dimensional phase-space for the 2n field operators
{Ri }with i ∈ {1, ..., 2n}where the symplectic form is given by

σn =

n⊕

k=1

σ.

After having explained the mathematical background necessary to describe
the system, we show how it is linked to experimentally measurable quantities.
For this, we write all the field operators as elements of a vector ~R in phase-
space with ~R = (R1, R2, ..., R2n−1, R2n )

T and define

~R ..= (X1, P1, ..., Xn , Pn )
T

which is a specific set of field operators, namely the amplitude X (phase P )
quadrature operators R2n−1 = Xn (R2n = Pn ) of the light field. We use this
vector to define the family of Weyl operators [HOSW84] by

W(~ξ) = exp
�
i ~ξTσN

~R
�

,

where ~ξ ∈ ❘n is another phase-space vector. If we choose the order of its
elements to be ~ξ= (x1, p1, ..., xn , pn )we can write

W(~ξ) = exp

�
i

n∑

i

(xi X i −pi Pi )

�
,

which is a phase-space translation. With this we can write down the con-
nection between the Weyl operator W and the multi-mode quantum state ρ
describing the system by its characteristic function

χ (~ξ) = tr
�
ρW(~ξ)

�
.

The Wigner function can now be written as the symplectic Fourier transform
of the characteristic function

Wρ

�
~ξ
�
=

1

2π

∫
χ ( ~η) ·exp(i ~ησ~ξ)dη1...dη2n . (3.3)

Wigner function:
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The Wigner function describes the representation of any state ρ in phase-
space. In the following we focus on Gaussian quantum states. This class of
states is defined by a Gaussian distribution in phase-space. The Wigner func-
tions of Gaussian states thus have positive values for the whole parameter
space and can hence be interpreted as quasi-probability functions in phase-
space2.

An n-mode quantum system in state ρ together with the field operators ~R =
(X1, P1, ..., Xn , Pn ) is a Gaussian state if its Wigner function can be written as

Wρ

�
ξ,γ

�
=

1

(2π)n
q

det
�
γ
� exp

�
−1

2
(~ξ− ~ξ0)

T γ−1(~ξ− ~ξ0)

�
, (3.4)

with the physicality (positivity) condition

ρ ≥ 0 ⇔ γ+ iσ≥ 0 (3.5)

where γ is the covariance matrix of the setup. The quantum state can hence
be fully described by its first and second moments which are given by

~ξ0 = tr
�
ρ ~R

�

and

γi , j = tr
�
ρ
�

Ri , R j

	
+

�
.

We focus on states which have a mean value equal to zero and are thus fully
described by their covariance matrix. The important entries of the covari-
ance matrix can be experimentally determined by homodyne detection of
the canonically conjugated measurement quadratures (see Section 3.4.5 for
details). We call an experimental reconstruction of such a system the full to-
mography of the state and define the following three different classes [WM04]
of interest:

Vacuum state ⇔ ~ξ0 = ~0 & γ= ✶

Thermal state ⇔ ~ξ0 6= ~0 & γ= const ·✶.
Squeezed state ⇔ ~ξ0 = ~0 & γ 6= const ·✶

Covariance matrix:

2There exist states which show negative values of the Wigner function [LHA+01].
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The covariance matrix of a bipartite Wigner state consisting of the subsys-
tems of Alice A and Bob B can be decomposed as

γAB =

�
γA γC

γT
C
γB

�
(3.6)

where the sub-matrix γC describes the correlations between Alice’s and Bob’s
subsystems γA and γB .

In the following we discuss some properties of the covariance matrix. The
covariance matrix has 16 independent parameters, but as a covariance ma-
trix is symmetric, we are left with ten independent values

γAB =





λ1,1 λ2,1 λ3,1 λ4,1

λ2,1 λ2,2 λ3,2 λ4,2

λ3,1 λ3,2 λ3,3 λ4,3

λ4,1 λ4,2 λ4,3 λ4,4



 . (3.7)

Each measured bipartite state can be diagonalised by a specific choice of local
rotations followed by an additional squeezing of the sub-blocks of Alice and
Bob. Such a diagonalisation operation is given by the Simon Normal Form
(SNF) of the covariance matrix of the corresponding Gaussian state [Sim00]
which is in general

γAB =





λA 0 CX 0
0 λA 0 −CP

CX 0 λB 0
0 −CP 0 λB



 (3.8)

where CX and CP describe the correlations between the synchronised ampli-
tude or phase measurements of Alice and Bob. Note that two different kinds
of asymmetries of the bipartite state of Alice and Bob can be seen in this rep-
resentation. Firstly, the asymmetry between the variances of Alice’s and Bob’s
amplitude (phase) measurements λA 6= λB and secondly, the asymmetry in
the covariances CX 6=CP between their sub-systems.

The SNF of any covariance matrix is only a function of four instead of ten
parameters. The reason is, that information about the possible squeezing of
Alice’s and Bob’s subsystem is lost during the ’re-squeezing’ and the local ro-
tations which are needed to transform the covariance matrix γAB to the SNF.
The four parameters are mathematically independent albeit obeying

0≤CX ≤min{λA ,λB }
0≤CP ≤min{λA ,λB } .
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We can now identify four functions that are invariant under local symplectic
transformations of the covariance matrix [Sim00]:

I1 = det[γA] =λ
2
A

(3.9)

I2 = det[γB ] =λ
2
B

I3 = det[γC ] =−CX CP

I4 = det[γAB ] =
�
C 2

X
−λAλB

�
·
�
C 2

P
−λAλB

�
.

We call these functions in the following the symplectic invariants and use
them to evaluate important physical values like, for example, the purity or
the Peres-Horodecki-Simon entanglement criterion. As we have identified
the symplectic invariants as a function of the determinants of the three sub-
matrices and the full covariance matrix, we can now directly compute them
without mapping the actual covariance matrix to the SNF.

The purity of quantum states is, in general, given by

µ
�
ρ
�
= tr

�
ρ2
�

.

Using the symplectic invariants, we can rewrite the purity of a bipartite Gaus-
sian state by [SIPDS04]

µ
�
γ
�
=

1q
det

�
γ
� =

1p
I4

. (3.10)

The symplectic eigenvalues can be written as [BND+10]

d± =
r

1/2 ·
�
(I1+ I2+2I3)±

Æ
(I1+ I2+2I3)

2−4I4

�
. (3.11)

We can use the symplectic eigenvalues to define the Peres-Horodecki-Simon
entanglement criterion E for bipartite entangled system [Sim00]

E
�
γAB

�
=max

�
0,− log [−2d−]

	
, (3.12)

which is also known as the logarithmic negativity [SIPDS04].

For later tasks we define four different sub-phase-spaces of special interest:

γA Alice’s block describing her local X and P measurements
γB Bob’s block describing his local X and P measurements
γX

AB
Describing bipartite synchronised X measurements

γP
AB

Describing bipartite synchronised P measurements
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Most important are the sub-matrices describing the quasi-probability of Al-
ice’s and Bob’s outcomes of synchronised amplitude X or phase P measure-
ments. The synchronised amplitude measurement outcomes are described
in terms of the covariance matrix γAB by

γX
AB
=

�
γ11 γ31

γ31 γ33

�
, (3.13)

where γ31 describes the correlations between their outcomes. Accordingly,
the synchronised phase measurements are

γP
AB
=

�
γ22 γ42

γ42 γ44

�
. (3.14)

3.2.2. Squeezed States

Here we give an example of the simplifications possible when using the de-
scription of Gaussian states in phase-space, starting with one mode in canonic
number representation. We additionally define the operators for the ampli-
tude and phase measurement of a Gaussian beam as we need the operators
to describe the homodyne detection in Section 3.4.5. Good introductions
to quantum optics in general and Gaussian states are [WM04, MW95, GK05,
Lou97]. Let us start with the description of coherent states.

Coherent states:
We begin with the basic description of a one-mode coherent state |ν〉 in Fock
representation |n〉 ∈❋+ (H)where the |n〉 are a complete orthonormal basis:

|ν〉= exp

�
−|ν|

2

2

�
·
∞∑

n=0

νn

p
n !
|n〉

= exp

�
−|ν|

2

2

�
·
∞∑

n=0

νn a †

p
n !
|vac〉

= exp

�
−|ν|

2

2

�
·exp

�
νa †

	
|vac〉

=D (ν) · |vac〉

where a (a †) is the annihilation (creation) operator and D (ν) the displace-
ment operator. Let us additionally define the number operator n = a †a as we
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will need it later. We are again interested in measuring the amplitude (phase)
quadrature of the light field and define

X =

�
ħh

2ω

� 1
2

·
�
a +a †

�
, (3.15)

which is the canonical amplitude quadrature operator and

P = i

�
ħhω

2

� 1
2

·
�
a †−a

�
, (3.16)

the canonical phase quadrature operator with ω denoting the frequency of
the described light beam which is usuallyω= 1 for the rest of this thesis. The
variance of an operator A is in general defined by

Var (A) ..= 〈A2〉− 〈A〉2 =λA

σA
..=
p
λA

where we additionally introduced the uncertainty (standard deviation)σA of
the operator A. Evaluating the variance (and the uncertainty) of the ampli-
tude X and phase P quadrature operator for a coherent state we find

Var (X )|ν〉 = (σX )
2 =
ħh

2

Var (P )|ν〉 = (σP )
2 =
ħh

2
.

The uncertainties of a coherent vacuum state (D (ν) =D (ν= 0)) are illustrated
in Figure 3.1. We now evaluate Heisenberg’s uncertainty relation [Hei27] of
the two quadratures for a coherent state by

σX ·σP =
ħh

2
(3.17)

and see that ideal coherent states are of minimal uncertainty. Remembering
ħh = 2 from Section 3.2.1 we see that

σX ·σP = 1 (3.18)

which is the reason why we chose ħh = 2. Note that all the states we use in this
thesis are given in terms of the vacuum which is in this sense normalised to
one.
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Figure 3.1.: A Gaussian vacuum state in phase-space has, given to our choice of
physical constants (ħh = 2), a variance of σX =σP = 1 and minimal
uncertainty. If ν 6= 0 the vacuum state is displaced in phase-space.
We focus for the rest of this thesis on Gaussian states with ν= 0.

Squeezed states:
The class of coherent states is a sub group of a larger class of states having the
same property. To show this we introduce a unitary squeezing operator

S (Θ) = exp
�
Θ
�
a 2− (a †)2

��
,

where Θ ∈❘, and let it act on the coherent state

|ν,Θ〉= S (Θ)D (ν) |vac〉 (3.19)

resulting in a squeezed state whenΘ 6= 0. The name comes from the profile of
a squeezed state in phase space as explained in Figure 3.2. We now calculate
the variances (uncertainties) of X and P of a squeezed state

Var (X )|ν,Θ〉 = (σX )
2 = exp [−2Θ] ·Var (X )|ν〉

Var (P )|ν,Θ〉 = (σP )
2 = exp [2Θ] ·Var (P )|ν〉 .

It follows again that

σX ·σP = 1, (3.20)

showing that ideal squeezed states allow for minimal uncertainty, too3.

3Non-ideal squeezed states do not fulfill this property although they are assumed to be
normalised to the vacuum as we will show later.
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Let us assume that a person (for example Alice) measures a one mode squeezed
state. The descriptions presented in this section are connected to the covari-
ance matrix which is presented in the former Section 3.2.1 by

Var (X )|ν=0,Θ〉 =
�
γA

�
1,1

Var (P )|ν=0,Θ〉 =
�
γA

�
2,2

where γA is the covariance matrix which describes Alice’s state. Note that�
γA

�
1,2
=
�
γA

�
2,1
= 0 as the quadrature measurements are assumed to be ideal

which is not the case in an experiment as we will show later.

x

p

σX

σP

Figure 3.2.: The Wigner function of a squeezed vacuum state in phase-space.
The state is chosen such that the semi-axes of the ellipse coincide
with the coordinate system which relates to a perfect measurement
of the amplitude and phase quadrature. The amplitude quadrature
is squeezed while the phase quadrature is anti-squeezed. This ex-
ample shows a squeezed vacuum state with D (ν= 0). Such states
are used in the CV-QKD setups which we discuss later.

Squeezed states gained a lot of interest in recent years, especially in the field
of quantum metrology. The reduced uncertainty allows for the construction
of a class of interferometers operating below the shot noise limit. Such in-
terferometers are for example already in use to detect gravitational waves as
part of GEO600 [GC08], LIGO [Aea13, GtLSC10, Aea12] and VIRGO [Col09].
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3.3. Experimental Setup

We are about to analyse an entanglement-based CV-QKD setup using squeezed
Gaussian states [GHD+14, EHD+13], certifying the security of the generated
key against different classes of attacks. The corresponding experiments were
realised by the group Quantum Interferometry which is led by Prof. Dr. Schn-
abel (Albert Einstein Institute Hannover) and which is part of the collabora-
tion Crypto on Campus. Note that we focus here on one specific CV-QKD ex-
periment amongst many possible other realisations as presented in [BvL05]
and [GG02] for example.

BS

A B

S1 S2I

II

III

Figure 3.3.: The experiment can be split into three main parts. First, the two
states are prepared by some source (I). Then they become entan-
gled at a beam splitter and distributed to Alice and Bob through
some quantum channel (II). The last stage (III) is the synchronised
balanced homodyne detection by Alice and Bob followed by classical
post processing.

In the setup under consideration, two sources emit initially uncorrelated squee-
zed Gaussian vacuum states which afterwards become entangled via a 50:50
beam splitter. The resulting beams are sent to Alice and Bob thereby experi-
encing different effects which can mostly in very good approximation be de-
scribed by Gaussian channels as we will show later. The beams of Alice and
Bob are measured by homodyne detection of either the amplitude X or the
phase P quadrature. The correlations of the measurement outcomes, which
are described by the covariance matrix of the bipartite state of Alice and Bob,
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are the key ingredient of all the CV-QKD security proofs we use as we will show
later. We subsume the operations acting on the quantum states before they
are measured into the quantum channel. In this sense, the setup is naturally
parted in three stages, the preparation of the sources, the quantum channel
and the homodyne measurement as illustrated in Figure 3.3. The measure-
ment basis are chosen identically and independently (i.i.d.) from a quantum
random number generator.

A secure key is generated using a chosen CV-QKD protocol with appropri-
ate classical post processing over an authenticated channel. The security of
a setup can be certified by assuming some kind of classical post processing,
but if one wants to generate a secure key, the classical post processing has ac-
tually to be implemented. The various parts of the setup and their theoretical
description in terms of the covariance matrix are described in more detail in
the next Section 3.4.

3.4. Theoretical Description of Experimental Parts

This section explains the setup under consideration in wide detail. We ex-
plain the theoretical models used to describe the setup which is introduced
in the former Section 3.3. We start with a description of the sources and the
initial beams and continue by explaining their superposition via a 50:50 beam
splitter. The two outcoming beams are transmitted to Alice and Bob over dif-
ferent channels thereby experiencing different effects. Usually we assume
that Alice holds the source whereby Bob can be arbitrarily far away. For fur-
ther details of the experimental realisation we refer to the thesis of Dr. T.
Gehring [Ebe13] and Dipl.-Phys. V. Haendchen [Hae10].

3.4.1. Sources

We explain now how the two initially independent Gaussian squeezed vac-
uum states, which have already been introduced in Section 3.2.2, are gener-
ated in experiment [MAE+11]. First we discuss the general physical effect in
use and explain later how it is realised and used in experiment.

In the setup under consideration a source is typically made of two stages.
The first stage is used for the generation of the pump beam with frequencyωP

needed to prepare the squeezed vacuum beams with frequencyω0 in the sec-
ond stage. Note, that the experimental setup is the same for both steps, the
only difference is, whether the non-linear cavity (resonator) in use is working
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above or below its threshold. If the cavity operates above threshold, we call
the process second harmonic generation (SHG), otherwise it supports optical
parametric amplification (OPA). Figure 3.4 shows the setup of the cavity. The
cavity and its dimensions are chosen such that a second-order non-linear in-
teraction between the crystal and the pump beam generates a squeezed vac-
uum beam in the second step. This squeezed vacuum beam can then be used
for QKD tasks.

Pump

SQZ

I

II

III

D
B

S
Mirror

PPKTP

Figure 3.4.: The non-linear medium (II) is cut such that its left end is curved
with a radius of 12.5 mm and the right side is plane [CVDS07].
The dominant conversion process in the crystal can be steered by
the power of the pump beam (I). The crystal (II) is enclosed between
two mirrors where the left one has full reflectivity for both beams
and is coated towards the curved face of the crystal. The mirror on
the right (III) has a transmittance of 10% for photons with frequency
ω0 and 100% for photons of frequency ωP . Together, both mirrors
form a cavity which supports a TEM00 mode for the beam at ω0.
A dichroic partial beam splitter (DBS) couples the converted beam
out of the system for later usage.

We start the theoretical description by assuming an ideal non-linear medium
(crystal) which we disturb with a laser field ~E . The response of the crystal’s
valence electrons to the electric field is described by the interaction of the
electric field with the polarisation of the molecules

~P = ǫ0

 
η(1) ~E 1+η(2) ~E 2+

∞∑

k=3

η(k ) ~E k

!
.

Here, ǫ0 is the permittivity of the vacuum and η(n ) the susceptibility of the
crystal which describes the n ’th order reaction of the valence electrons of
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some molecule to an electric field. As we describe the effect of the electric
field as a disturbance of the system, the first-order correction term has the
largest contribution of order ≈ 1. The dynamics of the interaction are de-
scribed by the corrections of higher order with n > 1 where the second-order
susceptibility n = 2 is experimentally already of the order η(2) ≈ 10−10. Note
that the higher-order corrections n > 2 are even smaller and thus neglected.
The second-order correction can be viewed as an interaction in which two
incoming photons convert to one, or one photon splits into two, which is il-
lustrated in Figure 3.5.

E0

E1

E2

OPA SHG

Figure 3.5.: Up conversion (blue): Two photons of lower frequency unify to
one with double energy. The process is called second harmonic
generation (SHG) and is used to generate the pump beam. It is the
simplest case of the class of sum-frequency conversions [CBMS13].
Down conversion (red): One photon of higher energy converts into
two of half the frequency.

However, these processes have to obey energy and momentum conservation

~k1+ ~k2 = ~k3

ω1+ω2 =ω3,

where theωi are the frequencies and the ~ki the wave vectors of the three in-
volved photons.

We provide now a more detailed description of one source:
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Step 1 - SHG:
This step is needed because, for the second step, no laser with appropriate
characteristics is available. Note that as the cavity operates above threshold,
it can be interpreted as a laser itself.

An initial laser emits a strong beam of photons of mean frequency ω0. The
photons enter a non-linear medium positioned in a cavity with properties
and geometry supporting the process of SHG for the generation of the pump
beam.

As the power of the initial beam is above the threshold of the cavity, we start
by assuming a strong coherent continuous initial laser. We can write the elec-
tric field at the position ~r = 0 of some specific molecule and at time t as

~E (t ) = ~E0 · cos
�
~k ~r −ω0t

�

where ~E0 is the vector of the electric field. Choosing a proper coordinate sys-
tem allows us to simplify our analysis to scalar valued functions. It follows for
the second-order interaction term of the polarisation, that

P (2)(E ) =η(2)E 2
0 ǫ0 · cos2 (ω0t )

=
η(2)

2
E 2

0 ǫ0 ·
�
1+ cos2 (ωP t )

�

which is, apart from a constant term, a polarisation wave. This wave can,
in good approximation, be treated as a Hertz dipole which itself emits an
electro-magnetic wave of frequency ωP , the pump beam4. Due to energy
conservation, two initial photons are needed to stimulate the polarisation
wave. The forced admittance thereby maintains the phase lock of the pho-
tons.

A problem of this implementation is that, for any fixed atom of the non-linear
medium, we can always find another atom emitting a pump beam photon
with a phase difference of π/2. Hence, the two photons undergo destruc-
tive interference and the resulting overall pump beam is approximately zero
for large enough media. One solution is to break the symmetry of the crys-
tal by introducing layers with inverse polarisation of the molecules. Such
a non-linear crystal is experimentally realised as periodically poled potas-
sium titanyle phosphate (PPKTP). If the dimensions of such a composition
are chosen appropriately the constructive interference of all photons is on

4Note that the pump beam is, due to its experimental realisation, polarised. The polarisation
is defined by the direction of the electromagnetic field.
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average maintained as illustrated in Figure 3.6. The outcome of this opera-
tion are photons of frequencyωP = 2 ·ω0 serving as the pump beam, which is
used in the next step to generate the squeezed vacuum states for the CV-QKD
task. Such SHG’s have been realised in various experiments, like for example
[ANS+11].

0 d 6d

I

x[d]

Polarisation

PPKTP

Figure 3.6.: Upper picture: The non-linear medium is composed of layers of
thickness ld with alternating directions of polarisation. ld is chosen
such, that the two beams of differing frequency (and thus different
refraction index) are on average in phase, which allows for construc-
tive interference of the pump beam photons. Lower picture: Here
we sketch the increasing intensity of the generated pump beam as
a function of the distance x and therefore of the amount of layers
ld it passed.

Step 2 - OPA:
The pump beam is coupled into a second cavity which outputs the squeezed
vacuum beam necessary for the CV-QKD experiment. This cavity has the
same configuration as the one used in the first stage (SHG), but the cavity
now supports OPA as the pump beam now operates below the threshold of
the cavity, so that the SHG process is thus no longer the most probable.

In this process photons of energy ωP = 2 ·ω0 are converted by the interac-
tion with the molecules of the PPKTP crystal into pairs of photons with fre-
quency ω0, which we refer to as the signal beam from now on. The signal
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beam is coupled out of the system by a dichroic partial beam splitter allow-
ing for different reflectivity for different frequencies as shown in Figure 3.4.
It can be shown that the two entangled down converted photons generated
in each such second-order process obey the statistics of a squeezed coherent
vacuum state of light [GK05].

The probability for the signal photons to be coupled out of the cavity is of
the order of 10%, thus most of the photons are reflected, thereby increasing
the squeezing. The portion of the signal being coupled out is the squeezed
vacuum state used in the following CV-QKD experiments.

An analytic description of the variance of the squeezed and the anti-squeezed
quadrature of a single state is given by [YMHA07, TYYF07]

Var sqz
asqz
= 1±η · 4

p
P /Pth

(1∓
p

P /Pth)
2+4K 2

. (3.21)

Most of the parameters are determined by the experimental setup of the sys-
tem [EHD+11]. Pth ≈ 102mW is the threshold power of the system and K ≈
10−1 is a damping mainly described by the cavity line width. η≤ 1 is the over-
all efficiency of the setup. The only variable left is the pump power P ∈ [0, Pth).
The Gaussianity of the resulting covariance matrix can be checked by the pos-
itivity (physicality) criterion (see Equation 3.5) or other Gaussianity tests as
described in [BDP+10].

Note especially that the product of the variances of the two quadratures de-
scribing one such state is not pure

Varsqz ·Varasqz =σ
2
X
·σ2

P
≥ 1 ∀P > 0 ∀0≤η< 1 (3.22)

which results in product of the uncertainties of

σX ·σP > 1.

The generated squeezed states are hence always non-ideal and never pure.

Another, slightly more idealised description starts with a pure squeezed vac-
uum state which experiences some Gaussian damping. Although it does not
respect the threshold power of the system Pth, it allows for a good description
of the state.

The typical covariance matrix representation of a Gaussian single-mode squee-
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zed vacuum is

γ ..=

�
λsqz 0

0 λasqz

�
, (3.23)

where the amplitude quadrature is chosen to be squeezed and the phase quadra-
ture is anti-squeezed. A rotation of such a state by π/2 in phase-space, re-
flected by the relative phase between the pump beam and the signal, allows
for another description of a Gaussian squeezed vacuum state

γ ..=

�
λasqz 0

0 λsqz

�
, (3.24)

where the amplitude quadrature is anti-squeezed.

3.4.2. Beam Splitter

Beam splitters are a widely used component in classical and quantum laser
systems. They are for example a main ingredient in interferometers [ESB+10].

A beam splitter is a mirror with specific reflectivity νref ∈ [0, 1] and transmit-
tance νtrans = 1−νref. It is usually constructed for specific wave lengths. In
classical laser systems, a beam splitter can be used to actually split up one in-
coming laser beam into two with less intensity but equal characteristics. This
allows copying the characteristics of the incoming laser beam which is not
possible in the quantum description of the same setup as we will show now.
We use a beam splitter to induce correlations between the two outcoming
states as shown in Figure 3.7. We furthermore assume that the two incoming
light fields have the same main frequency ω0. These two initially indepen-
dent Gaussian states are described by the covariance matrices γA and γB .

We write the direct sum of the two initially independent sub-spaces of Alice
and Bob as

eγAB = γA ⊕γB

=

�
γA 0
0 γB

�
.
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B

A

S2

S1

BS

Figure 3.7.: Two Gaussian states (S1 and S2) are entangled via a beam splitter
(BS). The correlations induced in the outcoming states (A and B)
are later the key ingredient of the CV-QKD experiment.

Mathematically, a beam splitter acting on eγAB is described by the unitary
transformation

U BS =





e iφ cos
�
νBS

�
0 sin

�
νBS

�
0

0 e −iφ cos
�
νBS

�
0 sin

�
νBS

�

−sin
�
νBS

�
0 e −iφ cos

�
νBS

�
0

0 −sin
�
νBS

�
0 e iφ cos

�
νBS

�



 ,

where the parameter νBS ∈ [0,π/2] describes the reflectivity of the system.
The operator acts on the covariance matrix as

γBS
AB
= U −1

BS · eγAB · U BS. (3.25)

For the rest of this thesis we consider only 50:50 beam splitters with5 νref =

νtrans = 0.5 and, without loss of generality, we set the general phaseφ = 0. In
the rest of the thesis we mainly focus on the two following sets of states:

S-class:
Both of the input states are squeezed vacuum states. To achieve maximum
correlation between Alice’s and Bob’s amplitude and phase measurements,
one beam is squeezed while the other is anti-squeezed in the amplitude quadra-
ture or vice versa for the phase quadrature.

5Note that there exists a trigonometric bijective mapping between νBS ∈ [0,π/2] and νref =
1−νtrans ∈ [0, 1].
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V-class:
One of the input states is squeezed while the other is a vacuum state. The
correlations of an v-class state are less strong when compared to an s-class
state with similar squeezing as we will show later.

The resulting state γBS
AB

is Gaussian if the initial covariance matrix eγAB rep-
resents a Gaussian state.

3.4.3. Gaussian Damping

Gaussian damping preserves the Gaussianity of the initial state by a convex
combination of it with a Gaussian vacuum state. Optical loss can be mostly
described by Gaussian damping as it stems in general from absorption, scat-
tering, the non-ideal quantum efficiency of the balanced homodyne detector
and non-perfect mode-matching.

For one signal mode (for example Alice’s) it can be directly modelled by a con-
vex combination of the signal γA itself with a vacuum state γvac [FFB+14] as
described by

γ
damp
A = (1−νA) ·γA +νA ·γvac, (3.26)

where νA ∈ [0, 1] is the reflectivity (the optical loss) parameter of the system.
This can, for convenience, be rewritten as

γ
damp
A =U (νA) ·γA ·U T (νA) +νA ·γvac, (3.27)

with

U (ν) =

� p
1−νA 0

0
p

1−νA

�
.

We use this equation to describe possible losses in the two independent squee-
zed vacuum states before they become entangled by the beam splitter. An ex-
tension of this equation allows for a description of different losses in Alice’s
and Bob’s sub systems after the beam splitter.

The damping in Alice’s subsystem in an entangled bipartite Gaussian state
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γAB can be described by

γ
damp
AB =





p
1−νA 0 0 0

0
p

1−νA 0 0
0 0 1 0
0 0 0 1



 ·γAB ·





p
1−νA 0 0 0

0
p

1−νA 0 0
0 0 1 0
0 0 0 1





+





νA 0 0 0
0 νA 0 0
0 0 0 0
0 0 0 0



 ,

with νA ∈ [0, 1]. The damping in Bob’s subsystem is constructed analogously.

The resulting state γ
damp
AB is Gaussian if the initial state γAB represents a Gaus-

sian state as γ
damp
AB is in this case a convex combination of two Gaussian co-

variance matrices. In theory, beam splitters as described in Section 3.4.2 can
also be used to describe Gaussian damping of laser beams.

In our analysis we assume fibres to distribute the bipartite state γAB to Alice
and Bob. The states experience a damping of about 0.25 dB/km when prop-
agating in a fibre. The process of coupling a beam into a fibre is described in
the next section.

3.4.4. Coupling Process

In this section we discuss the effects that appear when a laser beam is cou-
pled into a fibre [Nol07]. In an ideal setting, coupling leaves the input state
unchanged. Under realistic circumstances the coupling process has some
imperfections, which can be described by a Gaussian damping of the input
state.

Under standard experimental conditions one can, for example, achieve a damp-
ing ofνdamp ≈ 0.025 for every coupling process [Ebe09]. Note, that if fibres are
used to distribute the states, two coupling processes per fibre are necessary.
The beam at first has to be coupled in and then out of the fibre for later ho-
modyne detection. In experiment, both operations are realised by the same
setup which is illustrated in Figure 3.8.
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FibreCoddle
Lense

Core

Figure 3.8.: The fibre has a core with diameter ≈ 10µm and refractive index ≈ 1.4
and is coated with a cladding of diameter ≈ 100µm and refractive
index ≈ 1.6. The two layers with different refractive indices cause
total internal reflection for photons in the core, which usually have
a sufficiently small angle of incidence. The end of the fibre is cut
at an angle such that reflected photons do not propagate back into
the fibre. After transition, the electro magnetic wave is, to good
approximation, described by a spherical wave. An aspherical lens
transforms this wave back into plane waves. The reversed setup is
used when coupling a beam into a fibre.

3.4.5. Balanced Homodyne Detection

In the QKD setup under consideration, balanced homodyne detection is used
to measure the Gaussian bipartite subsystems of Alice and Bob [EHS13]. Note
that homodyne detection allows for full tomography of Gaussian states in
the phase-space which is spanned by the amplitude and phase of the bipar-
tite state, if necessary. Good references for homodyne detection are [WM04,
WVO99, Lou97].

The experimental setup of a balanced homodyne detector is depicted in Fig-
ure 3.9. The two fields, namely the signal beam which we want to measure
and the local oscillator (LO), are superimposed using a 50:50 beam splitter.
The LO is an additional relatively strong laser beam with equal wavelength
and an arbitrary but constant phase of φ. Both fields are assumed to have
the same frequencyω0, thus they can only differ in amplitude and phase.

We start the theoretical analysis of the setup by considering two input fields
which are described by the Fock spaces ❋a

+
(H) and ❋b

+
(H) and two output

fields ❋c
+
(H) and ❋d

+
(H), respectively, as shown in Figure 3.10. We now want

to describe the output field operators as a function of the input field opera-
tors. For this we use the description of a 50:50 beam splitter in Fock repre-
sentation [MW95]
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PD

PD

LO

Signal

BS
Computer

Figure 3.9.: In experiment a homodyne detector is realised by a beam splitter,
two photo diodes, an additional laser beam (the local oscillator
- LO) and some classical post processing. The outcomes of the
photo diodes (PD) are subtracted and post processed on a computer
to generate the measurement outcomes. The relative phase ∆φ
between the LO and the signal is adjusted by a piezo crystal which
controls the path length of the LO.

b

a c

d BS

Figure 3.10.: Each of the four fields is identified with a Fock space and the
corresponding creation and annihilation operators. The operators
a = a0 exp(iφa ) and b = b0 exp(iφb ) describe the input and c and
d the output fields.
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�
a
b

�
=

1p
2

�
1 1
−1 1

�
·
�

c
d

�
.

which leads to

c =
1p
2
(a − b )

d =
1p
2
(a + b ) .

The photo current Ii ∈ {I1, I2} as detected by the two photo diodes is propor-
tional to the trace of the corresponding number operators n j ∈

�
nc , nd

	
as

explained by

I1 ∝ nc = c †c =
1

2
·
�
a †a −a †b − b †a + b †b

�

I2 ∝ nd = d †d =
1

2
·
�
a †a +a †b + b †a + b †b

�
.

We now assume that we can linearise the operators describing the input fields
to

a = (〈a0〉+δa0) ·exp
�
iφa

�

b = (〈b0〉+δb0) ·exp
�
iφb

�

where 〈a0〉 = const (〈b0〉 = const) describes the coherent excitations and δa0

(δb0) their fluctuations. This assumption is valid if the fluctuations are much
smaller than the coherent excitations which justifies dropping higher order
corrections and mixed terms like δa0 ·δb0 in the following. We furthermore
chooseφa = 0 and introduce the relative phase∆φ = 2 ·φb .

In balanced homodyne detection, one has to subtract the photo currents of
the two photo diodes which are described by their number operators

〈∆I 〉 ∝ 〈nc −nd 〉

to measure some quadrature with this setup6. One arrives, after some algebra
and trigonometric identities, at

∆I ∝ 2 ·
�
〈a0〉〈b0〉cos

�
∆φ

�
+ 〈a0〉Qb (−∆φ) + 〈b0〉Qa (∆φ)

�
(3.28)

6In non-balanced homodyne detection, only one photo diode measures the state.
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where we introduce the general description of a quadrature operator

Qa

�
∆φ

�
= a0 exp

�
−i∆φ

�
+a †

0 exp
�
i∆φ

�

and Qb analogously. This general representation includes the cases of the
amplitude (phase) quadrature7 for∆φ = 0 (∆φ = π

2
) which have already been

introduced in Section 3.2.2.

We now choose the Fock space❋a
+
(H) to represent the signal beam and❋b

+
(H)

the LO. This justifies the assumption 〈b0〉>> 〈a0〉 and we can write

∆I ∝ 2 ·
�
〈a0〉〈b0〉cos

�
∆φ

�
+ 〈b0〉Qa (∆φ)

�
, (3.29)

where, for a constant ∆φ, the quadrature operator Qa (∆φ) makes the only
non-trivial contribution.

The minimum variance is described by some specific quadrature operator
which is called the squeezed (sqz) quadrature8. In experiment the homo-
dyne detection is calibrated by steering the relative phase ∆φ such that the
outcomes when measuring a squeezed vacuum have the smallest variance
min∆φ

�
Var

�
Qa (∆φ)

�	
for all∆φ. Having found the required∆φ, it is fixed for

the rest of the runtime of the experiment and we say that the phase is locked.
All other important quadratures are calibrated relatively to this quadrature.
For further details we refer to the Ph.D. thesis of Dr. T. Gehring [Ebe13].

Note that it depends on the definition which quadrature we actually call the
amplitude or phase quadrature. If the measured quadratures are orthogo-
nal (but possibly not exactly the amplitude and phase quadrature) and if the
initial state is Gaussian, the measurement outcomes always result in a co-
variance matrix of a Gaussian state which can be checked by the physicality
(positivity) criterion (see Equation 3.5) or other Gaussianity tests as described
in [BDP+10].

3.4.6. Phase Noise

In the calibration process, for an ideal measurement of the amplitude and
the phase quadrature, the homodyne detection of the signal beam has to be
perfectly phase locked to the LO for the whole experiment as explained in the

7Note that we additionally need the ∆φ = π/4 quadrature measurement for the full recon-
struction of the state in terms of the covariance matrix. We explain the usage of this third
measurement basis in detail in Section 3.5.

8The anti-squeezed (asqz) quadrature is found by a further phase difference of ∆φ =π/2.
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former section. In realistic setups this is generally not the case as, for exam-
ple, pressure or temperature changes could have an effect on the path length
of the way of light which disturbs the phase lock. Another source causing
local imperfect measurement basis could be the piezo crystal used to steer
the relative phase between the signal beam and the LO [EHS13]. In theory we
subsume every imperfect measurement basis under the topic phase noise. In
this sense, phase noise can be modelled by a probability distribution function
F which describes the relative rotations of the measurement quadratures.

We describe phase noise as a time-dependent random rotation in phase-space
given by a distribution F , as described in [FHD+06]. As phase noise is not a
Gaussian channel, we define the full action on an quantum state ρ by

ρPN =

∫
N (∆σ,αt )U (αt )

†ρU (αt )dαt (3.30)

where U (αt ) describes the rotation while F =N (∆σ,αt ) is chosen as a Gaus-
sian distribution with mean αt and variance∆σ.
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Figure 3.11.: Left: The phase-space of a squeezed state (sqz = 4, asqz = 6).
Right: A squeezed state having experienced phase noise where the
basis mismatch is weighted by a Gaussian distribution with variance
of ∆φ = π

8
. The resulting state cannot be fully described by its

second moments only. The black ellipse sketches a Gaussian state
enveloping the initial Gaussian state with phase-noise.

This equation represents a superposition of Gaussian states with different rel-
ative phases which are distributed around∆φwith variance∆σ. One can see
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in Figure 3.11 that phase noise is not a Gaussian process. The resulting state
cannot be fully described by its second moments [FHD+06, HDF+08], which
significantly reduces the Gaussian character of the state.

Nevertheless one can always compute the Wigner function of the Gaussian
state which envelopes the initial Gaussian state which experienced phase
noise. We write [DiG10]

fW (α) =
∫ +∞

−∞
W
�
γi , ~ξ0 = ~0, ~ξ(α)

�
·N (α)dα, (3.31)

with

~ξ(α) =

�
ξ1 cos (α) +ξ2 sin (α)
ξ2 cos (α)−ξ1 sin (α)

�
= ~ξ ·U T (α).

3.4.7. Detection Noise

In the experimental setup we are about to describe, detection noise mostly
stems from the electronic dark noise of the classical post processing of the
measurement processes of Alice and Bob.

We assume the noise to be i.i.d. and describe it by a Gaussian distribution
with variance DNi , with i ∈ {AB } denoting the laboratories (i.e. the mea-
surement devices) of Alice and Bob. As the measurement outcomes are (by
their Wigner functions) described by Gaussian distributions too, we can de-
scribe the effect of detection noise as a convolution of two centred Gaussian
distributions. This allows us to simply add the variance of detection noise
to the covariance matrix γAB which describes the bipartite Gaussian state as
described in [FFB+14]. Hence, we can model the detection noise in the ho-
modyne detectors by

γDN
AB
= γAB +





DNX
A

ÝDNA 0 0
ÝDNA DNP

A
0 0

0 0 DNX
B

ÝDNB

0 0 ÝDNB DNP
B



 (3.32)

with DNi ∈❘+ andÝDNi ∈❘+. The off-diagonal entries of γC (see Equation 3.6)
are left unchanged as the detection noise of Alice and Bob is not correlated.
The off-diagonal elements ÝDNA and ÝDNB are measured by the Qπ/4 quadra-
ture. In further analysis, we take DN =ÝDNA = DNX

A
= DNP

A
=ÝDNB = DNX

B
= DNP

B

for simplification as Alice and Bob are assumed to have only one homodyne
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detector available each. As detection noise represents classical noise which
is added to an initial Gaussian covariance matrix the resulting state is again
a Gaussian state.

3.5. Full Tomography

We need a full tomography of the bipartite Gaussian state in terms of the co-
variance matrix to characterise the Gaussian bipartite state of Alice and Bob.
Local displacement of the beams is neglected, and, hence, the state can be
fully described by its covariance matrix γAB . As we are about to perform a
reconstruction of a covariance matrix using finitely many measurement out-
comes, we need a confidence set CǫS

to quantify the quality of the reconstruc-
tion to fulfill the requirements of composable security as described in Sec-
tion 4.2. The method for the full tomography which we describe here has
been published in [Sam12] and [DHF+07] but our representation is, to the
best knowledge of the authors, novel.

We can fully reconstruct covariance matrices of Gaussian bipartite states by
assuming a perfectly orthogonal measurement basis

�
X =Q0, P =Qπ/2

	
to-

gether with
�

Qπ/4,Q3π/4

	
of Alice and Bob. In what follows we have to keep in

mind, that the measurement basis X and P might not be perfectly matched,
which can be checked by measuring the appropriate Qπ/4 quadrature. Never-
theless, experimental results show, that the orthogonality of the two basis is
chosen almost perfectly as described in [HES+12]. One covariance matrix is
a function of a set of two orthogonal measurement bases. Since we have four
different measurement basis (namely

�
X =Q0, P =Qπ/2

	
and

�
Qπ/4,Q3π/4

	
)

we have in principle two covariance matrices. In the following we describe
how we reconstruct the bipartite Gaussian state from two covariance matri-
ces which are both partly reconstructed using the Wishart distribution [JW07].

The confidence set CǫS
is defined such that the sample covariance matrix lies

within CǫS
with probability 1− ǫS . We assume Npe measurements MAB with

Npe = |MAB | available for the estimation of the covariance matrix γAB . The
different fractions which amount to the entries of the covariance matrix are
given at the end of this section. First, we assume that Alice and Bob measured
the X , Qπ/4 and P quadrature chosen i.i.d. with the statistical weights qX , qπ/4
and qP for generality.

All Npe measurement outcomes are used to reconstruct the covariance ma-
trix thereby following the protocol described in [DHF+07]:
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1. Alice and Bob perform simultaneous measurements of the amplitude
quadrature.

2. Alice and Bob perform simultaneous measurements of the phase quadra-
ture.

3. Alice measures the amplitude quadrature and Bob measures the phase
quadrature.

4. Alice measures the phase quadrature and Bob measures the amplitude
quadrature.

5. Alice and Bob both measure simultaneously the Qπ/4 quadrature.

First we focus on the covariance matrix γAB described by
�

X =Q0, P =Qπ/2
	

.
We assume the bipartite state to be Gaussian and describe it by the covariance
γAB matrix, which is in general

γAB =





γ1,1 γ1,2 γ1,3 γ1,4

γ1,2 γ2,2 γ2,3 γ2,4

γ1,3 γ2,3 γ3,3 γ3,4

γ1,4 γ2,4 γ3,4 γ4,4





=

�
γA γC

γT
C
γB

�
.

The entries of the covariance matrix are estimated as follows:

The variance is defined as

γi ,i =

√√√√ 1

Ni

·
k=Ni∑

k=1

x 2
k (3.33)

with xk ∈ Mi ,i ⊂ MAB and Ni = |Mi ,i | for i ∈ {1, 2, 3, 4}. We use Mi ,i to com-
pute the entries γ1,1, γ2,2, γ3,3 and γ4,4 which are the diagonal entries of the
sub-matrices γA and γB .

The covariance is defined as

γi , j =

√√√√ 1

Ni , j

·
k=Ni , j∑

k=1

xi ,k x j ,k ∀i > j ∈ {1, 2, 3, 4} (3.34)
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with
�

xi ,k , x j ,k

	
∈Mi , j ⊂MAB and Ni , j = |Mi , j | for i , j ∈ {1, 2, 3, 4} with i 6= j .

We use the Mi , j to compute the entries γ1,3, γ1,4, γ2,3 and γ2,4, giving us esti-
mates of all the entries of γC .

Note that we cannot estimate the entries γ1,2 and γ3,4 with the amplitude and
phase quadrature as simultaneous measurements of X and P are not com-
patible with homodyne detection and simultaneous exact measurements of
X and P are not even compatible with quantum mechanics. We introduce a
second covariance matrix eγAB which is described by the measurement oper-
ators Qπ/4 and Q3π/4. We focus on the sub-blocks of Alice and Bob and write

eγi =U∆φγiU
†
∆φ

=

�
eγ1,1 eγ1,2

eγ1,2 eγ2,2

�

=

� γ1,1+γ2,2

2
−γ1,2

γ1,1−γ2,2

2
γ1,1−γ2,2

2

γ1,1+γ2,2

2
+γ1,2

�

where U∆φ is a rotation matrix in❘2 with∆φ =π/4. This can be rewritten to

γ1,2 =
γ1,1+γ2,2

2
− eγ1,1 (3.35)

which allows us to estimate the off-diagonal entry γ1,2 of Alice from eγ1,1. A
similar analysis allows the estimation of Bob’s γB off-diagonal entry by

γ3,4 =
γ3,3+γ4,4

2
− eγ3,3. (3.36)

As γ1,1 and γ2,2 have already been reconstructed, the only additional basis
to be measured is Qπ/4. We can thus deduce the off-diagonal entries for Al-
ice and Bob in γAB by following the protocol described in [DHF+07] by us-
ing two covariance matrices for two different sets of measurement operators,�

X =Q0, P =Qπ/2
	

and
�

Qπ/4,Q3π/4

	
. We only need the outcomes of eγ1,1 and

eγ3,3 to reconstruct the entries γ1,2 and γ3,4.

We can now write the full tomography of the state as

γAB =





γ1,1
γ1,1+γ2,2

2
− eγ1,1 γ1,3 γ1,4

γ1,1+γ2,2

2
− eγ1,1 γ2,2 γ2,3 γ2,4

γ1,3 γ2,3 γ3,3
γ3,3+γ4,4

2
− eγ3,3

γ1,4 γ2,4
γ3,3+γ4,4

2
− eγ3,3 γ4,4



 .
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After having fully reconstructed the Gaussian bipartite state, we ask for the
confidence interval CǫS

and a value ǫS describing the probability of the real
state lying within this interval. We use the Wishart distribution for the two
covariance matrices to construct the confidence set. First we focus on the
outcomes of the amplitude X and phase P measurements of Alice and Bob to
estimate the confidence interval of γAB . Next we investigate the confidence
interval of the second covariance matrix eγAB . Finally we ask for the confi-
dence set when combining these two covariance matrices.

The distribution of a single measured covariance matrix γAB is estimated by

γAB ∝W
�
γAB , Npe−1

�
/Npe,

where Npe is the number of measurements used to reconstruct the covari-
ance matrix at hand. For this estimation we use the Wishart distribution W
which delivers a confidence set of the different parameters by computing

σi , j =

√√√γ2
i , j +γi ,i ·γ j , j

Ni , j

, (3.37)

where Ni , j < Npe is the number of measurement outcomes available for the
corresponding entry as described above. From this we can describe a confi-
dence set as

CǫS
=
�
γi , j −∆γi , j ,γi , j ,γi , j +∆γi , j

	

with∆γi , j = zpe ·σi , j , where zpe is chosen such that it fulfils

1−Erf

�
zpep

2

�
≤ ǫpe,

with

Erf(x ) =
2

π
·
∫ x

0

exp(−t 2)d t .

We now focus on the edges of the confidence intervals of the entries and write

γAB =





γ1,1±∆γ1,1 γ1,2±∆γ1,2 γ1,3±∆γ1,3 γ1,4±∆γ1,4

γ1,2±∆γ1,2 γ2,2±∆γ2,2 γ2,3±∆γ2,3 γ2,4±∆γ2,4

γ1,3±∆γ1,3 γ2,3±∆γ2,3 γ3,3±∆γ3,3 γ3,4±∆γ3,4

γ1,4±∆γ1,4 γ2,4±∆γ2,4 γ3,4±∆γ3,4 γ4,4±∆γ4,4



 .
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The only confidence intervals that cannot be directly computed from mea-
surement outcomes of the amplitude and phase quadrature are the off-diagonal
elements of γA and γB . We write the confidence intervals leading to γ1,2 and
γ3,4 as functions of the confidence sets of the covariance matrices eγAB and
γAB . For this task we look at the confidence intervals of the original measure-
ments and use the standard Gaussian law of error propagation to compute

∆γ1,2 =

3∑

i=1

������

d
�
γ1,1+γ2,2

2
− eγ1,1

�

dxi

������
·∆xi

=
∆γ1,1+∆γ2,2

2
+∆eγ1,1

= zpe ·
�
σ1,1+σ2,2

2
+ eσ1,1

�
,

where xi ∈
�
γ1,1,γ2,2,eγ1,1

	
and ∆xi is the uncertainty of the corresponding

entry. ∆γ3,4 is computed analogously. Under these assumptions ǫS is main-
tained while the confidence interval is recomputed.

For QKD tasks we need the covariance matrix in the confidence set with the
worst correlations, which is in this sense

γ−
AB
=





γ1,1 γ1,2 γ1,3 γ1,4

γ1,2 γ2,2 γ2,3 γ2,4

γ1,3 γ2,3 γ3,3 γ3,4

γ1,4 γ2,4 γ3,4 γ4,4





+





∆γ1,1
∆γ1,1+∆γ2,2+2∆eγ1,1

2
−Sgnγ1,3

∆γ1,3 −Sgnγ1,4
∆γ1,4

∆γ1,1+∆γ2,2+2∆eγ1,1

2
∆γ2,2 −Sgnγ2,3

∆γ2,3 −Sgnγ2,4
∆γ2,4

−Sgnγ1,3
∆γ1,3 −Sgnγ2,3

∆γ2,3 ∆γ3,3
∆γ3,3+∆γ4,4+2∆eγ3,3

2

−Sgnγ1,4
∆γ1,4 −Sgnγ2,4

∆γ2,4
∆γ3,3+∆γ4,4+2∆eγ3,3

2
∆γ4,4



 .

The choice of the direction within the confidence set resulting in the worst
covariance matrix depends heavily on the choice of the signs of the entries of
the correction matrix. We chose them such that the entries of γA and γB sum
up, leading to increasing variance of the measurement outcomes, whereas
the correlations γC decrease. This special choice of the signs of the covari-
ance matrix was verified numerically. Note that one always has to check, by
the positivity criterion (see Equation 3.5), that the resulting state is still Gaus-
sian.
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4. Preliminaries: Continuous
Variable Quantum Key
Distribution

4.1. Overview

We describe in this chapter the quantum key distribution in general and its
application to the setup which is introduced in Section 3.3.

We start in Section 4.2 by defining the different notions of security which are
commonly discussed in the field. We then detail the specific CV-QKD pro-
tocol and the key generation which we use for the rest of this thesis in the
Sections 4.3 and 4.4. Afterwards we explain the CV-QKD protocols providing
security against collective and coherent attacks in the Sections 4.5 and 4.6.
We close this chapter with explaining common classical reconciliation pro-
tocols and their connection to QKD in Section 4.7.

The current chapter is explicitly meant as introduction unless otherwise noted.

4.2. Security Definitions

As the distribution of the secure key between Alice and Bob is a sub-protocol
of a complete cryptographic task (secret communication) itself, we have to
ensure that the key generated within it remains secret when used in other
cryptographic sub-protocols. Such as the encoding and decoding of the mes-
sage which is to be kept secret by using the generated secure key as a one-time
pad. This can be guaranteed by the composable security definitions from
[Can01] and [Ren05]. Afterwards we discuss the classes defining Eve’s attacks
at the end of this section.
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4.2.1. Composable Security

In the following, we denote by K sec
A

and K sec
B

the random variables associated
with the secure keys held by Alice and Bob at the very end of the QKD proto-
col. The details of the setup from which the random variables (measurement
outcomes) are generated is widely discussed in the Section 3.3. The defini-
tions of composable security are:

Robustness:
A protocol is robust, if it does not abort with high probability when no eaves-
dropper is present. Robustness ensures, that the protocol has at least some
resilience against additional noise thereby still producing a positive but pos-
sibly smaller secure key. Only robust protocols are experimentally relevant.

Correctness:
We call a protocol ǫC -correct if

P
�
K sec

A
6= K sec

B

�
≤ ǫC . (4.1)

For example, if ǫC ≪ 1, Alice’s and Bob’s secure keys agree with high proba-
bility.

In every non-ideal setting noise is present, resulting in disagreements be-
tween Alice’s and Bob’s raw keys. A classical reconciliation step is needed to
equalise their erroneous raw keys being followed by a classical confirmation
step which checks the resulting keys for actual agreement. A naive confirma-
tion step would simply compare the whole corrected raw keys of Alice and
Bob, which would result in no measurement samples being left for key gen-
eration. More advanced confirmation procedures compute a checksum us-
ing a hash function, thereby disclosing only ≈ 100 bits [TLGR14]. The num-
ber of disclosed bits during the confirmation is to be considered in the pri-
vacy amplification and computed from the the correctness parameter ǫC by
log2 [1/ǫC ]. But the price is that we cannot be perfectly sure whether the keys
of Alice and Bob are really equivalent.

Secrecy:
LetωKsec,E describe the classical-quantum state of Alice’s and Bob’s final keys
Ksec and a possible eavesdropper E conditioned on the case that the protocol
passes. Such a state can always be written as

ωKsec,E =
∑

kAB∈Ksec

P(kAB ) · |kAB 〉〈kAB | ⊗ωkAB

E , (4.2)
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where P(kAB ) is the probability distribution of the secure key representing
the rule by which the key is generated in a specific experiment. A protocol is
ǫS -secure, if for any eavesdropper E ,

Ppass

2
‖ωKsecE −τKsec ⊗ωE ‖1 ≤ ǫS (4.3)

holds. Here, ‖·‖1 is the trace norm,τKsec is the uniform distribution over Ksec,
ωE is the reduced state ofωKsecE and 1−Ppass is the probability that the pro-
tocol aborts. This equation combines the probability that the QKD protocol
aborts 1−Ppass with the secrecy of the protocol ǫS .

Security:
A protocol is ǫ-secure if it is ǫC -correct and ǫS -secret with ǫC + ǫS ≤ ǫ.

We refer to [MQR09] for a more detailed discussion on the above security con-
ditions.

4.2.2. Security Classes

The security analysis of QKD protocols rely on three commonly considered
classes of attacks of Eve. Eve has unlimited classical computational power in
all cases but she has no access to the laboratories of Alice and Bob. She is
additionally allowed to listen to the authenticated classical channel which is
needed for the classical post processing. The security classes differ in how
Eve is allowed to attack the quantum channel which is used during the QKD
protocol. Note that we omit device independent security [Hän10] in this pre-
sentation. In ascending order of Eve’s attack strength the security classes are
[SBPC+09]:

Individual attacks:
Eve does not possess a quantum memory and measures each signal individ-
ually and instantaneously. In photonic QKD such an attack is for example
realised by a beam splitter coupling out a certain portion of the signal beam
from which certain properties of the state are measured by Eve.

Collective attacks:
Eve has a quantum memory and interacts with all signals independently and
identically after completion of the CV-QKD task, i.e., her attacks are permu-
tation invariant. This simplifies the security analysis as Eve’s attack can be
described by a tensor product form. Assuming n synchronised key gener-
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ation measurement results1 of Alice and Bob with outcomes xA and xB we
can rewriteωx n

A ,x n
B ,E n =ω⊗n

xA ,xB ,E . In this sense, collective attacks are a weaker
assumption on the attacks of Eve than individual attacks and provide thus a
higher security.

Coherent attacks:
Eve has a quantum memory and all attacks which can be described by quan-
tum mechanics are allowed. As most general attacks are allowed, the security
analysis is often much more complicated than in the case of collective or even
individual attacks as the ωx n

A ,x n
B ,E n can no longer be assumed to have tensor

product form.

In this thesis we analyse the collective and coherent security of different se-
tups and further guarantee the composability with other cryptographic sub-
protocols.

4.3. Continuous Variable Quantum Key

Distribution Protocol

In bipartite secret communication tasks two participants intend to share a
message such that it is kept secret to the rest of the world (i.e. a potential
eavesdropper - Eve). We use CV-QKD to distribute the secure key which is
later used to encode and decode the message. Let us describe the sub-protocols
of one such cryptographic task (secret communication) in wider detail in this
section.

We assume that the source of the quantum states is placed in Alice’s lab and
is trusted. Note that in direct reconciliation Alice’s raw key is assumed to be
correct and Bob’s raw key is treated as being erroneous. Bob has thus to rec-
oncile his key using appropriate information from Alice. In reverse reconcil-
iation the setting is simply interchanged. The choice whether to use direct or
reverse reconciliation has a great effect on the secure key rate of the setup. For
example, as Alice holds the source and Bob is remote, her data is less affected
by loss than Bob’s measurements. It follows directly, that Eve’s guess about Al-
ice’s measurement outcomes is better then her guess about Bob’s outcomes.
Hence, one can expect higher key rates when assuming reverse reconciliation
as we will show later.

1We call the synchronised and correlated outcomes of Alice and Bob when measuring the
same basis a sample.
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We focus here especially on the CV-QKD protocols proposed by Dr. F. Furrer
et al. [FFB+14] which allow only direct reconciliation for the protocol offer-
ing security against coherent attacks2 and both reconciliation methods for
the protocol secure against collective attacks.

We focus in the following on the amplitude X and phase P quadrature. If
analysing the protocol providing security against collective attacks one has
to additionally consider the Qπ/4 quadrature for parameter estimation as de-
scribed in Section 3.5 because the protocol parameter is in this case the full
covariance matrix γAB (see Section 4.5). In contrary, the protocol parameter
d0 of the CV-QKD scheme providing security against coherent attacks is suffi-
ciently described by the amplitude and phase quadrature alone (see Section
4.6).

4.3.1. General Stages

Every secret communication based on QKD is naturally parted into four stages
of general sub-protocols [SBPC+09]:

I: Authentication
First of all, Alice and Bob identify themselves by some pre-shared informa-
tion. This process is called the authentication of the classical channel which
is needed in the following sub-protocols.

II: Quantum stage
Alice and Bob perform |MAB | synchronised measurements {xA , xB }i ∈MAB of
their bipartite state which is used to distribute the raw keys. The potential se-
cure key kpot rate is computed from a protocol parameter which is estimated
during the parameter estimation. The outcomes of this stage are the raw keys
KA and KB of Alice and Bob together with the potential secure key rate kpot
of the setup.

III: Classical post processing
The classical reconciliation sub-protocol detects and corrects possible er-
rors in the raw keys of Alice and Bob. Another classical post processing sub-
protocol is privacy amplification where the common raw keys of Alice and
Bob are, using some hash function, folded to their secure length ksec. The

2It has been recently shown in [Fur14], that the CV-QKD protocol providing security against
coherent attacks is also secure under reverse reconciliation. Note that we do not analyse
this protocol in this thesis.
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outcome of this stage is the secure key Ksec of Alice and Bob, the one-time
pad.

IV: Encryption
In a this stage, the message T which Alice and Bob want to secretly share is
encoded with the common secure key (one-time pad) Ksec and sent over a
classical channel (possibly the internet) to Bob who can decode it. This step
is independent of the actual generation of the secure key.

Note, that a typical QKD protocol assumes an authenticated classical chan-
nel (I) and focuses then mainly on the quantum stage (II). The classical post
processing (III) is needed to correct the errors in the raw key and to shrink
the raw key to its secure length. A QKD protocol is successful, if it provides
a secure key which can be used in secret communication tasks. The encryp-
tion (IV) is in this sense not part of the QKD protocol but part of the whole
secret communication task.

4.3.2. Detailed Steps

We now describe the four general stages presented in the former section in
more detail and relate it to the setup which is presented in Chapter 3. Note,
that the order of the different steps of the secret communication might vary
if needed.

Step 0: Authentication
The two involved participants have to identify themselves for two reasons.
Firstly, if Alice and Bob did not do so, a possible eavesdropper could pretend
to be either Alice or Bob. Note at this point that Eve is allowed to listen to the
classical channel. All the information which is send over the classical chan-
nel is hence assumed to be disclosed to Eve. Secondly, they might be using
a multi-user QKD network [FFW11]where several parties can communicate.
Alice identifies herself to Bob by sending a specific pre-shared secure hash to
all the parties in the network over a classical channel. This is the initial pro-
cedure of every QKD protocol and has no influence on the security after it is
successfully completed. Additionally, every classical sub-protocol needs an
authentication procedure, as explained in [PAL+12].

Step 1: Quantum stage: Parameter agreement
At first Alice and Bob have to publicly agree on the security level of the QKD
protocol. After this, they can continue by communicating the basic param-
eters of the specific protocol they have chosen to execute. In practice, this
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is an optimisation procedure based on the knowledge about the available
source, detectors and the channel. One should note that this optimisation
might depend on further restrictions, like the availability of efficient recon-
ciliation codes. Still, a non-optimal choice of parameters will only lead to a
reduced key rate (possibly zero) and will not compromise the security of the
setup. Note that the protocol parameter needed for the computation of the
secure key rate is estimated in the parameter estimation later. Finally Alice
and Bob have to agree on a number of signals |MAB | to be shared. They then
know that after a non-aborted run of the setup, the extracted key will have
the security level desired.

Step 2: Quantum stage: Preparation and measurement
Alice prepares an entangled bipartite Gaussian state, keeps one subsystem
and sends the other to Bob. Both parties perform synchronised homodyne
measurements in the amplitude X (phase P ) quadrature3 which are individ-
ually chosen at random with weight qX (qP = 1− qX ). The outcome of each
measurement is a real number, discretised with the precision of the measure-
ment device. This process is repeated until |MAB | tuples are recorded, form-

ing a string MAB =MA×MB =
�

xA,i , xB ,i

	|MAB |. Alice’s and Bob’s measurements
are synchronised by a fixed common starting point in time (in the following
chosen to be T0 = 0) and the sequence of time bins ∆Tsync = max

�
TS , TM

	

where TS is the time needed for switching the basis and TM is the time needed
for a measurement.

Step 3: Quantum stage: Post selection (optional, if allowed)
In this step certain elements of the key generation alphabet are discarded.
This can be realised by assuming them to stem from a hypothetical measure-
ment basis E . This additional measurement basis has then to be accounted
for in the sifting process where all such measurement tuples are additionally
discarded from key generation. This can, for example, be used to reduce the
error rate of the raw keys of Alice and Bob. Note that it depends on the QKD
protocol which is used whether post selection is permitted or not as we will
discuss later.

Step 4: Quantum stage: Protocol parameter estimation
Alice and Bob choose a common subset from MAB of size Npe, which they re-
veal. The rules by which the Npe measurement tuples are chosen, are defined

3Note that additional basis (like, for example, the Qπ/4 quadrature) might be necessary for the
purpose of parameter estimation. We focus in this description mainly on the quadratures
which are used in the key generation to simplify the presentation. We discuss the case of
additional basis later.
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by the parameter estimation of the specific CV-QKD protocol. With this in-
formation they perform the estimation of the protocol parameter needed for
the computation of the secure key rate. Discarding the revealed tuples from
MAB leaves some |MAB | −Npe measurement outcomes fMAB .

Step 5: Quantum stage: Sifting
Alice and Bob perform sifting, i.e. they communicate for every tuple in which
basis they measured. Tuples including the additional measurement basis E
and those measured with a different combination of quadratures (X , P ) are
discarded from fMAB leaving Alice and Bob with a string of correlated mea-
surement samples KAB of length Nkey = |KAB |which is used for the generation
of the raw key. The number of signals discarded by sifting is denoted by Nsift.
Note that we refer the outcome tuples of such a synchronous and correlated
measurement as sample4.

Step 6: Quantum stage: Secure key rate
In this step Alice and Bob compute the secure key rate ksec using the out-
come of the parameter estimation sub-protocol. Note that the computation
of the secure key rate already assumes exact pre-knowledge about the effi-
ciency of the reconciliation method used to correct the errors in Alice’s and
Bob’s raw keys by ksec = kpot−ℓEC/Nk e y . It is sometimes more convenient to
use the notion of the potential secure key rate kpot as we will show in Chapter
6. The potential secure key rate per shot is the amount of secure information
before subtracting the information disclosed during the reconciliation sub-
protocol ℓEC. The reason is, that in a experimental realisation of a CV-QKD
setup at this point Alice and Bob have no exact prior knowledge about the
information which is disclosed during the reconciliation of their raw keys.

Step 7: Quantum stage: Partitioning
Alice and Bob group their Nkey raw key samples KAB into bins. The results
are Alice’s and Bob’s partitioned raw keys Bin [KA] (Bin [KB ]) consisting of el-
ements of the key generation alphabet χKG. We explain this process in detail
in Section 4.4. Note that their raw keys are in a non-ideal setup in general not
equal: Bin [KA] 6=Bin [KB ].

Step 8: Quantum stage: Bit Strings
Each element of the key generation alphabet χKG is assigned to a unique se-
quence of bits (bit sequence) such that, after the conversion, Alice (Bob) has

4Only simultaneous and synchronised measurements of Alice and Bob in either the amplitude
or phase quadrature together can be used for the generation of the raw key. The tuples of
the remaining combinations of the quadratures can be used for parameter estimation.

52



a bit string Bit [Bin [KA]] (Bit [Bin [KB ]]) representing his correlated raw key on
the level of bits.

Step 9: Classical post processing: Reconciliation
Alice and Bob perform reconciliation (error correction) to correct the differ-
ences between their raw keys. After this process they share with high prob-
ability 1− ǫC the same raw keys Bin [KA] = Bin [KB ]. The reconciliation can
either operate on Bin [KAB ] or Bit [Bin [KAB ]]. During reconciliation Alice and
Bob disclose an amount ℓEC of potential secure key. With this knowledge
Alice and Bob can finally compute the extractable secure key rate per shot
ksec = kpot− ℓEC/Nk e y . If ksec > 0 they continue with the cryptographic pro-
tocol. The outcome of this sub-protocol is the corrected secure key Bin [KAB ]

of Alice and Bob with Bin [KA] =Bin [KB ].

Step 10: Classical post processing: Confirmation
This sub-protocol checks for the success of the reconciliation in the former
step. Alice computes a hash of her raw key which can be described by ap-
proximately 100 bits and sends it, together with the hash function she chose,
to Bob via the authenticated classical channel [TLGR14]. Bob receives the in-
formation and does the same computation with the same hash function. If
he gets the same results the protocol is continued.

Step 11: Classical post processing: Privacy amplification
In the privacy amplification step both parties apply two-universal hash func-
tions to fold the key to its secure length of ksec bits per shot [BBCM95]. The
output of this procedure is Bit

�
Bin

�
Ksec

��
, the secure key distributed by the

quantum channel.

Formally we can define a hash function f as a mapping of the corrected raw
keys Bit [Bin [KAB ]] to the secure key Bit

�
Bin

�
Ksec

��
. Note that the sizes of the

different keys are |Bit [Bin [KAB ]] | ≥ |Bit
�
Bin

�
Ksec

��
|. We now consider a class�

f
	

of hash functions. We call such a class two-universal if

P
�
f (x ) = f (y )

�
=

1

|Bit
�
Bin

�
Ksec

��
|
∀x ,y ∈Bit[Bin[KAB ]],x 6=y ∀ f (4.4)

where f is randomly drawn from
�

f
	
[Sti94]. The leftover hash lemma [BBR88]

explains why two-universal hash functions can be used for the purpose of pri-
vacy amplification.

Step 12: Encryption: Message encoding
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In this step Alice encodes the secret text T by using the generated secure key
Bit

�
Bin

�
Ksec

��
as a one-time pad. The simple bitwise XOR operation already

provides full security. The encoded message is then sent to Bob via the au-
thenticated classical channel. A one-time pad has the same length as the
message to be encoded and must only be used once [Sin99]. The security
of the key implies the security of the encoded message T . A part of the se-
cure key should be saved for later authentication purposes when starting the
protocol again.

Step 13: Encryption: Message decoding
Bob receives the encoded message T sent by Alice and decodes it by using
the secure key Bit

�
Bin

�
Ksec

��
he shares with Alice. As long as the message

initially encoded by Alice and sent over the authenticated classical channel
is known only to her, the message is kept secret up to the security assumption
on which Alice and Bob had agreed on in step 1.

We restrict ourself in the following to the Quantum-stage and the classical
post processing. We discuss new CV-QKD security proofs in Chapter 5 and
describe a new reconciliation scheme in Chapter 6.

4.4. Key Generation

In this section we explain the key generation of the CV-QKD protocols [FFB+14]
we discuss in this thesis in detail (see Sections 4.5 and 4.6). Although the pa-
rameter estimation is different for the protocols secure against collective or
coherent attacks, the key generation protocol is the same.

We start with Alice’s and Bob’s raw keys Bin [KAB ] of length Nkey = |Bin [KAB ] |
after sifting as described in Section 4.3.2. For simplicity we focus on one
sub-phase-space spanned by, for example, the amplitude quadrature X . The
phase quadrature P is treated analogously.

The key Bin [KAB ] is generated from some equidistant grid which is to be prop-
erly laid in the phase sub-space where each partition is uniquely identified
with an element of the key generation alphabet χKG, which has size |χKG|.
The elements of the key generation alphabet are χKG = {1, 2, ..., 2 ·αX /δX } =�

1, 2, ..., |χKG|
	

. The parameters defining the key generation grid are the cut
off parameter αX denoting the borders of the grid around the point of origin
of the phase sub-space, and the spacing δX which is the width of the parti-
tions as explained in Figure 4.1.
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The cut off parameter is chosen such that the probability of a measurement
outside the grid is negligible:

αX =min

�
α′

X

����W
�
γX

AB
,α′

X

�
≤ ǫS

�

where ǫS is the secrecy of the protocol. thus leaving, in principle, δX as the
only free parameter of the grid. Hence, the partitions [−∞,−αX ] and [αX ,∞],
which have generally to be considered in the key generation process, do in
practice not contribute to the raw keys of Alice and Bob. For practical pur-
poses, and without compromising the security of the CV-QKD protocol, we
do not consider these partitions for the rest of this thesis.

xB

xA

I1 ... I8

I1

I8

...

Probability

DistributionKey

Generation Grid

+α-α

Figure 4.1.: The correlations between synchronised measurements of Alice and
Bob of either the amplitude or phase quadrature. The axes of Alice
and Bob are divided into several intervals Ii with i ∈

�
1, 2, ...|χKG|

	
,

all of which are uniquely projected to elements of the key generation
alphabet χKG.

We consider the following key generation grid

G X
KG = {I1, I2, . . . , IN }= {(−αX ,−αX +δX ] , . . . , (αX −δX ,αX )} . (4.5)

To generate the raw keys Bin [KAB ] of Alice and Bob from their key genera-
tion samples KAB we have to uniquely map the partitioned outcomes to the
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associated alphabet elements χi ∈ χKG. We choose the mapping such that
the measurement outcome in the i’th partition is mapped to the i’th element
of the key generation alphabet Ii = χi . We call this whole process the par-
titioning of the samples and write the partitioned raw keys of Alice and Bob
Bin [KAB ]. We assume that, after this step, Alice and Bob end up with exactly
Nkey alphabet elements of χKG.

A similar mapping relates the alphabet elements uniquely to their correspond-
ing bit sequences and is described by the mapping M . Note that we do not as-
sume a specific mapping M at this point. If |χKG|= |GF (2d )|= 2d we identify
the key generation alphabet with a Galois field of dimension d . This allows
to uniquely identify each element of the alphabet with a unique combination
of d bits (a bit sequence) whereby all possible combinations of bits in the se-
quence are covered. Note that the mapping M has an effect on the efficiency
of the reconciliation if it operates on the level of Bit [Bin [KAB ]] as we will show
in Section 6.2.1. If the reconciliation operates on the level of the key genera-
tion alphabet Bin [KAB ] instead, any M can be used for the generation of the
bit sequences.

The key generation grids could, in principle, be different for Alice and Bob
and X and P , one only has to maintain the size of the key generation alpha-
bet |χKG|. We will show in Chapter 5 that the key can be generated from one
quadrature only without losing potential secret information, which simplifies
the key generation. This allows to either focus on the amplitude or the phase
quadrature in the process of key generation. But the grids of Alice and Bob
could in principle still be different. We discuss this problem in wider detail
in Section 4.4.1.

4.4.1. Origin of Errors in the Raw Keys

This section describes the two different origins of errors in the partitioned
raw keys of Alice and Bob.

We focus here on direct reconciliation which defines Alice’s raw key Bin [KA]

as reference for Bob’s raw key Bin [KB ]. It follows that Alice holds the correct
raw key whereas Bob’s raw key is assumed to be noisy. Alice sends Bob in a
mono directional setting of this kind information about her raw key to enable
Bob to reconcile his raw key Bin [KB ]. Hence Bob has to correct his noisy raw
key using all the information he has and all the information he additionally
gets from Alice over the authenticated classical channel. The situation for re-
verse reconciliation is computed analogously.
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We discuss Alice’s probability distribution function of her partitioned mea-
surement outcomes conditioned on Bob’s outcomes in this section. The prob-
ability distribution function describes the errors between Alice’s and Bob’s
raw keys Bin [KA] and Bin [KB ]. We assume that Alice and Bob measure in the
same basis, for example the amplitude quadrature. The distribution of Alice’s
and Bob’s outcomes is a Gaussian distribution with the general covariance
matrix

γX =

�
λA CX

CX λB

�
.

We will now discuss two different sources of errors in Bob’s raw key:

Grid errors:
We focus at first on the general covariance matrix and write

γX =

�
λA CX

CX λB

�
=

�
λA ρ

p
λAλB

ρ
p
λAλB λB

�

which is asymmetric for λA 6=λB . Note that in this description ρ ∈ [0, 1]mea-
sures the strength of the correlation.

We can now describe the effect of λA 6= λB on the expectation value of Alice’s
outcomes and the key generation grid as shown in Figure 4.2.

The expectation value of Alice’s conditional distribution is in general

µxA,i
= 〈W

�
γA|B , xA,i |xB ,i

�
〉xA,i
= xB ,i ·

p
λAp
λB

·ρ ≥ xB ,i ·ρ. (4.6)

One can directly see, that, assuming Alice’s and Bob’s synchronised and si-
multaneous measurements xA,i and xB ,i to be perfectly correlated5 they do
not end up with x B ,i = µxA,i

for λA 6= λB . It follows furthermore, that, when

the key generation samples are partitioned, their key elements Bin
�
xA,i

�
and

Bin
�
xB ,i

�
might not necessarily be equal.

This problem can either be solved by an appropriate scaling of the key gen-
eration samples or by different key generation grids for Alice and Bob. As-
suming direct reconciliation allows to rescale Bob’s key generation outcomes

5Perfect correlation means in this sense ρ = 1.
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xA

xB

I1 ... I8

I1

I8
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Distribution

Average

Key

Generation Grid

+α-α

Figure 4.2.: This figure illustrates the errors that appear in Alice’s and Bob’s
raw key for a asymmetric state if the outcomes are not scaled. The
black line denotes the outcomes of Alice and Bob in average.

KA such, that the key generation grids of both are equal which simplifies the
reconciliation. We propose in Section 6.3.7.1 a scaling of the measurements
which allows us to circumvent the grid errors and refer to this chapter for fur-
ther details.

After scaling Bob’s partitioned outcomes, the only origin of errors left be-
tween the raw keys of Alice and Bob is the conditional variance of Bob’s mea-
surement outcomes which we will discuss in the following.

Conditional probability errors:
We assume λ = λA = λB in the following which means, that Bob’s outcomes
KB are scaled properly. Let us now focus on the symmetric covariance matrix:

γX =

�
λ CX

CX λ

�
.

Bob’s knows his outcome xB ,i and asks for the probability distribution of Al-
ice’s outcome xA,i which is given by the Shur complement of the covariance
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matrix γAB [ESP02]

γA|B = γB −C
�
X jγA X j

�MP
C T (4.7)

P[xA,i |xB ,i ] =P[xA,i |xB ,i ] =W
�
γA|B , xA,i |xB ,i

�

where MP denotes the Moore Penrose inverse [Pen55] and

XX =

�
1 0
0 0

�
, XP =

�
0 0
0 1

�

being the matrices corresponding to the perfect amplitude XX and phase XP

measurement of Alice. We call the Equation 4.7 in the following the condi-
tional probability distribution function. The Gaussian distribution as sketched
in Figure 4.3 describes Alice’s measurement variance λA|B conditioned on
Bob’s outcome and quantifies the errors of his raw key Bin [KB ].

xA

xB

I1 ... I8

I1

I8

...

Probability

DistributionKey

Generation Grid

{~σA|B

xB,i

+α-α

Figure 4.3.: The Gaussian probability distribution function which describes Al-
ice’s and Bob’s measurement outcomes. Bob’s distribution condi-
tioned on Alice’s measurement outcome is described by the condi-
tional variance (standard deviation) λA|B (σA|B ). This correlation
is the key ingredient in all the CV-QKD protocols we discuss in this
thesis.

Alice’s conditional variance (standard deviation) can be written as
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λA|B =

�
λA ·λB −C 2

X

λB

�
(4.8)

σA|B =

�
λA ·λB −C 2

X

λB

� 1
2

. (4.9)

It can be shown, that λA|B (σA|B ) is independent of Bob’s outcome xB ,i and
thus constant. As the outcomes of Alice and Bob are assumed to be scaled
properly, this is the only origin of errors which is left in the key generation.
We refer to this distribution from now on as the origin of noise in Bob’s raw
key. Bob uses this knowledge to reconcile his raw key Bin [KB ].

4.5. Security against Collective Attacks

This security class assumes that Eve has a quantum memory and measures
the states after completion of the QKD protocol such, that her attack can be
written in tensor product form. Her attacks are thus all equal.

For the estimation of the potential key rate of the CV-QKD protocol provid-
ing security against collective attacks as proposed by Dr. F. Furrer et al. in
[FFB+14], we have to perform a full tomography of the covariance matrix of
the bipartite Gaussian state of Alice and Bob as explained in Section 3.5. This
requires the state to be Gaussian, which is a drawback of this protocol as this
might not always be true. One has to either check the Gaussianity of the state
in experimental realisations [BDP+10] or find an information theoretical tool
to circumvent this problem. It has been shown in, for example, [NGA06] that
Gaussian attacks are optimal in the limit of infinitely many measurements.
Remember that all the CV-QKD protocols we discuss in this thesis consider
the finite-size effects of finitely many samples which is why we can not use
that theoretical tool to circumvent the problem. We discuss this problem in
Section 5.5.1.

The collective protocol allows for the post selection of certain measurement
samples in MAB and for direct and reverse reconciliation. This CV-QKD pro-
tocol is similar to former works [CLA01, GP01, DHF+07]which also discussed
CV-QKD providing security against collective attacks of Alice and Bob.

The protocol parameter which is to be estimated in tomography is the covari-
ance matrix γAB , which fully describes the bipartite Gaussian state in use. In
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Section 5.4.1 we present an extension of the security proof proposed by Dr. F.
Furrer et al. which allows us to generate the key from one quadrature only.

We certified the security of an experimental setup which used a v-class state
(see Section 5.4.1.2) against collective attacks.

In Section 6.2.1 we describe an experiment in which a real secure key was
generated from an s-class state by performing key generation, post selection
and classical post processing.

4.6. Security against Coherent Attacks

In this setting Eve has a quantum memory which she can use to store all her
information from one run for a later coherent measurement after comple-
tion of the whole CV-QKD task. As this security analysis includes all attacks
which are compatible quantum mechanics, the protocol is less resilient to
noise than in the case of collective attacks. Additionally, post selection is not
allowed. Achieving a positive secure key rate is thus a very challenging ex-
perimental task. The Gaussian states produced by the group of R. Schnabel
are strongly enough squeezed to allow for a positive key rate with reasonable
experimental losses. Although it was recently shown in [Fur14] that the CV-
QKD protocol secure against coherent attacks is also secure under reverse
reconciliation, we restrict ourself to direct reconciliation in this thesis.

The security proof against coherent attacks as proposed by Dr. F. Furrer [FFB+14]
does not require a full tomography of the bipartite Gaussian state in terms of
the covariance matrix γAB . It only requires a tomography of the correlations
between Alice’s and Bob’s synchronised and partitioned measurement tuples�

IA,i , IB ,i

	
∈Bin [MAB ] using Npe tuples in the sense of

d (Bin [MA] , Bin [MB ]) =
1

k
·

Npe∑

k=1

��IA,k − IB ,k

�� , (4.10)

which is the (generalised) Hamming distance6 of the k synchronised mea-
surement tuples. d (Bin [MA] , Bin [MB ]) is the protocol parameter which is
computed during the parameter estimation of the corresponding CV-QKD
protocol. One checks if the protocol parameter exceeds a specifically cho-
sen value d0, which is used for the estimation of the potential secure key rate,

6Note that this is also known as the distance in sequence space ℓ1.
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otherwise the protocol aborts.

Chapter 6.2.1 describes an experiment in which a secure key was generated
by performing classical post processing using a new reconciliation scheme.

In Section 5.4.2 we analyse the security of an extension of this CV-QKD pro-
tocol which allows to generate the key from one quadrature alone.

4.7. Classical Reconciliation

Reconciliation protocols are used to correct the errors which can occur dur-
ing the distribution of a message. This is a result of non-ideal channels in
experimental realisations. To correct the errors, redundancies are either in-
troduced directly into the message or computed from the message and sent
afterwards over an authenticated channel.

There exist theoretical descriptions of reconciliation algorithms which oper-
ate directly on the level of quantum states, but as they are, for reasonable pa-
rameter sets, not efficient enough [SFL+13] and experimentally very involved
[CLS+04, CPM+98], we focus on classical reconciliation protocols.

Remember, that the security of classical ciphering depends on either using
methods unknown to the adversary (steganography) or encoding the text us-
ing a ciphering protocol which generates the key from a key space so large
that an adversary can only reconstruct the original text in a finite but very
large time. The security of her classical ciphering protocol does not depend
on what happens to the encoded text while it is communicated over an au-
thenticated classical channel, it could for example be copied arbitrarily many
times by the adversary without corrupting the security of the cipher [Sin99].
This allows to send the text arbitrarily many times over the classical channel
which introduces the redundancies necessary to correct possible errors at the
receiver. More involved classical reconciliation schemes communicate only
some redundancies thereby reducing the communication cost as we will ex-
plain later.

In QKD the security of the setup originates from the well-known no-cloning
theorem [Bru03] and the fact that it is not the text which is distributed over
the quantum-channel but the key (one-time pad). Introducing redundancies
directly into the key (like, for example, sending the key twice) would break
the i.i.d. assumption, an assumption common to all QKD protocols we anal-
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yse in this thesis. Thus, only those classical reconciliation protocols which
compute additional redundancies from the text to be sent afterwards over a
classical channel can be used in QKD.

We have to consider an additional constraint on the reconciliation methods.
The potential secure key rate kpot can be seen as an upper bound on the in-
formation that can be disclosed for different purposes. This makes it more
important that the reconciliation scheme used afterwards only reveals as few
bits as necessary to correct the errors between the raw keys. The minimum
necessary amount of bits needed for the reconciliation is, in the infinite case,
given by the Shannon entropy [Sha48]. The task is to invent reconciliation
schemes which operate as close as possible to the Shannon limit.

Additional assumptions about the origin of errors in the raw keys could in-
crease the efficiency of reconciliation. This becomes especially important if
the outcome of the key generation is not an element of GF (2) but of GF (2d ),
where the Hamming distance of the partitioned samples could additionally
carry some information too. In the case of key generation resulting directly in
elements of GF (2), the Hamming distance of the samples can be maximally
1, thus carrying no additional information.

One prominent reconciliation protocol which is still used in, for example,
DV-QKD is Cascade, a bitwise reconciliation scheme using two-way commu-
nication and checksums as we will show in Section 4.7.1. Another example is
low density parity check (LDPC) reconciliation which uses checksums com-
bined with an additional maximum-likelihood estimator using only one-way
communication as we will explain in the Sections 4.7.2 and 4.7.3.

Cascade and binary LDPC do not make any assumption about the quantum
origin of the errors appearing between the raw keys of Alice and Bob. They
are sufficiently described by the average possibility of a bit flip [MK04]7. Non-
binary reconciliation schemes, like non-binary LDPC, could, in principle, use
the Hamming distance as an additional information source for error detec-
tion.

All the reconciliation schemes we present in the following can be used in ei-
ther direct or reverse reconciliation. Remember that, in direct reconciliation,
Alice’s raw key is the reference used to correct the errors in Bob’s raw key. In
reverse reconciliation Bob’s raw key is the reference and Alice’s is corrected.

7Note that the quantum channel used to distribute the raw keys is in our case not an erasure
channel. The only error which can appear is the bit flip error.
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4.7.1. Cascade

Cascade is a bitwise reconciliation protocol which was introduced in 1993 by
Brassard and Salvail [BS93]. Another good discussion of Cascade is [MMPP+15].

Cascade was especially designed for the usage in QKD protocols with key gen-
eration alphabet size |GF (2)|= 2 which always generate exactly one bit of raw
key per shot. One prominent example of such protocols is the well-known
DV-QKD BB84 [BB84] scheme, which was proposed by Bennett and Brassard
in 1984. This prepare-and-measure protocol encodes the bits in the polari-
sation of single photons which are then sent to Bob.

The errors between the raw keys of Alice and Bob originate in this exam-
ple from two different physical effects. The first effect is photon absorption
due to damping, such that Bob sometimes measures nothing. Such errors
can be described by a binary erasure channel [MK04]. A second type of error
can occur if the polarisation of the photon being sent to Bob changes on its
way. This can result in bit flip errors between the raw keys. The errors can
be described by a binary symmetric channel [MK04]. The errors originating
from absorbed photons are corrected by simply discarding the correspond-
ing samples in the sifting procedure. As Alice and Bob are synchronised, Bob
can simply communicate when he did not measure anything at all. As the bit
flip errors pass the sifting procedure they end up in the raw keys of Alice and
Bob. Cascade is designed to correct for these errors.

In the first stage of the protocol Alice and Bob agree to split their raw keys into
several sub-strings. Now Alice computes the modulus two of the XOR check-
sum of, say, the first of the sub-strings and communicates her result to Bob
over a classical channel. Every time Alice communicates the modulus two
of some sub-string one bit of information about the raw key is disclosed to a
possible adversary. Bob does the same and sends Alice a request to continue
with the error detection if his result does not match with Alice’s outcome. In
case they do not match, Alice splits her sub-string again and sends the mod-
ulus two of its checksum to Bob, who again compares with his result. Alice
and Bob continue with this error detection, subsequently breaking down the
sub-strings to the one wrong bit which is flipped and correct it. This is why
this scheme is called Cascade.

Obviously, Cascade is a protocol which uses classical two-way communica-
tion. This is a problem for many security proofs as they assume often one-
way reconciliation. We furthermore note that the computational complexity
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of the Cascade protocol is very low as only the modulus two of checksums is
computed, communicated and compared. This reconciliation can, addition-
ally, be easily parallelised, thus allowing for real-time reconciliation in QKD
setups. Today’s standard computational power allows for more complex rec-
onciliation protocols like, for example, LDPC which we explain in the next
section.

4.7.2. Binary Low Density Parity Check

Binary LDPC reconciliation protocols were invented in 1963 by Robert G. Gal-
lager in his Ph.D. thesis [Gal63]. They combine XOR-checksums and a maxi-
mum likelihood estimator with one-way classical communication, operating
on the level of bits (GF (2)). Although they generally provide very good effi-
ciency, LDPC codes are accompanied by a high computational complexity.

As the computational power of computers did not enable a real-time recon-
ciliation in the 60’s, LDPC codes were nearly forgotten until the early 90’s,
when Neal and McKay [MN95] effectively re-invented them by introducing
more advanced LDPC codes which allowed for real-time reconciliation on
standard computers. Several similar block codes have been invented since
then for various, but mostly classical reconciliation purposes [Ple82]. Today,
many different LDPC codes are used in a variety of classical reconciliation
tasks, for example, television, telephones, satellite systems and computers.

We now describe the basics of LDPC reconciliation. Let us assume that Alice
and Bob hold the correlated but erroneous binary raw keys K Bit

AB
=Bit [Bin [KAB ]]

of length Nkey which are generated by some QKD protocol (for example BB84).
Note that we focus only on bit-flip errors. Although it is in principle not nec-
essary, we assume Alice and Bob divide their raw keys into several sub-strings
K Bit

AB ,i before reconciliation. As we focus on direct reconciliation, Alice, as the

reference, encodes her sub-string K Bit
A,i into a vector SA,i , which we call the

syndrome, as

mod2

�
H ·K Bit

A,i

�
= SA,i ,

where H ∈ Matn× m and n > m is a randomly generated sparse matrix. Al-
ice communicates her syndrome together with H to Bob over some classical
channel who then performs the same computation on his sub-string

mod2

�
H ·K Bit

B ,i

�
= SB ,i .
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Now Bob compares his syndrome with the one sent by Alice and tries to cor-
rect his sub-string using a maximum-likelihood estimator. To explain the
maximum-likelihood estimator, we assume a specific LDPC matrix like, for
example,

mod2









1 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1
0 0 1 1 0 1







 ·





u1

u2

u3

u4

u5

u6




=





s1

s2

s3

s4



 (4.11)

where the relations between Alice’s raw key nodes and her syndrome nodes
induced by the LDPC matrix can be visualised by a Tanner graph [Sho02] as
depicted in Figure 4.4.

Key Nodes

Syndrom Nodes

U1 U2 U3 U4 U6U5

S1 S2 S3 S4

Figure 4.4.: The raw key nodes, the syndrome nodes and the relations between
them as described by an LDPC-matrix H . Every syndrome node
s j depends on three different raw key nodes u j via a bitwise XOR
operation. As every raw key node contributes to two syndrome
nodes, the results of the four syndrome nodes are correlated.

Although the chosen LDPC matrix is not really sparse in this example, it will
suffice to explain the LDPC-reconciliation protocol. The construction of LDPC-
reconciliation protocols allows for a probabilistic maximum-likelihood esti-
mator used later by Bob to correct his key. In a real situation the size of one
sub-string is normally much larger |K Bit

AB
| ≥ 103 [SBPC+09] than in this exam-

ple. The example represents a regular LDPC matrix because the number of
ones is constant for every row (3) and constant for every column (2). An ir-
regular LDPC matrix does not fulfill this constraint.

Alice sends her syndrome together with the corresponding LDPC matrix over
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a classical channel to Bob, disclosing thereby the amount of information car-
ried by the syndrome to a potential eavesdropper (|SA,i | bits). Bob stores the
information and computes his syndrome SB ,i . Then he compares all his syn-
drome nodes one after another with Alice’s, marking the contributing raw key
nodes either correct or incorrect depending on whether the corresponding
syndrome nodes coincide or not. After normalisation he ends up with a ta-
ble consisting of the probabilities Pcor of the different raw key nodes being
correct Pcor or not (1−Pcor). At this point he has to use a specific maximum-
likelihood estimator to correct the raw key nodes that do not coincide with
high probability. We assume, for the purpose of this example, a simple ma-
jority vote. That is, Bob chooses (depending on Perror) a constant Pdecision
and flips all the raw key nodes which have Pcor <Pdecision.

We note here that only one round of communication over a classical chan-
nel is necessary to correct the errors in Bob’s raw key. Furthermore, we see
that the maximum likelihood estimator increases the computational com-
plexity in comparison to Cascade, where only bitwise XOR operations are
used [DF07].

4.7.3. Non-Binary Low Density Parity Check

Non-binary LDPC reconciliation protocols have been discussed for the first
time in 1963 by Robert G. Gallager in his Ph.D. thesis [Gal63]. They represent
a natural extension of binary LDPC reconciliation to alphabets GF (2d ) with
d ≥ 1 [DF07].

The Hamming distance between the elements ofGF (2d ) carries additional in-
formation for d > 1 which was not the case in binary LDPC. Thus non-binary
LDPC codes disclose fewer bits of the potential secure key than binary LDPC
if the key generation alphabet χKG = GF (2d ) has dimension |GF (2d )|> 2.

In principle, non-binary LDPC follows the same ideas as its binary counter-
part, it merely operates on a larger alphabet [Sho02]. As the CV-QKD pro-
tocols discussed in this thesis operate on higher dimensional key generation
alphabets, this is always the case in our analysis. We thus identify non-binary
LDPC as being well suited for the purpose of reconciliation in this thesis.

An easy example of a non-binary LDPC matrix can be generated by simply
inserting randomly chosen numbers {0, 1, 2, 3} in the non-zero entries of a
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binary LDPC matrix H [HEA05] like for example

H =





1 3 0 2 0 0
0 1 1 0 2 0
2 0 0 0 3 1
0 0 1 3 0 1



 (4.12)

which represents a non-binary LDPC matrix for the finite field GF (4).

The reconciliation algorithm is analogue to the binary LDPC protocol. We
abdicate the detailed description of the non-binary LDPC reconciliation pro-
tocol as it is only more complicated than the example we presented in Section
4.7.2 without providing more insight.

4.7.4. Efficiency Estimation

We describe in this section how the communication cost ℓEC of a reconcilia-
tion procedure is estimated.

Let us assume that Alice and Bob hold the raw keys Bin [KA] and Bin [KB ]with
Bin [KA] 6= Bin [KB ]. Note that it makes a difference whether binary or non-
binary reconciliation is evaluated. If non-binary reconciliation is considered
the raw keys have to be available on the level of the key generation alphabet
eKAB =Bin [KAB ]. In contrast, if binary reconciliation is to be analysed the raw

keys are assumed to be present on the level of bits eKAB =Bit [Bin [KAB ]].

The direction of the communication during the reconciliation procedure is
predefined by the QKD protocol used to generate the keys. In direct reconcil-
iation Alice sends information over a authenticated classical channel to Bob.
Alice’s raw key is assumed to be correct and Bob has to reconcile his raw key
using the information he got from Alice. In reverse reconciliation Alice has to
reconcile her raw key.

We assume the term describing the communication cost to be in the asymp-
totic limit of infinitely many measurements and direct reconciliation of the
form [SBPC+09, SW71]

ℓEC =λ · H
� eKA | eKB

�
(4.13)

where H
� eKA | eKB

�
describes the minimum of information which Alice has

to send to Bob for a successful reconciliation of his raw key as described in
Section A.3. In reverse reconciliation one has to consider H

� eKB | eKA

�
. We
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use these equations to simulate real-life implementations of reconciliation
schemes. Such real-life implementations are never perfect which is reflected
by λ> 1.

The connection between the communication cost ℓEC and the efficiency βEC
of real-life implementations is given by

λH
� eKA | eKB

�
=λ

�
H
� eKA

�
− I

� eKA : eKB

��

= H
� eKA

�
−βEC · I

� eKA : eKB

�

which evaluates to

λ=
H
� eKA

�
−βEC · I

� eKA : eKB

�

H
� eKA | eKB

� . (4.14)

We use these equations to measure the efficiency of real-life implementations
in terms of 0 ≤ βEC < 1. The entropies which are needed to theoretically de-
scribe the communication cost of reconciliation schemes are explained in
Appendix A.3.
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5. Runtime Analysis

5.1. Overview and Contributions

For simplicity QKD protocols often assume a uniform choice of the measure-
ment basis which are relevant during the key generation process. From this
point on in this thesis, we refer to such protocols as symmetric QKD protocols.
However, certain security analysis [EMLW09, ZWZ+13, EMLW09, YHJ+13] al-
low for a non-uniform choice of the basis1 and thus open the the possibility of
improvement of the key rate. We refer to such protocols as asymmetric QKD
protocols.

Firstly we motivate asymmetric QKD protocols by analysing their overall run-
time Trun and compare them with the performance of symmetric protocols
in Section 5.2. We continue with extending the symmetric security analysis
described in [FFB+14] by introducing a non-uniform choice of the measure-
ment basis in the Sections 5.4.1 and 5.4.2. We conclude by explaining the
importance of such protocols in experimental realisations. This work was
accomplished in cooperation with Dr. F. Furrer and Dr. Ciara Morgan.

5.2. Motivation

We focus on the task of key generation and ask the following question: What
is the maximum length of secure key |Ksec| that can be collected during an ex-
periment in a given time interval Trun? This question is motivated by the time
needed to fulfill different experimental tasks which are required by the QKD
protocol, i.e. the duration of one measurement process TM and the switching
time TS between the basis choices2. The runtime analysis provides a connec-
tion between the theoretical computation of the secure key rate ksec of a QKD
protocol and a experimental realisation of the setup.

1Note, that such protocols are also known as biased basis QKD protocols.
2Note that the time of the measurement process T i

M and the time of the switching T i
S might

depend on the basis i ∈ {1, 2, ...m} which is to be measured. We define TM =max
�

T i
M

	
and

TS =max
�

T i
S

	
.
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The processes have to be synchronised between the participants. Thus, they
have to start together with the QKD protocol at some point in time, denoted
T0, which is, without loss of generality chosen to be T0 = 0.

As the basis are chosen i.i.d. (from some QRNG), none of the participants
knows in advance which measurement basis will be chosen next, and there-
fore whether the measurement basis is actually to be switched. The partic-
ipants have thus to agree on some ∆Tsync in order to synchronise their pro-
cesses [EHS13]. We call such time dependent analysis of some setup in the
following the runtime analysis of QKD protocols. Firstly we introduce our
ansatz for the runtime analysis before going into the details. We show how
asymmetric protocols can increase the amount of key generated during the
stable runtime of the setup Trun.

5.3. Runtime Analysis: Quantum Key Distribution

Protocols

We will now analyse the runtime of QKD experiments with two participants
and two measurement bases. Let us subsume all QKD setups which are pos-
sible in such a setup into the family of runtime protocols F e

m
with e = 2 for

two participants (Alice and Bob) and m = 2 for two measurement basis.

We denote the parameters which describe the weight with which a basis is
chosen by q1 and q2 = 1−q1. We furthermore write the finite number of mea-
surement tuples of a stable run of the setup MAB = MA ×MB and identify
qi = |Mi ,A |/|MA | with i ∈ {1, 2}, where Mi ,A ⊂MA , is the number of measure-
ment outcomes generated by Alice using the i-th measurement operator. The
total number of measurements of one participant is Ntot = |MA | = |MB |. The
runtime analysis we propose can analogously be carried over to other fam-
ilies F e

m
. But we especially focus on F 2

2 as we combine it later with CV-QKD
protocols assuming two participants.

The family F 2
2 of runtime protocols can be divided into two sub-classes:

F
2

2,TM ,TS

:

This family represents those QKD setups where the measurement and switch-
ing process can be triggered independently from one another. To synchro-
nise these processes, Alice and Bob have to agree on some time interval∆Tsync ≥
max

�
TM , TS

	
. This protocol family allows us to combine a non-uniform ba-
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sis choice security analysis with a non-trivial runtime analysis. We formally
discard the measurement tuples in the ∆Tsync where either Alice or Bob or
both switched their basis by treating the switching process itself as an addi-
tional third measurement basis which we denote by E (for empty). They are
detected and removed in the sifting sub-protocol as described in Section 4.3.
Note, that the removed tuples can additionally be used for parameter estima-
tion.

F 2
2,TM ,TS

=
�

F e
m
|∆Tsync ≥max

�
TM , TS

	
, e = 2, m = 2

	
(5.1)

F
2

2,TM S

:

This represents the family of QKD-setups which does not allow us to trigger
the measurement and switching process independently. That is, a switch-
ing process is included in every time step ∆Tsync ≥ TM S = TM + TS . In this
sense every runtime protocol of F 2

2,TM ,TS
has always a natural variant in F 2

2,TM S

(and vice versa). This family can additionally mimic such QKD-setups where
TM >> TS ( TS >> TM analogously) which admits us to neglect the shorter pro-
cess. Such setups allow for a security analysis which includes non-uniform
basis choice too, however the runtime analysis is trivial as no independent
switching processes can occur in this case.

F 2
2,TM S

=
�

F e
m
|∆Tsync ≥ TM +TS , e = 2, m = 2

	
(5.2)

5.3.1. Runtime Parameters of Experiment

We now describe the runtime implementation in the CV-QKD experiments
as performed by the group of Prof. Dr. Schnabel [Ebe13].

The runtime protocol is a member of F 2
2,TM S

since it accounts for the case

TM S = TM +TS

with TS = 13·TM as described in Figure 5.1. The relatively long time needed for
a switching process stems from the mechanical back-reactions of the piezo
on the electric field used to calibrate the system to the chosen quadrature
measurement. Note that it is still possible to perform asymmetric CV-QKD
protocols in this setup although the experiment is designed such, that a switch-
ing process is assumed even when the measurement basis is not changed.
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Figure 5.1.: Time resolution of a measurement and switching process as realised
in experiment. Interval A shows the time needed for switching to
the desired basis by changing the relative phase ∆φ of the local
oscillator by a piezo crystal. This excites a mechanical oscillation
in the crystal which is damped after another 3µs (B). The whole
switching process thus takes TS = 13µs whereas the measurement
process itself is only TM = 1µs (C).

5.3.2. Analysis

We analyse the runtime of a two-party QKD setup of family F 2
2,TM ,TS

by focus-
ing on the weights of only one of the participants (for example Alice) at first.
The analysis is later extended to describe the statistics of both participants
thus allowing for an analysis of the runtime protocol of the family F 2

2,TM ,TS
.

We show how the length of the collected secure key Nkey of one run Trun of a
setup can be computed considering the additional switching processes. Sim-
ilar analysis would allow us to describe the cases F e

m
with more than two e > 2

participants or m > 2 basis involved. We provide an example of the runtime
analysis of the family F 2

3 in Appendix A.1.

We are given the weights with which the measurements in the two orthogo-
nal basis of one participant are weighted, q1 and q2 = 1−q1. We furthermore
assume a finite number of measurements of one participant Ntot = const and
know, in the case of F2,TM ,TS

, that Ntot is just a fraction of many more time steps
N = Ntot +Nsw whereby Nsw denotes the number of switching processes in
one run as explained in Figure 5.2. We start with the weights which describe
how often one participant measures in one of the orthogonal basis. The final
task is to estimate N as a function of q1, q2 and Ntot.

In general for the weight q̃sw of a switching process to occur in N =Ntot+Nsw
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t

Figure 5.2.: A time line with Alice’s and Bob’s synchronised (∆Tsync) time steps
with the corresponding basis (1 or 2) or switching processes E (for
empty - no measurement outcome). The red blocks denote the mea-
surement tuples where either Alice or Bob (or both) switched the
basis. The switching processes can be treated as a third measure-
ment basis E which is additionally sorted out in the sifting procedure
of the QKD protocol.

time steps 3, the following holds

q̃sw =
Nsw

N
=

Nsw

Ntot+Nsw
=

Nsw
Ntot

1+ Nsw
Ntot

.

The weight of the switching processes needed to measure Ntot measurement
outcomes is defined by

qsw
..=

Nsw

Ntot
.

We now estimate qsw as a function of the initial weights q1 and q2 and the
number of measurement outcomes Ntot. We ask for the transition weights4

qi , j of one participant to measure first in the basis i followed by a measure-
ment in j with i 6= j .

We already confined ourself in the following analysis to the family where i , j ∈
{1, 2} and look at first at the transitions q1,2 and q2,1 of one participant, since
the transitions q1,1 and q2,2 correspond to the cases where no switching oc-

3Note here, that the q̃i describe the weights normalised to N , which is the number of time
steps of one participant with a runtime of Trun = N ·∆Tsync. The qi are normalised to
Ntot, which is the amount of measurement outcomes without the switching processes of
one participant.

4These weights are the entries of the corresponding transition matrix [Fel57]. At this point
the analysis can be extended to m > 2.
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curs. We can identify the weight of the switching processes by

qsw =
∑

i 6= j

qi , j

= q1q2+q2q1

= 2q1 ·
�
1−q1

�
.

The renormalised weight of the number Nsw of switching process to occur in
N =Ntot+Nsw time steps can now be written as

q̃sw =
Nsw

N
=

Nsw

Ntot+Nsw
= qsw

1

1+qsw
. (5.3)

We additionally have to renormalise q1 and q2 by

q̃1 =
N1

N
=

N1

Ntot+Nsw
= q1

1

1+qsw
(5.4)

q̃2 =
N2

N
=

N2

Ntot+Nsw
= q2

1

1+qsw

where N1 (N2) is the portion of Ntot which has been measured in the first (sec-
ond) measurement basis. Of course

3∑

i=1

q̃i = 1.

We treat a switching process as an additional third basis E with weight q̃sw as
already described in Figure 5.2. This allows for a full description of the run-
time protocol of one participant. Figure 5.3 shows the weights with switching
as a function of q1.

We now lift this analysis to the case of two participants5 e = 2. As all mea-
surement basis of the two participants are assumed to be chosen i.i.d. we
can identify the following

Ñ1 =N · q̃ 2
1 =Ntot ·q 2

1

Ñ2 =N · q̃ 2
2 =Ntot ·q 2

2

Nkey ≤ Ñ12 =N ·
�
q̃ 2

1 + q̃ 2
2

�

5Note, that this is the point where the runtime analysis can be easily lifted to more than two
participants e > 2 to describe the setups F e

2 and furthermore F e
m .
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where N is the total number of synchronised time steps of both participants.
The Ñi above describe the simultaneous measurements of Alice and Bob in
either the amplitude or the phase quadrature. We have, in general, Nkey ≤
Ñ12 samples left for the key generation because some of the tuples of Ñ12 are
usually needed for the parameter estimation.

0.2 0.4 0.6 0.8 1.0
q1

0.05

0.10

0.15

0.20

0.25

0.30

qSW

Figure 5.3.: The weight of one participant of switching processes to occur eqsw
as a function of the initial weights qi . Note, that eqsw is symmetric
under permutation of the qi .

Let us additionally identify

Nkey =Nkey ·
�

q
key
1 +q

key
2

�

with
2∑

i

= q
key
i = 1

where the q
key
i =N i

key/Nkey with N i
key ⊂Nkey for i ∈ {1, 2} as we will need this

notation in later sections where we combine the runtime analysis with spe-
cific CV-QKD protocols.

We include now the synchronised timing ∆Tsync into the runtime analysis
in these computations and arrive at

Trun =∆Tsync ·N
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which is the total time needed for one run of the setup, i.e. the time the ex-
periment is assumed to be at minimum stable. The runtime analysis enables
us to optimise the qi ’s under the assumption of a specific CV-QKD protocol
and a stable runtime Trun of a specific experiment.

The defining parameters of one specific CV-QKD realisation of the protocol
family F 2

2 are:

Parameter Value
Runtime protocol F 2

2
q1 Weight to measure the first basis

Trun Stable runtime of the experiment
∆Tsync Synchronised time step

One could naively choose the weights corresponding to the basis choice to be
q1 = 0 or q2 = 0 to optimise the over-all runtime analysis of all F 2

2 protocols,
but this is not compatible with the parameter estimation under consideration
as explained in Section 4.5 and Section 4.6. We focus thus on minimising the
over-all weight of the switching processes qsw.

5.3.3. Example

In this section we compare the runtime analysis of the asymmetric protocol
of family F 2

2,TM=1,TS=1 with it’s symmetric variant of family F 2
2,TM S=1 for a fixed

number of time steps N .

Let us simplify the following example by assuming that the key rate per sam-
ple, as a function of Nkey, has saturated to some ksec = const. This is usually
the case for sufficiently many key generation samples Nkey and sufficient pa-
rameter estimation Npe of Alice and Bob.

Note that we omit, in this section, that the choice of a specific q1 can have
an effect on the secure key rate ksec. We chose here ksec = 1 Bit∀q1 for the
whole section to simplify the simulation and focus especially on q1 ∈ [0.1, 0.9]
to simulate a sufficient parameter estimation.
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The function describing the secure key collected by the protocols is

|K sym
sec |=N ·

�
0.52+0.52

�
−N (1)

pe −N (2)
pe = const

|K asym
sec |=N ·

�
q̃ 2

1 + q̃ 2
2

�
−N (1)

pe −N (2)
pe 6= const

where the q̃i are computed according to Section 5.3.2. The N
(1)

pe = N
(2)

pe =

N ·min
��

q1

�2�
=N ·10−2 represent the fraction of the tuples in eN12 which are

needed for the parameter estimation.

We compare the asymmetric protocol F 2
2,TM=1,TS=1 with it’s symmetric variant

F 2
2,TM S=1 with instantaneous switching processes in Figure 5.4.

0.0 0.2 0.4 0.6 0.8 1.0
q12µ109

3µ109

4µ109

5µ109

6µ109
»Ksec»@BitD

Figure 5.4.: The blue curve shows the length of the secure key |K asym
sec | generated

by the asymmetric protocol F 2
2,TM=1,TS=1 for q1 ∈ [0.1, 0.9]. The hor-

izontal black line denotes the amount of secure key |K sym
sec |= const

generated by the symmetric variant F 2
2,TM S=1 which is independent

of q1. The secure key rate, the total runtime and the total number
of synchronised time steps are chosen to be ksec = 1 = const and
Trun = N ·∆Tsync with N = 1010 for both protocols, respectively.

Note, that the asymmetric protocol generates more key |K asym
sec | for

q1 < 0.14 or, equivalently, q1 > 0.86.

The amount of secure key generated for q1 = 0.1 (q1 = 0.9) is |K asym
sec |= 5.789 ·

109 Bit (vertical black lines). This means, that an asymmetric protocol can,
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in this example, generate R1,2 = 1.157 times more key per runtime Trun. This
underlines the strength of asymmetric QKD protocols as they could, for cer-
tain parameter sets, even outperform their symmetric variants with perfect
switching where ideally TM S = TM with TS = 0.

One can see in Figure 5.4 that the runtime analysis is symmetric around q1 =

0.5. We give several examples in the following sections where we combine the
runtime analysis of family F 2

2 with appropriate CV-QKD protocols either pro-
viding security against collective (in Section 5.4.1.3) or coherent (in Section
5.4.2.3) attacks with an experimental realisation.

5.4. Asymmetric Continuous Variable Quantum

Key Distribution Protocols

In this section we will show how the ideas of the runtime analysis as discussed
in Section 5.3.2 can be implemented in existing security proofs.

We extend the two symmetric CV-QKD protocols providing security against
collective and coherent attacks of Dr. F. Furrer et al. [FFB+14] to asymmet-
ric protocols and discuss their performance on the basis of experiments. We
combine the two security analysis in numerical simulations with a full run-
time analysis of CV-QKD setups and show the advantage of the non-uniform
choice of basis in QKD.

5.4.1. Security against Collective Attacks

In this section we present a proof for an asymmetric CV-QKD protocol pro-
viding security against collective attacks. Considering finitely many samples
Nkey we analyse a corresponding asymmetric protocol following the ideas of
runtime analysis. The first security analysis of a symmetric CV-QKD proto-
col assuming collective attacks and finite size effects is presented in [LGG10].
The entropies which are used in the security proof are explained in Appendix
A.3.

This security proof analyses the security of the experimental setup described
in Section 3.3 and is based on the entropies as presented in Section A.3. We
write the secure key Ksec = K X

sec ∪K P
sec, where K X

sec (K P
sec) denotes the secure

key which is generated from the amplitude (phase) quadrature. We can iden-

tify q
key
1 = q

key
X = K X

sec/Ksec being the weight of both participants measuring
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simultaneously the amplitude quadrature and q
key
2 = q

key
P = K P

sec/Ksec repre-
senting the weight of a synchronised measurement in the phase quadrature.
This connects the security analysis with the runtime analysis which is de-
scribed in Section 5.3.2.

The non-uniform choice of basis is reflected by q
key
X 6= q

key
P which are de-

scribed by q
key
P = 1−q

key
X .

5.4.1.1. Security Analysis

A full reconstruction of the state whereby we assume Gaussian states is needed
for the computation of the key rate.

Remember, that a bipartite Gaussian state is fully described by the corre-
sponding covariance matrixγAB . The covariance matrix is reconstructed from
the measurement tuples Npe of Alice and Bob as explained in Section 3.5.

We present here the security analysis for reverse reconciliation, the proof for
direct reconciliation follows analogously.

We know that the following equation gives a bound on the secure key rate
which could be generated from a given QKD setup assuming n = Nkey syn-
chronised and simultaneous measurements and reverse reconciliation

|Ksec| ≥H ǫ
min(x

n
B
|E n )ω− ℓEC (n )− log2

�
1

4ǫ2
1ǫC

�

where E n describes the quantum system of the eavesdropper (Eve) which
could be of infinite dimension andω=ωX n

A ,X n
B ,E n denotes the corresponding

classical-quantum state. Now x n
B

describes the fraction of Bob’s measure-
ment outcomes which are used in the key generation. Of course, the formula
is only valid if the protocol does not abort in which case the secure key is zero.
The ǫi are a function of the secrecy of the QKD protocol ǫS and the reconcili-
ation (i.e. the confirmation) ǫC .

The term H ǫ
min(x

n
B
|E n )ω denotes the conditional smooth min-entropy ofωx n

B ,E n

for ǫ ≤ (ǫS−ǫ1)/2 introduced in [Ren05]and generalised to infinite-dimensional
systems in [Can01]. Hence, it remains to obtain a lower bound on H ǫ

min(x
n
B
|E n )ω

for any possible eavesdropping strategy allowed by collective security assump-
tions.
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Under the assumption of collective attacks, we can assume that the state
ωx n

A ,x n
B ,E n has tensor product structure, i.e.,ωx n

A ,X n
B ,E n =ω⊗n

xA ,xB ,E . The smooth
min-entropy of a product state can then be approximated by the conditional
von Neumann entropy H (xB |E )ω ofωxB ,E via the infinite dimensional asymp-
totic equipartition property [FAR11, TCR10, Ren05]

|Ksec| ≥H ǫ
min(xB |E )ω ≥ n H (xB |E )ω−

p
n∆, (5.5)

where n has to be sufficiently large and

∆= 4 · log2

�
2

1
2

Hmax(xB )+1+1
�
·
√√

log2

�
2

ǫ2

�
.

In the next step, we use that the stateωxB ,E is of the formωxB ,E = q
key
X |X 〉〈X |θ⊗

ωX
xB ,E +q

key
P |P 〉〈P |θ ⊗ωP

xB ,E whereωX
xB ,E ,ωP

xB ,E are the states obtained when
the honest parties are performing synchronised and simultaneous measure-
ments of the amplitude or phase quadrature, respectively. The system de-
noted by θ is a classical register which is assigned to the eavesdropper and
it keeps track of which measurements were performed by the honest parties,
therefore θ ∈ {X , P }.

Using elementary properties of the von Neumann entropy (i.e. the additiv-

ity), we can now expand H (xB |E θ )ω = q
key
X H (xB |E )ωX + q

key
P H (xB |E )ωP .

Combining this estimation of the smooth min-entropy with the assumption
of Gaussian attacks, we can use the confidence set Cǫpe to obtain a bound on

the key length given by

|Ksec| ≥ n · inf
γ∈Cǫpe

∑

θ

pθ H (xB |E )ωθγ −
p

n∆− ℓEC (n )− log2

�
1

ǫ2
SǫC

�
. (5.6)

Here, the infimum is taken over-all states compatible with covariance ma-
trices γ within the confidence set. For simplicity, we have chosen ǫ1 = ǫS/2
which can be justified by the fact that for large enough n the term in the log-
arithm can be neglected. Note further, that, due to the definition of Cǫpe , the

key length from Equation 5.6 is now ǫ-secure6 with ǫ = ǫpe+ ǫS + ǫC .

The von Neumann entropy for both quadratures θ ∈ {X , P } can now be com-
puted under the non-restricting assumption that the eavesdropper holds the
purification of Alice’s and Bob’s state, that is, we assume that ωγ,AB E is the

6The definitions for composable security are given in Section 4.2.
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purification of the Gaussian state ωγ,AB with covariance matrix γ. It then
follows by applying the definition of the conditional von Neumann entropy
H (xB |E ) = H (xB E )− H (E ) and the self-duality of von Neumann entropies
H (E )ωγ = H (AB )ωγ that

H (xB |E )ωθγ = H (E |xB )ωθγ + H (xB )ωθγ − H (AB )ωγ .

As shown in [ESP02]

H (E |xB )ωX
γ
= H (E )ωX

γ (xX =0) = H
�
A−C (MX B MX )

MPC T
�
ωγ

and

H (E |xB )ωP
γ
= H (E )ωP

γ (xP=0) = H
�
A−C (MP B MP )

MPC T
�
ωγ

where H (E )ωX
γ (xX =0) ( H (E )ωP

γ (xP=0)) is the post-measurement state at the eaves-

dropper’s side when Bob measured xB ,X = 0 (xB ,P = 0). The bipartite covari-
ance matrix is written in block form, i.e.

γ=

�
γA γC

γT
C
γB

�

and MX = diag(1, 0) and MP = diag(0, 1) are the projectors to the X and P
quadrature, respectively7. MP denotes the Moore-Penrose inverse [BH12].

To compute ∆, we have to estimate Hmax(xB ) which can be approximated
by [FFB+14]

Hmax(xB )≤2 log2




r

q
key
X ·

∑

y

q
ωx

xB
(y ) +

r
q

key
P ·

∑

y

Ç
ωP

xB
(y )





whereωx
xB

andωP
xB

are the probability distributions of Bob’s X and P quadra-
ture measurements, respectively. While in a practical experiment the number
of bits ℓEC (n ) can be directly computed for each run of the setup, we need to
estimate the leakage term here to allow for a theoretical analysis of the setup.

7One could insert here some rotation matrices for MX or MP which account for the exper-
imental imperfections of the calibration of the amplitude and phase measurements. We
chose for the following to assume (also for simplicity), that the imperfections are fully
described by the tomography. We thus shift the calibration imperfections to the full to-
mography of the state as measured in experiment thereby maintaining MX = diag(1, 0) and
MP = diag(0, 1) in the security analysis.
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We will discuss a realisation of an reconciliation scheme in the next Chapter
6 in detail.

We assume the term to be of the form [SBPC+09] as explained in Section 4.7.4

ℓEC (n ) =q
key
X ·n

�
H (xB )ωX

γ
−βEC I (xA |xB )ωX

γ

�
(5.7)

+q
key
P ·n

�
H (xB )ωP

γ
−βEC I (xA |xB )ωP

γ

�
(5.8)

where βEC ∈ (0, 1) is the reconciliation efficiency and I (A|B ) is the mutual
information. We mostly assume an efficiency of the reconciliation of βEC =

0.9 [EMMM11, MEM12]. With these results the secure key rate ksec = |Ksec|/n
can be calculated by

ksec = inf
γ∈Cǫpe

h
q

key
X ·

�
H (E |xB )ωX

γ
+ H (xB )ωX

γ

�i

+

h
q

key
P ·

�
H (E |xB )ωP

γ
+ H (xB )ωP

γ

�
− H (AB )ωγ

i

− 1p
n
∆− ℓEC (n )

n
− 1

n
log2

�
1

ǫ2
SǫC

�
.

We identify the potential secure key rate per shot to be

kpot = inf
γ∈Cǫpe

h
q

key
X ·

�
H (E |xB )ωX

γ
+ H (xB )ωX

γ

�i
(5.9)

+

h
q

key
P ·

�
H (E |xB )ωP

γ
+ H (xB )ωP

γ

�
− H (AB )ωγ

i
(5.10)

− 1p
n
∆− 1

n
log2

�
1

ǫ2
SǫC

�
(5.11)

which is equivalent to kpot = ksec + ℓEC (n )/n denoting the amount of key
which is secure but possibly erroneous.

In the theoretical asymptotic limit for an infinite number of samples n =
Nkey→∞ and perfect security ǫ→ 0, the key rate ksec tends to

k∞sec =q
key
X ·

�
βEC I (xA , xB )ωX

γ
+ H (E )ωX

γ (xB ,X =0)− H (AB )ωγ

�

+q
key
P ·

�
βEC I (xA , xB )ωP

γ
+ H (E )ωP

γ (xB ,P=0)− H (AB )ωγ

�
.

The length of the key secure against collective attacks is described by

|Ksec|=Nkey ·ksec.
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Note that the protocol strategy of this security proof is such that we esti-
mate the key rate of the setup using the same quadrature (or combination
of quadratures) from which the raw key is generated.

5.4.1.2. Results

We present here two experiments which allow us to discuss asymmetric CV-
QKD protocols which are secure against collective attacks.

The experiments have been realised as part of the collaboration Crypto on
Campus and were carried out by the group of Prof. Dr. R. Schnabel at the
Albert Einstein Institute in Hannover. A v-class state was used in the first ex-
periment [EHD+13] where we certified the security of the setup analytically
from the full tomography. In the second experiment we generated a secure
key from an s-class state [Ebe13]. The two states are characterised in Table
B.1.

In this section we focus on the first experiment as the advantages of the asym-
metric protocol are more obvious when using v-class states and refer the de-
tails concerning the second experiment to Section 6.2.1.

To compute key rates of theoretical setups, we have to agree on some param-
eters required by the protocol. Following Section 4.4 the required parameters
are as presented in Table B.2. We discuss in this section table-top setups and
assume non-binary LDPC reconciliation with an efficiency of βEC = 0.9 =
const unless otherwise noted.

V-class setup:
This setup is perfect for this discussion as the vacuum being entangled with
a squeezed state leads to a highly asymmetric covariance matrix [EHD+13]. A
key was not generated in the corresponding experiment, but we certified the
security of the setup by assuming some specific reconciliation (non-binary
LDPC with efficiency βEC = 0.9).

All measurement tuples were used to reconstruct the covariance matrix by
following the protocol as described in Section 3.5, which actually calls for
three measurement basis

�
X ,Qπ/4, P

	
for a full tomography of the state. We

will directly use the covariance matrix as it already includes all possible ex-
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perimental imperfections in our theoretical setup.

The Gaussian v-class state as reconstructed from Alice’s and Bob’s measure-
ment tuples is

γAB =





0.541 0.135 0.459 −0.095
0.135 24.633 −0.037 −23.293
0.459 −0.037 0.548 0.264
−0.095 −23.293 0.264 23.840



 . (5.12)

The deviations stemming from finitely many measurements available for to-
mography are quantified by ǫpe = 10−10. In this estimation process, Alice and
Bob measure 5 · 106 tuples for each combination of quadratures (X , P ) and
finally Qπ/4.
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Figure 5.5.: The above graphic sketches the mismatch of Alice’s amplitude xA

and phase pA measurements. Note, that the quadratures are still
assumed to be orthogonal. The mismatch can be quantitatively
estimated by a third basis (Qπ/4) which is measured as described in
Section 4.4.

A pump power of 235mW generated a initial squeezed vacuum with 11.1 dB
squeezing and 16.6 dB anti-squeezing. This squeezed state is superimposed
with a vacuum state. The different conditional variances of Alice’s and Bob’s
synchronised amplitude and phase measurements which are given in Table
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B.1 reveal the asymmetry of the state.

Recall that we assumed perfectly orthogonal measurements in our security
analysis. The outcomes of the quadrature Qπ/4 measure the off diagonal ele-
ments of the sub-blocksγA andγB , which should be zero in the case of perfect
calibration of the system to the amplitude and phase quadrature. However
a constant phase shift of the local oscillator resulted in a deviation from the
ideal case. After all, the measurement quadratures can still be assumed to
be orthogonal, since the relative phase can be controlled with high precision
[HES+12]. As this is, in this case, only a function of a rotation in phase space,
we continue to refer to the measurement quadratures as amplitude X and
phase P .
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Figure 5.6.: V-class: The extractable secure key rate as a function of q
key
X

for five different values of Nkey ∈
�

109, 108, 107, 106, 105
	

(yellow,
red, black, blue, green) under the assumption of the same classical
post processing and direct reconciliation. One can see two impor-
tant features of our asymmetric protocol. Firstly, the key rate can
significantly be optimised for all Nkey by choosing an appropriate

q
key
X as, for example, k X

sec = 0.806 Bit and k P
sec = 0.425 Bit for

Nkey = 109. Secondly, a symmetric protocol cannot generate a key
for Nkey = 105.

For the covariance matrix under discussion this corresponds to an average
mismatch (i.e. rotation in phase-space) of ∆φ ≈ 3◦ between the local oscil-
lator and the signal beam as depicted in Figure 5.5. The Mathematica note-
books we implemented and used to compute the key rates of the collective
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CV-QKD protocols allow for such a basis-mismatch.

Let us now focus on the secure key rate as a function of q
key
X for different Nkey

as shown in Figure 5.6. The important result is, that the rate is maximised for

q
key
X = 1 for all values of Nkey. We see furthermore that the key rate saturates

at Nkey ≥ 107 for all values of q
key
X .
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Figure 5.7.: V-class: The potential secure key rates k i
pot together with the

amount of disclosed bits ℓi
EC as a function of q

key
X assuming

Nkey = 109 and direct reconciliation. The blue line represents a

convex combination of the potential key rates k X
pot and k P

pot and

the black one the same for the ℓi
EC, respectively. The values of

the security analysis correspond in both cases to the convex com-
bination which reflects the additivity of the von Neumann entropy
[LR38]. The green lines denote their difference (the secure key) for

q
key
X ∈ {0, 0.5, 1}. We see that the secure key rate is maximised for

q
key
X = 1 in case of the v-class state.

Note especially that k X
sec > k

s y m
sec > k P

sec. This is interesting as, when look-
ing in Table B.1, one can see that the phase quadrature is stronger correlated
in terms of ρ which leads directly to a higher potential key rate of k P

pot =
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7.457 Bit for Nkey = 109. The potential key rate of the amplitude quadrature

is in contrast k X
pot = 5.874 Bit for Nkey = 109 which suggests to use the phase

quadrature P for the key generation.

However, we use the amplitude quadrature q
key
X = 1 to generate the key. The

argument is that, although the phase quadrature is stronger correlated, its
conditional variance is much larger than the one of the amplitude quadrature
as shown in Table B.1. The errors between the raw keys Bin [KA] and Bin [KB ]

and the amount of information disclosed during reconciliation ℓEC are pro-
portional to the conditional variances. The communication cost of the non-
binary reconciliation are ℓX

EC = 5.068 Bit and ℓP
EC = 7.032 Bit. It follows that

the difference between the potential key rate kpot and the disclosed informa-

tion ℓEC (the secure key rate ksec = kpot − ℓEC) is maximised for q
key
X = 1. We

sketch and explain this behaviour in Figure 5.7.
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Figure 5.8.: V-class: This figure shows the extractable secure key rate as a func-
tion of the damping νB at Bob’s side under the assumption of equal

post processing for Nkey = 109 samples and q
key
X = 1. The blue line

shows the secure key rate assuming direct reconciliation and the red
one shows the key rate for reverse reconciliation. The maximum
damping νB by which the key rate remains positive is νB = 0.41 for
direct reconciliation and νB = 0.75 for reverse reconciliation.

Figure 5.8 shows the key rate for q
key
X = 1 but different Gaussian damping

for Bob and compares direct with reverse reconciliation. As Alice is assumed
to hold the lab, only Bob is allowed to be remote which physically imprints
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damping in his sub-space as explained in Section 3.4.3. We assume here
only Gaussian damping in Bob’s sub-system and describe the strength of the
damping by the scalar νB .

In this setting, reverse reconciliation sustains more Gaussian damping be-
fore dropping below zero than direct reconciliation. This is not surprising,
as Bob’s sub-state naturally experiences more noise than Alice’s. This ren-
ders the eavesdroppers guess about Bob’s measurement outcome worse than
about Alice’s because it is noisier [SBPC+09]. This is reflected by the min-
entropy H ǫ

min(xB |E )ω of Bob’s measurement outcomes xB conditioned on the
eavesdropper E . Reverse reconciliation protocols can in general sustain more
noise.

S-class setup:
We will now shortly discuss an experiment where two initially independent
squeezed states are entangled on a 50:50 beam splitter which results in an
entangled bipartite s-class state. Such a state is relatively symmetric when
compared with an v-class state.
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Figure 5.9.: S-class: The extractable secure key rate as a function of q
key
X for five

different Nkey ∈
�

109, 108, 107, 106, 105
	

(yellow, red, black, blue,
green) under the assumption of the same classical post processing

and direct reconciliation. Although the effect of q
key
X is very small

as, for example, k X
sec = 1.799 Bit and k P

sec = 1.807 Bit for Nkey =

109, the key rate can still be optimised a tiny bit for q
key
X = 0.
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We refer to Section 6.2.1 for the details of the experiment and use the follow-
ing covariance matrix [Ebe13]

γAB =





19.696 (0) 19.678 (0)
(0) 23.311 (0) −23.708

19.678 (0) 19.817 (0)
(0) −23.708 (0) 24.314



 (5.13)

where the numbers in parenthesis have not been measured. TheQπ/4 quadra-
ture, which is normally necessary for the full tomography of the state, was
dropped for experimental reasons and because they can be assumed to be
10−2 times smaller than all the other entries of the covariance matrix.

Figure 5.9 shows the key rate of the s-class state as a function of q
key
X and

Nkey. The key rate saturates again at Nkey ≥ 107 but it is less sensitive to q
key
X

than in the case of the v-class state, as shown before. Nevertheless, the key

rate can still be optimised as a function of q
key
X .
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Figure 5.10.: S-class: The extractable secure key rate as a function of the damp-
ing νB at Bob’s side under the assumption of the same classical

post processing for Nkey = 109 samples and q
key
X = 0. The blue line

shows the secure key rates assuming direct and the red one assum-
ing reverse reconciliation. The maximum damping νB by which the
key rate remains positive is νB = 0.35 for direct reconciliation and
νB = 0.87 for reverse reconciliation.

Figure 5.10 compares the secure key rates for direct and reverse reconcilia-
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tion as a function of additional damping in Bob’s subsystem and q
key
X = 0. We

see again, that reverse reconciliation is more resilient to damping. Note that
the key rates almost coincide for νB = 0.

The maximum tolerable damping in this setting is higher when compared to
an v-class state. This is a direct consequence of the strength of the entangle-
ment of the states. S-class states are stronger entangled than v-class states,
with comparable squeezed input. This is reflected by the Peres-Horodecki-
Simon entanglement criterion as introduced in Section 3.2.1 which reveals
a value of Ev

�
γAB

�
= 1.933 for the v-class state and E s

�
γAB

�
= 3.402 for the

s-class state.

5.4.1.3. Simulations

We now combine the runtime analysis (see Section 5.3.2) with the security
analysis against collective attacks and use the parameters as presented in Ta-
ble B.2 to compare the symmetric protocol with its asymmetric variant.

We focus in this section on CV-QKD protocols of family F 2
2,TM ,TS

. We skip the
weight of measuring the Qπ/4 basis as it does not contribute much to the re-
sult. This is because, in contrast to the other basis, correlated measurements
of Alice and Bob in this quadrature are not necessary (see Section 3.5). The
results including the Qπ/4 quadrature are shown in the technical Appendix
A.1.

We focus on F 2
2,TM=1,TS=1 with ∆Tsync = const and use the v-class covariance

matrix from Equation (5.12) to compare the symmetric with the asymmetric
protocol on the level of a constant runtime Trun. Note that we are not nec-
essarily interested in maximising the secure key rate ksec but in maximising
the generated secure key |Ksec| per run Trun of an setup as a function of the

weight q
key
X (q

key
P = 1− q

key
X ) of the amplitude (phase) quadrature. For the

computation of the secure key rate we assume non-binary LDPC reconcilia-
tion protocol with an efficiency of βEC = 0.9= const.

Since we want to simulate the whole runtime of the process, that is parame-
ter estimation and key generation, we have to take the additional tuples for

parameter estimation into account such that qi 6= q
key
i . We discuss in this

section table-top setups and assume direct reconciliation unless otherwise
noted. The results of this computation are shown in Table B.9.
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Let us now compare the two CV-QKD protocols8:

(1) Asymmetric protocol:
Let us now consider the runtime analysis of a setup using the asymmetric CV-
QKD protocol.

We start with the secure key rate ksec as a function of q
key
X for different Nkey as

shown in Figure 5.6. The key generation saturates for Nkey ≥ 107 and is max-

imised for q
key,(1)
X = 1. We choose to generate the key from N

(1)
key = 108 corre-

lated and synchronised samples of Alice and Bob. But we still need some ad-

ditional measurements N
j

pe in all combinations of the quadrature measure-
ments j to perform adequate tomography of the Gaussian state. We assume

Npe =
∑

j N
j

pe in total. It follows, that although q
key,(1)
X = 1 the over-all weight

must be qX ≤ 1.

We fix∆Tsync = const for the rest of the section. And we know that the deter-
mination of the over-all weight of the quadrature depends on the needs of the
parameter estimation as explained in Section 4.5. Following the experiment

explained in Section 5.4.1.2, at least N
j

pe = 5 · 106 tuples of any combination
j of measurements are needed for the tomography to achieve ǫpe = 10−10 for
the confidence set.

As the key is completely generated from the amplitude measurements, N
(1)

P =

5 · 106 samples have to be measured by Alice and Bob together in the phase
quadrature, as described by

N
(1)

P = 5 ·106

=N P
pe

=N
(1)

tot ·
�
q
(1)
P

�2

=N
(1)

tot ·
�
1−q

(1)
X

�2
,

8The number in parenthesis denotes the protocol under consideration. (1) represents the
asymmetric protocol and (2) it’s symmetric variant.
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which is the first boundary condition for this analysis. We furthermore fix the
number of synchronised amplitude measurements of Alice and Bob to be

N
(1)

X =N
(1)

key+N X
pe

= 108+5 ·106

=N
(1)

tot ·
�
q
(1)
X

�2

which is the second boundary condition.

We solve this system of equations and find q
(1)
X = 0.817 with N

(1)
tot = 1.558 ·108

describing the weight of the basis and the number of measurements of one
participant needed to maintain the boundary conditions. Now we can use
the runtime analysis from Section 5.3.2 to deduce the weight of the switch-
ing processes of one participant and arrive at

eq (1)X = 0.634

eq (1)P = 0.139

eq (1)sw = 0.227.

We now raise the analysis to the level of two participants, where each chose
their measurement basis independently, according to the weights above. We
know

N
(1)

key =N ·
�
eq (1)X

�2
−N X

pe =N
(1)

tot ·
�
q
(1)
X

�2
−N X

pe

=N
(1)

X −5 ·106 = 108 = const.

Obeying this boundary condition we arrive at N = 2.609·108 (Trun = 2.609·108·
∆Tsync), which is the total number of time steps (the runtime) of the setup.

Having all the necessary information to compute the secure key rate of the
asymmetric protocol, we can now focus on the parameters of the symmetric
variant.

(2) Symmetric protocol:
The basic parameters for one participant are, in this case, given by

q
(2)
X = 0.5

q
(2)
P = 0.5

Trun = 2.609 ·108 ·∆Tsync
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which allows us to compute the weight for switching using the runtime anal-
ysis as described in Section 5.3.2. We find that

eq (2)X =
1

3

eq (2)P =
1

3

eq (2)sw =
1

3

as expected and compute

N
(2)

key =N ·
��
eq (2)X

�2
+
�
eq (2)P

�2
�
−N X

pe−N P
pe = 0.479 ·108

where the N X
pe+N P

pe = 2 ·5 ·106 account for the number of measurements dis-

closed during the parameter estimation.

Key rates:
Having determined the total runtime Trun of the setups performing the asym-
metric and symmetric CV-QKD protocol, we can start with the computations

of the corresponding secure key rates k
(i )
sec as a function of q

key,(i )
X and N

(i )

key.

Note, that the N
(i )

key are only a function of q̃
(i )
X as N = 2.609 ·108 is fixed.

Following the security analysis as described in Section 5.4.1 we find for the
asymmetric protocol for

q
key,(1)
X = 1 (5.14)

k (1)sec = 0.789 Bit

N
(1)

key = 108

|K (1)sec|= 0.789 ·108 = 78.94 MBit

and for the symmetric protocol

q
key,(2)
X = 0.5 (5.15)

k (2)sec = 0.593 Bit

N
(2)

key = 0.479 ·108

|K (2)sec|= 0.284 ·108 = 28.46 MBit.
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The common parameter used to compare the two protocols is Trun = 2.609 ·
108 ·∆Tsync (N = 2.609 ·108). The key generated within Trun of the setup with
the asymmetric protocol is approximately R1,2 = 2.777 times larger than in
case of its symmetric variant. Note again that we used the v-class covariance
matrix which is described in Section 5.4.1.2. We discuss the results in further
detail in the next section.

5.4.1.4. Discussion

We have seen, that our CV-QKD asymmetric protocol has two key benefits in
comparison to its symmetric variant:

Key rate:
In the case of asymmetric states, the asymmetric protocol can (significantly)

optimise the secure key rate of the setup ksec as function of q
key
X . In realistic

setups, a measured state is always at least slightly asymmetric due to exper-

imental imperfections. We found the maximum of the secure key for q
key
X = 1.

Switching processes:
Since asymmetric protocols can always minimise the number of switching
processes, more Nkey samples can then be used for key generation per run-
time Trun of the setup which can, in principle, increase |KAB | and ksec. Note
that the key rate of the collective protocol saturates already for Nkey ≥ 107. It
follows that the secure key rate ksec can, in these simulations, not be signifi-
cantly increased by larger values of Nkey > 107.

We showed in Section 5.4.1.3 a numerical analysis by comparing the asym-
metric protocol with its symmetric version. Thereby we assumed for the asym-
metric protocol N P

pe = 5 · 106 simultaneous measurements in the phase and

N
(1)

key+N X
pe = 108+5 ·106 correlated measurements in the amplitude quadra-

ture. We chose these values because they are experimentally feasible. If we
drop the assumption of experimental feasibility and increase Nkey (N ) dras-

tically, the asymmetric protocol becomes even more superior as qX → q
key
X

with Npe/Nkey→ 0.

S-class states provide higher key rates ksec than their v-class variants with
equal input squeezing. Although the key rate of such states is not very sen-

sitive to q
key
X any more, fewer switching processes qsw can still improve the

secure key rate ksec and the raw key |KAB | generated of one run of the setup
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Trun.

The simulation of our asymmetric CV-QKD protocol as presented in this sec-
tion performs better than its symmetric variant.

5.4.2. Security against Coherent Attacks

We learned during the analysis of the asymmetric CV-QKD protocol which
is secure against collective attacks assuming βEC = const, that the raw key is
best generated from the quadrature resulting in the higher secure key rate.

This confinement drastically simplifies the security analysis of the asymmet-
ric protocol providing security against most general attacks assuming direct
reconciliation. The following analysis is again based on the symmetric proto-
col providing security against coherent attacks [FFB+14] which is described
in Section 4.6.

5.4.2.1. Security Analysis

In the original security analysis [FFB+14] a uniform basis choice (q
key
X = 0.5)

was assumed in order to compute the secure key Ksec = K X
sec ∪ K P

sec, where
K X

sec (K P
sec) denotes the secure key which is generated from the amplitude

(phase) quadrature. We briefly review the arguments here to make this point
more clear. The entropies which are used in the security proof are explained
in Appendix A.3.

(1) Symmetric protocol:
They started with the general equation describing the secure key that can be
generated from some QKD-setup

|Ksec| ≤H ǫ
min(x

n
A
|E )ω− ℓEC (n )− log2

�
1

ǫSǫC

�
(5.16)

where n = Nkey for the purpose of simplification. The task was to estimate
H ǫ

min(x
n
A
|E )ω assuming all attacks that are allowed by quantum mechanics.

In the original analysis they started by bounding the smooth min entropy of
Alice measurements in Equation 5.16 by using an uncertainty relation which
allowed them to bound Alice’s smooth min entropy conditioned on Eve’s at-
tack. In this step they assumed a uniform choice of the amplitude and phase
quadrature measurements. By combining the monogamy of entanglement
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[CKW00]with the uncertainty principle for the two complementary measure-
ments [BFS11] they estimated Eve’s information by

H ε
min

�
x n

A
|E
�
≥−n · log

�
1

c (δ)

�
−H ε

max

�
x n

A
|x n

B

�

where x n
A

(x n
B

) are the outcomes of Alice’s (Bob’s) amplitude and phase quadra-
ture measurements. The function c (δ) describes the overlap of the conju-
gated amplitude and phase quadratures estimated for an interval of length δ
as is given by

c (δ) =
δ

2π
·S (1)0

�
1,
δ2

4

�2

where S
(1)
0 represents the radial prolate spheroidal wave function of the first

kind [KW10]with δ=δX =δP . They furthermore estimated the max-entropy
by

H ε
max

�
x n

A
|x n

B

�
≤ n · log

�
γ
�
d0+µ

��

where

γ (t ) =
�
t +

p
1+ t 2

�
·
�
t /
�p

1+ t 2−1
��t

with

d0 = d (x
Npe
A , x

Npe
B ) = 1/k ·

Npe∑

i=1

|xA,i − xB ,i | (5.17)

which is the protocol parameter of this analysis. Note that in the above Npe

denotes the number of measurements used to estimate d (x
Npe
A , x

Npe
B ). The

strings x n
A

and x n
B

represent Alice’s and Bob’s raw keys and µ takes the statis-
tical deviations due to finitely many measurements into account.

The secure key that can be generated from this analysis is

|Ksec|=Nkey ·
�
log

�
1

c (δ)

�
− log

�
γ
�
d0+µ

���
− ℓEC

�
Nkey

�
(5.18)

− log2

�
1

ǫSǫC

�
.
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(2) Asymmetric protocol:
We apply the uncertainty relation now to the case where the key is generated
from one quadrature only as already in general discussed in [TLGR14] and
[BCF+13]. The quation obeying the situation is in this case

|Ksec| ≤H ǫ
min(x

k
X ,A |E )ω− ℓEC (k )− log2

�
1

ǫSǫC

�
. (5.19)

We introduce an asymmetric protocol secure against most general attacks by

H ε
min

�
x k

X ,A |E
�
≥−n · log

�
1

c (δ)

�
−H ε

max

�
x l

P,A |x
l
P,B

�

where the measurements used for the key generation k = Nkey are gener-

ated from only one quadrature (in this example the amplitude q
key
X = 1) and

the secure key is estimated from the other (in this example from the phase)
quadrature. The x l

P,{A,B } (the hypothetical key generation outcomes) are used
to estimate the secure key. Note that c (δ) is the same as in the symmetric
protocol presented above as it describes the overlap of the two orthogonal
quadratures X and P .

Now we have to estimate H ε
max

�
x l

P,A |x l
P,B

�
. As the setup remains the same as

in the symmetric protocol, we can use the already existing security analysis
of Dr. F. Furrer and write

H ε
max

�
x l

P,A |x
l
P,B

�
≤ n · log

�
γ
�
d P

0 +µ
��

.

This means that the protocol parameter d P
0 = d (x l

P,A , x l
P,B ) is calculated from

the phase quadrature measurements only:

d P
0 = d (x l

P,A , x l
P,B ) = 1/l ·

Npe∑

i=1

|x i
P,A − x i

P,B |

with l =Npe. Note, that the key is in this protocol strategy completely gener-
ated from the amplitude measurements where the parameter estimation of
d P

0 is fully described by the phase measurements.
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Following this analysis we obtain a secure key of length

|Ksec|=Nkey ·
�
log

�
1

c (δ)

�
− log

�
γ
�
d P

0 +µ
���
− ℓEC

�
Nkey

�
(5.20)

− log2

�
1

ǫSǫC

�

where k =Nkey. The secure key rate is

ksec =
|Ksec|
Nkey

.

We furthermore identify the potential secure key rate by

kpot = log

�
1

c (δ)

�
− log

�
γ
�
d P

0 +µ
��
− log2

�
1

ǫSǫC

�
/Nkey (5.21)

= ksec+
ℓEC

Nkey
.

Note that this protocol strategy is different to the case where we analysed the
security against collective attacks which we presented in Section 5.4.1 where
we certified the security of the setup using the same quadrature from which
the raw key is generated. In the case of the protocol providing security against
coherent attacks we estimate the key rate from one quadrature and generate
the key from the other quadrature. This protocol strategy is a consequence of
using the entropic uncertainty relation in order to bound Eve’s information
of the raw key assuming only one quadrature for the key generation.

5.4.2.2. Results

We use in this discussion again the two covariance matrices which describe
an v-class and an s-class state as introduced in Section 5.4.1.2. The parame-
ters of the CV-QKD protocols of family F 2

2 used for the analysis in this section
are presented in Table B.3. We discuss in the following table-top setups (un-
less otherwise noted) which use the two different bipartite Gaussian states
which are characterised in Table B.1 and direct reconciliation:

V-class setup:
The Gaussian state as reconstructed in the experiment is described by
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γAB =





0.541 0.135 0.459 −0.095
0.135 24.633 −0.037 −23.293
0.459 −0.037 0.548 0.264
−0.095 −23.293 0.264 23.840



 . (5.22)

The protocol parameter d0 can be directly computed from the covariance
matrix. Figure 5.11 shows the key rates as a function of the key generation
samples Nkey for an v-class state. The key rates saturate for Nkey ≥ 1010 but
the rates of the asymmetric protocol are both higher than that one of the sym-
metric protocol.
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Figure 5.11.: V-Class: The key rates for q
key
X = 1 (red), q

key
X = 0 (green)

and q
key
sym = 0.5 (blue) as a function of the measurement sam-

ples Nkey. All key rates saturate at Nkey ≥ 1010. Note, that the

key rate for q
key
sym is smaller (i.e. zero) when compared to the other

two. We see that the secure key rate is optimised for q
key
X = 1

as k X
sec = 0.250 Bit > k P

sec = 0.052 Bit. Note furthermore that

k
sym
sec = −0.078 Bit < 0 which means that no secure key can be

generated using the symmetric protocol.

We see that the secure key rate is again optimised for q
key
X = 1 as it was also

the case for the asymmetric collective protocol in Section 5.4.1.2. But the re-

sults are different in this case as k X
sec > k P

sec > k
sym
sec . The reason for q

key
X = 1

is again to be found in the different potential key rates (k X
pot = 9.370 Bit >
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k P
pot = 7.697 Bit) and amounts of disclosed information (ℓX

EC = 7.447 Bit <

ℓP
EC = 9.318 Bit) during the reconciliation of the CV-QKD protocol assum-

ing Nkey = 1010. Note that the potential key rates are in case of this pro-
tocol a function of the protocol parameter d0 and not the covariance ma-
trix γAB itself which is especially important because the protocol parameters
d X

0 = 32.992 · δ < d P
0 = 109.451 · δ are proportional to the conditional vari-

ances which are given in Table B.1. This means that the potential key rates of
the quadratures are k X

pot > k P
pot which suggests to generate the raw key from

the phase quadrature q
key
X = 0 while estimating the potential key rate from

the amplitude quadrature X .
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Figure 5.12.: A sketch of the potential secure key rates k
pot
i together with

the amount of disclosed bits ℓEC
i

as a function of q
key
X assuming

Nkey = 1010. The blue line represents a convex combination of the

potential key rates k
pot
X and k

pot
P and the black one of the ℓEC

i
, re-

spectively. The secure key rates are sketched for q
key
X ∈ {0, 0.5, 1}.

The key rate for q
key
X = 0.5 deviates from the convex combination.

The red line sketches a possible graph of the potential key rate as

a function of q
key
X .
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But the amount of disclosed bits when using the phase quadrature for the key
generation is again, due to the corresponding conditional variances, so large,
that the secure key is at best generated from the less correlated quadrature X
with the smaller conditional variance. We sketch the behaviour k X

sec > k P
sec >

k
sym
sec in Figure 5.12.

S-class setup:
The covariance matrix is

γAB =





19.696 (0) 19.678 (0)
(0) 23.311 (0) −23.708

19.678 (0) 19.817 (0)
(0) −23.708 (0) 24.314





where the numbers in parenthesis have not been measured.
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Figure 5.13.: This graph shows the key rates for q
key
X = 1 (red), q

key
X = 0 (green)

and q
key
sym = 0.5 (blue) as a function of the measurement sam-

ples Nkey for an s-class state. Note that, since the corresponding
s-class state is highly symmetric, all the key rates almost over-
lap. Although we find the optimum of the secure key rate for

q
key
X = 1 and Nkey = 1010 as k X

sec = 1.567 Bit > k P
sec = 1.561 Bit

for Nkey = 1010 it can no longer be significantly increased by using
the asymmetric CV-QKD protocol.

Figure 5.13 compares the secure key rates of the asymmetric protocol with
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the symmetric protocol. The key rates saturate at Nkey ≥ 109 and are much

less affected by q
key
X than in case of the v-class state, as expected. As k X

sec ≈
k

sym
sec ≈ k P

sec the symmetry of the runtime analysis remains almost intact when
combined with this asymmetric protocol and using an s-class state.

We compare, in Figure 5.14, the key rates of the symmetric and the asymmet-
ric protocol for the v-class and the s-class state as a function of the damp-
ing νB at Bob’s side. S-class states perform better than their v-class variants
with equal input squeezing. Although the key rate of such states is a marginal

function of q
key
X , fewer switching processes might still improve the key rate

generated in one run of the setup Trun.
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Figure 5.14.: The two plots show the key rate of the asymmetric protocol provid-
ing security against coherent attacks, as a function of the damping
νB at Bob’s side for Nkey = 1010. The red curve shows the key
rate when the key is generated from the phase quadrature and the
blue one for the amplitude quadrature, respectively. The picture
on the left is generated by assuming the s-class state and the right
picture on the right for the v-class state. The secure key rates are

optimised for q
key
X = 1.

5.4.2.3. Simulations

We now combine the runtime analysis (see Section 5.3.2) with the security
analysis against coherent attacks and use the parameters as presented in Ta-
ble B.3 to compare the symmetric protocol with its asymmetric variant as-
suming direct reconciliation.

The results we show in this section follow the computations which are pre-
sented in Section 5.4.1.3. Hence, we give only a short version of it here and
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focus mainly on the results. Remember that we discuss in this section CV-
QKD protocols of family F 2

2,TM ,TS
. The results are summarised in Table B.10.

Let us now compare the two CV-QKD protocols9:

(1) Asymmetric protocol:
We now combine the runtime analysis which is presented in Section 5.3.2
with the asymmetric CV-QKD protocol providing security against coherent
attacks as presented in Section 5.4.2. We focus, again, on F2,TM=1,TS=1 and use
the s-class covariance matrix from Equation 5.13 to compare the symmet-
ric with the asymmetric protocol by setting the runtime Trun = const and
∆Tsync = const for both protocols. For the computation of the secure key
rate we assume a non-binary LDPC reconciliation with an efficiency of βEC =

0.9= const [EMMM11, MEM12].

We have to take the additional Npe tuples into account which are needed
to estimate the protocol parameter d0. Note that we have seen in Section

5.4.2.2 that the key rate is optimised for q
key,(1)
X = 1. We set N

(1)
key = 108, assume

Npe = 3 · 107 [GHD+14] and evaluate the runtime analysis of the asymmetric
protocol by assuming Npe correlated measurements in the phase quadrature

which are all used to estimate the protocol parameter d0 (q
key,(1)
X = 1). That is

N
(1)

P =Npe = 3 ·107

=N
(1)

tot ·
�
q
(1)
P

�2
=N

(1)
tot ·

�
1−q

(1)
X

�2

which is the first boundary condition for this analysis. We furthermore fix the
number of synchronised amplitude measurements of Alice and Bob which
are all used to generated the raw key to be

N
(1)

X =N
(1)

key = 108

=N
(1)

tot ·
�
q
(1)
X

�2

which is the second boundary condition. Note, that we do not have to take
additional measurements for the parameter estimation in this quadrature
into account because the parameter estimation only requires amplitude mea-
surement tuples in this case.

9The number in parenthesis denotes the protocol under consideration. (1) represents the
asymmetric protocol and (2) it’s symmetric variant.
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The weights with switching are

eq (1)X = 0.444

eq (1)P = 0.243

eq (1)sw = 0.313.

Let us raise the analysis to the level of two participants where each chose his
measurement basis independently by the weights above. We know that in
this case

N
(1)

key =N ·
�
eq (1)X

�2
= 108 = const.

Obeying this boundary condition we arrive at N = 5.087 · 108 (Trun = 5.087 ·
108 ·∆Tsync) which is the total amount of time steps (runtime) of the system.

(2) Symmetric protocol:
Having all the necessary information to compute the secure key rate of the
asymmetric protocol we now focus on the parameters of the symmetric vari-
ant. The basic parameters for one participant are in this case

q
(2)
X = 0.5

q
(2)
P = 0.5

Trun = 5.087 ·108 ·∆Tsync

which allows us to directly compute the weights with switching by the run-
time analysis. We find

eq (2)X =
1

3

eq (2)P =
1

3

eq (2)sw =
1

3

and compute

N
(2)

key =N ·
��
eq (2)X

�2
+
�
eq (2)P

�2
�
−Npe = 0.830 ·108

where the Npe = 3 ·107 tuples are used for the parameter estimation of d0.
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Key rates:
Having determined the total runtime Trun of the setups performing the asym-
metric and symmetric CV-QKD protocol, we can start with the computations

of the corresponding secure key rates k
(i )
sec as a function of N

(i )

key.

Following the security analysis as described in Section 5.3.2 we find for the
asymmetric protocol

q
key,(1)
X = 1 (5.23)

k (1)sec = 0.8917 Bit

N
(1)

key = 108

|K (1)sec|= 0.8917 ·108 = 89.17 MBit

and for its symmetric variant

q
key,(2)
X = 0.5 (5.24)

k (2)sec = 0.7919 Bit

N
(2)

key = 0.8305 ·108

|K (2)sec|= 0.6577 ·108 = 65.77 MBit.

The key generated within Trun of the system is, for the asymmetric protocol,
approximately R1,2 = 1.356 times larger than in case of its symmetric variant.
We discuss the results in further detail in the next section.

5.4.2.4. Discussion

We showed in Section 5.4.2.3 a simulation by comparing the asymmetric pro-
tocol with its symmetric counterpart. We started by assuming for the asym-
metric protocol Npe = 3 · 107 simultaneous measurements in the amplitude
and Nkey = 108 simultaneous measurements in the phase quadrature and

found a total number of synchronised time steps of N = 5.087 · 108 ·∆Tsync.
We chose these values, because they are experimentally feasible.

We have shown that the asymmetric protocol which provides security against
coherent attacks has two key benefits when being compared with its symmet-
ric variant:
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Key rate:
In the case of asymmetric states, the asymmetric protocol can optimise the

secure key rate of the setup as a function of q
key
X for constant Nkey. If the state

is highly symmetric, the key rate cannot be significantly optimised by q
key
X

any more like it is the case of the s-class state used in this simulations. The
secure key is maximised when being generated from the amplitude quadra-

ture q
key
X = 1.

Switching processes:
As asymmetric protocols always minimise the number of switching processes
q̃s w , more Nkey samples can be used for key generation per runtime Trun of
the setup which increases |KAB |. The additional key generation samples in-
crease the key rate ksec of the setups as it saturates above 1010 >Nkey.

The reason for the small ratio10 between the protocols is that the weights of
the asymmetric protocol with switching are similar to the weights of the sym-
metric protocol. This is a direct consequence of the Npe = 3 ·107 tuples which
are used to estimate the protocol parameter, the number of key generation
samples Nkey = 108 and the protocol strategy.

S-class states achieve higher key rates than their v-class variants with equal
input squeezing. Although the key rate of such states depends only weakly on

q
key
X , fewer switching processes still increase |KAB | and ksec generated in one

run of the setup Trun, i.e. the time the experiment is assumed to be stable
at minimum. The simulations of our asymmetric CV-QKD protocol as pre-
sented in this section, perform better than their symmetric variant.

The ratio between the symmetric and the asymmetric CV-QKD protocols R1,2 =

1.356 will increase if N > 5.087·108 while maintaining Npe = 3·107 which puts
additional constraints on the experimental realisation because the longer the
runtime Trun of the setup has to be, the more accurate it has to be set up. We
chose the above values due to experimental feasibility and for the reason of
good comparability with the other protocols presented in this thesis.

10The reader may compare these results with the simulation of the protocols providing security
against collective attacks in Section 5.4.1.3.
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5.5. Analysis of Experimental Realisations

In this section we discuss experimental setups assuming a remote Bob and
analyse them theoretically using the asymmetric CV-QKD protocols presented
above. We use the covariance matrices of the two table-top experiments (v-
class state from Equation 5.12 and s-class state from Equation 5.13) as a start-
ing point and extend the knowledge to situations which have not been exper-
imentally realised yet.

We focus in this chapter explicitly on non-table-top experiments with Al-
ice, holding the lab, and Bob being remote. Hence the state which is sent to
Bob experiences some interactions with the medium in which it propagates,
which is modelled by Gaussian damping (see Section 3.4.3) and phase noise
(see Section 3.4.6). It follows, that the local distributions of Alice and Bob are
different, which has to be taken into account during the key generation. We
circumvent this problem of the key generation by scaling the outcomes of Al-
ice and Bob as described in Section 6.3.7.1.

At first we emphasise an experimental solution to the problem of phase noise
in Bob’s fibre when executing the protocol providing security against collec-
tive attacks. In Section 5.5.2 we discuss the propagation through a fibre and
show results for the collective and the coherent protocol.

5.5.1. Phase Noise

In this section we emphasise an way to experimentally circumvent the prob-
lem of phase noise which is described in [Gni14] when executing the CV-
QKD protocol providing security against collective attacks. First we shortly
remind the reader of the effect of phase noise as described in Section 3.4.6
and then we describe its importance in the case of the protocol providing se-
curity against collective attacks.

Certain effects between the light fields of the signal and the local oscillator
can induce a time-dependent mismatch in the relative phase between them.
The mismatch could be influenced by, for example, pressure on the fibre in
use for the distribution of the signal.

The problem is that phase noise renders Bob’s state to be non-Gaussian as
already shown in Section 3.11. This problem has a special meaning as we
have to assume that the state can be fully described by a covariance matrix
(Gaussian state) when executing the collective CV-QKD protocol. If this as-
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sumption is not fulfilled, the CV-QKD protocol providing security against col-
lective attacks is compromised11. The problem is that there exists no infor-
mation theoretical analysis of phase noise for finitely many measurements.
But there exist experimental solutions to this problem one of which we will
we describe now.

We encode the signal beam and the local oscillator in orthogonal polarisa-
tions which allows these two to propagate through the same space-time do-
main to circumvent the problem of phase noise. Note that the signal beam
is already polarised by the composition of the source of the squeezed states
as described in Section 3.4.1. In contrary the local oscillator is prepared in
the orthogonal polarisation using a polarisation filter. The two light fields
are now sent through the same space time domain (the fibre).

Note that the time-dependent disturbance imprint no longer results in phase-
noise, as the phase-difference between the signal and the local oscillator is
maintained. In this setup phase noise changes the polarisations of both beams
identically.

The signal and the local oscillator are distinguished at the receiver. We refer
to [Gni14] for the details of the experimental realisation. Note that the addi-
tional experimental complexity leads to Gaussian damping. In this sense, we
circumvent phase-noise by the cost of more Gaussian damping. We will not
go into further details at this point, as it was only our aim to emphasise the
experimental solution.

5.5.2. Remote Bob (Fibre)

We discuss in this section a setup which uses a fibre (see Section 3.4.3) to
send the signal from Alice to Bob. As we use entangled fields of light with
a wavelength of 1550 nm to distribute the raw keys we can use standard-
telecommunication fibres which have an absorption-minimum for this wave-
length. This allows us to directly use existing telecommunication architec-
ture. We are interested in the maximum achievable distance at which a se-
cure key can be generated from the setup.

We focus for the computation of the secure key on the asymmetric CV-QKD
protocols providing security against collective or coherent attacks as described

11Note that phase noise is naturally considered in the protocol providing security against
coherent attacks, as it allows for all effects (and attacks) which are possible by quantum
mechanics.
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during this chapter. Note that the asymmetric protocol assuming coherent
attacks is only applicable in a setting with direct reconciliation. The secure
key rates as shown in the Figures 5.15 and 5.16 are computed by assuming
two coupling processes and propagation through a fibre in between, as de-
scribed in Section 3.4.4.
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Figure 5.15.: The two plots show the key rate of the asymmetric protocol provid-
ing security against collective attacks as a function of the distance
in d [km] at Bob’s side for direct (red) and reverse (blue) recon-

ciliation, q
key
X = 1 and Nkey = 108. The picture on the right is

generated by assuming the v-class and the left picture assuming
the s-class state. The additional parameters for the computation
of the key rates are taken from Table B.2.
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Figure 5.16.: The plot shows the key rate of the asymmetric protocol provid-
ing security against coherent attacks as a function of the dis-

tance d [km] at Bob’s side for direct reconciliation, q
key
X = 1 and

Nkey = 1010. The blue curve shows the key rate when the key is
generated from the phase quadrature and the red one for the ampli-
tude quadrature respectively. The picture on the left is generated
by assuming the s-class state and the picture on the right assuming
the v-class state. The additional parameters for the computation
of the key rates are taken from Table B.3.
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The CV-QKD protocol providing security against coherent attacks allows at
the most for 6.5 km propagation in fibre for Nkey = 1010 key generation sam-
ples. This is experimentally very involved as N ≥ Nkey time steps can eas-
ily exceed the stable runtime of the experiments under consideration. Note
that this protocol provides higher security than the protocol which is secure
against collective attacks and is thus less resilient to noise which is the rea-
son for these circumstances. Furthermore, it can only be used in combina-
tion with direct reconciliation which again decreases the secure key rate. This
can be seen when comparing the results of this protocol with the graph where
the collective key rate is plotted for direct and reverse reconciliation.

The collective protocol with reverse reconciliation performs better than its
variant with direct reconciliation allowing for a propagation through at the
most 33 km of fibre. Remember that the collective protocol requires the state
to be Gaussian which might not be the case as we already discussed in Sec-
tion 3.4.6. We emphasised in Section 5.5.1 a work-around to this problem
which maintains the Gaussianity of the bipartite state even when phase noise
is present in the fibre at the cost of a higher Gaussian damping. Note again
that the protocol providing security against coherent attacks considers all at-
tacks that are allowed by quantum mechanics and does not require the state
to be Gaussian. Hence the security of the protocol can not be compromised
by phase noise but its key rate is, of course, reduced by this effect.

5.6. Discussion and Outlook

We rewrote the symmetric CV-QKD protocols providing security against col-
lective and coherent attacks of Dr. F. Furrer [FFB+14] to allow for asymmetric
basis choice and combined them in this chapter with a full runtime anal-
ysis of the setups. We showed, that the key is always best generated from
only one quadrature (i.e. the quadrature providing a higher secure key rate)
if βEC = const which is an idealised assumption. In Appendix A.2 we com-
bined the asymmetric protocols with a more realistic model of a reconcilia-
tion scheme with βEC 6= const and show that it is sometimes better to gener-
ate the key from a mixture of the basis. A proper model of the reconciliation
scheme used to correct the errors should always be applied when analysing
the performance of QKD protocols. We discuss a new reconciliation scheme
which is designed for the CV-QKD protocols which we discussed in this chap-
ter in the next chapter 6.

Asymmetric protocols allow to generate a secure key in parameters ranges
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where a symmetric CV-QKD protocol can not generate a key at all. They ad-
ditionally allow to optimise the amount of key generation samples Nkey in one
run Trun of the experiment which increases the key rate due to the finite size
effects of the security analysis. The simulations showed that the asymmetric
CV-QKD protocols of family F 2

2,TM ,TS
optimised |Ksec| (and ksec) significantly.

Note especially, that the proposed runtime analysis of QKD-protocols repre-
sents furthermore a good certification method which can be used to compare
different experimental realisations theoretically.

The performance of the runtime protocols of the family F 2
2,TM ,TS

in experiment
depends heavily on TM and TS . It is possible to arrive at TS ≈ 0 by using two
detectors together with a perfect redirection of the state which would call for
additional technical resources. But even in this case, asymmetric protocols
are, for certain parameter regions, superior to comparable symmetric pro-
tocols with perfect switching as shown in Section 5.3.3. We thus propose to
implement experimental realisations which allow for a runtime protocol of
family F 2

2,TM ,TS
and suggest to combine it with an asymmetric QKD protocol.

We showed that a local urban fibre-based QKD architecture is possible. Op-
timising the asymmetric coherent or collective protocol using the runtime
analysis and s-class states allows for distances up to 33 km when using the
collective protocol and 6.5 km when using the coherent protocol which is
sufficient for an urban QKD network. If we compare these results with the
distances which are possible using certain DV-QKD setups like, for example,
satellite-based BB84 QKD [BMSH+13] or free-space BB84 QKD [UTSM+07]
(144 km) we see that DV-QKD performs still better than the CV-QKD (asym-
metric) protocols we analysed in this thesis.

Note that there is progress in the field of CV-QKD which we did not cover in
this thesis. Dr. F. Furrer developed a CV-QKD protocol which is secure against
coherent attacks under reverse reconciliation which allows for a maximum
distance of 16 km in a fibre. The maximum distance of CV-QKD setups can
be improved by inventing new security proof techniques and highly efficient
reconciliation methods. We will discuss an efficient reconciliation scheme
which is especially designed for the CV-QKD protocols which we analyse in
this thesis in the next chapter.
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6. Key Generation

6.1. Overview and Contributions

First we discuss an experiment in which a key secure against collective at-
tacks was generated using standard binary LDPC reconciliation in Section
6.2. We use this example to motivate our new hybrid reconciliation proce-
dure which we describe in this chapter from Section 6.3 onwards. Note that
similar ideas (sliced reconciliation) have already been proposed for binary-
LDPC [VACC06].

The structure of the new hybrid reconciliation scheme is specially designed
for the Gaussian QKD protocols which are described in Chapter 5. This chap-
ter is thus a contribution to the generation of an actual finite secure key. We
show how the characteristics of the Gaussian regime can be exploited to in-
crease the efficiency of standard reconciliation schemes.

The new hybrid reconciliation algorithm we propose is based on one-way
communication and is divided into two steps. The first step exploits the Gaus-
sian character of the errors and the second step corrects the errors left by the
first step as explained in Section 6.3.1. We provide a basic analytic description
and a full numerical simulation of the analysis of the first step in the follow-
ing sections. This allows us to analyse the communication cost of the second
step, by assuming non-binary LDPC reconciliation, as a function of the re-
sults of the first step as we show in Section 6.3.5. We continue in Section 6.3.6
by explaining the usage of the new hybrid reconciliation in an experiment
where a key was generated which is secure against coherent attacks.

The chapter concludes with a detailed technical analysis of the characteris-
tics of the hybrid reconciliation in Section 6.3.7 and a discussion.

6.2. Motivation

We discuss an experiment in which we used binary reconciliation to generate
a key which is secure against collective attacks. Note that the key generation
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protocol is the same for the protocol providing security against coherent at-
tacks. We use this example to introduce the notation of this chapter, to ex-
plain the key generation in more detail and to motivate the hybrid reconcili-
ation we propose in this chapter.

6.2.1. Experiment Secure Against Collective Attacks

We start with an experiment which was realised as part of the collaboration
Crypto on Campus [Ebe13]. An s-class state was used in that experiment to
extract a secure key using the symmetric CV-QKD protocol which provides
security against collective attacks. We shortly review the CV-QKD protocol as
explained in Section 4.5 and especially focus on the key generation (see Sec-
tion 4.4) and the reconciliation (as described in Section 4.7). Note that the
runtime setup of the experiment is member of F 2

2,TM S
as explained in Section

5.3.1.

We begin with the basics of the table top experiment from which the raw key
was generated. The two sources emitted squeezed states with sqz1 = 10.3 dB,
asqz1 = 14.9 dB and sqz2 = 10.9 dB, asqz2 = 15.3 dB (see Section 3.4.1). The
covariance matrix, as measured in the experiment by homodyne detection,
reads1

γAB =





19.696 (0) −19.678 (0)
(0) 23.311 (0) 23.708
−19.678 (0) 19.817 (0)
(0) 23.708 (0) 24.314



 .

The important characteristics of the state are given in Table B.1. The remain-
ing parameters of the symmetric protocol secure against collective attacks
are given in Table B.5.

To generate a secure key from the setup, we have to perform classical post
processing. As the experiment was realised on one table (table-top exper-
iment) we chose to use direct reconciliation to correct the errors in Bob’s
raw key. Note again that we used standard binary LDPC to correct the er-
rors in the raw keys of Alice and Bob after mapping their partitioned samples
to the bit sequences. In other words, we corrected the errors on the level of
Bit [Bin [KAB ]]. We used a key generation alphabet of size |GF

�
2d
�
| = |χKG| =

2d with d = 6 such that it can later be easily mapped to χBit.

1The values in parenthesis were not determined. We refer to [Ebe13] for further information
about how the covariance matrix was reconstructed.
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We know that Alice’s and Bob’s synchronised key generation samples KAB =��
xA,i , xB ,i

		
stem from them both measuring the amplitude or the phase

quadrature of the beam via homodyne detection with weight q
key
X = 0.5 (q

key
P =

0.5). We recall here shortly the key generation grid

GKG =
�

I1, I2, . . . , I64

	
= {{−α,−α+δ} , . . . ,{α−δ,α}}

which is defined by the spacingδ and the cut-off parameterα. The size of the
key generation alphabet induced by the grid is chosen to be |χKG| = 2 ·α/δ.
We write the partitioned correlated samples as Bin [KA] (Bin [KB ]) denoting
Alice’s (Bob’s) raw key.

Let us write the mapping from Alice’s and Bob’s partitioned synchronised
measurement samples

�
Ii

	
j
=Bin

�
{KA} j

�
∈χKG ∀ j ∈

�
1, 2, ..., Nkey

	
�

Ik

	
j
=Bin

�
{KB } j

�
∈χKG ∀ j ∈

�
1, 2, ..., Nkey

	

to the bit sequences

n
χBit

i

o
j
=Bit

��
Ii

	
j

�
∈χBit ∀ j ∈

�
1, 2, ..., Nkey

	

n
χBit

k

o
j
=Bit

��
Ik

	
j

�
∈χBit ∀ j ∈

�
1, 2, ..., Nkey

	

with i , k ∈
�

1, 2, ..., |χKG|
	

. The mapping must fulfill the following restriction
to be optimal:

Hamming distance:
If Alice and Bob measure in neighbouring partitions

�
Ii

	
j

and
�

Ik=i+1

	
j
, the

distance between their alphabet elements should be equal to the Hamming

distance of the corresponding bit sequences
¦
χBit

i

©
j

and
¦
χBit

i+1

©
j
:

���mod2

h
χBit

i
+χBit

i+1

i��� !
=
��Ii − Ii+1

��= 1 ∀
i∈
¦

1,2,...,|χKG|−1
©.

This minimises the bit error rate (BER) of the resulting raw keys of Alice and
Bob. This restriction is important as the number of bits disclosed within the
reconciliation step is proportional to the BER. By minimising the BER we
minimise the communication cost of the binary LDPC reconciliation. The
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restriction is fulfilled by using the so called Gray code construction [Gra53]
over GF

�
2d
�
.

We present here a typical Gray code of dimension d = 2

χBit =

��
0
0

�
,

�
1
0

�
,

�
1
1

�
,

�
0
1

��

which fulfils the restriction discussed above (see Figure 6.1). Remember that
during the process of the key generation Bob’s raw key inherits the errors
which stem from the Gaussian correlation function as is described in Sec-
tion 4.4.1.

(0,0) (0,1) (1,1) (1,0)

+α0-α

x

I1 I2 I3 I4

P(x)

Figure 6.1.: A Gray code construction for GF
�
22
�

in phase space. The BER is
minimised with respect to the alphabet samples which are measured
by Alice and Bob.

For the experiment we chose d = 6 and found a positive secure key by omit-
ting the alphabet elements of Alice and Bob via post selection of the partitions
27, 29, 31, 33, 35 and 37 as described in Section 4.3. This decreased the BER to
a level where the amount of disclosed bits during the reconciliation was small
enough to allow for a positive secure key after privacy amplification.

Although a larger key generation alphabet |χKG|would lead to a smaller spac-
ing δ = 2 ·α/|χKG| and thus to a higher potential secure key rate kpot, the re-
sulting additional errors in the raw key would require too many additional
bits to be disclosed during the binary reconciliation, resulting in a secure key
rate of zero for d > 6. This effect follows directly from the usage of binary
LDPC reconciliation, which has the disadvantage that it operates bit-wise on
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possibly correlated bits. In this setup d = 6 bits are generated from one mea-
surement. In this sense binary reconciliation does not make use of the cor-
relation between the six bits of one measurement which renders its perfor-
mance less efficient for increasing |χKG|. Note that this is not the case when
using non-binary reconciliation which operates directly on the key genera-
tion alphabet instead as we will show later.

The software for the classical post processing (i.e. the reconciliation) of the
raw keys of Alice Bit [Bin [KA]] and Bob Bit [Bin [KB ]] was written by Dr. C.
Pacher from the Austrian Institute of Technology. The size of the raw key is
|KA |= |KB |= 1.15 ·108 with a reduction rate of ksec = kpot− ℓEC

�
Nkey

�
/Nkey =

0.102 Bit (during privacy amplification) resulting in

|K Bit
sec |= 11.948 MBit

which is equal to ≈ 1.494 MByte secure key which could be extracted from
the experimental outcomes.

The efficiency of the binary LDPC used to reconcile the raw key is βEC =

0.964 when normalised to the analytic estimation of binary reconciliation.
But when we compare the result to perfect non-binary reconciliation the im-
plementation has an efficiency of onlyβEC = 0.440. This indicates that a non-
binary reconciliation on the level of χKG with efficiency βEC = 0.9 would dis-
close less information ℓEC

�
Nkey

�
, which would increase the secure key rate

ksec = kpot− ℓEC

�
Nkey

�
/Nkey significantly.

6.3. Hybrid Reconciliation

Analysing the key generation described in Section 6.2.1 for possible optimisa-
tions we learned that many problems can be solved by just using non-binary-
LDPC reconciliation on Bin [KAB ] instead of Bit [Bin [KAB ]]. This means that
the partitioned measurement samples should ideally be corrected before they
are mapped to their bit sequences. This decreases the communication cost
within the classical reconciliation drastically.

The motivation of the new hybrid reconciliation we propose in this chapter
is to increase the efficiency and decrease the computational complexity of
the reconciliation scheme [DF07] by exploiting the Gaussian character of the
errors in the partitioned outcomes of Alice and Bob. We introduce two inde-
pendent steps to achieve this task. This is why we refer to this reconciliation
scheme as hybrid reconciliation.
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6.3.1. General Description

Here we sketch the hybrid reconciliation protocol which is customised for the
CV-QKD protocols of Section 5.4. We do not have to make any assumptions
about the security level (collective or coherent) as the key generation is the
same in both cases as described in Section 4.4. We detail the two steps of the
hybrid reconciliation in this section.

The idea of the first step of the hybrid reconciliation scheme is to exploit the
fact that the outcomes of Alice and Bob are strongly correlated in the sense
that if Bob measures some value xB ,i , Alice’s conditioned state is described by
Equation 4.7. Bob uses this knowledge about the conditioned state and his
outcome to estimate Alice’s raw key element. A second reconciliation step
is needed if this estimation does not correct all the errors between Alice and
Bob’s partitioned raw key elements.

We describe the two steps of the hybrid reconciliation by focusing on one
quadrature alone. The other quadrature can implemented analogously.

6.3.1.1. Step 1

We have knowledge about the origin of noise (see Section 4.4.1) due to which
Bob’s key elements differ from the reference (Alice). As Alice represents the
reference in direct reconciliation, she sends Bob some information about her
outcome. Bob uses this information in the estimation of the first step to rec-
oncile his raw key element using his knowledge about the origin of noise
(conditional probability) and his actual measurement outcome. As the noise
is described by a Gaussian distribution around Bob’s measurement outcome,
different partitions have different probabilities to be measured by Alice ac-
cording to her conditional state (see Figure 6.2). Note that this is, at this level,
a function of only the distance of their (partitioned) measurement samples.
The size of the key generation alphabet used for the partitioning is |χKG|. We
now introduce two additional alphabets χ1 and χ2 such that

|χKG|= |χ1| · |χ2|.

We combine the alphabets such that χ1 =
�

1, 2, ...|χ1|
	

represents a coarse

graining of χKG with χ2 =
�

1, 2, ...|χ2|
	

enumerating the different elements of
χKG lying in every of those coarse grained partitions as explained in Figure
6.3.
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We can now write every partitioned measurement outcome of Alice and Bob
in Bin [KAB ] as

{Bin [KA]}i =αA,i +
�
βA,i −1

�
· |χ2|

{Bin [KB ]}i =αB ,i +
�
βB ,i −1

�
· |χ2|

with α j ,i ∈χ2 and β j ,i ∈χ1.

Bin[KB]

Bin[KA]

Figure 6.2.: This figure shows all combinations of Alice’s and Bob’s partitioned
alphabet elements Bin [KAB ]. The probability of measuring a specific
combination is coded in the levels of grey of the corresponding box
(the darker, the more probable).

For this decomposition Alice and Bob both do the following computations

α j ,i =mod|χ2|
��

Bin
�
K j

�	
i

�
∈χ2

β j ,i =

�
Bin

�
K j

�	
i
−mod|χ2|

��
Bin

�
K j

�	
i

�

|χ2|
+1 ∈χ1

with j ∈ {A, B } for all i ∈
�

1, 2, ..., Nkey

	
samples.

The main ingredient of our idea is that Alice communicates every αA,i sub-
sequently to Bob over the authenticated classical channel. As this is one way
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classical communication, the first step of the hybrid reconciliation fulfils the
requirements of direct reconciliation. Bob corrects his noisy variable βB ,i

sample-wise using the following maximum likelihood estimator

eβB ,i =maxβB ,i

�
P
�
βB ,i |αA,i ,αB ,i ,βB ,i

��
, (6.1)

which exploits the knowledge of the conditional Gaussian distribution func-
tion. Finally Bob replaces his αB ,i by setting αB ,i = αA,i . Note that the es-
timator is especially designed to correct all the noise in α j ,i and to use the
knowledge about the origin of noise (conditional probability) to additionally
correct some noise in β j ,i . We discuss two maximum likelihood estimators
(the simple and the extended estimator) in Section 6.3.3.

21 3 4 {
χ2

1 2 3 4...

5

χ1

-α

Figure 6.3.: The hybrid reconciliation ansatz. In this example the key generation
grid GKG is divided into two other grids which correspond to the
alphabets χ1 and χ2. The specific arrangement allows for a unique
description of Alice’s and Bob’s outcome as linear function of the
elements of the two additional alphabets.

We rewrite Bob’s partitioned measurement outcomes after the first step as

{Bin [KB ]}i =αA,i +
�
eβB ,i −1

�
· |χ2|

where eβB ,i ∈χ1 is the last noisy variable left in this decomposition. Note, that
the first step of the hybrid reconciliation is not affected by the finite amount
of samples generated in one run of the setup, as it operates sample-wise on
the single partitioned outcomes of Alice and Bob by construction. Its effi-
ciency is thus not influenced by finite-size effects.

In principle Alice and Bob could correct all their errors by only performing
this first step of the hybrid reconciliation using very large |χ2| → |χKG|. But
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the communication cost of log2

�
|χ2|

	
bits per sample would render this step

to be very inefficient in this case. In most of the realistic QKD setups they
cannot do this because too many bits would have to be communicated, ex-
ceeding the potential secure key rate kpot. They are hence left with reduced

but non-vanishing noise in eβB ,i and thus Bin [KB ] has to be furthermore cor-
rected in a second step.

Note that, during the first step of the hybrid reconciliation, the size of all the
involved alphabets is arbitrary up to |χKG|= |χ1| · |χ2|which is an extension of
the idea of sliced reconciliation as described in [VACC06], where only Galois
fields and binary LDPC were analysed2.

6.3.1.2. Step 2

The noise in χ1 which remains after the first step can, in principle, be cor-
rected by some arbitrary one-way reconciliation scheme. We propose the us-
age of non-binary LDPC algorithms as usually |χ1|> 2. We analyse the noise
remaining after the first step in the next sections and use the Shannon en-
tropy to estimate the communication cost of the second step analytically as
described in Section 4.7.4.

6.3.2. Analytic Description

A full analytic description of the first step of the new hybrid reconciliation
scheme, as detailed in Section 6.3.3, is complicated. We implemented the
first step instead in a numerical simulation which we explain in Section 6.3.4
and use this analytic description to compare the numerical simulation with
two steps with non-binary LDPC reconciliation in one step and furthermore
to validate the simulation results whenever possible.

We focus again on outcomes of only one of the two possible measurement
quadratures, say the amplitude measurement X , in this analytic description
of the first step of the hybrid reconciliation. The phase quadrature can be
analogously implemented if needed.

We start with the probability distribution function of Alice’s measurement
outcome xA,i conditioned on Bob’s outcome xB ,i . Recall that the bivariate
probability function (Wigner function, see Section 3.2.1) describing Alice’s

2The variable β ∈ χ1 is, in sliced reconciliation terminology, denoted as most significant
information and α ∈χ2 is called the least significant information.
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and Bob’s synchronised measurement samples is

P(xA,i , xB ,i ) =Wρ

�
γX

AB

�
(6.2)

=
1

(2π)n
q

det
�
γX

AB

� exp

�
−1

2
~ξT (γX

AB
)−1 ~ξ

�
,

where

γX
AB
=

�
λA CX

CX λB

�

is the covariance matrix describing Alice’s and Bob’s synchronised amplitude
measurements. Bob knows the joint probability density (see Equation 6.2)
and his measurement outcome xB ,i . The conditional probability function is
normally distributed by

P(xA,i |xB ,i ) =N (µC (xB ,i ),λA|B )

with (conditional) mean and variance

µC (xB ,i ) := E (xA,i |xB ,i ) = xB ,i

CX

λB

, (6.3)

λA|B := V (xA,i |xB ,i ) =
λAλB −C 2

X

λB

.

Notice especially that the conditional variance λA|B is constant and does not
depend on the value of the measurement result xB ,i as already explained in
Section 4.4.1.

We combine the conditional probability density in the following with the key
generation grid. We describe the probability of Alice’s measurement outcome
xA,i lying in Ik = Bin

�
xA,i

�
conditioned on Bob’s outcome xB ,i . The condi-

tional probability that Alice’s measurement is in interval Ik given Bob’s mea-
surement result xB ,i is described by3

3The cumulative distribution function FX (x ) = p (X ≤ x ) of the normal distribution N (µ,σ2)

is F (x ;µ,σ) = Φ
�

x−µ
σ

�
= 1

2

�
1+Erf

�
x−µp

2σ2

��
and

∫ b

a
P(KA |KB )d xA,i = F (b ;µC ,λB |A ) −

F (a ;µC ,λB |A ) (see [BSMM00]).
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P(Bin
�
xA,i

�
k
|xB ,i ) =

∫

Ik

P(xA,i |xB ,i )d xA,i (6.4)

=
1

2
Erf

�
xk+1

�
Ik+1

�
−µC (xB ,i )Æ

2λA|B

�
− 1

2
Erf

�
xk (Ik )−µC (xB ,i )Æ

2λA|B

�
.

Note that if the marginal distributions of Alice and Bob have variances λA 6=
λB , two different key generation grids are needed to achieve optimal corre-
lation between their raw keys. We choose to maintain one grid GKG for both
and scale Bob’s outcomes such that λA = λB instead. In reverse reconcilia-
tion Alice’s outcomes would be scaled. We discuss the process of scaling in
Section 6.3.7.1 in wider detail.

6.3.3. Estimators

We explain in this section two different estimators which are possible in the
first step of the hybrid reconciliation. The choice of estimator depends on
|χ2| being either equal or odd. If |χ2| is large enough, the two estimators sat-
urate to the same results as we will show later in Section 6.3.4.

Let us now explain the two estimators:

Extended estimator (even |χ2|):
In the case where |χ2| is even, the estimator could produce two minima of
equal probability for different Ik ∈ χ1. In this case Bob sends Alice a signal
with the request of repeating the first step of the hybrid reconciliation on a
broader grid of size |χ̃1|= 1/2·|χ1| and larger |χ3|= 2·|χ2|. This avoids in most
cases two maxima of the estimator and allows Bob to successfully reconcile
with the position of Alice in χ1 with higher probability. This process can be
repeated iteratively until Bob no longer finds two maxima any more. One can
show that already one repetition is enough to achieve optimal efficiency. The
extended estimator is depicted in Figure 6.4.

Simple estimator (odd |χ2|):
Another idea of avoiding two minima of same probability is by assuming |χ2|
is odd. The simple estimator is depicted in Figure 6.5.

If the partitioned outcomes are already perfectly correlated the estimators
have no effect by their construction. Note, that we disclose log2

�
|χ2|

�
bits for

each sample of Alice and Bob during the first reconciliation step even when
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their outcomes are already perfectly correlated I A
k = I B

k . But as the estimator
is especially designed for the origin of errors (see Section 4.4.1) and for the re-
quirements of the CV-QKD protocols we discuss in this thesis, it has very high
efficiency for the appropriate choice of its parameter range (i.e. large |χKG|)
as we will show later in Section 6.3.6. The noise in Bob’s raw key is completely
reduced to βB ,i ∈χ1 after the first step.

BII A

B

21 3 4{
A

1 2 3 4...

A A

χ2

χ1

I

{χ3

BA

1 2...

21 3 4 65 7 8

-α

χ1
~

Figure 6.4.: Extended estimator: This figure explains the maximum likelihood
estimator of the first step of the hybrid reconciliation when |χ2|
is even. Alice communicates her position αA,i in the grid χ2 and
Bob computes the distances between his position and Alice’s possi-
ble outcomes and chooses the one with minimal distance (highest
probability). Two equal probabilities (red circles) as outcome of
the estimator are possible in this situation. In the first and already
optimal iteration of the extended estimator (II), Alice sends her po-
sition in a broader grid of size |χ3|= 2∗|χ2| and Bob recomputes his
probabilities. The probabilities for the Ik are correct with a higher
probability (red circle).
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21 3 4 {
χ2

A A

1 2 3 4...

A

5

χ1

Figure 6.5.: Simple estimator: This figure explains the maximum likelihood esti-
mator of the first step of the hybrid reconciliation when |χ2| is odd.
Alice communicates her position αA,i in the grid χ2. Bob computes
the distances between his position and Alice’s element of χ2 in the
different grid χ1 and chooses the element of χ1 which provides a
minimal distance (maximal probability, red circle).

6.3.4. Simulation

We implemented the full numerical simulation of the first step of the recon-
ciliation in Mathematica and used the simplified analysis which is described
in Section 6.3.2 to verify the results for certain sets of parameters. We assume
non-binary LDPC reconciliation in the second step and use the results of the
first step to describe the communication cost of the non-binary LDPC recon-
ciliation analytically.

The key generation and the partitioning is discussed in detail in the Sections
4.3 and 4.4. We drop the assumption |χKG|= 2d , hence allowing for key gen-
eration alphabets of arbitrary size as long as |χKG| = |χ1| · |χ2| and focus on
only one quadrature.

The simulation starts by generating Nkey = |KAB | correlated raw key measure-

ments {KAB }i =
�

xA,i , xB ,i

	
for Alice and Bob from the Wigner distribution

function according to γX
AB

. After partitioning the correlated measurement
samples, Alice and Bob hold each a raw key with Bin [KA] 6= Bin [KB ] consist-
ing of elements of the key generation alphabetχKG. We now rewrite every raw
key element as linear combination of the elements of αk ,i ∈ χ2 and βk ,i ∈ χ1

with k ∈ {A, B } as explained in Section 6.3.1.1. Alice communicates αA,i over
an authenticated classical channel to Bob who performs the first step of the
hybrid reconciliation using one of the maximum likelihood estimators which
are described in Section 6.3.3. The question of which maximum likelihood
estimator is to be used depends on |χ2|.
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Figure 6.6.: The partitioned synchronised outcomes Bin [KAB ] of Alice and Bob
for |χKG|= |χ1| · |χ2|= 27 ·7= 896. The thick blue line denotes the
perfectly correlated samples. All the other points represent samples
which are less correlated (red). The task of the hybrid reconciliation
is to correct all outcomes to lie on the blue line. For this figure we
used only Nkey = 5000 samples for the purpose of presentation.

In this section we analyse the behaviour of the hybrid reconciliation as a func-
tion of |χ2| ∈ {1, 2, ...50} and fix α = 45 and |χ1| = 27 = 128 if not otherwise
noted. The size of the key generation alphabet is now |χKG|= 27 · |χ2| and the
spacing scales with δ

�
|χ2|

�
= 2−6 ·α/|χ2|. We assume an efficiency of β2 = 0.9

of the non-binary LDPC in the optimal second step with one iteration when
the estimator (see Equation 6.1) produced two equal maxima.

In the simulation we use the following covariance matrix describing the bi-
partite state of Alice and Bob as an example

γAB =





5.06 0.01 4.95 0
0.01 5.06 0 −4.95
4.95 0 5.06 0.01

0 −4.95 0.01 5.06





which reflects a proper scaling of the samples and use only the amplitude
measurements for the key generation. A full collection of the parameters of
the simulation is given in Table B.6. We chose the parameters and the covari-
ance matrix as they allow us to discuss the different effects of the estimators
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Figure 6.7.: The number of imperfectly correlated measurement samples (#Er-
rors) of the raw key samples as a function of |χ2| normalised to
Nkey. The values of #Errors are colour coded for χ2 odd (even).
One can see that already for small |χ2| many samples are imperfectly
correlated. For increasing |χ2| →∞ the number of errors tends to
unity as the spacing δ

�
|χ2|

�
→ 0.

as we will show later.

Raw key generation:
Let us at first focus on the partitioned measurement samples of Alice and Bob
before the reconciliation. The partitioned and synchronised bit sequences
Bin [KAB ] of Alice and Bob are plotted in Figure 6.6 for |χKG| = 27 · 7 = 896.
The simulation shows that under these circumstances already ≈ 91% of the
partitioned samples are imperfectly correlated.

We can find this value in Figure 6.7 where we plot the number of synchronised
samples that are imperfectly correlated as a function of |χ2|. The amount of
samples which are imperfectly correlated saturates to unity for |χKG| → ∞.
Very high alphabet error rates are typical for key generation of the CV-QKD
protocols that we discuss in this thesis.
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Figure 6.8.: The partitioned synchronised outcomes Bin [KAB ] of Alice and Bob
for |χKG|= |χ1| · |χ2|= 27 ·7= 896 and α= 45 after the first step of
the hybrid reconciliation. The thick blue line denotes the perfectly
correlated samples, all the other points represent samples which are
less correlated (red). The outcome of the first step of the hybrid
reconciliation is that the noise is reduced to χ1 which is reflected by
the parallel lines with distance |χ2|·δ

�
|χ2|

�
to the next neighbouring

line. This graph shows that there is still some noise left in χ1. For
this figure we used only Nkey = 5000 samples for the purpose of
illustration.

First step: Let us now focus on the results of the different estimators of the
first step of the hybrid reconciliation. Figure 6.8 shows the results of the first
step on the partitioned and synchronised samples of Alice and Bob. The
noise (the errors between Alice’s and Bob’s raw keys) is reduced to βB ,i ∈ χ1

as denoted by the parallel lines. Note that the parallel lines always have a
distance of |χ2| ·δ

�
|χ2|

�
to the next neighbouring line. This behaviour is inde-

pendent of the estimator which is used in the first step.

Figure 6.9 shows the number of the imperfectly correlated samples of Al-
ice and Bob by comparing the simple estimator with the extended estimator
whenever possible (|χ2| even). In this simulation the extended estimator per-
forms always better than the simple estimator, especially for small |χ2|. The
performance of the simple estimator increases with |χ2| and saturates to a
constant value for δ

�
|χ2|

�
→ 0.

130



0 10 20 30 40 50
»c2»0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

ÒErrors

Figure 6.9.: The number of imperfectly correlated samples of Alice and Bob
(#Errors) as a function of |χ2| after the first step of the hybrid
reconciliation. The values are colour coded for χ2 odd; even, using
the simple estimator; even, using the extended estimator. Note that
in the case of |χ2| = 1 no information is sent during the first step
which leaves the #Errors unchanged (compare with Figures 6.7 and
6.11).

Let us discuss the communication cost of the first step ℓEC,1/Nkey as a func-
tion of |χ2|, as shown in Figure 6.10. The communication costs of the sim-
ple estimator are given by log2

�
|χ2|

�
. In this simulation the extended esti-

mator has a better performance at a price of higher communication costs
log2

�
k · |χ2|

�
= log2

�
|χ3|

�
with k = 2 (i.e. one iteration, if needed). The al-

phabet χ3 denotes here the larger grid which is described in Figure 6.3 and
used during the first and only iteration in the simulation. As χ2 ⊂ χ3 and
|χ3|= 2 · |χ2| Eve learns only one bit more when the iteration is executed. The
communication costs of all estimators coincide for increasing |χ2|, the differ-
ences are hence only significant for small |χ2|.

As expected, the first step of the hybrid reconciliation reduces this value sig-
nificantly but a second step is needed to reconcile the noise in χ1.
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Figure 6.10.: We see here the communication cost ℓEC,1/Nkey of the first step
as a function of |χ2|. The values of ℓEC,1/Nkey are colour coded
for χ2 odd; even, using the simple estimator; even, using the ex-
tended estimator. The communication costs of the extended es-
timator are, as expected, always higher than those of the simple
estimator, especially for small |χ2|. This comes from the fact that
the extended estimator allows for iterations on a larger alphabet
than |χ2| thereby disclosing more information. The communication
costs of the simple estimator are, in contrast, always log2

�
|χ2|

�
.

Second step: We assume non-binary LDPC reconciliation to correct the re-
maining errors in Alice’ and Bob’s raw key’s Bin [KAB ]. The communication
cost of the reconciliation operating only onχ1 in the second step is computed
according to Section 4.7.4. We compute the weights with which each of the
parallel lines as sketched in Figure 6.8 appear which allows us to estimate the
communication cost of the second step. We chose the efficiency of the sec-
ond step of non-binary LDPC reconciliation to be β2 = 0.9. All synchronised
samples of Alice and Bob are fully correlated at the end of the hybrid recon-
ciliation, i.e. after passing both steps4.

Figure 6.11 shows the communication costs ℓEC,2/Nkey of the second step as

4Real-life implementations of reconciliation schemes sometimes still result in different raw
keys for Alice and Bob. This is checked in the confirmation procedure as explained in
Section 4.3. Real-life implementations thus result in identical raw keys of Alice and Bob
with a probability 1−ǫFER < 1 where FER denotes the amount of frames (parts of the raw
key’s) of Alice and Bob that can not be successfully reconciled. We discuss this in Section
6.3.7.
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Figure 6.11.: The communication costs of the second step ℓEC,2/Nkey assuming
non-binary LDPC with an efficiency β2 = 0.9 operating on χ1 as a
function of |χ2|. The values of ℓEC,2/Nkey are colour coded for χ2

odd; even, using the simple estimator; even, using the extended
estimator. Note that the simple estimator operating on even |χ2|
generates the highest ℓEC,2/Nkey due to the possible uncertainty
of two maxima in the estimator (see Section 6.3.3).

a function of |χ2| for the simple and the extended estimator. We see that the
communication cost of the simple estimator for even |χ2| is the highest due to
the possible two maxima. Its communication cost for odd |χ2| saturates very
quickly at ≈ 1.8 Bit and is more optimal due to the avoidance of two maxima
of the estimator. Note that the saturation value itself is a function of α and
γX

AB
. The extended estimator left less errors in the raw key which minimises

its communication costs in second step.

Let us focus on the total communication cost of the hybrid reconciliation as
a function of |χ2|, which is presented in Figure 6.12. One can see that the
communication costs show the largest differences for small |χ2|. This effect
becomes less significant for increasing χKG which makes sense as this in-
creases the resolution of the key generation grid during the simulation, which
renders two maxima of the estimator less probable. Note that even |χ2| still
produce slightly higher communication costs when using the simple estima-
tor. In this simulation all the estimators saturate to a common value for large
enough |χ2| ≥ 25 = 32. This means that even the simple estimator alone suf-
fices,in this simulation, for large enough |χ2|.
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Figure 6.12.: The communication cost of the hybrid reconciliation as a function
of |χ2|. The values of ℓEC,2/Nkey are colour coded for χ2 odd; even,
using the simple estimator; even, using the extended estimator.
One can see that the hybrid reconciliation has a better performance
when operating on even |χ2| using the simple estimator.

6.3.5. Results

Here we summarise and discuss the results of Section 6.3.4, where we analyse
the impact of the extended and the simple estimator on the hybrid reconcili-
ation as a function of |χ2| for α= 45 and |χKG|= |χ2| ·27, showing that the dif-
ference between the two different estimators becomes insignificant for large
enough |χ2| ≥ 25.

We compare in Figure 6.13 the communication cost of perfect non-binary
LDPC withβEC = 1 in one step (see Section 6.3.2) with the results of the simu-
lation which we presented in Section 6.3.4 in terms of the efficiencyβEC

�
|χ2|

�

of the hybrid reconciliation as a function of |χ2|. The efficiency of the hybrid
reconciliation is surprisingly high, as the simulation was primarily designed
for the purpose of a good illustration of the effect of the estimators, and sat-
urates for large |χ2| to βEC ≈ 0.95. The differences between the estimators
are most apparent for small |χ2| and vanish for large |χ2|. For even |χ2| the
extended estimator performs slightly better than the simple estimator. Note
that we used only one iteration when two maxima occurred in the extended
estimator. More iterations should increase the efficiency of the hybrid recon-
ciliation a little bit further.
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Figure 6.13.: This figure compares the communication cost of the hybrid recon-
ciliation with the analytic outcomes for perfect non-binary LDPC
as a function of |χ2|. The values of βEC are colour coded for χ2

odd; even, using the simple estimator; even, using the extended es-
timator. For |χ2| ≥ 5 the hybrid reconciliation achieves already an
efficiency of βEC ≥ 0.9 and saturates for |χ2| → 50 to βEC ≈ 0.95.
Note that in the case of |χ2| = 1 no information is sent during
the first step and the errors are all corrected in the second step
with an efficiency of β2 = 0.9, as reflected in this graph (the small
deviation from β2 6=βEC = 0.9 is a numerical artefact).

It can be shown that the first step of the hybrid reconciliation operates very
close to the Shannon limit with an efficiency of β1 ≈ 0.97. This is a little bit
counter intuitive as during the first step Alice communicates ℓEC,1/Nkey bits
for every sample even when the partitioned outcome of Bob is already per-
fectly correlated. This can be explained as the number of imperfectly corre-
lated partitioned samples of Alice and Bob is very large throughout the whole
simulation and saturates to unity for decreasing spacing δ

�
|χ2|

�
→ 0. It fol-

lows that almost no samples of Alice and Bob are perfectly correlated after
partitioning which is the reason for the high efficiency of the first step.

Note that the efficiency of the hybrid reconciliation is small for |χ2|= 2. This
comes from the fact that, when Alice’s element of χ2 does not coincide with
Bob’s, the estimator always produces two minima, as the distance between
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their elements is maximally 1. We suggest allowing for larger possible dis-
tance between Alice’s and Bob’s elements |χ2|> 2, together with the extended
estimator if needed or, even better, the simple estimator. This increases the
efficiency of the hybrid reconciliation. But as the key generation grids are
normally chosen such that χKG = GF

�
2d
�

in order to simplify the mapping
to the bit sequences of length d after reconciliation, we propose using the
extended estimator with multi-level iterations in this case. Note that the dif-
ference between the estimators becomes less significant for larger |χ2| and
|χKG|.

We use the hybrid reconciliation algorithm presented in Section 6.3.6 in a CV-
QKD experiment providing security against coherent attacks and show again
that large |χ2| are almost optimal.

6.3.6. Experiment Secure Against Coherent Attacks

The experiment we present in this section was realised as part of the collab-
oration Crypto on Campus. The symmetric CV-QKD protocol providing se-
curity against coherent attacks (see Section 4.6) was used to generate the se-
cure key [GHD+14]. The hybrid reconciliation scheme which is presented in
this section was implemented by Dr. C. Pacher from the Austrian Institute
of Technology and used to correct the errors between Alice’s and Bob’s raw
key in direct reconciliation. Note the runtime protocol of the experiment is
member of F 2

2,TM S
as explained in Section 5.3.1.

Remember that in the past experimental implementations of QKD protocols
providing security against coherent attacks required single photon prepara-
tion and detection, as QKD systems using amplitude and phase modulations
failed to provide the same security standard. We present here the first imple-
mentation of a QKD protocol using amplitude and phase modulations of an
optical field (s-class state). The experimental setup is explained in Section
3.3 and the parameters of the CV-QKD protocol (see Section 4.3) are shown
in Table B.7.

Remember especially that the CV-QKD protocol requires very large key gen-
eration alphabets |χKG| to maximise the potential key kpot of the setup. The

size we chose for this experiment was |χKG|= |GF
�
212

�
|= 212. The hybrid rec-

onciliation achieved an efficiency of about βEC ≈ 95% with |χ1| = |GF
�
25
�
| =

25 (most significant information) and |χ2| = |GF
�
27
�
| = 27 (least significant

information). As |χ2| = 27 we only used the simple estimator during the rec-
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onciliation. We chose the size of all alphabets such that they can be identified
with Galois fields which simplifies the mapping to the bit sequences after rec-
onciliation.

In this table-top experiment we generated about

≈ 97 MBit

secure key from ksec = 1.14 Bit, Nkey = 0.85·108 = |KAB | (Ntot = 2x 108 = |MAB |,
Npe = 1.15 · 108) synchronised samples using the hybrid reconciliation. This
is more than 1 bit per sample in the raw key and, thus, exceeds the theoretical
bound for QKD protocols using single photons.

6.3.7. Characteristics

The promising results of hybrid reconciliation in the CV-QKD experiment
providing security against coherent attacks and the simulation motivated the
technical analysis we present in this section. The software was implemented
by Dr. Jesus Martinez Mateo from the Universidad Politecnica de Madrid. The
collaboration provided a full analysis of the characteristics of the hybrid rec-
onciliation scheme (see [PMD+14]) which we present in the following sec-
tions.

We again focus on only one quadrature, say the amplitude, and begin in Sec-
tion 6.3.7.1 with a detailed description of the process of scaling Alice’s and
Bob’s measurement outcomes. We show that all covariance matrices can be
brought into a form where the local variances of Alice’s and Bob’s outcomes
areλA =λB = 1, whereby the covariance is described by a parameterρ ∈ [0, 1].
We use the scaling of the outcomes in this technical analysis for the purpose
of a more general presentation.

We continue in Section 6.3.7.3 with a description of the simulation and show
the results in the Sections 6.3.7.4 and 6.3.7.5. The results are discussed and
compared to other reconciliation schemes in Section 6.3.7.6.

6.3.7.1. Scaling

We explain in this section two different methods of scaling Alice’s and Bob’s
outcomes. The asymmetry between Alice’s and Bob’s marginal probability
density functions is described by their local variances λA and λB . As Alice al-
ways holds the sources and Bob is probably remote we usually have λA >λB .
Assuming the key generation grids of Alice and Bob to be G A

KG = G B
KG, it can
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happen that, although Alice’s and Bob’s measurement samples are perfectly
correlated, their corresponding partitioned measurement outcomes are dif-
ferent as described in Section 4.4.1.

We propose rescaling the measurement outcomes, such that λA = λB , to cir-
cumvent the above mentioned problem while maintaining one key genera-
tion grid GKG. Note that the scaling of the measurement outcomes only af-
fects the raw key generation and not the secure key analysis. In direct recon-
ciliation only Alice’s outcomes conditioned on Eve are relevant for the secu-
rity analysis, which allows us to rescale Bob’s outcomes (in reverse reconcili-
ation Alice’s outcomes are scaled).

We furthermore extend the idea of scaling to the situation where the vari-
ances of the marginals of Alice and Bob are λA =λB = 1 with covariance (cor-
relation coefficient) ρ ∈ [0, 1] and show that every covariance matrix can be
brought into this form. We use this description in the technical analysis of
the characteristics of the hybrid reconciliation. Note that the key generation
grid is not maintained when using this method of scaling the outcomes. The
key generation grid (and all affiliated parameters) have to be scaled accord-
ingly too.

1) Scaling to λA =λB :
We start with the covariance matrix of a general bipartite Gaussian state

γX
AB
=

�
λA CX

CX λB

�
.

The scaling we propose here can be used in all the CV-QKD protocols we dis-
cuss in this thesis because the marginal Gaussian distributions needed to ful-
fill the task can always be estimated from the outcomes which are disclosed
during parameter estimation and those which are sorted out during sifting.
Assuming direct reconciliation we locally scale Bob’s outcomes by

eKB =

p
λAp
λB

·KB

where KB are Bob’s outcomes that are later used in key generation. In case of
reverse reconciliation we scale Alice’s outcomes by

eKA =

p
λBp
λA

·KA .
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Having rescaled the measurement outcomes for the key generation by the
above factors, the covariance matrix (direct reconciliation) becomes

γX
1,AB
=

�
λ eCX

eCX λ

�
.

Note that the key generation grid is maintained in this method of scaling, as
only the outcomes of one participant (in direct reconciliation Bob’s and in
reverse reconciliation Alice’s) are scaled. The key generation grid is left un-
changed because we scale only the outcomes of the participant who does not
appear in the security analysis. Hence this scaling is the method of choice
when performing CV-QKD experiments using the protocols we discussed in
Chapter 5.

2) Scaling to λA =λB = 1:
We will show, that every Gaussian covariance matrix describing bipartite quadra-
ture measurements can be brought into the form

eγX
AB
=

�
1 ρ
ρ 1

�
. (6.5)

This representation also allows for equal key generation grids GKG on Alice’s
and Bob’s side, although GKG has to be scaled in addition to the outcomes.
This allows us to describe the hybrid reconciliation scheme in a simpler fash-
ion, as the only free parameter left in the representation of the bipartite Gaus-
sian state is the correlation coefficient ρ ∈ [0, 1].

Let us describe the scaling on the level of the corresponding estimated co-
variance matrix, which is in general

γX
AB
=

�
λA CX =ρ

p
λA

p
λB

CX =ρ
p
λA

p
λB λB

�

where ρ ∈ [0, 1]measures the strength of the correlation between Alice’s and
Bob’s outcomes (correlation coefficient). We assume direct reconciliation
and first rescale Bob’s entries locally such that his marginal distribution is
equal to Alice’s. The operator describing this on the level of covariance ma-
trices is

U1 =

 
1 0

0
p
λAp
λB

!
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which results in

γX
1,AB
=U1 ·γX

AB
·U T

1

=

�
λA ρλA

ρλA λA

�
.

In the second step we rescale Alice’s and Bob’s equal marginal distributions
by

U2 =

 
1p
λA

0

0 1p
λA

!

which results in

γX
2,AB
=U2 ·γX

1,AB
·U T

2

=

�
1 ρ
ρ 1

�
.

The only free parameter in this representation is the correlation coefficient
ρ ∈ [0, 1]. In realistic setups ρ < 1 because of finite squeezing of the sources,
as explained in Section 3.4.1. The correlation coefficient can only reachρ = 1
in the case of infinite squeezing of the sources, but ρ < 1 always, since the
generation of infinite squeezing requires infinite energy.

We use this representation furthermore to measure the strength of the cor-
relations between Alice and Bob in terms of ρ ∈ [0, 1]. The proposed method
of scaling the outcomes can in this sense also be used for the characterisation
of Gaussian bipartite states.

6.3.7.2. Signal to Noise Ratio

We use the correlation coefficientρ for a general description of the Gaussian
state when analysing the technical details of the hybrid reconciliation in Sec-
tion 6.3.7.3. But the parameter which is commonly used in the field is the
signal to noise ratio (SNR) in decibel. The bijective mapping from ρ to the
SNR is described as

SNR
�
ρ
�
=
ρ2

1−ρ2
.

The SNR in decibel is

SNR[dB]= 10 · log10

�
SNR

�
ρ
��

.
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Figure 6.14 shows the SNR in decibel [dB] as a function of ρ.
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Figure 6.14.: The SNR in decibel as a function of the correlation coefficient ρ.

We focus in the following section onρ ≥ 0.7 because the hybrid reconciliation
is especially designed for high signal to noise ratios (SNR[d B ]> 0).

6.3.7.3. Simulations

In this section we describe the basic setup of the simulations which are used
to fully analyse the hybrid reconciliation. Both steps have been fully imple-
mented. The first step has been realised using the simple estimator as we will
focus on large enough χ2 and ρ. As the first step has already been discussed
in wide detail we focus in this Section on the second step. We use regular
and irregular non-binary LDPC in the second step5. The basics of non-binary
LDPC are introduced in Section 4.7.3.

The simulations were performed to analyse the performance and the effi-
ciency of the hybrid reconciliation algorithm using regular and irregular non-
binary LDPC codes over finite (Galois) fields of order 2d1 , denoted by χ1 =

GF (2d1 ), in the second step. These codes are used for reconciling the frames
(i.e. the raw keys of Alice and Bob)

�
x , y

	
i
∈ KA × KB = KAB belonging to

two continuous random and correlated variables, denoted by X and Y with

5A LDPC matrix is regular if the number of ones is constant for every row and constant for
every column. Irregular LDPC matrices do not fulfill these restriction.
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i ∈
�

1, ..., Nkey

	
. The correlated variables are assumed to follow the bivari-

ate normal distribution which describes the correlation between Alice’s and
Bob’s measurement tuples as shown in Section 6.3.7.1. We set n = Nkey for
the purpose of illustration.

The non-binary LDPC decoding over χ1 = GF (2d1 ) was performed by using
a sum-product (belief propagation based) algorithm, as the one described in
[BD03, DF07], with a maximum of 50 decoding iterations (i.e. the syndrome
of a frame is calculated and verified after each decoding iteration and the al-
gorithm stops whenever the syndrome is validated or when the maximum
number of iterations is reached).

Note that while the order of the Galois field used for decoding is 2d1 , d =
d1 + d2 bits are used to identify each partition of the reconciliation interval
[−αEC,+αEC], where d2 is the number of less significant bits per symbol which
are disclosed in the first step of the hybrid reconciliation6 which corresponds
to a rate of R = 0 of this step7. Thus, the number of partitions (quantised val-
ues) is given by |χKG|= 2d1+d2 = 2d .

Good families of irregular non-binary LDPC codes for decoding over different
Galois fields, and adapted to the current reconciliation scheme, were opti-
mised using a differential evolution algorithm as the one described in [SS00].
Parity-check matrices for regular and irregular non-binary LDPC codes were
constructed using the progressive edge-growth algorithm described in [HEA05].
As in [HEA05]we constructed a binary LDPC matrix and then replaced every
entry with value one with a random variable which is chosen uniformly from�

1, 2, ...2d1−1
	

.

6.3.7.4. Performance

Initially, the Figures 6.15 to 6.17 show the performance of regular non-binary
LDPC codes for different number of partitions of the reconciliation interval.
In addition we show as horizontal top-axis the SNR in decibel (dB). The per-
formance is calculated as frame error rate (FER), i.e. the ratio of frames that
cannot be reconciled, and it is shown as a function of the correlation coeffi-
cientρ between X and Y , or equivalently the signal-to-noise ratio (SNR). The
frames that can not reconciled by non-binary LDPC are reconciled by open

6The cut-off parameter α of the CV-QKD protocols as discussed in Chapter 5 does not
necessarily have to be the same as in the reconciliation process. All the tuples that lie
outside of [−αEC,+αEC] are completely disclosed to avoid post selection. This allows to
optimise the hybrid reconciliation by differentiating between α and αEC.

7The coding rate R denotes the amount of disclosed bits via ℓE C = (1−R) ·n .
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communication over the authenticated channel. The reason is, that the CV-
QKD protocol providing security against coherent attacks does not allow for
post selection as explained in Section 4.6.
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Figure 6.15.: Frame error rate of non-binary LDPC decoding over GF (25 = 32) for
different coding rates R, from left to right in the figure R = 0.5,
R = 0.6, and R = 0.7. The frame length is n = 103 and the

interval half width is αEC = 8. The FER is shown as a function
of the SNR (bottom axis) and the correlation coefficient ρ (top
axis).

Figure 6.15 shows the performance as a function of the SNR in decibels (dB).
The correlation coefficient ρ between the frames which are to be reconciled
is also depicted in the figure. The order of the Galois field used for decoding is
25 = 32, and a short frame length of n = 103 symbols was considered for prac-
tical issues, i.e. lower computational complexity. As shown, |χ2| = 2d2 = 23

(brown curve) is large enough to achieve the near optimal performance even
for different coding (information) rates.

The Figure 6.16 also shows the performance for different number of parti-
tions of the reconciliation interval, but now comparing non-binary LDPC
decoding over different Galois fields. As previously, simulations were per-
formed using regular and short frame length non-binary LDPC codes, of n =
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103 symbols, and αEC = 8. As shown, the best performance is achieved as in
Figure 6.15 when |χ2|= 2d2 ≥ 23. Although the performance of only one cod-
ing rate is shown, R = 0.7, several coding rates for each Galois field were also
simulated to confirm this behaviour.
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Figure 6.16.: Frame error rate of non-binary LDPC decoding over GF (24 = 16),
GF (25 = 32), and GF (26 = 64) and coding rate R = 0.7. The
frame length is n = 103 and the interval half width is αEC = 8.
The FER is shown as a function of the SNR (bottom axis) and the
correlation coefficient ρ (top axis).

This d2 value has been empirically shown to be near optimal for different Ga-
lois fields, coding rates, frame lengths, and reconciliation interval half widths.
Therefore, hereinafter d2 ≥ 3 is considered to compute the performance and
reconciliation efficiency.

Figure 6.17 shows how the performance improves, and thus the reconcilia-
tion efficiency (labelled as β ) too, as the frame length increases. In the figure,
the FER is shown as a function of the SNR. Simulations were carried out us-
ing regular non-binary LDPC codes and decoding overχ1 = GF (25 = 32), with
common parameters: coding rate, R = 0.7, reconciliation interval half width,
αEC = 8, and number of less significant bits disclosed per symbol, d2 = 3. The
performance was then computed and compared for several frame lengths.
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The reconciliation efficiency for all the frame lengths considered is also de-
picted (solid black dots) and labelled in the figure. As shown, these efficien-
cies are calculated for a constant FER value of ǫFER = 10−1, it means that the
efficiency is calculated using an estimate (empirically computed) of the high-
est correlation coefficient for which a frame can be reconciled with a success
rate of 1− ǫFER (i.e. 90%).

Note that throughout this technical analysis a significantly high FER value of
ǫFER = 10−1 was considered in order to compare our results with those other
published in the literature [JKJL11, JKJL13].
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Figure 6.17.: Frame error rate and efficiency for different frame lengths, n = 103

symbols (red curve), n = 2 ·103 (green), n = 4 ·103 (blue), n = 104

(brown) and n = 105 (orange). The coding rate is R = 0.7 and the
interval half width is αEC = 8 together with d2 = 3. The FER is
shown as a function of the SNR (bottom axis).

6.3.7.5. Efficiency

Figure 6.18 shows the reconciliation efficiency8 β as a function of the SNR for
non-binary LDPC decoding over different Galois fields. The efficiency using a

8Note that the over-all efficiency when additionally including the frame error rate is given by
eβ = (1− ǫFER) ·β .
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frame length of n = 103 symbols (solid line) is also compared for larger frame
lengths, n = 104 symbols (dashed line), and n = 105 symbols (dotted line).
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Figure 6.18.: Reconciliation efficiency of non-binary LDPC decoding over differ-
ent Galois fields, χ1 = GF (8) (brown curve), GF (24 = 16) (blue),
GF (25 = 32) (green), and GF (26 = 64) (red), and several coding
rates and frame lengths. The efficiency is shown as a function of
the SNR (bottom axis) and the correlation coefficient ρ (top axis).
The coding rate of two consecutive points on each curve differs by
0.05.

Note that results of non-binary LDPC decoding over GF (26 = 64) for larger
frame lengths were not computed, and the largest frame length was only con-
sidered for GF (24 = 16). Simulations were carried out using regular non-
binary LDPC codes, d2 = 3 for the number of disclosed bits per symbols, and
the reconciliation interval half width αEC = 8. The efficiency was calculated
in all the cases estimating the highest SNR for which a sequence can be rec-
onciled with a frame error rate of ǫFER = 10−1. Several coding rates were used
to empirically estimate the expected reconciliation efficiency in a range of
SNR. Therefore, each point in the curves corresponds to the efficiency com-
puted using a particular coding rate (some of them labelled in the figure).
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Figure 6.19.: Reconciliation efficiency with regular and irregular non-binary
LDPC codes. The efficiency is shown as a function of the SNR
(bottom axis) and the correlation coefficient ρ (top axis). The
coding rate of two consecutive points on each curve differs by
0.05.

Figure 6.19 shows how the reconciliation efficiency improves as the frame
length increases and using irregular non-binary LDPC codes. Results of Fig-
ure 6.18 with regular codes are here compared, thus, as previously, new sim-
ulations were computed for several frame lengths and coding rates but using
common parameters: d2 = 3, αEC = 8, and ǫFER = 10−1. As expected and
shown, better irregular codes can be designed for lower Galois field orders,
and efficiency values above 0.95 can be achieved for non-binary LDPC de-
coding over χ1 = GF (24 = 16), GF (25 = 32) and GF (26 = 64) using irregular
codes and frame lengths of n = 104 symbols.

Figure 6.20 shows the reconciliation efficiency as a function of the SNR for
different sizes of the reconciliation interval half (αEC). Increasing αEC values
(half of the interval width) were considered for a constant coding rate R . We
then compared the reconciliation efficiency of several coding rates over dif-
ferent Galois field, although Figure 6.20 only shows the efficiency of irregular
non-binary LDPC codes for decoding over χ1 = GF (24 = 16), GF (25 = 32), and
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Figure 6.20.: Reconciliation efficiency for non-binary LDPC decoding over dif-
ferent Galois fields varying the interval width of a fixed-rate code.
The values of the polynomials which generate the LDPC matrices
are given in Table B. The efficiency is shown as a function of the
SNR (bottom axis) and the correlation coefficient ρ (top axis).

GF (26 = 64), with coding rates R = 0.85, R = 0.9, and R = 0.9, respectively.
In this case, the number of partitions of the reconciliation interval remain
constant to 29, such that the number of disclosed bits differs for each Ga-
lois field, i.e. d2 = 5, 4, and 3 for decoding over GF (24 = 16), GF (25 = 32),
and GF (26 = 64), respectively. The smallest interval width (i.e. αEC = 4 and
αEC = 6) are labelled in the figure. Note that the interval width of two con-
secutive points on a curve differs by 2 or 4. Finally, we conclude that the best
efficiency is obtained varying the interval width αEC of a fixed-rate code de-
pending on the SNR. As shown, the efficiency considering a frame length of
n = 104 bits is over 0.9 in the range from 2 dB to 24 dB.

6.3.7.6. Discussion

Non-binary LDPC codes are originally proposed for improving the reconcili-
ation efficiency of discrete variables in QKD by Kasai et al. [KMS10]. However,
we originally propose here the use of non-binary LDPC codes for reconciling
continuous variables in the context of secret-key agreement. Note that the
use of non-binary codes is the straightforward way to reconcile quantised
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values (i.e. the quantisation of a continuous set of values).

Table 6.1 summarises the best efficiency values reported in the literature (to
the best knowledge of the author) regarding to the reconciliation of contin-
uous variables in QKD. In the table, three different information reconcilia-
tion techniques are compared for a range of SNR with the results obtained
here: (1) sliced error correction (SEC) originally proposed by Cardinal et al. in
[CVA03, VACC06] (using turbo codes) and later improved in [JKJL13, JEKJ14]
(using LDPC and polar codes), (2) multilevel coding and multi stage decod-
ing (MLC/MSD) using LDPC codes [BTMM06], and (3) multidimensional rec-
onciliation (MD) [LAB+08b, LAB+08a, JKJL11]. In the table, two values are
shown for the non-binary reconciliation scheme proposed here, the former
corresponds to the estimated efficiency using a maximum of 50 decoding it-
erations, while in the latter simulations were performed increasing the max-
imum number of decoding iterations to 200.

SNR [dB] ρ βSEC βSEC βMLC βMD βnon-binary

4.8 0.866 79% 94.1% 88.7% 90% 94.3%−95.2%
7.0 0.913 - 94.4% - - 95.7%−96.5%
8.5 0.935 84% - 90.9% - 96.3%−97.0%

11.8 0.968 92% 95.8% 92.2% - 97.1%−97.7%
14.9 0.984 - - - - 97.6%−98.2%

n (bits) 2 ·105 220 2 ·105 4 ·105

Refs. [BTMM06] [JEKJ14] [BTMM06] [LAB+08b] [PMD+14]
[LAB+08a]

Table 6.1.: The efficiency of the hybrid reconciliation compared to other
realisations.

6.4. Outlook and Discussion

In this chapter we presented a novel non-binary hybrid reconciliation scheme
which is especially designed for the CV-QKD protocols as presented in Chap-
ter 5. The hybrid reconciliation is parted in two steps. The first step uses the
knowledge about the conditional probability function which describes the
correlated samples of Alice and Bob by disclosing the d2 less significant bits
over an authenticated classical channel. The second step uses non-binary
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LDPC codes to correct the remaining errors in the d1 most significant bits.
Note that the maximum of the size of the key generation alphabet |χKG| is
given by the resolution of the homodyne detectors which are used to mea-
sure the bipartite state.

The first step is not influenced by finite-size effects as it operates on the level
of single tuples. Note furthermore that the computational complexity of the
first step is very low. We have shown that this step operates very close to
the Shannon-limit if the parameter of the reconciliation scheme are chosen
properly. The noise in the raw keys of Alice Bin [KA] and Bob Bin [KB ] is after
this step reduced to the alphabet χ1.

The noise in the alphabetχ1 is corrected in the second step using non-binary
LDPC reconciliation. The size of the alphabet 2d1 = |χ1|< |χKG|= 2d which re-
duces the computational complexity of the second step significantly [DF07]
thus accelerating the runtime of the whole process.

The hybrid reconciliation has been successfully used in an experiment in
which a key secure against coherent attacks has been generated with an rec-
onciliation efficiency of ≈ 95%. We presented a technical analysis of the hy-
brid reconciliation and found a maximum of the reconciliation efficiency of
≈ 98%. Note that the hybrid reconciliation is applicable in direct as well as in
reverse reconciliation.

The performance of the hybrid reconciliation scheme may be increased by
using another estimator which does not operate on the partitioned raw keys
Bin[KAB ] but on the measurement outcomes KAB itself. This has the benefit
that two maxima of equal probability are unlikely but it also increases, as a
drawback, the computational complexity of the first step.

We presented a method of scaling covariance matrices which allows us to
describe all possible covariance matrix by only one free parameter ρ which
we call the correlation coefficient. Let us revisit the two covariance matrices
which we extensively used in Chapter 5 and which are characterised in Table
B.1. Table 6.4 shows the efficiency of the hybrid reconciliationβ as a function
of ρ for the amplitude (phase) sub-space of the two covariance matrices.

V-class S-class
βX ≈ 0.93 ≈ 0.97
βP ≈ 0.98 ≈ 0.98
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We combine the hybrid reconciliation with the CV-QKD protocols which we
discuss in Section 5 in the technical Appendix A.2.

Summing up we have proposed a new hybrid reconciliation algorithm which
is well suited for the needs of the CV-QKD protocols we presented in Chapter
5. The feasibility of the reconciliation scheme has been shown in an experi-
ment and in a technical analysis.
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7. Conclusion

In the introductory chapters we provided a clear connection between the the-
oretical tools used in this thesis and their realisation in an experiment. We
used these tools to stick as closely as possible to experimental realisations
of the new security protocols and reconciliation schemes we propose in this
thesis.

In Chapter 5 we started with the question: How much key can be generated
in one run of a quantum key distribution experiment? The question was mo-
tivated by the fact that experiments are always performed for a finite time,
which we call the runtime of the system. In our runtime analysis we included
the time needed to perform a measurement and the time needed to switch
the basis between the measurements. We focused mainly on a setup with two
measurements and two participants. We showed that QKD protocols that al-
low for a non-uniform choice of the measurement basis (asymmetric QKD
protocols) can outperform QKD protocols that assume a uniform choice of
the basis (symmetric QKD protocols).

This motivated us to introduce asymmetric CV-QKD protocols that provide
security against collective and coherent attacks by extending the CV-QKD
protocols of F. Furrer et al. [FFB+14] to allow for a non-uniform choice of the
involved bases. We compared the two new protocols with their symmetric
variants in simulations based on experiments that were carried out by Prof.
Dr. R. Schnabel’s group. We found that the new asymmetric CV-QKD proto-
cols outperformed the symmetric protocols significantly.

The runtime analysis we used to motivate the asymmetric CV-QKD proto-
cols proved to be a good tool for comparing different QKD protocols and ex-
perimental realisations. It can furthermore be extended to setups with more
than two participants and measurements. It would be interesting to com-
pare, for example, the prepare and measure DV-QKD BB84 protocol, the en-
tanglement based DV-QKD E91 protocol and the prepare and measure CV-
QKD protocol using Gaussian modulated states with our new asymmetric
protocols on the basis of standard experimental technology.
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In Chapter 6 we discussed the key generation of the asymmetric CV-QKD
protocols providing security against collective and coherent attacks. We de-
scribed an experiment in which an actual secure key was generated using the
CV-QKD protocol providing security against collective attacks together with
binary LDPC reconciliation1. The binary LDPC reconciliation proved to be
unsuitable for the CV-QKD protocols we discussed in this thesis.

This motivated us to develop a new non-binary reconciliation scheme which
is specifically designed for the CV-QKD protocols we discussed in this thesis.
The hybrid reconciliation which we propose is divided into two steps. The
first step uses the knowledge of the conditional Gaussian probability function
describing the correlation between Alice’s and Bob’s measurement tuples in
an estimator. We showed in a simulation of the hybrid reconciliation scheme
that this first step does not suffice to correct all errors between Alice’s and
Bob’s raw keys. We introduced a second step which uses non-binary LDPC
to correct the remaining errors. This hybrid reconciliation scheme has been
successfully used in an experiment in which an actual key, secure against co-
herent attacks, was generated2.

We provided a full technical analysis of the hybrid reconciliation scheme3 and
found a maximum value for the efficiency of β = 0.98. The hybrid reconcil-
iation scheme is, furthermore, very efficient over a wide range of the signal
to noise ratio. Hence we propose implementing the hybrid reconciliation in
other CV-QKD protocols that use Gaussian states to distribute the raw keys.

1The software was implemented by Dr. C. Pacher of the Austrian Institute of Technology.
2The software was implemented by Dr. C. Pacher of the Austrian Institute of Technology.
3The software was implemented by Dr. Jesus Martinez Mateo from the Universidad Politec-

nica de Madrid.
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A. Appendix

A.1. Runtime Analysis for Three Bases

Here we present the runtime analysis, as discussed in Chapter 5, for three
basis (X , Qπ/4 and P ) and combine it with the asymmetric CV-QKD protocol
providing security against collective attacks1.

We lift the runtime analysis presented in Section 5.4.1.3 to the runtime fam-
ily F 2

3,TM ,TS
which describes two parties with three measurement basis and

switching processes. We combine the runtime analysis later with the asym-
metric CV-QKD protocol providing security against collective attacks and close
with a discussion.

Runtime analysis:
We look at first at the transitions [Fel57]which are represented by their weights
q1,2, q2,1, q1,3, q3,1, q2,3 and q3,2 of one participant, since the weights q1,1, q2,2

and q3,3 correspond to the cases where no switching occurs. We can identify
the weight of the switching processes by

qsw =
∑

i 6= j

qi , j (A.1)

= q1q2+q2q1+q1q3+q3q1+q2q3+q3q2

= 2 ·q1q2+2 ·q1q3+2 ·q2q3

= 2 ·
�
q1q2+

�
q1+q2

�
·
�
1−q1−q2

��

where we inserted q3 =
�
1−q1−q2

�
.

Together with the Equations 5.3 and 5.4 we can identify the weight of the
switching processes q̃sw and the renormalised weights q̃1, q̃2 and q̃3 by

q̃i = qi

1

1+qsw
(A.2)

1Note, that we only focus on the collective protocol in this section as the coherent protocol
does not call for the third basis Qπ/4.
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with i ∈ {1, 2, 3}. The Figure A.1 illustrates the weight of the switching pro-
cesses q̃sw as a function of q1 and q2.

0.0

0.5

1.0

q1

0.0

0.5

1.0

q2

0.0

0.1

0.2

0.3

0.4

qsw

Figure A.1.: This figure illustrates the weight of eqsw as a function of q1 and
q2. Note that q3 = 1−q1−q2 which confines the plot to the range
q1 ∈ [0, 1] and q2 ∈

�
0, 1−q1

�
. The maximum of the weight of the

switching processes eqsw = 0.4 is found at q1 = q2 = q3 = 1/3.

A.1.1. Simulations

We restrict ourselves, for the reason of comparability, to as close as possible
to the simulations which are presented in Section 5.4.1.3 and use the same
covariance matrix describing an v-class state as follows

γAB =





0.541 0.135 0.459 −0.095
0.135 24.633 −0.037 −23.293
0.459 −0.037 0.548 0.264
−0.095 −23.293 0.264 23.840



 .

We use the parameters presented in Table B.4 in the following simulations
and know from Section 5.4.1.2 that the key is at best generated from the am-

plitude quadrature q
key
X = 1.

Let us now compare the performance of the asymmetric CV-QKD protocol
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providing security against collective attacks with its symmetric variant in the
following. We focus on CV-QKD runtime protocols of family F 2

3,TM ,TS
. The re-

sults of this computation are shown in Table B.11.

We again fix∆Tsync = 1 for the rest of the discussion and identify the weight of
the amplitude (phase) quadrature qX = q1 (qP = q2) and the weight of the Qπ/4
quadrature qπ/4 = q3. Following the simulation explained in Section 5.4.1.3,
at least 5 ·106 correlated tuples of any combination of X and P were assumed
for the parameter estimation. We now include the Qπ/4 in the simulation to
simulate a full tomography of the Gaussian state. Hence every participant
has additionally to measure 5 · 106 outcomes in the Qπ/4 quadrature. Note
that, in contrast to the amplitude and phase quadrature, the measurements
in the Qπ/4 quadrature do not have to be correlated as explained in Section
3.5.

Asymmetric protocol:
We analyse the asymmetric protocol in this paragraph and generate the key

from the amplitude quadrature assuming N
(1)

key = 108 correlated measure-

ments of Alice and Bob in that quadrature.

The boundary conditions2 for the computation of the qi in the case of the
asymmetric protocol allowing for F 2

3,TM ,TS
are

N
(1)
π/4 = 5 ·106 =N · eq (1)π/4

N
(1)

P = 5 ·106 =N ·
�
eq (1)P

�2

N
(1)

X = 108+5 ·106 =N ·
�
eq (1)X

�2

where we use Equation A.2 to describe the eq (1)X .

We solve this system and find

q
(1)
P = 0.174

q
(1)
π/4 = 0.024

q
(1)
X = 0.802.

2The number in parenthesis denotes the protocol under consideration. (1) represents the
asymmetric protocol and (2) its symmetric variant.
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The amount of time steps needed to satisfy the boundary conditions is N =
2.953 ·108.

Taking the switching processes of the setup into consideration we arrive at

eq (1)P = 0.132

eq (1)π/4 = 0.017

eq (1)X = 0.605

eq (1)sw = 0.246.

Symmetric protocol:
We use the same covariance matrix as in the analysis of the symmetric pro-
tocol and fix the number of time steps to be N = 2.953 ·108 = const.

Remember that we distinguish asymmetric protocols (qX 6= qP ) from sym-
metric protocols (qX = qP ) by the weight of the bases which are used to gen-
erate the raw key. Note again that the Qπ/4 quadrature is only used for the

parameter estimation which allows us to set q
(2)
π/4 6= q

(2)
X = q

(2)
P even in the case

of a symmetric CV-QKD protocol.

The boundary conditions for the computation of the weights are

eq (2)X = eq
(2)
P (A.3)

eq (2)π/4 = 5 ·106 ·N

We solve the system under the assumption of these runtime boundaries and
find

q
(2)
X = 0.487

q
(2)
π/4 = 0.026

q
(2)
P = 0.487

thereby maintaining q
(2)
X = q

(2)
P during the key generation process, as is re-

quired by a symmetric protocol. Using the runtime analysis, we arrive at the
following weights with switching processes

158



eq (2)X = 0.319

eq (2)π/4 = 0.017

eq (2)P = 0.319

eq (2)sw = 0.345

N
(2)

key =

��
eq (2)X

�2
+
�
eq (2)P

�2
�
·N −107 = 4.842 ·108

where the 107 = 2·5·106 account for the samples needed for the parameter es-

timation of the two quadratures. Note especially that eq (2)π/4 = eq
(1)
π/4 as expected.

Key rates:
We can now compute the key rates of the two protocols on the basis of their

amount of key generation samples, N
(1)

key = 108 and N
(2)

key = 4.842 ·108.

Following the security analysis as described in Section 5.4.1 we find for the
asymmetric protocol

q
key,(1)
X = 1 (A.4)

k (1)sec = 0.789 Bit

N
(1)

key = 108

|K (1)sec|= 0.789 ·108 = 78.94 MBit

and for its symmetric variant

q
key,(2)
X = 0.5 (A.5)

k (2)sec = 0.593 Bit

N
(2)

key = 0.484 ·108

|K (2)sec|= 0.287 ·108 = 28.71 MBit.

The common parameter used to compare the two protocols is Trun = 2.869 ·
108 ·∆Tsync (N = 2.869 ·108). The key generated within Trun of the system for
the asymmetric protocol is approximately R1,2 = 2.750 times larger than in
case of its symmetric variant. Note here that we analysed CV-QKD protocols
of family F 2

3,TM ,TS
by including the Qπ/4 quadrature in the computations.
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The ratio between the asymmetric and the symmetric CV-QKD protocol which
we analysed in Section 5.4.1.3 (see Equations 5.14 and 5.15) for the runtime
family F 2

2,TM ,TS
was R1,2 = 2.777. Including the Qπ/4 quadrature in the analysis

we presented above did not lower the ratio much, as expected. The reason
is, that no simultaneous measurements of Alice and Bob in that quadrature
are needed. One should note, that we found N = 2.869 ·108 times steps in the
above analysis which is more than we found in the analysis we presented in
Section 5.4.1.3 (N = 2.609 ·108) but still experimentally feasible.

We showed, that asymmetric CV-QKD protocols remain superior when com-
pared with their symmetric variant even when theQπ/4 quadrature is included.

A.2. Keyrates with Hybrid Reconciliation

In this section we combine the results of the CV-QKD protocols providing se-
curity against coherent attacks (see Section 5.4.2.2) and collective attacks (see
Section 5.4.1.2) with the results of the simulations of the hybrid reconciliation

from Section 6.3.7.6. Note especially that the choice of a specific q
key
X has an

effect on the efficiency βE C of the hybrid reconciliation as shown in Table 6.1
which is something we did not include in the CV-QKD simulations in Chapter
5 up to now. It is our aim to combine the computation of the secure rates as

a function of q
key
X by considering the specific efficiency of the reconciliation

protocol in use3. We again use the v-class and the s-class state (see Table B.1).

Remember that we discuss asymmetric CV-QKD protocols in this thesis which

allows for a computation of the corresponding key rates as a function of q
key
X ∈

[0, 1], which describes the weights of the basis used for the key generation.
This means that we have at first to establish the connection between the mix-
ture of the amplitude and the phase sub-spaces and the correlation coef-
ficient ρ. We later use the results which are given in Table 6.1 to estimate

βEC

�
q

key
X ,ρ

�
which allows us to compute ℓ(βEC). We finally compute the key

rate considering the hybrid reconciliation as a function of q
key
X .

Mixture of states:
Let us start by describing the mixture of the amplitude γX

AB
and the phase

γP
AB

phase sub-spaces as a function of q
key
X . We use the same technique as

3Note that we do not take the frame error rate into account.
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in Section 3.4.3 and write it as a convex combination of the two according
covariance matrices by

γ
q

key
X

AB = q
key
X ·γX

AB
+

�
1−q

key
X

�
·γP

AB
.

We furthermore use the scaling method which we propose in Section 6.3.7.1

to compute the correlation strength ρ

�
γ

q
key
X

AB

�
as a function of q

key
X .
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Figure A.2.: The efficiency βEC as a function of the correlation strength ρ.
The black points denote the numerical results of the simulations
of the hybrid reconciliation. The blue line represents the estimated
continuous linear function used to describe βEC

�
ρ
�
for ρ ∈ [0.8, 1].

The hybrid reconciliation we present in this thesis operates at best
for ρ→ 1.

Hybrid reconciliation:

We connect nowρ

�
γ

q
key
X

AB

�
with the efficiency βEC

�
ρ
�

of the hybrid reconcil-

iation. We use the best results of the simulations of the hybrid reconciliation
which are shown in Table 6.1 to estimate an continuous function which de-
scribes βEC

�
ρ
�
. One can see in Figure A.2 that the following linear function

suffices to approximately describe

βEC

�
ρ
�
= 0.737+0.248 ·ρ ∀ρ ∈ [0.8, 1] .
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Reconciliation efficiency:

Let us now compute the reconciliation efficiency βEC

�
q

key
X

�
for the v-class

and the s-class state as a function of q
key
X . The Figures A.3 show the results of

these computations assuming the hybrid reconciliation.
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Figure A.3.: The reconciliation efficiency βEC

�
q

key
X

�
for the s-class (left figure)

and the v-class (right figure) state as a function of q
key
X . We assume

a perfect tomography of the states.

We can now include the estimation of the efficiency of the hybrid reconcili-

ation βEC

�
γ

q
key
X

AB

�
as a function of q

key
X in the computation of the secure key

rates by

ksec

�
q

key
X

�
= kpot

�
q

key
X

�
− ℓ

�
βEC(q

key
X )

�
.

Key rate of collective protocol:
The Figures A.4 show the secure key rates of the CV-QKD protocols providing
security against collective attacks for the v-class and the s-class state as func-
tion of Nkey.

Key rate of coherent protocol:
Figure A.5 shows the secure key rates of the CV-QKD protocols providing se-
curity against coherent attacks for the v-class and the s-class state as function
of Nkey.

We discuss the results in Section A.2.1.
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Figure A.4.: The key rate of the CV-QKD protocol providing security against
collective attacks assuming an s-class state (left figure) and an
v-class state (right figure) for six different values of Nkey ∈�

109, 108, 107, 106, 105, 104
	

(yellow, red, black, blue, green, grey)

as a function of q
key
X . The maximum of the secure key rate for

Nkey = 109 is in case of the the s-class state ksec = 2.090 Bit with

q
key
X = 1. Note especially that the maximum of the secure key rate

for Nkey = 109 is in case of the the v-class state ksec = 0.858 with

q
key
X = 0.98.
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Figure A.5.: The key rate of the CV-QKD protocol providing security against
collective attacks assuming an s-class state (left figure) and an v-
class state (right figure) as a function of Nkey and qX ∈ {0, 0.5, 1}
(green, blue, red). The key rates saturate for Nkey > 109. The

maximum of the secure key rate for Nkey = 1010 is in case of the

the s-class state ksec = 1.846 Bit for q
key
X = 1 and in the case of

the v-class state ksec = 0.294 Bit for qX = 1.

A.2.1. Discussion

In this Section we discuss the results of using the hybrid reconciliation in the
new asymmetric CV-QKD protocols.
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The efficiency of the hybrid reconciliation is for ρ ∈ [0.8, 1] better than the
efficiency we assume in Chapter 5 and in Table B.1 (βEC = 0.9 = const). It
follows that all the secure key rates we present in Section A.2 are higher when
compared to the former results. Let us discuss the different cases in more de-
tail:

V-class / Collective:
It is now possible to generate a secure key for Nkey = 105 using the symmetric
CV-QKD protocol (see Section 5.4.1.2). Note that the key rate is maximised

(k
q

key
X

sec = 0.858 Bit) for q
key
X = 0.98 for Nkey = 109 which is different to the for-

mer results where the key rate was maximised for either q
key
X = 1 or q

key
X = 0.

The reason is that the efficiency of the hybrid reconciliation decreases for

q
key
X → 1. Remember that we assumed βEC = const in the former computa-

tions. This shows that it might not always be optimal to generate the key from
one quadrature alone.

S-class / Collective:
Note that that the efficiency of the hybrid reconciliation is, in contrast to the

v-class state, almost constant for all q
key
X . It follows that the characteristics

of the key rate as a function of q
key
X is almost maintained while the key rate

is increased by a constant factor. The key rate is maximised (k X
sec = 2.090 Bit)

with q
key
X = 1 for Nkey = 109. Note that it is now possible to generate a secure

key for Nkey = 104.

V-class / Coherent:
It is now possible to generate a secure key when exercising the symmetric
CV-QKD protocol as all key rates are increased when using the hybrid recon-
ciliation in the classical post processing. The key rates become positive for
smaller Nkey for the same reason. The key rate is maximised (k X

sec = 0.294 Bit)

for Nk e y > 109 when using the amplitude quadrature to generate the key.

S-class / Coherent:

The key rate is again almost constant for all q
key
X . It is maximised (k X

sec =

1.846 Bit) for q
key
X = 1 and Nkey > 109. Remember that the maximum key

rate when using polarisation-based QKD like BB84 [BB84] and E91 [Eke91] is
one bit per measurement tuple. We can generate nearly 2 bit per correlated
and simultaneous measurement of Alice and Bob.

164



We have shown that real-life implementations do, in general, not provide
βEC = const. It is hence important to implement a model of a real-life rec-
onciliation in the analysis of QKD setups. This leads sometimes to the case

that the key generation using only one measurement quadrature q
key
X ∈ [0, 1]

might not always be the optimal choice.

A.3. Entropies

As the security proofs of Dr. F. Furrer and its extensions presented in this
thesis in Chapter 5, heavily rely on the use of entropies, we will briefly re-
view some basics of this topic in this section. Entropies are additionally used
to analytically describe the optimal amount of the information disclosed in
several reconciliation protocols (see Chapter 6). A good introduction into
quantum information and quantum computation is presented in [NC00]. In
[WPGP+12] a more general introduction in quantum information with Gaus-
sian systems is provided. Note that this section is only meant as a remainder
and does thus not contain anything new.

A.3.1. Shannon Entropy

We mainly use the Shannon entropy to describe the entropy between Alice’s
and Bob’s raw keys in Chapter 6. For this task we first define the Shannon
entropy of a random variable and secondly the conditional entropy between
the raw keys of the two participants. Following Shannon’s coding theorem
[Sha48] one can find an approximately optimal protocol which corrects the
errors between the raw keys thereby disclosing as little information as possi-
ble, which is given by the Shannon limit.

Let us start with one identically and independently distributed random vari-
able X where we describe the realisations x of the random variable X by a
finite alphabet χX with x ∈χX . The probabilities of the realisations x can be
written in terms of probability mass PX (x )whereby

∑

x∈χX

PX (x ) = 1.

The evaluation of a Gaussian system by the Shannon entropy is especially
simple, as Gaussian systems can always be described by a classical distribu-
tion (the Gaussian function). We are now ready to define the Shannon en-
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tropy by

S (X ) ..=−
∑

x∈χX

PX (x ) · log2 [PX (x )] .

Note that we define 0 · log(0) = 0. For |χX | = 2 and PX (x2) = 1−PX (x1) this
gives rise to

S (X ) =−PX (x1) log2 [PX (x1)]− (1−PX (x1)) · log2 [1−PX (x1)] ,

the binary entropy as shown in Figure A.6.
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Figure A.6.: The entropy of a binary channel. It is a concave function being
symmetric around PX (x1) = 0.5.

A.3.1.1. Conditional Entropy

We now focus on the entropy of Alice’s raw key conditioned on Bob’s out-
comes. For this task we introduce two alphabets χX and χY for the two ran-
dom variables X and Y . Let us assume that the realisations x ∈χX are chosen
i.i.d. from some classical distribution PX (x ). We furthermore assume that
the probabilities of the realisations y ∈ χY depend on x and write PY

�
y
�
=

PY |X
�
y |x

�
. We define the conditional entropy by

S (Y |X ) ..=−
∑

x∈χX

∑

y ∈χY

PX (x )PY |X
�
y |x

�
· log2

�
PY |X

�
y |x

��
(A.6)

and identify

PX ,Y

�
x , y

�
=PX (x )PY |X

�
y |x

�
(A.7)
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as the joint probability. We rewrite for a particular realisation

S (Y |X ) =−
∑

x∈χX

∑

y ∈χY

PX ,Y

�
x , y

�
· log2

�
PX ,Y

�
x , y

��

+
∑

x∈χX

PX (x ) · log2 [PX (x )]

= S (Y , X )− S (X ) ,

where we defined the joint entropy S (Y , X ). Note, that the Shannon entropy
assumes perfect tomography of the probabilities with which certain elements
appear in their raw keys which is only possible if the raw keys are of infinite
length.

A.3.1.2. Mutual Information

We ask for an entropic measure of the capability of Alice to predict Bob’s out-
come after her measurement or vice versa. We again start by introducing two
alphabets χX and χY whereby the realisations x ∈ χX are chosen i.i.d. from
some classic distribution PX (x ) and assume that the probabilities of the re-
alisations y ∈χY depend on x . The marginals of the distributions are

PX (x ) =
∑

y ∈χY

PX ,Y

�
x , y

�

PY

�
y
�
=
∑

x∈χX

PX ,Y

�
x , y

�

and rewrite Equation A.7 to

PX |Y
�
x , y

�
=

PX ,Y

�
x , y

�

PY

�
y
� ,

which is the conditional distribution. If the two realisations x and y are in-
dependent, the joint distribution PX |Y

�
x |y

�
simplifies to PX (x ) ·PY

�
y
�
. As

the distributions are in this case independent from one another we can use
this to define the mutual information by

I (X : Y ) =
∑

x∈χX

∑

y ∈χY

PX ,Y

�
x , y

�
· log2

�
PX ,Y

�
x , y

�

PX (x ) ·PY

�
y
�
�

= S (X )− S (X |Y )
= S (X ) + S (Y )− S (X , Y ) .
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A.3.2. Von Neumann Entropy

The von Neumann entropy is a natural extension of the Shannon entropy to
the quantum setting. We use it mainly to compute the secure key rates of the
CV-QKD setup. We define the von Neumann entropy of a quantum mechan-
ical system described by a density matrix ρ by

H
�
ρ
�
=−tr

�
ρ log2ρ

�
.

This equation can be further evaluated if we assume, that ρ is written in the
eigen-basis

ρ =
∑

i

Pi · |i 〉〈i |

wherePi is the normalised probability of measuring the state in the i ’th eigen
basis (realisation). It follows

H
�
ρ
�
=−

∑

i

Pi · log2 [Pi ]

where the connection to the Shannon entropy (up to some constant) is more
obvious. The von Neumann entropy is normalised to the entropy of pure
states. If we, for example, chooseP1 = 1 andPi = 0,∀i>1 we see that H

�
ρ
�
= 0.

The evaluation of a Gaussian system by the von Neumann entropy is espe-
cially simple, as Gaussian systems can always be described by the covariance
matrix.

A.3.3. (Smooth) Min-Max Entropies

The (smooth) min-max entropies are mainly used in the security proofs which
we present in Chapter 5. One speciality of these entropies is that they de-
scribe the information that is transferred in one shot (one synchronised mea-
surement) of Alice and Bob. In contrast to von-Neumann and Shannon en-
tropies, which describe the transferred information only in the limit of in-
finitely many synchronised measurements, we can describe the information
between Alice and Bob for finitely many samples Nkey , which is more realis-
tic.

One drawback of the (smooth) min-max entropies is, that they are hard to
estimate as they are basically a mathematical tool. As classical systems can
always be described by a Hilbert space, the min-max entropies can also be
used for classical systems. The (smooth) min-max entropies were introduced
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in the Ph.D.-thesis of Prof. Dr. R. Renner [Ren05]. Good references for details
of these entropies are [Tom12] for the finite-dimensional and [Fur12] for the
infinite dimensional case.

We start with defining the mathematical background by focusing on our setup,
in particular on continuous variables. Let H be an infinite-dimensional sep-
arable Hilbert space and S (H) the corresponding state space with all posi-
tive semi-definite trace class operators with trace 1. As usual we focus on
HAB = HA ⊗HB where HA and HB denote the sub-systems of Alice and Bob.
letωAB ∈HAB denote the bipartite state of the two participants andωA ∈HA

(ωB ∈HB ) the corresponding reduced states after measurement of the other
participant, respectively.

We define the min-entropy of A conditioned on B forωAB ∈ S (HAB ) as

Hmin (A|B ) = s up
σB∈S (B )

�
s up

�
λ ∈❘|ωAB ≤ 2−λ✶A ⊗σB

	�
.

The min-entropy of a classical-quantum stateωX B can be understood as the
optimal guessing probability of the classical variable X conditioned on the
quantum sub-system B . We refer to [KRS09] for a more detailed interpreta-
tion of the operational meaning of the min-entropy.

We now define the smoothed min-max entropies from the definition of the
min entropy. To this end we focus on two statesω,ρ ∈ S (HAB ) and define the
purified distance as

f
�
ω,ρ

�
=

Ç
1− F

�
ω,ρ

�

with

F
�
ω,ρ

�
= tr

�
|
p
ω
p
ρ|
�
+

Ç
(1− tr [ω]) ·

�
1− tr

�
ρ
��

being the generalised fidelity. We can now define the smoothed min-entropy
of Alice being conditioned on Bob forωAB ∈ S (HAB ) as

H ε
min (A|B ) = s up

�
Hmin (A|B ) eωAB

�

with ε≥ 0. The supremum is taken over-all eωAB ∈ S (HAB )with f ( eωAB ,ωAB )≤
εwhich denotes the states eωAB lying in someε-ball aroundωAB . In this sense
the entropies are smoothed. We consider now an arbitrary purificationωAB C

ofωAB and define the smoothed max-entropy of Alice conditioned on Bob by

H ε
max (A|B )ωAB C

=−H ε
min (A|B )ωAB C

.

Note that this equation is known as the duality relation between the smooth
min /max entropies.
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State V-class S-class

[3.6]: γAB

�
0.541 0.135 0.459 −0.095
0.135 24.633 −0.037 −23.293
0.459 −0.037 0.548 0.264
−0.095 −23.293 0.264 23.840

� �
19.696 (0) −19.678 (0)
(0) 23.311 (0) 23.708
−19.678 (0) 19.817 (0)
(0) 23.708 (0) 24.314

�

[3.21]: sqz1 11.1 dB 10.3 dB
[3.21]: asqz1 16.6 dB 14.9 dB
[3.21]: sqz2 0 dB 10.9 dB
[3.21]: asqz2 0 dB 15.3 dB
[4.8]: λX

A|B 0.156 0.156
[4.8]: λP

A|B 0.158 0.156
[4.8]: λX

B |A 1.874 0.193
[4.8]: λP

B |A 1.814 0.202

[6.5]: ρX 0.842 0.996
[6.5]: ρP 0.961 0.995
[4.10]: d X

0 32.992 ·δ 31.596 ·δ
[4.10]: d P

0 109.451 ·δ 35.542 ·δ
[3.12]: Ev

�
γAB

�
1.933 3.402

[3.10] µ
�
ρ
�
: 0.553 0.261

[5.21]: k
X ,coh
pot 9.370 Bit 9.429 Bit

[5.7]: l X
EC 7.447 Bit 7.702 Bit

[5.21]: k
P,coh
pot 7.697 Bit 9.269 Bit

[5.7]: l P
EC 9.318 Bit 7.868 Bit

[5.18]: k
sym,coh
pot 8.304 Bit 9.347 Bit

[5.7]: l
sym
EC 8.382 Bit 7.785 Bit

[5.9]: k
X ,col
pot 5.874 Bit 7.179 Bit

[5.7]: l X
EC 5.068 Bit 5.379 Bit

[5.9]: k
P,col
pot 7.457 Bit 7.339 Bit

[5.7]: l EC
P

7.032 Bit 5.532 Bit

[5.9]: k
sym,col
pot 6.665 Bit 7.259 Bit

[5.7]: l
sym
EC 6.050 Bit 5.455 Bit

Table B.1.: A characterisation of the two states which are published in [EHD+13,
Ebe13]. The references label the equations used to compute the
values. The equations are evaluated assuming perfect tomography,
Nkey = 108 (Nkey = 1010) for collective (coherent) attacks and direct
reconciliation. The missing parameters are found in Tab. B.2 and
Tab. B.3.
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Parameter Value
Security level Collective attacks

Protocol parameter Covariance matrix γAB

Reconciliation Non-binary LDPC with efficiency βEC = 0.9
Ntot Result
Nkey Result
δ δX =δP = 0.05
α αX =αP = 50
|χKG| 2000
εS 10−16

εC 10−16

εpe 10−10

ksec Result
Runtime protocol F 2

2

q
key
X Variable
q̃X Result

Trun Result
∆Tsync 1

Table B.2.: The parameters for the runtime simulation of the CV-QKD protocol
(member of family F 2

2 ) providing security against collective attacks.
An v-class state has been used in this simulation (see therefore Table
B.1).
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Parameter Value
Security level Coherent attacks

Protocol parameter Hamming distance d0

Reconciliation Non-binary LDPC with efficiency βEC = 0.9
Ntot Result
Nkey Result
δ δX =δP = 0.01
α αX =αP = 70
|χKG| 14000
εS 10−16

εC 10−16

εpe 10−10

ksec Result
Runtime protocol F 2

2

q
key
X Variable
q̃X Result

Trun Result
∆Tsync 1

Table B.3.: The parameters for the runtime simulation of the CV-QKD protocol
(member of family F 2

2 ) being secure against coherent attacks. An
s-class state has been used in this simulation (see therefore Table
B.1).
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Parameter Value
Security level Collective attacks

Protocol parameter Covariance matrix γAB

Reconciliation Non-binary LDPC with efficiency βEC = 0.9
Ntot Result
Nkey Result
δ δX =δP = 0.05
α αX =αP = 50
|χKG| 2000
εS 10−16

εC 10−16

εpe 10−10

ksec Result
Runtime protocol F 2

3

q
key
X Variable

q
key
P Variable
q̃X Result
q̃P Result
qX Variable
qP Variable

Trun Result
∆Tsync 1

Table B.4.: The parameters for the runtime simulation of the CV-QKD protocol
(member of family F 2

3 ) being secure against collective attacks. An
v-class state has been used in this simulation (see therefore Table
B.1).
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Parameter Value
Security level Collective attacks

Protocol parameter Covariance matrix γAB

Reconciliation Binary LDPC
Ntot 2 ·108

Nkey 1.15 ·108

δX =δP
2·29.778

64
·0.832

αX 26
αP 29
|χKG| 64= 26

q
key
X 0.5

ksec 0.102 Bit
εS 10−16

εC 10−16

εpe 10−10

Table B.5.: The parameters for the experiment using the CV-QKD protocol
(member of family F 2

2,TM S
) being secure against collective attacks.

An s-class state has been used in this experiment (see Table B.1).

Parameter Value
Security level Not relevant

Protocol parameter Covariance matrix γAB

Nkey 5 ·105

δ Result
αE C 45
|χKG| Result

q
key
X 1

DN 0.01
Reconciliation Hybrid reconciliation
|χ1| 128
|χ2| {1, 2, ...50}

Table B.6.: The parameters for the numerical simulation of the behaviour of the
hybrid reconciliation. A theoretically generated s-class state with
sqz1,2 = 10 and asqz1,2 = 10 has been used in this simulation (see
Section 3.4.1).
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Parameter Value
Security level Coherent attacks

Protocol parameter Hamming distance d0

Reconciliation Non-binary LDPC (βEC = 0.946)
Ntot 2 ·108

Nkey 0.85 ·108

δX =δP 0.0298
αX =αP 61.1
|χKG| 212

q
key
X 0.5
eqX 0.5
εS 10−10

εC 2 ·10−10

εpe 10−10

ksec 1.14 Bit

Table B.7.: The parameters for the experiment using the CV-QKD protocol
(member of family F 2

2,TM S
) being secure against coherent attacks.

An s-class state has been used in this experiment (see Table B.1).

Coeff. G F (24 = 16) G F (25 = 32) G F (26 = 64)
λ(x ) R = 0.85 R = 0.9 R = 0.9

λ2 0.62755 0.67173 0.81173
λ5 0 0 0.00710
λ6 0.03896 0.00164 0
λ7 0 0.00481 0
λ8 0 0.01342 0.01004
λ10 0.02497 0 0
λ11 0.01158 0 0
λ14 0.00598 0.02081 0
λ15 0.03557 0 0.17113
λ16 0 0.28759 0
λ17 0.20497 0 0
λ19 0.05042 0 0

Table B.8.: The generating polynomials which describe the ensemble of irregular
codes which are used in Figure 6.20.
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Parameter Value
Trun 2.609 ·108 ·∆Tsync

Asymmetric CV-QKD

Measurement tuples





166 0 105 23
0 36 23 5

105 23 166 0
23 5 0 36





Parameter estimation





66 − 5 23
− 36 23 5
5 23 66 −

23 5 − 36





Key generation





100 − 100 −
− − − −

100 − 100 −
− − − −





q
key
X 1

ksec 0.789 Bit
Nkey 108

Symmetric CV-QKD

Measurement tuples





87 0 29 29
0 87 29 29

29 29 87 0
29 29 0 87





Parameter estimation tuples





63 − 5 29
− 63 29 5
5 29 63 −

29 5 − 63





Key generation samples





24 − 24 −
− 24 − 24
24 − 24 −
− 24 − 24





q
key
X 0.5

ksec 0.593 Bit
Nkey 0.479 ·108

Table B.9.: The results of the simulation considering two bases assuming collec-
tive attacks. This table shows the total number of measurements,
the number of measurements used for parameter estimation and the
key generation samples of the different combinations of the quadra-
tures in units of 106. The ’−’ denotes the entries which are not
needed / considered to fulfill the corresponding task.
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Parameter Value
Trun 5.087 ·108 ·∆Tsync

Asymmetric CV-QKD

Measurement tuples





226 0 100 55
0 124 55 30

100 55 226 0
55 30 0 124





Parameter estimation tuples





− − − −
− − − 30
− − − −
− 30 − −





Key generation samples





− − 100 −
− − − −

100 − − −
− − − −





q
key
X 1

ksec 0.891 Bit
Nkey 108

Symmetric CV-QKD

Measurement tuples





170 0 57 57
0 170 57 57

57 57 170 0
57 57 0 170





Parameter estimation tuples





− − 15 −
− − − 15
15 − − −
− 15 − −





Key generation samples





42 − 42 −
− 42 − 42
42 − 42 −
− 42 − 42





q
key
X 0.5

ksec 0.791 Bit
Nkey 0.830 ·108

Table B.10.: The results of the simulation considering two bases assuming coher-
ent attacks. This table shows the total number of measurements,
the number of measurements used for parameter estimation and
the key generation samples of the different combinations of the
quadratures in units of 106. The ’−’ denotes the entries which are
not needed to fulfill the corresponding task.
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Parameter Value
Trun 2.953 ·108 ·∆Tsync

Asymmetric CV-QKD

Measurement tuples





174 5 105 23
5 38 23 5

105 23 174 5
23 5 5 38





Parameter estimation tuples





74 5 5 23
5 38 23 5
5 23 74 5

23 5 5 38





Key generation samples





100 − 100 −
− − − −

100 − 100 −
− − − −





q
key
X 1

ksec 0.789 Bit
Nkey 108

Symmetric CV-QKD

Measurement tuples





91 5 29 29
5 91 29 29

29 29 91 5
29 29 5 91





Parameter estimation tuples





67 5 5 29
5 67 29 5
5 29 67 5

29 5 5 67





Key generation samples





24 − 24 −
− 24 − 24
24 − 24 −
− 24 − 24





q
key
X 0.5

ksec 0.593 Bit
Nkey 0.484 ·108

Table B.11.: The results of the simulation considering three bases assuming col-
lective attacks. This table shows the total number of measure-
ments, the number of measurements used for parameter estimation
and the key generation samples of the different combinations of the
quadratures in units of 106. The ’−’ denotes the entries which are
not needed to fulfill the corresponding task.
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