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Abstract

The events of the recent global financial crisis have highlighted several short-

comings in today’s financial risk management and have motivated new re-

search. This cumulative thesis presents four contributions in these current

areas of research:

During the global financial crisis many financial institutions dealing with

structured credit derivatives were exposed to severe unexpected losses. This

indicates that systematic influences are decisively underestimated particularly

with regard to structured products like securitized tranches of collateralized

debt obligations (CDO). Therefore this cumulative thesis addresses these sys-

tematic effects in an analytical study. The provided simple model allows a

closed-form comparison of both, bonds and tranches, with respect to their ex-

posure to systematic risk. It is demonstrated that this exposure to systematic

risk of tranches may be many times higher than the exposure of bonds, even

if both products share the same through-the-cycle (TTC) rating grade, e.g.,

an ‘Aaa’ rating, measured by either default probability or expected loss. Par-

ticularly in economic downturns, default rates of tranches may be multiples

of bonds. These results help to understand the observed high default rates of

tranches during the financial crisis and show that classical TTC ratings are

insufficient metrics for measuring risks of structured products.

During the financial turmoil the credit spreads for corporate bonds as wells

as for credit derivatives such as Credit Default Swaps (CDS) or securitized

tranches of CDO have largely increased. Thus, this cumulative thesis analyzes

the pricing of systematic risk factors in credit default swap contracts in a two-

stage empirical framework. In a first step contract-specific sensitivities (betas)

to several systematic risk factors are estimated by time-series regressions using

quoted CDS spreads of 339 U.S. entities from 2004 to 2011. In a second step

it is shown that these contract-specific sensitivities are cross-sectionally priced

in CDS spreads after controlling for individual risk factors. Particularly the

credit market climate, the cross-market correlation, and the market volatility

explain CDS spread changes and their corresponding sensitivities are priced in

the cross-section. The basic risk factors explain about 83% (90%) of the CDS

spreads prior to (during) the crisis.

In risk management, risk is often quantified by the application of risk mea-

sures, which are the outcome of a specific model and chosen model parame-

ters. Since in practical application the ‘true’ model parameters are unknown,



(credit) risk measures are prone to parameter errors. Therefore, this cumu-

lative thesis investigates the popular risk measures Value-at-Risk (VaR) and

conditional Value-at-Risk (cVaR) in a credit model with respect to errors in

the model parameters. It is shown: 1) The cVaR can be more prone to estima-

tion errors than the VaR. 2) The sensitivity to parameter errors is higher for

lower probabilities of default, implying that highly rated risk buckets are more

affected by parameters errors. 3) A higher confidence level, often considered

to be safer, increases the impact of parameter errors. Again, this effect is more

pronounced for highly rated risk buckets. These results have straightforward

implications for practical applications: a preference for safety (i.e. preferring

a lower probability of default and higher rating grades, a higher confidence

level, and choosing cVaR over VaR due to possible tail risks) may increase

vulnerability to parameter errors.

Additionally unknown ‘true’ model parameters lead not only to parameter

errors, but also to parameter uncertainty in a Knightian sense, which can be

noticeable particularly for credit risks and results in inadequate risk assess-

ments and decisions. To date there is no clear-cut way of considering this kind

of uncertainty in practical bank management. Therefore this cumulative thesis

develops a simple method for assessing parameter uncertainty and accounting

for it in two applications of credit risk models, namely (1) credit decision mak-

ing as well as (2) computing uncertainty adjusted risk measures and capital

buffers. An empirical application of this approach finds that (i) a credit deci-

sion can be substantially reversed (e.g. switched from a low-risk portfolio to

a high-risk portfolio) once a decision maker’s aversion against uncertainty is

taken into account, and (ii) uncertainty adjusted capital buffers will yield in

an add-on compared to the situation where only risk is considered.

The findings and proposals presented in this cumulative thesis are relevant

to several interest groups, such as other researchers in the field of credit risk

or derivatives, investors dealing with swap contracts, risk managers in finan-

cial institutions, and regulatory authorities or policy makers. Eventually, the

presented results may help to take risk management to the next level in order

to maintain financial stability and help to avoid mistakes that were made in

the past.

Keywords: Credit Risk, Systematic Risk, Parameter Uncertainty



Zusammenfassung

Die jüngste globale Finanzkrise hat diverse Defizite im aktuellen Risikomanage-

ment von Finanzinstitutionen aufgezeigt und hierdurch neue Forschungsfragen

motiviert. In vier Beiträgen widmet sich diese kumulative Dissertation vier

ausgewählten Teilfragen:

Während der globalen Finanzkrise haben Finanzinstitutionen, die mit struk-

turierten Derivaten handelten, hohe unerwartete Verluste erlitten. Diese Beo-

bachtung ist ein Indiz dafür, dass systematische Risiken strukturierte Pro-

dukte wie Collateralized Debt Obligations (CDO) stärker beeinflussen als (un-

strukturierte) Produkte wie Unternehmensanleihen. Daher wird in dieser ku-

mulativen Dissertation ein analytisches Modell entwickelt, mit dem die Ein-

flüsse von systematischen Risiken sowohl auf unstrukturierten Unternehmen-

sanleihen sowie verbrieften Tranchen von CDOs untersucht werden können.

Mit diesem Modell wird gezeigt, dass Tranchen aufgrund des ‘Poolens’ und

‘Tranchierens’ viel sensitiver auf makroökonomischen Veränderungen reagieren

müssen, als dies Unternehmensanleihen mit identischem Ausgangsrating tun.

Weiter wird gezeigt, dass gerade wirtschaftliche Abschwungsphasen die Aus-

fallraten von Tranchen im Vergleich zu gleich gerateten Unternehmensanleihen

um ein Vielfaches erhöhen. Die Ergebnisse helfen die spezifischen Risikocharak-

teristiken von strukturierten Produkten besser zu verstehen und verdeutlichen,

dass Ratingansätze, die einem ‘Through-the-Cycle‘-Ansatz folgen, diesen beson-

deren Eigenschaften von strukturierten Kreditderivaten nicht gerecht werden

können.

Weiter sind während der jüngsten Finanzkrise die Prämienquotierungen

(Spreads) von Unternehmensanleihen und Kreditderivaten wie Credit Default

Swaps (CDS) oder strukturierten Produkten wie CDOs stark angestiegen.

Daher untersucht diese kumulative Dissertation den Bepreisungseinfluss sys-

tematischer Risikofaktoren auf CDS Spreads der Jahre 2004 bis 2010 von

339 U.S. amerikanischen Unternehmen. In einem zweistufigen Regressionsver-

fahren werden zunächst die firmenspezifischen Sensitivitäten zu verschiede-

nen systematischen Risikofaktoren ermittelt. Anschließend wird gezeigt, dass

diese firmenspezifischen Sensitivitäten im Querschnitt in den CDS Prämien

eingepreist werden, auch wenn auf idiosynkratische Risikofaktoren wie Kred-

itratings, Liquidität und Verschuldungsgrad kontrolliert wird. Insbesondere

das allgemeine Kreditmarktumfeld, die Kreuzmarktkorrelation sowie die Mark-



tvolatilität erklären die Änderungsraten von CDS Spreads und die zugehöri-

gen firmenspezifischen Sensitivitäten beeinflussen die Risikoprämien der un-

tersuchten Swap Kontrakte im Querschnitt. Im Zeitraum vor Beginn der Fi-

nanzkrise erklären die vorgeschlagenen Risikofaktoren bis zu 83% der CDS

Spreads, während im Krisenzeitraum bis zu 90% der CDS Spreads durch die

vorgeschlagenen Risikofaktoren erklärt werden können.

Im Risikomanagement werden Risiken häufig durch die Anwendung von

Risikomaßen quantifiziert, wofür sowohl ein Modell als auch die zugehöri-

gen Parameter spezifiziert werden müssen. In der realen Anwendung sind die

‘wahren’ Modelparameter jedoch nicht bekannt und müssen geschätzt werden.

Dies kann zu Fehlspezifikationen führen, weshalb angewendete Risikomaße

stets einem Parameterfehler ausgesetzt sind. Die Auswirkung dieser Fehlspez-

ifikation auf die am häufigsten verwendeten Risikomaße im Kreditrisikoman-

agement, dem Value-at-Risk (VaR) sowie conditional Value-at-Risk (cVaR),

werden in dieser kumulativen Dissertation untersucht. Es wird gezeigt: 1)

Der cVaR ist anfälliger gegenüber Parameterfehler als der VaR. 2) Die Anfäl-

ligkeit beider Risikomaße gegenüber Fehlspezifikationen von Parametern steigt

mit geringer Ausfallwahrscheinlichkeit der untersuchten kreditrisikobehafteten

Portfolien. Dies bedeutet, dass gerade bonitätsstarke Portfolien einem er-

höhten Parameterrisiko ausgesetzt sind. 3) Ein höheres angewendetes Kon-

fidenzniveau, welches häufig mit einer höheren Sicherheit assoziiert wird, er-

höht für beide untersuchte Risikomaße die Parametersensitivität und somit die

Anfälligkeit gegenüber Parameterfehler. Diese Ergebnisse haben direkte Im-

plikationen für die praktische Anwendung. Die oft angestrebte und auch von

regulatorischer Aufsicht vorgegebene Präferenz zu einer erhöhten Sicherheit,

ausgedrückt durch eine geringere Ausfallwahrscheinlichkeit des kreditrisikobe-

hafteten Portfolios, ein höheres Konfidenzniveaus für die angewendeten Risiko-

maße, sowie die Wahl von Risikomaße, die extreme Verluste (tail risks) berück-

sichtigen, führen zu einer erhöhten Anfälligkeit gegenüber Parameterfehlern.

Weiter werden in den meisten Anwendungen von Kreditrisikomodellen die

zugehörigen Modellparameter als bekannte Größen vorausgesetzt. In praktis-

chen Anwendungen jedoch sind die wahren Parameter stets unbekannt und

müssen durch Schätzungen ersetzt werden. Dies führt zu Parameterunsicher-

heit im Knightschen Sinne. Die Effekte hieraus können gerade im Kred-

itrisiko zu einer falschen Bewertung der tatsächlichen Risikohöhe und somit

zu Fehlentscheidungen führen. Aktuell gibt es kein trennscharfes Verfahren



im bankspezifischen Risikomanagement, welches eine klare Abgrenzung von

Risiko und Unsicherheit ermöglicht. Ein möglicher Ansatz zur Kreditentschei-

dung und Berechnung von Kreditrisikomaßen unter Unsicherheit wird in dieser

kumulativen Dissertation vorgestellt. Eine empirische Anwendung dieses Ver-

fahrens zeigt, dass Kreditentscheidungen substantiell verschieden sein können,

wenn Parameterunsicherheit berücksichtigt wird. Beispielsweise können unter

Unsicherheit Portfolien mit geringerer Bonität einem Portfolio mit höherer

Bonität vorgezogen werden.

Die Arbeitsinhalte und -ergebnisse richten sich an Wissenschaftler im Kredit-

risiko- oder Derivatebereich, an Investoren, die mit strukturierten Verbriefun-

gen oder CDS-Kontrakten handeln, Risikomanager in Finanzinstitutionen, sowie

regulatorische Aufsichtsinstanzen. Möglicherweise können mit den vorgestell-

ten Verfahren Defizite im aktuellen Risikomanagement abgebaut werden und

dazu beitragen die Finanzstabilität der Finanzmärkte sicherzustellen.

Schlagwörter: Kreditrisiko, Systematische Risiken, Parameterunsicherheit
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Chapter 1

Introduction

1.1 New Challenges for Financial Institutions’

Risk Management

Financial institutions (FI) are companies (e.g., commercial or investment banks,

insurances companies, mutual funds, investment companies) that focus on deal-

ing with financial transactions, such as loans, deposits and investments. As

financial intermediaries they perform the essential function of channeling funds

from those with a surplus to those with a shortages of funds (Saunders and

Cornett, 2008). Therefore, they have great importance for the overall economy

and additionally they represent a large part of it. For example, at the end of

2013, the U.S. financial business held total assets of $82.89 trillion, in contrast

to the $49.65 trillion of total assets held in the U.S. nonfinancial business.1 The

financial business differs from the nonfinancial business not only in its business

model, but particularly in its investment and financing structure. For exam-

ple, at the end of 2013 the U.S. nonfinancial business held approximately 40%

financial assets (e.g., bonds, stocks, or loans) and 60% nonfinancial assets (e.g.

real estate, equipment, machinery or production raw materials). In contrast,

the U.S. financial business held 98% in financial assets and solely 2% in nonfi-

nancial assets. Additionally the U.S. financial business was mainly financed by

liabilities (92.7%), while the U.S. nonfinancial business was primarily financed

by net worth (56.5%). From this particular investment and financing structure

derive several risks, and therefore managing these risks appropriately became

1 Reported numbers are publicly available in the Federal Reserve Statistical Release, Z.1.
Financial Accounts of the Unites States, Third Quarter 2014.
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1.1. NEW CHALLENGES FOR FINANCIAL INSTITUTIONS’ RISK
MANAGEMENT

one of the most important tasks of financial institutions’ daily business.

Knight (1921) provides an early definition of the term ‘risk’ by a formal

distinction from the term ‘uncertainty’.

The practical difference between the two categories, risk and uncer-

tainty, is that in the former the distribution of the outcome (...) is

known (...), while in the case of uncertainty this is not true (Knight,

1921, p. 232).

In other words, Knight defined risk and uncertainty as random variation ac-

cording to a known or unknown law, respectively. Therefore, these definitions

focus on the degree of knowledge about the random variable, whereas the type

of desired or undesired outcome is not specified. The differentiation helps to

disclose the different natures of effects and allows to distinguish between them,

and has led to a wide range of specific research, which has been thoroughly

reviewed by Gilboa and Marinacci (2013). However, these definitions and the

distinction between the terms risk and uncertainty have neither in the past

nor today been part of everyday usage. To the contrary, these terms are ei-

ther used synonymously in common language, or the term risk is used to refer

to both uncertainty2 as well as exposure to undesired consequences (Holton,

2004). Therefore, Knight’s definitions are often criticized for not defining risk

according to general custom and language. Thus, definitions of risk in the lit-

erature are more frequently related to uncertainty and exposure to undesired

consequences. For example, “risk (...) involves both uncertainty and some kind

of loss or damage that might be received” (Kaplan and Garrick, 1981, p. 12).

Other authors define risk in terms of possible changes in values between two

dates (Markowitz, 1952; Artzner et al., 1999). Holton (2004) states that it

is impossible to define risk itself, but that we can operationally define some

aspects of perceived risks. Therefore, he concludes that “it is meaningless to

ask if a risk metric captures risk. Instead, ask if it is useful” (Holton, 2004,

p. 204).

In the 1950s, decision-makers in FI and academic researchers in the field

of finance started to analyze how risk can be practically managed (Crockford,

2 Here the term uncertainty is used in common usage as a state of not knowing whether a
proposition is true or false (see Holton, 2004).

2



1.1. NEW CHALLENGES FOR FINANCIAL INSTITUTIONS’ RISK
MANAGEMENT

1982). Initially, risk measures were first applied to quantify risk.3 For exam-

ple, Markowitz (1952) laid the foundation for modern portfolio theory and used

variance4 as a risk measure, recapturing the understanding of risk as changes

in values. The development of financial products such as futures, options and

swaps started in the 1970s, and with their introduction risk managers were

provided with early tools to actively handle risk. Since then, risk manage-

ment has become more and more important for finance-related practitioners

and researchers.5 In order to operationally define risks that FI confront, risk

categories have been introduced. Commonly applied categories are: ‘credit

risk’, ‘market risk’, ‘liquidity risk’, ‘operational risk’ and ‘systemic risk’ (Hull,

2009; Duffie and Singleton, 2012). Credit risk in particular has been, and re-

mains, one of the most important risk categories. Large parts of banks’ assets

are prone to credit risk6, and during the last decades the general amount of

such credit-risky assets has tremendously increased in absolute as well as in

relative terms (e.g. compared with the gross domestic product (GDP)). For

example, “from 1978 to 2007, the amount of debt held by the [U.S.] financial

sector soared from $3 trillion to $36 trillion, more than doubling as a share

of [U.S.] gross domestic product” (Financial Crisis Inquiry Commission, 2011,

p. xvii).

The increasing amount of credit-risky assets and the fact that traditionally,

credit risk could only be managed during credit origination have led to the

development of credit derivatives and more complex securitization structures

such as collateralized debt obligations (CDO) (compare Schönbucher, 2003).

A credit derivative allows to actively transfer credit risk, making credit risk

manageable even after its origination. Credit derivatives increase the liquid-

ity in the credit market and thus lower credit risk premiums (compare Duffie,

2008). Securitization structures can reduce borrowing costs, manage regula-

tory capital requirements, and provide new investment possibilities (Tavakoli,

2004). Therefore, the market of credit derivatives has experienced a tremen-

3 Actually a risk measure can only be applied if a distinct random variable is assumed.
Therefore, a risk measure can only be applied to risk according to the definition by
Knight (1921).

4 Variance is defined as the mean quadratic deviation of the random variable from its mean.
5 For a historical review of risk management, see e.g. Crockford (1982), McNeil et al.

(2010), or Dionne (2013).
6 The ratio of loans and leases outstanding to total asset from U.S. commercial banks

varies during the last 40 years between 53% and 63%. Data are publicly available from
the Federal Reserve Bank of St. Louis (http://research.stlouisfed.org).

3



1.1. NEW CHALLENGES FOR FINANCIAL INSTITUTIONS’ RISK
MANAGEMENT

dous growth since their development.7 Many practitioners and researchers

judge the development of credit derivatives, particularly the development of

CDOs, as one of the most important financial innovations in recent history

(see Hull and White, 2008; Longstaff, 2010).

Since the late 1980s, risk management for FI is determined by regulatory

requirements, which set minimum risk management standards. Although such

requirements seek to enhance the financial stability, they can also provide

incentives leading to contrary results.8 Since 1998, all FIs with material inter-

national banking business of the ten most industrialized countries (G10) were

affected by the first Basel Capital Accord (generally known as Basel I). This

scheme formulates minimum standards for the regulation and supervision of

banks, particularly with respect to credit risk. All affected banks were required

to maintain a minimum capital ratio of capital to risk-weighted assets of 8%

(see BCBS, 1988). This requirement was achieved by the G10 countries’ banks

in September 1993 (see, e.g., BCBS, 2001). However, under this regulatory

scheme, banks had additional incentives to originate CDO securities, because

this reduced the amount of regulatory capital they must hold. This procedure

is called regulatory capital arbitrage and “exploits the large divergences that

can arise between a portfolio’s true economic risk and the [Basel I] Accord’s

measure of risk” (Jackson et al., 1999, p. 22). To address this shortcoming

and other issues, such as the lack of consideration of market and operational

risk, the Basel Committee 1999 issued a proposal for a new capital framework

to replace Basel I (see BCBS, 1999). This led to the release of the ‘Revised

Capital Framework’ in 2004, known as Basel II, which became effective Jan-

uary 2007 (see BCBS, 2004, 2014a). Even during its development, Basel II was

already sharply criticized due to its heavy reliance on credit rating agencies

(see Danielsson, 2002), using arguably inappropriate risk measures and still en-

abling capital arbitrage (see Danielsson et al., 2001). Unlike Basel I, Basel II

never came entirely into effect, as the banks and authorities were distracted by

the global financial crisis (GFC), confirming several postulated shortcomings

of the regulatory framework. Therefore, during the financial turmoil, the Basel

Committee already amended the regulation framework of Basel II in July 2009

7 A comprehensive analysis of the developments in structured finance markets can be found
in Löhr (2013a).

8 “It is possible that at times the cumulative imbalance between products and infrastructure
development [e.g. regulatory practices] could become large enough to jeopardize the very
functioning of the financial system” (Merton, 1995, p. 471).
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to enhance measurements of risks related to securitizations and trading book

exposures (market risk); this amended framework is today known as Basel 2.5

(BCBS, 2009). In December, 2010 Basel III was released, which focuses on

higher levels of capital requirements, and for the first time, incorporates ‘liq-

uidity risk’ in the Basel Accord (BCBS, 2010, 2013). The requirements are

constantly developed further (see BCBS, 2014b) and the Basel Committee is

still working on the incorporation of new findings and lessons learned from the

GFC. “Basel 4 is already on the regulatory horizon, even if the implementation

of Basel 3 is only planned for 2019” (Embrechts et al., 2013, p. 2).

The GFC began in 2007 and, according to Melvin and Taylor (2009), in-

volved the greatest financial dislocations since the Great Depression. The

world trade flows declined by about 12% in 2009, which is in excess of the

estimated loss of 5.4% in world GDP during the same period (see Chor and

Manova, 2012). In retrospective, the reasons and development of the GFC

have been analyzed, and several shortcomings have been identified.9 For ex-

ample Coffee (2009) and Partnoy (2010) argue that reliance on credit ratings10

and trust in credit rating agencies (CRA) were among the main underlying

causes of the crisis. Other authors identified the exaggerated use of structured

financial instruments, such as CDOs, as import drivers of the crisis (see, e.g.,

Longstaff, 2010; Griffin and Tang, 2012). Some findings - such as the impor-

tance of liquidity risk, a risk category that had not been considered explicitly

before - have already led to adaptations in risk management and regulatory

frameworks (see Basel III).

Until now, however, research into risk has collectively not led to an exhaus-

tive covering of the issue. To the contrary, the GFC motivated new research

in risk management, and highlighted previously identified short-comings in to-

day’s risk management. This cumulative thesis contributes to the following

four areas of research.

Firstly, the financial turmoil reveals large differences between risk charac-

teristics of bonds and structured products. Even if both products are equally

rated, which should be equivalent to holding the same creditworthiness, securi-

tized tranches had higher impairment rates during the GFC. Particularly, high-

9 Financial Crisis Inquiry Commission (2011) and Baily and Taylor (2014) provide a good
overview of recent awareness of reasons, which has led to the GFC.

10 A rating expresses an opinion about the creditworthiness of an obligor. Such ratings are
determined in-house of FI or are bought by an obligor from credit-rating agencies (CRA)
such as Standard & Poor’s (S&P), Moody’s and Fitch.
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rated securitized tranches of CDO experienced far higher impairment rates in

comparison with equally rated bonds. For example, the 5-year cumulative im-

pairment rates for ‘A’-rated CDO tranches increased from 5% in 2005 to 57%

in 2009, while the impairment rates of equally rated bonds only changed from

0.56% to 0.81% in the same time period (compare Moody’s, 2006a,b, 2010a,b).

Several explications have been put forward to explain this mismatch between

rating grades and real physical defaults. For example, rating agencies have

been accused of issuing inflated high-rating grades. The rating agencies admit

that parameter assumptions were not appropriate, but maintain the statement

that these parameters were extrapolated from historical data (Griffin and Tang,

2011). Others argue that rating grades were inflated by ratings shopping - i.e.

issuers acquiring ratings from several CRA and then choosing the most fa-

vorable (see, e.g., Skreta and Veldkamp, 2009). In addition to work focusing

on the analysis on CRA, other research has shown that CDO structures were

subject to higher systematic risk exposures due to their securitization (see,

e.g., Krahnen and Wilde, 2008; Coval et al., 2009a; Eckner, 2009; Hamerle and

Plank, 2009), and that ratings do not appropriately reflect this kind of risk for

securitizations (see, e.g., Rösch and Scheule, 2009, 2010).

Secondly, credit spreads largely increased for corporate bonds as well as for

credit derivatives such as CDS or securitized tranches during the financial tur-

moil. Again, particularly credit spreads on highly rated debt claims increased

much more in relative terms than those of lower rated credit assets. This

mismatch between credit ratings and market-priced default risk is referred

to as a ‘credit spread puzzle’ in the corporate debt markets (see, e.g., Am-

ato and Remolona, 2003; Chen, 2010). This phenomenon reveals that market

participants claim premiums compensating risks that are not included in the

product’s physical default risk indicated by its rating grade. Several empirical

studies analyze common risk factors as pricing drivers of credit spreads with re-

spect to corporate bond markets (see, e.g., Collin-Dufresne et al., 2001; Chen,

2010; Iannotta and Pennacchi, 2011; Giesecke et al., 2011; Friewald et al.,

2012; De Jong and Driessen, 2012). As suggested by Collin-Dufresne et al.

(2001), Chen (2010) and Iannotta and Pennacchi (2011) for corporate debt,

other authors also identified systematic risk factors that drive CDS spreads

(see, e.g., Amato, 2005; Blanco et al., 2005; Ericsson et al., 2009; Gala et al.,

2010; Berndt and Obreja, 2010; Arora et al., 2012; Wang et al., 2013). Most of

these studies analyze dependencies of credit spreads or credit spread changes
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by focusing on time-series regressions. An exception is the analysis by Friewald

et al. (2012), who use Fama-Macbeth cross-sectional regressions to show that

liquidity is explicitly priced in bond markets.

These two research areas and the related financial literature highlight the

importance of systematic risk with respect to credit derivatives in general,

and for securitizations in particular. However, the recent literature does not

provide a comprehensive analysis of sensitivity to systematic risk with respect

to securitization. Additionally, the current literature has primarily shown the

interference between systematic risk and credit spreads, but has not addressed

how these sensitivities are cross-sectionally priced in the swap markets.

Thirdly the GFC highlighted the importance of choosing appropriate risk

measures. Before and during the GFC the Value-at-risk (VaR) was the most

popular risk measure in practical applications (see, e.g., Duffie and Pan, 1997)

and Basel I as well as Basel II rely exclusively on this risk measure. How-

ever, the concept of VaR has then already been widely criticized. The VaR is

neither convex, not sub-additive, and thus not a coherent risk measure in the

sense of Artzner et al. (1999). Additionally, the VaR is merely a percentile of

a probability distribution function, and therefore does not take into account

any tail information beyond the VaR. Therefore, in the late 1990s, the condi-

tional Value-at-Risk (cVaR), also referred to as Expected Shortfall (ES), has

become the favored risk measure in academic resarch. Because it is coherent

(see, e.g., Acerbi and Tasche, 2002; Frey and McNeil, 2002; Tasche, 2002) and

holds other theoretical advantages such as convexity, it is easily optimized (see,

e.g., Rockafellar and Uryasev, 2000). Therefore, Basel II was initially sharply

criticized for the choice of the VaR as the risk measure.

VaR is a misleading risk measure when the returns are not normally

distributed, as is the case with credit, market and (...) operational

risk. Moreover, it does not measure the distribution or extent of

risk in the tail. (Danielsson et al., 2001, p. 4)

In 2012, the Basel Committee acknowledged this criticism (BCBS, 2012) when

it recommended replacing the 99% VaR with the 97.5% cVaR in internal mar-

ket risk models; the committee has also used the 97.5% cVaR to calibrate cap-

ital requirements under the revised market risk standardized approach. How-

ever, the committee still proposes a 99.9% VaR for the incremental capital

charge for default risk in order to maintain consistency with the banking book

7



1.1. NEW CHALLENGES FOR FINANCIAL INSTITUTIONS’ RISK
MANAGEMENT

treatment (see BCBS, 2012, 2013). There is ongoing academic debate about

which risk measures are appropriate, and whether the cVaR is superior to the

VaR. Current debates focus on diversification, aggregation, economic inter-

pretation, extreme behavior, robustness and backtesting of VaR and cVaR.11

However, the current literature lacks an analysis of how parameter errors, or

the sensitivity to parameter changes, can affect these two risk measures partic-

ularly with respect to credit risk. Given that common risk models are highly

sensitive to changes in parameters, this analysis became necessary.

Risk management always relies to some extent on the assessment of his-

torical data (compare, e.g., Lo, 2001), an approach that is even advised by

regulatory authorities (see, e.g., BCBS, 2013). However, the quality of his-

torical data varies in many aspects, such as extent and consistency, and is

particularly prone to extreme outliers that are not often observed, but still

possible. Massive losses occurring after stable years or massive variation not

observed in historical data are examples of this. Key words used here are ‘fat

tails’ or ‘black swan’ (see, e.g., Taleb, 2009) and the recent GFC was possibly

such an extreme outlier. Therefore, even if it was possible to determine true

specific risk models - which is obviously not possible, inducing model uncer-

tainty - all risk model parameters have to be estimated based on observable

data using statistical and econometric techniques. These approaches are always

prone to estimation errors; as a result, the values inserted for the parameters

may not match the true underlying and unknown parameters. Particularly in

cases of ‘fat tails’, these estimation errors cannot be described without fur-

ther assumptions about known probability laws. Therefore, estimation errors

lead to parameter uncertainty in the Knightian sense and, consequently, any

risk management is prone to Knigthian uncertainty. This topic constitutes the

fourth research area of this cumulative thesis.

One well-established approach in the literature to deal with such estima-

tion errors or parameter uncertainty is called robust optimization. In these

approaches, it is assumed that some or all model parameters are not given

with certainty, but lie in a given ‘uncertainty set’. Given these uncertainty

sets, which are formulated as an additional optimization restriction, the worst

possible parameter constellation is determined. Then, the solution of the ro-

bust optimization problems seeks to provide the ‘best’ possible decision given

the worst-case parameter scenario.

11 For an overview of recent literature see Embrechts et al. (2013) and Emmer et al. (2013).
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So far, a consideration of parameter uncertainty or parameter errors is not

explicitly given in regulatory requirements. The current requirements demand

only that banks be conservative in their estimates (see, e.g., BCBS, 2013),

without closer description of the general form or implementation of conserva-

tive estimation approaches.

In the 21st century, a plethora of contributions with respect to portfolio

selection has been created.12 However, current literature provides no robust

optimization-based framework to deal with parameter uncertainty with respect

to credit risk. Other frameworks that deal with parameter uncertainty with

respect to credit risk often follow a Bayesian approach (compare Gössl, 2005;

Dwyer, 2006; McNeil and Wendin, 2007; Kiefer, 2009; Tarashev, 2010; Chang

et al., 2011). These approaches treat the unknown parameters as random

variables and may model parameter-uncertainty aversion. But all approaches

have in common that they cannot separately quantify or distinguish the effect

of parameter uncertainty. Therefore, the current literature provides credit

risk managers neither with a method to separately consider credit risk from

parameter uncertainty, nor with an aid to quantify the effects of parameter

uncertainty.

To conclude, this cumulative thesis contributes to each of these four research

areas and analyzes

I sensitivities to systematic risk of structured products in comparison with

bonds,

I the pricing of systematic risk factors in credit default swap contracts in

a two-stage empirical framework,

I the popular risk measures VaR and cVaR in credit models with respect

to errors in the model parameters,

I an economically based robust optimization framework for credit decisions

under parameter uncertainty in the sense of Knight (1921).

Thus, the findings and proposals presented in this thesis are relevant to

several interest groups, such as other researchers in the field of credit risk or

derivatives, investors dealing with swap contracts, risk managers in financial

12 For an overview see Fabozzi et al. (2010).
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institutions and regulatory authorities or policy makers. Eventually, the pre-

sented results may help to take risk management to the next level in order to

maintain financial stability and help to avoid mistakes that were made in the

past.

1.2 Outline and Contributions

This cumulative thesis consists of one chapter for each of the four research

areas previously mentioned. Each chapter provides a specific introduction,

main contribution and conclusion.

Chapter 2 provides an analytical framework that allows a detailed compari-

son of risk characteristics of bonds and structured products, particularly CDO

tranches, with respect to systematic risk. For this, we decompose the sys-

tematic risk factor within the commonly known and often applied Asymptotic

Single Risk Factor (ASRF) model into both a super-systematic factor and sec-

toral risk components (compare Pykthin and Dev, 2002; Gordy and Howells,

2006). With this adjustment, we can define the probability of default (PD) as

well as the expected loss (EL) for both products unconditional to systematic

risk and conditional to a single realization of the super-systematic factor. By

the unconditional PD and EL, both product classes can be equalized with re-

spect to their creditworthiness, and as a result both products hold the same

rating grade. Then, these equally rated products are analyzed with respect to

their exposure - represented by the conditional PDs (CPD) and conditional EL

(CEL) - to single realizations of the systematic risk factor. Additionally, this

model allows an analysis of the effects of risk diversification and concentration

in securitization.

We find that the CPD and CEL of tranches are much more sensitive to re-

alizations of the systematic risk factor than those of corporate bonds. Particu-

larly for systematic risk factor realizations representing an economic downturn,

the CPD and CEL of tranches are many times higher than the CPD and CEL

of an equally rated bond. We show that the risk characteristics CPD and CEL

of securitized tranches depend on their level of subordination. Particularly for

tranches of higher creditworthiness, the sensitivity to single realizations of the

systematic risk factors increases disproportionately in comparison with same-

rated bonds. With a MC approach, we demonstrate the effects of pooling and

tranching with respect to risk diversification and concentration. We argue that
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the diversification of idiosyncratic and partial sectorial risk may lead to the

concentration of systematic risk exposures. This may explain the unexpectedly

high impairment rates during the GFC. Finally, we propose that classic ratings

are insufficient metrics for measuring risk of structured securities, as they are

especially prone to systematic risk compared with unstructured bonds.

Chapter 3 analyzes the pricing of systematic risk factors in credit default

swap contracts in a two-stage empirical framework in line with Fama and

MacBeth (1973). In the first pass, contract-specific sensitivities to several sys-

tematic risk factors are estimated by time-series regressions. Similarly to other

authors (see, e.g., Amato, 2005; Blanco et al., 2005; Ericsson et al., 2009; Gala

et al., 2010; Berndt and Obreja, 2010; Arora et al., 2012; Wang et al., 2013),

we apply common state variables, such as ‘changes in the spot rate’, ‘changes

in the slope of the yield curve’, ‘changes in the market volatility’, ‘changes

in the credit market climate’, and ‘changes in the cross-market correlation’13

to reflect systematic risk. These common state variables cannot be observed

directly, therefore we approximate them by proxies. The resulting contract-

specific sensitivities are assigned to the second-pass cross-section regressions

to analyze how and in what magnitude these sensitivities are cross-sectionally

priced. This second-pass regression controls for individual risk factors, such as

contract-specific PD (represented by an average rating provided by Markit),

swap liquidity (represented by the contract’s trading depth) and other individ-

ual risk factors such as firm leverage, market capitalization as well as assigned

sectors. The empirical study refers to a comprehensive dataset of single-name

CDS spreads provided by Markit. It comprises 339 U.S. entities from January

6th, 2004 to December 27th, 2010 and contains 124,413 weekly spreads. The

data sample is divided into two time intervals. The first interval represents a

moderate economic condition prior to the GFC, while the second covers the

period of financial distress during the GFC.

The analysis shows that the contract-specific PD, represented by the credit

rating, determines the general CDS spread level, but also illustrates that these

spreads depend on the macroeconomic climate. Therefore, the spread levels

vary over time and the premium based on the contract’s rating does not suffi-

ciently compensate for systematic risk. The first-pass regression shows that the

‘credit market climate’, the ‘cross-market correlation’ and the ‘market volatil-

13 We consider the average of quarterly cross-correlations referring to returns on numerous
exchange, equity and credit markets.
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ity’ explain significant CDS spread changes. The second-pass regressions shows

that in addition to a firm’s physical default risk and other idiosyncratic risk pre-

miums, particularly the sensitivities to the ‘credit market climate’, the ‘cross-

market correlation’ and the ‘market volatility’ are cross-sectionally priced in

the CDS spreads. We find that our basic risk factors explain about 83% of the

CDS spreads prior to the crisis and about 90% during the crisis. This study

presents a framework to identify contract-specific sensitivities to systematic

risk and to quantify the factor-specific risk premium in the cross-section of

CDS spreads.

Chapter 4 analyzes the sensitivity of the risk measures VaR and cVaR within

the ASRF credit model. Here, ‘sensitivity’ is the effect of changes on the risk

measures that occur when the model parameters are affected by parameter

errors (e.g. estimation errors). For each risk measure, we derive the par-

tial derivatives with respect to all model parameters and introduce specific

key numbers. These key numbers are analyzed for several parameter settings

that can be found for real credit portfolios from speculative to investment

grade. Particularly, we analyze the risk measures’ sensitivity for various con-

fidence levels α and portfolio PD. The theoretical results are confirmed and

illustrated within an empirical case study using publicly available default data

from Moody’s (2013) annual default reports.

We find that, aside from its theoretical advantages, the cVAR can be more

prone to estimation errors than the VaR. This sensitivity is especially higher

for lower PD, implying that highly-rated risk buckets are more affected by

parameter errors. It is shown that a higher confidence level, often considered

safer, increases the impact of parameter errors for both risk measures and that

particularly the cVaR becomes even more sensitive. Again, both effects are

more pronounced for highly rated risk buckets. It is demonstrated that this

effect can be considerably reduced if a α = 99.5% (in line with Solvency II) is

applied, instead of α = 99.9% (in line with the Basel Accord). However, it is

shown that we may then be even more in favor of using the VaR rather than

the cVaR as a risk measure. Therefore, especially for high-rated risk buckets

and a high confidence level α, the VaR appears to be superior to the cVaR in

credit risk.

Chapter 5 follows the definition of risk and uncertainty according to Knight

(1921) and presents an economic framework for the quantification of parame-

ter uncertainty in credit risk models. In the robust optimization-based frame-
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work, the degree of the decision-maker’s uncertainty aversion or affinity can be

quantified and decoupled from risk aversion. Thus, the framework provides a

clear-cut distinction to risk. This framework is applied within a comprehensive

Monte-Carlo simulation as well as on a publicly available default dataset from

Moody’s (2013) annual default reports.

With this framework, we firstly transfer the economic rationale of max-min

optimization due to Gilboa and Schmeidler (1989) into the credit area. Sec-

ondly, as an extension to robust optimization, we introduce a new uncertainty

set that covers the possibility of parameter uncertainty based on available data

more accurately in comparison with other existing uncertainty sets. Thirdly,

the economic rationale of an ambiguity-adverse decision-maker leads to a def-

inition of risk measures under uncertainty. Based on the Monte-Carlo simula-

tion and real default data, we demonstrate that uncertainty aversion requires

premiums on risk measures and that portfolios with lower average PD and,

thus, lower risk, can be affected by parameter uncertainty more strongly than

portfolios with higher average PD (and thus higher risk). The implication is

that even under a moderate degree of uncertainty aversion, a financial decision-

maker might prefer a low-rated, high-risk portfolio over a high-rated low-risk

portfolio if uncertainty aversion is taken into account.

Chapter 6 provides conclusions, and highlights practical implications and

potential further research topics.
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Chapter 2

An Analytical Approach for

Systematic Risk Sensitivity of

Structured Finance Products

The content of this chapter is originally published as Claußen, A., Löhr, S.,

and Rösch, D., April 2014, ‘An Analytical Approach for Systematic Risk Sen-

sitivity of Structured Finance Products’, Review of Derivatives Research 17(1),

pp. 1-37.

Online available at: https://dx.doi.org/10.1007/s11147-013-9089-1
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Chapter 3

Valuation of Systematic Risk in

the Cross-Section of Credit

Default Swap Spreads

The content of this chapter refers to the working paper ‘Valuation of Systematic

Risk in the Cross-Section of Credit Default Swap Spreads’ by Claußen, A.,

Löhr, S., Rösch, D., and Scheule, H., 2014.

3.1 Introduction

During the Global Financial Crisis (GFC) the spreads of Credit Default Swaps

(CDS) heavily increased across most CDS dealings on corporate debt claims,

which was triggered by the high numbers of corporate defaults on bonds and

loans.14 While 31 Moody’s-rated corporate issuers defaulted in 2006 on a

total of 10.4 USD billion of loans and bonds, the number of defaulted issuers

increased to 261 in 2009 on a total of 328.9 USD billion (Moody’s, 2010a).

In fact, the CDS spreads on high-rated debt claims, e.g., ‘AAA’-rated bonds,

increased much more rapidly than those on lower-rated credit assets, which

14 Similar to insurance contracts, CDS – as credit derivatives – are linked to credit-risky
assets such as corporate bonds, loans etc. In their role as protection seller, CDS investors
periodically receive premium payments for covering losses in the underlying credit assets.
These losses may be due to default events such as interest shortfalls or principal impair-
ments, see Arora et al. (2012). Thus, in the absence of arbitrage, the fair CDS spread (risk
premium) theoretically compensates for the default risk of the underlying credit asset.
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may indicate a mismatch between credit ratings and the related default risk.15

On the corporate debt market this phenomenon takes part in the so-called

credit spread puzzle (compare Amato and Remolona, 2003; Chen, 2010). Apart

from addressing corporate default risk (Giesecke et al., 2011), several empirical

studies recently looked beyond theoretical contingent claims and accounted

for other pricing factors such as liquidity (Tang and Yan, 2010; Bongaerts

et al., 2011; De Jong and Driessen, 2012; Friewald et al., 2012; Dick-Nielsen

et al., 2012). As suggested by Collin-Dufresne et al. (2001); Chen (2010) and

Iannotta and Pennacchi (2011) for corporate debt, other authors also identified

systematic risk factors driving CDS spreads (e.g., Amato, 2005; Blanco et al.,

2005; Gala et al., 2010; Arora et al., 2012; Wang et al., 2013; Berndt and

Obreja, 2010).

Most of the recent studies analyze time-series properties of credit spreads

or credit spread changes by focusing on time-series regressions. An exception

are Friewald et al. (2012) who use Fama-Macbeth cross-sectional regressions to

show that liquidity is priced in bond markets after controlling for other factors

such as credit ratings. In summary, the current literature on both bond and

CDS markets focuses on the identification of credit spread drivers and aims to

answer the question of how these determinants are priced.

Our paper contributes to credit spread determinants in several ways. Firstly,

we explicitly address systematic risk exposures of CDS contracts and identify

at least three systematic risk factors beyond Merton’s (1974) structural theory

as important drivers for CDS spread changes. Thus, we suggest the Credit

Market Climate, the Market Volatility and the Cross-market Correlation as

common determinants of CDS spread changes.

Secondly, based on our CDS database from 2004 to 2010 containing weekly

spread data of 339 U.S. firms we show that credit ratings do not sufficiently

cover the overall credit risk priced in CDS spreads. We find that systematic

risk is generally priced beyond the ratings of U.S. firms located in numerous

economic sectors, e.g., financial, industrial and consumer goods.

Thirdly, we extend the current literature by applying a two-pass regression

approach to CDS markets (similar to Fama and MacBeth, 1973) and thus we

show that systematic risk exposures are cross-sectionally priced in swap mar-

15 Subrahmanyam et al. (2014) find empirical evidence that the bankruptcy risk of under-
lying reference firms increases after the inception of CDS trading.
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kets.16 In the first pass, we identify common determinants of credit spread

changes and provide contract-specific sensitivities (betas) to common risk fac-

tors by time-series regressions. In the second pass, we examine by cross-section

regressions how these betas are cross-sectionally priced in CDS spreads after

controlling for i) several individual factors such as credit ratings, contract

liquidity and firm leverage and ii) sectoral influences. Thus, we calculate pre-

miums for these systematic risk betas, similar to the CAPM’s beta premium.17

We find that these determinants of CDS spread changes are priced across sev-

eral economic sectors, particularly in times of financial distress. Specifically,

common risks related to the Credit Market Climate, the Market Volatility and

the Cross-market Correlation are rewarded in the cross-section of CDS spread

after controlling for other important pricing elements such as credit ratings and

liquidity. The results of the cross-section regressions show that our set of vari-

ables – composed of systematic and non-systematic risk measures – allows us

to explain about 80% of the observed CDS spreads in normal market environ-

ments and 90% during economic downturns. Furthermore, the OLS regression

results are robust with respect to the inclusion of the Fama-French factors and

other firm-specific factors such as the firm’s leverage ratio and market capital-

ization. Our findings suggest that systematic risk is a decisive pricing factor,

after controling for individual risk factors and sectoral influences.

Our empirical findings are important for at least three fields. Firstly, the

contributions are relevant for asset pricing as they identify variables which

determine spreads of swap contracts referring to credit risky assets. While

previous literature analyzes the price impact of credit ratings (e.g., Ederington

and Goh, 1993, 1998), we explicitly address the price impact of systematic risk

in CDS spreads beyond ratings. Extending the current literature related to

CDS and corporate debt, our findings are relevant for the valuation of CDS,

and may provide further insight into the pricing of corporate bonds.

Secondly, the results are important for the regulation of financial markets.

As discussed by Iannotta and Pennacchi (2011), there is a mismatch between

regulatory capital for banks derived from credit ratings and credit spreads,

as the latter might account for systematic risk, while credit ratings do not

16 The initial two-pass regression approach was proposed by Fama and MacBeth (1973) to
evaluate the cross-section of stock returns.

17 According to the Capital Asset Pricing Model (CAPM), market participants can fully
diversify idiosyncratic risks, but not market (systematic) risk which is therefore compen-
sated by a risk (beta) premium (compare Sharpe, 1964).
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appropriately reflect systematic risk. Current regulatory capital requirements

for banks primarily focus on credit ratings, and therefore banks – or financial

investors in general – are subject to misaligned incentives if systematic risk

is priced: within a specific rating grade, banks may choose those investments

with the highest systematic risk exposures due to the higher risk premiums

linked to these products. This might be a threat to financial institutions and

the whole financial system. By providing empirical evidence for the pricing of

systematic risk on CDS markets beyond ratings, our paper also contributes to

this discussion.

Thirdly, our findings might be important for pricing structured finance se-

curities such as Collateralized Debt Obligations (CDOs). Since, for example,

synthetic CDOs such as single-tranche CDOs (STCDOs) take on credit ex-

posures through including CDS contracts, this work may also provide first

insights into the valuation of such structured products, which are particularly

exposed to systematic risk (see Coval et al., 2009a).18

The remainder of the paper is organized as follows. In Section 3.2, we

provide the theoretical framework for our empirical analysis by introducing

systematic and rather firm-specific spread determinants. Further, we describe

the database and briefly discuss the proxies used. In Section 3.3, we firstly

introduce the regression models within the two-pass approach and secondly

provide the methodology to test whether corporate ratings appropriately reflect

systematic risk. Thirdly, we provide our results and check the robustness of

our findings by expanding our model framework to i) the Fama-French factors,

ii) further firm-specific factors and iii) a principal component analysis. Section

3.4 concludes.

3.2 Determinants of Credit Default Swap Spreads

3.2.1 Theoretical Spread Determinants

Black and Scholes (1973) and Merton (1974) introduced an intuitive option-

pricing framework for valuing corporate equity and debt. This structural

framework by Merton (1974) provides an attractive approach to credit risk.

18 Popular STCDOs are tranches of credit indices such as the North American CDX and
iTraxx Europe index families. Each credit index represents a basket of the 125 most liquid
CDS contracts on corporate names which exhibit an investment grade rating.
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In structural models the default event is usually triggered when the firm’s as-

sets fall below a critical threshold.19 The value of a firm’s asset follows a simple

random walk (firm value process) and the default threshold is a function of the

amount of debt outstanding.

The values of debt claims are determined under the risk-neutral measure

by computing the present value of their expected future cash flows discounted

at the risk-free rate. Since a credit default swap extracts and transfers the

default risk of corporate debt, CDS investors – in their role as protection seller

– periodically receive a premium payment (premium leg) for covering losses

in underlying debt claims (protection leg). In the absence of arbitrage and in

the presence of risk-neutral valuation, the present value (PV) of the premium

leg equals the PV of the protection leg. Hence, depending on the underlying

debt claim future expected cash flows – namely the protection and premium

payments – of the related CDS are analogously discounted to determine the

fair CDS spread.20

Motivated by the structural framework, we uniquely define the CDS spread

Sϑ,t of contract ϑ at time t through 1) the price of underlying debt claims, 2) its

related contractual cash flows, 3) the time-specific risk-free rate rt, 4) common

state variables Yt, which cross-sectionally affect all credit spreads simultane-

ously and 5) individual state variables Vϑ,t, which are firm-specific. Thus, we

define credit spreads similarly to Collin-Dufresne et al. (2001) extended by the

common state variables Yt. This leads to

Sϑ,t := Sϑ,t (Cϑ,t(Fϑ,t), rt,Yt,Vϑ,t) (3.1)

with contractual payments Cϑ,t depending on the firm value Fϑ,t.
21 We suppose

that credit spread changes are determined given the current values of the time-

specific variables Yt and Vϑ,t respectively. Also referring to the structural

framework, we may predict i) determinants of CDS spread changes, and ii)

whether changes in these variables should be positively or negatively correlated

with changes in the CDS spreads.

Similar to other authors, we propose some common state variables reflecting

19 Structural models were further investigated by Black and Cox (1976), Leland (1994),
Longstaff and Schwartz (1995), Briys and De Varenne (1997), Gordy (2000), Collin-
Dufresne and Goldstein (2001) and Gordy (2003).

20 For more detailed information compare Amato (2005).
21 See Collin-Dufresne et al. (2001) for more detailed information.
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systematic risk:22

1. Changes in the Spot Rate. In theory, the static effect of a higher spot rate

is to increase the risk-neutral drift of the firm value process (Longstaff

and Schwartz, 1995; Duffee, 1998). The higher drift reduces the firm’s

probability of default and thus the price of related derivatives offering

protection against default losses. We therefore expect that CDS spreads

are negatively correlated with the risk-less interest rate.

2. Changes in the Slope of the Yield Curve. Independent from the struc-

tural framework, some authors argue that the interest term-structure is

upon other factors mainly driven by i) the interest level and ii) the slope

characteristics (Blanco et al., 2005).

Often, the slope of the yield curve is seen as an indicator of economic

wealth: while a positive slope indicates a prosperous economy, a nega-

tive one reflects expectations of an economic downturn. Hence, the CDS

spread may decrease if an increasing slope of the interest curve indicates

higher expected short rates, as also argued by Collin-Dufresne et al.

(2001) for credit spreads.23 By contrast, a decreasing term-structure

may indicate an economic downturn leading to higher losses given de-

fault since recoveries are assumed to be negatively correlated with the

macroeconomy (Frye, 2000; Altman, 2008; Bade et al., 2011). In this

way, the liquidation risk for corporate debt may be higher leading to

widening CDS spreads.

3. Changes in the Market Volatility. Since debt claims exhibit characteris-

tics similar to a short position in a put option, it follows from the option-

pricing framework that option prices increase with increasing volatility.

Intuitively, with an increase of volatility, the firm’s default probability

increases and thus the related CDS spread increases due to the higher

default risk.

4. Changes in the Credit Market Climate. The Credit Market Climate may

reflect the market view of the overall credit risk. If the global economy

22 Since systematic risk affects all market participants simultaneously, we aim to approxi-
mate this kind of risk by common risk variables. Note that state variables are generally
not necessary in Merton’s structural approach.

23 Note that rising future short-term rates may lead to lower default probabilities and thus
to lower CDS spreads.

20



3.2. DETERMINANTS OF CREDIT DEFAULT SWAP SPREADS

is turning down in line with decreasing recoveries, the weakening market

conditions should increase the firms’ default risk as well as related losses.

Thus, the increased credit risk on credit markets may lead to an increase

of the overall credit spread level. The Credit Market Climate can be seen

as a common market factor similar to the market index in the CAPM. It

should be strongly affected by economic conditions. Therefore, we expect

a cross-sectional increase of default risk due to weakening economic con-

ditions leading to increased CDS spread levels. Hence, the CDS spreads

should be positively correlated with the Credit Market Climate.

5. Changes in the Cross-market Correlation. Foresi and Wu (2005) argue

that downside movements in any equity index are likely to be highly cor-

related with those in other markets as a result of global contagion. Ex-

panding this argument to credit markets, we expect higher CDS spreads

if cross-market correlations increase, because the prospects for risk di-

versification on global markets decrease. In turn, we expect lower CDS

spreads if the dependencies across various markets – such as credit, eq-

uity, and exchange markets – decrease.

Lastly, non-systematic and thus rather individual spread determinants are

proposed and discussed individually.

1. Physical Default Probability. Within the structural framework, the dif-

ference between the physical probability of default (PD) and the risk-

neutral PD indicates the risk aversion of market participants. Under the

risk-neutral measure, the drift parameter µ of the asset value process is

changed to the risk-less rate r from which it follows that the risk-neutral

PD is composed of the physical PD plus a correction term accounting

for the risk aversion. By controlling for the physical PD, we quantify

the premium for pure default risk apart from other major determinants.

In line with intuition and ceteris paribus, the higher (lower) the firm’s

physical PD, the higher (lower) the CDS spread should be.

2. Swap Liquidity. Analogously to other authors who show that liquid-

ity is priced in credit spreads of corporate bonds, we assume that CDS

investors also claim a premium compensating for liquidity risk. Transfer-

ring these empirical findings to CDS markets, the contract’s liquidity is

expected to determine the CDS spread. Intuitively, CDS spreads should
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rise if the contracts’ liquidity, for example, measured by their trading

volume, decreases and vice versa. Eventually, we expect a negative rela-

tionship between Swap Liquidity and swap spread.

3.2.2 Empirical Data

Our empirical study refers to a comprehensive data set of single-name CDS

spreads provided by Markit. Overall, we analyze dollar-denoted CDS spreads

of 339 U.S. American entities from January 6th, 2004 to December 27th, 2010.24

By splitting the entire period into two different subsamples, we account for

different market conditions before the GFC and in times of market turbulence

during the GFC. Firstly, we define the period from January 6th, 2004 to June

18th, 2007 as time prior to the GFC (Pre-GFC). Secondly, we define the period

from June 19th, 2007 to December 27th, 2010 as time of financial distress during

the GFC.25

Table 3.1 summarizes the sample periods for the time-series regressions

(TSR) and for the cross-sectional regressions (CSR).26 The amount of related

CDS spread observations and the number of considered entities are also de-

noted.

Table 3.1: Sample Period of Time-series and Cross-section Regressions

Multiple Time-series and Cross-section Regressions
Sample Entire period Pre-GFC GFC

Maturity From: 6th of Jan 04 6th of Jan 04 19th of Jun 07
Until: 27th of Dec 10 18th of Jun 07 27th of Dec 10

Amount: 339 339 339
Entities Obs. per entity: 367 180 187

Sum of obs.: 124,413 61,020 63,393

Notes: The table summarizes the sample maturities as well as the amount of CDS spread observations (obs.)

covered by each sample. The period of the Pre-GFC reflects the time interval prior to the financial crisis and

the GFC describes the time period during the crisis. Based on each sample, multiple time-series regressions

as well as cross-sectional regressions are conducted.

24 The contracts’ document clause is MR (modified restructuring). The seniority is SNR-
FOR (senior unsecured debt). For more information compare Markit (2008). We select
contracts which have at least 47 weekly spread notations per year.

25 On June 18th, 2007 it was reported for the first time that Merrill Lynch seized collateral
from a Bear Stearns hedge fund invested heavily in subprime loans, which may have
caused strong spread increases on credit markets over the following days.

26 The corresponding regression models are introduced in the next section.
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Overall, we investigate 124,413 weekly CDS spreads from 339 different is-

suers in the entire period, in which the number of CDS spreads per entity is

367. The Pre-GFC sample contains 180 weekly spreads per entity, which leads

to 61,020 weekly observations in total. In the GFC sample, we examine 63,393

weekly CDS spreads with 187 observations per entity.

The U.S. companies are divided over ten economic sectors, e.g., financials

(16.81%), industrials (14.16%) and consumer goods (13.57%). Table 3.2 sum-

marizes the number of firms located in each sector and provides the sector-

specific average spreads by sample.

Table 3.2: Investigated Economic Sectors

Mean Spread
U.S. Sector Count Count in % Entire Pre-GFC GFC

Basic Materials 22 6.49 0.0184 0.0113 0.0253
Consumer Goods 46 13.57 0.0216 0.0113 0.0316

Consumer Services 58 17.11 0.0320 0.0162 0.0471
Financials 57 16.81 0.0220 0.0042 0.0389

Health Care 16 4.72 0.0137 0.0074 0.0198
Industrials 48 14.16 0.0123 0.0077 0.0168
Oil & Gas 29 8.55 0.0128 0.0082 0.0174

Technology 14 4.13 0.0156 0.0109 0.0202
Telecommunications 12 3.54 0.0291 0.0230 0.0349

Utilities 37 10.91 0.0119 0.0073 0.0163

Overall 339 100 0.0189 0.0107 0.0268

Notes: The table reports the amount of U.S. entities located in ten economic sectors and denotes the

sector-specific mean CDS spreads by sample (Entire, Pre-GFC and GFC).

Since we investigate a wide range of U.S. firms, we may obtain a broad in-

sight into the cross-sectional determinants of CDS spreads. The sector-specific

average spreads vary by sample and across sectors. In order to account for

sector-specific influences, we implement sector dummies in our CSR model.

Furthermore, all underlying contracts of the CDS are rated on a rating

scale from ‘AAA’ to ‘CCC’.27 In Figure 3.1, we plot the time series of average

CDS spreads per rating grade from January 6th, 2004 to December 27th, 2010

(x-axis). The y-axis denotes the average CDS spreads.

The average spread level generally varies depending on the rating grades:

the average CDS spread of ‘AAA’-rated underlyings (black line) is below

all other grade-specific average spreads throughout, as theoretically assumed

27 The rating scale contains average ratings referring to Moody’s and S&P ratings. For more
details compare www.markit.com.
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Figure 3.1: Average Spreads by Rating
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Notes: This figure shows time series of average CDS spreads for various rating grades, e.g., ‘AAA’, ‘AA’,

‘A’, from January 6th, 2004 to December 27th 2010. The spread function of ‘AAA’-rated contracts (black

line) is below all other spread functions since highest creditworthiness is linked to the lowest risk premium.

In turn, the ‘CCC’-based CDS spread function (dashed line) is located above all others. The entire sample

is divided into the period prior to the financial crisis (Pre-GFC) and the GFC by the dashed vertical line.

above. By contrast, ‘CCC’-rated contracts (dashed line) exhibit the highest

average CDS spreads since they reflect the highest default risk. All grade-

specific functions show that average spreads are rapidly increasing across all

rating grades during the turmoil of the GFC.

Next, we choose the following proxies for the identified systematic state

variables.

1. Spot Rate. The spot rate (SP) is approximated by changes in govern-

ment bonds, as also suggested by other authors in the recent literature

(compare Blanco et al., 2005; Avramov et al., 2007).28 We use 5-year

Treasury note rates provided by the U.S. Department of the Treasury.29

2. Slope of the Yield Curve. Analogously to Collin-Dufresne et al. (2001),

28 However, due to several reasons, e.g., taxation treatment, scarcity premiums and bench-
mark status issues, it is often criticized that government bonds are no ideal proxy for the
unobservable risk-free rate. In this concern, 5-year swap rates for dollars and euros are
often proposed as a better proxy. For an insightful discussion see Blanco et al. (2005).
We also incorporate corresponding swap rates for robustness.

29 Other maturities such as 1-year, 2-years and 10-years are also investigated, but not re-
ported since they lead to similar results.
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among others, we define the slope of the term structure (STS) as the

difference between the long-term and the short-term Treasury note rate.

To capture slope effects, we use changes in spread differences on U.S.

Treasury notes with 2-year and 10-year maturity. The slope may be

interpreted as an indicator of the economic health and expectations of

future short rates. Respective Treasury note rates are also provided by

the U.S. Department of the Treasury.

3. Market Volatility. As benchmark for the Market Volatility, we utilize the

VIX index provided by the Chicago Board Options Exchange. The VIX

measures market expectation of near-term volatility conveyed by stock

index option prices.30 By using a wider range of strike prices rather than

just at-the-money series, the VIX index additionally incorporates infor-

mation from the volatility ‘skew’. Thus, the VIX reflects investors’ con-

sensus view of future expected stock market volatility: since out-of-the

money put options as well as in-the-money call options are considered for

short maturities, and may be seen as an indicator for negative jumps in

the S&P 500 index causing investors’ fear. According to Collin-Dufresne

et al. (2001), an increasing probability and magnitude of large negative

jumps in the firm value should increase credit spreads, and thus CDS

spreads (Blanco et al., 2005).

4. Climate of Credit Markets. As S&P 500 index returns are suggested

to approximate the overall state of the economy (see Collin-Dufresne

et al., 2001; Blanco et al., 2005), we analogously assume the index spread

changes of the 5-year (5Y) CDX NA IG credit index (CDX) as proxy

for the credit market conditions. The CDX is one of the most popular

CDS indices covering a cross-sectoral basket of the 125 most liquid North

American (NA) investment grade (IG) single-name CDS.31 Index spreads

of the CDX are provided by Markit.

30 The VIX uses a weighted average of options with a constant maturity of 30 days to
expiration. The options refer to the S&P 500 index.

31 The CDX index spread reflects an average credit spread on a basket of 125 CDS dealings.
For each series, the composition of the underlying basket is fixed until maturity (almost
six months). Depending on, e.g., default and liquidity criteria, the constituents of the
basket may vary across series. Note that our database contains CDS spreads related to
205 CDS dealings, which are denoted at least once in several CDX series from January
2004 to December 2010. For a detailed description of the numerous CDX indices and
series refer to www.markit.com.
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5. Cross-market Correlation. We consider the average of quarterly cross-

correlations referring to returns on numerous i) exchange, ii) equity and

iii) credit markets. In this context, we suggest some indices to calculate

the applied Cross-market Correlation (CMC), e.g., S&P 500, DAX 30,

5Y CDX NA IG, Dow Jones Industrial Average, Nikkei 225.

Figure 3.2 shows the times series of the systematic state variables from

January 6th, 2004 to December 27th, 2010 (x-axes). The y-axes denote the

states of the respective proxies. The dashed vertical lines divide the entire

sample period into the samples Pre-GFC and GFC.

Figure 3.2: Time Series of Systematic State Variables
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Notes: This figure shows time series of systematic state variables from January 6th, 2004 to December 27th,

2010. The following proxies for the state variables are plotted: the Cross-Market Correlation refers to the

average cross-correlation across several market indices (upper-left). The time series of the 5Y CDX IG index

spread represents the Credit Market Climate (upper-right). The Market Volatility is indicated by the time

series of the VIX index (mid-left). The Spot Rate is approximated by the 5Y T-bill rate (mid-right). For

the Slope of The Term Structure, we present time series of the difference between the 10Y and the 2Y T-bill

rate (lower-left). The dashed vertical lines divide the entire sample into the two sub-samples (Pre-GFC and

GFC).

Time series of the Cross-market Correlation (upper-left chart) fluctuated
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within the entire period in a moderate range between 0.13 (min) and 0.63

(max) with mean 0.36 and standard deviation (STD) 0.09.

As intuitively expected, the index spread of the CDX (upper-right chart)

was moving sideways with relatively low volatility before the GFC. Indeed,

during the GFC the volatility of the CDX strongly increased as well as its

spread level. While its mean was denoted at almost 47 basis points (bp), its

STD was at 9.8 bp prior to the crisis. In contrast to the Pre-GFC, the mean

of the CDX was three times higher (136 bp) during the GFC, while its STD

was six times higher (59 bp). The maximum spread was observed at the end

of 2008 denoting at 280 bp, the minimum spread of 29 bp in January 2007, a

few months before the GFC began.

The VIX index (mid-left chart) moved sideways from January 2004 until

June 2007 with moderate volatility (index mean 13.6 and STD 2.2), increased

clearly in the beginning of the GFC and reached its historical peak at around

80.9 in December 2008. Similarly to the other systematic risk factors, the

mean of the VIX was clearly higher in times of crisis (2.3 times higher) than

in moderate economic conditions and also its related STD (6.1 times higher).

In the beginning of 2009, the VIX index clearly turned back on the index level

reached in January 2008.

The Spot Rate in terms of the 5-year Treasury note rate (mid-right chart)

was about 3% in January 2004, moved to around 5% in June 2007 and then

decreased rapidly to 1.5% in 2009 due to the market turbulences on the credit

markets.

A decreasing Slope of the Term-structure (lower-left chart), which we ob-

served before the global financial crisis began in June 2007, indicates expec-

tations of an economic downward movement (compare Bank for International

Settlements, 2009). Increasing slope values as observed during the turmoil on

financial markets, in turn, may have predicted an economic up-turn in the

aftermath.

Eventually, the time series show that each systematic risk factor clearly

behaves differently before the GFC than during the financial turmoil, as it

is indicated by the factors’ period-specific means and standard deviations.

Basically motivated by the chronology of the GFC, the determination of our

subsamples is also confirmed by both CDS spread descriptives and time-series

analysis of the systematic state variables.

The correlation matrix in Table 3.3 refers to changes (∆) in the systematic
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Table 3.3: Sample-specific Correlation Matrix of Systematic Risk Factors

Pre-GFC
∆CMC ∆CDX ∆VIX ∆SR ∆STS

GFC

∆CMC 0.0571 0.264 -0.0254 0.0726
∆CDX 0.0441 0.4116 -0.1067 -0.0734
∆VIX 0.0673 0.6382 -0.1656 0.0219
∆SR -0.0534 -0.4530 -0.3158 0.1949
∆STS -0.1589 0.0522 0.1152 0.1021

Notes: The table shows the cross-correlations related to changes (∆) in five systematic risk variables, namely

the Cross-market Correlation (CMC), the CDX index, the VIX index, the Spot Rate (SR), and the Slope

of the Term Structure (STS). While the upper triangle of the matrix refers to the cross-correlations of the

Pre-GFC, the lower triangle shows the correlations of the GFC.

state variables identified above and reflects the linear dependency structure

across these changes. The upper triangle of the matrix refers to correlations

in the Pre-GFC and the lower triangle shows cross-correlations in the crisis.

According to Table 3.3, the proxy for the Cross-market Correlation and the

proxies for the interest risk – Slope of the Term Structure and Spot Rate –

exhibit the lowest overall ∆-dependencies on the other systematic risk factors

in both samples. Table 3.3 also shows that the dependencies generally increase

during the GFC. Nevertheless, most cross-correlations denote at low levels

(about 0.10). We observe the highest correlation between the VIX and the

CDX with 0.41 before the GFC and 0.64 during the financial crisis.

In the following, proxies for individual risk are provided.

1. Physical Probability of Default. Since a credit rating generally reflects

an opinion of the obligor’s creditworthiness, the highest-rated obligors

(‘AAA’-rated) are assumed to exhibit the lowest probability of default

(PD), while lowest-rated ones (‘C’-rated) exhibit the highest PD. Credit-

rating agencies (CRA), for example, link their classical rating grades

(ordinal scaled) to historical default rates of corporate bonds (Moody’s,

2010a).32 Hence, we use average ratings provided by Markit as proxy for

the firm’s physical default risk, similarly to Friewald et al. (2012).33

Following Abid and Naifar (2006), we assume that the absolute CDS

spread level is determined by the related obligor rating. The worse the

32 Referring to the three major rating agencies – Moody’s, S&P and Fitch – the rating grades
are monotonically increasing with the obligor’s creditworthiness (compare Moody’s, 2012).

33 Recall that Markit’s average ratings are based on available Moody’s and S&P ratings, see
www.markit.com
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rating of the obligor the higher the CDS spread level and vice versa.

For simplicity, we apply a shortened rating scale which summarizes the

available rating metrics. In our cross-sectional regressions, we account

for five different rating classes RC1 to RC5, where the latter indicates

lowest creditworthiness and RC1 highest.34

CRAs such as Moody’s and S&P provide ratings that are rather stable

through business cycles (through-the-cycle ratings), see Moody’s (1999)

and S&P (2008). Thus, macroeconomic point-in-time information is

rather neglected in such a through-the-cycle approach (Moody’s, 1999).35

Since CRAs mainly address firm-specific risks in their rating metrics

rather than states of the global economy (common risk) (S&P, 2008), we

consider credit ratings primarily as proxy for individual risk.

2. Swap Liquidity. As proposed by Gala et al. (2010) and Arora et al.

(2012), we incorporate the contract’s number of trades (trading depth)

to proxy its liquidity. The data were provided by Markit and denoted as

Swap Liquidity (LIQ).

Overall, each single-risk proxy i) reveals for itself significant explanatory

power in respective univariate regressions, ii) significantly contributes to the

explanation of the endogenous variable in our CSR and iii) has the power

to innovate. The latter condition is especially important in terms of multi-

collinearity: all of our systematic risk factors provide for themselves additional

explanatory power.36 In other words, the explanatory power of each proxy is

i) not completely covered by the ensemble of other regressors, independent of

the introduction order, and ii) its explanatory power is not the product of the

entire ensemble.

34 Due to the number of available ratings, RC1 includes rating grades ‘AAA’, ‘AA’ and ‘A’ ,
RC2 reflects ‘BBB’ ratings, RC3 accounts for rating grade ‘BB’, RC4 refers to ‘B’ ratings
and RC5 to ‘CCC’ ratings. The data set contains few ‘AAA’- and ‘AA’-rated entities.

35 More detailed information on CRAs and their rating systems can be found in Krahnen
and Weber (2001) or in Löffler (2004, 2013).

36 The order of regressors does not matter in basic OLS regressions, but within OLS regres-
sions based on normalized regressors which were additionally conducted for robustness.
Within a normalized framework, the regressors are corrected for observable co-variances.
In the end, the regressors’ covariance matrix is a diagonal matrix with variances equal to
one. The regressors’ means are also standardized and equal null. The results accounting
for multi-collinearity are not separately reported since they solely confirm the presented
findings.
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CDS SPREADS

3.3 Empirical Evidence for Pricing Systematic

Risk in CDS Spreads

3.3.1 Models in the Two-pass Regression Approach

In the first step of our two-pass regression procedure (similar to Fama and Mac-

Beth, 1973), we estimate the CDS spread sensitivities (betas) to the proposed

systematic state variables by multiple time-series regressions (TSR). For each

CDS referring to entity ϑ ∈ {1, ..., 339} with CDS spread Sϑ,t at time t we es-

timate the following time-series regression model, which was methodologically

proposed by Collin-Dufresne et al. (2001) for credit spreads and also applied

by Ericsson et al. (2009) and by Friewald et al. (2012).

∆Sϑ,t = αϑ + βCMC
ϑ ·∆CMCt + βCDXϑ ·∆CDXt + βV IXϑ ·∆V IXt

+ βSRϑ ·∆SRt + βSTSϑ ·∆STSt + εϑ,t. (3.2)

∆Sϑ,t denotes the spread change of the contract related to firm ϑ at time t.37

αϑ describes the intercept, β
(·)
ϑ denotes the coefficients of included regressors,

∆ refers generally to changes in the state variables and εϑ,t is the residual.38

In the second step, we examine the cross-section of CDS spreads by cross-

section regressions, similarly to Friewald et al. (2012) who apply this type of

regression to corporate bond spreads. Thus, our TSR beta estimates are used

as regressors in the cross-sectional regression (CSR), along with additional

variables such as the proposed individual risk factors. In the basic model

setup, we consider the firm’s ratings and the contract’s liquidity. In addition,

we account for firm-specific sectoral influences by sector dummies. In Section

3.3.4, we add further firm-specific risk factors, e.g., the firm’s Leverage Ratio

and Market Capitalization, as well as further systematic risk betas related to

the Fama-French factors, in order to check the robustness of our findings.

After calculating the entities’ average CDS spreads Sϑ by sample, we esti-

37 In our TSR regressions, we regress weekly CDS spread changes by weekly changes in the
common risk variables. Corresponding regressions are also conducted on a daily database
leading to similar results. Due to the noise in high-frequency data, we focus on results
related to the weekly database.

38 Linkage of shortened declarations according to Section 3.2.2: Cross-market Correlation
(CMC), Credit Market Climate (CDX), Market Volatility (VIX), Spot Rate (SR) and
Slope of the Term Structure (STS).

30



3.3. EMPIRICAL EVIDENCE FOR PRICING SYSTEMATIC RISK IN
CDS SPREADS

mate the following cross-section regression model for each sample

Sϑ = α + γCMC · β̂CMC
ϑ + γCDX · β̂CDXϑ + γV IX · β̂V IXϑ + γSR · β̂SRϑ

+ γSTS · β̂STSϑ + γLIQ · LIQϑ + γRC ·RCϑ + γSI · SIϑ + εCSϑ , (3.3)

where εCSϑ denotes the cross-sectional residual. β̂
(·)
ϑ denotes the parameter

estimates of TSR regressors.39 LIQ denotes the swap’s average liquidity, RC

and SI represent the firm-specific Rating Classes and Sector Indicators respec-

tively, which are included as dummy variables.40 α denotes the intercept and

γ(·) are the cross-sectional slope parameters. γRC and γSI represent vectors of

estimators referring to the sector-specific and rating-specific dummy variables.

Table 3.4 gives a brief regressor overview and shows the predicted signs

of coefficients related to the TSR and the CSR in line with the theoretical

expectations presented in Section 3.2.1.

Table 3.4: Overview of Common Risk Factors and Predicted Signs

Predicted Sign
Variable Description β (TSR) γ (CSR)

Systematic Risk Factors in Time-series Regressions

∆CMC Change in the Cross-market Correlation + +
∆CDX Change in CDX index spread + +
∆V IX Change in implied volatility of S&P 500 + +
∆SR Change in yield on 5-year Treasury yield − −
∆STS Change in 10-year minus 2-year Treasury yield − −

Non-systematic Risk Factors in the Cross-section Regression

LIQϑ Liquidity of CDS Contract −
RCϑ Rating Dummy for Class 1 to 5 +
SIϑ Sector Indicator for Sector 1 to 10

Notes: The table shows included regressors of both the multiple time-series regressions (TSR) and the cross-

section regressions (CSR). The predicted signs for the respective regression coefficients of the TSR (β) and

CSR (γ) are also denoted.

39 In the first pass of our regression approach, we use CDX index spread changes to regress
contract-specific CDS spread changes in order to obtain the contract-specific regressor
sensitivities (compare (3.2) and (3.3)). In this context, we assume that the possible
endogeneity is marginal due to three reasons: i) more than one third of our examined
CDS dealings are no constituents of CDX series, ii) for CDX constituents, the related
index spread is only fractionally and temporary influenced by the contract-specific CDS
spread, and iii) the main results related to our second-pass regressions are solely indirectly
influenced by CDX spread changes, since we focus on the cross-section examination of
sensitivities to CDX spread changes. We obtain robust regression results for a model
which does not control for CDX.

40 RC1 (SI1) represents the reference rating class (sector) included in the intercept.
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For example, the estimates of the TSR which refer to changes in the CDX

credit index should be positive since in theory an increase of the CDX index

spread should commonly widen the CDS spreads. Alternatively, for the Swap

Liquidity LIQ, we expect a negative relationship to the CDS spread. Hence,

an increase of the liquidity should lead to a decrease of the CDS spread and

vice versa.

3.3.2 Systematic Risk After Controlling for Credit Rat-

ings

Firstly, we examine whether the firms’ ratings have cross-sectional explanatory

power with respect to the CDS spreads of 339 entities. Table 3.5 reports the

regression results of rating-based CSRs.

Table 3.5: Cross-section Regressions by Rating Dummies

Entire Period Pre-GFC GFC

Intercept 0.0065∗∗∗ 0.0025∗ 0.0103∗∗∗

(0.0017) (0.0013) (0.0028)
BBB-rated 0.0039∗ 0.0027∗ 0.005−

(0.0021) (0.0016) (0.0034)
BB-rated 0.0217∗∗∗ 0.0116∗∗∗ 0.03∗∗∗

(0.0027) (0.0021) (0.0043)
B-rated 0.0461∗∗∗ 0.0252∗∗∗ 0.0676∗∗∗

(0.0031) (0.0023) (0.0049)
CCC-rated 0.0741∗∗∗ 0.0493∗∗∗ 0.1111∗∗∗

(0.0048) (0.004) (0.0077)

R2 59.29% 45.29% 55.39%
No. Entities 339 339 339

Notes: The table summarizes the rating-based results of cross-section regressions. The parameters are

statistically significant at the 1%-level (∗∗∗), the 5%-level (∗∗) and the 10%-level (∗). R2 denotes the

coefficient of determination. ‘No. Entities’ reflects the number of entities considered in the cross-section

regressions.

The intercept includes the reference rating class RC1 referring to ‘AAA’,

‘AA’ and ‘A’ ratings. Thus, the intercept represents the basic spread level of

swap contracts related to high-rated obligors. Furthermore, Table 3.5 shows

that the worse the firm’s rating the higher is the general risk premium for

that CDS contract, which is in line with our expectations. The risk premiums

seem to be higher in the financial crisis than prior to the GFC, which holds

across all rating classes. The results show that firm ratings represent relevant

information for pricing swap contracts cross-sectionally. A comparison of R2
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based on a comparable number of observations (see Table 3.3) indicates that

ratings may explain more of the spread variation in times of financial distress

than in moderate economic conditions (45.29% vs. 55.39%). These results

may also indicate that market participants, who were involved in pricing swap

contracts, relied more intensively on ratings during the GFC than prior to the

crisis.

A simple preliminary test to examine whether CDS spreads are reflecting

systematic risk after controlling for the risks reflected by CRA ratings, is to

compare the rating-based mean CDS spreads of contracts having different sen-

sitivities to systematic risk.41 Similarly to Iannotta and Pennacchi (2011),

we conduct univariate TSRs for each systematic regressor by rating class (R1:

‘AAA’-‘A’, R2: ‘BBB’, R3: ‘BB’, R4 = ‘B’, and R5: ‘C’). For each sample pe-

riod, the sensitivity to systematic risk is measured by the regressor’s beta. CDS

contracts exhibiting systematic risk sensitivities above or equal to the sample

median are defined as contracts with high systematic risk exposures and thus

attributed to Portfolio 1. Contracts with sensitivities below the sample median

are attributed to Portfolio 2 (low systematic risk exposures). Afterwards, the

portfolios’ mean spreads are calculated by rating class and tested for equality

via t-test.

Table 3.6 reports the median betas (β), the portfolio-specific mean spreads

and the t-test results for each systematic risk factor, rating class and sample.

The median betas are monotonically increasing with rating classes. Hence,

contracts related to the worse credit rating exhibit the highest betas to sys-

tematic risk. This may be due to the increase in the rating-specific spread

level. Thus, swap contracts of poorly-rated firms may not necessarily exhibit

the highest sensitivities to systematic risk. Although the sensitivities to sys-

tematic risk are not comparable across rating classes, the contracts’ systematic

risk sensitivities vary widely around the median beta within each rating class.

This indicates that systematic risk exposures are underestimated in part by

CRAs. This finding holds for all regressors and both samples.

Most of the portfolio-specific mean spreads significantly differ from each

other in each sample and across all regressors. In most cases, we observe

41 Iannotta and Pennacchi (2011) provide a similar test for credit spreads on corporate
bonds.
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Table 3.6: Systematic Risk Indication by Rating Class

Pre-GFC GFC

Mean CDS Spread Mean CDS Spread
Rating Median Portfolio 1 Portfolio 2 Beta Portfolio 1 Portfolio 2
Class Beta (above median) (below median) Median (above median) (below median)

CMC

1 <0.0001 0.0024∗∗∗ 0.0025 0.0009 0.0128∗∗∗ 0.0079
2 0.0001 0.0059∗∗∗ 0.0044 0.0014 0.0182∗∗∗ 0.0125
3 0.0002 0.014 0.0141 0.0058 0.0518∗∗∗ 0.0293
4 0.0014 0.0383∗∗∗ 0.0170 0.0187 0.1002∗∗∗ 0.0557
5 0.0037 0.078∗∗∗ 0.0255 0.0228 0.1315∗∗∗ 0.1112

CDX

1 0.2074 0.0029∗∗∗ 0.0020 0.3926 0.0154∗∗∗ 0.0055
2 0.4223 0.0063∗∗∗ 0.0041 0.5809 0.0206∗∗∗ 0.0102
3 11,635 0.0194∗∗∗ 0.0090 11,506 0.0606∗∗∗ 0.0208
4 16,865 0.0385∗∗∗ 0.0168 23,389 0.0984∗∗∗ 0.0574
5 23,129 0.0781∗∗∗ 0.0254 46,139 0.1571∗∗∗ 0.0856

VIX

1 <0.0001 0.0029∗∗∗ 0.0020 0.0001 0.0154∗∗∗ 0.0055
2 <0.0001 0.0062∗∗∗ 0.0042 0.0001 0.0201∗∗∗ 0.0107
3 0.0001 0.0189∗∗∗ 0.0094 0.0002 0.0561∗∗∗ 0.0251
4 0.0001 0.0384∗∗∗ 0.0168 0.0005 0.0977∗∗∗ 0.0582
5 0.0002 0.0609∗∗∗ 0.0426 0.0011 0.1416∗∗∗ 0.1011

SR

1 -0.0144 0.0024∗∗∗ 0.0025 -0.1502 0.0054∗∗∗ 0.0150
2 -0.0235 0.0043∗∗∗ 0.0060 -0.2388 0.0096∗∗∗ 0.0206
3 -0.0632 0.0089∗∗∗ 0.0191 -0.5638 0.0186∗∗∗ 0.0614
4 -0.0817 0.0219∗∗∗ 0.0333 -0.9909 0.0514∗∗∗ 0.1045
5 -0.1624 0.0472∗∗∗ 0.0563 -15,973 0.1209 0.1219

STS

1 -0.0076 0.0026∗∗∗ 0.0023 0.0025 0.0117∗∗∗ 0.0090
2 -0.0075 0.0056∗∗∗ 0.0047 -0.0210 0.0141∗∗∗ 0.0164
3 -0.0046 0.0156∗∗∗ 0.0126 0.0177 0.0413∗ 0.0394
4 0.0501 0.0322∗∗∗ 0.0231 -0.0470 0.0648∗∗∗ 0.0911
5 -0.0400 0.0472∗∗∗ 0.0563 -0.2102 0.1416∗∗∗ 0.1011

Notes: This table reports mean CDS spreads per rating class depending on the sensitivity of CDS spread

changes to five systematic risk factors: Cross-market Correlation (CMC), CDX index, VIX index, Spot Rate

(SR) and Slope of the Term Structure (STS). Univariate regressions are conducted on CDS contracts in

order to evaluate the median sensitivity (Median Beta) to the systematic risk proxies in each rating class.

Afterwards portfolios are established in dependence on estimated betas. Portfolio 1 contains all CDS with

betas above the median, while Portfolio 2 includes those with betas below the median. The results are

reported for both samples, the Pre-GFC and the GFC. ∗∗∗, ∗∗, and ∗ indicate the statistical significance

(1%-, 5%-, and 10%-level) of the t-test for equality of mean CDS spreads for contracts with beta estimates

below and above the median.

higher average spreads for portfolios composed of high risk contracts.42 From

these empirical findings we conclude that CDS with higher systematic risk

exposures are in general higher priced and that this systematic risk is not

sufficiently reflected by credit ratings.

42 The order of sensitivities is descending for each rating class. Thus, we observe the highest
systematic risk concentration in Portfolio 2, if the regressor’s sensitivity to systematic
risk is expected to be negative, as is the case in terms of the Spot Rate. Again, the higher
interest risk sensitivity leads on average to higher CDS spreads.
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3.3.3 Empirical Results of Time-series and Cross-section

Regressions

Figure 3.3 shows boxplots summarizing the estimation results of multiple time-

series regressions across 339 entities by regressor and sample. All of the state

variables in regression (3.2) have some ability to explain changes in the CDS

spreads. Further, the signs of the estimated coefficients mostly correspond

with our ex-ante expectations.

With respect to the GFC (right boxplot in each chart), the regression results

show that signs of estimates agree on average with our expectations, except

for the betas of the Spot Rate proxy. These beta estimates are expected to

be negative, which is on average fulfilled prior to the GFC.43 Hence, in the

pre-crisis the SR corresponds to expectations and thus an increase in the SP

tends on average to a decrease of CDS spreads across all firms. In times of

financial distress, the beta estimates of the Cross-market Correlation are on

average positive and thus CDS spreads tend to increase with increasing market

correlation.

Coefficients of the slope proxy (SMT) are mainly negative during the GFC.

As suggested in theory, positive expectations of the economy lead to a decrease

in CDS spreads across most of the firms. We find further that the betas of the

CDX index spread changes are positive throughout all samples. As expected,

there is a positive relationship between CDX spread changes and CDS spread

changes.

Regarding the Pre-GFC (left boxplot in each chart), the signs of betas

correspond on average to theory except in case of the VIX and the STS. In

terms of the VIX (STS), the respective beta estimates are on average negative

(positive) before the crisis and thus contrary to our rationale.44 Analogously

to the empirical findings of Longstaff and Schwartz (1995), Duffee (1998) and

Blanco et al. (2005) for credit spread changes, we find that an increase in the

risk-free rate (SR) lowers the CDS spread for at least 75% of the firms prior

to the crisis.

Similarly to other empirical studies (Collin-Dufresne et al., 2001; Ericsson

et al., 2009; Friewald et al., 2012), the coefficient of determination R2 ranges

on average between 14.37% and 29.08%, as shown in the lower-right chart of

43 While the median beta is negative, the mean beta is positive due to a few outliers.
44 Note that there are still entities whose beta estimates meet our rationale, but not on

average.
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Figure 3.3: Estimation Results of Time-series Regressions
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Notes: This figure provides boxplots referring to estimates of time-series regressions for the Pre-GFC and the

GFC. Additionally, the lower-right chart shows boxplots related to the coefficients of determination (R2).

In each boxplot, the upper whisker+ refers to the 90 percentile, while the lower whisker− refers to the 10

percentile. Asterisks denote the means.
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Figure 3.3. We find that the explanatory powers of our applied systematic risk

factors depend on the sample period. Our systematic state variables explain

CDS spread changes much better in times of market turbulence than in mod-

erate market conditions. This finding may justify the selection of our proxies

for systematic state variables.

By contrast, most recent studies (e.g., Ericsson et al., 2009) primarily con-

sider firm-specific risk factors in their TSR, but do not provide a cross-sectional

spread examination, except Friewald et al. (2012). In our two-pass approach

such individual risk factors are methodically omitted in the TSR (pass one),

but explicitly considered in the CSR (pass two).45 Nevertheless, we achieve

comparable explanatory power in our first pass by focusing on systematic risk

factors.

In the second step, we run the cross-sectional regressions (3.3) according

to our two-pass regression methodology to identify significant cross-sectional

pricing factors and their specified weights or spread premiums (γ) in pricing

CDS contracts.

Table 3.7 shows the gamma estimates of the CSR for the two samples (Pre-

GFC and GFC). While the left column in each sample reports results without

sector dummies, the right column shows results under consideration of sec-

tor dummies which account for sectoral influences. Standard deviations are

reported in parentheses and significance levels are marked with asterisks. In

contrast to the additional individual variables in the CSR, which are deter-

ministic, the betas of our systematic state variables are statistically estimated.

Thus, they are generally stochastic and hence possibly misspecified. To account

for related parameter estimation errors, we also report corrected standard de-

viations and corrected significances for the gamma estimates, as suggested by

Shanken (1992).46

While the TSR estimates indicate the firm-specific sensitivity to the sys-

tematic risk factors, the CSR estimates may be interpreted as average pricing

weights for the systematic risk factors across all CDS spreads. We find that

mostly the CSR estimates significantly differ from null. Thus, TSR estimates

are either positively (γ > 0) or negatively (γ < 0) priced.

45 We are explicitly targeting at the product’s sensitivity to systematic risk based on weekly
data points. To avoid distortions due to time-constant firm-specific risk factors such as
the firm ratings or corporate debt, we omit these factors in the first pass.

46 The Shanken corrections are separated by a slash. For a thorough description of the
applied correction procedures compare Shanken (1992); Shanken and Zhou (2007).
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Table 3.7: Cross-section Estimates

Pre-GFC GFC

Intercept 0.0098∗∗∗/∗∗∗ 0.0095∗∗∗/∗∗∗ 0.0165∗∗∗/∗∗∗ 0.0164∗∗∗/∗∗∗

(0.0014/0.0016) (0.0017/0.0016) (0.0033/0.0021) (0.0036/0.002)

CMC 2.4531∗∗∗/∗∗∗ 2.5994∗∗∗/∗∗∗ 0.3227∗∗∗/∗∗ 0.3335∗∗∗/∗∗

(0.2492/0.8104) (0.2455/0.8938) (0.0673/0.1546) (0.0678/0.159)

CDX 0.0074∗∗∗/∗∗∗ 0.0075∗∗∗/∗∗∗ 0.0127∗∗∗/∗∗∗ 0.0126∗∗∗/∗∗∗

(0.0004/0.0015) (0.0004/0.0015) (0.0006/0.0014) (0.0006/0.0015)

VIX 41.1653∗∗∗/∗∗∗ 41.1929∗∗∗/∗∗ 33.0365∗∗∗/∗∗∗ 32.8229∗∗∗/∗∗∗

(5.7257/15.8017) (5.6241/16.4716) (3.6158/8.0606) (3.674/8.5242)

SP 0.0072∗/− 0.0077∗∗/− -0.0144∗∗∗/∗∗∗ -0.0144∗∗∗/∗∗∗

(0.0039/0.0104) (0.0039/0.0108) (0.0018/0.003) (0.0019/0.003)

STS -0.0002−/− 0.0002−/− -0.009∗∗∗/∗∗∗ -0.0093∗∗∗/∗∗∗

(0.0013/0.0061) (0.0013/0.0062) (0.0012/0.0022) (0.0012/0.0023)

LIQ -0.0008∗∗∗/∗∗∗ -0.0008∗∗∗/∗∗∗ -0.0021∗∗∗/∗∗∗ -0.0019∗∗∗/∗∗∗

(0.0001/0.0001) (0.0001/0.0001) (0.0004/0.0003) (0.0004/0.0003)

‘BBB’-rated -0.0001−/− -0.0002−/− 0.0027−/∗∗∗ 0.0029∗/∗∗∗

(0.001/0.0003) (0.001/0.0004) (0.0017/0.0005) (0.0017/0.0005)

‘BB’-rated 0.0017−/∗ 0.0012−/− 0.0122∗∗∗/∗∗∗ 0.0129∗∗∗/∗∗∗

(0.0013/0.001) (0.0013/0.0011) (0.0022/0.001) (0.0023/0.0012)

‘B’-rated 0.0077∗∗∗/∗∗∗ 0.0066∗∗∗/∗∗∗ 0.0258∗∗∗/∗∗∗ 0.0258∗∗∗/∗∗∗

(0.0016/0.0014) (0.0016/0.0015) (0.0028/0.0023) (0.003/0.0024)

‘CCC’-rated 0.0125∗∗∗/∗∗∗ 0.0108∗∗∗/∗∗∗ 0.0445∗∗∗/∗∗∗ 0.0457∗∗∗/∗∗∗

(0.0028/0.0032) (0.0028/0.0034) (0.0043/0.0051) (0.0045/0.0056)

Sector Dummies No Yes No Yes
R2 81.70% 83.18% 89.89% 90.18%

No. Entities 339 339

Notes: This table shows the estimation results referring to the cross-section regressions (CSR) of Equation

(3.3) under consideration of both systematic and individual risk factors. Systematic risk factors are the

Cross-market Correlation (CMC), the CDX index, the VIX index, the Spot Rate (SR) and the Slope of

the Term Structure (STS). Non-systematic or individual risk factors are represented by the Swap Liquidity

(LIQ) and the firm’s rating. Sector dummies account for the sector in which the firm is operating. The

results are provided for each subsample based on weekly CDS spread data. The parameters are statistically

significant at the 1%-level (∗∗∗), the 5%-level (∗∗), and the 10%-level (∗). Values in parenthesis describe the

parameters’ standard deviation (STD). Shanken-corrected STDs and significances are separated by a slash.

R2 denotes the coefficient of determination.
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For example: given a positive beta (β), we observe with respect to a positive

gamma (γ > 0) that the CDS spread increases if the firm’s sensitivity to that

common risk factor increases.

In times of financial distress (GFC), all systematic risk sensitivities (TSR-

betas) exhibit significant explanatory power to the cross-section of CDS spreads,

regardless of whether the standard deviations of gamma estimates are Shanken

corrected. This means that the contracts’ sensitivities to the systematic risk

proxies are significantly priced in CDS contracts across all economic sectors.

Thereby, the signs of all gamma coefficients correspond to our expectations.

In the pre-crisis, we observe a slight mismatch between our expectation and

empirical findings with respect to the interest risk proxies. Prior to the GFC,

the gamma estimates indicate that a higher sensitivity to the Spot Rate leads

to a spread increase, but the corrected t-statistic shows that these estimates are

not significantly priced. The Slope of the Term Structure also lacks statistical

significance in the pre-crisis, but becomes statistically significant in the crisis.

Therefore, we infer that market participants view the STS as an indicator of

economic wealth, which is particularly priced in economic downturns, but less

relevant in moderate economic conditions.

The gammas of the CDX, the CMC and the VIX reach high statistical sig-

nificance in both samples, irrespective of whether we control for firm-specific

risks, sector dummies and Shanken-corrected t-statistics. Thus, market partic-

ipants seem to demand a positive risk premium depending on the Cross Market

Correlation, the Credit Market Climate and the Market Volatility, independent

from the sample period.

As found in previous literature, liquidity is also an economically and statisti-

cally significant pricing determinant, which is contract-specific. The estimates

of the Swap Liquidity proxy are statistically significant across all samples.

Market participants appear to claim a risk premium for the market liquidity

of the CDS. Thus, in the cross-section an increase of the Swap Liquidity leads

to a decrease of swap spreads and vice versa.

Regarding the rating classes, our empirical results confirm our expectations

and show that the CDS spreads monotonically increase with decreasing firm

rating. Again, we observe a strong increase of basic spread levels across all

rating classes during the GFC. This general increase in CDS spreads may be

due to extremely high default rates of investment grade bonds in this period,

which may have caused many rating downgrades of these financial instruments
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as well. Hence, we suspect that the firms’ rating information significantly

determines the CDS spread levels across both samples, correction methods

and swap contracts. As expected, we conclude that a high-rated firm may

benefit from its higher creditworthiness by receiving a reduction in its CDS

spread (lower spread level).

Moreover, we find that our empirical results hold across all economic sectors

examined, since the inclusion of sector dummies does not materially affect our

estimation results. Thus, we conclude that the introduced risk factors have

economy-wide impacts on the pricing of swap contracts, after controlling for

sectoral influences.

While the entire ensemble of risk factors accounts for almost 90.18% of the

spread variation during the GFC, the model’s R2 is clearly lower prior to the

crisis (83.18%). Thus, we find that the explanatory power of the regressor

ensemble depends on the sample period and that the regressors best fit CDS

spreads in the crisis. This finding also indicates that systematic risk betas

of CDS contracts are particularly priced in economic downturns in alignment

with increasing statistical significances of our systematic risk proxies in the

GFC.

In Figure 3.4, we compare predicted CDS spreads with observed market

spreads by sample in order to indicate the accuracy of our CSR model. The

x-axes of the two charts denote the predicted CDS spreads and the y-axes

denote the market CDS spreads.

Referring to regression (3.3), both scatter plots visualize the quality of our

proposed CSR model. Since the spread predictions in the lower chart (R2 =

90.18%) are less scattered than in the upper one (R2 = 83.18%), we suggest

that our CSR model – which explicitly addresses systematic risk – reaches the

highest model accuracy in times of global financial distress.

3.3.4 Robustness

In the following, we extend our basic regression approach in several ways to

show the robustness of our empirical findings. Firstly, we test whether our

results hold, if the three Fama-French (FF) factors are included in our basic

models. Thereby, we also examine if the FF factors provide additional explana-

tory power in the cross-section of swap spreads beyond the basic risk compo-

nents (compare Fama and French, 1993). Secondly, we examine euro/dollar
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Figure 3.4: CDS Spread Comparison (Market Spread vs. Model Spread)
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Notes: This figure shows the comparison of market CDS spreads (y-axes) and model spreads (x-axes). The

spread predictions are based on the estimation results related to the basic CSR model in Equation (3.3).

While the upper chart refers to the period prior to the GFC (Pre-GFC), the lower chart shows the results

for the GFC.
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swap rates as alternate proxies for the Spot Rate and the Slope of the Term

Structure. Thirdly, we conduct a principal component analysis (PCA) referring

to the residuals of the multiple time-series regressions. The PCA may help to

identify further potential candidates for systematic risk. Related to the PCA,

we conduct new cross-sectional regressions in which we include the eigenvector

of the first major component. By this, we test if this unknown systematic

risk factor is cross-sectionally priced in the CDS spreads. Fourthly, we add the

firm’s Leverage Ratio and Market Capitalization as two additional firm-specific

risk factors to the basic regression model. Lastly, we provide the regression

results of the entire model in which all model extensions are simultaneously

considered.47

Table 3.8 shows CSR results referring to the first three model extensions.

Estimation results are presented for both sample periods (Pre-GFC and GFC)

under consideration of sector and rating dummies. Respective standard devia-

tions are reported in parentheses. Additionally, corrections for the standard de-

viations and significances are provided as suggested by Shanken (1992), which

are separated by a slash.

In the first case (left column), the three Fama-French benchmark returns

are included in the TSR. Afterwards, the estimated betas are added to the

basic CSR model in Equation (3.3). The Fama-French Excess Return (FFR)

describes the excess48 return on the market, Small Minus Big (SMB) repre-

sents the performance of small stocks relative to big stocks, and High Minus

Low (HML) denotes the performance of value stocks relative to growth stocks

(compare Fama and French, 1993). Commonly, the Fama-French factors are

used by investors seeking portfolio benchmark returns and by academics to

explain the cross-section of stock returns.

We find that there is a negative relationship between the FFR and CDS

spreads which is also statistically significant. This empirical result also follows

economic intuition since positive excess returns may indicate a prosperous

global economy with lower default risk in general. Thus, the CDS spreads

should increase if the excess returns decrease and vice versa. In contrast to

47 Not reported are robustness checks related to i) various window sizes of the cross-sectional
regressions, e.g., rolling or fixed, and ii) other alternate proxies for, e.g., the Slope of the
Term Structure, Spot Rate and Cross-market Correlation. These analyses lead to robust
regression results.

48 The excess return is defined as the difference between the return of the market portfolio
(Rm) and the risk-less rate (r) (compare Fama and French, 1993).
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the FFR, we observe shifts in the signs of estimators with respect to SMB

and HML across samples. These sign changes make further interpretations

somewhat difficult.
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On the one hand, the R2 increases from 83.19% to 89.04% through the

consideration of the Fama-French factors in the pre-crisis. On the other hand,

the R2 remains on the same level with respect to the GFC (90.18% vs. 90.57%).

Thus, we conclude that the Fama-French factors may increase the explanatory

power of the basic model in times of moderate economic movements, but that

the additional pricing information is strongly limited in times of an economic

downturn.

In the second case (middle column), we examine the 5-year euro/dollar swap

rate as alternate proxy for the Spot Rate, since some authors in the recent lit-

erature suggest swap rates as interest rate proxies rather than Treasury notes.

Furthermore, the Slope of the Term Structure is now approximated by the dif-

ference of the 10-year swap rate and the 2-year swap rate. The new ensemble

of systematic risk factors achieves similarly high R2, whereas the gamma coef-

ficients are roughly similar to those of the basic model. Since the coefficients of

determination vary by less than 0.1% in each sample, we suggest that alternate

interest rate proxies provide similar pricing information.

In the third case (right column), we conduct a principal component analysis

(PCA) on the residuals of the multiple TSR to identify potential candidates

for systematic risk omitted in this empirical study so far. By this, we examine

if the TSR residuals are jointly driven by unknown systematic risk factors and

we specify these principal components, similar to Collin-Dufresne et al. (2001).

To test whether the specified principal components are priced by market par-

ticipants in our CDS spreads cross-sectionally, we run subsequent second-pass

regressions (CSR) in which we additionally include the eigenvector of the first

major component.

Results of the PCA are plotted in Figure 3.5. While the upper chart shows

the results of the PCA related to the Pre-GFC, the lower chart contains the

PCA results for the GFC. The primary y-axes show the eigenvalues, the sec-

ondary y-axes denote the cumulative variance of identified components that

are denoted on the x-axes.

Both charts demonstrate that the PCA leads to similar results in each sam-

ple. According to the scree test, the residuals of the time-series regressions are

mainly driven by one major risk component that accounts for almost 17% of

the cumulated variance prior to the GFC and for almost 25% during the GFC.

The right column of Table 3.8 summarizes the estimation results of the CSR

after adding the first principal component. The results show that the influ-
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Figure 3.5: Principal Component Analysis of Time-series Residuals
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Notes: This figure shows the results of the principal component analysis (PCA) referring to the residuals

of the time-series regressions. The PCA is provided for both subsamples. The upper chart refers to the

Pre-GFC, the lower chart to the GFC. In each chart, the x-axis denotes the principal components and the

primary y-axis reports the corresponding eigenvalues. The secondary y-axes show the cumulative variance

of the principal components.
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ence of the first component (PC1) is negative in both samples. Moreover, the

principal component is significantly priced during the GFC, but not pre-crisis.

Since the component is unknown, economic interpretations are somewhat dif-

ficult. But the coefficient indicates that there may be a source for systematic

risk that is negatively correlated with CDS spreads. Thus, the swap spreads

increase when the component’s value decreases and vice versa.

Overall, the PCA indicates that there are some systematic drivers respon-

sible for the shared variance of TSR residuals, but these drivers are not priced

without cross-sectional restriction. Therefore, the use of the PCA is strongly

limited. From the small pricing impact of the PCA component in combination

with the relatively high explanatory power of our basic model framework, one

may conclude that our valuation framework already considers the most impor-

tant systematic as well as individual spread drivers and thus provides valuable

insight into the pricing of swap contracts.

Table 3.9 reports the empirical results related to the CSR based on the last

two model extensions. The estimation results refer to the Pre-GFC and the

GFC. Standard deviations are reported in parentheses. The shanken-corrected

standard deviations and significances are separated by a slash, see Shanken

(1992).

Results reported in the left column refer to the basic model under consider-

ation of two additional firm-specific factors: the firm’s Market Capitalization

(MC) and Leverage Ratio (LR). Independent from Merton’s structural frame-

work, we suppose that the firm’s size somehow indicates the robustness of the

firm against, e.g., economic downturns (compare Blume et al., 1998; Yan and

Tang, 2007). We suggest that firms characterized by a large and well-diversified

asset portfolio exhibit both a higher resistance to external shocks and a greater

power to innovate (compare Porter, 1987; Hitt et al., 1996). Thus, we expect a

positive risk premium for firms with lower market value for capital. Finally, we

measure the firm size by the natural logarithm of the capital (compare Blume

et al., 1998) and additionally calculate the book-to-market equity ratio based

on a COMPUSTAT database.49

According to the structural theory, the default threshold is a function of out-

standing debt claims. The higher the leverage, the higher the probability that

the asset value processes pass the critical threshold. Hence, the default proba-

49 Since the book-to-market equity ratio reaches no significance in our model framework, we
focus solely on the firm’s market capitalization.
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Table 3.9: Cross-section Estimates Including Additional Risk Factors

Case Firm-specific Risk Factors Entire Model
Sample Pre-Crisis GFC Pre-Crisis GFC

Intercept 0.0029−/− 0.0125−/∗ 0.0026−/− 0.0184∗∗/∗∗

(0.0037/0.0024) (0.0079/0.0071) (0.0032/0.0016) (0.0071/0.0089)

CMC 2.8977∗∗∗/∗∗∗ 0.5783∗∗∗/∗ 1.8085∗∗∗/∗∗∗ 0.7574∗∗∗/∗∗

(0.2552/1.0955) (0.0775/0.3461) (0.2538/0.3952) (0.0817/0.3358)

CDX 0.0056∗∗∗/∗∗∗ 0.0138∗∗∗/∗∗∗ 0.0052∗∗∗/∗∗∗ 0.0092∗∗∗/∗∗∗

(0.0004/0.0017) (0.0007/0.0032) (0.0004/0.0012) (0.0008/0.0024)

VIX 48.5248∗∗∗/∗∗ 23.6418∗∗∗/− 50.5089∗∗∗/∗∗∗ 12.4364∗∗∗/−

(6.4512/19.9699) (4.6039/14.6251) (5.6951/15.5018) (4.6586/9.3532)

SR (T-bills) 0.0172∗∗∗/− -0.0052−/− -0.0072∗/− -0.0126∗∗∗/∗

(0.0035/0.0207) (0.0032/0.0057) (0.0042/0.0083) (0.0029/0.0069)

STS (T-bills) -0.0006−/− -0.0105∗∗∗/∗ 0.0058∗∗∗/− -0.0045∗∗∗/−

(0.0016/0.0093) (0.0015/0.0055) (0.0016/0.0058) (0.0014/0.0075)

FFR -0.1065∗∗∗/∗∗ -0.0518∗∗∗/−

(0.0142/0.0522) (0.0084/0.041)

SMB 0.0035−/− -0.0299∗∗∗/−

(0.0141/0.022) (0.0069/0.0285)

HML 0.0206∗∗/− -0.0402∗∗∗/∗∗∗

(0.0083/0.0223) (0.0037/0.0134)

LIQ -0.0008∗∗∗/∗∗∗ -0.0017∗∗∗/∗∗∗ -0.0008∗∗∗/∗∗∗ -0.0007∗/−

(0.0001/0.0002) (0.0005/0.0007) (0.0001/0.0002) (0.0004/0.0006)

MC 0.0003−/− 0−/− 0.0002−/∗ -0.0002−/−

(0.0003/0.0002) (0.0006/0.0007) (0.0002/0.0001) (0.0005/0.0007)

LR 0.0055∗∗/∗∗∗ 0.0034−/− 0.0064∗∗∗/∗∗∗ -0.0013−/−

(0.0027/0.002) (0.0054/0.0048) (0.0023/0.0015) (0.0045/0.0063)

PC 1 0.0223∗/− -0.0768∗∗∗/∗

(0.013/0.0151) (0.0274/0.0419)

Dummies
Yes Yes Yes Yes

(Rating & Sector)
R2 91.29% 91.63% 93.87% 94.43%

No. Entities 225 225 225 225

Notes: This table shows the estimation results referring to the cross-section regressions under consideration of

two different cases: in the first case, two more firm-specific risk factors – the firm’s Market Capitalization and

Leverage Ratio – are added to the basic CSR model of Equation (3.3). The Entire Model (case two) contains

the basic risk factors (Cross-market Correlation (CMC), CDX index, VIX index, Spot Rate (SR), Slope of

the Term Structure (STS) and Swap Liquidity (LIQ)), the three Fama-French factors (Fama-French excess

Return (FFR), Small Minus Big (SMB) and High Minus Low (HML), additional firm-specific risk factors

(Market Capitalization and Leverage Ratio) and the first component (PC 1) of the principal component

analysis as further systematic risk factor. Dummy variables are included to account for both the firm’s

rating and economic sector. The results are provided for both samples (Pre-GFC and GFC) based on weekly

CDS spread data of 225 entities. The parameters are statistically significant at the 1%-level (∗∗∗), the

5%-level (∗∗), and the 10%-level (∗). The values in parenthesis describe the parameters’ standard deviations

(STD). Shanken-corrected STDs and significances are separated by a slash. R2 denotes the coefficient of

determination.
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bility increases with increasing leverage. Therefore, we may expect a positive

relationship between the leverage ratio and the observed CDS spread. Among

others, Welch (2004) found that stock returns capture changes in leverage ap-

propriately. Approximated by stock returns, Avramov et al. (2007) identified

leverage as a main driver for credit spread changes. We approximate leverage

by the following leverage ratio

Book Value of Debt

Market Value of Equity + Book Value of Debt

to proxy the firm’s health according to Collin-Dufresne et al. (2001). Respec-

tive data is provided by COMPUSTAT. As this analysis requires additional

data from COMPUSTAT the number of entities is reduced to 225.

According to the left column of Table 3.9, our main results hold with respect

to the inclusion of these two firm-specific variables.50 We find that the MC

does not provide significant explanatory power – neither prior to the GFC or

during. By contrast, the firm’s LR constitutes a significant pricing determinant

in moderate economic conditions which also corresponds to economic expec-

tations: across all economic sectors an increase in the firm’s leverage leads to

an increase in the swap’s risk premium. Overall, the inclusion of these firm-

specific risk factors leads to an increase of the R2 from 83.18% to 91.29% in

the Pre-GFC, and causes relatively small benefits in times of the GFC, where

the R2 increases from 90.18% in the basic model to 91.63% in the extended

model.

To check whether the effect sizes related to each model extension are com-

plementary or not, we estimate the last model case in which the basic two-pass

approach is simultaneously extended to the Fama-French factors, the Leverage

Ratio, the Market Capitalitzation and the first principal component.51 The

respective regression results are reported in the right column of Table 3.9.

With respect to the models R2, the entire ensemble of risk factors accounts

for almost 94% of the CDS spread variation in both samples, which is highest

compared to the R2 of all other regression models.52 We find that the main

results are confirmed in the Entire Model : again, the OLS regression results

show that all estimates of the systematic risk variables reach statistical signifi-

50 Slight differences may be due to the lower amount of entities in this model setup.
51 Here, Treasury notes constitute the reference interest rates.
52 Note that the models’ R2 are not directly comparable with each other due to different

numbers of entities in the data sets.
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cance, independent from the sample period.53 Thus, all systematic risk proxies

are significantly priced in the cross-section of CDS spreads. Apart from the

Slope of the Term Structure, all of these variables additionally meet economic

expectations. Despite the fact that time-series characteristics of systematic

risk variables vary by sample in terms of both their means and standard devi-

ations (compare Figure 3.2), the quality of the Entire Model is almost identical

in both samples. Since the Entire Model exhibits high explanatory power in-

dependent from the sample, this regression model is robust for subsampling.

Each case-specific model extension confirms the results of the basic ap-

proach. Thus, we identify the Credit Market Climate (CDX), the Cross Market

Correlations (CMC) and the Market Volatility (VIX) as the most important

systematic risk factors in the cross-sectional pricing process of swap contracts.

The corresponding risk sensitivities (betas) are positively priced across all sam-

ples and model cases. This result indicates a positive correlation between these

risk proxies and the cross-section of credit spreads. We find that CDS spreads

significantly rise if one of these risk factors increases and vice versa which is in

line with economic expectations. The applied model extensions may help to

increase the model’s explanatory power particularly with respect to moderate

economic conditions. Additionally, we confirm liquidity as a further decisive

determinant in pricing swap contracts. Corresponding to expectations, the

contract’s liquidity reveals a negative relationship to the CDS spread in both

samples and we observe significant negative gamma estimates for all models.

Hence, the results show that the contract’s sensitivity to liquidity risk is com-

pensated by a respective premium widening the spread if the liquidity of the

contract decreases. Referring to the rating classes, the estimates are statisti-

cally significant in most cases. The empirical results show that market partic-

ipants claim a higher risk premium for investing in low-rated swap contracts

reflecting a lower creditworthiness of the rated obligor. This risk premium

increases monotonically with rating classes and is paid in the cross-section of

CDS spreads. All these findings hold, regardless of whether we account for the

economic sector in which the firm is operating.

We conclude that systematic risk generally affects spreads of swap contracts

relying on debt assets. We demonstrate that specific systematic risk variables

53 The Shanken-corrected t-value of the VIX is not statistically significant in this model
setup. Such distortions may generally be due to i) the lower amount of entities, ii) the
higher number of regressors or iii) effects of multi-collinearity.
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such as the Credit Market Climate, the Cross-market Correlation and the Mar-

ket Volatility may play a major role in pricing credit default swaps. We find

that the systematic risk exposures of CDS contracts vary by rating class and

even within each rating class. We further show that these systematic risk expo-

sures are priced beyond ratings. The explanatory power of our systematic risk

determinants may generally vary by regressor and by sample, and we find that

the influence of most systematic risk factors increases in economic downturns.

Overall, we argue in this empirical study from both an economic and a sta-

tistical perspective in order to demonstrate the relevance of provided system-

atic risk factors for pricing CDS contracts. The results hold while controlling

for major firm-specific risk factors, other systematic risk proxies and sectoral

influences.

3.4 Conclusion

The recent Global Financial Crisis has shown that macroeconomic shocks, e.g.,

caused by the U.S. housing crisis, may have a strong impact on global finan-

cial markets, particularly on the credit markets. Indeed, many credit market

participants suffered from unexpectedly high default rates on corporate bonds

or related financial instruments such as credit default swaps or collateralized

debt obligations.

We find that most betas of our systematic state variables are significantly

priced in each sample, given firm-specific risk variables and sector dummies.

Our basic ensemble of risk factors explains about 83% of the cross-section of

CDS spreads before the crisis and about 90% during the crisis. Thus, system-

atic risk seems to be priced in economic downturns. Moreover, we identify

the firm’s rating, Leverage Ratio and the contract-specific Swap Liquidity as

the most important individual risk factors in pricing swap contracts. While

the firm’s rating is mostly significantly priced and its gamma estimates corre-

spond to economic expectations, those of other risk factors, such as the Market

Capitalization are not. Results related to the firm’s Leverage Ratio are plau-

sible from an economic point of view in both samples and this proxy is also

significantly priced prior to the GFC.

Related to our systematic risk factors, we find that the sensitivity to the

Credit Market Climate – approximated by the 5-year CDX NA IG credit index

spread – significantly influences the cross-section of CDS spreads. From an
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economic perspective, we observe a positive sensitivity of CDS spread changes

to changes in the CDX which leads to a positive risk premium in the contracts’

cross-section. If the credit climate worsens, the CDS spreads increase signif-

icantly and vice versa. Hence, our empirical findings show that investors on

CDS markets are monetarily compensated for this kind of common risk.

Furthermore, we find that the suggested Cross-market Correlation also sig-

nificantly explains CDS spreads. To approximate the prospects of risk diversifi-

cation across, e.g., stock, credit and exchange markets, we calculate the average

cross-correlation related to specified markets. Both beta and gamma estimates

also satisfy economic expectations: the higher (lower) the cross-market correla-

tion the higher (lower) is the related systematic risk since market participants

are more (less) constrained in their diversification efforts. Thus, we observe

increasing CDS spreads in line with an increasing Cross-market Correlation

(positive pricing effect) due to a positive sensitivity of CDS spreads to cross-

correlation movements.

With the VIX index – indicating the Market Volatility – we identify another

important determinant for the valuation of systematic risk in CDS spreads.

Positive beta as well as gamma estimates, which are also statistically signifi-

cant, confirm our theoretical expectations and suggest that market participants

are positively rewarded for the market risk expressed through the volatility on

stock markets. We find that if the volatility on stock markets is high (low)

swap investors may receive a high (low) risk premium included in the CDS

spread.

In order to check the robustness of our empirical findings, we provide further

checks: to account for parameter estimation risk related to our two-pass regres-

sion approach, we provide corrected t-statistics for the gamma estimates, as

proposed by Shanken (1992). Moreover, we extend our analysis to the Fama-

French Factors (Fama and French, 1993). In both samples, the model accuracy

increases in terms of the coefficient of determination (R2), but this effect is par-

ticularly observable in moderate economic conditions. The inclusion of swap

rates instead of Treasury notes in order to approximate the interest rate risk

in terms of the Spot Rate and the Slope of the Term Structure leads to R2,

which are similarly as high as in the basic model. Eventually, the R2 do not

differ more than 0.1% in total. Therefore, we conclude that swap rates pro-

vide comparable pricing information to Treasury notes. Through a principal

component analysis we identify at least one major component responsible for
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the shared variance of TSR residuals. We find that this principal component

is significantly priced in CDS spreads across all entities during the GFC, but

not prior to the crisis. Eventually, the results related to each model exten-

sion show that our main empirical findings hold, irrespective of the presence

of these additional risk factors or proxy alternatives.

Apart from our findings, further research is suggested in other systematic

risk variables such as market recovery risk, or counter-party risk since both

factors may represent other relevant determinants of CDS spreads omitted in

this study (compare Brigo and Chourdakis, 2009; Arora et al., 2012). Thereby,

both risk variables may be evaluated either referring to credit markets in gen-

eral (systematic) or explicitly as swap-specific risk factors.

In summary, our empirical study provides a valuable insight into the valu-

ation of systematic risk in CDS spreads. We suggest that at least three of our

systematic risk factors reflect decisive determinants in pricing credit default

swaps in line with economic expectations. These systematic determinants may

also play a decisive role in the valuation of synthetic CDOs since this type

of asset securitization consists of CDS contracts. Thus, our empirical study

shows the impact of systematic risk on the valuation of swap contracts, and

the potential for further research in the valuation of structured securities.
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Chapter 4

What Wags the Tail? How

Parameter Errors Affect Risk

Measures in Credit Models

The content of this chapter refers to the working paper ‘What Wags the Tail?

How Parameter Errors Affect Risk Measures in Credit Models’ by Claußen,

A., and Rösch, D., 2014.

4.1 Introduction

In the last decades, risk management has become one of the most important

subjects of interest for financial institutions. Risk, according to Knight (1921),

can be defined as random variation that follows a known probability law. Thus,

by definition, risk is described by a probability distribution. When this proba-

bility distribution is complex, risk cannot be summarized by one or a few key

numbers such as its moments. In practice, however, often only one key number

is reported for the ranking of risk (e.g. rating) or the calculation of regulatory

capital. To enable this approach risk measures have been introduced, which

map risk into a single number. An example of one of the earlier risk measures

is the variance (or volatility), which has for instance been used in modern

portfolio theory as described by Markowitz (1952). Because the variance is a

symmetric measure, it considers negative as well as positive deviations from

expected values. While positive deviations are often not perceived as risk, the

Value-at-Risk (VaR) has become a popular downside risk measure during the
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nineties, and is still one of the most frequently used measures in practice.

However, the VaR has also been widely criticized. The VaR is neither con-

vex nor sub-additive in the general distribution case, and is therefore not a

coherent risk measure in the sense of Artzner et al. (1999). Moreover, the VaR

may exhibit multiple local extremes for discrete distributions (e.g. Mausser

and Rosen, 1998) and is therefore hard to be optimized in these cases. Finally,

the VaR is merely a percentile of a probability distribution, and therefore does

not take into account any tail information beyond VaR. In contrast, the con-

ditional Value-at-Risk (cVaR), also referred to as Expected Shortfall, has the

property of coherence (e.g. Acerbi and Tasche, 2002; Frey and McNeil, 2002;

Tasche, 2002), and is convex and easily optimized as shown by Rockafellar and

Uryasev (2000). Moreover, cVaR considers tail-risk by definition. This risk

measure has therefore become the favored risk measure in academia, and is

the second most popular risk measure in practice today. Indeed, the Basel

Committee on Banking Supervision recommends to replace the 99% VaR with

the 97.5% cVaR in internal market risk models and has also used the 97.5%

cVaR to calibrate capital requirements under the revised market risk stan-

dardized approach. However, the committee still proposes a 99.9% VaR for

the incremental capital charge for default risk to maintain consistency with

the banking book treatment (BCBS, 2012, 2013).

There is ongoing discussion about which risk measures are appropriate, and

whether the cVaR is superior to the VaR. Current debates focus on diversifica-

tion, aggregation, economic interpretation, extreme behavior, robustness and

backtesting of VaR and cVaR. For an excellent overview of recent literature

see Embrechts et al. (2013) and Emmer et al. (2013).

VaR, even though it is not coherent, is more easily backtested and gener-

ally more robust; in contrast, the cVaR is less robust, harder to backtest (not

elicitable) and requires a larger sample size than the VaR to provide the same

level of accuracy (Yamai and Yoshiba, 2005; Cont et al., 2010; Gneiting, 2011).

Embrechts et al. (2014) have recently shown that the cVaR fulfills a new no-

tation of robustness (aggregation-robustness) that is not fulfilled by the VaR.

Emmer et al. (2013) present an alternative method for backtesting cVaRs and

conclude that despite the caveats that apply to the estimation and backtesting

of cVaR as well as the requirement of larger sample size, it can be considered

as a good risk measure and seems to be the best for use in practice.

In this paper we analyze the specific sensitivity behavior of the VaR and
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cVaR within the popular Asymptotic Single Risk Factor credit model that un-

derlies the Basel Accord (which is used by banks to determine their regulatory

capital for default risk in the banking book under the Internal Rating Based

(IRB) Approach). We understand sensitivity as the effect of errors in the

model parameters on these two risk measures. This is also known as quantile

sensitivities. Hong (2009) presents a way of estimating quantile sensitivities

by a conditional-expectation form, especially when the derivatives cannot be

derived analytically. Further he gives a good literature review over quantile

estimation and gradient estimation. An analysis for the VaR and cVaR has

been studied by Hong and Liu (2009) and Fu et al. (2009). More recently Hong

et al. (2014) developed faster estimators for select portfolio credit risk model.

In our paper we derive quantile sensitivities analytically. We will show that

the cVaR - despite its theoretical advantages - can be more sensitive than the

VaR, and the behavior depends in particular on the default probabilities of the

loans in the portfolio as well as on the chosen confidence level α.

Our paper is related to work by Yamai and Yoshiba (2002), who analyze

credit risk via Monte Carlo simulation and find that using the cVaR requires a

larger sample size than VaR to achieve the same level of accuracy. Our study

differs in several aspects and includes more detailed analyses.

As measures for vulnerability to parameter errors, we analytically calcu-

late and analyze the partial derivatives of the VaR and cVaR with respect

to the model parameters. We then formulate and analytically solve a robust

optimization problem that incorporates these estimation errors, and analyze

the result as a relative add-on for estimation error. This add-on can be in-

terpreted as the factor by which capital (if computed via the risk measure)

should be multiplied to satisfy a decision-maker who is adverse to (parameter)

uncertainty.

We support our theoretically derived results with an empirical study using

default data from Moody’s rating agency, covering a 43-year period of defaults

from 1970 to 2012. We provide the following three main contributions to the

discussion about the superiority of the cVaR over the VaR:

First, we show that the credit model cVaR - even though it has theoretical

advantages - can be more vulnerable to parameter errors than the VaR. Because

our credit model is used in the Basel IRB approach, a shift from VaR to cVaR,

as proposed for risks in the trading book (BCBS, 2013), would lead to higher

impacts of parameter errors in the banking sector.
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Second we find, that with a lower probability of loan default (PD) (or a

better rating grade) the (relative) effects of parameter errors increase for both

the VaR and the cVaR. Especially, for Investment Grade rated (IG-rated) risk

buckets, the cVaR reacts stronger than the VaR.

Third, increasing the confidence level α leads to a higher (relative) impact

of estimation errors, particularly for IG-rated risk buckets.

Thus, trying to be safer in a common sense (low PD, high confidence level α,

choice of tail-considering risk measure cVaR) increases the effects of estimation

errors.

4.2 Credit Model, Parameter Errors and Risk

Measure Sensitivities

4.2.1 The Credit Model

Our analysis focuses on the Asymptotic Single Risk Factor (ASRF) credit

model, which has become a standard credit portfolio model in the banking

industry. It underlies the Basel Accord by which banks determine their regu-

latory capital under the IRB Approach; the ASRF is also used by banks and

researchers as a ‘quick and dirty’ approach to calculate and measure general

economic capital and credit portfolio risk. The foundation and derivation of

the model is given by Vasicek (1987) and Gordy (2000, 2003). It is appealing

because of its simplicity, its analytical tractability, its economic intuition, and

its potential to model skewed loss distributions. As shown in Gordy (2000), the

model can also easily be mapped onto other popular industry credit models.

A large number of more complex models have been proposed, but considering

them all is beyond the scope of our current study. However, even though our

results are derived from a relatively simple model, we conjecture that they

will prove to be robust even when compared with more complex models that

include additional parameters.

The ASRF credit model assumes an infinitely fine-grained homogeneous

portfolio of loans or bonds, with the risk being driven by a single common,

systematic risk factor; idiosyncratic risk disappears owing to full diversification.
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The distribution of credit portfolio loss L(·) in a given period is modeled by

L(Y, ρ, π) = Φ

(
Φ−1(π)−√ρ · Y

√
1− ρ

)
, Y

i.i.d.∼ N(0, 1). (4.1)

where π ∈ (0, 1) is an unconditional probability of loan default (PD), ρ ∈ (0, 1)

is the asset (return) correlation, Y is a standard normally distributed common

systematic risk factor, and Φ is the standard normal CDF (with Φ−1 denoting

its inverse).54

The CDF and PDF for (4.1) are derived in Vasicek (1991) and are given by

the so-called ‘Vasicek-distribution’ with density

v(`) =

√
1− ρ
ρ
· exp

(
−
(√

1− ρ · Φ−1(`)− Φ−1(π)
)2

2 · ρ
+

(Φ−1(`))
2

2

)

for realizing loss ` ∈ (0, 1) and CDF

V (`) = P(LLHP (Y, [π, ρ]) ≤ `) = Φ

(√
1− ρ · Φ−1(`)− Φ−1(π)

√
ρ

)
.

Depending on the parameter constellation the loss distribution is unimodal for

ρ < 0.5 with the mode at

Φ

(√
1− ρ

1− 2ρ
· Φ−1(π)

)
,

and large positive skewness, monotone for ρ = 0.5 and U-shaped for ρ > 0.5.

As an example for different loss profiles described by this specific distri-

bution, we use point estimates from our empirical analysis given in Section

4.3.2. The solid line in Figure 4.1 is the shape of its PDF and CDF of ‘A’

rated risk bucket with estimates [ρ̂A, π̂A] = [22.11%, 0.05%]. The dotted line

represents a ‘Ba’ portfolio with [ρ̂Ba, π̂Ba] = [12.15%, 1.05%] and the dash-

dot (respectively dashed) line illustrates the PDF and CDF of a ‘B’ (respec-

tively ‘C’) risk bucket with estimates [ρ̂B, π̂B] = [18.79%, 4.95%] (respectively

[ρ̂C , π̂C ] = [14.26%, 19.53%]).

All estimates of asset (return) correlations in Figure 4.1 are smaller than

54 To simplify the notation, we skip the parameter of recovery rate RR by setting RR = 0.
Therefore, if default occurs, the lender suffers a loss of 100%. If one wanted to consider a
nonzero recovery rate, the risk measures derived below could be modified with the factor
(1−RR).
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Figure 4.1: Shape of Vasicek-distribution
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Notes: This figure shows the shape of the PDF and CDF of the Vasicek-distribution. Point parame-

ter estimates are resulting from a maximum-likelihood estimation of historical default data from Moody’s

from 1973-2012: [ρ̂A, π̂A] = [22.11%, 0.05%], [ρ̂Ba, π̂Ba] = [12.15%, 1.05%], [ρ̂B , π̂B ] = [18.79%, 4.95%] and

[ρ̂C , π̂C ] = [14.26%, 19.53%].

50% and therefore all loss distributions are unimodal with positive skewness.

For the ‘Ba’ risk bucket, for instance, the expected loss is 4.95%, and the

mode equals 0.8629%. Due to the positive skewness, although small losses are

more likely in absolute terms, a wide range of larger losses than the expected

loss is also likely. This is captured by the respective VaR99.9% = 9.43% or

cVaR99.9% = 11.39%.

In this credit model the VaR and cVaR can be expressed analytically for

confidence level α ∈ (0, 1):

V aR(ρ, π, α) = Φ

(
Φ−1(π)−√ρ · Φ−1(1− α)

√
1− ρ

)
, (4.2a)

cV aR(ρ, π, α) =
1

1− α
Φ2

(
Φ−1(π),Φ−1(1− α),

√
ρ
)
, (4.2b)

where Φ2(x1, x2, %) is the cumulative standard bivariate normal distribution

function given by

Φ2(x1, x2, %) =
1

2κ
√

1− %2

x1∫
−∞

x2∫
−∞

exp

(
−x

2
1 − 2%x1x2 + x2

2

2(1− %2)

)
dx2dx1

and κ is the irrational ratio of a circle’s circumference to its diameter,55 and

% is the correlation between two standardized normally distributed random

55 We introduce this notation because we use the variable π for the PD.
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variables Xi ∼ N(0, 1), i ∈ 1, 2.

Generally speaking, these numbers return the level of loss which is not

exceeded with a given (high) confidence probability (VaR), or the expected

loss given that the VaR is exceeded (cVaR). Although the risk measures are

defined ∀α ∈ (0, 1) we focus our analysis on the case 0.5 < α < 1 as is common

in theory and practice. Then it is obvious that for π → 0 (π → 1) the VaR

and the cVaR converge to zero (one). If ρ → 0, the VaR and cVaR converge

to π. For the VaR, Höse and Huschens (2008) show that for ρ → 1, the VaR

converges to 0 if π < 1 − α, 0.5 if π = 1 − α and 1 if π > 1 − α. Using

the results from Meyer (2013), it follows that the cVaR approaches the upper

Fréchet-Hoeffding bound for ρ→ 1 and goes to

min(π, 1− α)

1− α
.

Obviously, both risk measures are nonlinear functions in the parameters ρ, π

and α. E.g. a fixed confidence level of 99.9%, ρ = 20% and π = [0.1%, 1%, 5%]

yields V aR(20%,π, 99.9%) = [2.81%, 14.55%, 38.44%]. If ρ is changed to

25% (e.g. due to an alternative estimation procedure) the VaRs increase to

V aR(25%,π, 99.9%) = [3.72%, 18.35%, 45.42%] (which are multiples of [1.32,

1.26, 1.18]). Thus, the relative change of the VaR increases with declining PD.

In any empirical and practical application of risk models, some values for

the unknown parameters have to be specified and inserted. These values can

be derived in different ways or combinations thereof; a simple way to make

the models ‘go live’ in practice, is to make assumptions about the parameter

values, which can be inferred from past experiences with the models or ex-

pert judgments and opinions. For this, no statistical technique and database

is required. Another method is to calibrate the models using current or past

market data from traded securities, such as bonds or credit derivatives. For

the correlation, one could, for example, use spreads of tranches of collateralized

debt obligations, which are actually financial contracts that trade assumptions

about credit correlations. A weakness of this calibration method is that it re-

quires assumptions about the market (such as absence of arbitrage), and allows

calibration of risk-neutral measures only (rather than physical or real-world

measures which are required for the VaR and cVaR). Finally, one can make

use of databases with historical data, such as default or loss rates from loans

or bonds, and estimate the real-world parameters using statistical-econometric
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techniques. For this, usually a rich history of data is required, which may not

be readily available if a bank wants to infer the parameters for its own port-

folio with sparse data only. All of these approaches make assumptions, and

the chosen parameter values may not match the true underlying and unknown

parameters. In other words, empirical approaches for making credit risk mod-

els ‘go live’ are prone to parameter errors. In some instances, such as when

parameter estimates are derived from historical data, the potential degree of

error can be derived by computing confidence intervals using statistical the-

ory. We will provide an example for this in Section 4.3. Generally, however,

parameters are measured with error, and it is hard to quantify the extent of

these errors. Thus, in the next section we analyze how the outcome of the

risk model (i.e. the VaR or the cVaR) is affected by parameter errors when no

specific assumptions are made about their potential magnitudes.

4.2.2 Sensitivities of Risk Measures

As our first main result, we show that given an α-quantile, the cVaR can be

more sensitive to errors in ρ and π than the VaR. This is particularly likely

for specific parameter constellations [ρ, π] that are usually associated with IG-

rated risk buckets. To derive these results, we compute the partial derivatives

of V aR(ρ, π, α) and cV aR(ρ, π, α) with respect to ρ, π ∈ (0, 1). The partial

derivatives with respect to α ∈ (0, 1) are also computed and will be used in

Section 4.2.3.

The partial derivative of the V aR(ρ, π, α) with respect to ρ follows by using

the chain and quotient rule,

∂

∂ρ
V aR(ρ, π, α) =

√
ρ · Φ−1(π)− Φ−1(1− α)

2
√
ρ(1− ρ)3

(4.3)

· φ
(

Φ−1(π)−√ρ · Φ−1(1− α)
√

1− ρ

)
and is also given in Höse and Huschens (2008). For its partial derivative with

respect to π, we apply again the chain rule leading to

∂

∂π
V aR(ρ, π, α) =

1

φ(Φ−1(π)) ·
√

1− ρ
(4.4)

· φ
(

Φ−1(π)−√ρ · Φ−1(1− α)
√

1− ρ

)
> 0,
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where ∂
∂x

Φ−1(x) = φ(Φ−1(x))−1 follows by the inverse function theorem. Using

this theorem as well as the quotient rule leads to the partial derivative of the

VaR with respect to α:

∂

∂α
V aR(ρ, π, α) =

√
ρ

√
1− ρ · φ(Φ−1(1− α))

(4.5)

· φ
(

Φ−1(π)−√ρ · Φ−1(1− α)
√

1− ρ

)
> 0.

The partial derivative of the cV aR(ρ, π, α) with respect to ρ is given by56

∂

∂ρ
cV aR(ρ, π, α) =

φ (Φ−1(1− α))

(1− α) · 2√ρ ·
√

1− ρ
(4.6)

· φ
(

Φ−1(π)−√ρ · Φ−1(1− α)
√

1− ρ

)
> 0

by using the general result in Plackett (1954) for the partial derivative of the

bivariate normal distribution with respect to ρ

∂

∂ρ
Φ(x1, x2, ρ) =

1

2κ
√

1− ρ2
exp

(
−x

2
1 − 2ρx1x2 + x2

2

2
√

1− ρ2

)
. (4.7)

For the partial derivative of the cVaR with respect to π and α, we use the

partial derivative of Φ2(x1, x2, %), with respect to x1 or x2 which can e.g. be

found in Meyer (2013) leading to

∂

∂π
cV aR(ρ, π, α) =

1

1− α
· Φ
(

Φ−1(1− α)−√ρ · Φ−1(π)
√

1− ρ

)
> 0 (4.8)

and

∂

∂α
cV aR(ρ, π, α) =

1

1− α
·
(
cV aR(ρ, π, α)− V aR(ρ, π, α)

)
> 0. (4.9)

From these partial derivatives we can infer some important properties of

VaR and cVaR. We can approximate the effect of parameter changes (e.g.

due to estimation errors) and, in particular, we can demonstrate the higher

sensitivity of the cVaR compared with the VaR for changes in ρ.

The partial derivative with respect to ρ of the VaR for the above example

56 After the application of (4.7), we have added ρ ·Φ−1(1−α)2− ρ ·Φ−1(1−α)2 = 0 in the
numerator for further simplifications.
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(α = 99.9%, ρ = 20% and π = [0.1%, 1%, 5%]) equals according to (4.3)
∂
∂ρ
V aR(20%,π, 99.9%) = [ 17.19%, 73.18%, 140.57%], which is in relation to

the VaR a multiple of

∂
∂ρ
V aR(20%,π, 99.9%)

V aR(20%,π, 99.9%)
= [6.12, 5.03, 3.66].

So, particularly for a low PD, the relative impact of parameter changes on

the VaR is high. An approximation of the effect of parameter changes on the

partial derivative can be computed via a first-order Taylor Series Expansion:

V aR(25%,π, 99.9%) ≈ V aR(20%,π, 99.9%) + 5% · ∂
∂ρ
V aR(20%,π, 99.9%)

≈ [3.67%, 18.21%, 45.47%].

For π1 = 0.1% and π2 = 1% the approximation undervalues the true VaR, while

for π3 = 5% it overvalues the VaR. However, in the presented cases, the relative

errors are therefore rather small (-1.43%, -0.76% and 0.122%, respectively).

Next, note that the cVaR is monotonously increasing in all three param-

eters ρ, π and α. In contrast, the VaR is only monotonously increasing in π

and α, but not in ρ. Höse and Huschens (2008) argue that it is a common

misunderstanding of the ASRF credit model that a higher asset correlation

always increases the economic capital (for which the VaR is often used).57

Höse and Huschens (2008) show that if 0.5 < α < 1 and 0 < π < 1− α

∂

∂ρ
V aR(ρ, π, α)


> 0 if 0 < ρ < ρmax

= 0 if ρ = ρmax

< 0 if ρmax < ρ < 1,

(4.10)

where 0 < ρmax =
(

Φ−1(1−α)
Φ−1(π)

)2

< 1 is the ‘worst-case’ correlation that max-

imizes the VaR. As seen from (4.10), if 0 < π < 1 − α and ρ is larger than

ρmax < 1, the VaR decreases for any further increase of ρ. Thus, particu-

larly in the cases where the VaR decreases by increasing ρ, the cVaR is more

(positively) sensitive because it is monotonously increasing in ρ ∈ (0, 1).

57 See e.g. Basel II Correlation Values - An Empirical Analysis of EL, UL and the IRB Model,
Fitch Ratings 2008, “Adjusting the correlation values is a policy lever for regulators to
achieve desired capital outcomes. For example, by increasing correlation assumptions,
regulators are able to increase overall Basel II capital requirements.”
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Next, we generalize this for a smaller ρ. For this, we compute the ratio of
∂
∂ρ
cV aR(ρ, π, α) and ∂

∂ρ
V aR(ρ, π, α). After canceling down

φ

(
Φ−1(π)−√ρ · Φ−1(1− α)

√
1− ρ

)
> 0

and making some minor simplifications, we define

qρ(ρ, π, α) :=

∂
∂ρ
cV aR(ρ, π, α)

∂
∂ρ
V aR(ρ, π, α)

=
1−ρ
1−α · φ(Φ−1(1− α))

√
ρ · Φ−1(π)− Φ−1(1− α)

. (4.11)

If this ratio is larger (smaller) than one the cVaR is more (less) sensitive to

changes in ρ than the VaR. Further, it gives the magnitude of the sensitivity

of the cVaR versus the VaR.

Because (4.11) is larger than one for ρ→ 0 and the numerator in Equation

(4.11) is a linear function in ρ with a negative slope while the denominator is

a square root function in ρ with a negative slope, there must be an intersec-

tion point ρint > 0 that results in the same value for the numerator and the

denominator. It can be derived by

∂

∂ρ
cV aR(ρint, π, α) =

∂

∂ρ
V aR(ρint, π, α)

1− ρint
1− α

· φ(Φ−1(1− α)) =
√
ρint · Φ−1(π)− Φ−1(1− α)

(1− ρint) · a =
√
ρint · b− c,

where a = φ(Φ−1(1−α))
1−α , b = Φ−1(π) and c = Φ−1(1− α) leading to

ρint =

(√
b2 + 4 · (c+ a) · a− b

)2

4 · a2
.

Therefore the cVaR is more sensitive than the VaR for all ρ ∈ (0, ρint).

We could not derive an analogous result for the sensitivities in π, therefore

we analyze the following ratio of sensitivities numerically:

qπ(ρ, π, α) :=
∂
∂π
cV aR(ρ, π, α)

∂
∂π
V aR(ρ, π, α)

=

1
1−α · Φ

(
Φ−1(1−α)−√ρ·Φ−1(π)√

1−ρ

)
1

φ(Φ−1(π))·
√

1−ρ · φ
(

Φ−1(π)−√ρ·Φ−1(1−α)√
1−ρ

) .
(4.12)
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This ratio qπ(ρ, π, α) has the analogous interpretation as (4.11) but for changes

in π. The numerical analysis reveals that the limiting value of qπ(ρ, π, α) for

π → 0 is larger than 1 for all reasonable parameter settings. The intersection

point 0 < πint < 0.5 for the two partial derivatives in π can also be computed

numerically by solving

∂

∂π
cV aR(ρ, πint, α) =

∂

∂π
V aR(ρ, πint, α).

Both partial derivatives are monotonically decreasing in π (as confirmed nu-

merically); therefore, we conclude the existence of only one intersection point.

Thus, given ρ and α, the cVaR is more sensitive than the VaR for 0 < π <

πint < 0.5.

Figure 4.2 illustrates these findigs. The left-hand panel shows ρint plotted

for parameters π ∈ (0, 0.3) and α ∈ {0.90, 0.95, 0.99, 0.999}. For all parameter

settings below the respective line, the cVaR is more sensitive to changes in ρ

than the VaR. Similarly, the right-hand panel shows πint for ρ ∈ (0, 0.5) and

α ∈ (0.90, 0.95, 0.99, 0.999). Again, for all parameter settings below the graph,

the cVaR is more sensitive than the VaR in the sense of changing π.

Figure 4.2: ρint and πint for π ∈ (0, 0.3) and ρ ∈ (0, 0.5)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

π

ρ in
t

 

 
α = 0.90
α = 0.95
α = 0.99
α = 0.999

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

ρ

π in
t

 

 
α = 0.90
α = 0.95
α = 0.99
α = 0.999

Notes: This figure shows ρint for given π ∈ (0, 0.3) and πint given ρ ∈ (0, 0.5) for α ∈ {0.90, 0.95, 0.99, 0.999}.

For all parameter settings below the plotted line the cVaR reacts more sensitively in changes in the related

parameter than the VaR.

To get an indication about potentially realistic magnitudes of the param-

eters, we compare these values with the supervisory asset correlation of the

Basel risk weight formula, which is specified as a function of π yielding corre-
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lations between 0.12 and 0.24. The Basel formula is given by

0.12 < ρBasel = 0.12 ·
(

1− exp(−50 · π)

1− exp(−50)

)
+ 0.24 ·

(
1− 1− exp(−50 · π)

1− exp(−50)

)
< 0.24.

This shows that the cVaR is more sensitive than the VaR for most parame-

ter settings, particularly for low probabilities of default. Realistic parameter

setting (where this relation is reversed) are only found for a high π. However,

in all cases that correspond to highly rated (IG-rated) bonds (e.g π < 0.01),

which comprise the largest part in a typical portfolio, the cVaR has higher

sensitivity than the VaR for reasonable values of ρ, e.g. those in line with the

Basel formula.

Concerning π, the cVaR is also more sensitive than the VaR for all parameter

constellations that are typical for IG-rated risk buckets. Only for relatively

high probabilities of default, e.g. π = 0.10, we see realistic parameter settings

where the VaR is more sensitive to changes in π than the cVaR.

Importantly, Figure 4.2 also shows that for a lower α, the cVaR is more

sensitive than the VaR for an even wider range of parameter settings (these

results will be analyzed in more detail in Section 4.2.3). Beacuse this result

holds for changes in ρ and π, we conjecture a higher sensitivity of the cVaR

with respect to α as compared the VaR.

Figure 4.3 shows level curves (contour plots) of qρ(ρ, π, α) from (4.11) and

qπ(ρ, π, α) from (4.12). The two left-hand panels show level curves of qρ(ρ, π, α)

for α = 0.99 (upper chart) and α = 0.999 (lower chart). The contour lines in

the graphs give the factor by which the cVaR is more sensitive in changes in

ρ than the VaR in absolute terms. For example for α = 0.999 the parameter

setting ρ = 0.20 and π = 0.05 approximately hits the level curve 1.15 (exactly

qρ(0.20, 0.05, 0.999) = 1.144), meaning that at this point, the sensitivity to

changes in ρ of the cVaR is higher than the sensitivity of the VaR by factor

1.15 (exactly 1.144). For a lower PD, this ratio increases. For example, for

α = 0.999, ρ = 0.20 and π = 0.01, the cVaR-to-VaR-sensitivity ratio is at a

factor qρ(0.20, 0.05, 0.999) = 1.314. Thus, for a higher rating - or a lower PD

- the cVaR reacts much more sensitively to changes in ρ than the VaR.

In contrast, for large probabilities of default π and asset correlation ρ, we

find parameter settings for which the cVaR is actually less sensitive in ρ than
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Figure 4.3: Selected Level Curves of qρ(ρ, π, α) and qπ(ρ, π, α) with α ∈
{0.99, 0.999}
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Notes: This figure shows selected level curves of qρ(ρ, π, α) from (4.11) for π ∈ (0, 0.3) and ρ ∈ (0, 1) as well

as qπ(ρ, π, α) from (4.12) for ρ ∈ (0, 0.5) and π ∈ (0, 0.3) for α ∈ {0.99, 0.999}.
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the VaR. For example, for ρ = 0.40, π = 0.15 and α = 0.999, the sensitivity in

ρ of the cVaR is less sensitive than the VaR by a factor of qρ(0.40, 0.15, 0.999) =

0.8298. However, these settings are not typical for IG-rated risk buckets, which

are the major constituents of typical bank portfolios.

By comparing the upper left chart plotting qρ(ρ, π, 0.99) with the lower chart

plotting qρ(ρ, π, 0.999), we see that with decreasing α, the strength of the sen-

sitivity behavior of the cVaR increases compared with the sensitivity behavior

of the VaR. This conforms to our previous result. For the two examples given

above for α = 0.99 the factors increase to qρ(0.20, 0.05, 0.99) = 1.3404 and

qρ(0.20, 0.05, 0.99) = 1.658 respectively.

The two right-hand graphs show level curves of qπ(ρ, π, α) for α = 0.99

(upper right-hand graph) and α = 0.999 (lower right-hand panel). Overall,

the effect of higher sensitivity of the cVaR with respect to π is less high than

the sensitivity with respect to ρ. For example, for the parameter settings from

above qπ(0.20, 0.05, 0.999) = 1.023 and qπ(0.20, 0.01, 0.999) = 1.1433, whereas

qπ(0.20, 0.05, 0.99) = 1.0942 and qπ(0.20, 0.01, 0.99) = 1.2640.

These results have practical implications for financial institutions that use

the cVaR instead of the VaR as a risk measure. Even though the cVaR has

theoretical advantages, it is apparently more prone to parameter errors, and the

true risk measure might therefore deviate more from the stated risk measure

with the cVaR than with the VaR. This effect will be more pronounced for

typical bank portfolio constituents (IG-rated securities).

The practical implications of our first contribution can be further investi-

gated by analyzing relative add-ons

V aR+(ρ̂, π̂, α, ε) =

max
(ρ,π)∈Θε

V aR(ρ, π, α)− V aR(ρ̂, π̂, α)

V aR(ρ̂, π̂, α)
(4.13)

and

cV aR+(ρ̂, π̂, α, ε) =

max
(ρ,π)∈Θε

cV aR(ρ, π, α)− cV aR(ρ̂, π̂, α)

cV aR(ρ̂, π̂, α)
, (4.14)

where ρ̂ and π̂ are parameter values from expert judgments or parameter es-

timates (e.g. by maximum-likelihood estimation) and ε > 0 defines an uncer-
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tainty box

Θε =
(
(1− ε) · ρ̂, (1 + ε) · ρ̂

)
×
(
(1− ε) · π̂, (1 + ε) · π̂

)
⊆ (0, 1)2 (4.15)

around these estimated parameters. These relative add-ons compute the rela-

tive deviation of the maximum risk measure from the estimated risk measure

for a given uncertainty around the specified parameter values. Calculating

these relative add-ons has two main advantages.

First, the maximization of the VaR or the cVaR subject to an uncertainty

box takes into account that the unknown true parameters might be in an area

around the parameter estimates. This agrees with the robust optimization lit-

erature that incorporates estimation uncertainties directly into the optimiza-

tion algorithm under a deterministic worst-case approach. For a overview of

developments, see e.g Zhu and Fukushima (2009), Huang et al. (2010) and

Fabozzi et al. (2010) or more recently Zymler et al. (2013). Other restric-

tions, such as ellipsoidal or polyhedral uncertainty, could be used; however, by

using a box-uncertainty, we can solve those restricted optimization problems

analytically.

Second, the degree of uncertainty aversion is quantified by ε > 0. A larger

ε leads to a greater uncertainty box, resulting in a higher argument of the

maximization problem. Then, the difference of the maximized risk measure

and the estimated risk measure can be interpreted as an uncertainty premium.

However, since the cVaR is by definition always larger than the VaR, the

resulting uncertainty premium measured by the cVaR is consequentially larger

in absolute terms than the premium measured by the VaR. To compare the

different levels of sensitivity of the different risk measure, we correct for this

by dividing the risk measures for given values evaluated at the estimates [ρ̂, π̂].

In economic terms, this relative add-on can be understood as the factor by

which an uncertainty averse decision-makers (as quantified by ε > 0) should

multiply capital.

Given that the VaR is monotonously increasing in π, and given the results

from Höse and Huschens (2008) the maximization problem in (4.13) for the

VaR can be solved as

V aR+(ρ̂, π̂, α, ε) =
cV aR((ρ+, (1 + ε) · π̂), α)− cV aR(ρ̂, π̂, α)

cV aR(ρ̂, π̂, α)
, (4.16)
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where

ρ+ =



(1 + ε) · ρ̂, if (1 + ε) · π̂ ≥ 1− α

ρmax, if (1 + ε) · π̂ < 1− α and (1− ε) · ρ̂ ≤ ρmax ≤ (1 + ε) · ρ̂

(1− ε) · ρ̂, if (1 + ε) · π̂ < 1− α and ρmax < (1− ε) · ρ̂

(1 + ε) · ρ̂, if (1 + ε) · π̂ < 1− α and ρmax > (1 + ε) · ρ̂

(4.17)

and 0 < ρmax =
(

Φ−1(1−α)
Φ−1(π)

)2

< 1 is the worst-case correlation from (4.10).

For the cVaR, we can use its monotonicity w.r.t. ρ and π from (4.6) and

(4.8), and the solution to the maximization problem becomes

cV aR+(ρ̂, π̂, α, ε) =
cV aR((1 + ε) · ρ̂, (1 + ε) · π̂), α)− cV aR(ρ̂, π̂, α)

cV aR(ρ̂, π̂, α)
. (4.18)

To compare cVaR and VaR, we define the ratio of these two maximization

results

q+(ρ̂, π̂, α, ε) =
cV aR+(ρ̂, π̂, α, ε)

V aR+(ρ̂, π̂, α, ε)
. (4.19)

If this ratio is larger than one, the relative add-on of the cVaR is larger than

the relative add-on of the VaR by that factor. In other words the cVaR reacts

more sensitively to parameter estimation error than the VaR in those cases.

Selected contour plots of q+(ρ, π, α, ε) are shown in Figure 4.4, where ε is

set to 0.5 in all charts. This choice of ε reflects a box size of approximately

half the standard deviation of estimates in real-world application, as will be

described in Section 4.3. The two charts on the left show [ρ, π] ∈ (0, 0.5) ×
(0, 0.002). This domain represents parameter settings compatible with IG-

rated risk buckets and is denoted by qIG+ (·). In the two charts on the right

[ρ, π] ∈ (0, 0.5) × (0.001, 0.5), which represent parameter settings associated

with speculative grade rated (SG-rated) risk buckets and is denoted by qSG+ (·).
The graphs on the left show that for parameter settings associated with

IG-rated risk buckets the parameter error aversion add-on for the cVaR is

larger than for the VaR. The two charts on the right show that for SG-rated

risk buckets this is not the case. Here, the VaR reacts more sensitively to

parameter errors than the cVaR, as almost all level curves are smaller than

one. Additionally, we see that with a lower α for IG-rated risk buckets, the

cVaR reacts much more to parameter uncertainty than the VaR.
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Figure 4.4: Selected Level Curves of q+(ρ, π, α, 0.5) for [ρ, π] ∈ (0, 0.5)×(0, 0.5)
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Notes: This figure shows selected level curves of q+(ρ, π, α, ε) from (4.19) for ε = 0.5. For the two left-hand

graphs, the domain for IG-rated risk buckets is defined as [ρ, π] ∈ (0, 0.5)× (0, 0.002), while for the two right

hand graphs a domain for SG-rated risk buckets is introduced as [ρ, π] ∈ (0, 0.5)× (0.001, 0.5).
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4.2.3 Sensitivities and Confidence Levels

We now provide a more detailed analysis of the confidence level α. In the

usual interpretation of α a higher value is associated with a lower probability

of adverse outcomes exceeding the α-quantile; similarly, if capital buffers are

linked to the risk measure at an α confidence level, a higher value implies c.p.

higher capital and a lower likelihood of default. A higher α is therefore c.p.

usually associated with more safety. We will now analyze the problems associ-

ated with these perceptions. For the third main result of our contribution we

show that both the VaR and the cVaR (particularly for IG-rated risk buckets)

are more sensitive to errors in ρ and π with increasing α-quantiles. In other

words, while a high confidence level apparently delivers a high degree of safety,

the vulnerability to parameter errors increases with the perceived confidence

or safety.

For this analysis, we first define and analyze the ratios

qVaR
α (ρ, π, α) =

∂
∂α
V aR(ρ, π, α)

V aR(ρ, π, α)
, and (4.20)

qcVaR
α (ρ, π, α) =

∂
∂α
cV aR(ρ, π, α)

cV aR(ρ, π, α)

which measure the sensitivity of the VaR (cVaR) in changes in α accounting

for the actual level of the risk measures. Selected level curves (contour plots)

are shown in Figure 4.5, where the ratios are plotted for the VaR in the left-

hand charts and the cVar in the right-hand charts as functions of ρ and π for

α = 0.99 (upper charts) and α = 0.999 (lower charts).

Comparing the upper charts with the lower charts shows that increas-

ing α from 99% to 99.9% raises the sensitivity of the measures by more

than 500% even when controlling for the actual level. For example, we find

qV aRα (20%, 1%, 99%) = 35.38, while qV aRα (20%, 1%, 99.9%) = 233.14. This

equates to a multiple of 658.96%.

Further, the VaR reacts less sensitively in this regard. This is in line with

the above results from Figures 4.2 and 4.3 where the cVaR becomes more

sensitive in changes in ρ and π than the VaR by decreasing α. For this, see

exemplary qcV aRα (20%, 1%, 99%) = 28.42 and qcV aRα (20%, 1%, 99.9%) = 197.92

which represents a multiple of 696.41%.

We analyze this effect in more detail for different parameter settings and
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Figure 4.5: Selected Level Curves of qV aRα (ρ, π, α) and qcV aRα (ρ, π, α) with α ∈
{0.99, 0.999}
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IG-rated and SG-rated risk buckets. Suppose that the real-world parameters

θ ∈ {ρ, π} are estimated using statistical-econometric techniques. For ease of

exposition, the estimator θ̂ shall be unbiased (E(θ̂) = θ) for each parameter and

normally distributed with a known standard deviation σ(θ̂) =

√
E
(

(θ̂ − θ)2
)

:

θ̂ ∼ N
(
θ, σ(θ̂)2

)
.

By inserting the estimators ρ̂ ∼ N (ρ, σ(ρ̂)2) and π̂ ∼ N (π, σ(π̂)2) in the

functions of the VaR (4.2a) and cVaR (4.2b), these risk measures also become

random variables and are given by

R(ρ̂, π, α), R(ρ, π̂, α) and R(ρ̂, π̂, α),

where R(·) ∈ {V aR(·), cV aR(·)}. While R(ρ̂, π, α) (respectively R(ρ, π̂, α))

takes into account the estimation error in ρ (respectively π), the measure

R(ρ̂, π̂, α) includes the estimation errors in ρ and π simultaneously. To quan-

tify the estimation error effect on the VaR in comparison with the cVaR, we

calculate the β-quantiles of their distributions and divide them by its true value

evaluated at [ρ, π].

q
R(·)
β,ρ =

Qβ

(
R(ρ̂, π, α)

)
R(ρ, π, α)

(4.21a)

q
R(·)
β,π =

Qβ

(
R(ρ, π̂, α)

)
R(ρ, π, α)

(4.21b)

q
R(·)
β =

Qβ

(
R(ρ̂, π̂, α)

)
R(ρ, π, α)

(4.21c)

Thus, these measures describe the factors by which the random VaR or cVaR

might be larger (or smaller) than the true risk measure for a given quantile

level β. Therefore, these factors are influenced by the estimation error of the

underlying parameters, represented by their standard deviation σ(θ̂), which

depends on the quality of given data, the length of the data series and the

estimation technique, as well as on the chosen β-quantile. A higher β−quantile

in general leads to a higher factor.

Since the cVaR is monotonously increasing in ρ and π, we can calculate

q
cV aR(·)
β,ρ and q

cV aR(·)
β,π analytically. The same we can do for q

V aR(·)
β,π . For the

other cases we provide results from a Monte Carlo simulation.
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To demonstrate how this factor varies by changes in α, we vary α in (0.9, 0.999)

for two parameter settings and present the results in Figure 4.6. The parameter

settings are based on the results from Section 4.3, which represent an IG-rated

and SG-rated risk bucket (ρIG = ρSG = 20%, πIG = 0.05%, πIG = 5%). For

adequate comparison, we standardize the estimation error by setting σ(ϑ) =

0.25 · ϑ, where ϑ ∈ {ρIG, ρSG, πIG, πSG}58.

Figure 4.6: q
R(·)
β,ρ and q

R(·)
β,π for β ∈ {0.75, 0.9}
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Notes: This figure shows the measure q
R(·)
β,ρ and q

R(·)
β,π for β ∈ {0.75, 0.9} and α ∈ (0.9, 0.999). Therefore it

gives insight in possible risk overestimation given the same estimation error based on the choice of the risk

measure VaR or cVaR.

The two graphs on the left-hand side show the evolution of the measures q
R(·)
β,ρ

and q
R(·)
β,π for β = 0.75 and α ∈ (0.9, 0.999). The upper and lower graphs show

the possible risk overestimation by parameter errors in ρ and π, respectively.

The data indicate that for IG-rated risk buckets in particular the relative risk

overestimation increases with a higher α. For α > 0.995, this effect rises quasi

58 Estimation errors for IG-rated risk buckets are higher than for SG-rated risk buckets due
to the lack of observed losses. The (relative) estimation errors are often higher for ρ than
for π.
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exponentially. Thus, for an IG-rated risk bucket under parameter estimation

error in ρ, a considerably large risk overestimation is possible. Further, this

effect is even more pronounced for the cVaR. In comparison with SG-rated

risk buckets, we see only a small increase of this overestimation for both risk

measures. Actually, the effect is almost constant; we therefore conclude that

for SG-rated risk buckets under estimation error in ρ the choice of α does not

matter much.

If we analyze this effect for estimation errors only in π, we see that for

the IG-rated and SG-rated risk buckets the possible risk overestimation stays

almost constant. For a large α > 0.995, we see a slightly decreasing effect.

Therefore we conclude that if there is only uncertainty in π, the choice of α is

of minor importance in comparison with the uncertainty in ρ.

If we compare the left-hand graphs with the right hand-graphs, we see that

with an increasing β from 0.75 to 0.99, the lines are almost scaled, as would

be expected.

While Figure 4.6 only shows an analysis of a single estimation error, Fig-

ure 4.7 shows the results from an analysis considering both estimation error

simultaneously by q
R(·)
β for the same parameter sets. Note that these plots are

based on Monte Carlo simulations and are therefore not always smooth.

Figure 4.7: q
R(·)
β for β ∈ {0.75, 0.9} and α ∈ (0.9, 0.999)
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Notes: This figure shows the measure q
R(·)
β for β ∈ {0.75, 0.9} and α ∈ (0.9, 0.999). This provides insights

into possible risk overestimation given the same estimation error based on the choice of the risk measure

VaR or cVaR.

The left-hand graph shows a possible risk overestimation for IG-rated risk

buckets, which increases with a higher α. Again, especially for a high α >

0.995, this effect increases almost exponentially. For SG-rated risk buckets, the

76



4.2. CREDIT MODEL, PARAMETER ERRORS AND RISK MEASURE
SENSITIVITIES

choice of α does not lead to considerable higher or slower risk overestimation.

Again, the cVaR reacts more sensitively than the VaR to changes in pa-

rameters, and a comparison of the left- and right-hand graphs shows that the

reported lines are almost scaled when β is increased from 0.75 to 0.99.

We therefore conclude that under parameter errors in ρ and π (especially for

IG-rated risk buckets) the choice of the α-quantile for both risk measures VaR

and cVaR is more important than previously acknowledged in the literature.

Both risk measures react more sensitively to changes in ρ and π with higher

α.

Therefore this gives risk to the conjecture that a smaller α-quantile could be

wise in some practical situations in risk management, particularly considering

the result that this effect increases exponentially for α > 0.995.

If using a lower α one should recall the result of Section 4.2.2. There we

have seen that with a lower α the cVaR becomes more sensitive to changes in

the parameters ρ and π in comparison to the VaR. Thus, for lower α the VaR

is superior to the cVaR concerning vulnerability to errors, and the VaR could

be favored in practical applications, along with lower α.

4.2.4 Calibrating VaR and cVaR to the same Level of

Capital

So far we have compared the behavior of the two risk measures under the same

confidence level α. Because of the following relation,

cV aRα(·) = V aRα(·) + E
(
X − V aRα(·) | X > V aRα(·)

)
, (4.22)

where E
(
X − V aRα(·) | X > V aRα(·)

)
> 0, the cVaR exceeds the VaR in

absolute terms in general. Therefore in some practical applications the α-

quantile for the cVaR might be lowered in order to reduce this difference. For

example the Basel Committee proposes a 97.5% cVaR instead of a 99% VaR for

the internal models-based approach and used this adapted cVaR to determine

the risk weights for the revised standardized approach to handle risk in the

trading book. The Committee argues, that this confidence level for the cVaR

provides a broadly similar level of risk capital, while providing a number of

benefits, such as a more stable model output and less sensitivity to extreme

outlier observations (BCBS, 2013). This adaptation is in general questionable.
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Per definition the α cVaR provides the average outcome (e.g. loss) for an

extreme event, which is likely to occur at a probability rate of 1−α. Therefore

if the cVaR is considered as a risk measure and capital is allocated accordingly,

in more than α per cent of cases the undesired events can be absorbed. If the

confidence level of the cVaR is adapted in such a way, that the cVaR equals

the original α VaR, then only α per cent of the cases can be absorbed and the

advantage of tail-consideration is lost. In this case the choice of the adapted

cVaR over the original VaR may only provide the above mentioned technical

advantages, such as coherence, convexity, etc. However, these advantages are

still accompanied by a higher sensitivity to parameter errors as will be shown

below.

For a deeper analysis we define αc ∈ (0, 1) implicitly by the following equa-

tion

V aR(ρ, π, α) = cV aR(ρ, π, αc), (4.23)

which gives the cVaR confidence level αc < α such that the cVaR equals the

VaR with confidence level α.

For example let ρ = 0.20, π = 0.05 and α = 0.99, then

V aR(0.20, 0.05, 0.99) = 0.2496 = cV aR(0.20, 0.05, 0.973),

leading to αc = 0.973. Figure 4.8 provides this αc for α ∈ {0.99, 0.999} and

typical parameter settings for IG- and ‘Ba’-rated risk buckets; ρ ∈ (0, 0.5), π ∈
(0, 0.025). As a result we find a nonlinear dependency between the parameter

settings and given α-quantile. For the given parameter range the minimum

of αc for α = 0.99 (for α = 0.999) is approximately 0.9608 (0.9969) and the

maximum is 0.9735 (0.9975). If one used the Basel proposal of a 97.5% cVaR

instead of a 99% VaR for credit risk, one would find quite larger risk levels and

sensitivities in the given parameter constellation.59

If we compute the implied αc for the cVaR according to Equation (4.23),

both risk measures lead to the same risk capital and we can again compare the

59 If the considered portfolio has a PD larger than 20% it is even possible, that a 97.5%
cVaR is actually smaller than a 99% VaR.
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Figure 4.8: Implied αc for ρ ∈ (0, 0.5), π ∈ (0, 0.025) and α ∈ {0.9, 0.999}
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Notes: This figure shows the implied αc for which the cVaR equals the VaR for a confidence level α for

ρ ∈ (0, 0.5), π ∈ (0, 0.025) and α ∈ {0.9, 0.999}.

sensitivity to changes in the model parameter by the following ratios:

qcρ(ρ, π, α) :=

∂
∂ρ
cV aR(ρ, π, αc)
∂
∂ρ
V aR(ρ, π, α)

, and (4.24)

qcπ(ρ, π, α) :=
∂
∂π
cV aR(ρ, π, αc)
∂
∂π
V aR(ρ, π, α)

.

Therefore, if qcθ > 1 the sensitivity of the cVaR to changes in the parameter

θ ∈ {ρ, π} is larger for the cVaR than for the VaR, although both risk measures

denote the same level of risk capital in absolute terms.

Examples of these ratios are given in Figure 4.9 for the parameter settings

which are typical for IG- and ‘Ba’-rated risk buckets and α ∈ {0.99, 0.999} in

line with Figure 4.8.

The two graphs on the left-hand side show for α = 0.99 (upper chart) and

α = 0.999 (lower chart) the evolution of the ratio qcρ(ρ, π, α), while the right-

hand side shows the graphs for the ratio qcπ(ρ, π, α). We find that especially

the behavior with respect to ρ changes in a notable way for α = 0.99, while

it is rather stable and closer to one for α = 0.999. For example for α = 0.99

(α = 0.999), ρIG = 20% and πIG = 0.05%, we find that the 96.72% (99.69%)

cVaR is about 10% (1.9%) more sensitive to changes in ρ than the 99% (99.9%)

VaR. As a result we conclude that especially for a smaller α - although the

initial level of risk capital is the same - the cVaR is more sensitive to parameter

errors in ρ than the VaR, which is in line with our former results. The graphs

on the right-hand side confirm our previous result, that i) the sensitivity with
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respect to changes in π for both risk measures do not differ in a notable way

and ii) that this behavior is almost independent from the choice of α.

Figure 4.9: qcρ and qcπ for ρ ∈ (0, 0.5), π ∈ (0, 0.025) and α ∈ {0.9, 0.999}
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Notes: This figure shows the measure qcρ and qcπ for ρ ∈ (0, 0.5), π ∈ (0, 0.025) and α ∈ {0.9, 0.999}. This

parameter range for ρ and π corresponds all parameter constellations which are plausible for IG- and ‘Ba’-

rated risk buckets. If the measure is larger one the cVaR reacts more sensitive to parameter changes than

the VaR.

From this theoretical analysis, we conclude that the cVaR reacts more sensi-

tively than the VaR to changes in ρ; even when it is adapted in such a way, that

it reports the same level of risk capital as the α VaR. This higher sensitivity

increases with lower PD and lower original α-quantile.

Hence, in credit risk a shift from VaR to cVaR can boost the relative effects

of uncertainty, even if the tail-considering risk measure is calibrated to meet

the level of risk capital of the VaR. This effect is increased, if the original

α-quantile is lowered.
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4.3 Empirical Results

4.3.1 Data

In this section we provide a case study to assess the effects of parameter errors

in practical applications of financial institutions. We use an econometric ap-

proach to model parameter error, this is more comprehensible than an expert

judgment approach, yields estimates for the real-world parameters rather than

being risk-neutral, and delivers straightforward uncertainty bounds for the pa-

rameters using results from classic estimation theory. We use publicly available

default data information from Moody’s (2013) annual default report. The re-

port lists the number of companies (ranked by rating grade) at the beginning

of any given year, and reports what proportion of them had defaulted by the

end of the year. This information is given for the seven rating grades ‘Aaa’,

‘Aa’, ‘A’, ‘Baa’, ‘Ba’, ‘B’ and ‘Caa-C’, and the data cover a 43-year period

from 1970 to 2012. The first four rating grades are summarized as Investment

Grades (‘IG’), while the last three rating grates are Speculative Grades (‘SG’).

An example use of a subset of these data, restricted to SG default informations,

has been reported by Tasche (2011) for the years 1990 to 2010.

The number of rated companies in this dataset increased from 1,032 in 1970

to 4,823 in 2012; and on average, there are 2,688 rated companies included per

year. Because there were only very few defaults in the first two highest rating

grates (no defaults in ‘Aaa’ and, only 6 in ‘Aa’) we exclude these two rating

categories; this is consistent with the approach taken by McNeil and Wendin

(2007) and Chang et al. (2011) who used a similar dataset from Standard &

Poors. However, we did include these grades for our analysis of IG-rated risk

buckets. Descriptive statistics of the default rates for each grade in this study

are listed in Table 4.1.

Table 4.1 shows that the average of the historical one-year default rates of

Moody’s rated companies increases with rating grade, while the ratio of mean

and standard deviation decreases. Therefore, the rating methodology seems

appropriate, even though estimation errors were larger for higher rating grades.
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Table 4.1: Basic Statistics of Historical One-year Default Rates (%) in Moody’s
(2013), 1970 - 2012

‘A’ ‘Baa’ ‘Ba’ ‘B’ ‘Caa-C’ IG SG

Mean 0.04 0.17 1.07 5.03 22.09 0.08 3.86
Std 0.10 0.28 1.19 4.30 20.28 0.13 3.04
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.41

Median 0.00 0.00 0.81 4.70 18.26 0.00 3.13
Max 0.51 1.06 4.95 19.44 100 0.51 13.29

Notes: This table shows descriptive statistics of the historical one-year default rates for the rating categories

‘A’, ‘Baa’, ‘Ba’, ‘B’ and ‘C’. The Investment Rating Grade ‘IG’ includes the four highest rating grades ‘Aaa’,

‘Aa’, ‘A’ and ‘Baa’, while the Speculative Rating Grade ‘SG’ contains the lowest rating grades ‘Ba’, ‘B’ and

‘Caa-C’. We use: Std, standard deviation; Min, minimum; Max, maximum.

4.3.2 Parameter Estimation

As pointed out by Gordy and Heitfield (2010), the literature on parameter

estimation for portfolio credit risk models has grown enormously over the last

years. There are methods of moment estimators (see Gordy, 2000; Nagpal and

Bahar, 2001; Frey and McNeil, 2003), and early applications included work by

Hamerle et al. (2003b) and Löffler (2003). For examples of maximum-likelihood

estimation of these model, see Frey and McNeil (2003), Hamerle et al. (2003a);

Hamerle and Rösch (2005) and Düllmann et al. (2008). For a use of Bayesian

MCMC estimators see McNeil and Wendin (2007). Apart from these kinds of

point estimations for the parameters, the literature also focuses on the interval

estimation of default probabilities, especially for low default portfolios, see

Tasche (2011).

In this study we use the maximum-likelihood estimation method as de-

scribed by Frey and McNeil (2003). If we observe a time series of defaults

d = (d1, ..., dT ) for a portfolio or bucket containing n = (n1, ..., nT ) borrowers

who are assumed to be homogeneous, we can derive the likelihood function

l(ρ, π,n,d) =
T∏
t=1

∞∫
−∞

b (dt, nt, π(y)) dΦ(y). (4.25)

where b(.) denotes the probability function of the binomial distribution with

nt trials and probability π(y). The conditional probability of default is given
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by

π(y) = Φ

(
Φ−1(π)−√ρ · y
√

1− ρ

)
. (4.26)

The likelihood function (4.25) is logarithmized and numerically optimized with

respect to the parameter ρ and π in the unit square. There are several algo-

rithms solving this optimization problem, and the integral is evaluated by a

global adaptive quadrature.

If a likelihood function f(ℵ,θ) for given data ℵ and parameters θ fulfills the

regularity conditions,60 the maximum-likelihood estimator θ̂ is 1) consistent,

2) asymptotically normal, 3) asymptotically efficient, 4) achieves the so-called

Cramer Rao Lower Bound and 5) is asymptotically θ̂ ∼ N(θ, I(θ)−1), where

I(·) is the information matrix

I(θ) = Eθ
(
−∂

2 log(f(ℵ|θ))

∂θ∂θT

)
.

Therefore, all presented standard deviations are the result of inverting the

numerically calculated negative Hessian matrix of logarithmized (4.25) at the

estimates. Since these outcomes are an estimation of the true standard devia-

tion, we denote them with σ̂(θ̂) for θ ∈ {ρ, π}.
As described by Gordy and Heitfield (2002, 2010), the panel dataset d =

(d1, ..., dT ) and n = (n1, ..., nT ) may cover default data on large numbers of

rated obligors nt � 0, but in time-series dimension t ∈ {1, ..., T} the available

data contain only a few decades, or even just a few years. For example, the

data by Moody’s (2013) which are used here cover a 43-year period from 1970

to 2012 for more than 4,000 obligors. As shown by Gagliardini and Gourieroux

(2005), large nt is not sufficient for consistency of the parameter estimation.

Instead, a large T is needed in the time-series dimension.

As already described by Gordy and Heitfield (2010), the standard errors

show that even if the asymptotics are reliable and the estimators are unbiased,

parameter estimates are prone to estimation error; this has also been analyzed

by Löffler (2003) and Tarashev (2010). Moreover, when very few defaults

are observed within a bucket, estimating the parameters becomes difficult or

impossible. Therefore, when hardly any default occur, we might consider

60 Conditions such as differentiability of the log of the likelihood function, compact param-
eter space, independent and identically distributed densities.
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upper confidence bounds for the PD.

4.3.3 Empirical Evidence for Sensitivity Effects

Table 4.2 shows the estimation results for each rating grade and various time

horizons (from 2003-2012 covering 10 years of data, 1993-2012 covering 20

years, and 1973-2012 covering 40 years). The first row shows the maximum-

likelihood estimates [ρ̂, π̂] for ρ and π, the second row shows their estimated

standard errors σ̂(ρ̂) and σ̂(π̂) and the third row reports the ratio of standard

errors and parameter estimates σ̂(θ̂)/θ̂, θ ∈ {ρ, π}. Depending on the time pe-

riod used for estimation, we obtain different parameter estimates. The range

of parameter estimates is for ρ̂ ∈ (8.62%, 24.06%) and π̂ ∈ (0.05%, 19.53%).

While π̂ increases monotonously with rating grade, we find a decreasing rela-

tion for ρ̂, with some exceptions. The estimated standard errors decrease with

increasing sample size for most instances, as would be expected. Some excep-

tions are found among the lower rating grades and SG. The fourth and fifth

row of each panel show the estimates for the VaR and cVaR given a confidence

level of 99.9% and using the respective parameter estimates.61

Obviously, in all cases in Table 4.2 the cVaR is larger than the VaR, which is

to be expected according to (4.22). For deteriorating rating grades, we obtain

c.p. higher risk measures, indicating a monotonous risk-grading as we would

expect. However, comparing the short with the longer panel, ratings ‘IG’, ‘A’,

and ‘Baa’ exhibit the highest risk measures when only the short panel is used,

while for the worse ratings ‘B’, ‘Caa-C’ and ‘SG’ the short panel yields the

smallest risk measures. This is in line with commonly known observations from

the last financial crisis during which high-rated investments faced in particular

unexpectedly large losses.

For all three time horizons, we see that (with minor exceptions) the relative

estimation error decreases with decreasing rating grade. In other words, espe-

cially for the high-rated risk buckets, financial institutions are faced with even

larger (relative) estimation errors. Furthermore - and in line with expectations

- the estimation errors decline with longer time horizon.

In the previous section, we have already seen that the sensitivity to param-

eter errors increases with rating quality. Now, we see empirically that better

61 The reported VaR and cVaR are relatively high, since we set the recovery rate (RR) to
zero. This could be corrected by using the linear factor (1-RR). The mean of all recovery
rates reported in Moody’s (2013) for the last 31 years is 41.67%.

84



4.3. EMPIRICAL RESULTS

Table 4.2: MLE Results for Historical One-year Default Rates from Moody’s
(2013) for Different Time Horizons (in per cent)

2003 - 2012
‘A’ ‘Baa’ ‘Ba’ ‘B’ ‘Caa-C’ IG SG

[ρ̂, π̂] [24.06, 0.11] [19.93, 0.19] [16.4, 0.56] [20.67, 1.61] [10.57, 13.52] [19.5, 0.13] [9.38, 3.75]

(σ̂(ρ̂), σ̂(π̂)) (21.09, 0.11) (13.19, 0.13) (9.82, 0.28) (8.95, 0.72) (4.46, 2.37) (11.26, 0.09) (3.91, 0.86)

{σ̂(ρ̂)/ρ̂, σ̂(π̂)/π̂}{87.63, 94.31}{66.21, 69.23}{59.91, 49.99}{43.28, 45.05}{42.15, 17.52}{57.73, 69.62}{41.68, 22.93}
V aR99.9 3.86 4.45 7.95 20.40 45.89 3.24 19.06

cV aR99.9 5.56 6.07 10.08 24.81 49.67 4.50 21.66

1993 - 2012
‘A’ ‘Baa’ ‘Ba’ ‘B’ ‘Caa-C’ IG SG

[ρ̂, π̂] [21.26, 0.08] [16.74, 0.2] [9.56, 0.66] [19.76, 3.29] [10.53, 15.73] [18.11, 0.11] [8.62, 4.21]

(σ̂(ρ̂), σ̂(π̂)) (15.44, 0.05) (8.27, 0.08) (4.73, 0.17) (5.84, 0.87) (3.33, 1.91) (8.05, 0.05) (2.58, 0.64)

{σ̂(ρ̂)/ρ̂, σ̂(π̂)/π̂}{72.62, 65.48}{49.42, 42.93}{49.43, 25.41}{29.55, 26.28}{31.62, 12.12}{44.44, 47.90}{29.93, 15.12}
V aR99.9 2.46 3.81 5.48 30.15 49.89 2.68 19.57

cV aR99.9 3.56 5.08 6.62 35.2 53.65 3.71 22.07

1973 - 2012
‘A’ ‘Baa’ ‘Ba’ ‘B’ ‘Caa-C’ IG SG

[ρ̂, π̂] [22.11, 0.05] [13.74, 0.18] [12.15, 1.05] [18.79, 4.95] [14.26, 19.53] [15.65, 0.09] [9, 3.92]

(σ̂(ρ), σ̂(π)) (13.93, 0.03) (5.89, 0.05) (3.65, 0.20) (4.07, 0.84) (4.06, 2.20) (5.91, 0.03) (2.1, 0.44)

{σ̂(ρ̂)/ρ̂, σ̂(π̂)/π̂}{63.00, 54.34}{42.89, 29.38}{30.05, 18.81}{21.66, 17.03}{28.51, 11.27}{37.73, 32.93}{23.32, 11.33}
V aR99.9 1.83 2.88 9.43 36.54 63.04 1.91 19.13

cV aR99.9 2.73 3.78 11.39 41.69 67.12 2.61 21.67

Notes: This table states the MLE results based on different time horizons for the rating categories ‘A’, ‘Baa’,

‘Ba’, ‘B’ and ‘C’. The Investment Rating Grade ‘IG’ combines the four highest rating grades ‘Aaa’, ‘Aa’, ‘A’

and ‘Baa’, while the Speculative Rating Grade ‘SG’ summarizes the lowest rating grades ‘Ba’, ‘B’, ‘Caa-C’.

[ρ̂, π̂] are the MLE-Estimates for the unknown parameter ρ and π, and σ̂(θ̂), θ ∈ {ρ, π} is the estimated

standard error. V aR99.9 and cV aR99.9 denotes the VaR, respectively cVaR at the estimation [ρ̂, π̂].

risk buckets exhibit higher uncertainty around the parameter estimates. Both

effects in combination will boost the vulnerability of risk measures for higher

rated securities.

For additional insight, the next tables provide the sensitivity measures from

Section 4.2.2 computed from the available real-world data. Table 4.3 shows the

ratios qρ(ρ, π, α) from (4.11) and qπ(ρ, π, α) from (4.12) using the parameter

estimates from the various time horizons and α ∈ (0.99, 0.999).

The interpretation of the numbers is as follows. If qρ(ρ, π, α) > 1, the cVaR

is (by that factor) more sensitive than the VaR to changes in ρ, respectively

for qπ(ρ, π, α) for changes in π. In most instances, cVar is more sensitive

than VaR. For example using the longest time horizon for A rated risk buck-

ets, the cVaR is more sensitive to changes in ρ than the VaR by a factor of

qρ(22.11%, 0.05%, 99.9%) = 1.7036 or qρ(22.11%, 0.05%, 99.0%) = 2.6765.

More economically this means: If the 99.9% cVaR (based on the 40 year

time period) is used for an A-rated risk bucket for the allocation of risk capital,

any estimation error in ρ reacts by factor 1.7036 more intensively than if the
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Table 4.3: Application of qρ(ρ, π, α) from (4.11) and qπ(ρ, π, α) from (4.12) on
Parameter Estimates from Table 4.2

Data from 2003 - 2012
‘A’ ‘Baa’ ‘Ba’ ‘B’ ‘Caa-C’ IG SG

qρ(θ̂, 0.99) 2.4464 2.0698 1.7164 1.5633 1.2111 2.1628 1.356

qπ(θ̂, 0.99) 1.5643 1.4468 1.3026 1.2146 1.0308 1.4849 1.1229

qρ(θ̂, 0.999) 1.6069 1.5021 1.3651 1.2621 1.1022 1.5437 1.1989

qπ(θ̂, 0.999) 1.3217 1.2668 1.1836 1.1065 1.0013 1.2937 1.0751

Data from 1993 - 2012
‘A’ ‘Baa’ ‘Ba’ ‘B’ ‘Caa-C’ IG SG

qρ(θ̂, 0.99) 2.4259 1.9344 1.5448 1.4175 1.1923 2.1329 1.3385

qπ(θ̂, 0.99) 1.5714 1.4019 1.2309 1.1386 1.0186 1.4789 1.1136

qρ(θ̂, 0.999) 1.6276 1.467 1.3102 1.1889 1.0899 1.5428 1.191

qπ(θ̂, 0.999) 1.3407 1.2505 1.1552 1.0559 0.9919 1.296 1.07

Data from 1973 - 2012
‘A’ ‘Baa’ ‘Ba’ ‘B’ ‘Caa-C’ IG SG

qρ(θ̂, 0.99) 2.6765 1.8417 1.539 1.3432 1.1414 2.0638 1.3487

qπ(θ̂, 0.99) 1.6461 1.3698 1.2221 1.0983 0.9802 1.4604 1.1191

qρ(θ̂, 0.999) 1.7036 1.4434 1.2944 1.1512 1.0437 1.5326 1.1959

qπ(θ̂, 0.999) 1.3829 1.2402 1.1408 1.0297 0.9531 1.2944 1.0732

Notes: This table denotes qρ(ρ, π, α) from (4.11) and qπ(ρ, π, α) from (4.12) for the derived parameter

estimates in Table 4.2 depending on time horizon and α ∈ (0.99, 0.999). θ̂ = [ρ̂, π̂] where ρ̂ and π̂ are the

result of the maximum-likelihood estimation.

VaR were used.

This underlines our previous theoretical results that for highly rated risk

buckets, the cVaR generally reacts more sensitively to errors in the underlying

parameters than the VaR, this effect increases for a decreasing α.

Because the ratio reported in Table 4.3 is only based on the partial deriva-

tives of the two risk measures, it does not correct for the actual level of the

VaR and cVaR. Therefore Table 4.4 shows the ratio between the relative VaR

add-on (4.13) and the cVaR add-on from (4.14) as well as these individual

add-ons. Because we have performed a maximum-likelihood estimation with

estimates for the standard errors σ̂(θ̂), θ ∈ {ρ, π} - compare Table 4.2 - we

modify the uncertainty box from (4.15) for calculating the add-ons as

Θk =
(
(1− k · σ̂(ρ̂)) · ρ̂, (1 + k · σ̂(ρ̂)) · ρ̂

)
×(

(1− k · σ̂(π̂)) · π̂, (1 + k · σ̂(π̂)) · π̂
)
⊆ (0, 1)2

(4.27)

and by solving (4.13) and (4.14) with this new restriction. This uncertainty
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box scales with k > 0 and the estimated standard errors σ̂(θ̂), θ ∈ {ρ, π}.
Thus, the box accouts for the size of the estimation errors for the parameter ρ

and π. Then, we define the resulting ratio between these two new add-ons by

q̂+(ρ̂, π̂, σ̂(ρ̂), σ̂(π̂), α, k) =
ĉV aR+(ρ̂, π̂, σ̂(ρ̂), σ̂(π̂), α, k)

V̂ aR+(ρ̂, π̂, σ̂(ρ̂), σ̂(π̂), α, k)
, (4.28)

where

R̂+(ρ̂, π̂, σ̂(ρ̂), σ̂(π̂), α, k) =

max
(ρ,π)∈Θk

R(ρ, π, α)−R(ρ̂, π̂, α)

R(ρ̂, π̂, α)
(4.29)

for R ∈ {V aR, cV aR}. Again, these optimization problems can be solved

analytically, analogously to (4.16) and (4.18).

This ratio can be interpreted as follows. If q̂+(ρ̂, π̂, σ̂(ρ̂), σ̂(π̂), α, k) > 1, the

relative cVaR add-on from the defined uncertainty box Θk is larger than the

relative VaR add-on by this factor. Since these add-ons are normalized, a ratio

larger than one means that the cVaR actually reacts more sensitively to esti-

mation errors than the VaR. In addition, the add-ons R̂+(ρ̂, π̂, σ̂(ρ̂), σ̂(π̂), α, k)

can be interpreted as a premium of an ambiguity averse investor in the sense

of Gilboa and Schmeidler (1989) for the chosen k > 0. While k = 0 can be

understood to be an ambiguity neutral investor, a larger k represents a higher

ambiguity aversion. The results are reported in Table 4.4 for the three time

horizons defined above and the rating grades ‘A’, ‘Baa’, ‘Ba’, ‘B’, ‘Caa-C’.62

Table 4.4 provides two dimensions of analysis; the first dimension is the

relative risk measures add-on, and the second is the corresponding ratio of

these add-ons.

Generally, a higher k obviously leads to higher relative add-ons for both risk

measures. This is plausible, since with a higher k the uncertainty box from

(4.27) becomes larger, representing a higher ambiguity aversion of the investor.

This result holds for all time horizons and rating grades. Similarly, we find a

higher relative cVaR and VaR add-on for shorter time horizons for all rating

grades. Again, this result matches expectations, because the estimation errors

σ̂(ρ̂) and σ̂(π̂) increase with shorter time series - compare Table 4.2 - resulting

62 The results for IG- and SG-rated risk bucket are not reported in Table 4.4 due to space
limitations. Generally, a IG-rated risk bucket has intermediate properties between ‘A’-
and ‘Baa’-rated risk buckets, while a SG-rated risk bucket performs almost like a ‘Ba’-
rated one.
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Table 4.4: Application of q̂+(ρ̂, π̂, σ̂(ρ̂), σ̂(π̂), α, k) from (4.28) and R̂+(·) from
(4.29) on Parameter Estimates from Table 4.2

2003 - 2012
‘A’ ‘Baa’ ‘Ba’ ‘B’ ‘Caa-C’

q̂+(θ̂, σ̂(θ̂), 0.99, 0.25) 1.1685 1.1158 1.081 1.0203 1.0051
(47.47% / 40.63%) (32.84% / 29.43%) (24.09% / 22.29%) (17.45% / 17.11%) (7.18% / 7.14%)

q̂+(θ̂, σ̂(θ̂), 0.99, 1) 1.2879 1.1629 1.0955 1.01 0.9918
(248.74% / 193.14%)(158.78% / 136.55%)(109.65% / 100.09%) (74.74% / 74%) (27.95% / 28.18%)

q̂+(θ̂, σ̂(θ̂), 0.999, 0.25) 1.0444 1.0347 1.0234 0.9798 0.9819
(53.7% / 51.42%) (36.25% / 35.03%) (26.02% / 25.43%) (17.34% / 17.7%) (7.06% / 7.19%)

q̂+(θ̂, σ̂(θ̂), 0.999, 1) 1.0393 1.0324 1.0154 0.9582 0.9678
(294.26% / 283.12%)(179.17% / 173.54%) (118.61% / 116.8%) (71.92% / 75.06%)(26.66% / 27.55%)

1993 - 2012
‘A’ ‘Baa’ ‘Ba’ ‘B’ ‘Caa-C’

q̂+(θ̂, σ̂(θ̂), 0.99, 0.25) 1.1912 1.1161 1.0959 1.0025 1.0021
(35.76% / 30.02%) (21.6% / 19.35%) (14.7% / 13.41%) (9.89% / 9.86%) (4.98% / 4.97%)

q̂+(θ̂, σ̂(θ̂), 0.99, 1) 1.3022 1.1485 1.1093 0.9912 0.9917
(178.05% / 136.73%) (98.72% / 85.96%) (63.59% / 57.33%) (40.56% / 40.92%) (19.4% / 19.56%)

q̂+(θ̂, σ̂(θ̂), 0.999, 0.25) 1.0648 1.0432 1.045 0.9694 0.9796
(41.51% / 38.99%) (24.11% / 23.11%) (16.48% / 15.77%) (9.57% / 9.87%) (4.86% / 4.97%)

q̂+(θ̂, σ̂(θ̂), 0.999, 1) 1.0813 1.0475 1.0478 0.9534 0.9687
(218.82% / 202.36%)(112.55% / 107.44%) (72.1% / 68.81%) (38.17% / 40.03%)(18.52% / 19.12%)

1973 - 2012
‘A’ ‘Baa’ ‘Ba’ ‘B’ ‘Caa-C’

q̂+(θ̂, σ̂(θ̂), 0.99, 0.25) 1.2304 1.1263 1.0732 0.9948 0.9701
(30.74% / 24.98%) (16.5% / 14.64%) (9.51% / 8.86%) (6.34% / 6.37%) (4.18% / 4.31%)

q̂+(θ̂, σ̂(θ̂), 0.99, 1) 1.3622 1.1542 1.0784 0.9856 0.9553
(149.53% / 109.77%) (73.32% / 63.52%) (40.01% / 37.10%) (25.57% / 25.94%)(16.01% / 16.76%)

q̂+(θ̂, σ̂(θ̂), 0.999, 0.25) 1.0792 1.0545 1.0279 0.9653 0.9486
(36.4% / 33.73%) (18.76% / 17.79%) (10.33% / 10.04%) (6.06% / 6.28%) (3.81% / 4.01%)

q̂+(θ̂, σ̂(θ̂), 0.999, 1) 1.1057 1.0623 1.0265 0.9534 0.9338
(189.01% / 170.94%) (85.24% / 80.24%) (43.51% / 42.39%) (23.91% / 25.08%)(14.08% / 15.07%)

Notes: This table denotes q̂+(ρ̂, π̂, σ̂(ρ̂), σ̂(π̂), α, k) from (4.28) and R̂+(ρ̂, π̂, σ̂(ρ), σ̂(π), α, k) from (4.29) for

the parameter estimates from Table 4.2 depending on time horizon, α ∈ (0.99, 0.999) and k ∈ (0.25, 1).

θ̂ = [ρ̂, π̂] where ρ̂ and π̂ are the result of the maximum-likelihood procedure, while σ̂(θ̂) = [σ̂(ρ̂), σ̂(π̂)] and

σ̂(ρ̂) and σ̂(π̂) are according estimated standard errors. Numbers in round brackets are the relative cVaR

and VaR add-ons
(
ĉV aR+(·) / V̂ aR+(·)

)
.

in a larger uncertainty box (4.27) and therefore a higher add-on.

In Table 4.2, we have already seen higher relative estimation errors for

higher-rated risk buckets. Therefore, the higher-rated risk buckets experience

a higher add-on for both risk measures. For example, for the 10 years time

series, α = 0.999 and k = 1 the risk measures for an A-rated grade are almost

four times higher (relative add-ons equal almost 300%), while the risk measures

for a ‘Ba’-rated risk bucket are only doubled. We find this effect for all time

series, and therefore propose that higher-rated risk buckets are more influenced

by estimation errors.

Next, we observe the ratio of these add-ons q̂+(θ̂, σ̂(θ̂), α, k). Notably, for

the IG-rated risk buckets ‘A’, ‘Baa’ and ‘Ba’, this ratio is always larger than
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one. Therefore, the cVaR reacts more sensitively to parameter estimation error

than the VaR in all IG-cases. This is in line with our theoretical analysis from

Section 4.2.2. Again, under the same estimation error, represented by σ̂(ρ̂) and

σ̂(π̂), and the same degree of ambiguity aversion, represented by k ∈ {0.25, 1},
the cVaR experiences a larger relative add-on. Therefore, a financial institution

using the cVaR will be exposed to a higher degree of parameter error than an

institution using the VaR.

This effect is more pronounced for high-rated risk buckets than for low rated

ones. Thus, particularly in the case of IG-rated risk buckets, the VaR appears

to be superior to the cVaR in its reaction to parameter estimation errors.

Another result of the theoretical analysis from Section 4.2.3 is confirmed

by our analysis of real-world data in Table 4.2. We find that for the ‘A’-,

‘Baa’- and ‘Ba’-rated risk buckets, the relative add-ons increase for a higher

α. Therefore, with a higher α, both risk measures become more sensitive to

estimation error. It should be noted that this effect is not observed for SG-rated

risk buckets, in line with our results shown in Figure 4.6 and 4.7. Therefore,

to reduce the vulnerability to estimation errors, it seems reasonable to choose

a smaller α. Hower, it should be remembered that the cVaR reacts even more

to the parameter estimation error compared with the VaR, as represented by

higher q̂+(θ̂, σ̂(θ̂), α, k).

4.4 Conclusion

In this analysis, we considered the effects of estimation errors on the VaR and

cVaR in the ASFR model. For this purpose, we calculated analytically the par-

tial derivatives of these risk measures with respects to the model parameters,

and introduced specific key numbers for the analysis. In addition we consid-

ered the effect of the confidence level α on the effect-strength of parameter

estimation errors.

The main findings are as follows. First, despite theoretical advantages of

the cVaR over the VaR, the cVaR reacts more ‘aggressively’ to parameter er-

rors than the VaR in practical empirical applications. Therefore, the VaR may

be favored over the cVaR. Second, higher-rated risk buckets are more affected

by estimation errors than lower-rated ones. Third, a higher confidence level α

(being apparently safer) may boost the effect from estimation errors for IG-

rated risk buckets. As a consequence, one might consider a lower α-quantile,
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where already a reduction from α = 0.999 (in line with the Basel Accord) to

α = 0.995 (in line with solvency II) reduces the effects of uncertainty. Addi-

tionally, if we reduce α in such a way, we may be even more in favor of using the

VaR rather than the cVaR as a risk measure; the relative cVaR parameter error

add-on becomes higher in relation to the VaR add-on. Although the SG-rated

risk buckets are more risky than IG-rated ones in terms of point measures such

as probabilities of default or ratings, these risk buckets can be handled with

higher certainty. Due to larger numbers of defaults in time-series data, an es-

timation procedure should lead to lower relative estimation errors. The overall

risk measure add-ons from estimation errors are considerably lower than those

of the IG-rated ones. Moreover, riskier buckets do not react as strongly to

changes in the α-quantile.

To conclude, especially for high-rated risk buckets (IG-rated risk buckets)

and a high confidence level α, the VaR appears to be superior to the cVaR in

practice. In contrast for low-rated risk buckets (SG-rated risk buckets), neither

the choice of α nor selection of risk measures has a decisive influence. Thus,

the common approach to be more safe (low PD equivalent high rating, a high

confidence level α, and choosing a tail-considering risk measure such as cVaR,

all of which are advised by the Basel Accord) actually increases the effect of

estimation errors in credit risk.

As result we support the current proposal of the Basel Accord to treat the

IDR in the trading book according to the IRB approach. Any further consid-

eration of a replacement of the 99.9% VaR by a cVaR for the determination

of credit default risk capital has to take into account the general higher un-

certainty effects of the cVaR especially for IG-rated risk buckets and lower

confidence level α.
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Chapter 5

Credit Risk Measures and

Credit Decisions under

Uncertainty

The content of this chapter refers to the working paper ‘Credit Risk Measures

and Credit Decisions under Uncertainty’ by Claußen, A., and Rösch, D., 2014.

5.1 Introduction

An essential task of financial institutions is risk taking, such as credit risk,

liquidity risk, interest rate risk, operational risk, regulatory risk, and reputa-

tion risk, but it is challenging to manage these risks appropriately. Therefore,

risk management has become one of the most important subjects for financial

institutions and academic researchers in the area of banking. More precisely,

however, financial institutions not only face risk, but also uncertainty. Risk

and uncertainty are usually referred to as defined by Knight (1921), who con-

siders these factors as random variation according to probability law that is

either known (risk) or unknown (uncertainty). This differentiation has led to

a wide body of research, thoroughly reviewed by Gilboa and Marinacci (2013).

Ellsberg (1961) shows that generally uncertainty matters in decision making

because decision-makers are not neutral towards uncertainty. (Epstein, 1999,

p. 579) states that

the distinction between them is roughly that risk refers to situa-

tions where the perceived likelihoods of events of interest can be
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represented by probabilities, whereas uncertainty refers to situa-

tions where the information available to the decision-maker is too

imprecise to be summarized by a probability measure. Thus the

terms ‘vagueness’ or ‘ambiguity’ can serve as close substitutes.

In this article we focus on uncertainty (synonymous with ambiguity) with

respect to credit risk, because it is one of the most significant risk classes

for banks. Without consideration of uncertainty, credit risk modeling relies

on a stochastic framework with implicit assumptions about models, stochastic

variables and parameters. Using tools of standard statistics the potential future

loss of a credit portfolio is usually modeled as a random variable. Risk measures

(e.g. Value-at-Risk or Expected Shortfall to a predefined confidence level) are

then derived from its probability distribution in order to aggregate the credit

risk into one representative key figure. The bank can then use aggregated

quantification of risk for processes such as making an investment decision or

determining and allocating economic capital. If all assumptions about the

model, the stochastic variables and the parameters hold with certainty (i.e.

the model is correct), a financial decision-maker would face only risk as the

outcome of the stochastic variables in the true model.

It is not possible to determine the true model for a real portfolio, but even

if it was, all included parameters would have to be known with certainty. Be-

cause model parameters cannot be observed directly, they are usually estimated

based on observable data using statistical and econometric techniques. This

induces parameter estimation errors. As a result, the values inserted for the

parameters will almost certainly not match the true underlying and unknown

parameters. The errors can often not be described by a known probability law

unless further assumptions are made. Therefore, the bank faces the challenge

of using models affected by parameter uncertainty.

In this paper, we present an economic framework for the quantification of

parameter uncertainty in credit risk models and thus provide a clear-cut dis-

tinction between uncertainty and risk. We show how a decision-maker derives

his decision in an environment that includes both risk and uncertainty. The

degree of a decision-maker’s aversion or affinity to uncertainty can be quanti-

fied and decoupled from the degree of risk aversion. We illustrate the approach

and its practical implications by using a publicly available dataset. We show

that portfolios with particularly high ratings (a lower average probability of

default and, thus, low risk) can be affected by parameter uncertainty more
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strongly than portfolios with lower ratings (and, thus, higher risk). Even a

decision-maker who has a moderate degree of aversion to uncertainty might

then prefer a low-rated, high-risk portfolio to a high-rated, low-risk portfolio

once uncertainty aversion is taken into account.

Our approach relates to four streams in the literature. The first considers

modeling and estimation of risk in credit models, see Gordy (2000), Gordy

(2003), Löffler (2003), Hamerle et al. (2003b), Duffie et al. (2007), Feng et al.

(2008), Tarashev and Zhu (2008), Heitfield (2008), Duffie et al. (2009), Gordy

and Heitfield (2010), Rösch and Scheule (2014). These papers either consider

only risk given several known parameters, or provide insights into the magni-

tudes of estimation errors but do not suggest how to deal with these errors in a

decision-theoretic environment. The second stream extends classical modeling

and estimation approaches to Bayesian statistics, which considers parameters

as random variables via a given prior. Important references in the credit risk

field are (Gössl, 2005; Dwyer, 2006; McNeil and Wendin, 2007; Kiefer, 2009;

Tarashev, 2010; Chang et al., 2011). A related, third stream is based on robust

optimization, one of the most popular topics in the field of optimization and

control. This approach seeks to minimize the negative impact of future ran-

dom events when model parameters are unknown, and owes particular credit

to Ben-Tal and Nemirovski (1998, 1999) and El Ghaoui and Lebret (1997);

El Ghaoui et al. (1998). During the last decade, a number of contributions

have been published about (market risk) portfolio selection (thoroughly re-

viewed and discussed by Fabozzi et al., 2010). A shared feature of Bayesian

statistics and robust optimization is that they are both capable to deal with

parameter errors from a mathematical technical rather than from an economic

perspective. It is also possible to derive uncertainty-adjusted risk measures

within these approaches, but there is a lack of economic rationale as to which

prior to choose in the Bayesian framework or what size the uncertainty set

should be in robust optimization. This is addressed in the fourth stream,

which is based on work by Gilboa and Schmeidler (1989). These authors

derive an optimization approach for an ambiguity-averse investor within a de-

cision theoretic framework and thus explicitly consider an investor’s attitude

to risk and uncertainty simultaneously. This economic framework has been ap-

plied to mean-variance optimization within modern portfolio theory for stocks,

see Goldfarb and Iyengar (2003); Tütüncü and Koenig (2004); Garlappi et al.

(2007); Zhu et al. (2009), who all analyze best worst-case performance of an
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ambiguity-averse investor’s optimal portfolio selection under given uncertainty

sets.

Given these streams of literature, our paper provides the following contri-

butions. Firstly, we transfer the economic rationale of max-min optimization

as defined by Gilboa and Schmeidler (1989) to the credit area, and show how

parameter uncertainty can be considered and quantified separately from risk

in a credit model in line with economic theory, Bayesian statistics and robust

optimization. The approach is more flexible and economically more intuitive

than Bayesian statistics, as uncertainty aversion can be considered directly.

Indeed, we show that the Bayes based frameworks are a special case of our

approach and imply a given, fixed degree of uncertainty attitude. Secondly,

as a further extension to robust optimization, we introduce a new uncertainty

set that covers the possibility of parameter uncertainty based on available data

most accurately by abandoning the assumption of normality which is valid only

asymptotically (if at all). Thirdly, our approach delivers a definition of risk

measures, such as Value-at-Risk or conditional Value-at-Risk (Expected Short-

fall), under uncertainty. We show how uncertainty can be considered directly

when risk measures are derived in practical applications. This provides addi-

tional insights into the current discussions of adequate risk measures, which

focus on diversification, aggregation, economic interpretation and robustness.63

Two important practical results are that i) uncertainty aversion requires pre-

mia on risk measures and that ii) decision makers can view a credit-risky asset

or a portfolio with a lower risk as inferior to another asset or portfolio with

higher risk if uncertainty aversion is adequately taken into account.

Our results have implications for risk management, particularly for the de-

termination of economic capital and the risk-bearing capability of financial

institutions, by providing a definition of uncertainty-adjusted risk measures

and a decision-theoretic approach for credit portfolio selection. The results

could also impact on banking supervision, since our framework could easily be

adopted fo regulatory purposes, for example by considering parameter errors

in supervisory rules or by providing safety buffers against uncertainty.

The remainder of the paper is structured as follows: Section 2 presents

the basic model and related literature, and introduces the novel data-driven

restriction. Section 3 analyses the framework and its implementation and

compares it with other (Bayesian-based) approaches. Section 4 applies the

63 For an overview of relevant literature see Embrechts et al. (2013) and Emmer et al. (2013).
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concept to empirical data. Section 5 concludes and discusses the potential

impact of our results on practical applications.

5.2 Credit Decision under Risk and Uncer-

tainty

In line with Knight (1921), we define risk as random variation according to a

known probability law, and uncertainty as random variation according to an

unknown law. In order to define such laws, we use (Ω,F ,P) as the ordinary

probability space and L0(Ω,F ,P) as a set of F -measurable almost surely finite

random variables in that space. Then, financial risks in general, and credit

risk in particular, can be represented by a convex cone M ⊆ L0(Ω,F ,P).64

This cone is defined so that any random variable L ∈M shall represent a loss

of a credit portfolio over a given time horizon and is modeled as a function

L(Y,θ,γ) of

i. a random vector Y = (Y1, Y2, ..., Yny), where each of ny ∈ N0 random

variables Yi ∈M describes a possible future random variation according

to a known law,

ii. a vector of nθ ∈ N0 model parameters θ = (θ1, θ2, ..., θnθ
) ∈ Θ ⊆ Rnθ ,

connecting the different random variables to the specific loss function

and

iii. a vector γ = (γ1, γ2, ...γnγ ) ∈ Γ ⊆ Rnγ , nγ ∈ N0, representing all possible

decision alternatives.

According to Knight (1921), the risk of loss L(Y,θ,γ) comes exclusively

from the random outcome of Y, because the parameters are deterministic. By

using a risk measure, this risk is quantified. Alternatively, in economic terms

according to Frey and McNeil (2002), we can interpret a risk measure applied

to L(Y,θ,γ) as the amount of capital that should be added as a buffer to a

portfolio so that it becomes acceptable to an external or internal risk controller.

In general, a risk measure is a function that maps random variables to the

real numbers, so any R : M → R ∪ {∞} is a risk measure. In the literature

64 M is a convex cone if L1 ∈ M and L2 ∈ M implies that L1 + L2 ∈ M and λL1 ∈ M ∀
λ > 0.
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risk measures are often introduced axiomatically with specific conditions that

should be met in order for the risk measure to be considered good. Examples

include deviation measures (Pedersen and Satchell, 1998; Rockafellar et al.,

2002), and the popular coherent risk measures in Artzner et al. (1999). Here,

we do not choose such specific risk measures, but instead follow the broad

principle ‘Risk as a primitive’ according to Brachinger and Weber (1997); we

only claim the existence of a meaningful risk ordering in a binary relation

A % B. A is at least as risky as B.65 In this setting, we can understand and

use the expectation operator E(·) or the standard deviation σ(·) as such a risk

measure. In addition, we use the Value-at-Risk (VaR) and conditional Value-

at-Risk (cVaR), also known as the Expected Shortfall. The VaR of a portfolio

at the confidence level α ∈ (0, 1) is given by

V aRα(L) = inf{l ∈ R | P(L > l) ≤ 1− α},

and the cVaR at confidence level α ∈ (0, 1) is defined as

cV aRα(L) = E(L|L ≥ V aRα).

Generally the VaR returns the level of loss that is not exceeded with a given

(high) confidence probability, while the cVaR gives the expected loss given the

VaR is exceeded.

We use the expectation E(·) and standard deviation σ(·) operators, because

they are the first two moments of a random variable and therefore give a first

indication about the modeled loss. Then we consider the VaR, as it is still

the most commonly used risk measure in practice, and is used for applications

such as allocating economic capital. However, the VaR has also been widely

criticized. The VaR is neither convex nor sub-additive in the general distri-

bution case, and is therefore not a coherent risk measure in the sense of the

definition by Artzner et al. (1999). Moreover, the VaR may exhibit multiple

local extremes for discrete distributions (e.g. Mausser and Rosen, 1998) and

is therefore hard to optimize in these cases. Finally, the VaR is merely a per-

centile of a probability distribution, and therefore does not take into account

any tail information beyond the VaR. In contrast, the cVaR has the property

of coherence (see e.g. Acerbi and Tasche, 2002; Frey and McNeil, 2002; Tasche,

65 This risk ordering is similar to the widely used monotonicity property.
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2002), and is convex and easily optimized as shown by Rockafellar and Urya-

sev (2000). In addition, it considers tail-risk by definition. It has therefore

become the favored risk measure in academic research and is the second most

popular risk measure used in practice today. The discussion about appropri-

ate risk measures, and whether the cVaR is superior to the VaR, is still very

much alive. Current debates focus on issues related to diversification, aggre-

gation, economic interpretation, extreme behavior and robustness of the VaR

and cVaR; Embrechts et al. (2013) and Emmer et al. (2013) provide an excel-

lent overview. Against this background, we use the cVaR as the fourth risk

measure in our study.

After specifying the model L(Y,θ,γ), a risk-averse investor (or other decision-

maker) makes a decision represented by γ that minimizes the risk quantified

by a risk measure, given some restriction (e.g. a minimum expected return, no

shortsales, normalized asset values). Therefore, the investor faces the following

optimization problem,

min
γ∈Γ
R (L(Y,θ,γ)) s.t. r (Y,θ,γ) ≤ c, (5.1)

where R(·) is a chosen risk measure and r (Y,θ,γ) ≤ c contains the restric-

tions.

Markowitz (1952) has introduced this optimization problem (5.1) for the

allocation of wealth across assets, and laid the foundation for modern portfolio

theory, known as the mean-variance framework. The variance is a symmetric

measure, therefore negative as well as positive deviations are considered. Be-

cause positive deviations are often not perceived as a risk, the VaR became a

popular downside risk measure in the last two decades. However, due to its

undesirable mathematical characteristics, such as a lack of sub-additivity and

convexity, Rockafellar and Uryasev (2000) have presented an approach for min-

imizing the cVaR rather than the VaR. In their initial article, the constraints

covered long-only positions, non-negative portfolio weights, a fully invested

portfolio constraint and a minimum expected return constraint. Krokhmal

et al. (2002) extended the variety of constraints by introducing linear transac-

tion costs, constraints on the portfolio shares (such as minimum and maximum

portfolio shares of single assets) and liquidity constraints as bounds on the po-

sition changes. An application to portfolios with credit risk is presented by

Andersson et al. (2001).
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All portfolio selection problems have in common that the model parame-

ters θ (in classical portfolio selection model: expected returns, variances and

covariances of returns; in credit risk: probability of default and default correla-

tion) are unknown and are usually estimated from given data ℵ (e.g. realized

stock returns or credit default data). Thus these parameters are estimated

with errors.66 For stocks, it is well known that a small perturbation of inputs

may lead to a large change in the optimal portfolio (see e.g. Best and Grauer,

1991; Broadie, 1993; Chopra and Ziemba, 1993; Michaud, 1989). This lack

of robustness of parameters usually entails extreme positions in the assets of

the optimal portfolio and delivers a poor out-of-sample performance, see e.g.

Black and Litterman (1992). For credit risk, the existence and importance of

parameter errors have only been acknowledged in some of the aforementioned

publications.

Two ways of dealing with such estimation errors have emerged: Statistical

approaches and optimization approaches. One popular statistical method for

addressing parameter uncertainty follows a Bayesian approach, in which the

unknown parameters are treated as random variables (for credit risk, see Gössl,

2005; Dwyer, 2006; McNeil and Wendin, 2007; Kiefer, 2009; Tarashev, 2010;

Chang et al., 2011). The Bayesian decision maker combines prior beliefs about

the parameters with evidence from observable data to construct a predictive

(posterior) distribution of the parameters. Combing prior distribution and

likelihood specifically addresses the uncertainty about the parameters. We

will analyze the Bayesian approach and its relation to our method in more

detail later.

As an optimization-based approach, Robust Optimization incorporates pa-

rameter uncertainty directly into the optimization algorithm and can be sum-

marized as a deterministic worst-case approach. This method owes particular

credit to Ben-Tal and Nemirovski (1998, 1999); El Ghaoui and Lebret (1997)

and El Ghaoui et al. (1998). For an overview of current developments in port-

folio selection, see Huang et al. (2010) and Fabozzi et al. (2010). All robust

optimization problems have in common that the model parameters are not

specified exactly, and it is assumed that these parameters belong to a given

uncertainty set. These sets are described by additional hard uncertainty re-

66 Note that parameter uncertainty arises even if the investor does not have to make an
investment decision; for example, she may already have an active portfolio and needs to
compute its risk to allocate economic capital accordingly.
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strictions u(·), which must be satisfied (Ben-Tal and Nemirovski, 1999). Their

structure and scale is specified by the modeller, typically based on statistical

estimates (see Gregory et al., 2011). The structure represents the geometry

or shape of the uncertainty set u(·), while the scale represents the magnitude

of the structure. Common uncertainty restrictions u(·) are a finite set of sce-

narios (first introduced by Soyster, 1973) and box or ellipsoidal restrictions

(e.g. Ben-Tal and Nemirovski, 1999; Goldfarb and Iyengar, 2003; Tütüncü and

Koenig, 2004; Garlappi et al., 2007; Zhu and Fukushima, 2009; Boyle et al.,

2012). Nearly all robust portfolio models construct uncertainty sets as el-

lipsoids, and while almost all literature about robust portfolio optimization

considers the structure of u(·), there is only little research addressing the scale

of it (Gregory et al., 2011).

The robust optimization framework incorporates parameter uncertainty, but

without a decisive definition of scale, the decision maker’s attitude towards un-

certainty cannot be inherently included in the model. To address this issue,

u(·) is often designed as a confidence interval. Early work in robust portfolio

optimization that designs such uncertainty structures was done by Goldfarb

and Iyengar (2003). Their uncertainty sets correspond to confidence regions

around the least-squares estimate of the market parameters. Tütüncü and

Koenig (2004) estimate u(·) using a bootstrapped sample as percentiles. Gar-

lappi et al. (2007) introduced joint constraints instead of individual on ex-

pected returns constraints, and established the link between robust portfolio

optimization and the work of Gilboa and Schmeidler (1989), who laid the eco-

nomic decision-theoretic foundation for modeling ambiguity aversion. In these

models, a non-neutral decision-maker behaves as if she maximizes, in every pe-

riod, the expected utility given a worst-case belief that is chosen from a set of

conditional probabilities (e.g. Epstein and Schneider, 2008). More recent work

treating u(·) as a confidence interval based on box and ellipsoidal structures

are from Zhu and Fukushima (2009) and Boyle et al. (2012).

We adapt the economics-based robust portfolio selection framework from

Gilboa and Schmeidler (1989) and Garlappi et al. (2007) by extending equa-

tion (5.1) and adding an additional maximization to the set of possible pa-

rameters Θ, reflecting the investor’s non-neutrality to parameter uncertainty.

This additional maximization is restricted by an additional uncertainty con-

straint u (Y,θ,γ,ℵ) ≤ ε, which can be interpreted as a specific (confidence)

interval. If this interval is not empty, it explicitly acknowledges the possibility
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of estimation errors. We also add a constant ψ ∈ {−1, 1}. If ψ = 1, the

investor is uncertainty averse, while for ψ = −1 she is ambiguity affine. These

adaptations lead to the following min-max-problem.

Definition 1: Optimization Problem under Risk and Uncertainty:

min
γ∈Γ

max
θ∈Θ

ψ · R (L(Y,θ,γ)) (5.2)

s. t. r (Y,θ,γ) ≤ c and u (Y,θ,γ,ℵ) ≤ ε

For the derivation of the parameter estimates of the objective function and

the restrictions, we use the maximum-likelihood approach.67 If the likelihood

function L(θ|ℵ) fulfills some regularity conditions,68 the maximum-likelihood

estimator θ̂ is 1) consistent, 2) asymptotically normal, 3) asymptotically ef-

ficient, 4) achieves the Cramer Rao Lower Bound and 5) is asymptotically

θ̂ ∼ N(θ, I(θ)−1), where I(·) is the information matrix

I(θ) = Eθ
(
−∂

2log(L(θ|ℵ))

∂θ∂θT

)
.

Based on such estimation results we define the box uncertainty for each

parameter θj by

uj(θj, θ̂j, σ(θ̂j)) =
(θj − θ̂j)2

(σ(θ̂j))2
≤ εj, (5.3)

where θ̂j is the estimate of θj and σ(θ̂j) its standard deviation. Then the ap-

proach delivers with a given probability an nθ-dimensional box-region×nθ
j=1[θ̂j−

√
εj · σ(θ̂j), θ̂j +

√
εj · σ(θ̂j)] around the estimates θ̂ that may include the un-

known parameters. With higher estimation errors, induced by larger σ(θ̂j), the

box increases.

If the parameters are estimated jointly, we define the ellipsoid uncertainty

by

u(θ, θ̂,Σ) = (θ̂ − θ)T · Σ(−1)(θ̂ − θ) ≤ ε, (5.4)

67 Alternatively, a maximum-posteriori approach can be chosen. This allows the inclusion
of prior beliefs or other information into the uncertainty framework.

68 E.g. differentiability of the log likelihood function, compact parameter space and inde-
pendent and identically distributed densities f(ℵi | θ) (e.g. Wald, 1949).
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where Σ is the covariance matrix of the estimates and Σ(−1) its inverse. This in-

equality describes an ellipsoid around the estimates and considers the standard

deviations as well as the covariances of estimates.

The structure of the uncertainty restrictions (5.3) and (5.4) is defined by the

left hand side of (5.3) and (5.4), while the size is determined by the choice of εj

and ε. If the estimators are normally distributed and their standard deviations

are known, (5.3) is standard normally distributed for each parameter θj and

(5.4) is χ2
n distributed with n degrees of freedom.69 Under the assumptions of

the asymptotic convergence of the maximum-likelihood estimator we define

εj = Φ−1

(
1− 1− β

2

)2

and ε = χ−2(β, dim(θ)), (5.5)

given an uncertainty aversion parameter β ∈ (0, 1), similar to Garlappi et al.

(2007); Zhu et al. (2009); Boyle et al. (2012). Now, the size of the uncertainty

set, and therefore the uncertainty aversion, is measured by the choice of β,

whereby a higher β implies a higher uncertainty aversion. The box and ellip-

soid restrictions can be interpreted as one- and multi-dimensional confidence

intervals, respectively.

From these definitions, we see that only a small part of available information

of the likelihood is considered. The box uncertainty consists only of the modus

(i.e. the ML estimates) and the standard deviation of the estimates, while

the ellipsoid uncertainty also uses the correlation of the estimates. Therefore

these uncertainty sets can be understood as an approximation of the likelihood

function at its modus. This approximation performs well if the likelihood

function equals a normal distribution function which is asymptotically correct.

In practice however, depending on the model, time length and data qual-

ity, the likelihood function does not necessarily converge towards the normal

distribution. As a result, it can have several shapes, such as that of a bended

ellipsoid, and it can even have multiple local maxima.70 Therefore, we propose

a new data-driven uncertainty restriction that takes into account all available

information for a specific model. All of this information is embedded within

69 In practice, standard deviations or the covariance matrix are not known and also have
to be estimated. Consequently the Student-t-distribution and the Hotelings T-squared
distribution can be used to determine εj and ε, respectively.

70 These special shapes are covered neither by the Studend-t-distribution nor the Hotelings
T-squared distribution.
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the likelihood, and therefore we propose

L(θ|ℵ) ≥ ε(β) (5.6)

as a new uncertainty structure, where its size is defined with respect to the

choice of β by ∫
{θ | L(θ|ℵ)≥ε(β)}

L(θ|ℵ)dθ = β ·
∫
Θ

L(θ|ℵ)dθ. (5.7)

Then the restriction is essentially a level curve of the likelihood, and by the

choice of ε(β) according to (5.7) it can be considered as an exact β-confidence

interval around the ML estimates. Therefore, it uses the specific shape of the

likelihood.

Theoretically, the data-driven restriction has the best structure and the

best consideration of uncertainty effects given a specific model according to

the likelihood principle. Assume, for example, a model and observed data

leading to a likelihood function with the shape of a pin. The modus of it shall

be in the middle of its head. Then, the first two restrictions would cover the

head of the pin relatively well, while the tip is not considered sufficiently. This

becomes important if the maximum of the risk measure is at the end of the

tip. In this case, the first two restrictions would far underestimate the possible

effects of uncertainty.

5.3 Implementation

5.3.1 Credit Model, Estimation, and Estimation Error

We apply our uncertainty framework to the Asymptotic Single Risk Factor

(ASRF) credit model that underlies the Basel Accord, which banks use to

determine their regulatory minimum capital under the IRB Approach. The

ASRF is also used by banks and researchers as a ‘quick and dirty’ approach to

calculate and measure economic capital and credit portfolio risk. The founda-

tion and derivation of the model is given by Vasicek (1987) and Gordy (2000,

2003). It is appealing because of its simplicity, its analytical tractability, its

economic intuition, and its potential to model skewed loss distributions. As

shown in Gordy (2000), the model can also easily be mapped onto other popular
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industry credit models. A large number of extensions have been proposed, but

considering all of them here is beyond the scope of our study. More complex

models usually require more instead of fewer parameters, and could therefore

be dealt with in a way that is similar to the method presented here.

The ASRF credit model assumes an infinitely fine-grained homogeneous

portfolio of loans or bonds, with the risk being driven by a single common,

systematic risk factor; idiosyncratic risk disappears owing to full diversification.

The distribution of credit portfolio loss L(·) in a given period is modeled by

LLHP (Y, [ρ, π]) = Φ

(
Φ−1(π)−√ρ · Y

√
1− ρ

)
, Y

i.i.d.∼ N(0, 1). (5.8)

where π ∈ (0, 1) is an unconditional probability of loan default (PD), ρ ∈ (0, 1)

is the asset (return) correlation, Y is a standard normally distributed common

systematic risk factor, and Φ is the standard normal CDF (with Φ−1 denoting

its inverse).71

In our study, we analyze the four risk measures expected loss, standard

deviation, VaR, and cVaR, given as

E
(
LLHP (Y, [ρ, π])

)
= π, (5.9a)

σ
(
LLHP (Y, [ρ, π])

)
=
√

Φ2(Φ−1(π),Φ−1(π), ρ)− π2, (5.9b)

V aRα

(
LLHP (Y, [ρ, π])

)
= Φ

(
Φ−1(π)−√ρ · Φ−1(1− α)

√
1− ρ

)
, (5.9c)

cV aRα

(
LLHP (Y, [ρ, π])

)
=

1

1− α
Φ2

(
Φ−1(π),Φ−1(1− α),

√
ρ
)
, (5.9d)

where Φ2(x1, x2, %) is the standard bivariate normal distribution function. Gordy

(2003) shows that under the ASRF assumptions, the contribution of the VaR

of a single entity is portfolio invariant, i.e. it does not depend on the charac-

teristics of the portfolio in which it is held. Therefore, its risk can be measured

by the VaR on a stand-alone basis.

As noted by Gordy and Heitfield (2010), the literature on parameter es-

timation for portfolio credit risk models has grown enormously over the last

years. The early generation comprises non-parametric methods and meth-

71 To simplify the notation, we skip the parameter of recovery rate RR by setting RR = 0.
Therefore, if default occurs, the lender suffers a loss of 100%. If one wanted to consider a
nonzero recovery rate, the risk measures derived below could be modified with the factor
(1−RR).
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ods of moment estimators (see Gordy, 2000), Nagpal and Bahar (2001). For

Maximum-Likelihood estimators, see Gordy and Heitfield (2002), Frey and Mc-

Neil (2003), Hamerle et al. (2003a,b); Hamerle and Rösch (2005) and Düllmann

et al. (2008). For a Bayesian MCMC approach, see McNeil and Wendin (2007).

Apart from these kinds of point estimations for the parameters, the researchers

have also developed interval estimation of default probabilities, especially for

low default portfolios, see Tasche (2011).

In this study, we use the maximum-likelihood estimation method as de-

scribed by Frey and McNeil (2003). If we observe a time series of defaults

d = (d1, ..., dT ) for a portfolio containing n = (n1, ..., nT ) borrowers who are

assumed to be homogeneous, we can derive the binomial-normal mixture like-

lihood function

LLHP (ρ, π,n,d) =
T∏
t=1

∞∫
−∞

b (dt, nt, π(y)) dΦ(y). (5.10)

where b(.) denotes the probability function of the binomial distribution with

nt trials and a probability π(y). This conditional probability of default is given

by

π(y) = Φ

(
Φ−1(π)−√ρ · y
√

1− ρ

)
. (5.11)

The likelihood function (5.10) is logarithmized and numerically optimized with

respect to the parameter ρ and π in the unit square. There are several algo-

rithms solving this optimization problem, and the integral is evaluated by a

global adaptive quadrature. In addition, one can numerically derive the second

partial derivative at the estimates, and compute the inverse of the information

matrix as an approximation for the standard errors.

It should be noted that the risk measures in (5.9) hold for the ASRF credit

model in which all idiosyncratic risks are fully diversified away by infinite ho-

mogeneous loans or bonds. However, the estimates ρ̂ and π̂ are based on a

binomial-normal mixture model with a finite number of loans. While there

is also an ML estimator for the ASRF model (see Düllmann et al., 2008) we

refer to the likelihood of the binomial-normal mixture model for the estima-

tion. This is because in our empirical study, we use default data with a finite

number of observed loans or bonds (occasionally with zero defaults in one or
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more years) that cannot be modeled in the ASRF. Alternatively, we could

derive the risk measures for the specific numbers of observed loans or bonds

based on the binomial-mixture model, thereby imposing longer computational

times. However, since we consider more than 300 entities in almost all cases,

the idiosyncratic risks are nearly diversified and the results do not change

substantially.72

As described by Gordy and Heitfield (2002, 2010), the panel dataset d =

(d1, ..., dT ) and n = (n1, ..., nT ) may cover default data on large numbers of

rated obligors nt � 0, but in time-series dimension t ∈ {1, ..., T} the avail-

able data include only a few decades, or even just a few years. As shown by

Gagliardini and Gourieroux (2005), a large nt is not sufficient for consistency

of the parameter estimation. Instead, a large T is needed in the time-series

dimension. As already described by Gordy and Heitfield (2010), the standard

errors show that even if the asymptotics are reliable and the estimators are

unbiased, parameter estimates are prone to estimation error.

5.3.2 Simplified Credit Decision under Uncertainty

Using the ASRF credit model, we now simplify and solve the general min-max

problem from (5.2). We assume a decision-maker who wants to invest into

exactly one out of m portfolios with different risks. The investor cannot change

the loans within the portfolios, is indifferent to other portfolio characteristics

apart from risk, and has access to historical default data for each risk bucket.

If the decision maker is uncertainty-averse (i.e. ψ = 1) her problem is

Definition 2: Simplified Optimization Problem

min
γ∈{0,1}m

max
[ρi,πi]∈(0,1)2

m∑
i=1

γi · R
(
LLHP (Y, [ρi, πi])

)
s. t.

m∑
i=1

γi = 1, u (Y, [ρi, πi], [ni,di]) ≤ εi, ∀i ∈ {1, 2, ...,m}.
(5.12)

To solve this min-max problem (5.12) the m distinct inner maximization prob-

lems have to be solved; it is easy to see that the decision-maker therefore

chooses the portfolio with the lowest worst-case risk.

Each inner maximization depends on two parameters θi = [ρi, πi] ∈ (0, 1)2,

72 We applied and compared both methods and found qualitatively homogeneous results
(data not shown).
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therefore the integral (5.7) for the data-driven restriction can easily and quickly

be evaluated numerically. For the sake of simplicity and easier reading, we skip

the portfolio index i and obtain

Definition 3: Risk Measure under Uncertainty

max
[ρ,π]∈(0,1)2

R
(
LLHP (Y, [ρ, π])

)
s. t. u (Y, [ρ, π], [n,d]) ≤ ε. (5.13)

Depending on the choice of risk measure R(·) and uncertainty restriction

u (Y, [ρ, π], [n,d]) ≤ ε, each problem can be easily solved.

Thus, the min-max problem is reduced to the simpler inner-maximization

problem. We analyze three restrictions and four risk measures more closely,

resulting in twelve different optimization problems. Each problem is solved

separately, leading to different arguments of the maximization. It is intuitive

that the arguments of the maximization are generally distinct for each risk

measure.73

For illustration purposes, we plot the three restrictions in Figure 5.1 for

two parameter settings [ρtrue,1 = ρtrue,2 = 20%, πtrue,1 = 0.1%, πtrue,2 = 5%]

and time lengths of T1 = 15 years and T2 = 50 years, respectively. For each

of these four cases, we simulate a random default history based on the known

true parameters and a given time length for 1,000 homogeneous entities. Under

the assumption of an uncertainty aversion of moderate size (β = 25%) and

the results of a maximum-likelihood estimation, we derive the box restriction

(R1), the ellipsoid restriction (R2) and the data-driven restriction (R3). R1

is represented as a dotted box, R2 is the dash ellipsoid and R3 is the full-

line curved ellipsoid. For a clear visual interpretation, we have chosen a set

of simulated default data, for which both estimates are smaller than the true

parameters. These estimates are denoted as ‘×’ in Figure 5.1.

In all cases, the box restriction covers the smallest area around the esti-

mates, followed by the ellipsoid restriction. Both restrictions are symmetri-

cally centered around the estimates by definition, which is not the case for the

data-driven restriction. R3 covers not only the largest area in all cases, but also

considers far higher potential parameters for ρ and π due to its curved shape.

Since all risk measures (with exception of VaR for π < 1−α) are monotonously

increasing in both model parameters, we expect a maximization subject to R3

73 This might be counter-intuitive to the results from Rockafellar and Uryasev (2000), but
here we optimize with respect to model parameters and not decision vectors.
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Figure 5.1: Shape of Uncertainty Restrictions for Different Parameter Settings
and Time Length

 5% 10% 15% 20% 25% 30% 35%
   0%

0.02%

0.04%

0.06%

0.08%

 0.1%

0.12%

0.14%

0.16%

0.18%

[20%, 0.1%]

[18.68%, 0.08%]

ρ

π

[ρtrue, πtrue] = [20%,0.1%], T = 15

 

 

True
MLE

 5% 10% 15% 20% 25% 30% 35%
  2%

2.5%

  3%

3.5%

  4%

4.5%

  5%

5.5%

  6%

6.5%

  7%

[20%, 5%]

[16.14%, 4.59%]

ρ

π

[ρtrue, πtrue] = [20%,5%], T = 15

 

 

True
MLE

 5% 10% 15% 20% 25% 30% 35%
   0%

0.02%

0.04%

0.06%

0.08%

 0.1%

0.12%

0.14%

0.16%

0.18%

[20%, 0.1%]

[18.23%, 0.08%]

ρ

π

[ρtrue, πtrue] = [20%,0.1%], T = 50

 

 

True
MLE

 5% 10% 15% 20% 25% 30% 35%
  2%

2.5%

  3%

3.5%

  4%

4.5%

  5%

5.5%

  6%

6.5%

  7%

[20%, 5%]

[18.32%, 4.62%]

ρ

π

[ρtrue, πtrue] = [20%,5%], T = 50

 

 

True
MLE

Notes: This figure shows the shape of the three restrictions depending on simulated loss data from the

parameter setting [ρtrue,1 = ρtrue,2 = 20%, πtrue,1 = 0.1%, πtrue,2 = 5%] and time length T1 = 15 and

T2 = 50. In all cases, 1,000 homogeneous entities are considered and a β-quantile of 25% is chosen. The

restrictions 1, 2 or 3 are represented by the dotted box, dashed ellipsoid or full line ellipsoid, respectively.

leading to the largest values. Therefore, we recall the former pin-example and

state that R1 and R2 can underestimate possible effects of parameter uncer-

tainty.74 Figure 5.1 illustrates the asymptotic convergence of the likelihood

function (represented by R3) by a comparison of the upper (T1=15) with the

lower (T2=50) graphs, in which the time series is increased. With longer time

series, the shape of R3 converges to the shape of R2 due to the asymptotic

properties.75 Note also that R3 is more strongly curved for lower PD (left

graphs) and therefore less well approximated by the other restrictions. Since

it is curved into the upper right direction, and given the monotonous increases

74 If a risk measure was maximized by the smallest allowed parameter constellation, R2
would overestimate the effects of uncertainty in comparison to R3.

75 Note that even under consideration of a Hotelings T-squared distribution for T=15, the
area of the ellipsoid uncertainty would increase by less than 10% and that the stretched
curve of the data-driven restriction would not be covered.
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of risk measures in the domain under consideration, we expect higher effects

of parameter uncertainty and a larger underestimation from these effects by

the restrictions R1 and R2, particularly for lower PD.

5.3.3 Risk Measures under Uncertainty

By introducing the simplification of the investment decision, the inner maxi-

mization problem (5.13) provides a definition of (credit) risk measures under

uncertainty. If, for example, a decision-maker has to allocate economic capital

for a given credit risky portfolio and is uncertain about the model parameters,

he can insert his specific uncertainty aversion and solve the inner maximization

problem (5.13). Alternatively, for regulatory purposes, a minimum coefficient

for uncertainty aversion could be prescribed by regulatory authorities.

For an analysis of the effects of uncertainty on credit risk measures, we

perform a Monte Carlo simulation study and generate a stylized portfolio of

1,000 borrowers for various scenarios.76 We analyze three scenarios in which a

uniform low-risk PD of 0.1%, a medium-risk PD of 1% and a high-risk PD of

5% is assumed for each borrower. In all cases, we set the asset correlation to

20%. These parameter settings approximate Moody’s Investment Grade, ‘Ba’

and ‘B’ rated risk buckets, as we will see in more detail in Section 5.4.2. The

time series is set to lengths T = 15, T = 30 or T = 50 years.

We randomly draw time series of default data and compute the parame-

ter estimates and estimation errors. Then, we solve each inner maximization

problem (5.13). For all cases, we set the α-quantile equal to 99.9%, in line

with Basel IRB Approach, and vary the β-quantile according to 5%, 15% and

50%. We compute the difference to the true risk measures (computed by using

the known parameters) in absolute and relative terms. For each setting, this

procedure is repeated 1,000 times and the median of the results is reported in

Table 5.1 (T = 30) and Table 5.2 (T = 15 and T = 50).

The first column in Table 5.1 reports the true risk measures, computed

using the parameters, and the second column reports the absolute and relative

difference (in parentheses) for the results of the maximum-likelihood estimates.

For example, for the first parameter constellation (ρtrue = 20% and πtrue =

76 For a robustness check of idiosyncratic risk effects, portfolios with 100, 500 and 10,000
entities were analyzed in addition. This does not alter the general results, but due to less
or more diversified idiosyncratic risk, the uncertainty add-ons became larger or smaller,
respectively. Results are available upon request.
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0.1%), the true 99.9% VaR is V aRtrue
99.9% = 2.81%. The median 99.9% VaR

of the 1,000 maximum-likelihood estimates is V aRMLE
99.9% = 2.45%, yielding the

reported absolute difference of V aRMLE
99.9%−V aRtrue

99.9% = −0.36%. This gives the

reported relative difference of −12.65%. Therefore in 50% of the Monte-Carlo

replications the maximum-likelihood results underestimate the true risk by at

least -12.65%. The remaining columns report the (relative) differences based

on the uncertainty framework.

Table 5.1: Uncertainty Effects on Risk Measures (in per cent)

ρtrue = 20.00, πtrue = 0.1
Riskmeasure β = 5 β = 15 β = 50

(true) MLE R1 R2 R3 R1 R2 R3 R1 R2 R3

E(·) = 0.10 -0.003 -0.0005 0.01 0.02 0.01 0.02 0.03 0.03 0.05 0.10
(-3.42) (-0.47) (11.33) (15.62) (5.36) (21.61) (34.68) (26.03) (48.98) (97.77)

σ(·) = 0.24 -0.03 -0.02 0.03 0.05 0.01 0.07 0.12 0.11 0.19 0.39
(-10.55) (-6.26) (11.46) (19.27) (3.70) (30.66) (48.07) (46.89) (80.06) (162.2)

VaR99.9 = 2.81 -0.36 -0.21 0.30 0.48 0.08 0.85 1.45 1.35 2.53 5.07
(-12.65) (-7.51) (10.82) (17.17) (2.82) (30.33) (51.6) (48.16) (90.19) (180.71)

cVaR99.9 = 3.96 -0.58 -0.37 0.41 0.71 0.07 1.30 2.09 2.00 3.74 7.35
(-14.75) (-9.22) (10.43) (18.01) (1.78) (32.73) (52.73) (50.50) (94.56) (185.71)

ρtrue = 20.00, πtrue = 1.00
Riskmeasure β = 5 β = 15 β = 50

(true) MLE R1 R2 R3 R1 R2 R3 R1 R2 R3

E(·) = 1.00 -0.03 -0.01 0.05 0.07 0.02 0.12 0.16 0.15 0.29 0.43
(-3.07) (-1.34) (5.4) (6.76) (1.94) (12.31) (15.82) (15.08) (28.71) (42.71)

σ(·) = 1.55 -0.08 -0.05 0.09 0.12 0.03 0.23 0.30 0.34 0.59 0.87
(-5.49) (-3.02) (5.86) (7.56) (2.17) (14.76) (19.23) (22.08) (38.04) (56.33)

VaR99.9 = 14.55 -0.91 -0.54 0.90 1.15 0.26 2.34 3.05 3.49 6.07 8.70
(-6.25) (-3.69) (6.16) (7.93) (1.8) (16.06) (20.95) (24.01) (41.72) (59.78)

cVaR99.9 = 18.14 -1.18 -0.69 1.10 1.46 0.31 2.94 3.74 4.32 7.46 10.54
(-6.50) (-3.81) (6.07) (8.03) (1.72) (16.22) (20.6) (23.83) (41.09) (58.11)

ρtrue = 20.00, πtrue = 5.00
Riskmeasure β = 5 β = 15 β = 50

(true) MLE R1 R2 R3 R1 R2 R3 R1 R2 R3

E(·) = 5.00 -0.03 0.03 0.28 0.31 0.16 0.52 0.60 0.63 1.07 1.31
(-0.59) (0.70) (5.67) (6.24) (3.23) (10.37) (11.94) (12.52) (21.33) (26.19)

σ(·) = 5.24 -0.18 -0.09 0.22 0.25 0.09 0.51 0.62 0.79 1.27 1.63
(-3.38) (-1.66) (4.12) (4.82) (1.81) (9.80) (11.74) (15.01) (24.22) (31.16)

VaR99.9 = 38.44 -1.24 -0.63 1.41 1.66 0.59 3.45 4.17 5.31 8.58 11.01
(-3.21) (-1.64) (3.66) (4.31) (1.53) (8.97) (10.84) (13.81) (22.31) (28.64)

cVaR99.9 = 43.85 -1.57 -0.84 1.45 1.75 0.51 3.70 4.48 5.68 9.41 11.96
(-3.59) (-1.92) (3.30) (3.99) (1.16) (8.43) (10.22) (12.96) (21.47) (27.28)

Notes: This table shows the difference to the true risk measures in per cent. The numbers in parentheses give

the relative difference to the true value in per cent. MLE represents the results at the maximum-likelihood

estimate, while R1, R2 and R3 are the results from our uncertainty approach using restriction 1, 2 and 3.

The time length of simulated default data is set to T = 30. All numbers are the median of a Monte Carlo

simulation study with 1,000 repetitions.

Higher β results in higher absolute and relative differences for all risk mea-
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sures and parameter settings. This is because all three uncertainty areas be-

come wider with higher β and all risk measures are monotonously increasing

in π and ρ in the domain under consideration. The largest differences result

for R3, while R1 leads to the smallest differences. A lower PD results in a

relatively higher difference, because with lower PD the quality of estimation

decreases. This leads to larger ambiguity sets around the estimates, as seen

in Figure 5.1. Due to the curving of R3 into the upper-right direction, par-

ticularly for low-default portfolios, the third restriction leads to much higher

differences. Even though the relationship E(·) < σ(·) < V aR99.9 < cV aR99.9

holds for (absolute) differences, we cannot conduct any clear ordering for the

relative differences. The cVaR exhibits the highest relative difference for low-

default risk buckets, while this is not the case for the high-default portfolios.

This indicates that the cVaR can be more sensitive to parameter uncertainty

than the VaR, especially for lower PD (or better rating grade).

Table 5.2 shows the effects of different time lengths. We restrict the re-

ported results to the analysis of the VaR and the three parameter settings

for the time-series lengths of T = 15 and T = 50. The first column re-

ports the true parameters [ρtrue, πtrue], the average parameter estimates [ρ̂, π̂]

and average standard errors [σ(ρ̂), σ(π̂)]. The second column reports the true

99.9% VaR for each case. The third column shows the absolute (first row) and

the relative differences (second row, numbers in parentheses) to the true risk

measures for the maximum-likelihood estimates. The number of cases out of

1,000 replications in which the true VaR is underestimated is given in square

brackets. The following columns show these results based on the uncertainty

framework for the three different restrictions and the three level of uncertainty

aversion β ∈ {5%, 15%, 50%}.
As expected, smaller time series result in higher absolute and relative dif-

ferences, because the estimation quality decreases. All three uncertainty sets

become wider, and the differences increase. The risk bucket with the lowest PD

and the shortest sample size exhibits the largest (relative) differences. With

a smaller sample size, the outcome of different uncertainty sets differ much

more. For example, for T = 50 and β = 15%, the relative difference of the

VaR for the risk buckets with the lowest PD is 24.71% for R2 and 36.18% for

R3, compared with 22.27% vs 71.36% when T = 15. So, with a lower PD,

higher uncertainty aversion and smaller sample size, the approximations of the

box and ellipsoid uncertainty set of the data-driven restriction become worse
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Table 5.2: Uncertainty Effects on the VaR under Different Restriction and
Time Length (in per cent)

[ρtrue, πtrue] T = 15

[ρ̂, π̂] VaRtrue
99.9 β = 5 β = 15 β = 50

[σ(ρ̂), σ(π̂)] MLE R1 R2 R3 R1 R2 R3 R1 R2 R3
[20.00, 0.100] 2.81 -0.84 -0.68 -0.04 0.32 -0.35 0.63 2.00 1.32 3.04 8.15
[14.43, 0.097] (-29.96) (-24.14) (-1.32) (11.27) (-12.29) (22.27) (71.36) (46.96) (108.14) (290.13)
[10.39, 0.055] [611] [585] [504] [462] [536] [445] [362] [395] [307] [156]

{8.95} {43.74} {64.22} {28.25} {83.71} {144.87} {118.26} {203.87} {475.45}

[20.00, 1.00] 14.55 -1.83 -1.31 0.48 1.10 -0.31 2.50 4.08 4.11 7.86 14.29
[18.54∗∗, 1.04∗∗] (-12.58) (-9.03) (3.32) (7.55) (-2.12) (17.17) (28.01) (28.26) (54.02) (98.18)

[7.25, 0.43] [582] [562] [473] [446] [516] [395] [329] [331] [240] [140]
{3.94} {18.14} {22.61} {12.05} {33.03} {44.46} {45.07} {71.65} {115.56}

[20.00, 5.00] 38.44 -2.49 -1.62 1.28 1.94 0.10 4.25 5.76 6.69 11.34 16.57
[18.73∗∗∗, 5.15∗∗∗] (-6.46) (-4.21) (3.32) (5.05) (0.25) (11.05) (14.98) (17.4) (29.51) (43.11)

[6.39, 1.40] [582] [557] [468] [450] [496] [401] [351] [328] [238] [160]
{2.29} {10} {11.69} {6.91} {17.78} {22.01} {24.66} {36.56} {51.05}

[ρtrue, πtrue] T = 50

[ρ̂, π̂] VaRtrue
99.9 β = 5 β = 15 β = 50

[σ(ρ̂), σ(π̂)] MLE R1 R2 R3 R1 R2 R3 R1 R2 R3
[20.00, 0.10] 2.81 -0.30 -0.19 0.24 0.36 0.04 0.69 1.02 1.07 1.95 3.26

[18.47∗, 0.10∗∗] (-10.77) (-6.73) (8.41) (12.95) (1.55) (24.71) (36.18) (37.98) (69.45) (116.03)
[7.21, 0.04] [559] [542] [451] [416] [489] [359] [317] [302] [220] [141]

{4.55} {21.41} {25.94} {14.06} {39.68} {51.94} {54.72} {89.99} {144.06}

[20.00, 1.00] 14.55 -0.69 -0.38 0.72 0.88 0.22 1.86 2.20 2.73 4.73 6.17
[19.32∗∗∗, 1.01∗∗∗] (-4.71) (-2.64) (4.97) (6.02) (1.54) (12.78) (15.12) (18.77) (32.54) (42.38)

[4.36, 0.24] [575] [544] [435] [421] [476] [355] [325] [287] [182] [132]
{2.18} {9.98} {10.97} {6.62} {18} {20.55} {24.31} {38.39} {48.19}

[20.00, 5.00] 38.44 -0.83 -0.36 1.24 1.38 0.56 2.87 3.25 4.25 6.71 8.00
[19.56∗∗∗, 5.01∗∗∗] (-2.15) (-0.94) (3.23) (3.58) (1.46) (7.48) (8.46) (11.07) (17.46) (20.81)

[3.84, 0.80] [561] [530] [443] [436] [472] [343] [324] [284] [199] [152]
{1.27} {5.57} {5.88} {3.84} {9.92} {10.99} {13.7} {20.48} {24.02}

Notes: This table shows the difference to the true VaR in per cent. The numbers in parenthesis give the

relative difference to the true VaR. MLE represents the results at the maximum-likelihood estimates, while

R1, R2 and R3 are the results from our uncertainty approach using restrictions 1, 2 and 3. The time-length of

simulated default data is set to T=15 and T=50. All numbers are the median of a Monte Carlo simulation

study with 1,000 repetitions. The parameters estimates [ρ̂, π̂] are statistically significant at the 1%-level

(∗∗∗), the 5%-level (∗∗), and the 10%-level (∗). Square brackets denotes the absolute number of cases out of

1,000 repetitions, in which the true VaR is underestimated. Number in curly braces give the relative add-on

to the VaR at the estimates.

and may lead to an uncertainty effect underestimation.

The maximum-likelihood results underestimate the true VaR (see numbers

in square brackets) in more than 50% of the cases each, in particular for short

time series and low PD, as described comprehensively by Gordy and Heitfield

(2010). This holds for the VaR and the cVaR. Therefore, in practical applica-

tions, the odds of an underestimation of the true risk (i.e. economic capital)

are high due to parameter uncertainty or simply due to bad luck in observed

data; odds increase particularly for high rated risk buckets. Using β > 0, these

odds can be reduced. For example, for the highest PD and the shortest time

series, the number of underestimations can be reduced from 582 out of 1,000

repetitions to 450 (β = 5%) or 351 (β = 15%). This reduction is achieved by
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an add-on or uncertainty premium to the VaR, the median of which is given

in Table 5.2 in each fourth row in curly brackets in relative terms. Therefore,

about 130 underestimations are avoided in the above example by a relative

increase of the VaR of 11.69%.

By increasing β, which results in a higher relative add-on (uncertainty pre-

mium), the number of underestimations can be further reduced. However,

what is an appropriate choice of β? To answer this question at least heuristi-

cally, we compute the ratio of uncertainty premium and the underestimation

reduction. For example for β = 15%, πtrue = 1% and R3, the number of un-

derestimations is reduced by about 250 and the premium is 44.46% (T = 15).

This gives a ratio of 0.18%. Each underestimation that can be avoided costs

about 0.18% in relation to the original VaR. For the longer time series, a ratio

of 0.08% results. With lower PD c.p. the premium per effective reduction

increases. Thus, especially for high-rated risk buckets, protection against un-

certainty effects requires higher uncertainty premia. Moreover, the premium

per effective reduction ratio increases with higher β. Therefore, any additional

marginal protection against uncertainty requires an even higher uncertainty

premium.

In summary we conclude the following. Firstly, high-rated (low-risk) buck-

ets are more prone to parameter uncertainty than lower-rated (riskier) buckets.

Secondly, if the decision-maker faces portfolios with low PD and short sample

sizes, the possible uncertainty effects are best covered by the data-driven re-

striction. Thirdly, with higher uncertainty aversion, these effects are boosted

and the restriction R3 becomes even more important. Fourthly, although there

might be no best β, an intermediate size of about β = 15% appears to provide

a reasonable trade-off between an underestimation reduction to 1/3 and the

magnitude of uncertainty premium. Fifthly, especially for risk buckets with low

PD (low risk) the VaR appears to be less sensitive to parameter uncertainty

than the cVaR.

Regarding the restrictions, we conclude that R1 should be used only as a

first proxy. Although the optimization problem can be solved analytically,

the (relative) differences underestimate the possible parameter uncertainties

in comparison with the other restrictions. R2 is suitable for higher PD risk

buckets, longer time series and smaller β as an appropriate restriction, since it

approximated R3 reasonably well in these cases. R3 includes all data informa-

tion and implied uncertainty. Therefore, this seems to be the most appropriate
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restriction.

5.3.4 Comparison with Bayesian Approaches

Next, we show that our framework includes other existing uncertainty ap-

proaches in credit risk using Bayesian statistics, where the (unknown) param-

eters θ are treated as random variables. A Bayesian decision-maker combines

prior beliefs about the parameters with evidence from observable data ℵ to

construct a predictive distribution of the parameters:

p(θ|ℵ) =
p(ℵ | θ) · p(θ | ξ)∫

p(ℵ | θ)dθ
, (5.14)

where ξ is a vector of hyper-parameters describing the prior distribution p(θ |
ξ), p(ℵ | θ) is the sampling distribution (i.e. likelihood) and

∫
p(ℵ | θ)dθ

is the marginal likelihood. Bayesian approaches focus on the specification of

reasonable priors and the derivation of the posterior distribution for θ, includ-

ing technical sampling methods (e.g. Gössl, 2005; Dwyer, 2006; McNeil and

Wendin, 2007; Kiefer, 2009; Tarashev, 2010; Chang et al., 2011). The random

vector of ‘candidate’ values θc is sampled from the posterior p(θ|ℵ) and in-

serted into the model-specific loss function L([Y, θc]). Therefore, it becomes

a joint probability distribution function of model-specific random variables,

represented by Y, and additional random variables represented by θc. Finally

a risk measure R(·) is usually computed, using the entire joint probability dis-

tribution R
(
L(Y, θc)

)
, see Gössl (2005); Dwyer (2006); Chang et al. (2011).

Either, the expectation Ep(θ|ℵ)

(
R (L(Y,θc))

)
of the risk measure over the pos-

terior is evaluated (Garlappi et al., 2007), or the risk measure of the whole joint

probability distribution is computed; alternatively, if being very conservative,

an extreme quantile of the distribution of risk measures sampled from Y and

p(θ|ℵ) can also be used (Tarashev, 2010).

To simplify matters, we analyze uncertainty only in ρ in the following sec-

tion. We assume that the posterior distribution p(ρ|ℵ) for the candidate

value ρc is already derived as a beta distribution β(ρc | ℵ) with a stan-

dard deviation of 5% and a modus of 20%. This modus shall equal the

maximum-likelihood estimate for the unknown correlation ρ. The true PD

is assumed to be known either as 0.1% or 1%. As a risk measure, we con-

sider the VaR for confidence levels α ∈ {95%, 99%, 99.9%}. Then, we sample
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106 candidate values for ρc from β(ρc | ℵ), and for each candidate we draw

a standard normal distributed y. As a result we obtain the outcome of the

three different Bayesian-based approaches: The VaR of the joint distribution

A1 : V aRα

(
LLHP (Y, ρc, πtrue)

)
, the expectation of the VaR over the posterior

beta-distribution A2 : Eβ(ρc|ℵ)

(
V aRα

(
LLHP (Y, ρc, πtrue)

))
and the extreme α-

quantile of the VaR distribution A3 : LLHP (Φ−1(1 − α), β−1(α), πtrue), where

β−1(·) is the inverse of the posterior distribution β(ρc | ℵ).

Table 5.3 shows the add-ons to the risk measure using the maximum-

likelihood estimates and the relative add-ons in parentheses. For each number,

we also compute the implied β for the box uncertainty restriction, which is

given in square brackets. This can be interpreted as the value for β that leads to

the same add-on in our uncertainty framework and the corresponding Bayesian-

based approach. For example, for PD of πtrue = 0.1% and a 99.9% confidence

level, the VaR using the ML estimate of ρ = 20% is V aRMLE
99.9% = 2.81%. The

first approach (A1) results in a VaR of 3.14%. This corresponds to the re-

ported add-on of V aR99.9%

(
LLHP (Y, ρc, 0.1%)

)
− V aRMLE

99.9% = 0.33%, and a

relative add-on of 11.71%. To get this add-on from our uncertainty framework

based on the box uncertainty, a β of 26.62% is necessary.

Table 5.3: VaR Add-on for Bayesian Approaches and Implied β (in per cent)

πtrue = 0.1 πtrue = 1
α = 95 α = 99 α = 99.9 α = 95 α = 99 α = 99.9

V aRMLE
α 0.42 1.10 2.81 3.77 7.53 14.55

A1 -0.01 (-1.48) 0.02 (2.02) 0.33 (11.71) -0.01 (-0.22) 0.26 (3.45) 1.65 (11.31)
[-19.36] [7.56] [26.62] [-0.60] [15.91] [34.36]

A2 -0.00 (-0.84) 0.03 (3.07) 0.21 (7.59) 0.04 (1.04) 0.27 (3.62) 0.82 (5.61)
[-10.64] [12.61] [19.31] [8.09] [15.15] [17.52]

A3 0.02 (4.83) 0.54 (48.96) 3.93 (139.97) 0.64 (16.88) 4.02 (53.42) 15.54 (106.81)
[84.07] [99.3] [99.96] [94.6] [99.4] [99.98]

Notes: This table shows the (relative) add-on to the VaR at the MLE in per cent for different Bayesian-based

approaches (in parentheses). Numbers in square bracket describe the implied β based on our maximization

framework using the box uncertainty. Given this β, our uncertainty framework results in the same differences

as the respective Bayesian-based approach.

From the implied β we see that i) all other approaches comply with our

uncertainty framework, given a specific β and ii) the implied uncertainty aver-

sion changes with the choice of approach, risk bucket and confidence level α.

The implied uncertainty aversion for the third (conservative) approach ranges
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from 84.07% to 99.98% and is the result of the presumed comonotonicity of the

model-specific random variable Y and the posterior distribution β(ρc | ℵ). For

the first (second) approach the uncertainty aversion ranges between -19.36%

(-10.64%) and 34.36% (19.31%), with a negative β representing uncertainty

affinity. Generally the absolute and relative differences become larger with

higher α. Therefore, α measures not only the degree of risk aversion, but also

the degree of implied uncertainty aversion in the Bayesian approach. Because

of this, risk and uncertainty are not separately quantified or distinguished.

Moreover, for small α, a negative add-on is possible. This implies a negative

uncertainty premium and a decision-maker who is uncertainty affine.

We conclude that the Bayesian approaches are compatible with our frame-

work and cover uncertainty effects, but do not explicitly separate the effects of

risk and uncertainty for given prior and posterior, this implies a specific degree

of uncertainty aversion, and may even lead to the possibly undesired result of

implied uncertainty affinity.

5.4 Empirical Example

5.4.1 Data

We use publicly available default data from Moody’s (2013) annual default

report. The report lists the number of companies (ranked by rating grade)

at the beginning of any given year, and reports what proportion of them had

defaulted by the end of the year. This information is given for the seven rating

grades ‘Aaa’, ‘Aa’, ‘A’, ‘Baa’, ‘Ba’, ‘B’ and ‘Caa-C’. The first four rating grades

are summarized as Investment Grades (‘IG’), while the last three rating grates

are Speculative Grades (‘SG’).

In our study, we consider a 32-year period from 1981 to 2012. The number

of rated companies in this dataset increases from 1,247 in 1981 to 4,823 in 2012.

On average, there are 3,226 rated companies per year. The two highest rating

grades are excluded due to an insufficient number of defaults (no defaults in

‘Aaa’, and only 6 in ‘Aa’) when the data are analyzed per rating grade, in line

with McNeil and Wendin (2007) and Chang et al. (2011). We did include these

grades for our analysis of IG-rated risk buckets. Descriptive statistics of the

default rates for each grade are shown in Table 5.4. The mean and standard

deviation of the historical one-year default rates of Moody’s rated companies
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increase with rating grade, while the ratio of mean and standard deviation

decreases.

Table 5.4: Basic Statistics of Historical One-year Defaults (%) Rate in Moody’s
(2013), 1981-2012

A Baa Ba B Caa-C IG SG Total

Mean 0.05 0.19 1.14 4.99 22.17 0.09 4.50 1.72
Std 0.11 0.30 1.20 3.94 19.64 0.14 3.04 1.30
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.16

Median 0.00 0.00 0.82 4.53 19.02 0.02 3.44 1.28
Max 0.51 1.06 4.95 16.02 100.00 0.51 13.29 5.97

Notes: This table shows descriptive statistics of the historical one-year default rates for the rating categories

‘A’, ‘Baa’, ‘Ba’, ‘B’ and ‘Caa-C’. The Investment Rating Grade ‘IG’ includes the four highest rating grades

‘Aaa’, ‘Aa’, ‘A’ and ‘Baa’, while the Speculative Rating Grade ‘SG’ contains the lowest rating grades ‘Ba’,

‘B’ and ‘Caa-C’. We use: std, standard deviation; min, minimum; max, maximum.

5.4.2 Risk Measures under Uncertainty

We apply the inner maximization problem (5.13) to the default data. For

the specification of the box and the ellipsoid restriction, the parameter esti-

mates and standard errors are derived via the maximum-likelihood approach

and given in Table 5.5. The first column shows the maximum-likelihood es-

timates [ρ̂, π̂] and their statistical significance. The second column shows

their estimated standard errors [σ̂(ρ̂), σ̂(π̂)]. The range of parameter esti-

mates is ρ̂ ∈ (6.81%, 21.09%) and π̂ ∈ (0.06%, 19.45%). While π̂ increases

monotonously with worsening rating grade, we find a roughly decreasing trend

for ρ̂, with some exceptions. Except for ‘A’ and ‘Baa’ all estimates are highly

significant. The next four columns show the estimates for the risk measures

E(·)MLE, σ(·)MLE, V aRMLE
99.9 and cV aRMLE

99.9 using a recovery rate of zero for

simplicity.

For deteriorating rating grades we obtain c.p. higher risk measures. This

indicates a monotonous risk-grading as we would expect. Additionally, in all

cases, the cV aRMLE
99.9% is larger than the V aRMLE

99.9%, which is to be expected

according to

cV aRα(·) = V aRα(·) + E
(
X − V aRα(·) | X > V aRα(·)

)
,

where E
(
X − V aRα(·) | X > V aRα(·)

)
> 0.
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Table 5.5: MLE Results for Historical One-year Default Rates from Moody’s
(2013), 1981-2012

[ρ̂, π̂] [σ̂(ρ̂), σ̂(π̂)] E(·)MLE σ(·)MLE VaRMLE
99.9 cVaRMLE

99.9

A [21.09, 0.06∗] [13.85, 0.03] 0.06 0.16 1.95 2.86
Baa [14.19∗∗, 0.20∗∗∗] [6.35, 0.06] 0.20 0.32 3.22 4.21
Ba [13.65∗∗∗, 1.16∗∗∗] [4.33, 0.25] 1.16 1.33 11.24 13.61
B [20.61∗∗∗, 5.18∗∗∗] [4.66, 1.00] 5.18 5.48 40.06 45.60

Caa-C [14.46∗∗∗, 19.45∗∗∗] [4.19, 2.28] 19.45 10.75 63.28 67.37
IG [16.11∗∗, 0.10∗∗∗] [6.35, 0.04] 0.10 0.20 2.14 2.94
SG [7.87∗∗∗, 4.50∗∗∗] [1.95, 0.51] 4.50 2.81 19.4 21.77

Total [6.81∗∗∗, 1.71∗∗∗] [1.71, 0.21] 1.71 1.19 8.73 10.03

Notes: This table shows the MLE results for Moody’s based on a yearly time horizon from 1981 to 2012 for

the rating categories ‘A’, ‘Baa’, ‘Ba’, ‘B’ and ‘Caa-C’. [ρ̂, π̂] are the MLE-estimates and σ(θ), θ ∈ {ρ, π} are

their standard errors. The parameters are statistically significant at the 1%-level (***), the 5%-level (**),

or the 10%-level (*).

The relative estimation error decreases with decreasing rating grade (with

minor exceptions). Particularly, high-rated entities may be prone to parameter

uncertainty. This is supported by contour plots of the likelihood function

LLHP (ρ, π|n,d) for the rating grades ‘A’, ‘Baa’, ‘Ba’, ‘Caa-C’, ‘IG’ and ‘SG’

given in Figure 5.2. The ‘×’ denotes the maximum-likelihood estimates and the

chosen contour plots equal the data-driven restriction for β ∈ {5%, 15%, 50%,

75%}. Therefore the inner and outer lines show the 5% and 75% confidence

region, respectively, for the unknown model parameters.

As in our simulation study, we obtain strongly curved wide shapes for high

rated risk buckets, while the low rated risk buckets produce nearly ellipsoidal

narrow shapes. Particularly for the higher-rated low-risk buckets, the contours

can obviously not be approximated by the other two restrictions. Additionally,

a wider shape for the restriction may lead to larger uncertainty add-ons c.p.

Table 5.6 shows the results for the inner maximization problem (5.13) for

the four risk measures and three uncertainty restrictions, using ‘A’ and ‘Caa-

C’ for illustration. As the true risk measures are unknown, the first column

reports the risk measures using the maximum-likelihood estimates. According

to our simulation study, these may have a more than 50% chance of being

an underestimation of the ‘true’ unknown risk measures. The next columns

show the absolute and relative add-on to each risk measure than can be

interpreted as a (relative) uncertainty premium. For example, for the ‘A’-

rated risk buckets, the maximum-likelihood approach estimates a 99.9% VaR
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Figure 5.2: LLHP (ρ, π|n,d) for Selected Moody’s Rating Grades (1981-2012)
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Notes: This figure shows the likelihoods LLHP (ρ, π|n,d) for the one year default rate from Moody’s for the

rating categories ‘A’, ‘Baa’, ‘Ba’, ‘Caa-C’, ‘IG’ and ‘SG’ for a time horizon from 1981 to 2012. The contour

plots show the data-driven restriction for β ∈ {5%, 15%, 50%, 75%}.

of V aRMLE
99.9% = 1.95%. Under restriction R3 and a uncertainty aversion of

β = 15%, which might reduce the odds of an underestimation to 1/3, we get a

99.9% VaR of V aRβ=15%,R3
99.9% = 5.34%. This corresponds to the reported add-on

of V aRβ=15%,R3
99.9% −V aRMLE

99.9% = 3.39%, yielding a relative add-on of 173.73% (in

parenthesis).

As in the simulation, a higher β increases the add-on. Similarly, the data-

driven restriction R3 leads to the highest (relative) add-ons, while R1 leads

to the smallest add-on. Again, there is no clear ranking of risk measures

with respect to their sensitivity to uncertainty effects. For the low-default

portfolio, the cV aR(·) is affected most strongly in terms of relative add-on,

followed by V aR(·), σ(·) and E(·). For the high-default portfolio it is σ(·),
followed V aR(·) and cV aR(·). The risk bucket with lowest PD (grade ‘A’)

exhibits a considerably larger relative add-on (or uncertainty premium). For

example, for β = 0.15, a relative premium of 173.73% of the VaR is necessary
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Table 5.6: Uncertainty Effects Based on Risk Measure and Restriction for
Moody’s Rated Risk Buckets, 1981-2012 (in per cent)

A
Risk measure β = 5 β = 15 β = 50

R1 R2 R3 R1 R2 R3 R1 R2 R3

E(·)MLE = 0.06 0.00 0.01 0.02 0.01 0.02 0.04 0.02 0.04 0.07
(3.49) (17.91) (32.66) (10.58) (31.89) (71.11) (37.72) (65.85) (122.05)

σ(·)MLE = 0.16 0.01 0.06 0.11 0.04 0.11 0.25 0.15 0.26 1.03
(7.32) (35.50) (65.75) (22.98) (67.62) (152.94) (94.70) (163.21) (637.21)

VaRMLE
99.9 = 1.95 0.16 0.78 1.44 0.50 1.50 3.39 2.09 3.67 14.79

(8.14) (40.07) (74.03) (25.66) (76.85) (173.73) (107.39) (188.30) (758.50)
cVaRMLE

99.9 = 2.86 0.25 1.25 2.29 0.79 2.41 5.39 3.34 6.01 22.42
(8.69) (43.58) (80.24) (27.52) (84.30) (188.43) (116.98) (210.29) (784.41)

Caa-C
Risk measure β = 5 β = 15 β = 50

R1 R2 R3 R1 R2 R3 R1 R2 R3

E(·)MLE = 19.45 0.14 0.73 0.77 0.43 1.30 1.43 1.54 2.69 3.08
(0.74) (3.75) (3.95) (2.22) (6.68) (7.33) (7.91) (13.80) (15.85)

σ(·)MLE = 10.75 0.15 0.63 0.68 0.44 1.12 1.27 1.57 2.29 2.79
(1.37) (5.90) (6.33) (4.13) (10.46) (11.84) (14.61) (21.35) (26.00)

VaRMLE
99.9 = 63.28 0.66 2.80 3.00 1.98 4.90 5.52 6.77 9.66 11.59

(1.05) (4.43) (4.74) (3.12) (7.74) (8.72) (10.69) (15.27) (18.31)
cVaRMLE

99.9 = 67.37 0.67 2.84 3.04 2.00 4.95 5.57 6.76 9.64 11.52
(1.00) (4.22) (4.52) (2.96) (7.34) (8.27) (10.03) (14.31) (17.09)

Notes: This table shows the add-on to the MLE risk measures in per cent. The numbers in parentheses

return the relative add-on based on the MLE value in per cent. MLE represents the results from the standard

maximum-likelihood approach, while R1, R2 and R3 are the results from our approach using restriction 1,

2 and 3.

for the ‘A’-rated risk bucket in order to yield a specific underestimation odds

reduction, compared with a relative add-on of only 8.72% for the ‘Caa-C’-

rated risk bucket given approximately the same odds reduction. This result

underlines our previous finding that high-rated risk buckets may be more prone

to parameter uncertainty than lower-rated ones.

In Table 5.7, we present the (relative) add-ons for all rating grades, the data-

driven restriction, the risk measure VaR and cVaR and β ∈ {5%, 15%, 50%}.
We find that the relative add-on increases with higher rating grades at an in-

creasing rate. In this data sample, moving one rating grade higher roughly

doubles the impact of parameter uncertainty; indeed, when moving from ‘Baa’

to ‘A’ it is more than tripled. For example, using a 5% β-quantile, the relative

VaR add-on is 13.76% for ‘Ba’, 27.43% for ‘Baa’, and 74.03% for ‘A’. A risk

manager holding an ‘A’-rated portfolio should consider an approximate surplus

of 75% of the VaR at MLE estimates as an uncertainty premium, even under

small ambiguity aversion (β = 5%). According to the simulations, this pre-
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mium may reduce the chance of an underestimation of the true VaR to about

45%. If the risk manager is more uncertainty-averse (e.g. β = 15%, with

odds of underestimation of about 1/3), he has to increase the VaR by about

174%; with an aversion of 50% (and odds of underestimation of about 15%)

he should increase the VaR by more than 750%. In contrast, for a ‘B’-rated

risk bucket with a high uncertainty aversion of β = 50%, reducing the odds

of underestimation to about 15%, he only needs an uncertainty premium of

33.08%.

Table 5.7: Uncertainty Effects Based on VaR and cVaR for all Moody’s Rating
Categories under the Data-driven Restriction, 1981-2012 (in per cent)

Rating VaRMLE
99.9%

β = 5 β = 15 β = 50 cVaRMLE
99.9%

β = 5 β = 15 β = 50

A 1.95 1.44 3.39 14.79 2.86 2.29 5.39 22.42
(74.03) (173.73) (758.5) (80.24) (188.43) (784.41)

Baa 3.22 0.88 1.79 5.18 4.21 1.22 2.49 7.19
(27.43) (55.68) (161.01) (29.08) (59.13) (170.78)

Ba 11.24 1.55 2.99 7.40 13.61 1.92 3.72 9.14
(13.76) (26.64) (65.87) (14.13) (27.32) (67.12)

B 40.06 3.38 5.94 13.25 45.60 3.68 6.44 14.13
(8.44) (14.84) (33.08) (8.08) (14.12) (30.99)

Caa-C 63.28 3.00 5.52 11.59 67.37 3.04 5.57 11.52
(4.74) (8.72) (18.31) (4.52) (8.27) (17.09)

IG 2.14 0.63 1.3 3.96 2.94 0.92 1.89 5.76
(29.45) (60.71) (184.89) (31.2) (64.45) (196.18)

SG 19.40 1.26 2.43 5.5 21.77 1.45 2.8 6.33
(6.5) (12.5) (28.36) (6.68) (12.84) (29.07)

Total 8.73 0.72 1.29 3.09 10.03 0.86 1.55 3.71
(8.2) (14.78) (35.44) (8.55) (15.42) (37.00)

Notes: This table shows the (relative) add-ons to the MLE VaR and MLE cVaR under the data-driven

restriction in per cent.

5.4.3 Credit Decision under Uncertainty in Practical

Application

Finally, we show how the consideration of uncertainty effects can impact in-

vestment decisions. According to our simplified credit-decision model (5.12), a

decision-maker prefers the portfolio that has the smallest risk measures given

his uncertainty aversion β. We focus on the data-driven restriction and the

VaR. To solve the min-max problems (5.12), we use the results of the inner

maximization problems (5.13) from Table 5.7.

According to Table 5.7, the VaR of an ‘A’-rated risk bucket is lower than

that of a ‘Baa’-rated risk bucket, if it is evaluated using the ML estimates
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5.4. EMPIRICAL EXAMPLE

(with no uncertainty aversion). However, since the higher-rated risk bucket

is more prone to parameter uncertainty, high uncertainty aversion yields a

VaR that is smaller for ‘Baa’ than for ‘A’ (e.g. V aRβ=50%,Moody′s,A
99.9% = 6.27%

> V aRβ=50%,Moody′s,Baa
99.9% = 5.86%). Actually, an investor with an uncertainty

aversion higher than a ‘break-even’ β = 24.38% would prefer the ‘Baa’-rated

risk buckets over the ‘A’-rated one. Thus, a credit decision can be reversed if

uncertainty is taken into account.77

These results are derived from a time horizon with a length T = 32. In

practical applications, financial institutions often do not have such a long data

history. Therefore, we also analyze uncertainty effects based on a rolling win-

dow approach, whereby a time horizon with length T = 15 is assumed in each

step. The rolling window starts from 1991 to 2005, and ends with 1998 to 2012.

For each step of the rolling window, we solve the corresponding inner maxi-

mization problem for a 99.9% VaR under a 15% uncertainty aversion based on

the data-driven restriction.78 The results are presented in Figure 5.3, in which

the VaR using the ML estimates is represented by the solid line, and the risk

measure under the consideration of uncertainty is shown by the dashed line.

Again, the relative add-on increases with higher rating grade, as the relative

difference between the solid and the dashed line is much larger for higher-rated

risk buckets. We also computed the average of the relative add-ons of the eight

time horizons for each rating grade (data not shown). For ‘A’, this average is

513.81%, for ‘Baa’ it is 115.58%, for ‘Ba’ it amounts to 54.44%, for ‘B’ it is

27.34%, and for ‘Caa-C’ it is only 12.48%. Based on the Monte Carlo study,

we presume that each of these relative add-ons reduces the general odds of

an underestimation of the true risk measure to about 1/3. Therefore, these

results highlight the generally higher uncertainty premium for high rated risk

buckets.

For this data set, a decision-maker with a 15% uncertainty aversion would

again prefer a lower-rated risk bucket over a higher-rated one, especially when

comparing ‘A’ with ‘Baa’. For example, based on the most recent information

in our data set from 1998 to 2012, an ambiguity-neutral investor would prefer

77 This holds true even if an additional restriction on a minimum expected return is imposed.
If the investor chooses the low-risk portfolio in the setting without uncertainty, she will
still switch to the high-risk portfolio after considering uncertainty, because normally the
high-risk portfolio will offer an expected return that is at least as high as that of the
low-risk portfolio.

78 Other risk measures, different β-quantiles and other settings of the rolling window ap-
proach were also analyzed, yielding qualitatively similar results.
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5.5. CONCLUSION

Figure 5.3: Uncertainty Effects on the VaR for Selected Rating Categories
under a Rolling Window Approach
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Notes: This figure compares the 99.9%-VaR for selected rating grades based on the maximum-likelihood

approach with the results from the uncertainty framework under β = 15%. The results are presented for a

rolling window, and each estimation is based on T = 15 starting with 1991-2005 and ending with 1998-2012.

‘A’ with a VaR of 2.08% over ‘Baa’ with a VaR of 3.75%. With an uncertainty

aversion of 15%, however, the investor would compute a VaR of 7.30% for the

higher-rated bucket, while he would obtain a VaR of 6.91% for the lower-rated

one. This switch in investment behavior between different investors can be

found almost for any time horizon, and also for a shift from ‘Baa’ to a ‘Ba’.

5.5 Conclusion

We present a framework to show how parameter uncertainty (equivalent pa-

rameter ambiguity) can be quantified and distinguished from risk in credit

models. We derive a general min-max problem of a credit decision-maker, and

introduce a novel data-driven restriction to model the possibility of parame-

ter uncertainty. This allows us the derivation and definition of risk measures

under uncertainty.

We show that the odds of underestimations of risk measures can be reduced

when the agent is uncertainty-averse. We also show that uncertainty aversion

comes at the cost of a premium, which is added to the risk measure. We

demonstrate that alternative Bayesian methods dealing with parameter uncer-

tainty are covered by our framework. Actually, these approaches are special

122



5.5. CONCLUSION

cases with an implied degree of uncertainty attitude.

Our empirical analysis of historic default data shows that portfolios with

particularly high ratings (low risk) are more affected by parameter uncertainty

than portfolios with lower ratings (high risk). We find that even under a mod-

erate degree of uncertainty aversion, a decision-maker might therefore prefer a

lower-rated risk bucket over a high-rated one, in contrast to a decision maker

who ignores parameter uncertainty.

The approach could offer financial institutions a generally applicable method

to address parameter uncertainty in credit portfolio decisions, and enables

them to compute uncertainty-adjusted risk measures such as the VaR. Our

method could also provide policy makers and regulatory authorities with a

tool for imposing regulatory rules that explicitly prescribe a capital buffer for

parameter uncertainty.

Our approach has the potential to be developed into a more complex method,

future work could include an investigation of more general objective functions

and further restrictions, such as minimum expected returns or constraints on

portfolio weights. Moreover, our current paper only addresses parameter un-

certainty, but future applications could extend the setting to uncertainty with

respect to the model. Even though parameter uncertainty seems to be much

more relevant than model uncertainty to credit risk (Hamerle and Rösch, 2005),

considering these two factors together could nevertheless result in a more gen-

erally applicable approach, because both of these factors are interrelated. Fi-

nally, another important research topic would of course be a thorough analysis

of the degree of uncertainty aversion in practical applications.
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Chapter 6

Conclusion, Practical

Implications and Further

Research Topics

Each final section of the Chapters 2, 3, 4, and 5 summarizes the main findings of

this cumulative thesis in detail and in context of the addressees. Within this

chapter, we focus on the practical implications and aim to identify possible

further research topics. At the end, we provide a brief overall conclusion.

In Chapter 2, we provided a model that allows a closed-form comparison

of both bonds and tranches with respect to their exposure to systemic risk.

We demonstrated that due to pooling and tranching, idiosyncratic risks are

diversified, but that the exposure to systematic risks is concentrated. There-

fore, we find that tranches’ conditional probabilities of default and conditional

expected losses are much more sensitive to realizations of a systematic risk

factor than those of equally rated corporate bonds. Our findings show that

tranches are generally much more prone to systematic risk than bonds, and

that the effect size increases with tranches’ seniorities.

With the European regulation on Credit Rating Agencies (Regulation (EC)

No 1060/2009) CRAs have to distinguish structured finance instruments from

other instrument, in their rating categories. For example S&P uses for this

a (sf) suffix, but have not changed the definition of the rating or represented

opinion about the issue’s or issuer’s creditworthiness (S&P, 2012). However,

our findings suggest a basis for the development of rating metrics that reflect

more appropriately the product-specific exposures to systematic risk. These
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new metrics may incorporate higher moments of loss distributions with respect

to realization of modeled systematic risk factors, and may therefore include

sensitivities. For higher transparency, the one-dimensional rating metrics of

the CRAs may then be extended to multi-dimensional measures, as proposed

in Jenkinson (2008).

Our analysis focuses on (single) structured securitization, but the frame-

work can easily be extended to multiple structured securitizations such as CDO

squared. Although the derivation of analytical results might be challenging,

a Monte Carlo approach is easily implemented. With such an approach, the

specific sensitivity of multiple structured securitizations can be analyzed, ac-

counting for heterogeneous borrowers and sectors; this approach goes beyond

simplifying assumptions of the ASRF credit model. It is to be expected that

due to several layers of pooling and tranching, CDO squared tranches are even

more prone to systematic risk. This result would emphasize that a single (sf)

suffix from the CRA is not sufficient to cover the specific risk characteristics

of structured instruments.

In Chapter 3 we analyzed systematic risk exposures of CDS contracts refer-

ring to numerous U.S. firms located in several branches. With a two-pass

regression framework, we identified at least three systematic risk factors -

‘credit market climate’, ‘cross-market correlation’ and the ‘market volatility’

- as important drivers for CDS spread changes. Additionally, we showed that

the sensitivities to these systematic risk factors are cross-sectionally priced in

CDS spreads after controlling for individual risk factors such as credit ratings,

liquidity, firm leverage and sectorial influences.

The applied empirical study allows for several extensions. Firstly, other

representations of systematic risk, such as market recovery risk or individual

counter-party risk (compare Brigo and Chourdakis, 2009; Arora et al., 2012)

and the pricing of their sensitivities may be analyzed. Secondly, the analysis

may be extended to the examination of sector-specific risk factors. Both of

these extensions may provide additional pieces for the solution of the ‘credit

spread puzzle’. Since structured products are more sensitive to systematic risk

(compare Chapter 2), a similar analysis with respect to structured securities

could enable a dismantling of the valuation of structured securities. For this, as

argued by Loehr (2014), the application of a dynamic panel regression approach

may help to identify common determinants of tranche spreads. Löhr (2013b)

In Chapter 4, we analyzed the most commonly used risk measures VaR and
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cVaR in the ASRF credit model with respect to errors in the model parameters.

We found that the cVaR can be more prone to estimation errors than the VaR,

and that this sensitivity increases with a lower probability of default of the

underlying portfolio, or with a higher confidence level α.

Therefore, we support the current proposal of the Basel Accord to use a

99.9% VaR for the incremental capital charge for default risk (BCBS, 2012,

2013), while the Basel Committee recommends to replace the 99% VaR with

the 97.5% cVaR in internal market risk models and has used the 97.5% cVaR

to calibrate capital requirements under the revised market risk standardized

approach. Any further consideration of a replacement of the 99.9% VaR by

a cVaR for the determination of credit default risk capital has to take into

account the higher sensitivity to parameter errors of the cVaR.

The analysis with respect to credit risky portfolios can be extended to secu-

ritizations. Firstly, it can be analyzed whether risk measures of securitizations

are comparatively more prone to parameter errors than those of portfolios.

Secondly, with the deduced key numbers from Chapter 4, it can be studied

whether the cVaR can be more prone to estimation errors than the VaR for

structured products. Both studies may have direct implications for the formu-

lation of capital requirements for structured products.

In Chapter 5 we presented an economic framework to show how parameter

uncertainty can be qualified and distinguished from risk in credit models. As a

direct implication of this framework, we define risk measures under uncertainty

and additionally provide a novel data-driven restriction to model the possibility

of parameter uncertainty as accurately as possible. With this framework, we

show that portfolios with particularly low PD (high rating grades) are more

affected by parameter uncertainty than portfolios with higher PD (low rating

grades). As a result, even under a moderate degree of uncertainty aversion, a

decision-maker might prefer a lower-rated risk bucket over a high-rated one.

This framework enables decision-makers of financial institutions to address

parameter uncertainty in credit portfolio decisions, and allows them to compute

uncertainty-adjusted risk measures. It provides politicians and regulators with

a first tool for imposing regulatory rules that explicitly prescribe a capital

buffer for parameter uncertainty.

Our framework lays the general foundations for how parameter uncertainty

can be considered in credit risk. Therefore, future work can address several ex-

tensions. A thorough analysis of the degree of uncertainty aversion for practical
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application may refine our heuristic proposal. Then, the robust optimization

problem restricted to credit models can be extended by more general objective

functions and further restrictions, such as minimum expected returns or con-

straints on portfolio weights. The general framework can easily be extended

to credit decisions with respect to structured financial products such as CDO-

tranches. Within the ASRF model, the most commonly used risk measures

VaR and cVaR of such tranches can be described analytically. Therefore,

the resulting optimization problems should be from the same magnitude of

difficulty. We propose that structured instruments are much more prone to

parameter uncertainty, and that this higher sensitivity can be measured with

this framework. Again, our framework may then be a good starting point for

the development of supervisory rules to buffer against uncertainty.

In conclusion, this cumulative thesis contributes to four current research

areas with respect to risk management. It firstly addresses the exposure to

systematic risk of structured securities. It is shown that CDO tranches are

much more sensitive to systematic risk than equally-rated corporate bonds.

The findings facilitate an understanding of the natural behavior of securitiza-

tions, and highlight the importance of the development of new rating metrics

covering their generic properties. Secondly, in this thesis we identify three

important systematic risk factors - ‘credit market climate’, ‘cross-market cor-

relation’, and ‘market volatility’ -, which are significantly priced in the cross-

section of CDS spreads. Thirdly, we show that the cVaR may be more prone

to parameter errors than the VaR within a commonly used credit risk model.

The sensitivities become larger for lower PD (higher rating) and higher confi-

dence level α. Thus, the commonly used approach to be safer (low PD, high

confidence level α, and choosing a tail-considering risk measure such as cVaR),

actually increases the effect of parameter errors in credit risk. And fourthly,

we introduce a robust optimization-based framework to incorporate parameter

uncertainty into the credit decision process. The framework helps to separate

the effect of parameter uncertainty from the original credit risk, and enables

a separate quantification of each effect. Overall, the findings presented in this

thesis may help to advance the risk management in financial institutions, may

motivate better and more transparent rating metrics, and may lead to new

appropriate regulatory requirements.
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Höse, S. and Huschens, S. (2008), Worst-case and stressed correlations in

the asymptotic single risk factor model, in D. Rösch and H. Scheule, eds,
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