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A B S T R A C T

The increasing number of mobile devices and the requested ubiquitous connec-

tivity along with the growth in use of multimedia and file transfer applications

pose an enormous challenge to existing transmission technologies. For networks

with changing topologies due to mobile devices, a distributed medium access is

particularly interesting. Furthermore, multimedia and file transfer applications

require high data rates with guaranteed and predictable access to provide quality

of service. When considering such high data rate networks, ECMA-368 provides

distributed medium access with guaranteed resource allocation for small-sized

networks. Besides guaranteed access, the fairness a system offers is an important

quality of service property. For this reason, we present a fairness analysis of a

distributed reservation-based medium access control protocol such as has been

specified in ECMA-368.

Many real-world situations can be abstracted by models with strategically inter-

acting decision-makers. For those decision-making processes, game theory provides

mathematical tools to predict the outcome of such an interaction. Originating in

economics, game theory has been applied to different research fields such as politics,

biology or telecommunications. In this thesis, we employ game theory to analyse the

strategic interaction of network nodes in a distributed reservation-based protocol.

We show that the unfair slot allocation, which we identify in the fairness analysis, is

the rational outcome in the original protocol. An introduced algorithm that relaxes

the reservation, however, is proven to drive the game to a fair slot allocation, if

players are rational.

In this thesis, we provide an analysis of ECMA-368 that covers throughput, delay

of the transmitted packets and fairness. ECMA-368 applies a distributed beaconing

system to organise medium access and network management. Due to the fixed

order in the beacon phase, reservations can only be made in a first-come, first-served

manner. We show that the individual throughput and delay depend highly on the

position of a node’s beacon but is independent of the network size. Therefore, the

iii



earlier a node transmits her beacon in the beacon phase, the more privileged she is.

Thus, the more channel time she can allocate and hence, the better she perceives

the fairness. Relaxing the fixed order in the beacon phase to employ round-robin or

random beaconing is shown to achieve long-term fairness. Due to the selfishness of

the network nodes, however, both methods lack short-term fairness.

We model the distributed reservation-based protocol as a multi-stage game and

show that the identified unfair slot allocation is the rational Nash Equilibrium.

To achieve short-term fairness, we introduce a relaxed reservation method that

provides discriminated players with a means to enhance their resource share. For

the static 2-player game, we provide the strategies that correspond to the fair

Bayesian Nash Equilibrium. The direct determination of this equilibrium, however,

is complex. Therefore, we consider the repeated game, in which players learn from

their opponents’ behaviour and adapt their actions to optimize their utility. With

an update algorithm that follows Bayes’ rule, we show that the game converges

to the fair Perfect Bayesian Nash Equilibrium, if players are symmetric in their

estimates about their opponents’ behaviour. If players are rational, they choose

the same smallest initial estimates and hence, reach the fair slot allocation. If we

exclude boundary effects, we further prove that for all other initial estimates the

game converges to nearly fair slot allocations.

Simulations extend the analysis to larger networks and indicate that the results

of the 2-player game also hold for the N-player game. Thus, equal initial estimates

drive the game to the fair equilibrium. The convergence time grows linearly with the

network size. It also increases with the impact that future utilities have in a player’s

decision and decreases with the parameter of the relaxed reservation method.

Keywords: Fairness, distributed medium access, Bayesian, game theory
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Z U S A M M E N FA S S U N G

Die steigende Zahl mobiler Geräte, ihre allgegenwärtige Konnektivität, sowie der

Zuwachs von Multimedia- und Dateiübertragungen stellen eine enorme Heraus-

forderung für bestehende Übertragungstechnologien dar. Für Netzwerke mit wech-

selnder Topologie durch mobile Geräte ist ein verteilter Medienzugriff besonders

interessant. Darüber hinaus erfordern Multimedia- und Dateiübertragungen eine

hohe Übertragungsrate mit garantiertem und vorhersehbaren Zugriff, um Dienstgü-

te zu gewährleisten. Bei der Betrachtung solcher hochdatenratigen Netzwerke bietet

der ECMA-368 einen verteilten Medienzugriff mit garantierter Ressourcenzuteilung

für kleine Netzwerke. Neben dem gesicherten Zugriff ist die Fairness eines Sys-

tems ein wichtiges Dienstgütekriterium. Aus diesem Grund behandelt diese Arbeit

die Fairness eines verteilten reservierungsbasierten Protokolls zur Steuerung des

Medienzugriffs, wie es der ECMA-368 spezifiziert.

Viele reale Situationen können durch Modelle mit strategisch interagierenden Ent-

scheidungsträgern abstrahiert werden. Für diese Entscheidungsprozesse bietet die

Spieltheorie mathematische Werkzeuge, um das Ergebnis einer solchen Interaktion

vorherzusagen. Seinen Ursprung hat die Spieltheorie in der Ökonomie. Mittlerweile

jedoch findet sie in unterschiedlichen Forschungsfeldern wie der Politik, Biologie

oder Telekommunikation Anwendung. In der vorliegenden Arbeit wird Spieltheorie

verwendet, um die strategische Interaktion von Netzwerkknoten in einem verteilten

reservierungsbasierten Protokoll zu analysieren. Es wird gezeigt, dass die unfaire

Zeitschlitzzuteilung, die das Ergebnis der vorangegangenen Fairness-Analyse ist,

das rationale Resultat des ursprüngliches Protokolls ist. Ein neu eingeführter Al-

gorithmus zur Lockerung der Reservierung bei rationalen Spielern jedoch erreicht

eine gerechte Aufteilung der Ressourcen.

In dieser Arbeit wird eine Analyse des ECMA-368 erbracht, die den Durchsatz,

die Verzögerung der übertragenen Pakete und die resultierende Fairness untersucht.

Der ECMA-368 verwendet ein verteiltes Beaconing-System, um den Medienzugriff

und das Netzwerkmanagement zu organisieren. Aufgrund der festen Reihenfolge in
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der Beacon-Phase können Reservierungen nur im first-come, first-served Verfahren

durchgeführt werden. Es wird gezeigt, dass der individuelle Durchsatz und die

individuelle Verzögerung stark von der Position des Beacons eines Knotens, nicht

jedoch von der Netzwerkgröße abhängt. Je früher ein Knoten sein Beacon in der

Beacon-Phase senden kann, desto privilegierter ist er. Damit hat dieser Knoten

mehr Sendezeit zur Verfügung und die Fairness ist zu seinen Gunsten verschoben.

Wird die starre Reihenfolge der Beacon-Phase für eine Round-Robin oder eine

zufällige Reihenfolge aufgelöst, so stellt sich auf lange Sicht Fairness ein. Aufgrund

des Eigennutzes der Netzwerkknoten fehlt es beiden Methoden jedoch an der

Gewährleistung von Fairness, wenn ein kurzer Zeitraum betrachtet wird.

In dieser Arbeit wird das verteilte reservierungsbasierte Protokoll als ein mehrstu-

figes Spiel modelliert und gezeigt, dass die identifizierte unfaire Zeitschlitzzuteilung

das rationale Nash Gleichgewicht ist. Um Fairness auf kurze Sicht zu erreichen,

wird die Reservierung gelockert. Auf diese Weise erhalten benachteiligte Spieler

eine Möglichkeit, ihren Resourcenanteil zu erhöhen. Für das statische Spiel mit zwei

Spielern werden die Strategien im fairen Bayesian Nash Gleichgewicht bestimmt.

Die direkte Bestimmung dieses Gleichgewichts ist eine komplexe Aufgabe. Aus

diesem Grund wird das wiederholte Spiel betrachtet, in dem die Spieler vom Ver-

halten ihrer Gegner lernen und ihre eigenen Züge anpassen, um ihren Nutzen zu

optimieren. Rationale Spieler wählen für ihre anfängliche Bewertung den gleichen

kleinstmöglichen Wert und erreichen so eine faire Zeitschlitzzuteilung. Bei Aus-

schluss von Randeffekten wird weiterhin gezeigt, dass alle anderen anfänglichen

Bewertungen das Spiel zu annähernd fairen Zeitschlitzzuweisungen führen.

Simulationen erweitern die Analyse auf größere Netzwerke und deuten darauf

hin, dass die Ergebnisse des Spiels mit zwei Spielern auch für Spiele mit N Spielern

gelten. Demnach führen gleiche anfängliche Bewertungen das Spiel zum fairen

Gleichgewicht. Die Konvergenzzeit wächst linear mit der Netzwerkgröße. Ferner

nimmt sie mit dem Einfluss zu, den zukünftiger Nutzen auf die Entscheidung der

Spieler hat. Der Parameter des gelockerten Reservierungsverfahrens vermindert die

Zeit bis zur Konvergenz.

Schlagwörter: Fairness, verteilter Medienzugriff, Bayesian, Spieltheorie
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Part I

D I S S E RTAT I O N





1
I N T R O D U C T I O N

Social protocols have been necessary to organise the exchange of information ever

since people have needed to communicate with each other. Those protocols did

not only contain the vocabulary and prescribe the syntactics of the language. They

also included and still include written and unwritten rules on how to communicate.

Some things we should keep in mind when it comes to the rules involving commu-

nication are: “who is first to talk”, “who is next to talk”, “what happens when a

new person joins in the discussion”, “how long is someone allowed to talk”, “what

happens if some people accidentally or intentionally talk at the same time” or “is

there anyone who decides individually every time how to communicate”.

Consider a classical classroom situation for example. There is a teacher and

several students. The teacher will do most of the talking. The students are required

to listen while the teacher is talking and to raise their hands if they have a question

or know the answer to one of the teacher’s questions. If students raise their hands,

it is the teacher who chooses the one to speak. Therefore, in this example, it is the

teacher alone who decides every time which student is allowed to speak. She can

also request someone to stop talking and handles circumstances in which students

accidentally or intentionally talk at the same time. Another example to consider is

a meeting. There might be one person in the group that acts as a moderator and

controls the communication. However, the group could also agree on taking turns

with everyone allowed to talk for a certain amount of time.

When people started to use electronic devices that communicate with their users

and also among themselves, there was again a need for protocols to handle this

information exchange. As for communication among humans, those protocols have

to deal with the order and duration of communication. We distinguish between

centralized and distributed protocols.

3



4 introduction

In centralized protocols, there is one device that decides which device is allowed

to communicate when. We can compare this with the teacher-student situation,

when it is the teacher who decides to allow her students to talk or to talk herself.

The teacher has an outstanding position, while the students can be considered

equals in this communication relationship. For electronic devices, the protocol used

with the Universal Serial Bus (USB) [64] behaves in a similar way. Here, the host

such as a laptop acts as a master, while the attached devices such as USB flash

drives, digital cameras or printers are considered slaves. Another example is a

Wireless Local Area Network (WLAN) [36] that is operated in infrastructure mode.

Here, an access point is in charge of coordinating the client devices.

The more mobile devices are available, the more flexible does the topology of

a network become. Frequent topology changes and many devices with similar

capabilities, however, make it difficult to clearly distinguish between master and

slave devices. While the teacher-student situation unambiguously was a situation of

this kind, the meeting situation, in contrast, needs to be considered. If one of the

people moderates the debate, this is clearly centralized communication. However, if

during the discussion none of the participants takes on this role, the communication

itself needs to be distributively organised. To discuss the electronic analogue, further

assume that in this group of people everyone carries a mobile device and they find

that in order to communicate they need to connect the devices so that they can

exchange data. Once agreed on a protocol, e.g. people switch on their WLAN

interfaces in ad-hoc mode, those devices can connect distributively with each other

and form a network of devices with equal communication rights.

Hence, with the increasing popularity of mobile devices, wireless ad-hoc solutions

of distributed communication attract more and more attention. Additionally, the

capabilities of mobile devices increase from generation to generation. More devices

support real-time multimedia applications and the transfer of large files. Thus,

the connectivity of mobile devices has to cope with the quality of service (QoS)

requirements of such applications. For real-time applications, one important concern

is the predictability of communication.
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Distributed communication can further be classified into competitive and con-

tention-free communication. Consider again the meeting example. If the communi-

cation was competitive, people that intend to contribute to the discussion would

try to make themselves heard and simply start talking. The question that arises is

who will be listened to in the case that some persons talk at the same time. Is it the

person that speaks the loudest or more insistent on making a point? Further, one

asks what impact such behaviour would have on subsequent encounters. Some may

avoid another collision whereas others may speak even louder in order to be heard.

If we consider contention-free communication, people could have decided in

advance to take turns. Thus, whenever it is a person’s turn, she may talk for a

predefined amount of time if she has anything to contribute, otherwise it is the next

person’s turn. Obviously, the predictability of when to talk and for how long is much

larger in the contention-free communication than in the competitive communication.

However, this example also shows that contention-free communication does not per

se result in absolute predictability. The people in the meeting do not know exactly

when they will be able to talk again. But they do know the maximum time they have

to wait if every person in the room contributes to the discussion. So, even though it

depends on the particular design of the actual protocol, distributed contention-free

communication suggests to best meet the QoS requirements of real-time applications

and their connectivity between mobile devices [5]. This is the reason why, in this

work, we consider distributed contention-free communication.

With the growth in use of multimedia and file transfer applications the required

data rates for communication increases. If the effectively provided data rates are

not able to cope with the demand, a means to distribute the available rate among

the requested transmissions is necessary, which immediately raises the question

of fairness. So when considering distributed contention-free communication, we

particularly analyse the issue of fairness. Recall the rules concerning social protocols

raised at the beginning of this chapter. They already reflected this very important

aspect of quality of service. Intuitively, a situation is fair, if all participants are

treated equally, i.e., all people receive the same share of resources. However, the

concept of fairness can also be defined differently. People could be assigned a



6 introduction

weight that depends, for instance, on the amount of information they have to share

or its importance. The larger the weight of a person, the larger her share of time to

talk. This is referred to as weighted fairness.

Both the terms distributed communication as well as contention-free commu-

nication can be analysed from different view points. In this work, we consider

distributed medium access control (MAC) protocols that provide contention-free

communication. Again remember the meeting situation. The social protocols dis-

cussed in this example arranged the order in which people were allowed to speak

and raised the question of the length of time they were admitted to talk. Those are

two of the main aspects that are dealt with by medium access control protocols. As

the name suggests, they are concerned with the access to the medium, thus, when

and how a device is allowed to access the communication medium such as a cable

or the air in the case of wireless transmissions. There are different approaches to

provide distributed contention-free medium access. In the following, we provide

some examples and shed light on the various levels of contention-free access and

their implication on fairness.

1.1 approaches to distributed reservation mac protocols

One of the oldest network protocols is ALOHA [2]. It was proposed in the early

1970s to provide for wireless transmissions between the University of Hawaii’s main

campus near Honolulu and its colleges, which were scattered along the islands of

Hawaii. With more than one device requiring access to the medium, there was a

need for a medium access control protocol.

In ALOHA, data is split into equally sized packets. Once a packet is ready for

transmission, the device sends it and waits for a response. If no reply arrives in

time, the packet is assumed to be lost due to a collision with another packet, thus,

it needs to be retransmitted. An enhancement of ALOHA is slotted ALOHA [3]

that requires synchronization between devices. Time is divided into slots whose

length is such that exactly one packet can be transmitted in one time slot. Devices

are then required to start the transmission of their packets at the beginning of
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a time slot, so a new packet transmission cannot start during an ongoing one.

Thereby, the probability of packet collisions is reduced. In order to further improve

satellite communication that was performed with slotted ALOHA, Crowther et

al. proposed Reservation-ALHOA [22]. Initially, the access to the radio channel is

the same as with slotted ALOHA. Thus, devices contend for time slots if there is

data for transmission. However, unlike slotted ALOHA, once a device successfully

contended for a time slot, she has it periodically reserved until either she explicitly

frees the slot or has finished her transmission and the slot becomes idle.

While both the original and the slotted ALOHA are clearly protocols with com-

petitive access, Reservation-ALOHA reduces collisions to the time when devices

compete for a reservation. Reservation-ALOHA adapts to the nature of the input

traffic. Therefore, the throughput, i.e., the rate of successful packet delivery, varies

from slotted ALOHA’s throughput to that of fixed assigned time slots. However, the

issue of fairness, i.e., how to prevent users from starving if they did not successfully

contend for a slot, remains. One remedy is to exclude some slots from reservation

and including a fairness algorithm into the contention phase [45]. If we consider

cellular wireless networks, another option to obtain a reservation is to use a resource

partitioning pattern. The available frequency range is divided into partitions and

distributed onto the base stations. These can reserve slots within their partition

without contention. Every time slot the partitions are shifted to the next base station

which respects the existing reservation but can access the remaining slots if it does

not interfere with the reserved ones [9].

Usually, wireless LAN that is standardized in the family of IEEE 802.11 [36] is

not accounted for as a contention-free protocol, but subsumed under contention-

based protocols. However, if we have a closer look, it does contain contention-free

aspects. Basically, devices that have packets ready for transmission sense whether

the channel is idle. If there is no ongoing transmission, they start transmitting

their packets. Hence, roughly speaking, if a user started a transmission and no

other did so at the same instant, the transmitting user has the medium reserved

for her transmission because any other user will sense that the channel is busy

and, thus, refrain from transmitting. However, there are users that cannot sense a
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transmission because they are too far away, but would interfere with it. To prevent

this from happening, the request to send (RTS)/clear to send (CTS) handshake

has been established. A user with packets for transmission initially sends an RTS

when the channel is idle and the receiver replies with a CTS. Therefore, any user in

transmission range of both the transmitter and the receiver is aware of the upcoming

transmission and will refrain from interfering with it. So the RTS/CTS can be seen

as a per-packet reservation procedure. Fairness is well analysed in IEEE 802.11. If

IEEE 802.11 is operated in infrastructure mode it is shown to be short-term fair for

two hosts [13, 19]. This is important for low latency applications and upper layers

[13, 43]. Measurements, however, indicate that the short-term fairness of IEEE 802.11

degrades with increasing number of hosts in the network [14, 19].

There are several extensions of the IEEE 802.11. The amendment IEEE 802.11e

defines procedures to support applications with quality of service requirements

in local area networks. With the Enhanced Distributed Channel Access (EDCA),

IEEE 802.11e provides distributed service differentiation that enables high priority

traffic to be processed faster. However, there also exist hybrid MAC scheduling

schemes with distributed resource reservation for IEEE 802.11e. In those schemes

information regarding the reservation parameters such as service start time, mean

data rate, frame size or delay bounds need to be distributed either by implicit or

explicit signalling [69]. Alternatively, EDCA can be extended with features of a

centralized protocol to provide distributed resource reservation, admission control

and scheduling. Users distribute their own admission requests to all other users

that simultaneously decide about it. All users are assumed to have the same level of

information, thus, they reach the same admission decision [33]. The efficiency of the

resource distribution further improves, if users actively release reserved resources

once they have finished their transmissions [68].

So there are several distributed protocols that partially provide resource reser-

vation. While IEEE 802.11 contends on a per-packet basis, the transmission slot in

Reservation-ALOHA is reserved until implicitly or explicitly released. However,

both Reservation-ALOHA and IEEE 802.11 contend for transmission time and only

once they are successful, is the transmission phase reserved.
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Another option, with even less contention, has been proposed in ECMA-368 [1].

As with slotted ALOHA, time is slotted and divided into superframes. As opposed

to slotted ALOHA, however, superframes are further divided into a beacon phase

and a phase for data transmission. Generally, each user in the network has to

transmit a beacon in the beacon phase. Besides other information users employ

their beacons to publish reservations for the upcoming data transfer phase. Thus,

contention only occurs, when users join the network and compete for a beacon slot

using Reservation-ALOHA. Once they have gained a beacon slot, it is reserved until

they release it by leaving the network. In contrast to Reservation-ALOHA though,

the beacon slot comes not only with one transmission slot but offers the opportunity

to reserve several time slots in the transmission phase.

This last example of a distributed reservation-based protocol has significant

potential for real-time applications that require guaranteed and predictable access to

the medium. The reason for this lies in the absence of contention in the reservation

process while still providing a completely distributed system. However, the issue of

fairness is yet to be considered. In this work, we fill this gap and present a thorough

analysis of throughput, delay and fairness of the distributed reservation protocol in

ECMA-368. We show that in high-load scenarios the influence of the reservation

rules of ECMA-368 are negligible. Then, we introduce a distributed algorithm that

drives the users of the network to a fair slot allocation.

The examples provided in this section can be abstracted by models where several

decision-makers interact with each other. Recall the meeting example. If people

distributively decide when to talk, they strategically interact with each other. This

means that the decision of one person to talk directly influences the decisions of the

other persons and vice versa. For those decision-making processes, game theory

provides mathematical tools to analyse the behaviour of the decision-makers. Hence,

it offers methods to predict the outcome of such an interaction. In this work, we

apply game theory to analyse the distributed reservation method of ECMA-368.

Furthermore, we provide a profound analysis of the game including the introduced

algorithm and determine its equilibria as well as show its convergence.
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1.2 thesis contributions

In this thesis, we provide a fairness analysis of a distributed reservation-based

protocol and present an algorithm to overcome the identified unfairness. We apply

game theory to model the interaction between the decision-makers and show that

the introduced algorithm guides the game to a fair equilibrium.

Firstly, we analyse ECMA-368 and determine its capacities and fundamental

limitations regarding throughput, delay of the transmitted packets and fairness. For

this analysis, we implement a Java based tool that determines all possible reservation

patterns and weights them with their likelihood given a Poisson model for the frame

arrival process. Due to the fixed beacon order, reservations can only be made in a

first-come, first-served manner. We show that the individual throughput and delay

highly depends on the position of a user’s beacon and evaluate the impact on the

perceived fairness.

In the next step, we evaluate modifications of the beacon phase in order to enhance

the fairness. One alternative to the fixed order of beacons is the randomization of

the beacon slots. If users have to randomly choose a beacon slot every z superframes,

long-term fairness can be achieved at the cost of additional beacon collisions every

time users choose a new beacon slot. Users can only reserve and transmit if they

have successfully transmitted a beacon beforehand. Therefore, we show that in

contrast to the fixed beacon order the maximum achievable throughput is reduced.

Instead of randomly changing the beacon order, we also alter the order in a round-

robin fashion. Though this achieves maximum throughput, we argue why it also

only provides long-term fairness.

To achieve short-term fairness, we introduce a relaxed reservation method that

provides discriminated users with a means to enhance their throughput. In prepara-

tion of a game-theoretic analysis that determines the implications of this relaxed

reservation, we model the distributed reservation protocol with fixed beacon or-

der as a multi-stage game. For the static game, we identify the Nash Equilibria,

subgame-perfect equilibria and determine the Pareto- and socially-optimal as well

as fair equilibria.
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We then modify the game model to account for the relaxed reservation method

and determine the Bayesian Nash Equilibria of this game for 2 players. The Bayesian

Nash Equilibrium is the equivalent of a Nash Equilibrium for a game with imperfect

information. The imperfection in this game regards information that players have to

estimate about each other in order to execute the relaxed reservation method.

Since the immediate determination of the Bayesian Nash Equilibrium of a game

is a tedious task, we model the dynamic game for 2 players, i.e., the static game

is repeated several times. In every period of the game, players learn from their

opponent’s behaviour and adapt their own actions accordingly. We show that with

a proper learning rule the game converges to a Perfect Bayesian Nash Equilibrium,

if certain boundary effects are excluded. Further we show that the Perfect Bayesian

Nash Equilibrium is fair if and only if both players start with equal initial estimates,

and nearly fair for most of the remaining cases.

For the evaluation of larger networks, we set up a simulation environment. We

employ the network simulator OMNeT++ [65] as a framework and implement the

behaviour of the distributed reservation protocol of ECMA-368 enhanced by the

relaxed reservation method and the required belief update rule. Simulations show

that the results also apply for games with more than two players. We further observe

that the convergence time increases linearly with the number of players in the game.

It also grows with the discount factor, but decreases with the parameter of the

relaxed reservation method.

1.3 thesis outline

Chapter 2 provides a brief introduction into ECMA-368 and presents related work

that evaluates this protocol regarding throughput, channel utilization and fairness

as well as the consequences of the beaconing approach. We further render an

introduction into game theory and review related work that applies game-theoretic

methods in the field of communication networks and especially resource allocation.

Chapter 3 presents the research problem that is addressed in this thesis. It further

highlights the contributions and explains their relevance.
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In Chapter 4, we analyse the ECMA-368 regarding throughput, delay of packet

transmission and the corresponding fairness. We particularly focus on the fairness

perceived by individual users and show that the order of the beacons heavily impact

this perceived fairness. We then evaluate the influence of random beaconing as well

as round-robin beaconing on the fairness.

Chapter 5 provides a game-theoretic analysis of the distributed reservation proto-

col with fixed beacon order and determines the Nash Equilibria, subgame-perfect

equilibria and identifies the Pareto- and socially-optimal as well as fair equilibria.

We present a relaxed reservation method to overcome the unfairness identified in

Chapter 4 and model this as a static multi-stage game with imperfect information.

For the 2-player game we determine the Bayesian Nash Equilibria.

Chapter 6 extends the static game to a 2-player dynamic game. In this dynamic

game players observe their opponent’s behaviour and adapt their own actions to

maximize their benefits. We show under which conditions the game converges to a

Perfect Bayesian Nash Equilibrium. Furthermore, we evaluate the Perfect Bayesian

Nash Equilibria regarding their fairness. Simulations extend the game to networks

with more than two users and different parameter sets of the introduced algorithm.

Finally, Chapter 7 concludes this work and raises possible future extensions.



2
F U N D A M E N TA L S A N D R E L AT E D W O R K

This chapter introduces ECMA-368 [1] as the distributed reservation protocol that

constitutes the basis of this work. We present related work that analyses ECMA-368

regarding throughput, channel utilization, fairness and distributed beaconing. An

introduction into game theory explains elements and methods relevant for this thesis.

Furthermore, we review related work that employs game-theoretic methods in the

field of communication networks and particularly focus on resource allocation.

2.1 fundamentals of ecma-368

In 2002, the Federal Communications Commission (FCC) of the USA granted in

an amendment of the Part 15 rules a 7500 MHz spectrum (3.1 GHz-10.6 GHz)

for the unlicensed use of ultra wideband (UWB) devices for communication and

measurement [27]. UWB commonly denotes a signal that covers a very large

bandwidth [12]. The FCC defined that signals below 2.5 GHz are considered UWB

signals, if for their fractional bandwidth f f it holds that f f ≥ 0.2 [27]. The fractional

bandwidth f f refers to the energy bandwidth over the center frequency of the signal:

f f =
fH − fL

fH+ fL

2

, (1)

where fH and fL are the upper and lower frequencies of the -10 dBm emission point.

Signals above the threshold of 2.5 GHz, however, are referred to as UWB signals,

if their bandwidth exceeds 500 MHz. The FCC further defined a spectrum mask

that poses strict rules on the spectral density as well as the maximum peak power.

Despite this restrictive regulation of the transmission power, the opening of such a

large portion of spectrum attracted several major chip manufacturers [12].

13
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Parallel to the opening of the spectrum for UWB devices, the IEEE 802.15.3a Task

Group was formed in 2001 to investigate solutions for the development of high-

speed and low power wireless personal area networks (WPAN). Both main proposals

considered in the IEEE 802.15.3a Task Group included a physical layer based on

UWB. An overview of the medium access control protocols and proposals for UWB

is given in [10, 56]. In 2006, the task group disbanded and one of the proposals was

standardized as ECMA-368 [1] by ECMA International. The ECMA-368 standardizes

both the physical and the MAC layer of a device. On the physical layer it applies a

multi-band orthogonal frequency division multiplexing (MB-OFDM) approach. The

frequency band from 3.1 GHz-10.6 GHz is divided into 14 bands, each 528 MHz

in length. Thus, each of those bands provides sufficient bandwidth for a UWB

signal. The standard offers data rates from 53.3 Mbit/s up to 480 Mbit/s, hence, it

is applicable for high-speed applications.

In this work, we consider the access to the medium. Therefore, the next para-

graphs present the main principles for medium access in ECMA-368. The ECMA-368

specifies a fully distributed communication network without central coordinator.

Instead, it uses a distributed beaconing scheme to coordinate medium access and

support dynamic network organisation. Time is assumed to be slotted and a su-

perframe structure is applied as depicted in Figure 1. Each superframe starts with

a beacon phase, followed by a data transfer phase. Generally, each node that has

joined the network is required to transmit a beacon during the beacon phase to

inform the other nodes about her own status and her particular view of the network.

To join an existing network, a node first identifies its beacon phase. Once she

has found an empty and feasible beacon slot, she attempts to transmit her beacon

using Reservation-ALOHA. Beacons are not sent to a particular recipient, so a node

does not receive an explicit acknowledgement that her beacon has been successfully

transmitted. However, each node’s beacon contains a map of beacon slots and their

owners. So when a node receives a beacon which includes her own beacon slot

mapped to herself, she knows that she has successfully attained this beacon slot.

Once the network is established, the assignment of a beacon slot to a node remains,

even if she is inactive. So the order of the nodes in the beacon phase is fixed.
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Figure 1: Superframe structure of ECMA-368. The length of a superframe is fixed to 256 slots.
A beacon phase variable in length is followed by a data transfer phase that consists
of the remaining xm slots. During their beacons nodes can make reservations for
the upcoming data transfer phase.

The standard provides both contention-free and contention-based medium access.

Generally, every time slot in the data transfer phase that has not been reserved

by one of the nodes in the network is open for contention-based access. Nodes

that need guaranteed access to the medium can use the distributed reservation

protocol (DRP) to reserve channel time. The transmitter negotiates the time, i.e.,

which slots in the data transfer phase of the superframe to use for transmission,

with her receiver and both publish the chosen time slots in their beacons. Recall

that the order of the beacons in the beacon phase is fixed once established. This

implies that the access to the medium is granted in a first-come, first-served manner,

since previously published reservations constrain subsequent ones.

ECMA-368 imposes several rules and policies regarding the location of the re-

served slots in the data transfer phase as well as the length of a reservation. For a

better understanding of those rules, the superframe structure is often described as a

16x16 matrix [8] as depicted in Figure 2. Each superframe is divided into 256 slots,

each 256 µs in length. These slots are grouped into 16 zones, each represented by

one column. Zones are further distinguished by their isozone affiliation as indicated

in Figure 2. The first zone includes the beacon phase and does not belong to any of

the four isozones.
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Figure 2: A superframe consists of 256 slots that are equally grouped into 16 zones. De-
pending on their position in the superframe the zones are further grouped into
4 isozones. The first zone includes the beacon phase and is not part of an isozone.

When nodes publish their reservations, they have the option to label it as a safe

reservation. If they marked their reservations as safe, they do not have to release

channel time when requested by other nodes. A general policy, however, states

that nodes shall not safely reserve more than 112 slots within a superframe and

at most one safe reservation block per zone. A block refers to the consecutively

reserved slots within a single zone. In this work, we consider safe reservations only,

since they guarantee channel access. Thus, all rules presented in the subsequent

paragraphs are concerned with safe reservations.

In the worst case, the limit of 112 safe slots per node causes the channel to be

saturated while supporting only two nodes. To prevent this from happening, the

standard further requires nodes to comply with a policy that concerns the maximum

number of reserved slots per zone. This policy relates the maximum number of

consecutive slots in a zone to the index of the first reserved slot according to Table 1.

Slots in a zone are numbered from 0 up to 15. So if a node requests to reserve

the first slot in a zone, i.e., slot index 0, the maximum number of slots that she

is allowed to safely reserve in this zone is 8 slots. If a node decides to start her

reservation with slot index 6, however, she may only reserve 4 slots in this zone.

The standard not only provides policies how to choose a reservation block within

a particular zone, but also which zone to choose for a reservation. So when choosing

a zone, a node is required to minimize the isozone index. By this, the standard aims

to equally spread the allocations in the superframe. So if a node intends to reserve

a block of 8 slots and the first 8 slots in zone 8 are taken already, she tries either

zone 4 or zone 12.
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index of 1st slot 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

max #slots 8 7 6 5 4 4 4 4 4 4 4 4 4 3 2 1

Table 1: Maximum number of slots that are allowed to be reserved in a zone depending on
the slot index of the first reserved slot. Thus, if a reservation starts in slot index 8,
for instance, it may contain at most 4 slots.

The standard provides two alternatives of the distributed reservation protocol.

Nodes that apply hard reservation can exclusively use the reserved time slots for

their own transmission. If a node does not require the reserved slots anymore, she

has to explicitly release the reservation. The alternative soft reservation, however,

does not require an explicit release of resources. When nodes other than the

reservation owner sense the channel idle, they are allowed to access it using the

contention-based protocol that is also applied in the slots that have not been reserved

at all. This protocol is referred to as prioritized channel access (PCA) and provides

differentiated access to the channel such as EDCA of IEEE 802.11e (cf. to Chapter 1).

In this section, we presented an overview of the structure of the medium access

control protocol specified in ECMA-368. We further introduced the distributed

reservation protocol and described the main policies regarding reservation patterns

in the data transfer phase. In the following section, we discuss related work that

analyses the performance of the medium access in ECMA-368, the implication of

different reservation patterns and the distributed beaconing algorithm.

2.2 related work on ecma-368

In this section, we discuss related work on ECMA-368. It includes papers that

analyse the performance of ECMA-368 as well as works that determine the influence

of the reservation pattern on the performance. Finally, we consider evaluations of

the distributed beaconing algorithm.

In 2005, ECMA-368 had not been standardized yet. Instead, it was under con-

sideration in the IEEE 802.15.3a Task Group. At that time, Hiertz et al. published

a throughput analysis of this standard proposal [35]. In their analysis, they as-

sumed an ideal channel and determined the saturation throughput for both the
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contention-free distributed reservation protocol as well as the contention-based

prioritized channel access. Further, they considered all three acknowledgement

strategies that are provided by ECMA-368. With an immediate acknowledgement,

the receiver has to transmit an acknowledgement for each individual frame, while no

acknowledgement does not require a confirmation from the receiver. A compromise

between those two acknowledgement strategies is the delayed acknowledgement.

Here, the receiver awaits a certain amount of frames, before she transmits an ac-

knowledgement for all received frames. In their analysis, the authors in [35] show

that the distributed reservation protocol always outperforms the contention-based

access protocol due to the absence of collisions. Furthermore, they confirm that

the saturation throughput is highest when no acknowledgement is required and

lowest for immediate acknowledgement. The delayed acknowledgement strategy

achieves a throughput in between those two. Frame aggregation further increases

the maximum achievable throughput, since it bundles several higher layer frames

into one MAC layer frame and thus reduces the overhead.

The results for an ideal channel given by [35] provide an upper bound for the

saturation throughput. A more realistic approach includes the impact of a non-ideal

channel. The standard proposals for IEEE 802.15.3a included both line-of-sight and

non-line-of-sight channel models [30]. Depending on the underlying channel model

the expected bit error rate at the receiver varies and hence the saturation throughput.

In [70], the authors extend an EDCA model by including the effects of the bit error

rate, the transmission limit given in ECMA-368 and the ECMA-368 specific timings

to provide a saturation throughput analysis of the prioritized channel access. For an

ideal channel it can be observed that the saturation throughput increases with the

frame length due to the reduction of overhead. In the case of a non-ideal channel,

however, the opposite trend becomes visible. The frame error rate increases with the

length of a frame, thus, the larger the frame the smaller the throughput becomes.

Those two effects combined imply that there is a frame length that maximizes the

throughput. This optimal frame length can be determined for each access category

provided in ECMA-368 [70].
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A non-ideal channel not only affects the saturation throughput of the contention-

based access protocol but also the distributed reservation protocol. Assume an

indoor scenario, where the channel suffers from shadowing. Depending on the

chosen transmission mode that specifies the applied modulation and coding scheme,

there is an optimal frame length that maximizes the achievable throughput. With

these results throughput optimization can be performed that adjusts both the frame

length and the transmission mode given the current channel quality [71]. The

maximum throughput, however, only slightly varies with the applied reservation

method [50]. Recall that nodes choose between hard and soft reservation. In the

case of hard reservation, a node has to explicitly release the resources, if she does

not require them anymore. In the case of soft reservation, though, every other node

is able to access reserved slots, if the reservation owner’s queue becomes idle.

The imagined deployment of UWB were small-sized networks with high data rate

requirements such as entertainment set ups in home environments. With several of

such systems in place, we are faced with dense network topologies [57]. ECMA-368

provides several rules to coordinate the coexistence of several networks [1]. If those

networks operate in the same frequency range, though, this coexistence comes at

the cost of throughput loss. There are different levels of network coexistence that

can be measured by their connectivity. Full connectivity refers to a topology, in

which all nodes are in the same beacon group. The beacon group of a node refers to

the set of nodes that transmit beacons with the same beacon phase start time than

that of the tagged node [1]. Decreasing the connectivity implies that some of those

nodes become members of the extended beacon group. This further includes the

beacon groups of all nodes in the tagged node’s beacon group. Thus, they become

2-hop neighbours of the tagged node. The extreme case is that networks are totally

separated so much so that there is no interference between them.

In [57], the authors model the decrease of connectivity between networks by

varying the attenuation factor of a wall that physically separates the networks. For

totally separated networks, a network’s throughput is maximal, while in the topol-

ogy with full connectivity all networks share the maximum throughput. In between

those extreme cases, the network throughput depends on the level of interference
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induced by the surrounding networks. An interference-aware reservation method

that considers link feedback and senses the channel to optimize the choice of time

slots and the transmission mode increases the achievable throughput for all levels of

connectivity [57]. The throughput can further be raised if instead of a random slot

allocation, slots are grouped. By this the overhead due to required guard times can

be reduced. The level of connectivity does not only affect the network throughput

if the reservation-based protocol of ECMA-368 is considered. It has an even larger

effect on the performance when the contention-based protocol is applied [58]. For

fully meshed networks, the achievable throughput of the contention-based access

is smaller than that of the contention-free access due to its probabilistic nature. If

we consider the channel reuse that can be achieved by interference awareness, the

reservation-based protocol benefits more than the contention-based protocol.

Another effect that lowers the system throughput are exposed nodes. Recall that

an exposed node defers from transmitting because a node in her neighbourhood

already transmits. The receiver of her neighbour’s transmission, however, is not in

her own transmission range and thus, would not be disturbed by the exposed node’s

transmission. So, if the exposed node transmits, the capacity of the system increases.

The beacons that are exchanged in ECMA-368, already contain information about

a node’s neighbourhood. In [59], the authors propose to use this information to

identify the 1- and 2-hop neighbours and mitigate the influence of exposed nodes.

Since the number of exposed nodes increases with the network size, the impact of

this method grows with the network size. In the distributed reservation protocol,

its application results in a system capacity gain of up to 30 %.

So far, we have not particularly considered the impact of the reservation pattern

on the throughput. The ECMA-368 provides precise rules how to choose the time

slots in a superframe. If the required amount of slots is equally distributed among

the zones in the superframe such that the delay requirements of the application are

met, an upper bound for the utilization of the system is given [23]. With this baseline

in mind, the level of degradation that occurs if the reservation rules imposed by

ECMA-368 are followed can be determined. The authors in [23] apply an isozone-fit

reservation strategy that tries to keep the superframe well-structured and symmetric.
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If the attempted isozone cannot cope with the required number of slots, the request

is dropped to the subsequent isozone. The throughput degradation caused by the

high blocking probability of the isozone-fit algorithm compared with the baseline

can be reduced, if requests do not have to be entirely dropped to the next isozone

but split between isozones.

If nodes remove their reservations, the remaining reservations in a superframe

become fragmented, thus a compaction algorithm that reassembles the remaining

reservations leads to a better utilization of the superframe. The combination of those

improvements of the isozone-fit strategy reaches a throughput close to the baseline

[23]. Recall that ECMA-368 poses restrictions on how many slots a node is allowed

to reserve in a zone. The higher the starting slot index is, the smaller the amount

of slots (cf. Table 1). Thus, heterogeneous traffic achieves a larger utilization than

homogeneous traffic, because flows that require only a small amount of slots fill the

gaps between large flows [23]. Another possibility to increase the system throughput

when considering the reservation pattern, is the introduction of priorities. In [47],

the authors use the beacons to additionally distribute flow information, in particular

the size of a flow. Nodes then distributively determine a new beacon order according

to the nodes’ flow sizes from largest to smallest. By this rearrangement large flows

obtain a higher priority than small flows.

Besides the throughput or utilization of the system, timing related aspects such

as the waiting or service time are important performance measures. The delay in

an ideal channel provides a lower bound, since no retransmissions have to be con-

sidered. Due to its deterministic behaviour, the delay of the distributed reservation

protocol is bounded irrespective of the traffic load. Thus, if the reservation of a flow

is admitted, quality of service can be guaranteed. In the contention-based protocol,

however, the delay performance is good for light traffic but suffers from large delays

in heavy traffic [35].

In non-ideal channels, the influence of the signal-to-noise ratio (SNR) on the

throughput and thus on the delay has to be considered. Assume reservations to be

non-uniformly distributed and the channel to be subject to indoor people shadowing.

For a Poisson model of the frame arrival rate it holds that the more variable the
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reservation pattern, the larger the mean waiting time. This effect increases with

the traffic load [49, 50]. However, the average waiting time in the queue decreases

with an increasing signal-to-noise ratio. This can be attributed to the fact that better

channel quality requires less retransmissions. While hard reservation highly gains

with the SNR, soft reservation experiences only small improvements [49, 50]. If soft

and hard reservation are directly compared, the prior suffers from a larger waiting

time than the latter. This is again due to the Poisson model which denotes that the

transmission queue can become empty, although there are reserved slots left.

Soft reservation then implies that those remaining slots can be occupied by other

nodes. Thus, it occurs that in the case that new frames arrive at the tagged node,

she cannot transmit them in her current reservation, because the remaining slots

have been lost to another transmission. Hence, the newly arrived frames suffer from

an additional delay, since they have to wait until the next reservation block. This

difference vanishes the larger the traffic load is. The reason is that high traffic load

connotes that the probability of the transmission queue to become empty is small,

thus, under heavy load soft reservation degrades to hard reservation [49, 50].

The decision whether to choose the distributed reservation or the contention-

based protocol for transmission, is not trivial. In [60], the authors consider video

streaming and propose to reserve below the peak rate and transmit the remaining

frames via the contention-based protocol. When deciding which frames to transmit

contention-based and which contention-free, they consider two approaches. If there

is one queue for each type, frames first fill the reservation queue and remaining

frames are located in the second queue. Thus, only frames in the second queue

have to contend for channel access. Recall that under heavy load, soft reservation

degrades to hard reservation. Thus, if the second queue is not empty, soft and hard

reservation perform equally. If the second queue is empty, soft reservation allows

other nodes to transmit more frames during the contention phase.

The alternative option is to maintain a common queue for both access methods.

This, however, could lead to situations in which the queue is empty at the time the

reservation is present or a large number of frames requires access via the contention-

based protocol. The latter induces a high collision probability and thus increases
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the service time. With less contention in the case of two separate queues, the service

time is minimal [60].

In the analysis of the reservation-based medium access in ECMA-368, there is

little work that explicitly considers fairness. In [6, 7], the authors analyse the impact

of the reservation process on throughput fairness using the Gini index, which is

a means for statistical dispersion and measures the inequality among values of a

frequency distribution [32]. For a mix of isochronous and asynchronous traffic, the

flexible use of reservation and contention-based access provides the highest fairness

index when compared to fixed assignment of traffic type and access method [6, 7].

The authors in [6, 7] analysed fairness, but did not attempt to induce fairness.

The goal to reach fairness is set in [40]. In a cooperative approach, nodes use their

beacons to distribute flow information, in particular the lower and upper bounds of

the service rate to guarantee quality of service of their flows. From these values and

the current allocation of resources among the flows, nodes distributively determine

a satisfaction level, which is also included in the beacons. To achieve fair resource

allocation, the satisfaction level is required to be the same for all nodes, hence the

resource allocation has to be adjusted accordingly. New nodes are admitted, if the

new global satisfaction level does not fall below a certain threshold [40].

All papers presented that did not only analyse but implemented strategies to attain

some predefined goal have in common that they assume nodes to be maximizing

a global aim. Thus, nodes with a minor priority for instance voluntarily release

slots to provide higher prioritised flows with more channel time [40, 47]. In this

work, however, we assume nodes to solely maximize their own utility. The fairness

problem that we demonstrate to be inherent in this protocol is solved by introducing

an algorithm that drives the nodes to a fair slot allocation.

While [6, 7] used the Gini index to quantify the accomplished fairness, another

widely used fairness index is defined by Jain et al. in [38]:

f (x) =
[∑N

i=1 xi]
2

N ∑
N
i=1 x2

i

, xi ≥ 0, (2)
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with xi the resource allocation of node i and N the number of nodes in the network.

The index is defined in the interval [0, 1] and measures the equality of the slot

allocation x. If all nodes receive the same resource allocation, i.e., xi = xj for all

i 6= j ∈ N, the fairness index f (x) = 1 and the system is 100% fair. If we consider a

single node and her perception of fairness, we have to determine the fair allocation

mark. It is defined as follows:

x f =
∑

N
i=1 x2

i

∑
N
i=1 xi

(3)

For the ith node the algorithm is xi/x f fair. The overall fairness is then given as the

average of the fairness perceived by the nodes in the network.

The assumption that all rendered works have in common is the existence of

an established network. To provide for such a network, though, the beaconing

algorithm and especially the collision resolution methods are integral parts of

ECMA-368. In [48], the authors determine the theoretical limit of the node density

that the beaconing algorithm can still cope with. They derive an approximation for

the beacon phase length depending on the node density.

The ECMA-368 is an example of a self-coordinated network, which is challenged

by topology changes resulting from node mobility and nodes being switched on or

off [66]. Assume a short range network, so a beacon slot cannot be used by multiple

nodes, as it would induce beacon collisions. The beaconing algorithm designed in

ECMA-368 requires nodes joining in the network to randomly choose a slot in a

fixed sized extended window of the current beacon phase. The more new nodes

join in the network, the more the extended window slides to the end of the beacon

phase. However, the maximum length of the beacon phase is fixed. Thus, there

are two problems. The first problem arises because joining nodes are required to

choose a slot between the highest taken slot and the maximum beacon slot. In case

a new node chooses the maximum beacon slot, no other new node is able to join

in the network, because no free and feasible slot remains. Thus, the second new

node fails to join in the network. The second problem arises, if the second last slot

is occupied and two or more nodes randomly choose the same last slot, because the
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one before is occupied. Here, a deadlock occurs. In [66], the authors evaluate the

failure probability and convergence time of nodes joining a network and propose a

more flexible joining scheme to optimize these parameters.

In this section, we presented related work on ECMA-368. Papers that analyse the

performance of ECMA-368 cover aspects such as throughput and delay. Little work

considers the aspect of fairness such as done in this work. Furthermore, we reviewed

papers that evaluate the impact of the reservation algorithm on channel utilization

and resource allocation. Those papers assume nodes to maximize a global aim

and distributively determine the optimal slot allocation. In this work, however, we

assume nodes to maximize their personal utility. To still achieve the global fairness

goal, we introduce an algorithm that provides discriminated nodes with a means

to enhance their channel share. By this, the network reaches a fair slot allocation.

Finally, we presented papers that cover aspects of the beaconing algorithm. In our

work, we identify the fixed beacon order as the reason for the unfairness inherent in

the protocol. Neither the randomization of the beacon slots nor applying a round

robin scheme in the beacon phase provides for short-term fairness. Instead, we keep

the fixed beacon order and relax the reservation to provide discriminated nodes

with a means to increase their share and thus, achieve fairness.

2.3 fundamentals of non-cooperative game theory

Many real-world situations can be abstracted by models where several decision-

makers interact with each other. For those decision-making processes, game theory

provides mathematical tools to analyse possible and likely behaviour of the decision-

makers. Hence, it offers methods to predict the outcome of such an interaction.

In order for game theory to be applicable, though, there has to exist a strategic

interaction between the players in the game [52]. Thus, a player’s decision has

to depend on the other players’ past, present and future actions. The outcome of

the decision process of all players induces a certain welfare level at each single

decision-maker. This welfare level reflects a preference relation of the possible

outcomes of the process and can be different for each individual decision-maker.
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Game theory is used in several fields to analyse strategic interaction, such as real

games, economy, politics or telecommunication. An example of a real game that

can be analysed with game theory is the game chess. Here, a player’s move heavily

depends on what her opponent did last and what the player expects her to do in the

sequel of the game. Many findings in game theory are due to analyses of economic

problems. The market entry game, for instance, studies the following situation:

Someone deliberates opening a new store in a certain area. However, in this area

there already exists an equivalent established store. Whether or not the new store

will open depends on the established store’s past and expected future behaviour

towards the opening of a new store. In politics, the behaviour of politicians towards

each other can be investigated with the help of game theory. Which specific stances

politicians take up depends on their opponents’ expected actions and hence yields

in a situation of strategic interaction. Finally, in telecommunication there are several

topics that are applicable for game theory. During spectrum auctions bidders decide

about their bids not only taking into account their own limit but also the other

bidders’ expected actions. The decision about a route in a network is also marked

by conflicting demands that are predestined to be analysed with game theory.

There exist two methodologies in game theory: non-cooperative and cooperative

game theory. Non-cooperative game theory is well established. Much research has

been done in this area and several books provide a thorough introduction to this

field, such as [24, 26, 31, 52, 54, 55]. Non-cooperative game theory considers the

individual players with their possible actions and strategies. Each player decides

about her actions depending on her individual expected payoff. On the other

hand, there is cooperative game theory. The literature corpus is much smaller, still

there are several books that introduce this topic in a well-defined manner, such

as [17, 54, 55, 67]. Cooperative game theory considers coalitions of players, rather

than focussing on the individual players. The outcome in a cooperative game is not

the combination of actions of the players but the coalition that is formed and its

corresponding payoff. Cooperative game theory is often referred to as payoff-driven

[67]. Since the specific actions of the players is not relevant to analyse a cooperative

game, it is even applicable for situations in which those actions are unknown [55].
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In this work, we consider how the fixed beacon slot order affects the fairness

of the resource allocation. We introduce an algorithm that relaxes the reservation

and thus, induces strategic interaction between the nodes in the network, which

makes it applicable for a game-theoretic analysis. In this analysis, we show that the

algorithm drives the game to an outcome with a fair allocation. Players are assumed

to maximize their own utility, thus, the tools of non-cooperative game theory are

more applicable to analyse this scenario than the tools of cooperative game theory.

In the following sections, we introduce non-cooperative game theory and explain

the game structure itself as well as solution concepts available for different game

types. Non-cooperative game theory provides a mathematical framework to analyse

strategic interaction between individual players. Hence, when establishing a game,

one has to answer the following questions [51]: Who are the players? What actions

are available to them? What are the players’ objectives? Does the game have an

equilibrium? If yes, is it unique? Is there a dynamic process for players to update

their strategies according to the course of the game? If yes, what is it and does it

converge to some equilibrium?

In order to be able to answer those questions, this section formally explains the

structure of non-cooperative games and introduces relevant terms when describing

those games. The underlying assumptions are discussed and classification options

of games are presented. Additionally, we illustrate different solution concepts and

give metrics to evaluate available solutions.

2.3.1 Definitions and terminology

In the subsequent section, we use bold letters for sets and corresponding non-bold

letters representing their respective cardinalities. A non-cooperative game Γ has at

least the following three elements: a finite set of players N, an action space Ai and a

utility or payoff function ui for each player i. The players in the games considered

in this work are the nodes in the network. The action space Ai contains all feasible

actions player i can carry out. A particular action of player i is denoted by ai. Hence,
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a = (ai)i∈N refers to the action profile of all players and A = ×i∈NAi is the set of all

action profiles. The actions of all players except player i are usually denoted by a−i.

The action profile that is effectively played is called the outcome of the game.

Each player i is assumed to rank the different outcomes according to her own and

personal preference. This preference relation for player i is represented by her

utility or payoff function ui. The value of this function for a certain outcome ui(a) is

called player i’s payoff of outcome of a. Which action player i decides to play in a

game depends on her strategy si. A strategy is a complete plan of actions for every

possible situation in the game. Here, complete means that a strategy also covers

situations that never arise.

There are some basic assumptions that often underlie game theory. One is that

players are rational and act strategically. The rationality assumption is a model

of the players’ individual behaviour. It presumes that players know all of their

own possible alternative actions, i.e., player i is aware of her entire action space Ai.

Besides her own action space, there is other information that can be available to a

player. This information includes the other players’ payoffs, for instance. If they

have no knowledge in this vein, the rationality assumption presumes that they have

expectations about such unknowns. Another important feature of the rationality

assumption is that each player has a proper preference relation between any two

possible outcomes. This relation has to be unambiguous and is reflected in the

utility function. Players are assumed to be payoff maximizers, which does not imply

that players have to be selfish. The payoff a player receives from a certain outcome

is not necessarily monetary. It represents a player’s rating of a potential outcome

and can also be altruistic depending on the player’s personal type.

A player’s strategy is defined as a complete plan of actions. With players being

payoff maximizers, they are supposed to find the specific strategy that maximizes

their expected payoff in all situations. The assumption that they act rationally and

strategically requires that they are always able to find this optimal strategy and

never make mistakes. This assumption is not very realistic, since real life games are

usually complex with many possible actions or players or many external unknowns.

Hence, players are often unable or not willing to calculate every possible payoff and
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Figure 3: Example for a strategic game. Player 1 has the options T(op) and B(ottom), player 2

the options L(eft) and R(ight). The maximum payoffs a player can achieve given
her opponent’s actions are encircled. For instance, given player 1 plays T, the
maximum player 2 can get is a payoff of 4, if she plays R.

strategy. Therefore, they might not find the optimal strategy. Despite this lack of

realism, rationality is a very common assumption.

Another prevailing assumption is common knowledge about certain aspects of

the game, e.g. the structure of the game, payoffs and possible actions. Assume,

for instance, that all players know the structure of the game. Common knowledge

requires that every player knows that all other players know the structure of the

game. Further it means that all players know that all players know that all players

know the structure of the game and ad infinitum. In many game-theoretic analyses,

perfect recall is assumed. With perfect recall players are able to remember all

previous moves. For complex or long games, this is also a less realistic assumption,

since players are likely to forget at least some of what happened before.

After the explanation of the underlying assumptions and the ingredients of a

game, the following paragraphs describe classification options. So games can be

divided into strategic and extensive games. Figure 3 gives an example for a game in

strategic form. This game has two players. Player 1’s available actions are T(op) and

B(ottom), player 2’s action space contains L(eft) and R(ight). The first number in

a cell is player 1’s payoff for the corresponding strategy profile, the second one is

player 2’s payoff. If player 2 plays L(eft), the best response for player 1 is to play

T(op), since a payoff of 2 is larger than 0, which she would get with B(ottom). If

player 2 plays R(ight), the action B(ottom) is best. Hence, the optimal strategy for

player 1 is to play T(op), if player 2 plays L(eft), and B(ottom), if she plays R(ight).

The payoffs for the optimal strategies are encircled in Figure 3.
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Figure 4: Example for an extensive game. Player 1 has the options T(op) and B(ottom),
subsequently, player 2 chooses between L(eft) and R(ight). Best responses are
indicated by a thick branch.

Games in strategic form represent simultaneous play. Simultaneity is not restricted

to its temporal meaning. Situations in which the chosen action is not revealed to the

opponent before she makes her own decision can also be represented by a game

in strategic form. When a player makes her decision, she has to take into account

her belief about what her opponent will do and vice versa. Thus, a strategic game

results in a circular situation with players guessing about each other’s moves.

Extensive games, on the other hand, usually illustrate sequential play. They are

depicted as trees such as the example in Figure 4. Decision trees contain decision

nodes, at which one of the players decides about her next move and branches

that prescribe possible courses of the game. An extensive game ends in terminal

nodes. The game depicted here has again two players with the alternative actions

T(op)/B(ottom) and L(eft)/R(ight), respectively. First to choose is player 1. Once

she has decided to play either T(op) or B(ottom), player 2 chooses between L(eft)

and R(ight). The payoffs are specified at the terminal nodes.

In strategic games, players thought in a circle taking into account their beliefs

about the other players’ actions. In extensive games, players are confronted with a

look-ahead situation. Players that move first have to consider what the subsequent

players will do in response, i.e., what the future consequences will be. So we can

illustrate the order of the players, their options and what they know at each moment

in the game about the past actions. If players are assumed to observe all previous

moves, i.e., they always know at which point in the decision tree they reside, this

game is denoted as one with perfect information. In case any information about a

player’s move is hidden from any other player, beliefs have to be formed, which is
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then considered to be a game with imperfect information. In contrast, incomplete

information relates to an asymmetric distribution of information about the rules of

the game. Here, some players have private information, e.g. about their types or

personal payoffs. The type of a player refers to her characteristics, e.g. an aggressive

or a compliant player. Those games of incomplete information, however, can be

reformulated as games with imperfect information according to Harsanyi [34].

The family of such games are called Bayesian extensive games with observable

actions. In those games, players know every move their opponents have ever made.

However, they cannot observe the initial move that is made by nature. This initial

move determines which type the players are. Players do not reveal this information,

thus, each player has private information about the payoffs she receives. Formally,

this game type is written as [55]:

Definition 2.1 The tuple 〈Γ, (Θi), (pi), (ui)〉 denotes a Bayesian extensive game with

observable action, where

• Γ is an N-player extensive game with perfect information and simultaneous

moves

and for each player i ∈ N

• Θi is a finite set of possible types θi of player i,

• pi(θi) is a probability measure on Θi that represents the probability that player i

is selected to be of type θi. The measures pi are stochastically independent

and positive for all θi ∈ Θi and

• ui(θ, h) is the payoff player i receives, if she is of type θ and the history of the

game Γ is given as h.

The history h contains all actions prior to the current stage. Let the action profile

at stage k be denoted by ak. It describes all players’ actions at stage k. The history of

the game at stage k is then given by hk and contains all actions prior to stage k, so

hk ≡ (a1, a2, . . . , ak−1), with h1 ≡ ∅ the history at the start of the game.

A third option to classify games is their number of interactions. We distinguish

between static and dynamic games. In static games, the game is played once, while
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in dynamic games, players repeatedly interact with each other. Thus, in dynamic

games, an ongoing relationship between players can be established. This relationship

can lead to a climate in which it is possible that cooperation, punishments and

rewards or the development of learning behaviour arise.

In dynamic games, we further differentiate games by how much their players

value future payoffs. Myopic players only consider the payoff in the current stage. In

their decision process, expected future payoffs do not have any value for them. On

the contrary, long-sighted players take into account expected future payoffs when

they decide about their current action. Generally, future payoffs are discounted by a

discount factor δ in order to reflect how much influence future payoffs have.

In this section, we introduced the main ingredients of a game and presented

different means to classify games. The next section covers solution concepts for

different game types.

2.3.2 Solution concepts

When analysing a game, the goal is to study the stability of the possible outcomes

in order to determine the equilibria of the game. When an equilibrium has been

identified, it has to be shown whether or not it is unique. In the next section, we

further elaborate the evaluation of those equilibria.

The most common stability measures are Nash Equilibria. In a Nash Equilibrium

each player’s strategy is a mutual best response to the strategies that are played

by her opponents. Assume S∗ to be the Nash Equilibrium of the game. Therefore,

player i has no incentive to deviate from strategy s∗i , since there is no other strategy

si that increases her utility. Formally, it can be written as:

Definition 2.2 (Nash Equilibrium) A strategy profile S∗ is a Nash Equilibrium [31]

if, for all players i,

ui(s
∗
i , S∗−i) ≥ ui(si, S∗−i) for all si ∈ Si.
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Recall the example in Figure 3. The circles indicated the players’ best responses

to their opponents’ actions. In the action profile (B, R), both players play a best

response to each other, hence this profile marks a Nash Equilibrium.

In sequential plays with perfect information, backward induction is a common

way to identify credible Nash Equilibria. The player that moves first, guesses what

her opponent will do afterwards before deciding about her own move. Consider the

example in Figure 4 again. Here, player 1 identifies player 2’s optimal moves before

determining her best response to them. In the case player 1 played T, player 2 will

play R. If she played B, player 2 will respond with R. Knowing that, player 1 decides

between the action profile (T, R) and (B, R). Hence, she chooses to play B, because

the utility she gains from (B, R) is larger than the one she gains from playing (T, R).

For a game with imperfect information, backward induction is not applicable

because players cannot forecast precisely their opponents’ behaviour. In these games,

the concept of a subgame-perfect equilibrium has been established to determine

credible equilibria. To define a subgame-perfect equilibrium, we first provide the

definition of a proper subgame.

Definition 2.3 (Proper Subgame) A proper subgame G [31] of an extensive-form

game T consists of a single node and all its successors in game T, with the property

that if nodes x′ ∈ G and x′′ ∈ h(x′) then x′′ ∈ G. The information sets and payoffs

are inherited from the original game.

So a subgame is a subset of a game in extensive form. A subgame-perfect

equilibrium then generates a Nash Equilibrium in each of those subgames if they

are individually analysed.

Definition 2.4 (Subgame-perfect (Nash) equilibrium) A strategy profile S is a sub-

game-perfect equilibrium (SPE) [25] of a finite extensive-form game if it induces a

Nash Equilibrium in each proper subgame of the original game.

With the concept of a subgame-perfect equilibrium, we are able to determine

credible behaviour in games with imperfect information. A Nash Equilibrium that

is not subgame-perfect is not a reasonable equilibrium, since it poses an incredible
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threat. For Bayesian extensive games with observable action the equivalent of a

Nash Equilibrium is called a Bayesian Nash Equilibrium and is defined as:

Definition 2.5 (Bayesian Nash Equilibrium) A Bayesian Nash Equilibrium (BNE)

in a game of incomplete information with a finite number of types θi for each

player i, prior distribution p, and pure-strategy spaces Si is a Nash Equilibrium of

the “expanded game” in which each player i’s space of pure strategies is the set SΘi
i

of maps from Θi to Si [31].

Thus, a Bayesian Nash Equilibrium is a consistency check and requires players

to play their best responses given their beliefs about the distribution of types of

the other players. In dynamic games, we make use of the solution concept Perfect

Bayesian Nash Equilibrium that combines the ideas of subgame perfection, Bayesian

Nash Equilibrium and Bayesian inference. So strategies have to generate a Bayesian

Nash Equilibrium in every “continuation game” [31]. Such an equilibrium consists

of two elements. First is the behavioural strategy σi(θi), i.e., the strategy of player i

given that she is of type θi. Second is the probability measure on Θi denoted as

µi(h). It refers to the common belief of the players except player i about player i’s

type after the history h of the game. The equilibrium is formally defined as:

Definition 2.6 (Perfect Bayesian Nash Equilibrium) Consider a Bayesian extensive

game with observable actions be given by the tuple 〈Γ, (Θi), (pi), (ui)〉. A pair

((σi), (µi)) is a Perfect Bayesian Nash Equilibrium (PBE) of the game [55] if the

following conditions are met:

• sequential rationality: the strategy σi(θi) of each θi of each player i has to

induce an optimal outcome for θi in the subsequent play for any information

set of the game

• correct initial beliefs: µi(∅) = pi for each i ∈ N

• action-determined beliefs: players’ belief about player i is influenced only by

player i’s action
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• Bayesian updating: if player i’s action at h is consistent with µi(h), the new

belief is derived by Bayes’ rule from player i’s action, i.e.,

µi(h, a)(θ′i) =
σi(θ

′
i)(h)(ai) · µi(h)(θ

′
i)

∑θi∈Θi
σi(θi)(h)(ai) · µi(h)(θi)

,

until the player’s behaviour contradicts her strategy, which leads to a new

conjecture about her type.

In this section, we provided the solution concepts for both simultaneous and

extensive-form games. Furthermore, we introduced the concept of a Perfect Bayesian

Nash Equilibrium for dynamic games with imperfect information. In the next

section, we cover the evaluation of the equilibria that have been identified.

2.3.3 Means to evaluate an equilibrium

When evaluating an identified equilibrium, the goal is to study its properties. The

properties that we focus on in this thesis are Pareto-optimality, social-optimality

and different measures of fairness. To evaluate the goodness of a Nash Equilibrium,

we use the notion of Pareto-optimality as defined in [52].

Definition 2.7 (Pareto-optimality) A Nash Equilibrium S∗ is Pareto-optimal, if

there is no other strategy profile S such that ui(S) ≥ ui(S
∗) for all players i and

ui(S) > ui(S
∗) for some player i.

This means that in a Pareto-optimal Nash Equilibrium there is no strategy pro-

file S that increases one player’s payoff without decreasing another player’s payoff.

Besides Pareto-optimality, a desirable Nash Equilibrium is also socially-optimal [26].

Definition 2.8 (Social-optimality) A Nash Equilibrium S∗ is socially-optimal, if

there is no other strategy profile S such that ∑i∈N ui(S) > ∑i∈N ui(S
∗).

In a socially-optimal Nash Equilibrium, society’s welfare which is defined as the

sum of the utilities of all players in the game cannot be increased. Therefore, any

socially-optimal Nash Equilibrium has to be Pareto-optimal but not vice-versa. A
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third way to evaluate a Nash Equilibrium regards its fairness. There are several

definitions of fairness. Bertsekas and Gallager describe the term max-min fairness

[16]. If we apply it on the utilities of players of a game, it can be defined as:

Definition 2.9 (Max-min Fairness) A feasible distribution of utilities u is max-min

fair, if and only if an increase of player i’s utility within the domain of feasible

utilities must be at the cost of a decrease of some player j’s already smaller utility.

Formally, for any other feasible u′, if u′i > ui then there must exist some player j

such that uj ≤ ui and u′j < uj. According to [18], if a solution exists, it is unique.

While max-min fairness favours smaller utilities, the concept of proportional

fairness [39] characterizes a resource allocation, which is inversely proportional to

the players’ requests.

Definition 2.10 (Proportional fairness) A feasible distribution of utilities u is pro-

portionally fair, if and only if for any other feasible utility u′ the aggregate of

proportional changes is zero or negative, i.e.,

∑
i∈N

u′i − ui

ui
≤ 0, for all u′. (4)

The fairness definitions so far only provided a binary decision about the fairness,

i.e., an allocation is either considered as fair or not. Remember that Jain et al. [38]

provided a fairness index that is continuous in the interval [0, 1]. If we map the

index introduced in (2) to utilities, we obtain:

Definition 2.11 (Jain’s fairness index) The fairness index defined by Jain et al. [38]

of the utility profile u is given as:

f (u) =
[∑N

i=1 ui]
2

N ∑
N
i=1 u2

i

, with ui ≥ 0, f (u) ∈ [0, 1], (5)

with ui player i’s utility and N the number of nodes in the network. Larger values

of f (u) indicate better fairness.

In this section, we gave a brief introduction into non-cooperative game theory. We

described the main elements of a game and gave a classification of games. Moreover,
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we explained solution concepts for the different game types and provided means to

evaluate the equilibria of a game.

2.4 related work on non-cooperative game theory

In this section, we review papers that apply game-theoretic tools on communication

network problems. The works discussed determine the equilibria of the games,

consider games with imperfect information and further deliver an insight into

various methods on how to design a game in order to guarantee that it converges to

a particular equilibrium. We also include a description of the chain store paradox,

which is closely linked to the game model applied in this thesis.

Game theory is a means to analyse strategic interaction between decision-makers.

It provides mathematical tools to analyse the possible and likely behaviour of

those decision-makers. An important result of a game-theoretic analysis is the

determination of the equilibrium outcomes. In [28, 29], for instance, a multi-radio

multi-channel problem is modelled as a game with a finite number of selfish players

that individually attempt to maximize their total bitrate. In [20, 37], the authors

present mathematical analyses of random access games and determine their Nash

Equilibria. Besides the determination of the Nash Equilibria of a game, it is also

important to evaluate their properties. In [28, 29], the authors show which Nash

Equilibria are max-min fair according to Definition 2.9 and which are also coalition-

proof according to the definition in [15].

Very often games offer several Nash Equilibria. When considering their properties,

however, those Nash Equilibria are usually not the same, i.e., some might be more

preferable than others. Therefore, there is a need to introduce algorithms as rules of

the games to drive the game to the desired Nash Equilibrium. In [20, 28, 29], the

authors present algorithms so that the game converges to a certain Nash Equilibrium

and analyse the convergence time as well as the influence of the number of players.

The random access game in [37] further includes an analysis of the game asymptotic

behaviour as the number of players approaches infinity.
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Many findings in game theory are due to analyses of economic situations. In [61],

Selten presents an extensive form game that reveals an inconsistency between game

theory and plausible human behaviour. He explains this paradox with the limited

rationality of human behaviour, while game theory usually assumes rationality. In

his work, Selten discusses two versions of a market game. The first version is closely

connected to the game model of this thesis and thus explained in the following.

There is one incumbent that holds stores in m markets. In each of those m markets,

there is one possible entrant. In the first period of the game, the possible entrant in

market 1 decides whether or not to enter. If she enters, it is the incumbent’s turn

and she has to decide whether or not to fight the entrant. The utility functions are

set in such a way that both players lose, if there is a fight. However, if there is no

fight, the entrant gains and the incumbent is neutral. In the second period of the

game, the possible entrant in market 2 decides about her entrance, followed by the

incumbent’s reaction assuming the same utility functions as in market 1. The same

procedure applies for all subsequent markets.

To analyse this game, we apply backward induction, thus, we start the analysis

in the last period. In this last market, the incumbent maximizes her utility, if she

does not fight. Knowing this, the possible entrant in the last market, enters. In the

second-last market, there is no reason for the incumbent to fight entry, because she

loses in the current market and it does not deter entry in the last market. Hence,

the incumbent does best, if she does not fight in the second-last market. Thus, the

possible entrant in the second-last market enters. If we follow induction theory, all

potential entrants should and will enter and the incumbent should and will never

fight. Intuitively, however, an incumbent would attempt to deter entry by fighting.

This constitutes the paradox [61].

In the game that Selten presents, markets are totally independent of each other. In

real life, however, the lack of rationality in humans leads to a linkage of markets. In

[44, 53], the authors connect the behaviour in the originally independent markets by

means of imperfect information. They show that the cost of predation in the short-

run, i.e., losing due to fighting, is worthwhile considering the reputation effect and

hence the expected gain in subsequent periods. Thus, predation becomes rational, if
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it deters entry. Fundamental in applying this is asymmetric information. Players

in this game with imperfect information maintain a belief about their opponents’

types. This belief reflects a player’s estimate whether or not her opponent behaves

rationally. If an entrant plays against a rational incumbent, she gains if she enters.

If she plays against an irrational incumbent, however, she loses, if she enters. Thus,

her decision highly depends on her estimate about the incumbent’s type.

Recall that in static games with imperfect information, the equivalent to a Nash

Equilibrium is a Bayesian Nash Equilibrium. The equilibrium in the corresponding

dynamic game is referred to as a Perfect Bayesian Nash Equilibrium. In [21, 46],

the authors model the other players’ channel gains as the Bayesian components of

an imperfect random access game and determine the equilibria both for the static

and the corresponding dynamic games. In such an equilibrium, beliefs have to be

consistent with the outcome of the game and players have to play a best response

given their equilibrium beliefs. The direct determination of these equilibrium beliefs

is a tedious task. In dynamic games, however, in which the static game is repeatedly

played, players have the opportunity to gather information about their opponents,

deduce conjectures about their behaviour and update their beliefs accordingly.

An example provides [63], where the authors introduce a bio-inspired learning

algorithm to encourage cooperation in a random access game.

The current section provided a brief introduction to Selten’s chain store paradox

[61] and the extensions of his game that provide for the imperfection of human

behaviour [44, 53]. In this thesis, we similarly model the considered protocol with

a relaxed reservation algorithm as a Bayesian game. As in [44], we consider two-

sighted uncertainty, i.e., neither the incumbent nor the entrants are aware of their

opponent’s type. We consider, however, a single entrant repeatedly meeting the

same entrant in different markets. The additional papers that have been presented

in this section, give an impression of how game theory has been applied to analyse

communication networks.





3
P R O B L E M S TAT E M E N T

In the previous chapter, we reviewed related work on the analysis of ECMA-368.

We have observed that there is little research that explicitly considers fairness. In

this chapter, we describe and summarize the research questions that are addressed

in this work, which cover the aspect of fairness in a distributed reservation protocol.

The literature review revealed the lack of fairness analyses of the distributed

reservation protocol specified in ECMA-368. The analyses in [6, 7] determined the

fairness depending on traffic type and access method. However, the authors did

not consider the fairness perceived by the individual nodes. Fairness, however,

should not only include the overall system fairness, but extend to an analysis of the

individual nodes’ gain in the system. Thus, we pose the following questions:

Is there a fairness issue inherent in the distributed reservation protocol specified

in ECMA-368? How is this fairness issue reflected in the fairness perceived by

the individual nodes? Which parameters of the distributed reservation protocol

influence the fairness? How does the fairness depend on the size of the network?

The ECMA-368 divides time into superframes of fixed length. Each superframe

starts with a beacon phase, followed by a phase for data transmission. When nodes

join a network, they first have to identify the beacon phase and attempt to place a

beacon in an available beacon slot. Once they have attained a beacon slot, they have

successfully joined the network and keep this beacon slot for the entire time that they

are affiliated with the network. It emerges that the fixed order in the beacon phase

discriminates nodes that transmit in later beacon slots. In [40], the authors aim at

achieving fairness in the distributed reservation protocol of ECMA-368. Nodes are

requested to publish flow information in their beacons. Based on this information,

nodes then distributively determine a global satisfaction level and resources are
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allocated such that all nodes in the network achieve this level. Hence, some nodes

voluntarily refrain from slots, so that other nodes also achieve the satisfaction level.

However, nodes are not necessarily altruistic, thus we require a method that does

not rely on good behaviour of nodes. Consider, for instance, a network that is

operated with nodes designed by different vendors. If a node is constructed to be

selfish and thus, gains a larger share of resources, it might be more attractive for

potential customers. So vendors could have an economic incentive to design selfish

nodes rather than altruistic ones. Thus, the algorithm that redistributes resources

has to be robust against such selfish behaviour.

Further, we differentiate fairness regarding the time span it corresponds to. Long-

term fairness is achieved, if the system converges to a fair allocation of resources

after a long time. Short-term fairness is an even stronger property, which requires

the system to be fair for smaller time intervals. Especially for flows that require low

latency such as real-time applications, short-time fairness is an essential quality of

service property [13]. So we pose the following questions:

How does a round-robin beaconing scheme perform regarding fairness? How

does a randomization of the beacon phase influence the fairness? Can short-

term fairness be achieved for any of those flexible beaconing schemes? Alterna-

tively, does a relaxation of the reservation method achieve short-term fairness?

For this relaxed reservation method, what are the parameters that influence the

fairness? What are the parameters that influence the convergence time?

The distributed reservation protocol, especially when considering a relaxation

of the reservation method, constitutes a situation with strategic interaction. Thus,

game theory provides tools to determine the outcomes, i.e., the resource allocation

in the equilibrium, which can then be evaluated regarding its fairness.



4
FA I R N E S S A N A LY S I S O F

E C M A - 3 6 8 A N D B E A C O N I N G A LT E R N AT I V E S

In this chapter, we study the distributed reservation-based medium access specified

in ECMA-368 [1] in order to identify the capacity and capabilities of the standard as

well as its fundamental limitations. Recall that the ECMA-368 MAC architecture is

fully distributed, so there is no central coordinator. Instead, it uses a distributed

beaconing system to coordinate the medium access. Those beacons are used in

order to perform device discovery, support dynamic network organisation and

mobility. During the beacon phase stations announce time slots they intend to use

during the data transfer phase. Since the beacon order in the beacon phase is fixed,

this announcement is organised in a first-come, first-served manner. Contention

only occurs when nodes join the network and compete for a beacon slot using

Reservation-ALOHA. The first-come, first-served reservation mechanism in the

beacon phase implies that nodes have to cope with the channel time that remains

after prior nodes have placed their reservations.

We show in this chapter that this may end up in a situation where nodes are

not able to reserve as much channel time as they require. In the worst case they

may not be able to reserve any time at all. So we highlight the influence of the

first-come, first-served reservation method on the arising unfairness, in which

nodes may even starve. First, we present the protocol model that we found our

analysis on. It includes the assumptions we make as well as an illustration of

the different set of rules regarding a node’s reservation. By evaluating different

set of rules we identify the influence of the particular rules that ECMA-368 poses

on the reservation process. Furthermore, we introduce the system model of the

numerical analysis. For this model, we explain how we map a node’s requirement of

a certain data rate on a reservation. Since we assume a Poisson model for the frame
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arrival process, the domain of definition is infinite. Thus, we provide a cardinality

analysis to reduce the probability space. Finally, we present the numerical analysis

that determines throughput, delay and fairness of ECMA-368. The results of this

fairness analysis have been previously published in [11]. We conclude this chapter

considering beaconing alternatives such as randomizing the beacon slot order and

the introduction of a round-robin mechanism in the beacon phase.

4.1 protocol model

In this section, we describe the assumptions we make regarding the offered traffic as

well as the channel. We also explain the policy sets that are evaluated in this work.

In our analysis, we assume an error-free channel. Hence, no frames are lost due

to channel conditions. If we relaxed this assumption, we would also have to account

for retransmitted frames. This would worsen the unfairness, since privileged nodes

would have to reserve even more channel time in order to account for their possible

retransmissions. This would leave even less channel time for subsequent nodes.

We further assume a Poisson model for the frame arrival process. The analysis,

however, is easily stretched to any other distribution by remodelling the according

probabilities. The problem of unfairness that we illustrate in this chapter, though,

will remain.

Recall that in Section 2.1, we stated that we focus on safe reservation. We presume

that nodes prefer predictable and guaranteed channel access, so safe reservations

that do not have to be released on request are justified. We assume nodes to only

reserve for already arrived frames, thus, we do not have to include an algorithm

that predicts the traffic. This further induces that no waste of channel time occurs.

However, this assumption induces an additional delay. Frames that become ready

for transmission during a reservation block have to wait for the next reservation

block because there will not be enough time in the current block.

Furthermore, for analytical convenience, we presume that the reservation nego-

tiation process has already taken place. By this, we focus on the reservation and

its impact on the slot allocation. The first node in the beacon phase publishes her
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reservation in her beacon and subsequent nodes place their reservations for the

remaining time of the superframe. Finally, we focus on a single superframe, so

we assume that frames, which cannot be transmitted in the current superframe

are dropped at its end. Remember that ECMA-368 has been designed for high-

rate scenarios. If we consider real-time applications, information quickly loses its

importance, if it is delayed. The assumptions explained cause reservations in a

superframe to be independent of previous superframes. Thus, we do not have to

consider queueing effects but are only influenced by the frame arrival rate. Due to

limited channel time a gap might arise between the number of slots a node requires

to reserve and the amount it is able to reserve.

As described in Section 2.1, ECMA-368 imposes several policies regarding the

reservation of channel time in the data transfer phase. Since the consideration of

all policies is complex to implement in real systems, we analyse different sets of

policies to evaluate their impact on fairness. By this, we determine situations in

which a policy subset sufficiently approximates the true result. We classify policies

into those that relate to the amount of slots, which we refer to as rules, and those

that relate to the location of slots in the data transfer phase, which we call strategies.

Reservation rules per node:

• Basic: A node is limited to 112 slots per superframe and 8 slots per zone.

• Full: A node is limited to 112 slots per superframe. The maximum number

of slots per zone depends on the index of the first reserved slot according to

Table 1 in Section 2.1.

Reservation strategies per node:

• First-Fit (FF): Nodes fill the superframe from the beginning, i.e., they choose

zones with indices as low as possible.

• Min-Fit (MF): Nodes choose zones with the largest number of empty slots and

apply FF on those. By this, they minimize the number of zones they require.

• Policy-Fit (PF): Nodes choose zones in the order of the isozones and apply FF

on those.
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Figure 5: System model that relates the distribution of the number of required slots to the
actually reserved slots. The output considers both the distribution of the amount
of slots and the reserved slot indices for a network with N nodes.

In this section, we presented the protocol model that we analyse in the remaining

sections. We justified the assumptions and introduced the different policy sets that

we consider in our fairness analysis. In the next section, we address the system

model, i.e., we explain how we do the analysis.

4.2 system model

In this section, we describe our system model. First, we specify the notation of the

input and output signals of our system, which are the distributions of the required

reservations and the actually generated reservations, respectively. Then we illustrate

how each input signal is generated from the frame arrival rate, which is assumed to

follow a Poisson distribution.

The allocation process is depicted in Figure 5. In the following, we use bold letters

for random variables and bold capital letters for vectors of random variables. The ith

input signal xi is a random variable that represents the number of slots that node i

requires to support her application. The order of nodes in this model is given by

their order in the beacon phase, i.e., without loss of generality node i transmits in

the ith beacon slot. Any restrictions imposed by the environment, e.g. the amount

of slots that is reserved for the beacon phase, are comprised in the input signal e.

The output signal yi is a random variable that contains a vector of the reserved

slots given by their indices as well as the sum of the reserved slots of node i, with

yi = g(xi, y1, . . . , yi−1). Note that node i’s slot allocation yi does not only depend

on her own request xi, but also on all reservations yk that have been previously

announced, for 1 ≤ k < i.
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Consider xi to be a sample of the random variable xi. Then every ordered input

N-tuple X = (x1, x2, . . . , xN) is a possible realization of requests of all nodes. So for

each of these ordered input N-tuples X, we calculate the corresponding ordered

output N-tuple Y = (y1, y2, . . . , yN) that considers the rules that are imposed by

ECMA-368 as well as the limited channel time. We assume that the frame arrival

process is given by a Poisson model. From this, we can determine the distribution

of the required slots. Knowing the probability of each ordered input N-tuple X, we

obtain the output signals yi, for i ∈ [1, N], by weighting the output N-tuple Y with

the probability of the corresponding input N-tuples.

In the subsequent paragraphs, we relate the mean number of slots that a node

requires to support her application, i.e., λslots, to the frame arrival rate λ of her

application. For our analysis, we exclude the possibility to transmit across slot

borders. Thus, if a frame cannot be transmitted within the remaining time of a time

slot, we assume it to be entirely transmitted in the next time slot. This denotes a

worst-case situation. The number of frames mslot that can be transmitted in a single

time slot is given by (6):

mslot =

⌊

Tslot
l
R + T

⌋

=

⌊

Tslot · R

l + T · R

⌋

, (6)

with Tslot the slot length, R the bit rate used for the transmission, l the frame length

and T any additional time that is necessary to transmit a frame, e.g. time required

for acknowledgements.

Assume that a node’s application has generated xSF frames in the current su-

perframe. Then, she requires exactly k slots to support her application, if it holds

that xSF ∈ [(k− 1)mslot + 1, kmslot]. To determine the probability distribution of the

required slots, let qxSF be the probability of xSF generated frames in a superframe.

Then the probability that a node requests k slots is given by (7):

PλSF(X = k slots) =























q0, for k = 0

kmslot

∑
xSF=(k−1)mslot+1

qxSF , for k > 0
(7)
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Figure 6: Probability distribution for λ = 1500 frames
s . With mslots = 3, the corresponding

average number of required slots is given by λslots = 33 slots
SF . The figure depicts

a general Poisson distribution with λ = λslots and the actual distribution given
by (7) denoted as stretched Poisson. For large values of λslots, the latter can be
approximated by a normal distribution.

A frame arrival rate λ implies that on average λSF = λTSF frames arrive during a

superframe of length TSF. Hence, the average number of slots required is given by

λslots =
⌈

λSF
mslot

⌉

=
⌈

λTSF
mslot

⌉

. Assume for instance that a node’s application generates

frames at an average rate of λ = 1500 frames
s . To determine the corresponding λslots,

we previously calculate the number of frames that can be transmitted in a single

slot mslots. Recall that the slot length in ECMA-368 is given as Tslot = 256 µs. In

an unacknowledged transmission, the standard further defines T = 1.875 µs. If we

assume a transmission rate of R = 53.3 Mbit/s and a frame length of l = 500 byte,

then mslot is given as:

mslot =

⌊

256 · 10−6 · 53.3 · 106

500 · 8 + 1.875 · 10−6 · 53.3 · 106

⌋

= 3. (8)

So with TSF = 65536 µs, the node requires an average number of slots given

by λslots = 33 slots
SF to support her application. Figure 6 depicts a general Poisson

distribution with λ = λslots as well as the stretched Poisson distribution determined

by (7). We observe that PλSF can be approximated for large values by a normal

distribution with µ = λslots and σ2 = λslots
mslot

.

In this section, we introduced the system model including the notation. We

further explained the relation between the frame arrival rate and the number of
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slots a node requires in order to cope with this frame arrival rate. Since the support

of the Poisson distribution is [0, ∞), in the next section, we introduce a means to

reduce the permutation space.

4.3 cardinality of numerical analysis

In the previous section, we assumed that the frame arrival rate λ follows a Poisson

distribution, which is defined in the interval [0, ∞). Thus, the corresponding

stretched Poisson distribution of the required number of slots with parameter λslots

is also defined in the interval [0, ∞). So generally, each node i could require any

positive number of slots xi ∈ [0, ∞). In this section, we reduce the cardinality of

our analysis. For this purpose, we truncate the probability distribution such that a

target probability of (1− ε) is achieved for a minimal interval ∆xi = [xi,low, xi,up],

with i ∈ [1, N]. With ε≪ 1, we therefore restrict our analysis to the N-tuples within

this interval at the cost of introducing a known error.

Our scenario consists of N nodes. So for each of those N nodes we have to find

the smallest interval ∆xi = [xi,low, xi,up] such that the accumulated probability of

the corresponding input N-tuples achieves the target probability of (1− ε). Let

pki
be the probability that the value of the random variable xi is equal to k, for

k = 0, 1, . . . . The corresponding cumulative distribution function is given by F(xi).

So the probability that xi is in ∆xi is given by:

F(∆xi)
∆xi=[xi,low,xi,up]

= P{xi,low ≤ xi ≤ xi,up} =
xi,up

∑
k=xi,low

pki
(9)

Recall that the probability pki
that node i requires k slots depends on the frame

arrival rate of node i’s application. We assume that nodes’ applications are not

intertwined, thus, the probabilities pki
, for all i ∈ [1, N], are independent of each

other. The probability that xi ∈ ∆xi, for all i ∈ [1, N], is then given by:

F(∆x1, . . . , ∆xN)
∆xi=[xi,low,xi,up], ∀ i∈[1,N]

=
xN,up

∑
kN=xN,low

· · ·
x1,up

∑
k1=x1,low

pk1
pk2 · · · pkN

(10)
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We assume that nodes are symmetric, thus, all nodes’ applications generate frames

at the same arrival rate λi = λ, for all i ∈ [1, N]. Subsequently, the probability of a

node to require k slots is the same for all nodes. So we can set pki
= pk and hence,

∆xi = ∆x = [xlow, xup], ∀ i ∈ [1, N]. Thus, we rewrite (10) to:

F(∆x)
∆x=[xlow,xup]

=

[

∑
∆x

pk

]N

(11)

In this section, we intend to reduce the cardinality of the analysis by considering

only those realizations that cover the target probability (1− ε). We find that we have

to determine the lower and upper bounds xlow and xup, respectively, that comply

with (11), while minimising ∆x:

min ∆x = xup − xlow

subject to
[

∑
∆x

pk

]N

> 1− ε (12)

In the subsequent paragraphs, we briefly describe the algorithm to solve the

minimization problem of (12). We have shown in Section 4.2 that the probability

distribution of the required slots follows a stretched Poisson distribution with

parameter λslots, if the application generates frames at an arrival rate λ, whereas a

Poisson model is assumed for the frame arrival rate process. From this, we know

that the probability distribution of the required number of slots, i.e., the stretched

Poisson distribution in Figure 6, has a single maximum for x = λslots. This property

causes the subsequently proposed algorithm to be optimal.

To solve the minimization problem, we start with the maximum and set the

initial bounds to xlow = xup = λslots. As long as the target probability has not been

achieved yet, we either increment xup or decrement xlow by one depending on which

corresponding probability is higher. Note that once xlow is equal to zero, any further

step increments xup. The procedure is summarized in Algorithm 1.

In this section, we introduced a means to reduce the cardinality of our analysis.

We determined the smallest interval of the required number of slots of a node that
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Algorithm 1 Algorithm to determine the minimum interval that complies with (12).
Starting from the maximum of the probability function, probability p increased by
stepwise enlarging the interval until the target probability is accomplished.

Input: probability to require k = pλslots
slots

Input: number of nodes N
Input: target probability (1− ε)

1: probability p = pλslots

2: lower bound xlow = λslots

3: upper bound xup = λslots

4: // if target probability is not achieved yet
5: while pN

< 1− ε do

6: if xlow > 0 and pxlow−1 ≥ pxup+1 then

7: xlow ← xlow − 1
8: p← p + pxlow

9: else

10: xup ← xup + 1
11: p← p + pxup

12: end if

13: end while

covers a target probability of (1− ε) introducing a known error. In the next section,

we discuss the numerical results obtained by an exhaustive examination of all cases.

4.4 numerical results and discussion

For small values of the number of nodes N, we can solve the described problem

with an exhaustive examination of all cases at reasonable expense. According to

Knuth [41], we refer to this analysis technique as generating all combinatorial objects,

here input N-tuples X, and visiting each object. This emphasizes that we analyse

only one generated object at a time.

Large values of N, however, require different approaches such as Monte-Carlo

simulations, because the cardinality of X increases exponentially with N. We restrict

our analysis to networks with N ≤ 5, since they are sufficient to provide an insight

into the problem. For our analysis, we developed a multi-threaded distributed

Java program that implements the different sets of reservation rules and strategies.

It generates all possible combinations of slot requirements X and determines the

corresponding output N-tuples Y considering the reservation rules and strategies.

To determine the output signals y, the output N-tuples Y are weighted with their
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probability to occur. Tests have shown that for N = 5 and an error ε = 10−3 it

takes about 3.5 days to perform the calculations on a single processor. Since the

calculations for the input N-tuples are independent of each other, we can massively

parallelise them.

In our scenario, we assume a Poisson model for the frame arrival process with

parameter λ. Recall that in Section 2.1 we stated that we restrict our analysis to safe

reservations, since only they provide guaranteed and predictable channel access.

Safe reservations denote that a node’s reservation is limited to 112 slots. Thus, any

slot requirement larger than 112 slots is truncated to this limit. To evaluate whether

the consequential aggregation of probability influences the results, we perform our

analysis for frame arrival rates that correspond to an average slot requirement of

λslots ∈ [0, 120]. The first zone of a superframe, i.e., the first 16 slots, is considered

reserved for beaconing. To abstract from the chosen frame length and transmission

data rate, we present the results in terms of slots instead of data rate. Applying the

formulas in Section 4.2, though, specific results can easily be determined.

In the following paragraphs, we provide numerical results regarding the through-

put and delay of each node and evaluate the corresponding fairness indices. The

throughput is given by the average number of reserved slots. The delay is calculated

from the distribution of the nodes’ reserved slots. Jain’s fairness index as introduced

in Section 2.2 for the overall as well as the perceived fairness is applied for both the

average number of reserved slots as well as the corresponding mean delay.

The graphs in Figure 7 show the average number of reserved slots against the

average number of slots a node requires to support her application. The scenario

is depicted for 5 nodes and different sets of reservation strategies and rules. The

left graph of Figure 7 shows the Basic rule with the policy-fit reservation strategy.

Remember that the Basic rule implies that nodes are only limited by the maximum

number of slots per node and 8 slots per zone. With policy-fit, nodes have to

consider the order of the isozones when choosing a zone for their reservation.

The right figure of Figure 7 illustrates the results for the Full rule. The outer graph

depicts policy-fit, whereas the inner one shows a section of the min-fit reservation

strategy. Note that the graphs for first-fit and policy-fit are identical, so the results
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Figure 7: Reserved number of slots versus required number of slots with policy-fit-Basic
(left), policy-fit-Full (right - outer figure), min-fit-Full (right - inner figure). With
Basic (left), nodes 1 and 2 are bounded by the maximum number of slots, i.e.,
112 slots. With Full (right), node 1 is bounded by 112 slots, the other nodes by
the per-zone limitation. We further observe that node 4’s maximum number of
slots is higher for min-fit than for policy-fit (framed sections), which is due to a
more efficient channel utilisation. Note that the graph for first-fit-Full is identical
to policy-fit-Full and therefore omitted.

for policy-fit also hold for first-fit. Full refers to the rule that nodes have to account

for the per-zone restrictions given by Table 1. With min-fit, nodes choose zones that

offer the largest number of unoccupied slots. By this, nodes minimize the number of

zones required to support their applications. The overall curve in both the left and

the right figure is the sum of the nodes’ reservations, i.e., the network throughput.

If we consider the first two nodes, we observe that for Basic both nodes are only

limited by the maximum of 112 slots, which is the maximum number of slots per

node. For Full, however, this applies only for the first node. The second node’s

number of reserved slots drops due to the per-zone limitation according to Table 1.

In this case, node 3 can take advantage and increases her throughput if we compare

it to the Basic rule in Figure 7 (left). Furthermore, we see that with policy-fit-Full in

Figure 7 (right), node 4 and 5’s throughput drops, even though the channel is not

yet saturated. Node 5’s decrease with the Full rule, however, is not as steep as in

case of the Basic rule. This can also be traced back to the per-zone policy that limits

node 4’s throughput and therefore leaves more slots for node 5. If we compare the

framed section of policy-fit-Full with the inner graph that represents min-fit-Full, we

observe a relevant difference. With min-fit, node 4 gains more resources, specifically,

it is able to reserve as much as in the Basic case in Figure 7 (left). The reason is
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Figure 8: Jain’s fairness of reserved slots with policy-fit-Full and 5 nodes. The overall fairness
drops with increasing traffic load. The fairness perceived by the individual nodes
(cf. (3) in Section 2.2) differs with the node index. Nodes with low index have an
advantage over those with high index.

that with min-fit, nodes prior to node 4 choose different zones than with policy-fit,

leading to a better channel utilisation. This implies less channel time for node 5,

though, resulting in the steep decrease in the inner graph of Figure 7 (right).

Figure 8 shows Jain’s fairness index for 5 nodes against the average number of

required slots. It depicts both the overall fairness as well as the fairness perceived

by the different nodes exemplary for policy-fit-Full. Note that the value for a node’s

perceived fairness can be larger than 1 as defined in (3), which marks the favouritism

of this particular node. We observe that for low load the system achieves a fairness

of 1, which denotes the maximum achievable fairness. By the time the channel is

saturated, the overall fairness drops to about 0.6, since resources are not equally

distributed anymore. Considering the perceived fairness, we notice that the first

three nodes perceive the fairness higher than the average, while nodes 4 and 5’s

perceived fairness is below the average. The reason lies in the sharing mechanism.

While the first three nodes achieve a share beyond the fair share, nodes 4 and 5 gain

a very small share. Furthermore, we observe that the slope of the overall fairness

curve becomes less steep when the fairness of the fifth node is zero, as from there,

its share in the overall fairness does not change anymore.

We conclude for the throughput that both first-fit and policy-fit cause a drop in

the throughput of the fifth node even though the channel is not saturated, whereas

this does not happen for min-fit due to the more efficient channel utilisation. If
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we consider the fairness, all strategies achieve fairness for low load. High load,

however, decreases the overall fairness for networks with 5 nodes by 0.4 and the

perceived fairness curves diverge. We further conclude that the reservation strategy,

i.e., which zones to choose for reservation, has no significant influence on the results.

So we deduce that in high load scenarios any reservation strategy may be used.

Recall that we stated in the beginning of this section that the restriction to networks

with N ≤ 5 is sufficient to provide an insight into the fairness problem. From the

throughput results we infer that a node’s share of resources does not depend on

the number of nodes in the network, but solely on her position in the beacon phase.

Thus, an increase of the network size does not change the throughput results but

only deteriorates the fairness results. So we further conclude that even though for

high load the reservation rule, i.e., whether or not nodes’ reservations in a zone

depend on the slot indices, has a significant influence on the results, this influence

quickly becomes negligible as the network size increases.

In the remaining paragraphs of this section, we discuss the influence of the

different reservation strategies on the delay. Remember that in the beacon phase we

reserve channel time for the frames that arrived in the previous superframe. So to

focus on the impact of the reservation strategies, we define the delay of a frame as

the slot index, in which the frame has been transmitted. Equivalently, the average

delay of a node is the average of the slot indices that she used for her transmissions.

To illustrate the allocation of slots among the different nodes, consider Figure 9.

The graphs in this figure show the probability that a node reserves a particular slot

index. All figures reflect a network with 5 nodes, the Full rule, and a mean slot

requirement of λslots = 45 slots/SF as an example that well illustrates the different

reservation strategies. The first zone is reserved for beaconing, all following zones

display the same reservation pattern of 8-4-4 slots due to the Full rule.

The top figure illustrates the distribution of slot indices for the first-fit strategy.

The zones in the beginning of the superframe are shared among the first 3 nodes.

When the first node has fulfilled its request, node 4’s probability to reserve increases.

After that, node 5’s probability to reserve becomes visible. It is only at the end of

the superframe that she is able to reserve the largest part of a zone. Even though
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Figure 9: Distribution of slot indices with λslots = 45 slots/SF and different reservation
strategies: first-fit-Full (top), min-fit-Full (centre) and policy-fit-Full (bottom). The
graphs depict the probability that a node reserves a certain slot index. First-fit fills
the superframe from the start, min-fit reserves in zones with the largest number of
unoccupied slots, while policy-fit complies with the isozone order.

we notice empty slots in the range of indices 200 and higher, i.e., the channel is not

yet saturated, node 5’s throughput requirements cannot be entirely fulfilled as it

has been seen in Figure 7 already. Here, the limitations of the per-zone restrictions

become apparent in the figure.

In contrast, the min-fit strategy, which is depicted in the central figure, was able

to fulfil all requests for λslots = 45 slots/SF. The first node reserves in a first-fit

manner until she has reserved the number of slots that she requires to support

her application. The second node, however, chooses zones that have the fewest

number of reserved slots per zone. So she prefers not to reserve in zones that

node 1 has already reserved in, but in the subsequent ones, i.e., in the middle of

the superframe. Node 3’s reservation starts towards the end of the superframe

for the same reason. Since her requirements cannot be fulfilled by the remaining

empty zones, she additionally chooses zones at the beginning of the superframe.

Both nodes 4 and 5 behave comparably to the first-fit strategy, since on average the

number of remaining slots for reservations is equal for each zone.
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Figure 10: Mean slot index used by a node versus the required number of slots with policy-
fit-Full (left) and min-fit-Full (right). For low load, policy-fit has a higher but
more stable delay than min-fit. The higher the load, however, the more similar
the curves for policy-fit and min-fit become. For clarity, graphs are shown with
lines though functions are discrete.

Finally, the bottom figure shows the policy-fit strategy. Here, node 1’s reservation

probability is mainly found in the first three isozones. Nodes 2 and 3 also start their

reservations in isozones 0 to 2, but still have a significant probability to reserve in

isozone 3. Both nodes 4 and 5’s probability is spread across the superframe with an

emphasis on isozone 3. As for first-fit, we notice empty slots in the superframe.

The mean delay for policy-fit-Full and min-fit-Full and all considered traffic loads

is illustrated in Figure 10. Recall that Figure 9 showed that policy-fit evenly spreads

the reserved slot indices around the middle of the superframe. For low load, this

results in a stable and similar delay for all nodes as observed in Figure 10 (left).

Under saturated conditions, however, nodes with higher indices, e.g. nodes 4 and

5, are pushed towards the end of the superframe causing their delays to increase,

while the delay of nodes with lower indices remains stable.

The min-fit strategy, in contrast, chooses zones with the largest number of empty

slots. Except for the first node, this results in an oscillating behaviour as observed

in Figure 10 (right). To explain the oscillating behaviour for the min-fit strategy,

consider the individual nodes. The first node reserves in a first-fit manner, so her

mean delay linearly increases with the required number of slots. The second node

chooses zones that provide the largest number of available slots. For low load, the

last zones of the superframe are not yet occupied, hence, she chooses those slots and

her delay increases with the traffic load. For higher load, however, the empty zones
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Figure 11: Jain’s fairness considering the allocation of slot indices with policy-fit-Full (left)
and first-fit-Full (right) and 5 nodes. For low load and policy-fit-Full, the system is
fair. High load leads to a slight drop in the overall fairness. The perceived fairness,
however, highly diverges. For first-fit-Full the fairness curves highly diverge for
any load. For high load, the strategies diverge to the same results. Note that for
clarity we draw continuous lines even though the results are discrete.

towards the end of the superframe do not suffice her needs, thus, she additionally

reserves slots at the beginning of the superframe, which decreases her average delay.

A further increase of the traffic load implies that even less empty zones at the end of

the superframe are available and she has to reserve even more slots in the beginning

of the superframe, so her average delay decreases even more. The same procedure

applies for the subsequent nodes. When the maximum number of slots per node

and zone is reached, the delays converge to their final values.

Figure 11 shows Jain’s fairness index and the fairness perceived by the individual

nodes for the delay. Here, we define xi in (2) and (3) as the reciprocals of the slot

indices. The figure depicts the scenario with policy-fit-Full (left) and first-fit-Full

(right) for 5 nodes. For low load and policy-fit-Full, the stable and similar delay that

has been shown in Figure 10 (left) results in a fairness index close to 1 for the overall

and the perceived fairness indices. In high load scenarios, the perceived fairness for

policy-fit diverges, since node 4 and 5’s delay increases because nodes with higher

indices are pushed towards higher slot indices or even out of the superframe. With

first-fit-Full (right), however, the perceived fairness indices highly diverge for any

load. For all strategies including min-fit-Full, the curves converge to similar values.

We conclude that policy-fit guarantees an almost constant mean delay for all

nodes, since reservations are spread around the middle of the superframe. For low

load though, this connotes that the mean delay is higher than for the other strategies.
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All strategies achieve an overall delay fairness close to 1 in all traffic situations,

but policy-fit additionally provides perceived fairness for low load. In high load

situations, however, the perceived delay fairness curves for policy-fit diverge as well

and coincide with the results for the other strategies. Thus, as with the fairness

results for the throughput analysis, the reservation strategy has only marginal

influence on the delay fairness in high-load scenarios. In the subsequent sections,

we briefly show the impact of alternative beaconing systems on the fairness.

4.5 beaconing alternatives

The lack of fairness in ECMA-368 that we identified in this chapter so far is due

to the fixed order in the beacon phase. This order develops during the set up of

the network, when nodes use Reservation-ALOHA to join the network. This order

only slightly changes when nodes leave or new nodes join the network. In order to

achieve optimal resource allocation among competing nodes, medium access rules

must be flexible enough to adapt to the specific scenario, being robust against the

network size, the channel state and the applications’ requirements.

In this section, we break open the fixed beacon order and make it more flexible,

i.e., the privileged nodes in the beginning of the beacon phase change over time.

When comparing the medium access of the stations over a long period of time, i.e.,

several superframes, we argue that this approach is capable of meeting a certain

global fairness criterion, if nodes have to support similar traffic patterns and traffic

requirements are time-invariant. However, we conjecture that the same fairness

criterion is not met, if we focus on a short period of time, e.g. one superframe. This

is due to the selfish behaviour of nodes that evens out over long time intervals. If

a node is allowed to transmit her beacon in the first beacon slot, she reserves as

much channel time as needed not considering that other nodes might require slots

themselves. In this section, we consider random as well as round robin beaconing.

One way of a more flexible beacon order is random beaconing. If the beacon phase

is randomized, nodes randomly choose a new beacon slot every z superframes.

Here, z is a parameter that accounts for the number of nodes, the traffic patterns or
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the degree of unfairness in the original beaconing scheme. If we consider the long

term that accounts for several factors of z superframes, all nodes are equally likely

to occupy a beacon slot at the beginning, the middle and the end of the superframe.

So if we consider the results of Section 4.4, all nodes equally access the medium and

thus, both the long-term throughput and the mean delay are equal for all nodes.

However, random beaconing has a severe drawback. If nodes randomly choose

new beacon slots every z superframes, there is a likelihood of beacon collisions. In

ECMA-368, the length of the superframe is given and split into beacon and data

transfer phase. So in order to have a large transfer phase, the beacon phase has to

be as short as possible. The contraction algorithm provided in ECMA-368 leads to a

beacon phase with hardly any unused beacon slot.

Assume there are m available beacon slots, of which N ≤ m are occupied by the

nodes in the network. Thus, there are a = m−N additional empty beacon slots. If all

N nodes in the network randomly choose a new beacon slot at the same time, beacon

collisions are likely to occur. A collision in the beacon slot, however, implies that

the involved nodes cannot make a reservation for the upcoming superframe. Thus,

nodes that are involved in a beacon collision, suffer from throughput reduction.

In the previous sections, we have shown that the severity of the fairness problem

is largest in high-load scenarios. Therefore, in the rest of this work, we focus on

greedy nodes. To estimate the throughput reduction, we further abstract from the

reservation rules and strategies and suppose that there is no reservation limit for a

node. This implies that the first node that successfully transmits a beacon in the

beacon phase, reserves the entire data transfer phase xm. Thus, with deterministic

beaconing, we achieve a utilization in the data transfer phase of 100 %. To determine

the throughput in case of random beaconing, we compute the probability Ps that

there is at least one successfully transmitted beacon assuming that the nodes’ draws

are independent and identically distributed (iid). The probability Ps is given as

Ps = 1− Pc, with Pc the probability that all beacons collided. The achievable network

throughput for random beaconing then becomes G = (1− Pc)xm.

Figure 12 shows the probability Pc that all beacons collide depending on the

network size determined by enumeration. Generally, the probability decreases with
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Figure 12: Probability that the data transfer phase of a superframe remains empty due to
the collision of all beacons. Generally, the probability that all beacons collide
decreases with increasing number of nodes in the network. When the number of
available beacon slots is equal to the number of nodes, i.e., a = 0, the collision
probability is maximal. The more additional beacon slots are present, the smaller
is the collision probability.

increasing number of nodes in the network. We observe, however, that the graph is

not monotonically decreasing. Consider for instance the increase of the collision

probability from N = 3 to N = 4 in the case of no additional beacon slots a = 0. For

N = 3 and m = N available beacon slots, there are 33 = 27 possible combinations

how the nodes choose their beacon slots. If all nodes choose the same beacon slot,

all beacons collide, i.e., Pc =
N

NN = 3
27 = 1

9 .

For N = 4 and m = N, there are 44 = 256 possible combinations how the nodes

choose their beacon slots. Here, however, there are two alternatives how all beacons

collide. First, all beacons collide, if all nodes choose the same beacon slot. Second,

all beacons collide, if two nodes pairwise choose the same beacon slot. Thus, the

probability that all beacons collide becomes Pc =
N+(N

2 )(N−1)!
NN = 4+6 · 6

256 = 5
32 >

1
9 .

Hence, the increase in the probability that all beacons collide is caused by the set of

additional combinations of chosen beacon slots.

Increasing the number of available beacon slots m so much so that a > 0 corre-

sponds to a decrease in the probability that all beacons collide. Thus, the larger the

network and the larger the number of spare beacon slots a, the more likely it is that

at least one node successfully transmits a beacon and consequently transmits in the

data transfer phase. Since nodes are equally likely to transmit the first successfully
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sent beacon due to the iid assumption, the individual throughput of each node i

becomes gi =
G
N = Psxm

N = (1−Pc)xm

N .

If we consider round-robin beaconing instead of random beaconing, we achieve

long-term fairness without the cost of beacon collisions, so G = xm. Round-robin

beaconing implies that nodes move their beacon to the adjacent beacon slot every z

superframes. Hence, a node returns to her initial beacon slot after N · z superframes.

If we consider the period of N · z superframes, every node has had the same

transmission opportunities. Thus, the long-term mean throughput and delay is

equal for all nodes, i.e., gi =
G
N . Due to the illustrated selfish behaviour of nodes,

however, neither round-robin nor random beaconing achieves short-term fairness.

We conclude that a change in the beacon order, either random or deterministic,

achieves fairness, if we consider several superframes. In our analysis, we assumed

greedy nodes, because we have previously shown that the unfairness increases with

the traffic load. We further prescinded from the reservation rules and strategies

and assumed that nodes are not limited in their reservation. Thus, the first node

that can successfully transmit a beacon is able to reserve all available slots in the

data transfer phase. With this abstraction, the original beacon order achieves a

channel utilization of 100 % and so does round-robin beaconing. Random beaconing,

however, suffers from throughput reduction due to beacon collisions. While both

random and round-robin beaconing achieve long-term fairness, neither of them is

able to provide short-term fairness.

4.6 summary

In this chapter, we identified the unfairness inherent in the distributed reservation-

based medium access provided in ECMA-368 and showed that beaconing alterna-

tives such as random or round-robin beaconing only provide long-term fairness. In

particular, we evaluated various sets of reservation rules and strategies of ECMA-368

to identify the influence of different protocol aspects on fairness. For a Poisson

model of the frame arrival process, we determined the rate of the required transmis-

sion slots and provided a numerical analysis.
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We showed that in high-load scenarios the reservation strategy that determines

the location of the reservation within the superframe has no significant impact on

neither the throughput nor the delay and hence, not on the fairness. The reservation

rules that determine the maximum amount a node is allowed to reserve influence

the fairness, but this influence quickly becomes negligible with increasing network

size. The reason for the identified unfairness lies in the fixed order of beacons in

the beacon phase. The earlier a node transmits her beacon, the more privileged she

is, which is considerably reflected is the nodes’ values for the perceived fairness. In

high-load scenarios for a network with 5 nodes, the first three nodes have perceived

fairness values significantly larger than the average, while the fairness perceived by

nodes 4 and 5 approaches zero. We further deduce that a node’s resource share is

independent of the number of nodes in the network, so increasing the network size

aggravates the fairness issue.

As we showed that the fairness issue is due to the fixed beacon order in the beacon

phase, in the last section of this chapter, we designed the beacon phase more flexible.

Both the randomization of the beacon phase and the deterministic alteration in a

round-robin manner achieved long-term fairness. While round-robin accomplished

the same utilization as the original fixed beaconing, the randomization occurs at the

cost of beacon collisions that induce a reduction of throughput.

While both alternative beacon orderings attain long-term fairness, neither of them

is able to provide short-term fairness. In the next chapter, we pursue the realization

of a fair resource allocation when accounting for a single superframe. Instead of

changing the beacon order, we accept the given order of beacons and introduce an

algorithm that relaxes the absoluteness of the reservation. Using non-cooperative

game theory as a tool to analyse strategic interaction, we show that the introduced

algorithm achieves short-term fairness.
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So far, we have seen that a distributed reservation protocol with fixed beacon

order guarantees channel access without collisions. The bandwidth, though, is

not necessarily distributed in a fair manner among the nodes that are part of the

network. In the previous chapter, we have further observed that applying a round-

robin or random beaconing scheme in the beacon phase achieves long-term fairness

but both lack short-term fairness. While round-robin is able to guarantee predictable

channel access, this is naturally not the case with a random beaconing scheme.

In this chapter, we model the distributed reservation protocol with fixed beacon

order as a multi-stage game, in which each single beacon slot and the data transfer

phase as a whole is considered a stage in the game. For this game, we determine

the Nash Equilibria and subgame-perfect equilibria and evaluate which of them are

Pareto- and socially-optimal as well as fair equilibria. We keep the fixed beacon

order and then deviate from the absoluteness of the reservation and determine the

Bayesian Nash Equilibria of the game.

In the previous chapter, we have shown that large parts of the rules in ECMA-368

that regard the reservation have only marginal influence on the fairness in high

load scenarios. For this reason, we abstract the ECMA-368 to a general distributed

reservation-based protocol. The protocol model that we use is explained in the next

section, followed by the corresponding game model.

5.1 protocol model of static game

In this section, we describe the protocol model that we consider in our game-

theoretic analysis. As before, we assume a time-slotted system with a superframe

structure, whose length is given and fix. Each superframe starts with a beacon

65
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phase, which we also hold fix in length for convenience. The remaining xm slots

of the superframe are available for data transmission. The association procedure

remains the same as in ECMA-368, hence, as soon as a node is associated with the

network and has obtained a beacon slot, the order of nodes in the beacon phase is

fixed. Without loss of generality, we refer to the node that occupies the ith beacon

slot as node i.

Initially, we assume the reservation process to be the same as the one described

in Section 2.1. Recall that ECMA-368 specifies several rules and strategies regarding

the location and amount of a node’s reservation. In Chapter 4, we showed that

in high load scenarios the strategies, which determine the reservation zone, have

no influence on fairness. We further evaluated the impact of the reservation rules,

which limit the amount of slots that a node is allowed to reserve. In high load

scenarios, this limitation does not sufficiently provide fairness. Thus for the game-

theoretic analysis, without loss of generality, we assume that nodes reserve in a

first-fit manner and neglect any zone limitations. We further revoke the restriction

on the maximum number of slots a single node may reserve. Hence, in the worst

case scenario of heavy load the first node is able to reserve all xm slots that are

available for data transmission, so there are no slots left for the subsequent nodes.

5.2 game model of static game

In this section, we present a multi-stage game to model the distributed reservation

medium access control protocol with fixed beaconing. In particular, the multi-stage

game consists of N + 1 stages. The first N stages model the beacon slots of the

N players in the game. In those first N stages players play sequentially. After

the beacon phase, we assume that all players simultaneously decide about their

actual transmission after having observed all reservations. Thus, in the last stage,

i.e., stage N + 1, they play simultaneously. Subsequently, we define the notation

and present the utility functions that we apply. We use bold letters for sets and

corresponding non-bold letters representing their respective cardinalities.
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The game considered in this work is given by Γ(N, Ai, ui). Recall that N denotes

the set of players. The actions player i can carry out are given by set Ai, her utilities

from the arising outcomes are given by ui. Here, players of the game are the nodes

associated with the network. We refer to node i as player i. The actions are the

number of slots players choose to reserve and transmit in. The utility is a function

of the achieved throughput and transmission cost. The first N stages of this game

represent sequential play and refer to the reservations announced by players 1

through N in their respective beacons. Recall that we join player i with node i and,

hence, with beacon slot i. This means that player i makes a move in stage i of the

game by announcing her reservation. In the stages 1 until i− 1 and i + 1 until N,

she does not move but observes her opponents’ moves, i.e., she listens during the

prior and remaining reservation stages. Stage N + 1 is simultaneous play and refers

to all players’ transmission decision, i.e., all players concurrently decide which slots

they transmit in. Note that player i’s action in stage i limits her action space in

stage N + 1 because a player may only transmit in previously reserved slots.

The action a player chooses in the stages of the game is prescribed in her strategy.

This strategy defines a complete plan of actions for each stage k of the game and

every possible history hk. So player i’s strategy si is a sequence of {sk
i }

N+1
k=1 , whereas

sk
i maps Hk to Ai(H

k), so sk
i (h

k) ∈ Ai(h
k). A strategy profile then includes the

strategies of all players. It is denoted by S = (s1, . . . , sN). S−i terms the strategy

profile for all players except player i. Player i’s strategy si basically contains two

elements for every possible history of the game. The first element is the number of

slots she reserves in stage i subject to the reservations announced in the previous

stages. The second element of her strategy concerns her transmission decision given

all players’ reservation decisions.

In non-cooperative games, players are assumed to be payoff-maximizers, i.e., they

play a strategy that maximizes their utility. We define the utility as a function of

the throughput reduced by the corresponding transmission costs. Hence, the utility

is directly related to the transmission stage, but only indirectly to the reservation

stages and depends on the number of successfully and unsuccessfully occupied

slots. A slot is unsuccessfully used by a player, if a collision occurred. We assume a
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single-hop network with a single transmission channel. Thus, if two or more nodes

transmit in the same time slot, it results in a collision. We restrict ourselves to an

ideal channel, so frames cannot be lost due to channel conditions.

We assume a player’s utility function to consist of two terms. On the one hand,

players receive a gain from successfully transmitting, on the other hand, there

are transmission costs no matter whether the transmission was successful or not.

We denote the number of slots player i transmits in as xi, which is composed of

xi = ri + wi, with ri the number of slots player i successfully transmits in and wi the

number of slots in which a collision occurs. Thus, we denote player i’s utility from

playing strategy S as:

ui(S) = γi(ri)− ξi(ri, wi),

with γi(ri) the gain player i achieves from ri successfully used slots. This gain is

diminished by the costs ξi(ri, wi). Note that the costs further include the costs for

unsuccessful transmissions wi. In order for a player to transmit at all, ui(S) has

to be greater than zero, which is assumed to be the utility from not transmitting.

We assume that the transmission costs per time slot, e.g. the required energy to

transmit, do not change with the transmission amount. Thus, we assume linear

costs, such as ξi(ri, wi) = ci(ri + wi), with ci ∈ R
∗
+ a constant.

Defining the gain γi(ri) can be more differentiated. If we assume every trans-

mitted bit to be equally important, the gain of successfully transmitting in ri slots

γi(ri) can be a linearly increasing function such as γi(ri) = piri, with pi ∈ R
∗
+ a con-

stant. However, utility functions are commonly represented through continuously

differentiable, monotonically increasing and strictly concave functions according

to the law of diminishing returns [62]. Consider for instance an application that

first transmits some basic information, e.g. the basic information in a picture, and

the following frames transport enhancements of this information. So the more the

application has already transmitted, the less valued the transmission of the next

parts are. The corresponding gain can be represented by γi(ri) = pi ln(ri + 1). Note
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that we move the ln-function into the origin to ensure that players receive zero

rather than negative gain, if they are not transmitting.

With those two approaches, we derive two alternative utility functions. For

the linear case, the utility function is given as ui(S) = piri − ci(ri + wi). Without

collisions this utility function becomes:

ui(S) = (pi − ci)ri. (13)

For player i to transmit, her utility has to be positive, hence pi ≥ ci ≥ 0. With

marginally decreasing utility functions, we derive ui(S) = pi ln(ri + 1)− ci(ri + wi).

Without collisions we rewrite this utility function to:

ui(S) = pi ln(ri + 1)− ciri. (14)

To ensure that transmitting always results in a utility greater or equal to zero, it

has to hold that pi ln(ri+1)
ri

≥ ci ≥ 0.

In the subsequent sections, we consider the linear and the strictly concave utility

functions to cover both the case of equal importance of information and the law of

diminishing returns. We consider a single superframe, i.e., we play a static game.

5.3 nash equilibria of the static game and their fairness

The analysis of games usually aims at identifying stable outcomes, the so-called

Nash Equilibria. Furthermore, for sequential games, the term of a subgame-perfect

equilibrium has been established to determine credible behaviour and thus, elim-

inates Nash Equilibria that pose incredible threats. First, we have to determine

the Nash Equilibria for the proper subgames of a sequential game. In the case of

perfect information, we then perform backward induction to determine whether it

is reasonable for the players to actually arrive at those Nash Equilibria. Only those

Nash Equilibria that are reasonable can be considered subgame-perfect.
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In this section, we identify the Nash Equilibria and subgame-perfect equilibria of

the described static game. Then we evaluate those Nash Equilibria with respect to

Pareto- and social optimality as well as fairness. Pareto-optimality implies that no

player can increase her utility without decreasing another player’s utility, while in

a socially-optimal Nash Equilibrium society’s welfare is furthermore maximized.

In order to determine the subgame-perfect equilibria of the game, we identify the

proper subgames that are the entire game and the transmission subgame. With

transmission subgame, we refer to stage N + 1 of the game, in which all players

simultaneously decide about their transmission. For this transmission subgame, we

identify the following Nash Equilibria.

Lemma 5.1 S∗ is an NE in the transmission subgame, if each slot is used by at most one

node and the number of used slots is the minimum of the number of available slots xm and

the aggregated number of slots required by the players. If we denote the number of slots

required by player i as reqi, this is formally written as min(∑i∈N reqi, xm).

In a Nash Equilibrium, there is no incentive for a player to unilaterally change

her action. If every player is able to successfully transmit in as many slots as she

requests, there is obviously no reason for any player to deviate and thus, it is stable.

If players are not able to transmit as much as they request but all slots are taken by

other players, they do not have an incentive to transmit more, since this would only

induce costs but no additional gain. Formally, we write:

Proof We prove Lemma 5.1 by contradiction. Assume that more than one player

transmits in a certain slot. Then each of those players would do better by unilaterally

deviating from the current transmission pattern and refrain from transmitting in

this multiple used slot in order to save the costs of the unsuccessful transmission.

Hence, in an NE each slot can only be occupied by one player. Next, assume that the

number of occupied slots is smaller than ∑i∈N reqi and also smaller than xm. Then

each node with xi ≤ reqi can do better by unilaterally deviating and additionally

transmitting in an unoccupied slot. This concludes the proof.
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Subgame-perfect equilibria are those equilibria that induce Nash Equilibria in

every subgame. The simultaneous transmission in stage N + 1 is a proper subgame.

If we extend this transmission subgame backwards to the reservation stages, we can

characterize the subgame-perfect strategies. Thus, the subgame-perfect equilibria

consist of the reservation and the transmission decision.

Lemma 5.2 Let S∗ be a pure strategy Nash Equilibrium in the transmission subgame.

Then any feasible reservation vector b = (b1, b2, . . . , bn), with bi ∈ [s∗i , xm], ∀i ∈ N forms

an SPE = [(b1, s∗1), . . . , (bi, s∗i ), . . . , (bn, s∗n)].

Proof If we consider the Nash Equilibria in the transmission subgame S∗, only

reservations bi that are in the interval [s∗i , xm] are feasible, since player i shall not

transmit more than she has reserved. In a static game, players cannot use the

reservation phase in order to build up a reputation and manipulate the players’

behaviour in the transmission subgame. Hence, any feasible reservation induces a

Nash Equilibrium in the transmission subgame.

In the following, we evaluate the identified Nash Equilibria regarding Pareto- and

social-optimality as well as their fairness.

Lemma 5.3 Any pure-strategy Nash Equilibrium in the game presented is Pareto-optimal.

In a Pareto-optimal equilibrium, no player can increase her utility without de-

creasing another player’s utility.

Proof We prove Lemma 5.3 by contradiction. Assume that there is an NE that is

not Pareto-optimal. This implies that we can improve one player’s utility without

reducing another player’s utility. There are two ways to increase a player’s utility.

First, we could allocate more slots to this particular player. According to Lemma 5.1,

in an NE all slots are taken (or reqi is reached by each player i), so this is not possible.

Second, we could reduce the collisions and therefore the costs the particular player

experiences. According to Lemma 5.1 an NE does not contain colliding slots, so this

is not possible either. Hence, we cannot increase a player’s utility. This contradicts

the assumption. Therefore, the Nash Equilibrium must be Pareto-optimal.
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Besides Pareto-optimality, another characteristic of a desirable Nash Equilibrium

is social-optimality [26]. In a socially-optimal Nash Equilibrium, society’s welfare as

the sum of the utilities of all players in the game cannot be increased. Therefore, any

socially-optimal Nash Equilibrium has to be Pareto-optimal but not vice-versa. In

the game presented, socially-optimal Nash Equilibria are characterized as follows:

Lemma 5.4 For symmetric players with linear utility functions all Pareto-optimal Nash

Equilibria are socially-optimal. For symmetric players with monotonically increasing but

marginally decreasing utility functions the Nash Equilibrium S∗ is socially-optimal, if and

only if s∗i = s∗j , ∀ i, j ∈ N.

Generally, social-optimality does not consider individual players but focusses on

the society as a whole. With linear utilities the aggregated utility is independent of

the allocation of slots among the players. In the case of concave utility functions,

though, the specific allocation is relevant. Consider two players, one player uses all

slots and hence maximizes her utility, while the second player cannot transmit and

has a utility of zero. With a concave utility function, player 1 yielding some slots

to the second player reduces her utility, but increases player 2’s utility by a larger

amount. Hence, in sum society’s welfare increased. The formal proof is given below.

Proof Social-optimality is given if U = ∑
N
i=1 ui is maximized, with N the number of

players. If we assume greedy players, any equilibrium that allocates all slots among

the players without collisions, is Pareto-optimal. In a Nash Equilibrium there are no

collisions, thus, xi = ri, so if we denote the available number of slots as xm, then

xN = xm −∑
N−1
i=1 xi.

For linear utilities, U = ∑
N
i=1(pi − ci)xi. To determine society’s welfare we have

to maximize U. Taking the first partial derivative for player i yields:

∂U

∂xi
=

∂

∂xi
((p1 − c1)x1 + (p2 − c2)x2 + . . . + (pN − cN)xN)

=
∂

∂xi
((p1 − c1)x1 + (p2 − c2)x2 + . . . + (pN − cN)(xm −

N−1

∑
j=1

xj))

= (pi − ci)− (pN − cN). (15)
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Assuming symmetric players, thus pi = pN and ci = cN , it holds that ∂U
∂xi

= 0.

Thus, for linear utility functions any distribution of slots among the players is

considered socially-optimal. For marginally decreasing utility functions, U is given

by U = ∑
N
i=1(pi ln(xi + 1)− cixi). The first partial derivative for player i yields:

∂U

∂xi
=

∂

∂xi
(p1 ln(x1 + 1)− c1x1) + . . . + pN ln(xN + 1)− cNxN)

=
∂

∂xi
(p1 ln(x1 + 1)− c1x1) + . . . pN ln(xm −

N−1

∑
j=1

xj + 1)− cN(xm −
N−1

∑
j=1

xj))

=
pi

xi + 1
− ci −

pN

(xm −∑
N−1
j=1 xj) + 1

+ cN . (16)

If we again set the first derivative equal to zero and assume symmetric players,

we obtain xi = xm −∑
N−1
j=1 xj. Hence, in the socially-optimal case, all players receive

the same share of resources, thus, s∗i = s∗j , ∀i, j ∈ N.

So far, we have evaluated the Nash Equilibria of the game regarding their optimal-

ity. In the following paragraphs, we identify the correlation of notions of fairness

given in Section 2.3.3 with the determined Nash Equilibria for symmetric players.

Lemma 5.5 For symmetric players the NE with xi = x∗, ∀ i ∈ N is max-min fair.

Proof For symmetric players, xi = x∗, ∀ i ∈ N implies that ui = uj, ∀ i, j ∈ N.

Therefore, player i can only increase her utility ui by decreasing another player j’s

utility. Since player j’s utility uj is equal to her own utility ui, it is max-min fair.

According to [18], if a solution exists, it is unique.

Lemma 5.6 For symmetric players the NE with xi = x∗, ∀ i ∈ N is proportionally fair.

Proof According to (4) in Definition 2.10, the allocation profile x = (x1, x2, . . . , xN)

is proportionally fair, if for any feasible allocation profile x′ = (x′1, x′2, . . . , x′N) it

holds that ∑i∈N
u′i−ui

ui
≤ 0.

First, we consider players with linear utility functions, thus, ui = (pi − ci)xi. So

we write ∑i∈N
(pi−ci)x′i−(pi−ci)xi

(pi−ci)xi
= ∑i∈N

x′i−xi

xi
≤ 0. In the proposed proportionally fair

Nash Equilibrium xpf, it holds that xi = x∗, ∀ i ∈ N. Thus, ∑i∈N
x′i−xi

xi
= ∑i∈N(x′i−x∗)

x∗ .
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The allocation x′ is a Nash Equilibrium, so ∑i∈N x∗ = ∑i∈N x′i = xm. With this,

∑i∈N(x′i−x∗)
x∗ = 0, which proves that the Nash Equilibrium xpf with xi = x∗, ∀ i ∈ N

is proportionally fair. We further argue that this proportionally fair equilibrium is

unique. Definition 2.10 states that (4) has to apply for any feasible x′, thus, if there

was another proportionally fair Nash Equilibrium x′′, (4) would also have to hold

for x′ = xpf, with xi = x∗, ∀ i ∈ N. So, we write ∑i∈N
(x∗−x′′i )

x′′i
≤ 0. This, however,

does not hold because the sum of the positive summands, i.e., if x′′i < x∗, is always

larger than the negative summands, i.e., if x′′i > x∗. Thus xpf, with xi = x∗, ∀ i ∈ N,

is the unique proportionally fair Nash Equilibrium for players with linear utilities.

Now, we consider players with concave utility functions ui = pi ln(xi + 1)− cixi.

According to [39], the proportionally fair solution for a logarithmic utility function

is unique. In the equilibrium proposed, xi = x∗, ∀i ∈ N. For symmetric players, we

further set pi = p and ci = c, ∀i ∈ N. So we have to show that:

∑i∈N (p ln(x′i + 1)− cx′i − p ln(x∗ + 1) + cx∗)

p ln(x∗ + 1)− cx∗
≤ 0

∑i∈N (p ln(x′i + 1)− cx′i)− N(p ln(x∗ + 1)− cx∗)

p ln(x∗ + 1)− cx∗
≤ 0 (17)

Since, in Lemma 5.4 the Nash Equilibrium with xi = x∗, ∀i ∈ N was shown to be the

socially-optimal solution, N(p ln(x∗ + 1)− cx∗) ≥ ∑i∈N (p ln(x′i + 1)− cx′i). Thus,

the equilibrium with xi = x∗, ∀i ∈ N is also the unique proportionally fair Nash

Equilibrium for players with marginally decreasing utility functions.

Finally, we find the Nash Equilibrium that maximizes Jain’s fairness index.

Lemma 5.7 For symmetric players, the Nash Equilibrium with xi = x∗, ∀ i ∈ N maxi-

mizes Jain’s fairness index.

Proof According to [38], the index is maximized if all players gain the same utility,

so ui = uj, for all i, j ∈ N. For symmetric players equal utilities ui(xi) = uj(xj) are

given, if xi = xj, ∀ i, j ∈ N.
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5.4 system model of static 2-player game with relaxed reservation

We have seen in the previous section that in the static game all Nash Equilibria are

Pareto-optimal. In those stable allocations, it holds that no player can increase her

utility without decreasing another player’s utility. For linear utility functions, all

Pareto-optimal Nash Equilibria are socially-optimal, hence, they optimize society’s

welfare. For monotonically increasing and marginally decreasing utility functions

only the allocation given by xi = x∗, ∀ i ∈ N is socially-optimal. This allocation with

equally shared resources is further max-min and proportionally fair and maximizes

Jain’s fairness index for both utility functions. So there is a unique allocation that

complies with all properties.

Since we assumed that players are payoff-maximizers, there is only one Nash

Equilibrium that occurs in this static game. It is characterized by player i’s reser-

vation xi = min(reqi, xm − ∑j<i xj), with reqi ≤ xm. Hence, the first node will use

as many slots as possible, limited only by the maximum number of slots she re-

quires and the maximum number of slots available for data transmission xm, so

x1 = min(reqi, xm). All subsequent nodes have to cope with the remaining slots. As

we have seen before, this Pareto-optimal allocation is socially-optimal for linear but

not for concave utility functions. Marginally decreasing utility functions, however,

much better represent the application’s view and requirements in a network. For

this reason, the remainder of this work is dedicated to identifying a reservation

mechanism that enables players to achieve the fair Nash Equilibrium in a game with

concave utility functions.

The current section describes the modifications of the reservation procedure to

overcome the unfairness for marginally decreasing utility functions that has been

identified in the previous section. The variation presented provides discriminated

players with a means to increase their share of resources and thus, improves the

fairness in the network. So far, it has not been possible for players to reserve slots

that have already been taken by another player. With the modification, however,

players are allowed to doubly reserve another player’s slots to a certain extent. By

this means, the unfair slot allocation is altered to increase the fairness.
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Figure 13: Superframe with beacon phase and data transfer phase. Order of nodes in the
beacon phase is the same as in the data transfer phase. Node 1 reserves xm

slots, while node 2 doubly reserves the last two slots. In the data transfer phase,
node 1 backs off from the last slot, but not from the second last. Hence, player 2

successfully transmits in one slot and a collision occurs in the second last slot of
the data transfer phase.

Without loss of generality, we still demand the reserved slots of a node to be

consecutive and require them as early as possible in the data transfer phase. Thus,

the order of the nodes in the beacon phase is preserved in the data transfer phase.

Figure 13 depicts a superframe with two active nodes. Here, node 1 reserves the

entire data transfer phase as illustrated in the reservation element of beacon 1, thus

leaving no exclusive transmission time for node 2.

The relaxed reservation mechanism that we propose in this section, overcomes

this unequal allocation. It provides players with the opportunity to doubly reserve

up to ymax slots of their directly previous node’s reservation. Recall that we assumed

consecutive slots. Thus, with ymax = 2 in Figure 13, for instance, node 2 can overlap

node 1’s last and second last slot. If she decides for it, the reservation element in

beacon 2 contains the last and the second last slot of the data transfer phase.

Doubly reserving a slot during reservation is interpreted as a threat to generate a

collision in those slots during the data transfer phase. Therefore, three scenarios are

possible in the data transfer phase, if a slot has been doubly reserved by node 2 in

the beacon phase:
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1. Both nodes back off from the specific slot, thus, the slot is idle during data

transmission.

2. One node backs off from the specific slot, thus, the other node successfully

transmits in this slot.

3. Neither node backs off from the specific slot, thus, both nodes transmit in this

slot and a collision occurs.

In Figure 13, two slots have been doubly reserved. At the beginning of the data

transfer phase, both nodes make a transmission decision. In this example, node 1

backs off from the doubly reserved slot xm, whereas node 2 does not back off at all.

As a consequence, a collision occurs in slot xm − 1, but no collision occurs in slot

xm. Hence, node 1 successfully transmits in xm − 2 slots, while node 2 successfully

transmits in one slot, i.e., in slot xm of the data transfer phase. Thus, the slot

allocation is slightly shifted towards better fairness.

In the proposed relaxed reservation mechanism, slot reservations are taken dis-

tributively by the nodes in the network according to the maximization of their

individual utility function. A node’s decision, however, strongly depends on the

behaviour of the contending nodes, since the nodes’ throughput and thus, their

utility, is degraded by collisions. For this reason, we study the performance of the

relaxed reservation mechanism using game-theoretic analysis, which is a proven

remedy to modelling such strategic interactions.

5.5 game model of static 2-player game with relaxed reservation

In this section, we introduce a 2-player Bayesian multi-stage game to model the

relaxed reservation mechanism. The multi-stage game is comparable to the model

presented in Section 5.2. In particular, the 2-player game consists of three stages; in

the first two stages, players play sequentially, while in the last stage, players play

simultaneously. However, it further includes a Bayesian component that reflects

the imperfect information about the players’ behaviour in matters of the double

reservations presented.
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Figure 14: Decision tree of the 2-player multi-stage game. In stage 1, player 1 reserves xm

slots. In stage 2, player 2 announces her reservation and chooses between zero
and ymax slots. Stage 3 is simultaneous play with both players deciding about
whether or not to retreat from challenged slots depending on their utilities.

The players of the games are the nodes associated with the network, which are

considered to be greedy. This means that they transmit in the entire data transfer

phase, if they have the opportunity to do so. The players’ strategies are the number

of slots they reserve and transmit in, their utility functions include the expected

throughput and transmission costs.

Figure 14 depicts the decision tree of the 2-player multi-stage game. In the sequen-

tial play at the beginning, players announce their reservations in their corresponding

beacons. In stage 1, the greedy player 1 initially reserves the entire data phase, i.e.,

xm slots. In opposition to the model in Section 5.2, though, player 2 is henceforth

able to reserve up to ymax slots of player 1’s reservation. Thus, in stage 2, player 2

doubly reserves an amount of slots in the interval [0, ymax]. If not stated otherwise,

we assume ymax = 1. In stage 3, players make a transmission decision. If there are

doubly reserved slots, both players concurrently decide how many of those doubly

reserved slots they back off from.

Recall that in non-cooperative games, players are assumed to play a strategy that

maximizes their utility. Player 1’s strategy contains two elements. The first element

is the number of slots she reserves in stage 1. While she initially reserves xm slots, in

the subsequent superframes, we assume that she reserves those slots that she used

for transmission in the previous superframe. Recall Figure 13, player 1 backs off
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from her last slot, thus, her next reservation will not contain this slot anymore. This

means that we assume that a player does not reclaim slots she has backed off from.

The second element of her strategy concerns her transmission decision. Essentially,

a player transmits in a doubly reserved slot, if this increases her expected utility.

Player 1 maintains an estimate of the probability that player 2 transmits in a doubly

reserved slot. In superframe t this estimate is referred to as µ1,t. Given µ1,t, player 1

determines her expected utility in superframe t, i.e., E[u1,t(x1)], from transmitting

in x1 slots including the doubly reserved slot. On the other hand, the deterministic

utility that player 1 receives, if she does not transmit in the doubly reserved slot

but successfully transmits in the remaining x1 − 1 slots, is denoted as u1,s(x1 − 1).

Hence, if E[u1,t(x1)] ≥ u1,s(x1 − 1), she does not back off.

Player 2’s strategy is inversely composed. The first element of her strategy

concerns her reservation decision in stage 2. It contains the determination whether

a doubly reserved slot yields a larger utility than no double reservation. Hence,

player 2 maintains an estimate about player 1’s transmission probability µ2,t. In

superframe t, she determines her expected utility E[u2,t(x2)] from transmitting

in x2 slots including a doubly reserved slot given her estimate µ2,t. If E[u2,t(x2)]

is larger than her utility from not transmitting in a double reserved slot, i.e.,

E[u2,t(x2)] ≥ u2,s(x2 − 1), she doubly reserves player 1’s last slot.

The second element of player 2’s strategy concerns her actual transmission. Since

the basis for her reservation decision has not changed from stage 2 to stage 3, we

assume that she follows through with her reservation. Hence, if in stage 2, player 2

doubly reserves a slot, in stage 3, she will decide to transmit in this slot. However,

her opponent, player 1, is not aware of this deterministic behaviour.

For symmetric players the determination of their expected utilities in superframe t

denoted by E[ui,t(xi)] for i ∈ [1, 2] from transmitting in a doubly reserved slot is

analogous and given as:

E[ui,t(xi)] = µi,tui,c(xi) + (1− µi,t)ui,s(xi). (18)



80 static game of distributed reservation protocol

Here, ui,c(xi) refers to player i’s utility from transmitting in xi slots, of which one

slot collides and ui,s(xi) denotes player i’s utility from successfully transmitting in

xi slots. Hence, player 1 transmits in a doubly reserved slot and player 2 doubly

reserves a slot, if and only if:

E[ui,t(xi)] ≥ ui,s(xi − 1)

µi,tui,c(xi) + (1− µi,t)ui,s(xi) ≥ ui,s(xi − 1) (19)

Recall that in Section 5.2, we introduced two utility functions. Here, we focus on

the strictly concave utility function (14). So the utility from successfully transmitting

in xi slots is given as ui,s(xi) = pi ln(xi + 1)− cixi. The utility from transmitting in

xi slots, of which one slot collided, is given as ui,c(xi) = pi ln(xi)− cixi. Hence, if

we reformulate (19) and assume symmetric players, player i transmits in the doubly

reserved slot in superframe t, if and only if:

µi,t ≤ 1−
c

p ln( xi+1
xi

)
. (20)

In the next section, we identify the Bayesian Nash Equilibria of the static game.

5.6 bayesian nash equilibria

For the static game, we identify the Bayesian Nash Equilibria, in which all players

play their mutually best responses conditional to their beliefs [31, p. 215]. In those

equilibria, players are indifferent about transmitting in a doubly reserved slot, i.e.,

risking a collision, and backing off from it. With the utility functions described in

Section 5.2, the Bayesian Nash Equilibria are given as the equilibrium of (20):

µ∗i (xi) = 1−
c

p ln( xi+1
xi

)
. (21)

As with the Nash Equilibria and subgame-perfect equilibria, a Bayesian game can

have several Bayesian Nash Equilibria. We define a Bayesian Nash Equilibrium to

be desirable, if it has certain properties.
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Figure 15: Depending on the number of players, the graph denotes the belief players have
about their opponents’ transmission probability in the fair Bayesian Nash Equilib-
rium according to (21) with c = 1 and p = xm + 1. Note that in the fair Bayesian
Nash Equilibrium xi = xm/N for all i ∈ N.

Definition 5.1 A Bayesian Nash Equilibrium is desirable, if it is Pareto-optimal,

socially-optimal and fair.

In the desirable Bayesian Nash Equilibrium for marginally decreasing utility

functions, it holds that xi =
xm
N , ∀ i ∈ N. Figure 15 shows the belief in the desirable

Bayesian Nash Equilibrium depending on the number of players for such a concave

utility function. We assume greedy players, so player i’s utility has to be maximal

for xi = xm. If we calculate the maximum of ui(S) = pi ln(xi + 1) − cixi in the

interval of feasible allocations xi ∈ [0, xm] and set xi = xm, we obtain p = c(xm + 1).

To ease calculation, we choose c = 1 and hence p = c(xm + 1) = xm + 1. We observe

that the larger the number of nodes in the network, the larger the players’ beliefs

in the equilibrium. Thus, in order to play the Bayesian Nash Equilibrium of the

game, players need to know the number of nodes in the network to determine their

equilibrium beliefs given their share of resources.

5.7 summary

In this section, we have presented a game model of a distributed reservation protocol

with fixed beacon order. Since we have shown in the previous chapter that for such
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a protocol a fairness problem arises when the traffic load is beyond saturation, we

assumed players to be greedy.

We introduced two kinds of utility functions and identified the Nash Equilibria,

which are all Pareto-optimal and the subgame-perfect equilibria of the game. For

linear utility functions we showed that all Nash Equilibria are further socially-

optimal. For monotonically increasing but marginally decreasing utility functions,

only the Nash Equilibrium that is characterized by xi = x∗, ∀ i ∈ N is socially-

optimal. This equilibrium with resources equally distributed among the players

further complies with the definitions for max-min and proportional fairness and

maximizes Jain’s fairness index for both utility functions.

Assuming that greedy players are not altruistic this fair allocation does not occur

by itself. Considering rational players, it is an unfair Nash Equilibrium that arises.

Therefore, we presented a relaxed reservation mechanism to rearrange the slots to

increase the fairness of the allocation. With this mechanism discriminated players

are given a means to enhance their position. To implement this mechanism, players

have to maintain a belief about their opponents’ behaviour, so we finally determined

the Bayesian Nash Equilibria of the static 2-player game. In the next chapter, we

extend this game to a repeated game and determine the corresponding Perfect

Bayesian Nash Equilibria.



6
D Y N A M I C G A M E O F

D I S T R I B U T E D R E S E RVAT I O N P R O T O C O L

So far we have accounted for a one-shot game. In order to play the desired equilib-

rium of a game, though, all players have to correctly determine this equilibrium,

which can be a tedious task. However, if we consider a repeated game, we are able

to introduce algorithms that can be analysed in terms of their convergence towards

the desired Nash Equilibrium.

In this chapter, we model a dynamic 2-player game that is a repeated version of

the static 2-player game of the previous chapter. For the dynamic game, we find

a function that relates a player’s belief to her share of slots. This function marks

the points at which a player is indifferent about transmitting and not transmitting

in a challenged slot. Thus, this function represents the candidates of a Perfect

Bayesian Nash Equilibrium. We further introduce a belief update algorithm. Recall

that players maintain beliefs about their opponent’s transmission behaviour. In

a dynamic game, players observe their opponent’s actions in every period of the

game and update their beliefs. This belief in return affects the player’s own action

in the subsequent period. Having determined the candidates of Perfect Bayesian

Nash Equilibria of the game, we evaluate which of those points are stable or quasi-

stationary. For each set of initial beliefs and discount factor, we identify exactly

one allocation of slots x∗ = (x1,t∗ , x2,t∗) that is stable or quasi-stationary. Besides

their stability we evaluate those points in terms of fairness. For a stable point to

be a Perfect Bayesian Nash Equilibrium of the dynamic game, the applied belief

update algorithm has to drive the game to this stable point. Thus, we determine

the initial conditions by which the game emerges to the stable point, hence, the

Perfect Bayesian Nash Equilibrium. We show that for players with equal initial

conditions, the game converges to the Perfect Bayesian Nash Equilibrium which is

83
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in fact fair. Simulations further suggest that in networks with more than two players

the relaxed reservation algorithm also yields a fair allocation of resources if players

have equal initial beliefs. Finally, simulations reveal that the convergence time scales

linearly with network size. The convergence time decreases with the parameter of

the relaxed reservation algorithm ymax and increases with the discount factor that

reflects how much the players value the future.

6.1 game model of dynamic 2-player game with relaxed reservation

In this section, we repeat the static game an infinite number of times. The t-th

repetition corresponds to superframe t and is referred to as period t of the dynamic

game. With the relaxed reservation procedure, we model this game inversely to

Selten’s chain store model (cf. Section 2.4). We derive the expected utilities for a

player to transmit and not to transmit in a challenged slot. With this, we find a

function for which a player is indifferent about transmitting and not transmitting.

This function relates a player’s belief about her opponent’s behaviour to the amount

of slots she transmits in and denotes candidates for Perfect Bayesian Nash Equilibria

of the dynamic game.

In Selten’s chain store model, the author analyses a situation with a single

incumbent that is faced with several possible entrants that sequentially decide about

their entry. So the incumbent faces a different player in each round. In our model,

the incumbent player 1 faces the same possible entrant player 2 in every period.

Selten showed in [61] that there is only one possible outcome for such a game:

all entrants enter, since an incumbent is better off accommodating than fighting,

when she faces entry. This result, though rational, does not seem very intuitive. In

[53] and [44], the authors extend the chain store model to a game with incomplete

information and model it as a game with imperfect information to reflect that in

reality fighting can be a rational strategy for the incumbent to deter entry.

In the game presented in this chapter, the imperfectness regards the knowledge

about the other player’s payoffs. We consider two-sighted uncertainty. On the one

hand, the entrant maintains an estimate about the probability that her entry, i.e.,
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her double reservation, is met by a transmitting incumbent. On the other hand,

the incumbent maintains an estimate about the probability that the entrant follows

through with her threat of generating a collision.

Note the following: the potential entrant has made her final decision during the

reservation, which is the entry phase in Selten’s model. If she has decided to doubly

reserve slots of her opponent’s reservation, we assume that she will follow through

with this and transmit in those slots. This knowledge, however, is not available to

her opponent. The incumbent cannot deduce from a double reservation that her

opponent will transmit in the corresponding slots. Thus player 1 considers her

belief to be an estimate of whether or not player 2 follows through with a double

reservation. In retrospective, however, this estimate rather reflects the probability

that even though she has met a double reservation with transmitting and therefore

a collision occurred, her opponent tries again in the next period.

In repeated games, players account for future utilities. When a player decides

about her current action, she takes into consideration the expected effect of her

behaviour on the other player’s future behaviour and how this in return influences

her own future utilities. Those future utilities are discounted with the common

discount factor δ ∈ [0, 1). For our analysis of the dynamic game, we consider two

types of players: long-sighted and myopic players. The more long-sighted players

are, the more the future plays a role in their decision, hence, the larger δ is. Myopic

players constitute the degenerated case of δ = 0. They play a best response to the

expected behaviour of their opponents. This decision process does not consider the

impact on future reservations or transmissions. Thus, they solely take into account

their current belief about their opponent’s behaviour and their expected payoff.

In the static game presented in Chapter 5, a player transmits in a doubly reserved

slot, if and only if her expected utility is larger or equal to the deterministic utility

she receives if she does not transmit in the challenged slot (19). The left-hand side

of (19), i.e., E[ui,t(xi)], represents the expected utility she receives, if player i decides

to transmit in a doubly reserved slot and hence, risks a collision. Recall that in

the dynamic game, we repeat the static game an infinite number of times. Thus,

to reformulate E[ui,t(xi)] in (19) to account for future utilities, we have to make
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assumptions about future actions. For ease calculation of the expected utilities, we

assume that if a collision occurs, the challenged player backs off from the collided

slot in all subsequent periods and is not challenged again. Thus, in the case of

a collision, player i with i ∈ [1, 2] receives a period-0 utility of ui,c(xi). Every

additional period τ adds the discounted utility δτui,s(xi − 1). In total this sums

up to ui,c(xi) + ui,s(xi − 1)(δ + δ2 + . . .). However, if despite a doubly reserved slot

no collision occurs, she receives a discounted utility of δτui,s(xi) for every period

τ ∈ [0, ∞) assuming that no further challenges occur. Thus, E[ui,t(xi)] becomes:

E[ui,t(xi)] = µi,t
(

ui,c(xi) + ui,s(xi − 1)(δ + δ2 + . . .)
)

+(1− µi,t)
(

ui,s(xi)(1 + δ + δ2 + . . .)
)

(22)

The right-hand side of (19) represents the deterministic utility player i receives,

if she decides from the beginning to back off from the doubly reserved slot, thus

no collision can occur. In this case, recall our assumption that she will not reserve

this slot again. Assuming that no further challenges occur, her discounted utility

from backing off is given as ui,s(xi − 1)(1+ δ + δ2 + . . .). If we replace the geometric

series with their closed forms, we obtain that player i transmits in a doubly reserved

slot, if and only if:

E[ui,t(xi)] = µi,t

(

ui,c(xi) +
δ

1− δ
ui,s(xi − 1)

)

+ (1− µi,t)

(

1
1− δ

ui,s(xi)

)

≥
1

1− δ
ui,s(xi − 1). (23)

With the utility function given by (14), we reformulate (23), so that player i

transmits in a doubly reserved slot, if and only if for player i’s belief in superframe t

it holds that:

µi,t ≤
p ln( xi+1

xi
)− c

p ln( xi+1
xi

)− δc
, for i ∈ [1, 2], (24)

with p the prize a player gains for a successful transmission, c the transmission cost,

δ the discount factor and xi the number of slots player i transmits in.
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As we have done for the previously defined games, we aim to identify the Nash

Equilibria of the game. For repeated multi-stage games with imperfect information

the equivalent of a Nash Equilibrium is denoted a Perfect Bayesian Nash Equilibrium

as defined in Definition 2.6. According to [31, p. 326], a Perfect Bayesian Nash

Equilibrium is “a set of strategies and beliefs such that, at any stage of the game,

strategies are optimal given the beliefs, and the beliefs are obtained from equilibrium

strategies and observed using Bayes’ rule”. So, if we take the equilibrium condition

of (24), we identify candidates for the belief in the Perfect Bayesian Nash Equilibria:

µ∗i (xi,t) =
p ln( xi,t+1

xi,t
)− c

p ln( xi,t+1
xi,t

)− δc
, for i ∈ [1, 2], (25)

In the course of the game, players learn from their opponents’ behaviour, regularly

update their beliefs and adapt their reservations accordingly. In order to complete

the requirements of a Perfect Bayesian Nash Equilibrium, Section 6.2 introduces a

belief update algorithm that complies with Bayes’ rule. It describes a decentralised

belief update algorithm that iteratively adapts players’ reservations to the outcome

of previous superframes. Although each player greedily maximizes her individual

utility, this algorithm introduces self-enforcing fairness in the network.

In the following section, we explain the belief update algorithm and how it relates

to the stages of the game. Then we describe how the belief and the correspond-

ing slot allocation evolves in the course of the game. In the current section, we

have identified candidates for Perfect Bayesian Nash Equilibria, given by (25). In

Section 6.3, we show which of these slot allocations is the stable one given the

players’ initial beliefs. In Section 6.4, we show for which discount factor δ and initial

beliefs the stable allocation is Pareto- and socially-optimal as well as fair. Further,

we generalize the result and determine the dependence of fairness on the discount

factor and the initial beliefs. In Section 6.5, we show that with the belief update

algorithm presented the game converges to a stable or quasi-stationary allocation.

Finally, Section 6.6 gives simulation results for the N-player game and evaluates the

impact of varying the maximum number of overlaps ymax and the discount factor δ

on the convergence time.
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6.2 belief update algorithm

In this section, we describe how the beliefs impact the players’ reservation and

transmission decisions for each superframe t. So given a player’s belief, we illustrate

how many slots this player reserves and transmits in. Furthermore, we explain

the events of the game that affect the belief in return. At the end of a superframe,

players have observed their opponent’s behaviour in the last period of the game

and update their beliefs accordingly. With this, we illustrate the temporal evolution

of the beliefs and the corresponding slot allocations in the course of the game.

For the static game, we introduced the beliefs that players maintain in the course

of the game. So in the 2-player game, player 1’s belief µ1,t is her a-priori estimate in

superframe t that player 2 follows through, when she has challenged player 1’s slots.

Player 2’s belief µ2,t is her a-priori estimate in superframe t that player 1 transmits,

when player 2 challenges her slots. The number of slots player i transmitted in

during superframe t− 1 is given as xi,t−1. In the following, we consider superframe t

and relate the elements of the algorithm to the three stages of the game, i.e., beacon

slot 1, beacon slot 2 and the transmission decision:

• Stage 1: This stage corresponds to beacon slot 1, in which player 1 decides on

her reservation, i.e., she reserves the uncollided slots of her last transmission

x1,t−1 and decides whether to reserve a collided slot again.

• Stage 2. This stage corresponds to beacon slot 2, in which player 2 decides on

her reservation. Basis for this decision is the number of uncollided slots of

player 2’s transmission in superframe t− 1 and her current belief µ2,t. Given

this, player 2 doubly reserves the last slot of player 1’s reservation, if this

increases her expected utility E[u2,t(x2)] according to (23).

• Stage 3: This stage corresponds to the players’ transmission decisions. Now,

players have full knowledge about any double reservations, which influences

their transmission decisions.

– Player 1: If there is a doubly reserved slot, she keeps this slot, if this

increases her expected utility according to (23) given µ1,t.
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– Player 2: Her transmission decision always equals her reservation deci-

sion, since the foundation for her decision has not changed since then.

So far, we have assumed that players have an a-priori belief. In the following,

we address this belief and explain how it is determined. At the beginning of a

superframe, players face uncertainty of whether or not they will see a collision in

this next superframe. For Bayesian inference such as requested here, the distribution

of the prior probability is often modelled by a beta distribution [4].

In general, for some parameter α and β the beta density for a random variable z

is proportional to zα−1(1− z)β−1. Its mean is given by E[Z] = α
α+β . In our game, we

interpret α and β in terms of the number of superframes with collisions Φ and the

number of superframes without collisions Ψ, respectively, and write E[Z] = µ. So

players keep counters for the number of superframes with and without collisions.

At the end of superframe t, players know whether or not there has been a collision

in the current superframe. If there was a collision, Φi,t = Φi,t−1 + 1 and Ψi,t = Ψi,t−1,

else Φi,t = Φi,t−1 and Ψi,t = Ψi,t−1 + 1. Note that Φi,0 = φi,0 and Ψi,0 = ψi,0 are

initial values for the parameters of the beta distribution to model the uncertainty

before there are any observations.

For the reservation and transmission decisions in superframe t, the belief is

determined by the events in the superframes up to t− 1. So the prior belief for

superframe t is given by:

E[Zi,t] = µi,t =
Φi,t−1

Φi,t−1 + Ψi,t−1
. (26)

At the end of superframe t, the posterior belief has to be determined, hence, the

value for µ is updated. Since the beta distribution is self-conjugate1, the posterior

distribution is also a beta distribution [42], whereas the Φ is incremented in the case

of a collision and the Ψ in the case there was no collision as explained above. Hence,

player i’s posterior belief in superframe t about player j’s probability to transmit

in a doubly reserved slot is given as the ratio of the number of superframes with

1 Prior and posterior are called conjugate distributions, if the posterior distribution is of the same family
as the prior distribution.
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collisions to the total number of superframes. This posterior belief of superframe t

becomes the a-priori belief of superframe t + 1 (27):

µi,t+1 =
Φi,t

Φi,t + Ψi,t
. (27)

We split Φi,t into the initial value φi,0 and the number of observed collisions

in the course of the game φi,t and write Φi,t = φi,0 + φi,t. The same holds for

Ψi,t = ψi,0 + ψi,t. In the game presented, we assume perfect observation, i.e., both

players interpret collisions correctly as collisions and successful transmissions as

such, hence, there is no false detection rate. This implies that both players observe

the same number of collisions, hence, we set φ1,t = φ2,t = φt and ψ1,t = ψ2,t = ψt.

With this, player i’s prior belief of superframe t + 1 (27) becomes:

µi,t+1 =
φi,0 + φt

φi,0 + ψi,0 + φt + ψt
. (28)

So far, we have explained how the belief influences the reservation and trans-

mission decisions in a single superframe and how those decisions in return affect

the posterior belief. Next, we extend the analysis to the temporal evolution of the

players’ beliefs. The temporal evolution of the players’ beliefs and the corresponding

slot allocations are depicted in Figure 16. The x-axes represent the number of

slots that the depicted player holds normalized by xm. The y-axes give the players’

current beliefs about their opponents’ probability to transmit in a doubly reserved

slot. The convex curve µ∗i (xi,t) given by (25), here with δ = 0.5, marks the points in

which a player receives the same utility whether or not she transmits in a doubly

reserved slot. A point located above µ∗i (xi,t) refers to a situation, in which the

player is not willing to doubly reserve or to transmit in a doubly reserved slot. If in

Figure 16 (left) a point is located below µ∗1(x1,t), player 1 will transmit if challenged

by player 2. Analogously, player 2 will challenge player 1 if the current point in

Figure 16 (right) is below µ∗2(x2,t).

In the example in Figure 16, initial beliefs are set to µi,0 = 0.5. Since players are

greedy, at the beginning of the game player 1 reserves all available slots xm, thus her

trajectory starts at (1,0.5). With no slots left for player 2, her belief is below µ∗2(x2,t),
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Figure 16: Temporal evolution of the players’ beliefs and slot shares given the initial beliefs
µ1,0 = µ2,0 = 0.5 and the discount factor δ = 0.5. Player 1 (left) retreats from
challenged slots as long as her trajectory is above µ∗1(x1,t) and fights if below.
Player 2 (right) challenges player 1’s slots as long as her belief is below µ∗2(x2,t).
She gains slots when player 1 retreats.

thus she will doubly reserve player 1’s last slot. Player 1 backs off until her trajectory

first intersects with µ∗1(x1,t). Note that if player 1 backs off, there is no collision,

hence, the players’ beliefs decrease. Simultaneously, every slot that player 1 loses

because she is backing off, is gained by player 2. In this example, players started

with equal initial beliefs, thus the trajectories are symmetric. At the time player 1’s

trajectory is below µ∗1(x1,t), she starts to transmit in a doubly reserved slot, hence,

collisions occur. This results in an increase of the beliefs with no change in the slot

allocation, i.e., the vertical sections of the trajectories. If player 1’s trajectory is above

µ∗1(x1,t) again, the process of backing off followed by collisions re-occurs. So as

long as player 2 is challenging player 1, i.e., she is doubly reserving player 1’s slots,

player 1 either backs off and loses the slot or transmits and a collision occurs. Hence,

as long as player 2 is challenging player 1, the number of slots player 2 transmits in

is equal to the number of superframes without collisions plus the next challenged

slot, i.e., x2,t = ψt + 1, for t ≤ t∗ with t∗ = min{t : µ2,t+1 ≥ µ∗2(x2,t)}.

Figure 16 suggests that the temporal evolution of the players’ beliefs is determin-

istic. So every time players choose their initial beliefs to be µ1,0 = µ2,0 = 0.5, the

trajectory looks as depicted in the graphs of Figure 16. However, when a player

chooses her initial belief, she has no information about her opponent’s choice. Thus,

she can only estimate which of the possible trajectories actually arises in the game.
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In Section 6.1, we have identified candidates for Perfect Bayesian Nash Equilibria

given by (25) that are the convex curves in Figure 16. Here, we presented a belief

update algorithm that follows Bayes’ rule. In the next section, we merge those two

findings and determine the actual Perfect Bayesian Nash Equilibrium of the game.

It is characterized by a combination of beliefs and slot allocation that results in a

stable slot distribution.

6.3 perfect bayesian nash equilibrium

With (25) of Section 6.1, we have identified candidates for Perfect Bayesian Nash

Equilibria of the dynamic game. In Section 6.2, we have further introduced a belief

update algorithm that follows Bayes’ rule. In this section, we select those candidates

that are stable or quasi-stationary, once reached.

A slot allocation is considered stable, if it does not change over time. Thus, once

the stable slot allocation is reached, the update of the players’ beliefs must not

induce the players to transmit in a different number of slots than the equilibrium

allocation. A slot allocation is considered to be quasi-stationary, if it does not change

for ν sequences of the game.

In this section, we identify two ranges for the players’ initial beliefs. For the

initial beliefs µ2,0 ≤ µ1,0, we show that the slot allocation (x1,t∗ , x2,t∗) is stable and

hence, marks the Perfect Bayesian Nash Equilibrium of the game. For µ2,0 > µ1,0,

the respective slot allocation is quasi-stationary, i.e., changes after ν sequences.

Theorem 6.1 The slot allocation (x1,t∗ , x2,t∗) in superframe t∗, with t∗ = min{t ≥ t′ :

µ2,t+1 ≥ µ∗2(x2,t)}, where t′ = min{t : µ1,t+1 < µ∗1(x1,t)}, and t∗ = φt∗ + ψt∗ :

1. is stable and thus, is the Perfect Bayesian Nash Equilibrium of the game, if it holds

for the players’ initial beliefs that µ2,0 ≤ µ1,0 and

2. is quasi-stationary, i.e., the slot allocation does not change for ν(1+∆t) superframes,

with finite ν that depends on c, p, δ, xm, x2,t∗ and ∆t = ⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉, for the initial

beliefs µ2,0 > µ1,0.
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Figure 17: Player 2’s belief µ2,t over time beyond the equilibrium at t = t∗. If her belief is
below µ∗2(x2,t∗), she challenges and collisions occur, which results in an increase
of her belief. Once her belief is above µ∗2(x2,t∗), no collisions occur, thus, her
belief decreases. Note that time is discrete and lines are only drawn for clarity.

In order to prove that the slot allocation (x1,t∗ , x2,t∗) is stable, we have to show

that for t > t∗ every double reservation results in a collisions because a collision

does not change the slot allocation.

Recall Figure 16, in which the graphs depict the trajectories of the players’ beliefs

versus slot allocation for t ≤ t∗. In contrast, Figure 17 shows player 2’s trajectory

of her belief µ2,t versus time for t ≥ t∗, i.e., once the equilibrium has been reached.

By definition in Theorem 6.1, t = t∗ + 1 is the first time player 2’s belief µ2,t∗+1 is

beyond µ∗2(x2,t∗), given there was an earlier time t′ ≤ t∗ at which player 1’s belief

µ1,t′+1 was below µ∗1(x1,t′). The circumstances at t = t∗ and t = t∗ + 1 are depicted

in the first two points of Figure 17. Every time a player’s belief is larger than

her corresponding µ∗, she does not meet a challenge. Thus, in superframe t∗ + 1,

player 2 does not challenge player 1’s reservation. Without a challenge, there is no

collision, thus, according to (28) the players’ beliefs decrease. This decrease can be

observed in Figure 17 from t = t∗ + 1 to t = t∗ + 2.

Once a player’s belief is smaller than her corresponding µ∗, however, she does

meet a challenge. Therefore, with µ2,t∗+2 < µ∗2(x2,t∗), player 2 challenges player 1’s

reservation and according to (28) the beliefs increase. Provided that for t ≥ t∗

player 1 always transmits if challenged, this sequence of a decreasing belief followed

by an increase of the belief is repeated from then on. We denote the number of

sequences of this kind as ν.
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The slot allocation (x1,t∗ , x2,t∗) is stable, if it holds with every number of sequences

ν, with ν ∈ N. The slot allocation is quasi-stationary, if it holds only with a finite

number of sequences ν, with ν ∈ N. In the following, we evaluate in Lemmas 6.1-6.3

the first sequence, so for ν = 1, and then extend the results in Lemma 6.4 to ν > 1.

Recall that we assume that t = t∗ + 1 is the first superframe, in which player 2 does

not challenge because it holds with her belief µ2,t∗+1 ≥ µ∗2(x2,t∗), given that there is

a time t′ ≤ t∗, for which player 1’s belief is µ1,t′+1 < µ∗1(x1,t′).

1. In Lemma 6.1, we show that player 2 does not challenge for exactly one

superframe. This means that at t = t∗ + 2 it holds that µ2,t∗+2 < µ∗2(x2,t∗) and

she challenges again.

2. In Lemma 6.2, we show that player 2 challenges player 1’s reservation until

t = t∗ + 1 + ∆t1, with ∆t1 = ⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉. This means that at t = t∗ + 1 + ∆t1

player 2’s belief is again larger than µ∗2(x2,t∗) and the end of the first sequence

has been reached.

3. In Lemma 6.3, we show the prerequisite of stability. Thus, we show that

player 1 transmits in challenged slots and hence collisions occur.

Lemmas 6.1-6.3 consider the first sequence denoted by ν = 1 in Figure 17. With

these results, we determine the equilibrium slot allocation (x1,t∗ , x2,t∗). In a final

step, we extend the analysis to ν > 1, with ν ∈ N. Thus, we demonstrate the

stability or quasi-stationary of the determined slot allocation.

4. In Lemma 6.4, we show that for µ2,0 ≤ µ1,0 the determined slot allocation

(x1,t∗ , x2,t∗) is stable for every sequence ν→ ∞. Furthermore, for µ2,0 > µ1,0 we

give the limit for the number of sequences ν that the slot allocation (x1,t∗ , x2,t∗)

is quasi-stationary.

In the following, we consider the first sequence ν = 1 of Figure 17. At the end of

superframe t∗, players have seen φt∗ superframes with and ψt∗ superframes without
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collisions. According to the definition in Theorem 6.1, the posterior belief of player 2

in superframe t∗, which is the a-priori belief of superframe t∗ + 1, is then given as:

µ2,t∗+1 =
φ2,0 + φt∗

φ2,0 + ψ2,0 + φt∗ + ψt∗
≥ µ∗2(x2,t∗). (29)

Therefore, in superframe t∗ + 1, player 2 does not challenge player 1’s reservation,

hence, no collision occurs. Thus, with the increase of the number of superframes

without collisions ψ the players’ beliefs decrease. The lack of challenging player 1’s

reservation implies that the slot distribution remains the same whereas the belief

decreases. In Lemma 6.1, we show that player 2 does not challenge player 1’s

reservation for exactly one superframe. So at t = t∗ + 2, player 2’s belief µ2,t∗+2 is

again smaller than µ∗2(x2,t∗) and she restarts challenging player 1.

Lemma 6.1 Let t∗ = min{t ≥ t′ : µ2,t+1 ≥ µ∗2(x2,t)}, where t′ = min{t : µ1,t+1 <

µ∗1(x1,t)} with µ∗2(x2,t) < 1. Then at t = t∗ + 2, that is after one superframe of not

challenging player 1’s reservation, player 2 starts challenging again, because her belief is

smaller than µ∗2(x2,t∗).

Proof For t = t∗ + 1 it holds that µ2,t ≥ µ∗2(x2,t∗), so we have to show that at

t = t∗ + 2 for player 2 it holds that µ2,t < µ∗2(x2,t∗). In superframe t∗ + 1, there

has been no collision because player 2 does not challenge player 1’s reservation.

Thus, the number of superframes with and without collisions is given as φt∗+1 = φt∗

and ψt∗+1 = ψt∗ + 1, respectively. So, we have to show that the a-priori belief of

superframe t∗ + 2 complies with:

µ2,t∗+2 =
φ2,0 + φt∗

φ2,0 + ψ2,0 + φt∗ + (ψt∗ + 1)
< µ∗2(x2,t∗). (30)

We solve µ2,t∗+1 ≥ µ∗2(x2,t∗) given by (29) for φt∗ and obtain that the number of

superframes with collisions at t = t∗ has to comply with:

φt∗ ≥
µ∗2(x2,t∗)

1− µ∗2(x2,t∗)
(ψt∗ + ψ2,0)− φ2,0. (31)
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We require the minimum φt∗ for which (31) holds, so this can be written as:

φt∗ =

⌈

µ∗2(x2,t∗)

1− µ∗2(x2,t∗)
(ψt∗ + ψ2,0)− φ2,0

⌉

. (32)

If we insert (32) into (30) and re-arrange the terms, we obtain:

µ2,t∗+2 =
ψt∗ + ψ2,0

ψt∗ + ψ2,0 + (1− µ∗2(x2,t∗))
µ∗2(x2,t∗). (33)

The discount factor δ, which is one of the parameters that determines µ∗2(x2,t∗),

is defined in the interval [0, 1). So, according to (25), the candidate for a Perfect

Bayesian Nash Equilibrium µ∗2(x2,t∗) is also in the interval [0, 1). Hence, with

(1− µ∗2(x2,t∗)) > 0, the prefactor of µ∗2(x2,t∗) on the right-hand side of (33) is smaller

than one, hence, µ2,t∗+2 < µ∗2(x2,t∗). This connotes that player 2 starts to challenge

player 1’s reservation in superframe t∗+ 2, i.e., one superframe after the equilibrium

has been reached.

Lemma 6.1 showed that player 2 starts to challenge player 1’s reservation in

superframe t∗ + 2. If we refer to Figure 17 again, Lemma 6.1 demonstrates that

at t = t∗ + 2 the graph of player 2’s belief µ2,t is below µ∗2(x2,t∗). In the subse-

quent Lemma 6.2, we show that player 2 challenges player 1’s reservation for ∆t1

superframes given that player 1 meets the challenge with transmitting. Thus, at

t = t∗ + 2 + ∆t1, player 2’s belief rises above µ∗2(x2,t∗) again.

Lemma 6.2 Let t∗ = min{t ≥ t′ : µ2,t+1 ≥ µ∗2(x2,t)}, where t′ = min{t : µ1,t+1 <

µ∗1(x1,t)} and µ∗2(x2,t) < 1. Assuming that player 1 always transmits in a double reserva-

tion and thus only collisions occur, player 2 challenges for ∆t1 = ⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉ superframes,

i.e., until t = t∗ + 2 + ∆t1.

Proof We assume that player 1 always transmits in a doubly reserved slot. Con-

sequently, every subsequently challenged superframe experiences a collision, thus

according to (28), the players’ beliefs increase and the slot allocation remains the

same. We assume that it takes ∆t1 superframes with collisions until player 2’s belief

is larger than µ∗2(x2,t∗) again and she terminates challenging player 1’s reservation.
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To prove Lemma 6.2, we have to show that ∆t1 = min{∆t : µ2,t ≥ µ∗2(x2,t∗), with t =

t∗ + 2 + ∆t} = ⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉. So we write:

∆t1 = min
{

∆t :
φ2,0 + (φt∗ + ∆t)

φ2,0 + ψ2,0 + (φt∗ + ∆t) + (ψt∗ + 1)
≥ µ∗2(x2,t∗)

}

. (34)

If we insert φt∗ given by (32) into (34), we obtain the number of superframes that

player 2 challenges player 1 as:

∆t1 =

⌈

µ∗2(x2,t∗)

1− µ∗2(x2,t∗)

⌉

. (35)

Thus, player 2 challenges player 1’s reservation until t = t∗ + 2 + ∆t1, where

∆t1 = ⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉. In superframe t = t∗ + 2 + ∆t, player 2’s belief is larger than

µ∗2(x2,t∗), thus, she does not challenge in this superframe. This implies that she

challenges player 1’s reservation in the interval [t∗ + 2, t∗ + 1 + ⌈ µ∗2(x2,t∗ )
1−µ∗2(x2,t∗ )

⌉].

For the previous lemmas, we assumed that player 1 transmits in every doubly

reserved slot within the determined interval. In Lemma 6.3, we show that this

assumption holds.

Lemma 6.3 Given that player 2 challenges player 1’s reservation for t ∈ [t∗ + 2, t∗ + 1 +

⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉], player 1 transmits in every doubly reserved slot. Thus, every superframe in

the specified interval experiences a collision.

Proof Player 1 transmits in a doubly reserved slot in superframe t, if and only if

µ1,t < µ∗1(x1,t∗). To prove that player 1 transmits provided that player 2 challenges

in the specified interval, we have to consider its bounds. If there are only collisions,

the beliefs increase monotonically. Thus, if the condition µ1,t < µ∗1(x1,t∗) holds for

the bounds, it also holds within the interval.

The lower bound is given by superframe tlow = t∗ + 2, thus, it has to hold that

µ1,tlow
= µ1,t∗+2 < µ∗1(x1,t∗):

µ1,tlow
=

φ1,0 + φt∗

φ1,0 + ψ1,0 + φt∗ + (ψt∗ + 1)
< µ∗1(x1,t∗). (36)
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The upper bound of the specified interval is given by tup = t∗ + 1 + ⌈ µ∗2(x2,t∗ )
1−µ∗2(x2,t∗ )

⌉.

Therefore, in superframe tup, the number of superframes with and without collisions

is given by φtup = φt∗ + ⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉ − 1 and ψtup = ψt∗ + 1, respectively. Hence,

µ1,tup < µ∗1(x1,t∗) becomes:

µ1,tup =
φ1,0 + (φt∗ + ⌈

µ∗2(x2,t∗ )
1−µ∗2(x2,t∗ )

⌉ − 1)

φ1,0 + ψ1,0 + (φt∗ + ⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉ − 1) + (ψt∗ + 1)

< µ∗1(x1,t∗). (37)

If µ∗2(x2,t∗) > 0, it holds that ⌈ µ∗2(x2,t∗ )
1−µ∗2(x2,t∗ )

⌉ − 1 ≥ 0, thus µ1,tup ≥ µ1,tlow
. Therefore,

the inequality µ1,tlow
< µ∗1(x1,t∗) is true, if µ1,tup < µ∗1(x1,t∗). Thus, it is sufficient to

determine the minimum φt∗ , for which (37) holds given player 1’s initial beliefs µ1,0

and the parameters of the game. Reformulating (37) yields:

φt∗ =

⌈

(ψt∗ + ψ1,0 + 1)
µ∗1(x1,t∗)

1− µ∗1(x1,t∗)
−

⌈

µ∗2(x2,t∗)

1− µ∗2(x2,t∗)

⌉

− φ1,0 + 1
⌉

. (38)

If the number of superframes with collisions φt∗ complies with (38), player 1’s

belief µ1,t is always smaller than µ∗1(x1,t∗) for t ∈ [t∗+ 2, t∗+ 1+ ⌈ µ∗2(x2,t∗ )
1−µ∗2(x2,t∗ )

⌉]. Hence,

player 1 transmits in every challenged slot of the first sequence ν = 1 in Figure 17.

The consequence are collisions, which do not change the slot allocation (x1,t∗ , x2,t∗),

hence the allocation is stable in this first sequence.

Recall Figure 17 again. In Lemma 6.1, we show that player 2 does not challenge

player 1’s reservation in superframe t∗ + 1. As a consequence, the players’ beliefs

decrease. In Lemma 6.2, we demonstrate that player 2 challenges player 1’s reserva-

tion for ∆t1 = ⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉ superframes. Finally, Lemma 6.3 provides the proof that

player 1 in fact transmits in each of those challenged superframes, such that the slot

allocation remains the same in this first sequence ν = 1.

In the subsequent paragraphs, we determine this slot allocation (x1,t∗ , x2,t∗). If we

set (32) equal to (38) and neglect the ceiling functions, we can determine x2,t∗ for
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which both requirements regarding the number of superframes with collisions hold

and obtain the following expression:

(ψt∗ + ψ1,0 + 1)
µ∗1(x1,t∗)

1− µ∗1(x1,t∗)
− (ψt∗ + ψ2,0 + 1)

µ∗2(x2,t∗)

1− µ∗2(x2,t∗)
= φ1,0 − φ2,0 (39)

Consider for example a game with symmetric players that choose equal initial

values for φ and ψ, so φ1,0 = φ2,0 and ψ1,0 = ψ2,0. Then (39) simplifies to:

µ∗1(x1,t∗)

1− µ∗1(x1,t∗)
=

µ∗2(x2,t∗)

1− µ∗2(x2,t∗)
, (40)

which holds for x1,t∗ = x2,t∗ . Thus, in the stable slot allocation for symmetric players

with equal initial belief values the resources are equally distributed.

Generally, player 2 gains every slot player 1 backs off from. In superframe t∗,

player 2 additionally challenges and transmits in one of player 1’s slots, thus,

x2,t∗ = ψt∗ + 1. Player 1, however, transmits in the maximum number of slots xm

reduced by the number of slots she backed off from ψt∗ . So in superframe t∗, player 1

transmits in x1,t∗ = xm − ψt∗ = xm − x2,t∗ + 1 slots.

Recall that µi,t+1 in (28) was defined as µi,t+1 =
φi,0+φt

φi,0+ψi,0+φt+ψt
. Thus, we have to

provide initial values for the number of superframes with and without collisions,

φi,0 and ψi,0, respectively. If not specified otherwise, we set ψi,0 = 1 and φi,0 =

µi,1
1−µi,1

ψi,0 =
µi,1

1−µi,1
. Furthermore, we approximate ln(1 + 1

x ) ≈
1
x for 1

x ≪ 1. Thus,

with the initial values for φi,0 and ψi,0 and the relation between x1,t∗ and x2,t∗ , we

rewrite (39) to:

(x2,t∗ + 1)(2x2,t∗ − (xm + 1))
x2,t∗(xm + 1− x2,t∗)

=
c(1− δ)

p

µ1,0 − µ2,0

(1− µ1,0)(1− µ2,0)
:= a. (41)

The variable a is a shorthand term for the right-hand side of (41) and thus, is

given externally by the cost c, the prize p, the discount factor δ and the players’

initial beliefs µ1,0 and µ2,0. With this, we solve (41) for x2,t∗ and normalize by xm:

x2,t∗

xm
=

(xm + 1)(1 + a)− 2 +
√

((xm + 1)(1 + a)− 2)2 + 4(xm + 1)(2 + a)

2(2 + a)xm
. (42)
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Lemmas 6.1-6.3 show that the slot allocation (x1,t∗ , x2,t∗) that can be determined

by (42) is stable for the first sequence ν = 1. Moreover, (42) illustrates how a player’s

share is correlated with her initial belief. The smaller player 2 chooses her initial

belief, the larger her share given fixed initial belief of player 1.

In the following paragraphs, we extend the stability analysis to ν > 1. Lemmas 6.1

and 6.2 are independent of ν. Thus, it always takes one superframe for µ2,t to fall

below µ∗2(x2,t∗). Furthermore, it always takes ∆t = ∆t1 = ⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉ superframes

for µ2,t to rise above µ∗2(x2,t∗) again. Thus, the course of the graph in Figure 17 is

equal for each sequence provided that player 1 transmits in every challenged slot.

It remains to determine the upper bound ν∗ for the number of sequences that

player 1 does in fact transmit if challenged. In Lemma 6.3, we illustrated that it is

sufficient to evaluate the end of a sequence. For sequence ν the end is reached at

tν = t∗+ ν(∆t + 1)− 1, with the number of superframes with and without collisions

given by φtν = φt∗ + ν · ∆t − 1 and ψtν = ψt∗ + ν, respectively. So, we have to

determine for which sequences ν∗ it holds that:

ν∗ = max
{

ν : µ1,tν+1 =
φ1,0 + φt∗ + ν · ∆t− 1

φ1,0 + φt∗ + ν · ∆t− 1 + ψ1,0 + ψt∗ + ν
< µ∗1(x1,t∗)

}

. (43)

With φt∗ given by (32), ∆t = ⌈
µ∗2(x2,t∗ )

1−µ∗2(x2,t∗ )
⌉, ψ1,0 = 1, x1,t∗ = xm + 1− x2,t∗ ψt∗ =

x2,t∗ − 1 and the approximation ln(1+ 1
x ) ≈

1
x for 1

x ≪ 1, we rewrite (43) and obtain:

ν∗ = max
{

ν : x2
2,t∗(2p + γ)− x2,t∗(xm + 1)(p + γ) > νp(xm + 1− 2x2,t∗)

}

, (44)

using γ as a shorthand term for γ = c(1− δ)(φ1,0 − φ2,0 − 1). The slot allocation

(x1,t∗ , x2,t∗) is stable, if there is no upper bound for ν∗ that solves (44). In contrast,

we refer to the slot allocation (x1,t∗ , x2,t∗) to be quasi-stationary, if there is an upper

bound for ν∗. There are three cases that need to be considered:

1. Players are symmetric, thus, they have equal initial beliefs µ1,0 = µ2,0. In (40),

we have shown that in the corresponding slot allocation players share the

resources equally, so x1,t∗ = x2,t∗ .
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2. Player 1 chooses an initial belief larger than player 2’s belief, so µ1,0 > µ2,0.

According to (42), this corresponds to x1,t∗ < x2,t∗ .

3. Player 1 chooses an initial belief smaller than player 2’s belief, so µ1,0 < µ2,0.

According to (42), this corresponds to x1,t∗ > x2,t∗ .

In Lemma 6.4, we demonstrate that in the first and second case, i.e., µ1,0 ≥ µ2,0,

the corresponding slot allocation x1,t∗ ≤ x2,t∗ is stable, so we show that (44) holds for

any ν > 1, with ν ∈ N. Furthermore, we show that in the third case of µ1,0 < µ2,0

there is an upper bound ν∗ for the number of sequences ν, thus the slot allocation

x1,t∗ > x2,t∗ is considered to be quasi-stationary.

Lemma 6.4 With initial beliefs µ1,0 ≥ µ2,0, the corresponding slot allocation (x1,t∗ , x2,t∗)

is stable for any sequence ν ∈ N. If players’ initial beliefs are µ1,0 < µ2,0, the limit for the

number of sequences ν∗ that the slot allocation (x1,t∗ , x2,t∗) is quasi-stationary is given by

ν∗ <
c(1−δ)x3

2,t∗+2(p−c(1−δ)(xm+1))x2
2,t∗+(xm+1)(c(1−δ)(xm+1)−3p)x2,t∗+(xm+1)2 p

p(xm+1−x2,t∗ )(xm+1−2x2,t∗ )
.

Proof The first case to be considered is the game with symmetric players. As noted

before, players with equal initial beliefs reach a fair slot allocation. If we insert

the fair slot allocation into (44), we observe that the function is independent of the

number of sequences ν. Hence (44) holds for any ν ∈ N and is thus, stable.

In the second case, players are asymmetric in their beliefs with µ1,0 > µ2,0,

which corresponds to player 2 gaining a larger share of resources. Knowing that

x1,t∗ < x2,t∗ implies that the right-hand side of the inequality in (44) is negative, so

we reformulate (44) and write:

ν >

x2
2,t∗(2p + γ)− x2,t∗(xm + 1)(p + γ)

p(xm + 1− 2x2,t∗)
, (45)

using the shorthand term γ = c(1− δ)(φ1,0 − φ2,0 − 1). Recall that stability is given,

if (44) holds for ν ∈ N. Hence, we have to show that the right-hand side of the

inequality (45) is less than 1. By this, any ν ≥ 1 complies with (44). With x1,t∗ < x2,t∗ ,

the denominator of the right-hand side of (45) is negative, so we have to show that:

x2
2,t∗(2p + γ)− x2,t∗(xm + 1)(p + γ) > p(xm + 1− 2x2,t∗), (46)



102 dynamic game of distributed reservation protocol

with γ = c(1 − δ)(φ1,0 − φ2,0 − 1). Recall that the equilibrium slot allocation

(x1,t∗ , x2,t∗) is determined by players’ initial beliefs, which in turn are formed using

the initial values for φ1,0 and φ2,0. Thus, (46) is indeterminate because it contains

both x2,t∗ and φi,0, for i ∈ [1, 2]. As a consequence, we make use of (41) to solve (46).

In (41), we substitute the initial beliefs by µi,0 =
φi,0

φi,0+1 , for i ∈ [1, 2], rearrange the

equation and obtain:

p(x2,t∗ + 1)(2x2,t∗ − (xm + 1))
x2,t∗(xm + 1− x2,t∗)

= c(1− δ)(φ1,0 − φ2,0). (47)

With the help of (47) we solve (46). If we insert the left-hand side of (47) for

c(1− δ)(φ1,0 − φ2,0) in the shorthand term γ of (46), we can reduce (46) to:

x2,t∗((xm + 1)− x2,t∗)2

xm + 1− x2,t∗
> 0. (48)

In the stability analysis that we are evaluating in the current paragraphs, we

consider the case that x1,t∗ < x2,t∗ . Thus, slot allocations for which x1,t∗ < x2,t∗ and

(48) hold, are stable. Hence, next we evaluate the left-hand side of (48) to identify

those stable slot allocations.

Equation (48) has a zero-crossing at x2,t∗ = 0 and a double zero-crossing at

x2,t∗ = xm + 1, which is a removable discontinuity. Furthermore, there is a maximum

turning point at x2,t∗ =
xm+1

2 . Knowing the shape of the curve of the left-hand side

of (48), we deduce that for x1,t∗ < x2,t∗ it is larger than zero, so (48) holds. Thus,

(46) and (45) hold. So for x1,t∗ < x2,t∗ the stability requirement of (44) holds for any

sequence ν > 0, which proves that the slot allocation (x1,t∗ , x2,t∗) is stable.

In the third case players are asymmetric in their beliefs with µ1,0 < µ2,0, which

implies that player 1 gains a larger share of resources than player 2. Knowing that

x1,t∗ > x2,t∗ implies that the right-hand side of the inequality in (44) is negative, so

we reformulate (44) and write:

ν <

x2
2,t∗(2p + γ)− x2,t∗(xm + 1)(p + γ)

p(xm + 1− 2x2,t∗)
, (49)
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with the shorthand term γ = c(1− δ)(φ1,0 − φ2,0 − 1). If we insert the left-hand

side of (47) for c(1− δ)(φ1,0 − φ2,0) in the shorthand term γ of (49), we are able

to solve the indeterminate (49) and obtain the limit of the number of sequences

ν∗ <
c(1−δ)x3

2,t∗+2(p−c(1−δ)(xm+1))x2
2,t∗+(xm+1)(c(1−δ)(xm+1)−3p)x2,t∗+(xm+1)2 p

p(xm+1−x2,t∗ )(xm+1−2x2,t∗ )
.

In this section, we have shown that for initial beliefs µ1,0 ≥ µ2,0, there exists a stable

slot allocation (x1,t∗ , x2,t∗), with x1,t∗ ≤ x2,t∗ . Moreover, in the case that µ1,0 < µ2,0,

we have determined the number of sequences ν∗ for which the corresponding

slot allocation x1,t∗ > x2,t∗ is quasi-stationary. In the next section, we evaluate the

fairness of the identified slot allocations.

6.4 fairness of perfect bayesian nash equilibrium

In this section, we show how the fairness according to Jain [38] depends on the

players’ initial beliefs as well as the discount factor δ, with δ ∈ [0, 1). First, we

illustrate that the Perfect Bayesian Nash Equilibrium of the game is Pareto- and

socially-optimal and has a fairness of one, only if players have equal initial beliefs.

Then we generalize to determine how the fairness index relates to the players’ initial

beliefs and the chosen discount factor δ.

In Section 6.1, we identified candidates for Perfect Bayesian Nash Equilibria. Those

candidates were given by (25) that determines the belief µ∗i (xi,t) at which player i

is indifferent about transmitting and not transmitting given that she transmits in

xi,t slots. In Section 6.3, we showed which of those candidates are reached in the

game given the players’ initial beliefs µ1,0 and µ2,0. In Theorem 6.2 we show that

only if players choose equal initial beliefs the game reaches the stable slot allocation

x1,t∗ = x2,t∗ that maximizes Jain’s fairness index and can thus, be considered both

Pareto- and socially-optimal.

Theorem 6.2 The Perfect Bayesian Nash Equilibrium of the game is Pareto- and socially-

optimal and Jain’s fairness index is maximized, iff both players have the same initial beliefs.
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Proof According to the Lemma 5.7 in Section 5.3, an equilibrium maximizes the

fairness according to Jain if both players receive the same share of resources, i.e.,

x1,t∗ = x2,t∗ . This equilibrium is also Pareto- and socially-optimal (Lemmas 5.3,5.4).

If we insert x1,t∗ = x2,t∗ in (39), which is the first equation to determine the stable

allocation of the game, and set ψ1,0 = ψ2,0 = 1 as explained before, we obtain:

0 = φ1,0 − φ2,0. (50)

Thus, in order to reach the fair allocation of x1,t∗ = x2,t∗ , the initial values φ1,0 and

φ2,0 have to be equal. As a consequence, the players’ initial beliefs have to be the

same. Hence, we showed that the Perfect Bayesian Nash Equilibrium is fair, if and

only if both players have the same initial beliefs.

In the next paragraphs, we consider the Perfect Bayesian Nash Equilibria that

occur if the players choose unequal initial beliefs µ1,0 6= µ2,0. So we generalize the

result of Theorem 6.2 and, provided that there is a certain target fairness index, we

study which combination of initial beliefs leads to it.

Recall that ui(xi) denotes the utility player i gains from transmitting in xi slots.

The utility profile u then denotes the vector of utilities, i.e., u = (u1(x1), u2(x2)).

For our fairness analysis, we consider a target fairness index f (u). First we have to

identify the corresponding equilibrium slot allocation. Secondly, we determine the

initial beliefs (µ1,0, µ2,0) that result in the required slot allocation. Recall (5), which

stated that Jain’s fairness index is given as a function of the first two moments of

the players’ utilities:

f (u) =
[∑N

i=1 ui]
2

N ∑
N
i=1 u2

i

, ui ≥ 0, f (u) ∈ [0, 1].

If we solve this for player 2 in the 2-player game, this yields:

u2 =
1∓ 2

√

f (u)(1− f (u))

2 f (u)− 1
u1 (51)

p ln(x2 + 1)− cx2 =
1∓ 2

√

f (u)(1− f (u))

2 f (u)− 1
(p ln(x1 + 1)− c(x1)) (52)
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Figure 18: Player 2’s share depending on her initial belief µ2,0 given player 1’s initial belief
and the common discount factor. For δ = 0 (left), player 2’s share increases with
player 1’s initial belief. For a fixed initial belief of player 1 µ1,0 = 0.97 (right),
we observe that player 2’s share increases the smaller the discount factor. Note
that if player 2’s share is larger than the fair share of x2,t∗/xm, the equilibrium is
stable. Shares smaller than the fair share are quasi-stationary.

Let x′2 be the solution to (52), with x1 = xm− x2 + 1. Then we achieve a fairness index

of f (u) if the equilibrium slot distribution is given by (x1,t∗ , x2,t∗) = (xm + 1− x′2, x′2).

Equation (41) represents the relationship between the equilibrium slot allocation

and the initial beliefs given the discount factor δ. So if we set x2,t∗ = x′2 and solve

(41) for µ2,0, we determine the initial belief µ2,0 depending on player 1’s initial belief

µ1,0 for which the target fairness index f (u) is achieved and obtain:

µ2,0 =
q(1− µ1,0)− µ1,0

q(1− µ1,0)− 1
, with q =

p(x′2 + 2)(2x′2 − (xm + 1))
c(1− δ)x′2((xm + 1)− x′2)

. (53)

Figure 18 plots player 2’s share x2,t∗/xm in the equilibrium allocation given by

(42) against different initial beliefs µ2,0. In Figure 18 (left), the discount factor is

set to δ = 0, so players do not take into account future utilities, and the curves are

depicted for different initial beliefs of player 1. In Figure 18 (right), player 1’s initial

belief is set to µ1,0 = 0.97 and the parameter of the curves is the discount factor δ.

For our analysis, we consider a target fairness index of f (u) = 0.999. If we

substitute this target fairness index in (52), player 2’s share of resources has to be

x2,t∗/xm ∈ [0.4, 0.6]. Thus, any share x2,t∗/xm ∈ [0.4, 0.6] results in a fairness index

f (u) ≥ 0.999. The dotted lines at x2,t∗/xm = 0.4 and x2,t∗/xm = 0.6 in the graphs of

Figure 18 denote those bounds on player 2’s share.
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Hence, we have to determine the combinations of initial beliefs µ1,0 and µ2,0 that

correspond to x2,t∗/xm ∈ [0.4, 0.6] to achieve or exceed the target fairness index of

f (u) = 0.999. The intersection of the curves with the lower border x2,t∗/xm = 0.4 is

given by (53). So as long as player 2’s initial belief µ2,0 is smaller than this threshold

belief, the target fairness is achieved or even exceeded.

In Figure 18 (left), we observe that the larger player 1’s initial belief µ1,0, the larger

is player 2’s maximum initial belief µ2,0 that still achieves the target fairness. Recall

that a fairness of one, which corresponds to x2,t∗/xm = 0.5, is only achieved when

µ1,0 = µ2,0. Figure 18 (left) also illustrates the previous findings that as long as

player 2 chooses an initial belief µ2,0 < µ1,0, she receives a share larger than the fair

share. Analogously, she receives a share smaller than the fair share, if she selects an

initial belief µ2,0 > µ1,0. Recall, that for µ2,0 > µ1,0, the equilibrium slot allocation is

only quasi-stationary.

Next, we consider Figure 18 (right), which shows the dependence of player 2’s

share on the discount factor δ. As expected from Theorem 6.2, we observe that

independent of the discount factor δ all curves intersect for µ2,0 = µ1,0 = 0.97. For

µ2,0 6= µ1,0, we note that the impact of the initial beliefs diminishes for larger valua-

tion of the future, i.e., increasing δ. So, the larger δ, the flatter is the corresponding

curve and hence, the closer is player 2’s share to the fair share.

We conclude from this section that players receive the fair share if and only if

both players choose the same initial belief, no matter what their discount factor δ

is. Further, if we assume that players intend to maximize their share, player 2 has

an incentive to choose an initial belief as small as possible. If we further assume

that player 1 anticipates this behaviour, she also has an incentive to choose an initial

belief as small as possible to gain at least the fair share. Hence, the rational initial

beliefs are µ1,0 = µ2,0 = 0. This combination of initial beliefs coincides with the fair

and stable slot allocation for any discount factor of the players. In the next section,

we analyse the convergence of the game. Thus, we answer the question under which

conditions the game arrives at the identified equilibrium slot allocations.
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Figure 19: Detail of Figure 16 (left). The figure on the right shows the initial sections of
player 1’s trajectory, while the figure on the left shows the last sections before the
equilibrium. Note the different ranges of the x- and y-axes. The ψSl denote the
superframes without collisions, while φSl denote the superframes with collisions.

6.5 convergence to perfect bayesian nash equilibrium

In Section 6.3, we identified the stable point of the game given the players’ initial

beliefs. However, so far we have not shown that the game actually arrives at this

stable point. In this section, we discuss the convergence of the dynamic game.

Theorem 6.1 states that the slot allocation (x1,t∗ , x2,t∗) is stable. So player i’s belief

in the equilibrium has to be µi,t∗+1 =
φi,0+φt∗

φi,0+ψi,0+φt∗+ψt∗
. Hence, the game must have

undergone φt∗ superframes with and ψt∗ superframes without collisions. In this

section, we show for which initial beliefs µ1,0 and µ2,0, we pass the point (x1,t∗ , x2,t∗)

in the course of the game with φt∗ and ψt∗ . Thereby, we prove that we reach the

stable allocation and hence, that the game converges to the Perfect Bayesian Nash

Equilibrium of the game.

The graphs Figure 19 are a detail of Figure 16 (left). They show the initial sections

of the trajectory of player 1’s belief versus slot allocation (right) and the last sections

before the equilibrium is reached (left). Note the different ranges of the x- and

y-axes. In the graphs, ψS1, ψS2, . . . denote those sections that relate to superframes

without collisions. Section ψS1 in Figure 19 (right), for instance, connotes that at

t = t1 the game has undergone ψt1 = ψS1 superframes without collisions, which

results in player 1’s belief µ1,t1 to fall below µ∗1(x1,t1). Recall that prior to the

equilibrium the number of slots that player 1 uses for transmission is directly

related to the number of superframes without collisions, i.e., x1,t1 = xm − ψS1. At
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the end of section ψS2, which we assume to be reached at t = t2, the game has

undergone ψt2 = ψS1 + ψS2 superframes without collisions. Player 1’s share is then

x1,t2 = xm − ψS1 − ψS2. So at t = tk in Figure 19 (left), the game has undergone

ψtk
= ∑

k
l=1 ψSl superframes without collisions. So if tk = t∗, we have discovered the

k for which ∑
k
l=1 ψSl = ψt∗ = x2,t∗ − 1 = xm − x1,t∗ + 1.

Analogously, φS1, φS2, . . . denote those sections of the trajectory that relate to

superframes with collisions. Note that φSl is not equal to the difference in the beliefs,

as suggested by the label of the y-axes. Rather, it is the number of superframes with

collisions that correspond to this difference in belief. For instance, assume the belief

at the lower edge is given by µ = φ
φ+ψ , then the belief at the respective upper edge

is given by µ = φ+φSl

φ+ψ+φSl
.

Assume that we have identified k such that ∑
k
l=1 ψSl = ψt∗ holds. Thus, we

have reached the point (x1,t∗ , x2,t∗). This slot allocation is stable, if the number of

superframes with and without collisions are given by φt∗ and ψt∗ , respectively. By

definition ψt∗ = x2,t∗ − 1, so this condition holds. It remains to be shown that the

number of superframes with collisions is equal to φt∗ .

In Figure 19 (left), we observe that it is not a unique number of superframes

with collisions that corresponds to the particular slot allocation (x1,t∗ , x2,t∗), but an

interval, i.e., section φSk of the trajectory. To show that the game converges to the

slot allocation (x1,t∗ , x2,t∗), we have to show that the effective number of superframes

with collisions φt∗ is within this interval, i.e., falls into section φSk of the trajectory.

The lower edge of section φSk in Figure 19 (left) is given by φk,low = ∑
k−1
l=1 φSl , while

the upper edge is given by φk,up = ∑
k
l=1 φSl , with known k, for which ∑

k
l=1 ψSl = ψt∗ .

Thus, we have to show that φk,low ≤ φt∗ ≤ φk,up holds. Note that in Figure 19

(left) the trajectory of player 1’s belief ends below φk,up. The reason is that player 2

stopped challenging player 1, thus, the belief decreases. So in this example it holds

that φt∗ ∈ [φk,low, φk,up].

At the upper edge, player 1’s belief, which we denote by µ1,tk,up , has just risen

above µ∗1(x1,tk,up). So we write:

µ1,tk,up =
φ1,0 + φk,up

φ1,0 + φk,up + ψ1,0 + ∑
k
l=1 ψSl

≥ µ∗1(x1,tk,up), (54)
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with x1,tk,up = x1,t∗ = xm − ∑
k
l=1 ψSl = xm − ψt∗ = xm − x2,t∗ + 1 and ψ1,0 = 1. We

reformulate (54) and use the approximation ln(1 + 1
x ) ≈

1
x for 1

x ≪ 1 to determine

the minimum φk,up that solves (54):

φk,up =

⌈

x2,t∗(p− cx1,t∗)

cx1,t∗(1− δ)
− φ1,0

⌉

. (55)

Player 1’s belief at the lower edge is denoted by µ1,tk,low . Unfortunately, we cannot

form this belief analogous to µ1,tk,up . However, if we consider Figure 19 (left) again,

we notice that player 1’s belief at the lower edge µ1,tk,low only differs from her belief

at the previous section’s upper edge µ1,tk-1,up in the number of superframes without

collisions. So, analogously, we form µ1,tk-1,up with φk-1,up = φk,low:

µ1,tk-1,up =
φ1,0 + φk,low

φ1,0 + φk,low + ψ1,0 + ∑
k−1
l=1 ψSl

≥ µ∗1(x1,tk-1,up), (56)

with x1,tk-1,up = xm −∑
k−1
l=1 ψSl = xm − ψt∗ + ψSk = xm − x2,t∗ + 1 + ψSk and ψ1,0 = 1.

If we reformulate (56) according to (55) using the approximation ln(1 + 1
x ) ≈

1
x for

1
x ≪ 1, we obtain the lower bound φk,low:

φk,low =

⌈

(x2,t∗ − ψSk)(p− c(x1,t∗ + ψSk))

c(x1,t∗ + ψSk)(1− δ)
− φ1,0

⌉

(57)

So far, we have determined the interval [φk,low, φk,up], for which the number

of superframes with collisions corresponds to the slot allocation (x1,t∗ , x2,t∗). In

the subsequent paragraphs, we show on which condition φt∗ as part of the stable

allocation, is within these bounds. Hence, we present the condition for the game to

converge to the Perfect Bayesian Nash Equilibrium.

The number of superframes with collisions in the equilibrium φt∗ is given by (32).

With ψ2,0 = 1, ψt∗ = x2,t∗ − 1 and the approximation ln(1 + 1
x ) ≈

1
x for 1

x ≪ 1, we

rewrite (32) to:

φt∗ =

⌈

x2,t∗(p− cx2,t∗)

cx2,t∗(1− δ)
− φ2,0

⌉

. (58)
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First, we consider the lower bound. Hence, we have to find for which x2,t∗ it holds

that φt∗ ≥ φk,low. We neglect the ceiling function for both sides of the inequality.

If the inequality holds, then it also holds if the ceiling function is applied on both

sides. We reformulate the inequality φt∗ ≥ φk,low and obtain:

c(1− δ)(φ1,0 − φ2,0) ≥
(x2,t∗ − ψSk)(p− c(x1,t∗ + ψSk))

x1,t∗ + ψSk
− p + cx2,t∗ . (59)

If we insert the left-hand side of (47) for c(1− δ)(φ1,0 − φ2,0) in (59) to make the

equation determinate, we obtain:

(x2,t∗ − ψSk)(p− c(x1,t∗ + ψSk))

x1,t∗ + ψSk
−

p(x2,t∗ + 1)
x1,t∗

+
p

x2,t∗
+ cx2,t∗ ≤ 0. (60)

Recall that player i’s utility (14) was given by ui(S) = p ln(xi + 1) − cxi. For

greedy players we require player i’s utility to be maximized for xi = xm, so we

set p = c(xm + 1). For ease calculation, c = 1 and hence p = c(xm + 1) = xm + 1.

Further, we substitute x1,t∗ = xm − x2,t∗ + 1 such that (60) becomes:

ψSkx3
2,t∗ + x2

2,t∗(2(xm + 1)(1−ψSk)−ψ2
Sk) + x2,t∗(xm + 1)(ψ2

Sk− 2ψSk− 3xm− 3)

+ x3
m + x2

m(ψSk + 3) + xm(2ψSk + 3) + ψSk + 1 ≤ 0. (61)

If we find the x2,t∗ for which (61) holds, we have determined the slot allocation,

for which the lower bound of superframes with collisions φk,low is met. Figure 20

is a sketch of the left-hand side of (61) for ψSk = 1. We observe that the left-hand

side of (61) is positive for x2,t∗ = 0 and negative for x2,t∗ =
xm+1

2 . Thus, there exists

a finite crossing in the interval [0, xm+1
2 ], which we refer to as x2,t∗,z1. For x2,t∗ = xm,

the left-hand side of (61) is negative, while it is positive for x2,t∗ = 2xm. Thus, there

is a second crossing in [xm, 2xm]. Since the left-hand side of (61) is of grade 3, there

can be no additional crossing in the interval [0, xm]. Hence, the inequality (61) holds

for x2,t∗ ∈ [x2,t∗,z1, xm]. Increasing ψSk enlarges this interval, so we conclude that the

lower bound for φt∗ is met at least for x2,t∗ ∈ [x2,t∗,z1, xm].

Recall that a stable slot allocation with x1,t∗ ≤ x2,t∗ is reached with players’ initial

beliefs µ1,0 ≥ µ2,0. For the crossing x2,t∗,z1 it holds that x2,t∗,z1 <
xm+1

2 , thus for
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0

0 (xm+1)/2 xm 3xm/2 2xm
x2,t*

existing, finite
x2,t*,z1

z(x2,t*)

Figure 20: Sketch of (61) for ψSk = 1. There
is a zero in the interval [0, xm+1

2 ]
and a second zero in [xm, 2xm]. So
in the interval of interest [0, xm],
the lower bound is met for x2,t∗ ∈
[x2,t∗ ,z1, xm].

φk,low

φk,up

x2,t*,z1 (xm+1)/2 xm
x2,t*

ε<εmax

Figure 21: Summary of x2,t∗ , for which the
game converges. The hatched area
indicates that for x2,t∗ ≥ x2,t∗ ,z1
both the lower and upper bounds
are met, thus, the game converges,
if ǫ ≤ ǫmax.

all x1,t∗ ≤ x2,t∗ the left-hand side of (61) holds. Thus, the lower bound is met for

all µ1,0 ≥ µ2,0. Analogously, a quasi-stationary slot allocation with x1,t∗ > x2,t∗ is

reached with initial beliefs µ1,0 < µ2,0. So moreover, the lower bound is met if

µ1,0 < µ2,0 with the corresponding x2,t∗ ≥ x2,t∗,z1.

In the following paragraphs we consider for which initial beliefs the upper bound

φk,up is met such that φt∗ ≤ φk,up. Initially, we neglect the ceiling function for both

sides of the inequality again, so we write:

x2,t∗(p− cx2,t∗)

cx2,t∗(1− δ)
− φ2,0 ≤

x2,t∗(p− cx1,t∗)

cx1,t∗(1− δ)
− φ1,0. (62)

If we solve (62) by inserting the left-hand side of (47) for c(1− δ)(φ1,0 − φ2,0)

to make the inequality determinate, we obtain that x1,t∗ ≥ x2,t∗ . This means that

for x2,t∗ ≤
xm+1

2 the upper bound is met. Hence, the game converges to the quasi-

stationary points for which it holds that x2,t∗ ≥ x2,t∗,z1 and to the stable point

x1,t∗ = x2,t∗ =
xm+1

2 . According to (62), however, the game does not converge to the

stable points with x1,t∗ < x2,t∗ . To further elaborate the convergence to those points,

we write φt∗ ≤ φk,up considering the ceiling functions:

⌈

x2,t∗(p− cx1,t∗)

cx1,t∗(1− δ)

⌉

−

⌈

x2,t∗(p− cx2,t∗)

cx2,t∗(1− δ)

⌉

≥ φ1,0 − φ2,0 (63)



112 dynamic game of distributed reservation protocol

We denote the term remainder of a ceiling function as ǫ, such that ǫ = ⌈z⌉ − z.

Then, ǫ1 and ǫ2 are the remainder of the ceiling functions that result in φk,up and

φt∗ , respectively. So, we reformulate the inequality given by (63):

x2,t∗(p− cx1,t∗)

cx1,t∗(1− δ)
+ ǫ1 −

x2,t∗(p− cx2,t∗)

cx2,t∗(1− δ)
− ǫ2 ≥ φ1,0 − φ2,0, (64)

Solving (64) for ǫ = ǫ2 − ǫ1 by inserting the left-hand side of (47) for the term

c(1− δ)(φ1,0 − φ2,0) to make the inequality determinate, we obtain:

ǫ ≤
p(x1,t∗ − x2,t∗)

c(1− δ)x1,t∗x2,t∗
=

p(xm + 1− 2x2,t∗)

c(1− δ)x2,t∗(xm + 1− x2,t∗)
= ǫmax (65)

Thus, if the difference of the rounding remainder of φt∗ and φk,up, i.e., ǫ = ǫ2− ǫ1,

is smaller than the threshold given by ǫmax, the game converges to the stable slot

allocations with x1,t∗ < x2,t∗ .

In this section, we evaluated the convergence of the game presented. We showed

that it converges, if the number of superframes with collisions in equilibrium φt∗

meets both an upper and lower bound, φk,up and φk,low, respectively. Figure 21

summarizes the slot allocations x2,t∗ for which those upper and lower bounds are

met. We considered three different ranges for the Perfect Bayesian Nash Equilibria.

In the first case, player 1’s initial belief is smaller than player 2’s initial belief, i.e.,

µ1,0 < µ2,0, which results in a quasi-stationary slot allocation such that player 1

gains a larger share than player 2, x1,t∗ > x2,t∗ . For this range, the upper bound φk,up

is always met. The lower bound φk,low, however, is met only for x2,t∗ > x2,t∗,z1. Thus,

for x2,t∗ ∈ [x2,t∗,z1, xm+1
2 ) the game converges to a quasi-stationary slot allocation.

The second case considered players symmetric in their beliefs, so µ1,0 = µ2,0 and the

corresponding slot allocation x1,t∗ = x2,t∗ =
xm+1

2 is stable. For this homogeneous

case, we showed that the game converges since both the upper and lower bounds

are met. The last case considered players asymmetric in their beliefs with µ1,0 > µ2,0.

For the corresponding stable slot allocations it holds that x1,t∗ < x2,t∗ . In our analysis,

we considered the remainder of the ceiling functions for φk,up and φt∗ , such that

ǫ = ǫ2 − ǫ1. We showed that the game converges to the stable slot allocations, if for

the difference of the remainders it holds that ǫ ≤ ǫmax.
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6.6 games with n players and the influence of system parameters

In the previous sections, we studied the 2-player game and analysed its convergence

and the equilibrium allocation of the belief update algorithm presented. In this

section, we perform simulations to evaluate the influence of the number of players

on each player’s share of resources in the equilibrium. We find that the belief update

algorithm results in an equivalent resource distribution for any network size, if a

player’s share is set in relation to the network size.

Further, we have a closer look at the convergence time and its dependence on

the network size as well as on the maximum number of overlaps ymax and the

players’ discount factor δ. We show that the convergence time grows linearly with

the network size, but decreases rapidly with an increase of the maximum number

of overlaps ymax. The discount factor δ negatively influences the convergence time.

So increasing δ induces the players to retreat less likely from challenged slots, thus,

more time is needed to reach the equilibrium slot allocation.

For the simulations, we extend the network simulator OMNeT++ [65] by the

relevant elements of the distributed reservation protocol considered in this work.

In the simulations, the superframe consists of 16 slots for the beacon phase and an

additional 80 slots for data transmission, so we set xm = 80. As in the previous

sections, the cost is assumed to be c = 1 and hence p = c(xm + 1) = xm + 1 = 81.

By this, a player gains the maximum utility, when she transmits in the maximum

number of slots xm.

From Section 6.4 we know that players in the 2-player game have an incentive

to choose an initial belief smaller than their opponent to maximize their share of

resources. So the rational choice is to have µ1,0 = µ2,0 = 0. In the N-player game,

we have to extend the notation and write µi,j,0 = µj,i,0 = 0 for all players i 6= j ∈ N.

Note that µi,j,0 refers to player i’s initial belief about player j. As illustrated in

Figure 13, players can only be involved in collisions with players that occupy the

slots adjacent to their owns. For this reason, players maintain a belief about both

their predecessor and the subsequent player, thus, if we consider player i as an

example, she maintains the beliefs µi,j,t, with j ∈ {i− 1, i + 1}.
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Figure 22: This figure depicts the share each
player transmits in when the game
has converged for different net-
work sizes. Simulations have been
performed with µi,j,0 = µj,i,0, thus,
all players receive the same share.
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Figure 23: Slot allocation for discount factor
δ = 0.5, initial beliefs of µi,j,0 = 0
and ymax = 1. When saturation
is reached, the algorithm settles
to a fair equilibrium allocation as
already indicated by Figure 22.

First, we consider the equilibrium allocation of the N-player game. Figure 22

depicts a player’s share of resources in the equilibrium allocation for different

network sizes. Here, the initial beliefs are set to µi,j,0 = µj,i,0 = 0 for all i 6= j ∈ N,

the maximum number of overlaps to ymax = 1 and the discount factor is set to

δ = 0.5. We observe that all players equally share available slots, so the finding that

games with equal initial beliefs for all players reach a fair slot allocation, also holds

for larger networks. Extensive simulations further suggest that if the players’ initial

beliefs are within the borders identified in the previous sections, the N-player game

converges to nearly fair allocations which are omitted for reasons of clarity.

Figure 23 additionally depicts the slot allocation for different network sizes not

only for greedy players but also for low-load scenarios. The simulations have been

run with a discount factor set to δ = 0.5, with initial beliefs of µi,j,0 = 0, for all

i 6= j ∈ N and the maximum number of overlap ymax = 1. We observe that for

low-load scenarios, i.e., when the sum of all players’ requested shares does not

exceed the available resources, all players can for obvious reasons transmit in the

requested share. For high-load scenarios, the results of Figure 22 of players equally

sharing resources can be observed again.

From the simulations presented so far, we conclude that the algorithm fairly

distributes resources for both high- and low-load scenarios. However, there is a
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difference in the convergence time if we compare the scenario where the sum of

the players’ requests is just beyond the point of channel saturation and the scenario

with greedy players. In the case of greedy players, initially there is one player that

transmits in all available slots and all other players have to challenge. This basically

implies that there is an immediate challenge to all players, which implies that all

players’ beliefs rise and players quickly retreat from their allocated slots.

Consider, however, a scenario where the sum of all players’ requests is little more

than the capacity of the channel. Assume, for instance, that all players’ requests

can be granted except the last player’s request. While in the case of greedy players,

all players except the first player challenged, here, in the beginning of the game,

it is only the last player that challenges. Thus, for those players that are initially

not involved in a collision, the number of superframes without collision increases.

Recall that the belief given by (28) is the fraction of superframes with collisions over

all superframes. By the time the first collision with a player occurs that is initially

not involved in collisions the impact on the belief is very small and so is the belief

itself. We conclude that the more time passes before the first collision occurs, the

longer it takes for the slots to get redistributed and, hence, for the equilibrium slot

allocation to be reached.

In the next paragraphs, we focus on the convergence time for greedy players and

evaluate how it depends on the maximum number of overlaps ymax and the discount

factor δ. If we fix those values, the convergence time varies with the choice of the

initial beliefs µi,j,0. In the case of equal initial beliefs, the convergence time is largest

for µi,j,0 = 0 and decreases with increasing µi,j,0. In the 2-player game, this decrease

is explained by (32) and is transferable to the N-player game. In (32), the initial belief

is subtracted to obtain the number of superframes with collisions in equilibrium

φt∗ , hence, a larger initial belief induces a smaller φt∗ , thus, the convergence time

decreases with the initial belief.

In Figure 24, we consider an initial belief of µi,j,0 = 0, which gives the upper

bound of the convergence time. Figure 24 (left) plots the convergence time against

different network sizes for different maximum number of overlaps ymax. In this

simulations, the discount factor is set to δ = 0.5. We observe that the larger the
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Figure 24: The convergence time grows linearly with the network size. In both figures, the
initial beliefs are set to µi,j,0 = 0. The left figure shows that for δ = 0.5 doubling
the maximum number of overlaps from ymax = 1 to ymax = 2 leads to a significant
drop in the convergence time. However, a further increase has only little impact.
The right figure shows that for ymax = 1 the convergence time increases with δ.

network, the longer the algorithm needs to converge to the equilibrium allocation.

The reason for this is that more slots need to be redistributed among the players

if there are more players in the network. An increase of the maximum number of

overlaps ymax, however, leads to a drop in the convergence time. The larger the

number of overlaps, the more slots can be redistributed within a single superframe,

thus, the overall time for the same redistribution is reduced. Note that in Figure 24

(left), we notice that the increase of the maximum number of overlaps from ymax = 1

to ymax = 2, results in a substantial decline of the convergence time, while the

increase to ymax = 3 only slightly reduces the convergence time. This is due to the

fact that the value for ymax is an upper bound for the effective amount of challenged

slots per superframe. While at the beginning of the game, players make use of this

upper bound, in the course of the game, the effective number of overlaps decreases.

Figure 24 (left) considered the impact of ymax on the convergence time. In contrast,

Figure 24 (right) depicts the convergence time for different network sizes depending

on the discount factor δ. We observe that the convergence time increases with the

discount factor. Thus, the time to converge is minimized for δ = 0. A large discount

factor implies that players value the future. Hence, the larger the discount factor, the

more do players consider future utilities when deciding whether or not to retreat

from a challenged slot. Thus, the larger the discount factor, the less likely they are

to retreat and it takes more time to redistribute the same amount of slots.
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In this section, we evaluated games with different network sizes and traffic loads,

varying the discount factor and the maximum number of overlaps. In all games,

players started with an initial belief of µi,j,0 = 0, which marks the upper bound of

the convergence time. We have seen that for any network size and traffic load, the

game converges to the fair allocation of resources if players choose equal initial

beliefs. Furthermore, we conclude that the convergence time increases with the

network size and and the discount factor, while it decreases with the maximum

number of overlaps.

6.7 summary

In this chapter, we extended the static game of Chapter 5 to a dynamic, i.e., re-

peated, game. In the dynamic game, players are able to learn from their opponents’

behaviour. We showed that for almost all initial estimates about the opponents’

behaviour the introduced belief update rule drives the game to an at least nearly fair

resource allocation. The altered reservation method allows the resources to be dis-

tributed more evenly. This implies that some player’s throughput will be increased

at the cost of some other player’s throughput. The network throughput, however, is

at maximum decreased by the maximum number of overlaps ymax, which are the

challenged slots in a superframe. Corresponding to the rearrangement of resources,

players’ delays differ if we compare it with the original protocol. If we consider the

average delay, though, it remains the same.

For the static game we introduced beliefs that players maintain in the course

of the game. In the 2-player game, player 1’s belief µ1,t is her a-priori estimate

in superframe t that player 2 follows through when she has challenged player 1’s

reservation. Player 2’s belief µ2,t is her a-priori estimate in superframe t that player 1

transmits when player 2 challenges her slots. Given those beliefs and the players’

value of future utilities represented by the discount factor δ, we identified for which

pairs of belief and slot allocation players are indifferent about challenging and not

challenging, if player 2, or transmitting and not transmitting in a challenged slot, if

player 1. Those pairs are potential candidates for Perfect Bayesian Nash Equilibria.
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To determine the actual Perfect Bayesian Nash Equilibrium, however, we further

require a belief update algorithm that complies with Bayes’ rule. Thus, in this

chapter, we presented a belief update algorithm that defines the rule how players

adapt their beliefs given the other players’ actions. The uncertainty in the belief is

modelled by a beta-distribution which is known to follow Bayes’ rule. So the belief

is given as as the fraction of superframes in which a collision occurred. It is updated

every superframe after observing the outcome of the superframe.

Having introduced the beliefs, the belief update algorithm and the candidates for

Perfect Bayesian Nash Equilibria, we showed that for player 1’s initial belief µ1,0

larger than player 2’s initial belief µ2,0, i.e., µ1,0 > µ2,0, the resulting slot allocation

(x1,t∗ , x2,t∗) is stable. In those stable allocations, player 1’s number of slots x1,t∗ is

smaller than player 2’s number of slots x2,t∗ , so x1,t∗ < x2,t∗ . For equal initial beliefs

µ1,0 = µ2,0, the stable slot allocation is given by x1,t∗ = x2,t∗ . If player 1’s initial

belief is smaller than player 2’s initial belief, i.e., µ1,0 < µ2,0, the corresponding slot

allocation (x1,t∗ , x2,t∗) with x1,t∗ > x2,t∗ is quasi-stationary for ν sequences.

Knowing the stable and quasi-stationary slot allocations, we evaluated their

fairness. We showed that the fair slot allocation with x1,t∗ = x2,t∗ is reached for

µ1,0 = µ2,0 only. For such equal initial beliefs, the allocation is independent of the

discount factor δ and the parameters cost c and prize p. Given a target fairness

index f (u) and a discount factor δ, we further determined for which combination

of initial beliefs this target fairness index is achieved.

If player 1’s initial belief is larger than player 2’s initial belief, player 2 gains

towards player 1. So for player 2 it is rational to choose an initial belief µ2,0 as small

as possible. Assuming that player 1 anticipates this, she also has an incentive to

choose her initial belief µ1,0 as small as possible. Hence, if both players act rationally,

they both choose µ1,0 = µ2,0 = 0, thus, the fair slot allocation arises.

Last in determining the actual Perfect Bayesian Nash Equilibria of the game, we

showed for which initial beliefs or the respective slot allocations the game converges.

We demonstrated that if player 2 transmits in the equilibrium point less than the fair

share but beyond some threshold, the game converges to the quasi-stationary slot

allocations. With equal initial beliefs, the game converges to the stable fair allocation
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with x1,t∗ = x2,t∗ . For all points, in which player 2 transmits in more than the fair

share, the game converges, if some threshold ǫmax is not exceeded.

In this chapter, we identified the Perfect Bayesian Nash Equilibria depending

on the players’ initial beliefs and evaluated the fairness of those slot allocations.

For our analysis, we assumed perfect observation, so players correctly interpret

collisions and successful transmissions. Taking the previous findings into account,

we can analyse the impact if we relaxed this assumption. So players would maintain

different values for the number of superframes with and without collisions, φt

and ψt, respectively, which in return would result in a different slot allocation in

equilibrium. Consider for example that player 1’s observation is perfect, while

player 2 interprets some successful transmissions as collisions. Assume φt∗ and

ψt∗ to be the values in equilibrium with perfect observation. Thus, for player 1

the number of superframes with and without collisions in the new equilibrium

is unchanged and given as φ1,t∗ = φt∗ and ψ1,t∗ = ψt∗ , respectively. For player 2,

however, those are given as φ2,t∗ = φt∗ + σ and ψ2,t∗ = ψt∗ − σ, with σ the number

of incorrectly observed superframes.

Recall that player i’s belief in superframe t+ 1 was given by (28). Player 1’s equilib-

rium belief is equal to that in the scenario with perfect observation. Player 2’s belief

µ2,t∗+1, however, is given by µ2,t∗+1 = φ2,0+(φt∗+σ)
φ2,0+(φt∗+σ)+ψ2,0+(ψt∗−σ)

= φ2,0+(φt∗+σ)
φ2,0+φt∗+ψ2,0+ψt∗

.

Note that instead of φ2,0 + (φt∗ + σ), we can also write (φ2,0 + σ) + φt∗ in the numer-

ator and interpret σ to increase player 2’s initial belief µ2,0. Thus, we compare the

scenario in which player 2 does not perfectly observe the stages of the game with

a game with perfect observation and the initial beliefs µ1,0 and µ2,0 + σ. We have

shown that most initial estimates result in a nearly fair slot allocation, so the impact

of relaxing the assumption of perfect observation is likely to be negligible.

Finally, we performed simulations for larger networks and found that if players

choose equal initial beliefs, the equilibrium allocation is fair for the N-player game.

We further observed that the convergence time increases linearly with the network

size as more slots have to be redistributed. It also increases with the discount factor

δ but decreases with the maximum number of overlaps ymax.
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In this chapter, we showed that the introduced algorithm that relaxes the reser-

vation rules guides the dynamic game to a fair slot allocation. In Chapter 4, the

distributed reservation-based protocol that uses a beacon phase with fixed beacon

order to organise medium access such as the ECMA-368 was shown to result in an

unfair slot allocation. In this chapter, we demonstrated that a slight alteration of

the reservation rules that comes at the cost of a limited amount of collisions per

superframe bounded by the maximum number of overlaps ymax induces fairness

without requiring the nodes in the network to be altruistic and behave nicely.



7
C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, we contributed a fairness analysis of a distributed reservation-based

medium access control protocol and developed an algorithm that alters the reser-

vation mechanism in order to overcome the identified unfairness. The analysed

protocol and the introduced algorithm are modelled using game theory to capture

the strategic interaction between the nodes in the network. Finally, we showed that

the engineered algorithm drives the game to a fair equilibrium. The distributed

reservation-based protocol considered in this work was designed for high data

rate networks with small coverage such as multimedia home environments. As-

suming that those networks consist of a limited number of nodes, the algorithm

presented scales well. Especially, when we consider applications that are active for

a longer time, the convergence time amortises. In the following, we summarize the

conclusions of our work and convey possible future extensions.

We presented an analysis of the distributed reservation protocol specified in

ECMA-368 and showed how throughput, delay and fairness depend on the reserva-

tion rules given in ECMA-368. For the analysis, we implemented a Java tool that

determines all feasible reservation patterns and weights them with their probabil-

ity to occur given a Poisson model of the frame arrival process. We showed that

throughput and delay depend on the position of a node’s beacon in the beacon

phase. In high-load scenarios the impact of the reservation rules in ECMA-368 is

insignificant or quickly lessens with growing network size. Hence, we revealed

potential unfairness inherent in the protocol due to its first-come, first-served reser-

vation method. The earlier a node’s beacon in the beacon phase, the more privileged

it is and thus, the better she perceives the fairness of the system. In contrast, nodes

that transmit their beacons towards the end of the beacon phase have to cope with

the remaining time and thus, have a degrading fairness for high-load scenarios.

121
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We discover that the network size does not influence the amount of resources

a node can allocate. Once the channel is saturated, any additional node does

not transmit at all, while the previous nodes’ share stays the same. Thus, we

conclude that the fairness issue aggravates with increasing traffic. For this reason,

the subsequent analyses considered greedy nodes. The fixed beacon order has

been identified as the reason for the unfairness. However, we showed that both

an alteration of the beacon phase to provide for round-robin beaconing and the

randomization of the beacon phase only lead to long-term fairness and neither of

them can provide short-term fairness.

Game theory is a proven remedy to modelling strategic interaction. So, we

modelled the distributed reservation-based protocol with fixed beaconing as a static

multi-stage game. For this game, we determined the Nash Equilibria and subgame-

perfect equilibria. All Nash Equilibria are Pareto-optimal, i.e., there is no strategy

profile that increases one player’s payoff without decreasing another player’s payoff.

Considering linear utility functions, all Nash Equilibria are further socially-optimal.

Thus, all Nash Equilibria maximize society’s welfare, which is defined as the sum

of all players’ utilities. The Nash Equilibrium, in which resources are equally

distributed, is furthermore max-min and proportionally fair and maximizes Jain’s

fairness index. This particular Nash Equilibrium is additionally unique in that it

complies with all fairness criteria and is socially-optimal, if we choose the utility

function to be monotonically increasing and strictly concave according to the law of

diminishing returns. This utility function reflects the application’s view point, if we

consider the application to first transmit some basic information that is enhanced

with the information carried in the subsequent frames.

Assuming that players are not altruistic, the fair Nash Equilibrium with equally

shared resources does not arise. As a remedy, we introduced a relaxed reservation

method that provides discriminated players with a means to enhance their share.

This method requires players to maintain an estimate about their opponent’s be-

haviour, so we determined the Bayesian Nash Equilibrium of the corresponding

2-player game. The direct attainment of a Bayesian Nash Equilibrium is complex,

therefore, we repeatedly played the static game whereby we generated a dynamic
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game. In this dynamic game, players observe and learn from their opponent’s

behaviour. After every period of the game, i.e., every superframe, they update their

estimates according to a predefined principle that complies with Bayes’ rule. The

updated estimate then directly influences their actions in the next superframe.

In this dynamic game, we showed that the game converges to a stable fair resource

allocation, if both players choose the same initial estimates about each other’s

behaviour. The game also converges to a stable allocation, in which the second

player gains a larger share than player 1, if her estimate is smaller than player 1’s

and some threshold is met. However, if the second player’s estimate is larger than

her opponent’s estimate, the game converges to an allocation that is quasi-stationary

for a defined time and in which the first player gains the larger share. While only

equal estimates result in the fair Perfect Bayesian Nash Equilibrium, almost all

remaining estimates induce nearly fair allocations.

If we assume player 2 to be rational, she chooses an initial estimate as small as

possible as this maximizes her share of resources. Assuming that player 1 anticipates

this behaviour, she also minimizes her initial estimate for the same reason. Thus,

the rational set of initial estimates is that both are equal and zero. Hence, for

rational players the fair equilibrium is reached. In this fair Perfect Bayesian Nash

Equilibrium, the result is independent of the discount factor δ that connotes the

value the future has for the players. For unequal initial estimates that lead to nearly

fair allocations, though, a large discount factor increases the fairness. With a large

discount factor, player 1 is less willing to pass on slots, so player 2 cannot gain much

more than the fair share.

Simulations extended the analysis to larger networks and indicated that the

results of the 2-player game can be extended to the N-player game. So equal initial

estimates lead to a fair resource allocation among the nodes in the network. Finally,

simulations showed that the convergence time increases linearly with the network

size. It also grows with the discount factor, because nodes that value the future

are less likely to retreat from challenged slots. The convergence time, however,

decreases with the maximum overlap of the relaxed reservation method, since this

induces that more slots can be redistributed at the same time.
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In this work, we showed that a distributed reservation-based medium access

control protocol that uses a beacon phase with fixed beacon order to organise

medium access such as the ECMA-368 results in an unfair slot allocation. However,

we demonstrated that a minimal alteration of the reservation rules that comes at the

cost of a finite number of collisions per superframe yields fairness. In particular, the

introduced algorithm makes fairness self-enforcing, so the nodes in the network are

not required to be altruistic, but are assumed to maximize their own and personal

utility functions. Hence, with the provided alteration of the reservation rules, the

properties of predictable and guaranteed medium access in a distributed system

without central coordinator can be enriched with the property of fairness.

In order to extend this work, the simulation results that regard the N-player game

as well as the impact of the system parameters should be analytically verified to

complete the analysis. Furthermore, alternative belief update algorithms could be

evaluated to reduce the convergence time to make it more applicable for larger

networks. Recall that we argued that the more superframes without collisions occur,

the longer it takes before slots can be redistributed. It is inherent in the belief update

algorithm that the system becomes attenuated in those situations. Therefore, future

approaches for the belief update should deal with the occurrence of such situations.
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A P P E N D I X





G L O S S A RY O F A C R O N Y M S

BNE Bayesian Nash Equilibrium

CTS Clear to send

DRP Distributed Reservation Protocol

EDCA Enhanced Distributed Channel Access

FCC Federal Communications Commission

iid independent and identically distributed

MAC Medium Access Control

MB-OFDM Multi-band Orthogonal Frequency Division Multi-
plexing

NE Nash Equilibrium

PBE Perfect Bayesian Nash Equilibrium

PCA Prioritized Channel Access

QoS Quality of Service

RTS Request to send

SNR Signal-to-noise ratio

SPE Subgame-perfect Equilibrium

USB Universal Serial Bus

UWB Ultra Wideband

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network
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G L O S S A RY O F S Y M B O L S

Ai(h
k) player i’s set of feasible actions given the history hk

ak
−i actions chosen in stage k by all players except

player i

ak action profile at stage k

ak
i action chosen by player i in stage k

ci player i’s cost for transmitting in a single slot

f f fractional bandwidth

f (u) fairness index given the utility profile u

hk history of the game at stage k

i, j player indices i, j

l frame length

mslot #frames that can be transmitted in a single time
slot

N #players in the network

pi prize player i gains when successfully transmitting
in a single slot

period periods of the game refer to superframes

R transmission bit rate

ri #slots player i successfully transmits in

S∗ strategy profile in equilibrium

S−i strategy profile for all players except player i

si strategy of player i

S strategy profile

stage stages of the game refer to beacon slots 1-N and
the transmission phase

TSF superframe length

Tslot slot length

ui,c(xi) player i’s utility from transmitting in xi, of which
the transmission in one slot is unsuccessful

ui,s(xi) player i’s utility from successfully transmitting in
xi slots

ui,t player i’s utility in superframe t

ui player i’s utility

u utility profile

wi #slots player i unsuccessfully transmits in

xi,t #slots player i transmits in in superframe t

x f fair allocation mark
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xm maximum #slots available for data transmission in
a single superframe

ymax maximum #overlaps a player is allowed to do per
superframe

α, β parameters of the beta-distribution

δ discount factor, i.e., value of the future

ǫmax maximum value ǫ might have for the game to meet
the upper bound for convergence

ǫ difference of remainder of ceiling operation for φt∗

and φk,up

γi(ri) player i’s gain from successfully transmitting in ri

slots

Γ non-cooperative game

ξ(ri, wi) player i’s costs from transmitting in ri + wi slots

λslots mean #slots required to support application with
frame arrival rate λ

λ frame arrival rate

µi,t a-priori belief of player i in superframe t

ν #sequences of (1 + ∆t) superframes that the slot
allocation x∗ is quasi-stationary

µ∗i player i’s belief in equilibrium

φi,0 initial #superframes with collisions for player i at
t = 0

φi,t #superframes with collisions player i has seen until
superframe t

φSl l’th segment of #superframes with collisions

φt∗ #superframes with collisions until the equilibrium
in superframe t∗ is reached

φt #superframes with collisions until superframe t

ψi,0 initial #superframes without collisions for player i
at t = 0

ψi,t #superframes without collisions player i has seen
until superframe t

ψSl l’th segment of #superframes without collisions

ψt∗ #superframes without collisions until the equilib-
rium in superframe t∗ is reached

ψt #superframes without collisions until superframe t

σi(θi) behavioural strategy of player i given that she is of
type θi

Θi set of possible types of player i

θi player i’s type

� Halmos symbol to end a proof
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