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Kurzzusammenfassung

In der vorliegenden Arbeit werden die Rückkopplungen von Flüssen in bestimmten Hinter-
grundgeometrien von ausgewählten heterotischen und Typ II Stringkompaktifizierungen sys-
tematisch untersucht. In heterotischen Calabi-Yau-Kompaktifizierungen sind Wilson Lines ein
Grundbaustein um Standard Modell ähnliche effektive Theorien zu konstruieren. Wilson Lines
sind dabei nicht-triviale, flache Zusammenhänge auf nicht einfach zusammenhängenden Räumen.
Zum Beispiel können 3-Zykeln eines nicht einfach zusammenhängenden Calabi-Yau Raumes
Wilson Lines definieren. In diesem Fall können Wilson Lines einen nicht-trivialen H-Fluss
mittels des Chern-Simons-Terms induzieren und die Rückkopplung des H-Flusses kann die
Widerspruchsfreiheit der Hintergrundgeometrie in führender Ordnung beeinflussen. Außerdem
können H-Flüsse in heterotischen Kompaktifizierungen eine entscheidende Rolle bei der Mod-
uli Stabilisierung spielen sowie die Supersymmetriebrechungsskala stark einschränken.

Im ersten Teil dieser Arbeit zeige ich wie man, ausgehend von einer Wahl einer Wilson Line
in Complete Intersection Calabi-Yau Mannigfaltigkeiten, den H-Fluss sowie das zugehörige
Superpotential explizit konstruiert. Dies erfolgt durch die Identifikation einer großen Klasse
von sLags (special Lagrangian submanifolds) innerhalb der Calabi-Yau Mannigfaltigkeit, dem
Verständnis wie sich die flachen Zusammenhänge auf den dreidimensionalen sLags verhalten
und der Berechnung der Chern-Simons Invarianten. Um die benutzten Methoden zu verdeut-
lichen, betrachte ich die quintic hypersurface sowie die split-bicubic, da diese potentiell realis-
tische Drei-Generationen-Modelle erlauben.

Im darauf folgenden zweiten Teil beschränke ich mich hauptsächlich auf höher-dimensionale
(d > 4) AdSd ×M10−d Vakua in Typ II Supergravitation mit allen erlaubten (RR und NSNS)
Flüssen. Dabei ermittle ich explizit die Geometrie der internen Mannigfaltigkeit M10−d unter
Berücksichtigung der Rückkopplung der Flüsse. Dank der AdS/CFT-Korrespondenz können
mittels der Anti-de-Sitter Vakua einige Aspekte von stark gekoppelten und höher-dimensionalen
(d ≥ 4) Systemen untersucht werden, welche durch konforme Feldtheorie beschrieben werden.
Diese Feldtheorien sind nur schwer zugänglich mittels der Standard QFT-Methoden.

Für den Hintergrund AdS6×M4 in Typ II Supergravitation sind bis jetzt nur wenige Lösun-
gen bekannt: eine eindeutige in Typ IIA sowie zwei dazu duale Lösungen in Typ IIB. Ich re-
duziere die Supersymmetriegleichungen auf zwei partielle Differentialgleichungen. Geometrisch
ist M4 eine S2-Faserung über einem zweidimensionalen Raum Σ.

Für den FallAdS7×M3 zeige ich zum einen das keine supersymmetrischen Lösungen in Typ
IIB existieren und zum anderen klassifiziere ich alle supersymmetrischen Kompaktifizierungen
(massiv und masselos) in Typ IIA, wobei unendlich viele neue Lösungen entdeckt werden.
Topologisch gleicht M3 dabei einer 3-Sphäre, aber die Geometrie wird durch Quellen von D6-
Branen/O6-Ebenen an den Polen sowie von D8-/O8-Ebenen, welche 2-Sphären innerhalb von
M3 aufwickeln, deformiert. Obwohl die Hintergründe mit Quellen von D6-Branen/O6-Ebenen
an den Polen einige Singularitäten aufweisen, habe ich eine Klasse von Lösungen gefunden,
welche vollständig regulär ist und nur Stapel von D8-Branen beinhaltet. Die globale Geometrie
von M3 sowie die Gegenwart von regulären supersymmetrischen Vakua mit D8-Branen klärt
einige Aspekte zu Stabilität und Auflösungen von Hintergründen mit D6-Branen an den Polen
auf. Diese Sachverhalte konnten bis dahin nur lokal studiert werden.
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Zum Ende analysiere ich das supersymmetrische System von Gleichungen für AdS5 ×M5

in Typ IIA Supergravitation. Das Problem kann auf mehrere partielle Differentialgleichungen
reduziert werden und ich finde einige bereits bekannte Lösungen für massenlose Typ IIA Su-
pergravitation wieder. Die kompakte interne MannigfaltigkeitM5 entspricht einerM3-Faserung
über einer Riemannschen Fläche, wobei M3 eine dreidimensionale Mannigfaltigkeit ist. Ein
Unterklasse dieser Vakua steht in Bijektion mit denAdS7×S3 Vakua, welche ich bereits vorher
in massiver/massloser Typ IIA Supergravitation gefunden habe. Nebenbei erhalte ich eine an-
alytische Version dieser Lösungen, welche vorher nur numerische im AdS7-Rahmen bekannt
waren. Diese analytischen Lösungen erlauben die Berechnung der freien Energie in einigen
Beispielen für die dualen konformen Feldtheorien mittels der AdS/CFT-Regeln.

Schlüsselwörter: STRINGTHEORIE, FLÜSSEN, KOMPAKTIFIZIERUNGEN
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Abstract

In this thesis, we systematically analyze the issue of the backreaction of fluxes on the back-
ground geometry of certain compactifications of heterotic and type II string theory. In heterotic
Calabi-Yau compactifications, Wilson lines are basic ingredients for the construction of Stan-
dard Model-like effective theories. Wilson lines are non-trivial flat gauge connections on a
non-simply connected space. Three-cycles of a non-simply connected Calabi-Yau can some-
times support Wilson lines. If this is the case, they can induce a non-trivial H-flux via the
Chern-Simons term, and the backreaction of the H-flux may affect the consistency of the lead-
ing order background geometry. On the other hand, the H-flux in heterotic compactifications
can also play a crucial role for moduli stabilization and could strongly constrain the supersym-
metry breaking scale.

In the first part of this thesis, we show how to explicitly derive the H-flux and the cor-
responding superpotential given a choice of Wilson lines in complete intersection Calabi-Yau
manifolds. We do so by identifying a large class of special Lagrangian submanifolds (sLags)
in the Calabi-Yau, understanding how the flat gauge connection is supported on these three-
dimensional submanifolds and computing the Chern-Simons invariants. We illustrate our meth-
ods with the quintic hypersurface as well as the split-bicubic, which provides a potentially
realistic three generation model.

In the second part of the thesis, we are mainly focused on higher dimensional (d > 4)
AdSd ×M10−d vacua of type II supergravity with all the fluxes (RR and NSNS) turned on. We
explicitly determine the geometry of the internal manifold M10−d taking the backreaction of the
fluxes into account. Anti-de-Sitter vacua are very useful for probing, via the AdS/CFT corre-
spondence, some aspects of strongly coupled and higher-dimensional (d ≥ 4) systems governed
by conformal field theories, which are very difficult to study with standard QFT techniques. We
start from AdS6 × M4 backgrounds in type II supergravity, where few solutions are already
known: a unique one in type IIA, and two type IIB solutions dual to it. We reduce the super-
symmetry equations of type IIB supergravity to two PDEs. The geometry of M4 is given by an
S2-fiberation over a two-dimensional space Σ.

Regarding AdS7 ×M3 backgrounds, we show that there are no supersymmetric solutions
in type IIB, whereas we classify all the supersymmetric AdS7 ×M3 compactifications in type
IIA (massive and massless), discovering infinitely many new solutions. The topology of M3 is
that of an S3, and its geometry gets distorted by D6-brane/O6-planes sources at the poles and
D8-branes/O8-planes wrapping S2’s inside M3. Whereas the backgrounds with D6-branes/O6-
planes at the poles manifest singularities, we found a class of completely regular solutions with
only stacks of D8-branes. The global geometry of M3, together with the presence of regular
supersymmetric vacua with D8-branes, clarifies some issues on the stability and the resolutions
of backgrounds, which were locally studied before near D6 sources.

Finally, we analyze the supersymmetric system of equations for AdS5 ×M5 backgrounds
in type IIA supergravity. We reduce the problem to several PDEs and recover some already
known solutions of type IIA supergravity. The geometry of the compact internal space, M5, is
a three-dimensional manifold, M3, fibered over a Riemann surface. A subclass of these vacua
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that is in one-to-one correspondence with the AdS7 × S3 vacua mentioned above. As a by-
product, we obtain the analytic version of such solutions, which, in the AdS7 case, were just
known numerically. The analytic expressions allow us to explicitly compute some examples of
free energy for the dual conformal field theories by using the AdS/CFT dictionary.

Keywords: STRING THEORY, FLUXES, COMPACTIFICATION



v

Acknowledgments

I would like to acknowledge the guidance, the support and the patience of my supervisor, Marco
Zagermann. It has been a great opportunity to be your student and to work with you during these
three years. I am very grateful for your help and advices, from which I have learn a lot and I
grew up academically and personally.

I would like to acknowledge the constant presence of Alessandro Tomasiello. I am very
thankful to have worked with you for several projects. I have learnt a lot from the collaborations
we had during these years. I have started my path into science under your supervision and you
will always represent one of my main scientific guidance. I am very grateful to Lara Anderson
and James Gray. It is an amazing opportunity to collaborate with you. Moreover, I would like to
thank you a lot for transmitting your knowledge, keeping a very high consideration of me, and
especially for being such terrific friends. I am very grateful to Jonathan Heckman for giving me
the opportunity to collaborate with you in the future. I am really glad to have the possibility to
talk to you. Marco, Alessandro, Lara, James and Jonathan, I really appreciate what you have
done for me! I would like to acknowledge Marco Zagermann, Olaf Lechtenfeld and Daniel
Waldram for accepting to referee my thesis. I would like to thank my collaborators, Marco
Fazzi, Dario Rosa, Susha Parameswaran, Fridrik Gautason, Achilleas Passias and Andrea Rota,
for the challenges we have faced together and the results we have obtained. I have really enjoyed
talking and working with you. A special thank goes to Marco, who have been my friend since
when physics entered in my life.

I thank all the GRK 1463 and ITP members for the support, vicinity and for the discussions
we had throughout these three years. I acknowledge the German Research Foundation (DFG)
within the RTG GRK 1463 ”Analysis, Geometry and String Theory” for support, making my
studies possible during these three years. A special thank is for Marcus Sperling for translating
the abstract into German and for all the discussion we had. I am also grateful to Niccoló
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Introduction

General relativity and quantum field theory are the cornerstones of modern theoretical physics.
In fact, they provide the theoretical frameworks in which all observed fundamental interaction
processes can be described with astonishing accuracy. On one hand, general relativity describes
the geometry of our space-time at large distances. On the other hand, quantum field theory is
an experimentally well-tested framework for the short distance behaviour of the microscopic
objects of our universe and it describes the non-gravitational fundamental interactions between
elementary particles. Both theories are nowadays largely confirmed by high-precision exper-
iments. However, they are not compatible at energy/distance regimes where both gravity and
quantum effects become significant, as is the case, e.g., in the vicinity of black hole singularities
or in the early universe shortly after the big bang.

In the last decades, many efforts in theoretical high energy physics have been devoted to
the quest for a unified and quantum description of all the known interactions, including gravity.
Finding a quantum description of gravity would mean to develop a theory that includes the
geometry of the space-time itself as a dynamical quantum variable. Moreover, in a unified
theory of interactions the degrees of freedom that encode the geometry can mix with the matter
and gauge fields at a quantum level and at high energies.

String theory is a promising candidate for an unified theory of all the forces, including grav-
ity. It describes vibrating one-dimensional objects (strings) moving in a ten-dimensional space-
time. The quantization of such string gives a spectrum which contains an infinite tower of fields
with higher and higher masses and spins. For this reason, unfortunately, a second quantized
(or path-integral) formulation of this theory is technically very difficult. Due to the relevance
for realistic experiments, however, it is primarily that the massless particles and their scattering
amplitudes are of most direct physical interest. This is in particular true for the Graviton, which
arises as a massless spin 2 excitation of the quantized closed string. Moreover, it is crucial that,
in order to have fermions in the string spectrum, we need to consider string theory with an addi-
tional ingredient: supersymmetry. The effective theory that consistently captures the dynamic
of the massless spectrum of the supersymmetric string (or superstring) is ten-dimensional su-
pergravity, which is the low-energy limit of supersymmetric string theory (Actually there are
five different perturbatively consistent superstring theories: type I, type IIA/B, SO(32) and E8×
E8 heterotic with low-energy limit described by ten-dimensional supergravities). On the other
hand, ten-dimensional supergravity does not describe the complete string theory set-up; for in-
stance, one cannot study directly non-perturbative phenomena with this low-energy approxima-
tion. However, due to the presence of supersymmetry and to the non-linearity of supergravity,
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one can still probe non-perturbative degrees of freedom and higher order effects.
So far, we have described string theory as a nice mathematical model, but one of the main

questions that physicists should ask is: can it describe the real world? A consistent super-
symmetric string quantization requires a ten-dimensional space-time, which is obviously in-
compatible with the four dimensions we observe. In fact, the standard procedure for resolving
this apparent contradiction consists in compactifing supergravity from ten dimensions to four
dimensions, by assuming that six of the ten dimensions form a compact and small manifold.
Studying the underling compact geometry of string theory backgrounds as well as the small
deformations around these classical solutions allow one to develop a toolkit for “string phe-
nomenology”, which attempts to bridge the gap between mathematics and measurable physics.
For example, one of the feature, one would like to obtain in the effective four-dimensional the-
ory, is the gauge group of the standard model. Another important feature of the compactification
procedure is that different geometries could lead to different properties of the physical effective
theories in four dimensions. Moreover, from a generic compactification one obtains a lot of
unwanted degrees of freedom, such us exotic fields or additional scalar fields, which need to be
sufficiently decoupled from the standard model degrees of freedom. A very natural framework
for a four-dimensional effective gauge theory is the E8× E8 heterotic string, which contains
automatically a gauge group compatible with the ideas of Grand Unification Theories (GUTs).
There are also attempts to construct realistic models from type IIA/B with D-branes (which
are higher-dimensional extended objects on which the strings can end) carrying a gauge group.
More recently, phenomenologically interesting models have also been developed in M/F-theory
(eleven/twelve-dimensional theories), which are non-perturbative extensions of superstring the-
ory. To conclude, the past decades have seen mutual interplay between sophisticated techniques
of algebraic/differential geometry and string theory, driven by the types of above mentioned
geometrical set-ups that string theory requires.

Geometry appears to be a very useful tool to study also strongly coupled systems. Strongly
interacting quantum field theories appear many times in physics. For instance, a very rele-
vant example is QCD, the SU(3) gauge theory which describes the strong interactions between
quarks. There are strongly coupled systems in condensed matter physics as well. More ab-
stractly, there is a theoretical interest in higher dimensional field theories, d > 3, including
conformally invariant field theories. In fact, these theories turn out to be good candidates for
modelling the world-volume dynamic of the D/M-branes and other extended objects, which
frequently appears in String/M-Theory. For instance, M5-branes on top of each other are be-
lieved to be governed by a six-dimensional conformal field theory. Moreover, it is sometimes
considered that many QFTs in different dimensions descend from supersymmetric conformal
field theories (sCFTs), by the process of compactification on certain spaces, by Renormalization
Group (RG) flow and by symmetry breaking. Very often these kind of theories are very difficult
to be explicitly analyzed, and sometimes they even lack a Lagrangian description. Here is were
the AdS/CFT correspondence plays a crucial role; in fact, it is a conjecture that provides a very
useful tool to study strongly coupled system. This correspondence is believed to be a subclass
of more general set of dualities between quantum gravity and gauge theories. Its original and
best understood formulation relates strongly coupled conformal theories with weakly coupled



gravitational theories on asymptotically AdS space-time. Every entity in one theory has a coun-
terpart in the other theory. For example, a single field in the gravitational theory corresponds
to a certain operator in the conformal theory. Many difficult computations in field theory can
now be related to much simpler ones in a weakly coupled gravitational theory, i.e. there is a
“dictionary” between various quantities of the two different theories. Moreover, the conformal
field theory can be viewed as living on the conformal boundary of the anti-de-Sitter space. This
boundary is one dimension less than the anti-de Sitter space itself, which is the reason why
AdS/CFT is often described as a “holographic duality”. It is generally believed also that the
existence of a certain AdS background of a quantum theory of gravity, such as string theory,
means that there is a dual conformal field theory. It is then interesting to find and classify AdS
solutions of string theory. In order to do so, we will analyze classes of AdS backgrounds of
ten-dimensional supergravity using powerful techniques of differential geometry.

In Calabi-Yau compactifications to Minkowski space, as well as compactifications to AdS
external space, fluxes and their backreaction on the geometry play a crucial role in what we
have discussed so far, and they will be the main common topic throughout this thesis. Fluxes
are non-trivial background field strengths of certain massless bosonic field coming from the
first quantization of the various string theories. In heterotic supergravity (the low energy ef-
fective field theory of the heterotic string), it is important to control the H-flux given by the
Chern-Simons term of a gauge connection in E8× E8, because it can backreact and spoil the
Calabi-Yau condition, which comes together with vanishing H-flux. This is different in IIB
supergravity, where certain fluxes (F3, H) can co-exist with a conformal Calabi-Yau space. In
AdS compactifications, it is important and interesting to introduce all the backreacting fluxes
and classify the underling geometry in order to get new types of vacua, believed to be dual to
new CFTs. Moreover, fluxes are closely related to branes of various kinds. As a by-product of
studying systematically supersymmetric AdS vacua with fluxes and branes, we will give new
insights into the issue of backreaction and stability of such solutions, which has recently been a
subject of intense debate.

Outline of the thesis: In chapter 1 of this thesis, we will give an overview of ten-dimensional
supergravity, in order to introduce some basic concepts and fix the notation. In chapter 2 we
will briefly review some basics on the geometrical techniques that we use in this thesis. The
rest of the thesis is divided in two parts, where the distinction is made according to the two
main physical applications of the geometrical toolkit: phenomenology and AdS/CFT. Although
they are quite different topic, they share the issue of the backreaction of fluxes on the geometry
of some low-energy solutions. In the first part, we deal with the consistency of having H-flux
in heterotic Calabi-Yau compactifications, and in the second part, we look for new higher-
dimensional (d > 4) AdS backgrounds with all fluxes (NSNS and RR) turned on.

In chapter 3, which is work based on [1], we address one of the problem that occurs in E8×
E8 heterotic model building. Namely, we study to what extent Wilson lines in heterotic Calabi-
Yau compactifications lead to non-trivial H-flux via Chern-Simons terms. Wilson lines are
basic ingredients for Standard Model constructions, but their induced H-flux may have a back-
reaction on the Calabi-Yau geometry, affecting the consistency of the leading order background



and of the two-dimensional worldsheet theory. Moreover, H-flux in heterotic compactifications
also plays an important role for moduli stabilization and could strongly constrain the supersym-
metry breaking scale. The main result of chapter 3 is that we show how to compute H-flux and
the corresponding superpotential, given an explicit complete intersection Calabi-Yau compacti-
fication and choice of Wilson lines. We do so by identifying large classes of special Lagrangian
submanifolds in the Calabi-Yau, understanding how the Wilson lines project onto these sub-
manifolds, and computing their Chern-Simons invariants. We illustrate our procedure with the
quintic hypersurface as well as the split-bicubic, which can provide a potentially realistic three
generation model, and where the backreaction of Wilson lines via the Chern-Simons flux was
not know before.

In the rest of the thesis, we present new solutions in type II supergravity with an external
AdS space, and where the internal geometry is non-Calabi-Yau consistent with the full backre-
action of all the fluxes. One of the main motivations for investigating in these types of vacua
is to probe supersymmetric conformal field theories in various dimensions as well as gain new
insights into the issue of backreaction and stability solutions with fluxes. In chapter 4, which
is based on [2], we will start begin by studying the supersymmetric system of equations for
AdS6 ×M4 in type IIB supergravity. Very few supersymmetric solutions are known: one in
massive IIA supergravity, and two IIB solutions dual to it. The IIA solution is known to be
unique. We use the pure spinor approach to give a classification for IIB supergravity, where
only some solutions are known, and a complete classification is missing. The main achieve-
ment of chapter 4 is the reduction of the pure spinors system to two PDEs on a two-dimensional
space Σ. The classification is given by means of the two PDEs; in the sense that each supersym-
metric AdS6 solution of type IIB supergravity is a solution of our system of PDE’s. The internal
geometry, M4, is a fiberation of S2 over Σ; the metric and fluxes are completely determined in
terms of the solution to the PDEs. The results seem likely to accommodate near-horizon limits
of (p, q)-fivebrane webs studied in the literature to generate five-dimensional CFTs. We also
demonstrate that there are no AdS6 solutions in eleven-dimensional supergravity. We started
with the AdS6 vacua also because they allow us to introduce the pure spinor techniques remi-
niscent of generalized complex geometry, which will be extensively used in the next chapters,
5 and 6. The new and explicit result of chapter 5, which is based on [3], is the construction and
classification of new supersymmetric solutions of the type AdS7 ×M3 in type II supergravity.
In M-theory, the only supersymmetric AdS7 backgrounds are AdS7 × S4 and its orbifolds. We
show that in IIB no such vacua exist, whereas in IIA with Romans mass (which does not lift
to M-theory) we find many new ones. Without the need for any ansatz, the system determines
uniquely the form of the metric and fluxes, up to solving a system of ODEs. The metric on
M3 is that of an S2 fibered over an interval, topologically M3

∼= S3; this is consistent with the
Sp(1) R-symmetry of the holographically dual (1, 0) theories. By including D8-brane sources,
one can numerically obtain regular solutions. Finally, in chapter 6, which is based on [4, 5],
we classify AdS5 solutions in massive IIA supergravity, finding infinitely many new analyti-
cal examples. The first main result is the reduction of the general problem to a set of PDEs,
determining the local internal metric, which is a fiberation over a surface. Under a certain sim-
plifying assumption, we are then able to analytically solve the PDEs and give a complete list
of all solutions. Among these, one class is new and regular. These spaces can be related to the



AdS7 solutions mentioned above, via a simple universal map for the metric, the dilaton and the
fluxes. The natural interpretation of this map is that the dual CFT6 and CFT4 are related by
twisted compactification on a Riemann surface Σg. The ratio of their free energy coefficients is
proportional to the Euler characteristic of Σg. The second explicit and new result is a by-product
of our analysis, namely an analytic expression for the AdS7 solutions mentioned above, which
were previously known only numerically. We determine the free energy for simple examples: it
is a simple cubic function of the flux integers.





Chapter 1

Supergravity: the low-energy theory of
superstrings
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There are five perturbatively consistent superstring theories with low-energy limits described by
ten-dimensional supergravities. In this thesis, we will be mainly focused on three types of low-
energy effective theories: heterotic and IIA/B supergravity. For completeness, we now briefly
explain what we mean by the low-energy limit of superstring theory and then discuss the field
content of these effective theories as well as the corresponding supersymmetry variations.

1.1 The low-energy limit and effective theories

A string is the generalization of a point particles to a one-dimensional object with an assumed
length scale, ls, below the current experimental resolution, perhaps of the same order as the
Planck Length, ls ∼ lp. The bosonic string has an action which is given by the area of the
world-sheet swept out by the string embedded in an external D-dimensional target space-time.
This so-called Nambu-Goto action can equivalently be rewritten in terms of a standard non-
linear sigma model action (the Polyakov action). The bosonic string can be closed or open with
different boundary conditions (Dirichlet and Neumann boundary condition) at the end points.
Moreover, in string theory, the possible boundary loci for the open strings define new extended
higher dimensional objects, called D-branes. The excitation modes of the open strings ending
on D-branes can be viewed as degrees of freedom living on the D-brane world-volume. The key
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2 1. Supergravity: the low-energy theory of superstrings

feature of the non-linear sigma model for the bosonic string is its invariance under conformal
transformations, which makes the quantization of the theory consistent. This conformal sym-
metry has a quantum anomaly, unless, the dimension of the target space, D, is 26, which fixes
the number of space-time dimensions for a consistent bosonic string theory, [6–9].

The bosonic string contains only bosons in the spectrum, one of which is a tachyon of neg-
ative mass-square. Superstring theory is its extension, and it includes fermions as superpartners
of all the bosonic fields. Superstrings are perturbatively described by two-dimensional super-
conformal theories embedded in a D-dimensional target space-time, which have no tachyon in
the spectrum. Here again the vanishing of the superconformal anomaly restricts the dimension,
this time to D = 10. There are different types of supersymmetric string theories depending on
the different type of world-sheet content of fields. The five perturbatively consistent superstring
theories are type I, type II A/B, E8× E8 and SO(32) heterotic. All the five superstring theories
are related by dualities, for example, T-duality between type IIA and type IIB physically relates
the two theories when compactified, respectively, on a circle of radius R and 1/R. There are
other types of dualities among the superstring theories, such as S-duality, however, they are not
relevant for this thesis and we will not review them here, (see [6–9]).

In particular, all the superstring theories have a finite massless spectrum, which contain also
a spin 2 particle, the graviton, whereas the other infinite excitations have mass which is M ≥

1√
α′

, where α′ = l2s is the Regge-slope parameter. The low-energy limit of superstring theory
is defined as the effective field theory that describes the low-energy interactions of the massless
modes in the ten-dimensional space-time. In fact, at low-energies, the massive states are too
heavy to be observable, and hence, they are decoupled. The low-energy theories of superstrings
are supersymmetric and contain ten-dimensional gravity and for this reason they are called
ten-dimensional supergravities. As they contain a finite number of fields they are more easy to
handle, although they are just an effective approximation of the entire string framework. Finally,
there is also an eleven-dimensional supergravity, which is related with the ten-dimensional ones
by dimensional reduction along a circle and by dualities. This theory is believed to be the
low-energy limit of M-theory, which should represent the non-perturbative completion of the
superstring theories.

In the following subsections, we will describe the content of fields for ten-dimensional E8×
E8 heterotic and type IIA/B supergravity together with their effective actions.

1.2 Type II supergravity

The massless spectrum of type II supergravity is given by two fermions fields, the gravitino and
the dilatino:

ψaM (gravitino), λa (dilatino)

{
IIA a = 1, 2 opposite chirality
IIB a = 1, 2 same chirality

(1.2.1)

where M = 0, ..., 9, in type IIA: ψ1
M , λ1 have chiralities +; ψ2

M , λ2 have chiralities − and in
type IIB all have positive chiralities. Furthermore, they satisfy the Majorana (reality) condition:
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(ψaM)∗ = ψaM , (λa)∗ = λa.
We have some gauge bosons, called NSNS fields: the dilaton, the graviton (metric) and the

B-field
φ (dilaton), gMN (metric), BMN (2-form NSNS field). (1.2.2)

Other bosons called Ramond-Ramond fields:

Cp (p-form RR field). (1.2.3)

The field strengths of the C-fields are

Fp+1 = dCp −H ∧ Cp−2 (p-form RR flux), (1.2.4)

where H is the field strength of the B-field:

H = dB (3-form NSNS flux). (1.2.5)

These fields and their strengths, as differential form, have hodge dualities, namely

Fk = (−1)b
k
2
c ∗10 F10−k ⇐⇒ λFk = ∗10F10−k. (1.2.6)

where the λ is an operator which acts on forms as follows λωk = (−1)b
k
2
cωk, for each k-form

ωk. The indices p takes odd integer values for type IIA and even for type IIB:

p =

{
1, 3, 5, 7, 9 IIA
0, 2, 4, 6, 8 IIB

(1.2.7)

Finally, for simplicity of calculation, we can recollect all forms and field strengths in the fol-
lowing fashion, defining the so-called polyforms:

C =
∑
p

Cp (1.2.8)

and poliflux F
F =

∑
k

Fk is such that F = λ ∗ F. (1.2.9)

In type IIA supergravity, we have a pair of 16-components Majorana-Weyl gravitinos of
opposite chiralities and a pair of two Majorana-Weyl dilatinos of opposite chiralities. The
fermionic part of the action is given by the kinetic terms of these fermions:

SΨ ∼
∫

Ψ̄MΓMNP∂NΨPd
10x, Sλ ∼

∫
λ̄ΓM∂Mλd

10x. (1.2.10)

The bosonic action of D=10 type IIA supergravity theory contains three distinct type of terms:

S = SNS + SR + SCS. (1.2.11)
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The first term comes from the NS sector fields and it is

SNS =
1

2κ2

∫
d10x

√
−ge−2φ

(
R + 4∂µφ∂µφ−

1

2
|H3|2

)
. (1.2.12)

where the coupling constant κ is related to the string length and the string coupling constant gs:

2κ2 =
1

2π
(2πls)

8, where g3/2
s lp = gsls. (1.2.13)

SR term of the bosonic action involves the R sector fields:

SR = − 1

4κ2

∫
d10x

√
−g
(
|F2|2 + |F̃4|2

)
(1.2.14)

where we have redefined the Ramond-Ramond fields: C = e−φC̃. The last term is called
Chern-Simons term and this term involves the RR fields and the B-field:

SCS = − 1

4κ2

∫
d10x B2 ∧ F4 ∧ F4. (1.2.15)

In type IIB supergravity, we can write in a similar way an action, with the issue of the self-
duality of the five-form flux, F5 = ∗10F5. This consists in an obstruction to formulating the
action in a manifestly covariant form. The strategy is to focus on the field equations instead,
since they can be written covariantly. Otherwise, one can write an action which looks similar
to (1.2.11). However, it needs to be supplemented by a self-duality constraint and a lagrangian
multiplier.

1.2.1 Supersymmetry Variations

The supersymmetric action has to be invariant under the supersymmetric variations of all the
fields. Since supersymmetry relates bosonic object with fermions, it is convenient here to intro-
duce a useful map that send differential forms to object with two spinor indices, the so-called
“Bispinors”. For a “α” poliform, one can associate a poliform to a bispinor in the following
way:

α ≡
∑
k

1

k!
αi1...ikdx

i1 ∧ ... ∧ dxik ←→ /α ≡
∑
k

1

k!
αi1...ikγ

i1...ik
αβ .1 (1.2.16)

1In what follows, we will drop the slash on forms whenever it should lead to confusion.
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This map is called Clifford map. Finally, after having introduced a little bit of notation, we are
able to write down the supersymmetry variations on fermions:

δψ1
M =

(
DM +

1

4
HM

)
ε1 +

eφ

16
FΓMΓε2, (1.2.17a)

δψ2
M =

(
DM −

1

4
HM

)
ε2 − eφ

16
λ(F )ΓMΓε1; (1.2.17b)

ΓMδψ1
M − δλ1 =

(
D − ∂φ− 1

4
H

)
ε1 (1.2.17c)

ΓMδψ2
M − δλ2 =

(
D − ∂φ+

1

4
H

)
ε2, (1.2.17d)

where ε1, ε2 are the supersymmetry spinor parameters, they are ten-dimensional Majorana-Weyl
spinors with opposite chiralities in type IIA, and the same in IIB supergravity. Spinors, which
satisfy equations of the type (1.2.17), are called Killing spinors. DM is the covariant derivative
(with respect to the spin-connection of a spin bundle on M10), HM = 1

2
HMNPΓNP , where ΓM

are elements in the ten dimensional Clifford algebra, with Γ the chiral gamma matrix.
The most important point is that if we are looking for supersymmetric solutions of the

equations of motion, we can set to zero the expectation values of the gravitino and the dilatino:
Ψa
M and λa. Invariance under supersymmetry means that all variations (1.2.17) should be set to

zero. Similarly to Yang-Mills theories, we have some Bianchi identities for the field strengths,

(d−H∧)F = 0, dH = 0. (1.2.18)

These equations are valid almost everywhere, it means that we could have sources, where these
equations are not valid. Finally, one can prove that, imposing supersymmetry equations on
Killing spinors, and, separately, the Bianchi identities, we can find supersymmetric solutions of
equation of motion. We will discuss later on how to solve these Killing spinor equations.

1.3 Heterotic supergravity

The low energy effective action of the heterotic string written in the 10D string frame takes the
form [10] (we use the conventions of [8])

S =

∫
e−2φ

{
R + 4|dφ|2 − 1

2
|T |2 − α′

4
tr(|F |2 + 2χ̄Dχ)

}
, (1.3.1)

where χ is the gaugino, D ≡ ΓM∂M . φ is the dilaton, R is the Ricci scalar curvature of the
10D metric G, F = dA − A ∧ A is not to be confused with an RR flux, but in heterotic
supergravity it is the Yang-Mills field strength, which transforms under the adjoint of SO(32)
or E8× E8. The trace in (1.3.1) is the trace over the adjoint representation of the gauge group.
In this thesis from now on we will consider only the E8× E8 heterotic supergravity, where a
phenomenological model building is already extensively been developed. In this action, the
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factor 2κ2 has been reabsorbed into the definition of the metric. H is the heterotic 3-form field
strength. The form T is the corrected NS H-flux,

T = H − Σ/2 (1.3.2)

and the 3-form Σ is the gaugino bilinear

Σ =
1

24
α′tr(χ̄ΓMNRχ)dxMNR, (1.3.3)

where ΓMNR is the antisymmetrization of three 10D Γ-matrices. For the heterotic string, the
3-form H , i.e. the gauge invariant field strength for the Kalb-Ramond 2-form B, is given not
simply by dB, but rather as:

H = dB − α′

4
(ω3Y − ω3L) , (1.3.4)

where the 3-form ω3Y is the Chern-Simons form

ω3Y = tr
(
A ∧ F − 1

3
A ∧ A ∧ A

)
, (1.3.5)

which locally satisfies dω3Y = trF ∧ F , and similar expressions can be written down for the
Lorentz Chern-Simons form ω3L. The Bianchi identity for H therefore has a non-trivial contri-
bution on the right hand side:

dH =
α′

4
(trR ∧R− trF ∧ F ) . (1.3.6)

1.3.1 Supersymmetry variations

A supersymmetric solution of the action (1.3.1) requires the vanishing of all supersymmetry
variations, which for the dilatino λ, gaugino χ and gravitino ψM , are [10, 11]

δλ = −1

2
∂MφΓMε+

1

24

(
HMNR +

1

4
ΣMNR

)
ΓMNRε, (1.3.7a)

δχ = −1

4
FMNΓMNε, (1.3.7b)

δψM = DMε−
1

8
HMNRΓNRε+

1

96
ΣNRSΓNRSΓMε. (1.3.7c)

Solving the condition δλ = 0, δχ = 0 and δψM = 0 is not enough for having a supersymmetric
solution of heterotic supergravity, but we should solve the Bianchi identity (1.3.6) as well.

This system has been studied extensively in the literature (see e.g. [11–16]) for Kähler and
non-Kähler internal spaces. In this section, our focus will be on CY internal spaces, which is
the most studied case.
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“Compactification” is an extensively used word in the string theory literature. This word has
different meanings, which we would like to clarify. First, a compactification is a background
solution of ten-dimensional supergravity with a compact factor. As a second meaning, it refers
to the process of reducing a ten-dimensional theory over the internal compact space to get, for
example, a four-dimensional theory. This is also called Kaluza-Klein reduction. To this end,
one starts from a particular ten-dimensional vacuum solution and studies the fluctuations around
this background. Usually this computation proceeds in two steps. In the first step, one identifies
some differential operators in the internal manifold whose eigenvalues give the effective lower-
dimensional masses of the fluctuations. For instance, for scalars (Kaluza-Klein tower of scalars)
in the lower-dimensional action, this operator is given by the internal Laplacian, gmn∇n∇m. In
a second step, one computes the spectrum of this differential operator. Doing this computation
explicitly can be very hard for complicated manifolds, such as Calabi-Yau spaces1. If one is
only interested in a low-energy effective theory, however, one usually only keeps the lightest

1For a review on Kaluza-Klein-reduction and compactification see [17, 18].
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8 2. Compactification and geometry

fluctuation modes and derives an action for them by dimensional reduction of ten-dimensional
supergravity on the compact space.

A particularly interesting class of light fields is provided by the so-called moduli fields of
a compactification. For instance sometimes one is able to identify a finite-dimensional space
of internal metrics with a feature that distinguishes them from all other internal metrics. For
example, Ricci-flat metrics usually come in finite-dimensional families. Letting the parame-
ters, which describe the families, depend on the coordinates of the external space, defines a
natural set of finitely many moduli fields in the effective lower-dimensional theory. This lower-
dimensional supergravity theory has a potential, V , for these scalar fields, and in the Ricci-flat
case it vanishes identically. Ideally we would like to fix the masses of the moduli to sufficiently
large values in order to decouple them from a realistic effective theory in four dimensions. For
instance, there could be some mechanisms, such as non-perturbative corrections, flux contri-
butions and string-loop and α′-corrections, which introduce a moduli dependence. V can then
have some critical points, and the masses of the moduli will depend on the value of the second
derivative of the scalar potential at those points. It would also be nice if all of these solutions of
a 4d effective theory corresponded to genuine vacuum solutions of the ten-dimensional theory.
In fact, one would like to be able to “lift” any classical solution of the four-dimensional theory
to the full solution of the ten-dimensional supergravity. A theory for which this is always true is
called a consistent truncation of the higher-dimensional theory. Unfortunately, most reductions
are not consistent truncations, and finding solutions in a lower-dimensional effective theory
might not guarantee a self-consistent ten-dimensional solution. This is one of the main motiva-
tions for taking a fully ten-dimensional point of view and study the backreaction of fluxes for
the different set-ups studied in this thesis.

2.1 Vacua in any dimensions

We will look here at vacuum solutions of both type II/Heterotic supergravity. In supergravity we
usually look for 10D vacuum solutions of (1.2.17) or (1.3.7) in a compactified ten-dimensional
space-time. A compactified ten-dimensional space means that M10 ia a fiberation over a four-
dimensional external manifold Md:

M10−d ↪→Md →M10,

where M10−d is the internal compact manifold. In general, a vacuum of type II and heterotic
supergravity is a solution of its equations of motion and Bianchi identities, such that M10−d is
fibered over a space-time Md and, in addition, the whole solution has maximal symmetry in
four dimensions. The groups of transformation, under which the external spaces are invariant,
are the Poincaré Groups, SO(d− 1, 2) and SO(d− 1, 1). Each of these isometry groups defines
a different Md:

• ISO(d− 1, 1): the space which admits this symmetry is Minkd;

• SO(d− 1, 2): with this symmetry group we have Md = AdSd;
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• SO(d− 1, 1): this symmetry implies Md = dSd.

We will consider only the first two cases, because the dSd as external space breaks supersym-
metry 2. In this frame, as a consequence of previous definitions, the metric3 of M10 is

ds2
10 = e2Ads2

d + ds2
10−d (2.1.1)

where gµm = 0, with µ = 0, .., d − 1 and m = 1, ...10 − d. The external metric ds2
10−d

is unconstrained, whereas the internal metric ds2
d is totally constrained and it is the metric of

Minkd or AdSd. e2A is the warp factor, which depends on internal coordinates: {ym}. The
compactification and the vacuum ansatz entail some consequences on fluxes. The Dilaton φ
depends only on internal coordinates. The H-flux has only internal components. In type II
we have also RR fluxes, Fp, with p < d they have purely internal legs like H , but if p ≥ d
we can have external indices. This corresponds to the following ansatz for Fp≥d, F0...dm1... ∼
volMink/AdSd

∧ . . ..

2.2 Minkowski4 solutions of ten-dimensional supergravity

Heterotic supergravity comes with a very compelling feature of a non-abelian gauge group.
In the first part of this thesis, we will study a simple class of four-dimensional vacua of the
heterotic theory. The metric is of the form (2.1.1) with d = 4, and, for simplicity, we assume
that the warp factor is constant. We can then generally set A = 0 or rescale the external metric
to absorb a constant warp factor. The compactified ten-dimensional space now is

M10 = Mink4 × Y, (2.2.1)

where Y is the six-dimensional internal compact manifold. The Killing spinor ε and the gamma
matrices that acts on them are decomposed according to the factorized space (2.2.1). The
gamma matrices are represented as tensor product:

Γµ = γµ ⊗ 16 Γm = γ5 ⊗ γm, (2.2.2)

where γµ, with (µ = 1, . . . , 4), are the four-dimensional gamma with {γµ, γν} = 2gµνMink4
, γm,

with (m = 1, . . . , 6), are the six-dimensional gamma matrices with {γm, γn} = 2gmnY (see A for
the conventions on the indices), and, γ5 is the four-dimensional chirality matrix. On the other
hand, in the case of 4d, N = 1, supersymmetry, the ten-dimensional Majorana-Weyl spinor, ε,
is decomposed in the following way

ε = ζ ⊗ η, (2.2.3)

2This is justified by, for example, a 4d N = 1 supergravity argument, indeed, we have to set to zero the
auxiliary fields, in order to preserve supersmmetry, this implies a negative or zero cosmological constant.

3Sometimes instead of the fiberation diagram (2.1.1), we will use the direct product notation, M10 = Md ×
M10−d, also for warped product. It will be clear from the context when we have trivial or non-trivial warping.
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where ζ is a spinor of Minkowski4 and η is a Majorana-Weyl spinor of M6. Finally, we can
substitute this decomposition in equations (1.3.7), where the Killing spinor equation4 in Mink4

is Dµζ = 0. The results are the supersymmetry variations rewritten only in terms of the internal
spinor η,

δλ = −1

2
∂mφγ

mη +
1

24

(
Hmnr +

1

4
Σmnr

)
γmnrη, (2.2.4a)

δχ = −1

4
Fmnγ

mnη, (2.2.4b)

δψm = Dmη −
1

8
HmnrΓ

nrη +
1

96
Σnrsγ

nrsγmη, (2.2.4c)

where all the indices are now internal and referred to the manifold Y , and the fields are all
defined in 1.3. The best understood solution of (2.2.4) is specified by Dmη = 0 and H = Σ = 0
as well as some conditions on the field strength F , which we will discuss later on. Moreover,
(2.2.4a) and H = Σ = 0 implies that the dilaton is constant. In the next subsection, we will
describe the geometry of this solution in a more detailed way.

2.2.1 Calabi-Yau threefolds

Y is a compact manifold, and in order to solve (2.2.4), we take Dmη = 0. In the tangent bundle
of the orientable manifold M6, we have a natural SO(6) frame bundle. In order to define a
Majorana-Weyl spinor spinor on M6, we need to lift the frame bundle to a spin bundle, Spin(6).
Because of the isomorphism Spin(6)'SU(4), a Majorana-Weyl spinor transforms under the
fundamental representation of SU(4). The stabilizer of one globally nowhere-vanishing spinor
is the subgroup SU(3), hence, M6 has a SU(3)-structure. If, moreover, the spinor is covariantly
constant under the spin connection induced by the Levi-Civita connection, M6 is equipped with
an SU(3)-holonomy.

However, before we proceed to study the geometry of the internal manifold, we intro-
duce some important basic concepts. A real 2d-dimensional manifold can be regarded a d-
dimensional almost complex manifold only if it admits an almost complex structure (ACS),
namely a globally defined tensor Imn such that I2 = −1 (in indices Imp I

p
n = −δmn). If in

addition I satisfies
Nm
np = ∂[pI

m
i] − I i[nI

j
p]∂iI

k
j = 0, (2.2.5)

where Nm
np is called the Niejenhuis tensor, the manifold M then is a d-dimensional complex

manifold and I is integrable. The complexified tangent space, T ∗Mp ⊗C, at each point p ∈M
decomposes into the (i)-eigenspace and the (−i)-eigenspace of the ACS I . Since I is a global
object we can extend this concept to the entire complexified tangent bundle T ∗M⊗C defined as
the union

⊔
p T
∗Mp⊗C, ∀p ∈M . Then the sections of these bundles, locally constructed as (i)-

eigenspace and (−i)-eigenspace of I , define the (1, 0)-forms and the (0, 1)-forms respectively.

4As a comment, in general Dµ and Dm always indicate the convariant derivatives (with respect to the spin
connection associated to the Levi Civita connection) acting on spinors respectively on the external and internal
space for any decomposition of M10.
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In a similar way, considering the complexified extended bundle
∧k T ∗M ⊗ C of k−forms, we

can generalize this definition to any (p, q)-form.
(2.2.5) can be translated into a condition on a symplectic real two-form. In order to see

this, since Md is a complex manifold, we define some local complex holomorphic coordinates
{za}, a = 1, .., d. Moreover, we assume the presence of a nowhere degenerate Hermitian
metric on Md, g = gab̄dz

adz̄b̄, where Hermitian means that g(v, w̄) = g(w, v̄), ∀ v, w ∈ TM6.
We can then define a (1, 1)-form, J on Md using the following relation,

gcb̄ = Iac Jab̄, (2.2.6)

where
J = Jab̄dz

a ∧ dz̄b̄. (2.2.7)

It can be proven that the integrability condition (2.2.5) on J now reads dJ = 0. A manifold with
an Hermitian metric and a symplectic real two-form is called Kähler manifold. 5 A Calabi-Yau
manifold is a Kähler manifold obeying a constraint on one of the topological invariants of the
tangent bundle defined on this manifold, namely the first-chern class vanishes, c1(TY ) = 0.
For such manifolds, a powerful theorem by Yau [19, 20] (see page 72 [21] for a little review),
guarantees the existence of a Ricci-flat metric with SU(d)-holomomy. In this section, we have
introduced Calabi-Yau manifold in complex d dimensions, however, from now on in this thesis,
we will consider Calabi-Yau 3-folds.

Coming back to our covariantly constant spinor, η, it restricts the holonomy to SU(3), and,
hence, the internal manifold Y is a Calabi-Yau 3-fold. In fact, using the Clifford map (1.2.16),
J can be written as

J ↔ η†γmnη, (2.2.8)

and we can define a holomorphic three form:

Ω↔ η†γmnpη. (2.2.9)

The existence of a nowhere-vanishing (3, 0)-form, Ω, says that the canonical bundle (the subun-
dle of

∧3 T ∗M consisting in the (3, 0)-forms) is topologically trivial. The condition Dmη = 0,
implies that dJ = 0, i.e. we have a Kähler manifold, and, moreover, dΩ = 0. Conversely
a pair of integrable (J,Ω) defines an SU(3)-holonomy on the manifold. We then see that the
Calabi-Yau condition can be written also as differential equations on differential forms.

2.2.2 Supersymmetric vector bundles

The condition Dmη = 0, together with H = Σ = 0 is not sufficient to satisfy (2.2.4). The gaug-
ino variation (2.2.4b) implies, γmnF j

mnη = 0, where j are indices in the adjoint representation

5Note that the exterior differential d in this case has not to be confused with the number of complex dimension
above.
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of E8× E8. We need to construct a vector bundle with field strength F = dA + A ∧ A, where
the gauge field6, A, satisfies (2.2.4b) that can be rewritten in the following way

Fab = Fāb̄ = 0 (2.2.10)
gab̄Fb̄a = 0. (2.2.11)

The first condition (2.2.10) (called holomorphicity condition) simply implies that the vector
bundle on Y has to be holomorphic. Finding explicit solution for A is a very hard task with
the techniques known so far. However, for Calabi-Yau manifolds Y there exists a powerful way
of transforming this question into an problem of algebraic geometry, namely the vector bundle
has to satisfy a so-called stability condition. Reviewing the beautiful result by Donaldson,
Uhlenbeck and Yau is not one of our goals here, so we refer to [22, 23] for the theorem and
to [21] for a short explanation of the poly-stability condition of vector bundles on Calaby-Yau
manifolds.

Standard and non-standard embeddings

In order to have a final and complete solution, we need to satisfy also the Bianchi identity
(1.3.6). Having set H to zero it reads

tr (R ∧R) = tr(F ∧ F ) . (2.2.12)

Let us forget about one of the E8 factor of the gauge group. The simplest non-trivial solution
is to set the vector bundle V to be the tangent bundle of Y . Moreover, one can prove that the
tangent bundle TY of a Ricci-flat and Kähler manifold is automatically stable and, hence, V
satisfies equations (2.2.10-2.2.11). With this choice of V , it is clear that over the internal space
the structure group is no longer E8, but rather the SU(3). Namely, we have broken structure
group E8 to the subgroup E8 → E6× SU(3), where E6 is structure group of the vector bundle on
the external space. In general, if we solve (2.2.10-2.2.11) by using only a subset of the E8 group
indices (setting F = 0 for the other E8 factor), then the E8 bundle breaks into a product bundle
with structure group H× G where7 G, H ∈ E8. H is identified with the Yang-Mills gauge group,
which connection has components only on the physical space Minkowski4, but it can depend on
the coordinates of the internal space, Y , as background function, i.e. the H is identified with an
H gauge bundle on Minkowski4× Y . G is the structure group of V , the bundle over the internal
space. So, for a given choice of bundle and structure group, G, we can determine the maximal
H such that G× H ∈ E8. H is called the “commutant” of G in E8. For the above choice of G =
SU(3), we have H = E6 and this is defined as standard embedding. The vacuum would have a
E6 gauge group in the four dimensional Minkowski space, but its connection can still depend on
the coordinates of the internal space, Y , feature that is fundamental to break further the gauge
group by using Wilson lines, given by non-trivial loops in the internal Calabi-Yau space. All in

6A here is the gauge connection and not the warp factor, which we already have gotten rid. It will be clear from
the context that A will be the gauge connection when we talk of heterotic supergravity and the warp factor when
we talk about more general vacuum solutions in type II.

7H in this paragraph has not to be confused with the three form flux.
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all, this means that one could, in principle, construct a E6 GUT theory starting from this vacuum
solution.

It is clearly of interest to ask whether there are more general solutions to (2.2.10-2.2.11). It
was realized in [24] that such constructions are indeed possible by choosing V not as the tangent
bundle, TX , like in the Standard Embedding above, but V can be a more general holomorphic
vector bundle over Y with structure group G. For instance, if we are interested in obtaining an
SO(10) theory in four-dimensions, we must select G to be SU(4). Similarly, a bundle V with
SU(5) symmetry will lead to an SU(5) GUT theory. Such choices of holomorphic vector bundles
are known as general embeddings. However, the stability condition of V coming from (2.2.10-
2.2.11) is not automatically satisfied now, and it needs to be verified, giving some constraints
on the topological data of the vector bundle, V , of the Calabi-Yau Y .

2.2.3 A playground: quick introduction to CICY

In this work, we will construct explicit subclasses of Calabi-Yau manifolds as submanifold of
compact Kähler manifold, with the right topological requirement c1(Y ) = 0. More concretely,
we will consider complex projective spaces as ambient spaces. An n-dimensional complex
projective space CP n (or simply Pn) is defined by

CP n ≡ Cn+1 − 0

C∗
, (2.2.13)

by which one reads of the space of equivalence classes [z] = [z0, z1, . . . , zn], where we mod
out the multiplicative action of λ ∈ C∗, namely z = (z0, z1, . . . , zn) = (λz0, λz1, . . . , λzn) with
(z0, z1, . . . , zn) coordinates of Cn+1, which in CP n will be called homogeneous coordinates.
Basically, one could think of CP n as the space of complex lines through the origin of Cn+1.
The Kähler form locally reads

J = i∂i∂j̄KdZ
a ∧ dZ̄ b̄, K = log(1 +

n∑
i=1

|Za|2), (2.2.14)

where Za = za/z0 are the affine coordinates, and the first chern-class of CP n is

c1(CP n) = (n+ 1)J. (2.2.15)

For a p-degree polynomial in a projective space we have

c1(Y ) = (n+ 1− d)J = 0. (2.2.16)

One of the most famous examples is the quintic hypersurface in P4:{
z ∈ CP 4

∣∣∣∣ pa1a2a3a4a5za1za2za3za4za5 = 0

}
. (2.2.17)

where a1,2,3,4,5 = 0, . . . 4, and pa1a2a3a4a5 are the complex parameters that actually parameterize
a family of this kind of algebraic variety. The quintic does satisfy (2.2.16), with d = 5 and
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n = 4. We can generalize this manifold to a more general and reach class. This class is called
complete intersection Calabi-Yau manifolds (CICY). Here we sketch the relevant information
from the vast literature on complete intersection CICYs. Much more detailed discussion can
be found in the pioneering papers [25, 26] and in the textbook [27]. A CY manifold may be
constructed as the set of homogeneous solutions to a set of polynomials determined by the
configuration matrix 

CP n1 m11 m12 · · · m1l

CP n2 m21 m22 · · · m2l
...

... . . .
CP nk mk1 mk2 · · · mkl

 . (2.2.18)

This matrix specifies a class of l polynomials in the ambient space

CP n1 × CP n2 × · · · × CP nk . (2.2.19)

We call each polynomial Pi, where i = 1, . . . , l corresponds to the ith column of the config-
uration matrix, and the entries in the matrix specify that each term in the ith polynomial must
contain mji powers of the coordinates from CP nj . The set of simultaneous homogeneous so-
lutions to all the polynomials is a compact and smooth Kähler subspace of the ambient space
provided that the polynomials are transverse, that is dP1 ∧ · · · ∧ dPl 6= 0 at all points of inter-
section, Pi = 0. The subspace is a three-fold if

k∑
i=1

ni = l + 3, (2.2.20)

and furthermore it is Ricci-flat with vanishing first Chern Class and therefore CY if the config-
uration matrix satisfies ∑

i

mji = nj + 1, ∀j = 1, . . . , k. (2.2.21)

Of course for each configuration matrix there are many different choices of polynomials, most of
which correspond to smooth CY manifolds. All smooth complete intersections corresponding to
the same configuration matrix are diffeomorphic and therefore topologically equivalent as real
manifolds. Finally, the coordinate expression of the holomorphic three-form has an implicit
definition, given in [26]. It is a contour integral on a contour, γ, in the ambient space around the
zero-locus of the polynomials, Pi,

Ω = lim
δ→0

∫
γ

εA1A2...Ak+4
zA1dzA2 ∧ dzA3 ∧ . . . ∧ dzAk+4

P 1P 2 . . . P l
, (2.2.22)

where δ is the radius of the contour around each zero-locus of the polynomials, and zA1 , zA2 ,
. . . zAk+4 are the homogeneous coordinates in the ambient space. The Kähler form is instead
locally given by the expression (2.2.14) intersected with the polynomials Pi.

All CICYs are simply connected, whereas model building requires multiply connected CYs
in order to allow GUT symmetry breaking by Wilson lines. Multiply connected CYs can be
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obtained by quotienting a CICY by some freely-acting discrete symmetry group Γ. The fun-
damental group of the quotient CICY is then non-trivial, π1(Y3/Γ) = Γ. When quotienting a
given CICY configuration by Γ, one must of course consider only polynomials that respect this
symmetry. This significantly lowers the dimensionality of the moduli space of the CY.

2.2.4 Moduli spaces and Hodge numbers

At the beginning of this chapter we mentioned that some vacuum solutions comes in parame-
terized continuous families, such as e.g. Calabi-Yau manifolds, and within the same family the
manifold are topologically the same. These families are parameterized by the so-called mod-
uli. When we allow these parameters to depend on the external space coordinates, they become
fields. For Calabi-Yau spaces the Hodge numbers count the dimensions of the moduli spaces,
i.e. the number of independent parameters of a given family, and, more explicitly, there are only
two types of moduli spaces associated to deformations of the holomorphic three-form (complex
structure moduli) and deformations of the Kähler form (Kähler moduli).

For example, the quintic in (2.2.17) depends on a choice of the coefficients pa1...a5 of the
degree 5 polynomial. This is a

(
5+4

5

)
= 126-dimensional space. However, many of these

polynomials are equivalent under linear changes of coordinates, which is the group Gl(5,C),
with dimension 25. So we actually have a 101-dimensional space.. From the point of view
of the four-dimensional theory, we expect each of these quintics to give rise to a supersym-
metric Minkowski vacuum. So the effective potential in four dimensions should have 101 flat
directions, which means 101 massless scalars. For any phenomenological application, this is a
disaster: these would be mediated by long-range scalar forces, which are not observed. This is
a common feature of all Calabi–Yau compactifications. Fortunately, things get better once we
give masses to the moduli. Indeed, one of the main issues in string compactification is the mod-
uli stabilization problem and to find the right mechanism to give them a sufficiently large mass
by fixing their VEV’s (Vacuum Expectation Values) dynamically. In any case, there are many
good reasons to keep studying Calabi–Yau manifolds, even without immediately tackling their
moduli stabilization. The 101 moduli we have just found for the quintic are deformations of its
complex structure: they change the way we define our complex coordinates zi out of the real
coordinates xm. Variations δz imply deformations of δΩ, more precisely these deformations
belong to the space,

δΩ ∈ H2,1(Y ) ≡ Λ2,1 ∩H3(Y ). (2.2.23)

Hp,q(Y ) are the Dolbeault cohomology groups of the Calabi-Yau Y , Λp,q = {ωa1,...,apb̄1...b̄qdza1∧
. . . ∧ dzap ∧ dz̄b̄1 ∧ . . . ∧ dz̄b̄q}, and Hm(Y ) are the de Rham cohomology groups defined as
follows

Hm(Y ) =
Zm(Y )

Bm(Y )
, (2.2.24)

with Zm = {ωm ‖ dωm = 0}, the space of closed m-forms and Bm = {ωm, | dωm−1}, the space
of exact m-forms (m = 1, . . . , 6 and p, q = 1, . . . , 3). The cohomology groups have always a
finite set of independent Harmonic forms (that means they are solution of the Laplace equations,
see [18] for a review), which are representatives of these cohomology groups. In general, the
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complex structure moduli space of a Calabi–Yau is a complicated manifold, and we cannot say
much at this stage. There is, however, a subspace of moduli which we should be careful about:
the so-called singular locus where Y is singular. Fortunately, algebraic geometry gives us a
simple criterion to check whether a manifold defined by l polynomials Pi(z0, ..., zn) is singular.
The singular locus is defined as the sublocus of the manifold given by the intersecting system
of polynomials, Pi, where

Rank

(
∂Pi
∂za

)
< k i = 1, . . . , l, a = 0, . . . , n. (2.2.25)

with (∂aPi) the (l × (n+ 1)) Jacobian matrix.
Finally, we can relate these Harmonic forms to 3-cycles. In general m-cycles are particular

m-dimensional submanifolds of Y and they generate the homology group Hm(Y ). The con-
nection between homology and cohomology is given by Poincaré duality: given any m-cycle,
Q, there exists a closed (6 − m)-form α, called Poincaré dual of Q such that for any closed
m-form, ω, ∫

Q

ω =

∫
Y

α ∧ ω. (2.2.26)

Since ω is closed α is only defined up to an exact form. Therefore, we can give to the complex
structure moduli a beautiful geometric interpretation, namely these moduli fields are deforma-
tion of certain 3-dimensional submanifolds of Y .

Another class of deformations allowed in Calabi-Yau manifolds are Kähler moduli δJ , re-
lated to deformations of the Kähler form (2.2.7). These are elements of a cohomology group as
well,

δJ ∈ H1,1(Y ) ≡ Λ1,1 ∩H2(Y ). (2.2.27)

As for the complex structure moduli, we have a nice geometric interpretation of the Kähler
moduli. They are deformation of two-dimensional holomorphic cycles associated via Poincaré
duality to Harmonic representatives of H1,1(Y ). For example δJ represents changes in the
volume of the cycles ci of dimension 2, with their volume being given by vi

∫
ci
J .

All the dimensions of these moduli spaces are counted by Hodge numbers defined as

hp,q = dimC(Hp,q(Y )). (2.2.28)

For Calabi-Yau manifolds, we have the following non-trivial Hodge numbers:

h0,0 = h3,3 = 1, h3,0 = h0,3 = 1, h1,1, h2,1 = h1,2, (2.2.29)

Some of these topological data are related by complex conjugation

hp,q = hq,p (2.2.30)

and Hodge duality
hp,q = h3−p,3−q. (2.2.31)

h3,3 = h0,0, h3,0 = h0,3 are the same in every Calabi-Yau, whereas h1,1, h2,1 = h1,2 can be
different in different families of Calabi-Yau. Different Hodge numbers describe topologically
different Calabi-Yau’s, on the other hand, different manifolds in the same moduli space are
diffeomorphic to each other.
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2.2.5 4d effective theory

In order to construct an effective field theory in four dimensions, we need to have a concrete
expression the moduli. For the complex structure moduli we begin by introducing a basis of
H3(Y ) with generators αa, βa (with a, b = 0, . . . h2,1) which are Poincaré dual to a canonical
homology basis (Qa, S

b) of H3(Y ) with intersection numbers defined by

Sa · Sb =

∫
Y

βa ∧ βb = 0, (2.2.32)

Qa ·Qb =

∫
Y

αa ∧ αb = 0, (2.2.33)

Qa · Sb =

∫
Y

αa ∧ βb = δba. (2.2.34)

This implies ∫
Sb
αa =

∫
Y

αa ∧ βb = −
∫
Qa

βb = δba. (2.2.35)

We can expand every closed three-form, ω2, in terms of the canonical Harmonic basis

ω3 = ζaαa + ζ̃aβ
a (2.2.36)

Furthermore, under a change of complex structure the holomorphic 3-form, Ω, which was pure
(3, 0) to start with, becomesa mixture of (3, 0) and (2, 1), and can be expanded in the basis of
Harmonic forms as (2.2.36). Finally, ζa, ζ̃a are the real (2h2,1 + 2) moduli, from which we can
define (h2,1 + 1) complex structure moduli as complex combinations, where we allow ζa, ζ̃a to
depend on the external coordinates.

Similarly to the complex structure moduli, the Kähler moduli come from expanding the
closed two form in a basis of Harmonic forms {bα}, which are representatives of the cohomol-
ogy group H1,1(X),

ω2 = tαbα, α = 1, . . . , h1,1 + 1 (2.2.37)

We can associate 2-cycles that are elements of the Homology, H2(X), via Poincaré duality
and by computing the triple intersection numbers. tα are h1,1 real moduli, and they can be
combined with the moduli coming from the expansion of the NSNS two form field B2 in terms
of Harmonic forms, in order to get complex combinations. These are the complexified Kähler
moduli.

Let us briefly describe the main quantities related to the moduli fields of a 4-dimensional,
N = 1, effective theory coming from a compactified ten-dimensional supergravity. We can
start from a Calabi-Yau solution of heterotic supergravity and dimensionally reduce the ten-
dimensional theory on the underling compact internal space. Ignoring higher massive KK-
modes, we are left with the massless scalars, which are identified with the above introduced
moduli fields, φi, i = 1, . . . (h1,1 + h2,1 + 2). A general scalar potential of a 4d, N = 1,
effective field theory has the following restricted form:

V = eK(DiWDiW − 3|W |2), Di =
∂

∂φi
+
∂K

∂φi
, (2.2.38)
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where K is the so-called Kähler potentials, a real function of the complex and Kähler moduli
moduli fields, which defines the kinetic term in a 4d supergravity theory. The superpotential W
is an holomorphic function of the complex moduli. For the unstabilized moduli, W vanishes
identically, and hence V does. In [28], a non-trivial H-flux was conjectured to result in a flux
superpotential,

W =

∫
Y

H ∧ Ω. (2.2.39)

If we expand Ω and H in the Harmonic basis and we integrate over Y , we get the dependence
on the complex structure moduli. However, the consistency of turning on an H-flux on a su-
persymmetric Calabi-Yau background has to be verified, we will deal with this issue in 3 in
the context of heterotic supergravity. There can exist other contributions to K and W , such
as non-Kähler deformations, α′-corrections and non-perturbative effects. Finally, the standard
way to stabilize the moduli is to search for minima of a suitable scalar potential.

As last comment, deformations of vector bundle lead to bundle moduli. This deformations
are not arbitrary but they should satisfy (2.2.10, 2.2.11), the holomorphicity and stability con-
straints depend on the complex structure moduli together with the bundle moduli. The naive
factorisation of the two different moduli spaces is lost due to these constraints. See [29–32], for
a discussion on bundle moduli and their stabilization.

2.3 Beyond Calabi-Yau three-folds

We will now generalize the discussion to a larger class of solution of type IIA/B supergravity.
As we have already seen in section 1.2, the supersymmety variations, (1.2.17), are written in
terms of two Majorana-Weyl spinors ε1, ε2. We will look for supersymmetric vacuum solutions.
We recall that solving the system (1.2.17), together with the Bianchi identities, (1.2.18), implies
solving the equation of motions of type II supergravity [33,34]. The goal of this section is to give
a sketch of the techniques used to rewrite the general spinor equations in terms of differential
equations on forms, which seem to be more manageable.

2.3.1 More general 4-dimensional vacua

We will review now some general aspects of 4d,N = 1, supersymeetric vacua of type II super-
gravity with fluxes. The gamma matrices are decomposed as (2.2.2), where γµ → eAγµ, since
we turn on a non-trivial warping and the metric reads (2.1.1) with d = 4. The decomposition
ansatz for the two ten-dimensional Majorana-Weyl spinors, ε1 and ε2, is

ε1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

− (2.3.1)
ε2 = ζ+ ⊗ η2

∓ + ζ− ⊗ η2
± (2.3.2)

where ζ− = (ζ+)∗ and η1,2
− = (η1,2

+ )∗ and ∓ signs are, respectively, for the cases IIA or IIB
supergravity. We plug this decomposition in equations (1.2.17) with the following ansatz:
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• For M4 = Mink4, Dµζ± = 0, i.e. all spinors are constant with respect to the external
coordinates xµ;

• For M4 = AdS4, we have the Killing spinor equation: Dµζ− = 1
2
µγµζ+, where µ is a

parameter related to the cosmological constant: Λ = −µ2 < 0.

Finally, with all previous assumptions decompositions, we get six equations in terms the Killing
spinors in the internal space, η1,2,(

Dm +
1

4
Hm

)
η1

+ ±
eφ

8
fγmη

2
± = 0, (2.3.3a)(

Dm +
1

4
Hm

)
η2
∓ −

eφ

8
λ(f)γmη

1
+ = 0, (2.3.3b)

µe−Aη1
+ + ∂Aη1

+ −
eφ

4
fη2
± = 0, (2.3.3c)

µe−Aη2
± + ∂Aη2

± −
eφ

4
λ(f)η1

+ = 0, (2.3.3d)

2µe−Aη1
− +Dη1

+ +

(
∂(2A− φ) +

1

4
H

)
η1

+ = 0, (2.3.3e)

2µe−Aη2
± +Dη2

∓ +

(
∂(2A− φ) +

1

4
H

)
η2
∓ = 0, (2.3.3f)

where ± signs are respectively the IIA or IIB case, with µ = 0 it corresponds to the 4d
Minkowski case and the contracted three-from flux reads HM = 1

2
HMNPΓNP . Moreover, the

fluxes are written in the following fashion

F = f + vol4 ∧ ∗6λf, , (2.3.4)

where f is a polyform, namely a formal sum of forms of possibly different degrees. All the
fields and the operator acting on differential forms, λ, are defined in section 1.2. The new
Bianchi identities with the decomposition (2.3.4) are

dH = 0; (d−H∧)f = 0; (d+H∧)(e4A ∗6 f) = 0, (2.3.5)

where A refers to the warp factor of the decomposed metric (2.1.1) with d = 4. In order to
make the notation simpler and more compact, we redefine the exterior differential operator

dH = d−H∧ (2.3.6)

Without making any further ansatz the goal is to rewrite the equations in terms of forms.
In case M4 = Mink4 with constant warping and when all the fluxes vanish, we reobtain

the Calabi-Yau solution in type II context. These types of Calabi-Yau solutions in type II have
enhanced supersymmetry, N = 2, where the amount of supersymmetry depends on the de-
composition ansatz of the spinors, (2.3.1). For instance, a covariantly constant spinor on M6
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results from the system (2.3.3), even when we have a decomposition of the type, ε1 = ζ1 ⊗ η,
and ε2 = ζ2 ⊗ η, with vanishing fluxes and constant warping. On the other hand, we can
have more general solutions with non-trivial fluxes. The spinors are no longer covariantly con-
stant with respect to the Levi-Civita connection but rather they satisfy an equation of the kind,
Dη = f(F,H). Saying it differently, the spinors would be covariantly constant with respect
to another connection with non-trivial torsion, which is related to the fluxes, and they define a
manifold with reduced structure group of the tangent bundle, i.e a G-structure manifold.

In equations (2.3.3) we have two Killing spinors, so we have to understand which G-
structure they define. The G-structure depends on how the spinors are related to each other.
For instance, if η1, η2 are everywhere parallel we have an SU(3)-structure (sometimes called
strict SU(3)-structure), if they are everywhere non-parallel they lead to an SU(2)-structure in
six dimensions. However, the natural framework to discuss the general case of two spinors that
are neither everywhere parallel nor non-parallel is the generalized tangent bundle, TM6⊕T ∗M6.
This extended bundle is at the heart of generalized complex geometry developed by Hitchin [35]
and Gualtieri [36].

The idea is that {dxm∧, ιm} ∈ TM6 ⊕ T ∗M6 (with xm, m = 1, . . . , 6, coordinates of
M6) have a natural action on differential forms as operators, where ιm ≡ ∂

∂xm
x is the contrac-

tion operator of indices of a differential form, see definition in A. The algebra generated by
these operators satisfies the cliff(6) ⊕ cliff(6) algebra relations8. In this sense differential forms
are represented as spinors of cliff(6) ⊕ cliff(6). Eventually, every polyform can be written as
bispinor of cliff(6), under the Clifford map (1.2.16). In six dimensions the following bispinors
of cliff(6),

Φ− = η1
+ ⊗ η

2†
− =

6∑
k (even)=1

1

4k!
η2†
− γik...i1η

1
+γ

i1...ik , (IIA) (2.3.7)

Φ+ = η1
+ ⊗ η

2†
+ =

6∑
k (odd)=1

1

4k!
η2†

+ γik...i1η
1
+γ

i1...ik , (IIB) (2.3.8)

are also called “pure spinors” in type IIB/A supergravity respectively, where “pure” means
that Φ± are annihilated by half of the generators of cliff(6) ⊕ cliff(6). Since Φ is a nowhere
vanishing spinor of cliff(6)⊕ cliff(6), one can define a spinor bundle associated to the extended
tangent bundle, TM6 ⊕ T ∗M6. The structure group of this extended tangent bundle would be
the stabilizer of the spin group associated to the clifford algebra cliff(6) ⊕ cliff(6) acting on its
spinor Φ, i.e. Spin(6) × Spin(6). This implies that the structure group of TM6⊕T ∗M6 reduces
to SU(3) × SU(3) and, hence, Φ± define a SU(3) × SU(3) generalized structure everywhere on
M6. Using these powerful techniques, one can prove that the supersymmetry equations (2.3.3)
are equivalent to the system:

dHΦ+ = 0, dH(e−ARe Φ−) = 0; (2.3.9)
dH(eAIm Φ−) = e4A ∗ λf, (2.3.10)

8Each copy of the algebra, cliff(6), is given by the anticommutators {γm, γn} = 2gmn, where gmn is the
metric on M6 and γm are matrices acting on elements of the Spin(6) bundle on M6.
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for M4 = Mink4, with the cosmological constant Λ = 0 and to the system

dHΦ+ = −2µRe Φ−; (2.3.11)
dH(eAIm Φ−) + 3µIm Φ+ = e4A ∗ λf, (2.3.12)

for M4 = AdS4 and Λ = −3µ2 < 0. For more details see lecture notes [37].

2.3.2 Further generalization: the ten-dimensional supersymmetric sys-
tem

The final step is to generalize this procedure to any supersymmetric ten-dimensional solution of
type II supergravity. The idea is the same as in the previous section, however, the story here is
much more complicated. First of all, let us define some of the main objects that will appear in
the system of equations. The bispinor Φ is a bilinear in the two ten-dimensional spinors, ε1, ε2,

Φ = ε1 ⊗ ε̄2 =
∑
p

1

32 p!
ε̄2ΓM1...Mpε1ΓMp...M1 , (2.3.13)

where ε̄2 = (ε2)†Γ0 and p is even in IIB and odd in IIA supergravity, and

K1 =
1

32
ε̄1ΓMε1ΓM ; (2.3.14)

K2 =
1

32
ε̄2ΓMε2ΓM , K2

1,2 = 0, (2.3.15)

K =
1

2
(K1 +K2), (2.3.16)

K̃ =
1

2
(K1 −K2), (2.3.17)

can be all associated to one-forms by (1.2.16) as well as Φ can be related to a polyform by
the same map . As it was shown in [38] with an extensive usage of generalized geometry on
TM10 ⊕ T ∗M10, the following system of equation

dH(e−φΦ) = −(K̃ + ιK)F (2.3.18)
LKg = 0 dK̃ = ιKH, (2.3.19)

is equivalent to (1.2.17), where LK is the Lie derivative with respect to K acting on the ten-
dimensional metric, g, dH ≡ d − H , F is the total RR field strength, F =

∑
Fk (k is odd in

IIB and even in IIA supergravity), and ιK is the contraction of K on the three-form flux H . The
equation, (2.3.18), is called “master equation” and (2.3.19) are the symmetry constraints. The
system of equations is supplemented by two more complicated constraints called “constraint or
pairing equations” ,

〈e+1 · Φ · e+2 , γ
MN

[
±dH(e−φΦ · e+2) + eφd†(e−2φe+2)Φ− F

]
〉 = 0, (2.3.20a)

〈e+1 · Φ · e+2 ,
[
dH(e−φe+2 · Φ)− eφd†(e−2φe+2)Φ− F

]
γMN〉 = 0, (2.3.20b)
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which are written in terms of Mukai pairing9 and

e+i · ω = e+i ∧ ω + (−)deg(ω)e+ixω, (2.3.22a)
ω · e+i = e+i ∧ ω − (−)deg(ω)e+ixω, (2.3.22b)

on any p-form ω. DM is the covariant derivative on M10 (with respect to the Levi-Civita con-
nection) and d† = DM ιM , the vector e±i are defined by taking the contraction10 of them on the
one-forms Ki.

e±ix e±i = 0, e+ixKi =
1

2
, i = 1, 2. (2.3.23)

Finally to have a necessary and sufficient system of equation for any supersymmetric ten-
dimensional solution of type II supergravity, we need to include the Bianchi identities

dH = 0, dHF = 0, (2.3.24)

which are valid away from the sources. In the presence of branes one should include source
terms. For instance, in case of localized Dp-brane or Op-plane sources, the Bianchi identities
will be modified such that

dHF ∼ δDp/Op(y). (2.3.25)

In this thesis Dp-branes and Op-planes will only appear as sources in the Bianchi equations,
which is enough to describe their low-energy effects, whereas their other microscopic behaviour
will be neglected.

9The Mukai pairing is defined as follows:

〈A,B〉 ≡ (A ∧ λ(B))top, (2.3.21)

for any two forms A and B, where the label “top” means that we keep only the maximal degree form (top-form).
10In this thesis, the symbols ι and x are both used for contractions of forms on forms, as defined in appendix A.
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Heterotic string compactifications on Calabi-Yau (CY) manifolds with Wilson lines have had
considerable success in string model building [39–45], with abundant explicit examples con-
taining only a supersymmetric standard model, a hidden sector and a few geometric and vector
bundle moduli. There are also several ideas on how to address the moduli stabilization problem,
although their realization in explicit constructions has proven more challenging. An important
observation is that the holomorphicity and stability conditions on vector bundles could lift many

23
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of the flat directions already at tree-level [24, 29–32]. Another mechanism proposed by [46] is
to stabilize moduli with fractional H-flux sourced by Wilson lines in conjunction with gaugino
condensation. In ref. [47] it was argued that this mechanism would generically lead to GUT
scale supersymmetry breaking.

Wilson lines were first introduced in order to break GUT gauge groups without breaking
supersymmetry. However, any concomitant H-flux might also unintentionally affect the self-
consistency of the compactification background. Indeed, it is well-known that the backreac-
tion of H-flux deforms away from supersymmetric Calabi-Yau compactifications of the leading
order 10D heterotic supergravity theory, either by breaking supersymmetry or by leading to
non-Kähler internal spaces [48]. Moreover, it has also long been known that the Wilson lines’
contribution to H-flux may be associated with global worldsheet anomalies and could thus be
inconsistent as string backgrounds [49].

Since for a given choice of Wilson lines and background manifold, the fractional H-flux
is completely determined and not a matter of choice, it is important to develop techniques that
allow one to compute it in concrete examples to address the above issues. In this work we focus
on complete intersection Calabi-Yau (CICY) manifolds (or rather quotients thereof by a freely
acting discrete symmetry group) as these provide a well understood class of potentially realistic
particle physics models [39–45]. In order to compute the induced H-flux from given Wilson
lines we use a class of special Lagrangian submanifolds (sLags) as representatives of the three-
cycles of the CICYs. One reason for this is that these sLags are easily explicitly constructed
as fixed point loci of certain anti-holomorphic involutions that are completely classified [50].
Furthermore, the intersection theory of sLags is particularly simple. We then show that the
projection of the Wilson line and its induced Chern-Simons term on these sLags can be system-
atically determined. Hence, if the above sLags span a basis for the third homology group (i.e.
if the rank of their intersection matrix matches the dimension of the third homology group), the
superpotential can be expressed as a linear combination of explicitly computable Chern-Simons
invariants on these sLags. Our procedure can then be summarized as follows:

1. Identify sLags in the CICY under consideration, as fixed point sets of isometric anti-
holomorphic involutions classified in [50]. We do this in section 3.2.2. Within this clas-
sification, we also show how the Wilson lines project onto the sLags in section 3.2.3.

2. Calculate the intersection matrix of the sLags and compare its rank with the dimension
of the third homology group. We provide details and further references on how this
computation can be done systematically in sections 3.3.1 and 3.3.2.

3. Compute the Chern-Simons invariants on the sLags. To this end we review some results
from the mathematics literature on Chern-Simons invariants on three-manifolds in section
3.2.4. In order to apply these results one has to determine the topology of the relevant
sLags, and a central role will be played by Seifert fibered manifolds or compositions
thereof.

We discuss the consistency of non-trivial H-flux, be it fundamental or induced by Wilson
lines, in supersymmetric CY compactifications, recalling subtleties associated with the inclu-
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sion of gaugino condensation. On one hand, a dimensional reduction of the 10D effective theory
including non-trivialH-flux and possibly fermionic bilinears does not allow for a supersymmet-
ric vacuum on CY internal spaces [11, 12, 51]. On the other hand, including non-perturbative
effects together with threshold corrections directly in the 4D effective theory, one can restore su-
persymmetry [46,47] in an anti-de Sitter vacuum. The 10D description of this 4D solution is not
yet understood [11, 12]. We discuss the Chern-Simons contributions to H-flux from both non-
standard embeddings and Wilson lines. Chern-Simons fluxes from non-standard embeddings
correspond to higher derivative corrections. They preserve the leading order supersymmetric
CY compactification, and the would-be α′-corrections to the 4D superpotential vanish for the
massless modes due to non-renormalization theorems [8, 24, 52]. Wilson lines, in contrast, can
contribute both to leading orderH-flux and the superpotential and are therefore potentially dan-
gerous for the consistency of the 10D solution. On a similar note, we also mention the relation
between H-flux due to Wilson lines and 2D global worldsheet anomalies [49].

3.1 The heterotic 3-form flux

In this section we will use the notation of the preliminary section 1.3. We will discuss two
seemingly contradictory results that are important to bear in mind when considering H-flux in
heterotic string compactifications. Whether and how these results are concordant has not been
worked out in detail.

• Compactifying leading order heterotic supergravity on CY 3-folds to a supersymmetric
4D maximally symmetric vacuum forces the 3-form flux H to be zero, as we described in
section 2.2. This is true even when vacuum expectation values of fermionic bilinears are
taken into account in the 10D action [11, 12, 51].

• By including the non-perturbative effects of fermionic condensates and threshold correc-
tions directly in the effective 4D theory of a CY compactification, one can in principle
turn on H-flux while simultaneously preserving supersymmetry [46].

This section is therefore largely a review of the literature on various subtleties associated with
H-flux and gaugino condensation on CY internal spaces. We will consider in particular the
effects of non-trivial Chern-Simons terms in this context. We will also briefly discuss the 4D
superpotential from Chern-Simons flux, considering the well known non-renormalization theo-
rem. Finally, we will mention the relation between Chern-Simons flux and global anomalies in
the associated 2D sigma model.

H-flux in heterotic compactifications was discussed soon after the foundational work on CY
compactifications [53]. The seminal paper by Strominger [48] showed that, for supersymmetric
Minkowski solutions, H-flux generates torsion and deforms away from Kählerity1. Indeed, the
supersymmetry conditions imply H = ∗dJ , so that the (3,0) and (0,3) contributions to H must

1CY compactifications with H-flux are, however, possible if we relax the condition of a maximally symmetric
4D external space and consider 4D domain wall solutions [54].
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vanish, and the (1,2) and (2,1) contributions induce non-Kählerity. One question that has been
considered is then what is the effect of gaugino condensation on these statements, especially as
the H-flux and the fermion bilinear, Σ, corresponding to the 4D gaugino condensate, appear in
a related way in the 10D theory.

H-flux and gaugino condensation were first considered in [55, 56]. For CY compactifica-
tions, the vanishing of the gravitino variation together with the equations of motion requires Σ
to vanish [11, 55]. The gaugino condensate in 4D is expected to descend from a non-vanishing
expectation value of Σ. This would then imply that gaugino condensation is not compatible
with the supersymmetry conditions on CY internal spaces. However, H-flux and gaugino con-
densation are compatible with a Minkowski× CY compactification, if we allow supersymmetry
to be broken spontaneously [55]. In detail, the condition for 4D Minkowski space fixes T = 0,
which then leads to non-vanishing supersymmetry transformations for the dilatino and part of
the gravitino. Note that satisfying the Minkowski condition T = 0 requires balancing the
quantized H-flux against non-perturbative effects, which are exponentially small at weak cou-
pling [57]. Dine et al. [55] compared the scalar potential obtained from dimensional reduction
with the scalar potential obtained via a superpotential, W ∼ c + Ae−aS , directly in 4D field
theory. The results matched up to power law corrections, which had been neglected in the 10D
analysis.

Gukov et al. in [46] later argued from a 4D perspective that a supersymmetric AdS solution
is also possible with H-flux and gaugino condensation, provided we include one-loop threshold
corrections. A non-vanishing H-flux leads to the well known superpotential [58, 59]

Wflux =

∫
Y3

H ∧ Ω, (3.1.1)

where the internal space Y3 is assumed to be a CY 3-fold with a holomorphic 3-form Ω. When
gaugino condensates are taken into account we also have to include a corresponding term in the
superpotential [60]

Wgaugino ∼ −e−8π2f/C , (3.1.2)

where f is the holomorphic gauge kinetic function of the gauge group from which the gauginos
condense and C is the dual Coxeter number of the gauge group. Gukov et al. [46] showed that
an AdS supersymmetric solution is possible in the resulting 4D effective field theory provided
that threshold corrections are taken into account so that the gauge coupling function takes the
form

f = S + βT, (3.1.3)

where S and T are the dilaton and volume moduli, and βT is the one-loop correction term. From
this point of view, however, it is not completely clear if the internal space can remain a CY 3-
fold, as we lack a 10D description of the 4D threshold corrections. Also, as was mentioned, the
H-flux is generically quantized to integers [57] which would imply that the dilaton is stabilized
at strong coupling. However, as was discussed in [46], this problem is ameliorated by using the
Chern-Simons contribution to H , which is only fractionally quantized.

An attempt to capture the 4D physics described above within the 10D theory was made by
Frey and Lippert in [11], by solving the 10D supersymmetry conditions. However, as we have
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already seen, it is clear from the leading order 10D equations that the internal manifold cannot
be CY, rather, the solutions they found were a product of 4D AdS spacetime and non-complex
internal spaces. The treatment of higher order corrections in the 10D theory which correspond
to the gaugino condensates with threshold effects in the 4D theory is still missing. In fact it
is unclear how to derive the full 4D superpotential from 10D in the presence of H-flux and
— in particular — gaugino condensation. Usually, the 4D superpotential can be derived from
the gravitino supersymmetry variation. But Frey and Lippert [11] showed that the contributions
from the fermion bilinears Σ (the gaugino condensate in 4D) cancel here, so that the 10D theory
does not seem to catch the 4D non-perturbative effect (see also [12, 61]).

To summarize, if we have non-trivialH-flux together with a 10D fermion bilinear, both non-
supersymmetric Minkowski × CY compactifications [55] and supersymmetric AdS × non-CY
compactifications [11, 12, 15, 16, 61] are possible. Matching these solutions to a correspond-
ing solution obtained directly in 4D (with gaugino condensates) is non-trivial and not fully
understood. As for supersymmetric CY compactifications with non-trivial H-flux and gaug-
ino condensation, a 4D construction that also relies on threshold effects was given in [46] (see
also [47]). A 10D construction of these solutions has so far not been obtained, as – at lead-
ing order – H-flux and fermion bilinears in the equations of motion are not compatible with
vanishing supersymmetry transformations.

3.1.1 The Chern-Simons flux

For the heterotic string, the 3-form H , i.e. the gauge invariant field strength for the Kalb-
Ramond 2-form B, is given not simply by dB, but rather as:

H = dB − α′

4
(ω3Y − ω3L) , (3.1.4)

where the 3-form ω3Y is the Chern-Simons form

ω3Y = tr
(
A ∧ F − 1

3
A ∧ A ∧ A

)
, (3.1.5)

which locally satisfies dω3Y = trF ∧ F , and similar expressions can be written down for the
Lorentz Chern-Simons form ω3L. The Bianchi identity for H therefore has a non-trivial contri-
bution on the right hand side:

dH =
α′

4
(trR ∧R− trF ∧ F ) , (3.1.6)

which requires P1(V ;R) = P1(T ;R), that is, the first Pontryagin classes over real numbers for
the tangent bundle and vector bundle should be equal. It is important to note that – despite the
appearance of α′ in both Chern-Simons contributions – the Yang-Mills contribution is actually
leading order in the derivative expansion 2.

2For a nice and exhaustive treatment of the α′ vs. higher derivative-expansion in heterotic M-theory and its
relation to 10d heterotic supergravity is given in [62, 63].
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As a result of the Chern-Simons contributions to H , we can have a non-zero H-flux, even if
we choose dB = 0 globally. The full expression for the H-flux superpotential is:

W =

∫ [
dB − α′

4
ω3Y

]
∧ Ω . (3.1.7)

Note that the Lorentz Chern-Simons term in H does not contribute to W because it appears
at higher order in the derivative expansion, whilst the superpotential does not receive any per-
turbative corrections beyond the leading order term [8, 51]. We now consider the Yang-Mills
Chern-Simons contribution to W . The Yang-Mills Chern-Simons term in H can give rise to a
background H-field via both the non-standard embedding and Wilson lines. These, however,
affect the background solution and W in different ways.

A non-standard embedding solves the leading order supersymmetry conditions using a holo-
morphic connection on a holomorphic stable vector bundle. However, imposing also the leading
order Bianchi identity, dH = −α′

4
trF ∧ F , implies F = 0 and vanishing background gauge

field [8]. The non-trivial gauge field and the torsion due to H-flux is induced only when bal-
ancing with the higher derivative effects, from the Lorentz Chern-Simons contribution, in the
integrated Bianchi identity. The non-renormalization theorem then implies that H-flux due to
the non-standard embedding does not contribute to3 W . Moreover, the non-renormalization
theorem can then be used to argue that the non-standard embedding is a consistent solution to
all finite orders in perturbation theory [8]. Indeed, as W = dW = 0 in the background at
leading order, this must remain true to all finite orders, and there exists a supersymmetric 4D
Minkowski solution. The internal geometry is Calabi-Yau at leading order, and receives correc-
tions at higher order. In contrast to the non-standard embedding, we will see next that Wilson
lines are a wholly leading order effect. A non-trivial H-flux induced by Wilson lines may thus
contribute to the background W , and spoil the consistency of the leading order supersymmetric
Calabi-Yau compactification. Whether or not consistency can be restored by higher loop effects
is an open question.

3.1.2 Wilson lines

Wilson lines are flat vector bundle connections, that is, non-trivial gauge configurations with
F = 0 but a global restriction to setting A = 0 everywhere. In particular, when the fundamental
group of the CY is non-trivial, we can define the gauge invariant Wilson line operator, which is
an embedding of π1(Y3) into the gauge group G:

WLγ = P exp
(
i

∫
γ

AjTj

)
, (3.1.8)

3Note that the non-renormalization theorem only applies to the light modes in the low energy effective field
theory. A non-standard choice of holomorphic stable vector bundle in general fixes some of the would-be CY-
moduli by obstructing the corresponding geometric deformations. Formal inclusion of these massive fluctuations in
the low energy theory then does lead to a non-trivialW for those modes and reproduces their expected stabilization
from a 4D point of view [24, 29–31].
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where γ is a non-trivial homotopy cycle on the CY space, and P exp denotes the path ordered ex-
ponential. As b1(Y3) = 0, there are no Wilson line moduli or corresponding continuous Wilson
lines in CY compactifications. Instead we can have at most discrete Wilson lines corresponding
to a finite fundamental group on a CY.

Discrete Wilson lines were introduced into CY compactifications as a way to break the
gauge symmetry without breaking supersymmetry [8, 64]. Indeed, since F = 0, they do not
contribute to the Yang-Mills supersymmetry equations. However, they may still contribute non-
trivially to the other supersymmetry conditions and equations of motion via the Chern-Simons
term in H , eq. (3.1.4). Moreover, any H-flux and torsion induced by Wilson lines is leading
order, as A is non-trivial although F = 0 exactly and is vanishing in the Bianchi identity.
Therefore, Wilson lines can contribute to the background superpotential. Notice that only the
(0,3) and harmonic part of ω3Y contributes [47].

3.1.3 Chern-Simons invariants and global worldsheet anomalies

The Chern-Simons contribution to the superpotential can be expressed in terms of a Chern-
Simons invariant. Indeed, we can write

W = −α
′

4

∫
Y3

ω3Y ∧ Ω = −α
′

4

∫
Λ

ω3Y , (3.1.9)

where Λ is the 3-cycle Poincaré dual to the holomorphic 3-form Ω. In general, the Chern-
Simons invariant cannot be computed directly, as an expression for the gauge field is not known.
Indeed, the gauge field A is neither uniquely nor globally defined.

Chern-Simons invariants for flat vector bundles have been well-studied in the mathematics
literature. In particular the Chern-Simons invariant

CS(A,Q) =

∫
Q

ω3Y , (3.1.10)

has been computed explicitly for several real 3-dimensional manifolds, denoted here by Q. In
section 3.2.4, we summarize the known results on Chern-Simons invariants for a large class of
real 3-manifolds. Among the simplest examples that give a non-trivial Chern-Simons invariant
are the Lens spaces S3/Zp for which one obtains [49, 65–67]:

CS(A, S3/Zp) = −
∑
a

k2
a

2p
mod Z (3.1.11)

for a gauge connection A with the Wilson line fitting into SU(N ) as specified by the integers
ka,

U = diag(e2πik1/p, . . . , e2πikN/p) . (3.1.12)

It is obvious from this example that the Chern-Simons invariant can take fractional values; in
fact it is only defined modulo integers, as large gauge transformations shiftCS(A,Q) by integer
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values. This is precisely the reason why [46] suggested to use Chern-Simons flux instead of the
integer quantized dB-flux for moduli stabilization as it facilitates the balance between flux
and non-perturbative effects at weak coupling. This proposal has recently been discussed in a
wider context in ref. [47], where it was found that even the fractional Chern-Simons flux would
generically lead to GUT scale supersymmetry breaking. From a phenomenological point of
view, it is thus very important to know whether a non-trivial Chern-Simons invariant is induced
by a given set of Wilson lines. This is also true for ensuring the mathematical self-consistency of
such a scenario, as the mutual consistency of unbroken supersymmetry, internal CY geometry,
and non-trivial 3-form flux could so far not be rigorously established from a purely 10D or even
a worldsheet point of view. Regarding the consistency of the 2D theory the situation may be
even more demanding due to worldsheet anomalies that cannot be cancelled with any known
methods4. More specifically this case occurs when CS(A,Q) is fractional for a 3-manifold Q
that corresponds to a torsion class of H3(Y3,Z) [46, 49]. Motivated by all this, it is the purpose
of the present work to explicitly compute Chern-Simons invariants induced by Wilson lines on
a class of phenomenologically realistic CY spaces.

3.2 Computing Chern-Simons flux in explicit models

We will now proceed to develop a strategy to compute the Chern-Simons flux and its su-
perpotential for Calabi-Yau compactifications with Wilson lines, and apply this strategy to
some explicit models with promising phenomenology. More concretely our focus is on com-
plete intersection Calabi-Yau (CICY) 3-folds, which are common setups for model building
in [39–42, 44, 45].

3.2.1 Special Lagrangian submanifolds

In order to compute the Chern-Simons fluxes in CY compactifications, we will need to construct
explicit 3-cycles, which the fluxes thread. We will therefore consider special Lagrangian sub-
manifolds (sLags), which provide explicit representatives of 3-cycles in a CICY space (quickly
introduced in 2.2.3) and moreover have a particularly simple intersection theory. Slags in a CY
space are real 3D submanifolds defined by the conditions:

J Q = 0 and Im(ei
θ
2 Ω)Q = 0 , (3.2.1)

with J the Kähler 2-form, and θ is the so-called calibration angle associated with the sLag
(see [68, 69] for some introductory lectures on these geometries). They are volume minimizing
in their homology class, with the volume form given by

Re(ei
θ
2 Ω)Q = dVolQ . (3.2.2)

4In fact, the relationship between Wilson lines and global worldsheet anomalies was used in [49] to indirectly
compute the Chern-Simons invariant on the Lens space.
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Although general sLag submanifolds are difficult to construct explicitly, there is one well-
known method to obtain examples. An isometric anti-holomorphic involution5 σ acts on the
CY manifold as

σ(J) = −J σ(Ω) = eiθΩ . (3.2.3)

Therefore, the fixed locus of σ is a sLag submanifold; we will write this as

Qσ = Fix(σ) , (3.2.4)

where Qσ is the sLag and Fix(σ) denotes the fixed point set of the involution σ. Given a CICY
with defining polynomials Pa, an isometric anti-holomorphic involution σ on the ambient space
descends to the CICY if it satisfies

Pi ◦ σ = P̄i. (3.2.5)

The sLag submanifolds in a CICY are therefore 3D submanifolds and give rise to 3-cycles,
which we can construct and analyze explicitly using the defining polynomials. As we will see
in sections 3.3.1, 3.3.2, their intersection theory is also simple, so that it is straightforward
to check whether a given set of sLags generates the full third homology group of the CICY.
Furthermore, all the information required can be obtained by going to a simple point in moduli
space, that is, choosing a particularly symmetric form of the defining polynomials, for which
we can find many homologically distinct sLags. Let Qσ be one such sLag. As mentioned,
different polynomials corresponding to the same configuration matrix determine manifolds that
are diffeomorphic, so if Ỹ3 is another CICY corresponding to the same configuration matrix
as Y3, then there exists a diffeomorphism f between Y3 and Ỹ3. The restriction of f to Qσ

defines a submanifold f(Qσ) in Ỹ3, which may or may not be a sLag (in fact, sLags turn out
to be surprisingly stable under deformations of the CY structure [68]). As we are interested
in topological properties of the sLags as representatives of their homology class, namely their
Chern-Simons invariants, our final results will be independent of these choices.

3.2.2 A classification of sLags in CICYs

We will now provide a classification of the sLags in CICYs, which correspond to the fixed point
sets of isometric anti-holomorphic involutions. We will start with relevant involutions on the
ambient space; these will descend to the CICY when the condition (3.2.5) is satisfied. Isometric
anti-holomorphic involutions on CP n can be classified into two different types, A and B which
act on the coordinates in the following way [50]

σA : (z1, z2, . . . , zn, zn+1) 7→ (z̄1, z̄2, . . . , z̄n, z̄n+1), (3.2.6)
σB : (z1, z2, . . . , zn, zn+1) 7→ (−z̄2, z̄1, . . . ,−z̄n+1, z̄n) . (3.2.7)

Note that σB applies only for projective spaces CP n with n odd. All other involutions of CP n

can be constructed by a projective GL(n+ 1,C) transformation acting on either σA or σB [50],

σUA,B = U−1 ◦ σA,B ◦ U . (3.2.8)

5The isometricity property is σ(g) = g, whereas anti-holomorphicity is σ(I) = −I for I the complex structure.
Also J = Ig, and g, J only define Ω up to a phase, J ∧ J ∧ J = 3

4 iΩ ∧ Ω̄.
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We will use the terminology A(B)-type involution for an involution that is constructed by the
action ofGL(n+1,C) on σA(σB). Note thatB-type involutions act freely on CP n and therefore
Fix(σUB) is empty for all GL(n+ 1,C) transformations U . For the A-type involutions, Fix(σUa )
is non-empty and furthermore

Fix(σUA) = {z ∈ CP n |σUA(z) = z}
= {z ∈ CP n |U−1Uz = z}
= U−1{(z′ = Uz) ∈ CP n | z′ = z′}
= U−1Fix(σA) . (3.2.9)

Applying this to a CY hypersurface in CP n, we see that if σA is an involution on the CY, then
all matrices U that are symmetries of the defining polynomial will give involutions σUA on the
CICY, and the corresponding sLags are

QσUA
= U−1(QσA) . (3.2.10)

This is an important result that, in particular, shows that all A-type sLags are homeomorphic
QσUA

∼ QσA .
In the following, it will sometimes be useful to write the A-type involutions in terms of the

matrices M ≡ U−1U ,
σUA = M ◦ σA, (3.2.11)

where M is a symmetry of the polynomial equations.
The A-type involutions on CP n generalize to products of projective spaces, for which the

basic A-type involutions act individually on each factor with complex conjugation

(σA, σA, . . . , σA) : CP n1 × CP n2 × · · · × CP nk → CP n1 × CP n2 × · · · × CP nk . (3.2.12)

The fixed point set is given by

Fix(σA, σA, . . . , σA) = RP n1 × RP n2 × · · · × RP nk . (3.2.13)

A general A-type involution is now given by the map

(M1 ◦ σA, . . . ,Mk ◦ σA) : CP n1 × · · · × CP nk → CP n1 × · · · × CP nk . (3.2.14)

where the matrices M1, . . . ,Mk are given in terms of GL(ni + 1,C) transformations Mi =
U−1
i U i. The fixed point set in this case is given by

(U−1
1 , U−1

2 , · · · , U−1
k )Fix(σA, σA, . . . , σA) . (3.2.15)

In this chapter we will only make use of diagonal matrices U to generate sLags, and the condi-
tion (3.2.5) will then often force the diagonal elements to be roots of unity.

When we have a product space of two identical projective spaces CP n × CP n there is
another type of involution, which we will call C [50]:

σC : (za, wa) 7→ (w̄ā, z̄ā) . (3.2.16)
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It is easy to see that the fixed point set of σC is the diagonal in CP n × CP n,

Fix(σC) = {(z, z̄) ∈ CP n × CP n} . (3.2.17)

All C-type involutions can be constructed by a pair of GL(n+ 1,C) transformations U1 and U2(
M, M

−1
)
◦ σC : CP n × CP n → CP n × CP n , (3.2.18)

where M = U−1
1 U2 and the fixed point set is found to be(

U−1
1 , U−1

2

)
Fix(σC) . (3.2.19)

Therefore, assuming that (U1, U2) is a symmetry of the defining polynomials of the CICY, it
gives rise to a sLag Q

σ
(U1,U2)
C

, which is homeomorphic to the basic C-type sLag QσC . Here, as
for the A-type sLags, we will restrict our attention to diagonal matrices U1 and U2 which by
(3.2.5) usually forces the elements to be roots of unity.

Having identified sLags via the isometric anti-holomorphic involutions of the CICY, an
important question will be how the quotient symmetry Γ, which is freely acting on the CICY,
acts on the sLags. We will now turn to this and related questions.

3.2.3 Wilson lines on sLags

Our objective is to compute the contribution from discrete Wilson lines to the Chern-Simons
invariant on a given sLag. Consider a field φ on a quotient CY, Y3/Γ, transforming in some
non-trivial representation of the GUT gauge group. Each element, g, of the fundamental group,
Γ, of Y3/Γ defines an action of Γ on φ by parallel transport with respect to the gauge connection,

g : φ 7→WLg · φ , (3.2.20)

where

WLg = P exp

(
i

∫
γg

AjTj

)
(3.2.21)

is the Wilson line operator with a homotopy loop γg corresponding to g, and the dot refers to
the action on φ induced by its gauge group representation. Without Wilson lines, this action is
of course trivial. As the fundamental group Γ is discrete and the Wilson line operators define a
group homorphism, it is sufficient to specify the Wilson line operators, WLg, corresponding to
the generators, g, of Γ.

Now consider the field φ|Q restricted to a sLag, Q, of Y3. Since Γ acts freely on Y3, we
encounter two possibilities for the action of each generator g of Γ on the sLag Q ⊂ Y3 (see
figure 3.1):

• g maps Q pointwise to another sLag Q′ ⊂ Y3 so that Q and Q′ are identified in Y3/Γ. In
this case, any Wilson line WLg onQ on the quotient space Y3/Γ would have to be already
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present on Q in the covering space Y3. On Y3, however, the homotopy loop γg would be
contractible so the projection of the Wilson line on Q must vanish. If this is true for all
generators g of Γ, it means that all Wilson line operators project to the identity on the
sLag Q, and hence they can never give rise to a non-trivial Chern-Simons invariant on Q
in the quotient space Y3/Γ.

• If instead g acts freely within Q, then the corresponding sLag Q/Γ in the quotient space
Y3/Γ may acquire a new homotopy loop on which the Wilson line on Y3/Γ projects non-
trivially. In this case, there is the possibility to have a non-trivial Chern-Simons invariant
on the sLag Q/Γ.

Figure 3.1: A cartoon of the two possibilities for the free action of a generator of Γ on sLags.
The black arrows depict the action of the generator. On the left hand side we show the action on
the covering CY. It can act freely within the sLag (red), or it can identify two (or more) distinct
ones (green). On the right hand side we can see what happens in the quotient CY. The red sLag
can have modified topology, because of the free action of the generator. The green sLags are
simply identified, and the resulting sLags have the same topology as before. Only the red sLags
can possibly inherit a non-trivial CS invariant from a Wilson line on the quotient Calabi-Yau.

Having classified a large set of sLags in the CICY as in subsection 3.2.2, our next task is then
to determine how the discrete symmetry Γ, by which we quotient, acts on them. Only sLags Q
that are mapped to themselves by at least one generator g of Γ, can have non-trivial Wilson lines
and hence possible Chern-Simons invariants on their quotients Q/Γ. As we will now see, this
is a model independent question. Whether or not a non-trivial Chern-Simons terms on such a
quotient sLag is then really induced, depends also on its topology and the details of the Wilson
line in Y3/Γ and will be discussed further below.

The discrete symmetry groups usually encountered and considered in following are rotations
and permutations. We take Γ = Zn+1 ×Zn+1, where the first Zn+1 factor refers to rotations, R,
and the second to cyclic permutations, S, of the coordinates of CP n. When we specify how the
discrete symmetry group Γ acts on the coordinates of CP n, we implicitly fix some or all of the
coordinate freedom of this ambient space. We give the action of these symmetries in terms of
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their respective generators, gR and gS . The rotations are generated by

gR : za 7→ ωaza, a = 1, . . . , n+ 1, (3.2.22)

where ω is the primitive (n + 1)-th root of unity. The generator of the cyclic permutations acts
as

gS : za 7→ za+1, a = 0, . . . , n, z0 := zn+1 . (3.2.23)

Note that R and S have fixed points on CP n, but the CICY under consideration will not contain
these fixed points.

A-type sLags

We begin by discussing the action of the generators g ∈ Γ on the basic A-type sLags, i.e. the
fixed point loci of σA or, more generally, σUA . As these involutions do not mix different ambient
CP n’s, it is sufficient to restrict our discussion to a single CP n factor.

Rotations R: We first consider the action of the rotations generated by gR on the A-type
sLags. We can treat the basic A-type sLag based on the involution σA as a special case of the
more general case corresponding to σUA . The original sLag QσUA

is associated with the fixed
point set Fix(σUA) = {z ∈ CP n | U−1Uz = z}. The rotation gR maps this to the fixed point set

gRFix(σUA) = Fix(σ
Ug−1

R
A ) . (3.2.24)

Note that due to the projective identification, z ∼ λz, this is the same as the original fixed point
set if

gRU
−1UgR = λU−1U, (3.2.25)

where we used g−1
R = gR and λ is a phase factor. Because gn+1

R = 1, re-iterating this equation
implies λn+1 = 1, i.e. λ is an integer power of the primitive (n + 1)th root of unity, λ = ωl,
l ∈ Z. For diagonal U , the condition (3.2.25) becomes

g2
R = λ1, (3.2.26)

which is only satisfied if n, the dimension of the ambient space, equals one. We therefore see
that if n > 1 the rotational symmetry gR always maps the sLag based on σUA to a different
sLag, so that there can be no Wilson lines or Chern-Simons invariant induced by rotational
identifications on any A-type sLag.

If on the other hand, the ambient space is CP 1, the rotational symmetry is R ∼= Z2 and the
generator gR automatically satisfies (3.2.26) with λ = 1. In this case, the generator gR maps
the original sLag (non-trivially) to itself, and a Chern-Simons invariant might in principle be
induced on any A-type sLag by a Wilson line associated with the generator gR.

In our examples in section 3.3, only the first case with n > 1 will occur so that we do not
have to worry about rotational identifications and their associated Wilson lines on Y3/Γ.
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Cyclic permutations S: Next we consider the (n + 1)× (n + 1) matrices gS corresponding
to the cyclic permutations (3.2.23). As they are real, the condition for gS to map a sLag based
on the involution σUA to itself, and hence to induce possible Wilson lines and Chern-Simons
invariants, is not of the form (3.2.25), but rather:

gSU
−1Ug−1

S = λU−1U. (3.2.27)

Let us now give the most general solution of (3.2.27) for a diagonal matrixU = diag(u1, . . . , un+1)
that is assumed to be a symmetry of the defining polynomial of the CY-space Y3. Obviously,
U−1U = diag(µ1, . . . , µn+1) with µi ≡ ui/ui, and the left hand side of (3.2.27) becomes

gSU
−1Ug−1

S = diag(µ2, µ3, . . . , µn+1, µ1). (3.2.28)

It is then easily seen that the general solution of (3.2.27) is given by

U−1U = µn+1 diag(λ, λ2, . . . , λn, 1), λ = ωl, l ∈ Z. (3.2.29)

Any A-type sLag on Y3 based on a matrix U that satisfies this equation for some l ∈ Z is then
mapped to itself by gS and possibly gives rise to a non-trivial Wilson line and Chern-Simons
invariant on the corresponding quotient sLag.

We now show, however, that in many cases (and in particular in all cases we study in this
chapter) this apparent multitude of sLags with potential Chern-Simons terms actually collapses
to just the basicA-type sLag corresponding to the simple involution σA when also the rotational
symmetries R are modded out. More precisely, we show that for nl even, any A-type sLag that
satisfies (3.2.29) is identified with the basic A-type sLag by modding out the rotation gnl/2R .

In order to prove this, one needs to find an integer k such that gkR Fix(σUA) = Fix(σA), i.e.

gkRU
−1UgkR ∝ 1 . (3.2.30)

Using (3.2.29), the left hand side of (3.2.30) becomes

gkRU
−1UgkR = µn+1 diag(λω2k, λ2ω4k, . . . , λnω2nk, 1)

= µn+1 diag(ωl+2k, ω2(l+2k), ω3(l+2k), . . . , ωn(l+2k), 1) , (3.2.31)

which is proportional to the identity for 2k = −l mod n+1 = nl mod n+1. This then implies:

• n even: Every A-type sLag that satisfies (3.2.29) is mapped to the basic A-type sLag
corresponding to σA by the rotation gnl/2R . Thus, for Zodd, one only has to check whether
this basic A-type sLag inherits a Chern-Simons invariant from the Wilson line associated
with the permutation gS .

• n odd: In this case, all A-type sLags that satisfy (3.2.29) with l even are also identified
with the basicA-type sLag upon modding out by g−l/2R and hence don’t have to be studied
separately. On the other hand, the sLags that satisfy (3.2.29) with l odd are not mapped
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to the basic A-type sLag, but rather the one corresponding to σ
√
gR

A . This is because if we
choose k such that l + 2k = −1 mod n+ 1, we see that eq. (3.2.31) implies

gkRU
−1UgkR ∝ g−1

R = g
−1/2
R · g1/2

R . (3.2.32)

It should be noted that for n odd, g1/2
R is in general not a symmetry of the polynomial, but

still satisfies (3.2.5) because σ
√
gR

A = g
−1/2
R ◦σA◦g1/2

R = g−1
R ◦σA and gR is by assumption

a symmetry of the polynomials. Hence Fix(σ
√
gR

A ) is still a sLag, but it is not necessarily
homoeomorphic to the basic A-type sLag.

For n odd, we therefore may have possible non-trivial Chern-Simons invariants on the
basic A-type sLag and one other A-type sLag corresponding to σ

√
gR

A , which have to be
studied separately. In our examples, however, n is always even and this case does not
occur.

To summarize: If one mods out by the group Γ = R × S ∼= Zn+1 × Zn+1 of rotations and
cyclic permutations, and if (n+ 1) is odd, the only A-type sLag one has to check for a possible
Chern-Simons invariant is the basic one based on the simple involution σA, and one only has
to consider Wilson lines due to gS . This will be the case for all the examples discussed in
section 3.3. If (n + 1) is even, by contrast, one further A-type sLag might carry non-trivial
Chern-Simons invariants on the quotient space Y3/Γ due to modding out cyclic permutations S.
For the special case (n + 1) = 2, Chern-Simons invariants might also occur from modding out
certain rotations R (see table 3.1).

C-type sLags

The C-type sLags are fixed point sets of involutions (3.2.16) or (3.2.18) that involve the ex-
change of the coordinates of two CP n-factors in an ambient space CP n × CP n. This leaves
some freedom in defining the action of the symmetriesR and S on each factor. We will consider
transformations generated by (gR, g

−1
R ) and (gS, gS), as these are precisely of the form we will

encounter in our explicit examples in section 3.3.

To begin with, let us recall the fixed point sets of the involutions σC and σ(U1,U2)
C :

Fix(σC) = {(z, w) ∈ CP n × CP n | z = w} (3.2.33)

Fix(σ
(U1,U2)
C ) = {(z, w) ∈ CP n × CP n | U−1

2 U1z = w}, (3.2.34)

where U1 and U2 are independent elements of GL(n + 1,C). Due to the projective identifica-
tions, two sLags associated to σ(U1,U2)

C and σ(U ′1,U
′
2)

C are equivalent whenever U−1
2 U1 = λU ′−1

2 U ′1
for some λ ∈ C.

We now consider the action of the discrete symmetries R and S on C-type sLags.
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Rotations: From (3.2.16), (3.2.17) and (3.2.18) one can see that the generator of the rotation,
(gR, g

−1
R ), acts on the sLag associated to σ(U1,U2)

C in the following way:

(gR, g
−1
R )Fix(σ

(U1,U2)
C ) = {(z, w) ∈ CP n × CP n | g−1

R U−1
2 U1gRz = w}. (3.2.35)

We are interested in the case when this action maps a given sLag non-trivially to itself. This is
the case when

g−1
R U−1

2 U1gR = λU−1
2 U1, λ ∈ C. (3.2.36)

Note that this equation differs from (3.2.25) in an important way because the first gR is inverted.
When U1 and U2 are diagonal matrices and commute with gR, eq. (3.2.36) is always satisfied for
any U1, U2. Hence, (gR, g

−1
R ) acts freely within each C-type sLag associated to Fix(σ

(U1,U2)
C ).

A Wilson line can thus project non-trivially to any of them, and hence all C-type sLags could
a priori inherit a Chern-Simons invariant from a Wilson line associated with modding out a
rotation.

Cyclic permutations: The generator, (gS, gS), of a cyclic permutation maps the fixed point
set of a C-type involution σ(U1,U2)

C to itself whenever the following equation is satisfied:

gSU
−1
2 U1g

−1
S = λU−1

2 U1, λ = ωl. (3.2.37)

In contrast to gR, gS is not diagonal, and hence it does not in general commute with U−1
2 U1.

In analogy with the A-type involutions, we have U−1
2 U1 = diag(µ1, . . . , µn+1) with µi ≡

u
(2)
i /u

(1)
i , where u(j)

i is the ith diagonal element of Uj , so that the left hand side of (3.2.37)
becomes

gSU
−1
2 U1g

−1
S = diag(µ2, µ3, . . . , µn+1, µ1). (3.2.38)

It is then easily seen that the general solution of (3.2.37) is given by

U−1
2 U1 = µn+1diag(λ, λ2, . . . , λn, 1), λ = ωl. (3.2.39)

Any sLag on Y3 based on matrices (U1, U2) that satisfies this equation for some l ∈ Z is thus
mapped to itself by gS and could possibly give rise to a non-trivial Chern-Simons invariant on
the corresponding quotient sLag.

As we did for A-type involutions, we can try to see if we can rotate the sLag corresponding
to such a σ(U1,U2)

C to the basic one. However, this is not possible here, since, as seen above, any
rotation (gmR , g

−m
R ) (∀m ∈ Zn+1) only maps a C-type sLag to itself.

To summarize: Wilson lines associated with permutations S and rotations R may project
non-trivially to the basic C-type sLag, which could thus inherit a non-trivial Chern-Simons
invariant from both these Wilson lines. The more general C-type sLags associated to σ(U1,U2)

C ,
on the other hand, are likewise sensitive to any Wilson lines associated to R, but carry Wilson
line projections corresponding to permutations S only when (3.2.39) is satisfied. Thus these
general C-type sLags have to be checked for corresponding Chern-Simons invariants as well
(see table 3.1).
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Γ = Zn+1 ×
Zn+1

Fix(σA) Fix(σUA) Fix(σC) Fix(σ
(U1,U2)
C )

n = 1 gR, gS gR, gS� gR, gS gR, g♣S
n even gS gS♦ gR, gS gR, g♣S
n > 1 odd gS gS� gR, gS gR, g♣S

Table 3.1: In the table we summarize the cases encountered for the action of the generators
gR and gS of the symmetry group Γ = R × S ∼= Zn+1 × Zn+1 on the A- and C-type sLags .
In the first row we label the sLags associated to their involutions. The entries indicate which
generators map the sLags non-trivially into themselves and hence could potentially induce non-
trivial Chern-Simons invariants. The symbol ♦ means that the corresponding sLag is mapped
into Fix(σA) by the action of R if (3.2.30) is satisfied so that one does not have to study it
separately for the Wilson lines of gS . The symbol � indicates that the corresponding sLag is
either mapped to Fix(σA) (and hence does not have to be studied separately) or to Fix(σ

√
gR

A )
by the action of R (if (3.2.30) is satisfied). Which of these two possibilities is realized depends
on whether l in (3.2.30) is even or odd, respectively. The superscript ♣, finally, means that the
generator gS maps the sLag into itself only if (3.2.39) is satisfied.

3.2.4 Chern-Simons invariants on Seifert fibered 3-manifolds

In the previous subsections, we have provided a classification of particular 3D submanifolds,
sLags, that can be explicitly constructed in CICYs. We have also considered how Wilson lines
in a CICY project onto these sLags. The next step in computing the flux superpotential due to
Wilson lines is to compute the Chern-Simons invariants on the sLags on which the Wilson lines
project non-trivially. Therefore, in this subsection, we will give some general mathematical
results relevant to computing Chern-Simons invariants on a large class of closed, compact,
orientable 3D (sub)manifolds. As we will see, a class of 3D manifolds very widely encountered
are so-called Seifert fibred manifolds, or compositions thereof.

We will apply the results presented here to treat our explicit examples in the next section,
and indeed expect them to be useful more generally. This section is a somewhat technical
summary of the mathematical literature, and the reader may wish to skip it on the first read.

Decomposition theorems We begin by discussing two important ways to simplify the de-
scription of a 3-manifold, by decomposing it into more basic pieces [70].

The first is called a prime decomposition; every compact orientable 3-manifold M has a
unique decomposition along 2-spheres as a connected sum6 M = P1] . . . ]Pn, where each Pi
is a prime manifold (i.e., the only way that Pi splits as a connected sum is the trivial one
Pi = Pi]S

3). Note that a prime manifold is either irreducible (every 2-sphere bounds a ball) or
diffeomorphic to S2 × S1.

6The connected sum of two 3-manifolds is formed by deleting a 3-ball from each, and gluing together the
resulting boundary 2-spheres.
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The second is called a torus decomposition; every irreducible compact orientable 3-manifold
M can be decomposed by cutting along incompressible 2-tori Ti (i.e., a torus Ti such that the
induced map π1(Ti)→ π1(M) is injective), to give the union M = X1 ∪ · · · ∪Xn, where each
Xi is either Seifert fibered or atoroidal (i.e., every incompressible torus in Xi is isotopic to a
torus component of ∂Xi). Note that atoroidal 3-manifolds are hyperbolic.

The sLags we encounter in our concrete CICY examples indeed simply turn out to be Seifert
fibered manifolds, or can be decomposed into Seifert fibered manifolds using a torus decompo-
sition.

Seifert fibered manifolds Seifert fibered manifolds are among the best understood 3D mani-
folds, and their Chern-Simons invariants can be explicitly calculated using the results of [67,71].
Let us start with a definition of Seifert fibered manifolds (see e.g. [70,72–74] for some lectures
on these spaces): A Seifert fibered manifold, QSf , is a 3D manifold that is a union of pairwise
disjoint circles (the fibers) such that the neighborhood of each circle fiber is diffeomorphic to
a, possibly fibered, solid torus.7 Equivalently, a Seifert fibered manifold can be described as an
S1 fibration over a 2-dimensional orbifold base called the orbit surface. The fibered solid torus
and orbifold surface and the relation between them are explained in figure 3.2.

A Seifert fibration is characterized by a so-called Seifert invariant, which is the collection
of relevant topological data,

QSf = {O, o, g; b, (α1, β1), . . . , (αs, βs)} . (3.2.40)

Here, the symbol O denotes that the Seifert fibered manifold is orientable and the symbol o de-
notes that the orbit surface is orientable8, g is the genus of the orbit surface, b is called the section
obstruction of the Seifert fibration9 which vanishes for manifolds with non-empty boundary, s
is the number of exceptional fibers, i.e. the number of orbifold points in the base, and the pairs
(αj, βj) (with j = 1, . . . , s) describe the exceptional fibers. For each exceptional fiber, the in-
variant (αj, βj) is given in terms of the invariant (pj, qj), which describes the associated fibered
solid torus as in figure 3.2, by αj = pj and

0 < βj < αj, βjqj ≡ 1 mod αj . (3.2.41)

Note that one and the same Seifert fibered manifold might be describable in terms of different
Seifert invariants in case it admits several ways of splitting it into base and fibers.

Finally, in order to describe Wilson lines and Chern-Simons invariants on Seifert fibered
manifolds, one needs to know their fundamental groups. A presentation of the fundamental
group of a Seifert fibration can be read off directly from the Seifert invariant, with the generators

7In case QSf has boundaries, the boundary fibers are located on the boundary of a suitable fibered solid torus.
8We only consider orientable Seifert fibered manifolds and orbit surfaces in this chapter, but this restriction can

easily be lifted.
9More precisely the section obstruction refers to the circle bundle with no exceptional fibers, which is obtained

by drilling out the fibered solid tori of the Seifert fibered manifold and filling in with standard solid tori; the
resulting smooth fibration has global section iff b = 0. We refer to [73, 74] for more details.
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Figure 3.2: Fibered solid tori in a Seifert fibration. On the left we show an ordinary solid torus,
and on the right a fibered solid torus. They are D × I with D being the unit disk in C and the
ends of the interval I identified, and fibered by the intervals {x} × I with x ∈ D. Defining
the homeomorphism ρ : D → D by ρ(x) = xe2πiq/p, we construct the fibered solid torus
by identifying (x, 0) with (ρ(x), 1). The integers p, q are co-prime, and are chosen to satisfy
0 ≤ q < p. The ordinary solid torus has (p, q) = (1, 0) and the fibered solid torus depicted has
(p, q) = (3, 1). The central fiber of the fibered solid torus {0}×I is called the exceptional fiber.
It covers the interval I , and intersects the disk D, once. The other fibers are regular fibers. They
cover the interval – and intersect the disk D – a multiple p times before closing. Taking the
quotient space of a Seifert fibered manifold by identifying all circular fibers to a point results
in a 2-dimensional orbifold B, with orbifold points at the location of the exceptional fibers, as
illustrated at the bottom of the figure.

and relations given by [73]:

π1(QSf ) = 〈h, a1, b1, . . . , ag, bg, c0, c1, . . . , cs, d1, . . . dm, h is central

c0h
b = c

αj
j h

βj =
∏

[ai, bi]
∏

cj
∏

dk = 1〉 , (3.2.42)

where i = 1, . . . , g, j = 1, . . . , s and k = 1, . . . ,m, and m is the number of boundary compo-
nents of the 3-manifold. As a simple illustration, consider e.g. the 3-torus as a trivial S1-bundle
over the orbit surface T 2, so that g = 1, b = 0 and s = 0, and hence eq. (3.2.42) gives c0 = 1
and three commuting non-trivial generators h, a1, b1, i.e. the expected result π1(T 3) = Z3.
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Chern-Simons invariants on Seifert fibered manifolds and their compositions We now
summarize some known results for Chern-Simons invariants on closed Seifert fibered mani-
folds, and closed manifolds that decompose into Seifert fibered manifolds with boundary under
a torus decomposition. The Chern-Simons invariant for all flat SU(2) connections on all closed
Seifert fibered spaces was computed in [71]. The Chern-Simons invariant for a general class
of flat SU(N ) bundles on any closed Seifert fibered 3-manifold was computed in [67]. These
results are stated in terms of irreducible and reducible flat connections (a reducible flat con-
nection is one for which the subgroup H commuting with the image of the homomorphism
ρ : π1(Qsf )→ G has continuous parameters, otherwise it is irreducible10). Notice that the Wil-
son lines of interest to us are always reducible flat connections, because H should always contain
the gauge group of the Standard Model. Moreover, our Wilson lines always lie in a maximal
torus of the gauge group G. The Chern-Simons invariant for Abelian reducible SU(N ) connec-
tions with ρ : π1(Qsf ) → SU(N ) given by ρ(h) = exp 2πiY , ρ(cj) = 1, on Seifert fibered
3-manifolds without boundaries is11 [67]

CS(A,QSf ) =
1

2
b trY 2 +

1

2

s∑
j=1

βj δj trY 2 mod Z (3.2.43)

where Y is in the Lie algebra of a maximal torus of SU(N ) and δj ∈ Z is such that αjδj−βjγj =
1 for some integers γj . It is immediate that for the 3-torus with b = 0 = s this Chern-Simons
invariant is zero (modulo integers), as we will use later.

In our examples, we will also encounter sLags that are not Seifert fibered manifolds, but
reduce to Seifert fibered manifolds with boundary under a torus decomposition. For such more
general manifolds, we may use the results of [75], where it was shown how to compute Chern-
Simons invariants on 3-manifolds decomposed along tori12. Indeed, for a 3-manifold M that
decomposes into a union of Seifert fibered spaces,Xi, the Chern-Simons invariant onM may be
obtained by first computing the Chern-Simons invariants on the pieces Xi, and then computing
the effect of gluing the pieces together. Some extra care is required because Chern-Simons
invariants on manifolds with boundary are not gauge invariant, even up to integers.

For example, consider M a closed 3-manifold decomposed along a torus T as M = X1 ∪T
X2, and an SU(2) flat connection over it. The toroidal boundaries ∂Xi = Ti have fundamental
group π1(Ti) = 〈µi, λi〉. The gluing together of X1 and X2 along their boundaries is described
by a map between these generators: µ1 → pµ2 + qλ2, λ1 → rµ2 + sλ2, with ps − qr = 1.
Meanwhile, the restriction of the Wilson lines on Xi, ρ : π1(Xi)→ SU(2), to Ti is given by:

ρ(µi) =

(
e2πiai 0

0 e−2πiai

)
ρ(λi) =

(
e2πibi 0

0 e−2πibi

)
. (3.2.44)

10A sufficient, but not necessary, condition for a connection ρ : π1(QSf )→ G to be reducible is that ρ(h) lies
outside the center of G. In these cases, all elements of π1(QSf ) must map to the Cartan subalgebra, and H is at
least U(1)r with r the rank of G.

11This result follows from the expression given above Lemma 3.3 in [67]. Indeed, we need to relax the condition
applied in Lemma 3.3 that ρ(h) be a scalar matrix, as the Wilson lines encountered are typically not scalar matrices.

12Ref. [75] also considers cases when some components of the torus decomposition are not Seifert fibered but
hyperbolic manifolds.
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We then define equivalence classes of Chern-Simons invariants on each Xi:[{
ai, bi; e

2πiCS(A,Xi)
}]

, (3.2.45)

where the square brackets indicate the orbit of SU(2), with the equivalence relation:{
ai, bi; e

2πiCS(A,Xi)
}

=
{
ai +m, bi + n; e2πi(mbi−nai)e2πiCS(A,Xi)

}
(3.2.46)

for m,n ∈ Z. Finally, the Chern-Simons invariant on M is defined as the inner product:

CS(A,M) = 〈CS(A,X1), CS(A,X2)〉 , (3.2.47)

which is simply given by the sum CS(A,X1) + CS(A,X2) after choosing gauge fixings that
are compatible with the gluing map, a1 = pa2 + qb2, b1 = ra2 + sb2.

3.2.5 The superpotential from Chern-Simons invariants

Before considering some explicit examples, let us here outline the full procedure for computing
the superpotential due to Chern-Simons fluxes from Wilson lines.

1. Identify sLags in a given quotient CICY via its isometric anti-holomorphic involutions of
type A and C. If the discrete group is Γ = R × S with R and S cyclic groups of odd
order, then only the basic A-type sLag could inherit a Wilson line associated only with
S. For the C-type sLags, on the other hand, all can inherit Wilson lines associated with
R, and sometimes also associated with S. The case of even order cyclic groups does not
occur in our examples but a complete discussion on which sLags are relevant or not is
given in section 3.2.3.

2. Compute the intersection matrix for sLags on the quotient CICY. If the rank of the inter-
section matrix equals the dimension of the third homology group, then the sLags consti-
tute a basis for the 3-cycles in the quotient CICY. In this case, we can write the 3-cycle,
Λ, Poincaré dual to the holomorphic 3-form, as

Λ =
4

α′
∑
K

cKQK , (3.2.48)

in homology, where QK are the sLags, satisfying the specialness condition with various
calibration angles (so Λ is in general not sLag), and cK are constant coefficients that
depend on the complex structure moduli. Therefore, the background superpotential is
given by13,

W = −α
′

4

∫
Y3

ω3Y ∧ Ω = −α
′

4

∫
Λ

ω3Y = −
∑
K

cK

∫
QK

ω3Y = −
∑
K

cK CS(A,QK) ,

(3.2.49)
13
∫
C
φ =

∫
C′ φ for C and C ′ in the same homology class and φ closed. In the vacuum, dω3Y = 0.



44 3. Wilson lines & Chern-Simons flux in heterotic CY

3. Study the topology of the A-type and C-type sLags of the modded out CICY. For the
sLags on which the Wilson lines project, one then has to compute the Chern-Simons
invariants, and finally write down the explicit superpotential. For example, suppose the
Chern-Simons invariant is non-trivial only on the basic A-type sLag, and that the A-type
sLags are Lens spaces L(p, 1) (we will see below that this is the case for the Z5 × Z5

quotient of the Fermat quintic). Then, using (3.1.11), we have for the superpotential in
the vacuum,

W = −c CS(A,QσA) = c

(∑
a

k2
a

2p
mod Z

)
. (3.2.50)

Should we wish W = 0 in the vacuum, due to any of the reasons mentioned in section 3.1,
we require the Chern-Simons flux on QσA to be vanishing (assuming a non-vanishing value c),
and this provides a constraint on the Wilson lines that can be introduced in any explicit model.
In the example above, the necessary and sufficient condition is that the Wilson lines satisfy∑

a

k2
a

2p
= 0 mod Z . (3.2.51)

The same result would be a necessary condition for setting H = 0, even if the third homology
group were not spanned by sLags.

Note that although the Chern-Simons invariants are (fractionally) quantized, the coefficients
cK may take on more general values. In principle, the vacuum expectation value of W might
thus be accidentally small leading to additional suppression of the gravitino mass in the scenario
discussed in [46]. It is not clear whether this is actually possible; it was argued in [47] that
moduli stabilization from Chern-Simons flux and gaugino condensation generically leads to
high-scale supersymmetry breaking.

3.3 Concrete examples

In this section we will apply our strategy to compute the Chern-Simons flux superpotential in
explicit compactifications. Several of the steps are model dependent, in particular the computa-
tions of the sLag intersection matrix and the sLag Chern-Simons invariants. We therefore begin
this programme by treating two concrete examples. Although not realistic, the four genera-
tion quintic quotient provides a simple first example to illustrate our arguments. We will then
progress to the three generation split-bicubic quotient, which has a potentially realistic particle
spectrum, corresponding to the MSSM, a hidden sector and moduli.

3.3.1 The four generation quintic quotient

The Fermat quintic, X1,101, is defined by the following hypersurface in CP 4:

X1,101 =

{
z ∈ CP 4

∣∣∣∣ 5∑
a=1

z5
a = 0

}
. (3.3.1)
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The notation X1,101 refers to the two non-trivial Hodge numbers (h1,1, h1,2) = (1, 101). The
quintic has two freely acting order five symmetries, each isomorphic to Z5, generated respec-
tively by:

gR : (z1, z2, z3, z4, z5) → (ωz1, ω
2z2, ω

3z3, ω
4z4, z5)

gS : (z1, z2, z3, z4, z5) → (z5, z1, z2, z3, z4) (3.3.2)

with ω = e2πi/5. These are precisely the symmetry groups R and S discussed in section 3.2.3.
A four-generation model [8] can be constructed by compactifying on the quintic quotiented

by Γ = R× S, to give non-trivial fundamental group π1(Y3) = R× S ∼= Z5 × Z5. The choice
of vector bundle corresponding to the standard embedding breaks the E8× E8 gauge group to
E6× E8. Depending on the choice of Wilson lines, the E6 is broken further to some extension of
the Standard Model gauge group with chiral matter representations. We will take just one of the
two possible Wilson lines, associated with either R or S, to be non-trivial. Using E6’s maximal
subgroup SU(3)c× SU(3)L× SU(3)R, we can write the Wilson line as the 27× 27-matrix,

WLγ = (13)c ⊗ diag(α, α, α−2)L ⊗ diag(β, ρ, δ)R , (3.3.3)

with α5 = β5 = ρ5 = δ5 = 1 and βρδ = 1, which is the most general WLγ that commutes
with the SM gauge group. E.g. for β = ρ = α and δ = α−2, the unbroken gauge group
is SU(3)c× SU(2)L× SU(2)R× U(1)2. The Hodge numbers of the quintic quotient, X1,5, are
(h1,1, h1,2) = (1, 5).

The intersection matrix for the quintic sLags

The Fermat quintic has a number of isometric anti-holomorphic involutions, whose actions are
not free, and whose fixed points correspond to special Lagrangian submanifolds [76]. The
involution σA : za 7→ z̄a has as fixed points the real quintic

QσA = Fix(σA) ∩X1,101 = RP 4 ∩X1,101 =

{
x ∈ RP 4

∣∣∣∣ 5∑
a=1

x5
a = 0

}
. (3.3.4)

One of the coordinates, say x5, can always be expressed uniquely in terms of the other co-
ordinates which are completely unrestricted but just subject to the projective rescaling. This
means that QσA is topologically RP 3 ∼= S3/Z2 (note that this is a Lens space and hence also a
Seifert fibered manifold). As discussed above we can construct many more A-type involutions
by considering σUA = M ◦ σA where M = U−1U , and U is a symmetry of the defining polyno-
mial of the quintic. Taking only diagonal matrices U , we get 54 = 625 non-trivial and distinct
involutions of this type. The fixed point loci of these involutions are given by

QσUA
= Fix(σUA) ∩X1,101 = U−1(QσA) ∼= RP 3. (3.3.5)

We will give here some details on how the intersection matrices of sLags are calculated. A more
detailed discussion is presented in [76–78]. For the quintic we use the simplest polynomial
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(3.3.1)

P =
5∑

a=0

z5
a = 0, (3.3.6)

where za ∈ CP 4. From the definitions of involutions presented in section 3.2.2 we notice that
the only possible involutions we can consider are of A-type. We will limit ourselves to A-type
sLags defined as the simultaneous solutions of (3.3.6) and

za = ωla z̄a, (3.3.7)

where ω = e2πi/5 and la ∈ Z5. The intersection number of two sLags is given by the Euler
number of the intersection subspace [76, 77]. For instance in the quintic, the A-type sLags are
given by

Q1 = {za ⊂ CP 4 | P = 0, za = ωlz z̄z}, Q2 = {za ⊂ CP 4 | P = 0, za = ωka z̄a}.
(3.3.8)

The dimension of the intersection is
3− n , (3.3.9)

where n is the number of la 6= ka. For example if la = ka for all a, the intersection is simply
the sLag itself which is three dimensional. If k5 = 1 and all other ka’s and la’s are zero then z1

simultaneously has to satisfy z5 = z̄5 and z5 = ωz̄5 which implies that z5 = 0. We therefore lose
one degree of freedom and the intersection is a surface, as is consistent with n = 1. The Euler
number of the surface is 1, because generally (real) surface intersections of a pair of manifolds,
each diffeomorphic to RP 3, is topologically an RP 2. This can also be noted from the fact that
the intersection is a single solution of a real equation in RP 3. The intersection number in this
case is −1, where the sign is due to a relative orientation14 between the sLags. To compute the
intersection matrix is important to keep track of the orientation of cycles. In the quintic as well
as in the split-bicubic in section 3.3.2, we actually do not need to compute the orientation of
each sLag explicitly, but rather the orientation just for the intersection of two sLags Q1 and Q2.
We compute the orientation of the intersection by evaluating the sign of the following, [77],

p(Q1 ∩Q2) = sgn
(

Re(ωlaΩ)|Q1 ∧ Re(ωkaΩ)|Q2

iΩ ∧ Ω̄

)
, (3.3.10)

where Re(ωlaΩ)|Q is the volume form on the sLag Q and ωlaΩ is not a product, but the action
of ωla on Ω descends from the definition of the holomorphic three-form in CICYs, (2.2.22),
and from (3.3.8). The orientation of the intersection is then given by the non-intersecting part,
namely la 6= ka, as it was done in [76, 77],

p(Q1 ∩Q2) = sgn
∏
a

Im(ωlaω−ka) = sgn
∏
a

sin
2π(la − ka)

5
, la 6= ka (3.3.11)

14This does not refer to the geometrical orientations of intersection between the sLags, but it is a relative ori-
entation between them, due to the definition of anti-holomorphic involutions and to the intersection theory of the
sLags, [77].
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where again only non-trivial terms are included in the product15 [76–78]. In summary, if n is
odd, the intersection number is equal to ±1, where the sign is determined by the orientation, p.
If n is even, then either the intersection is the sLag itself or a real curve, topologically a circle.
In both cases the intersection number vanishes.

It is convenient to introduce the notation

〈k1k2k3k4k5|l1l2l3l4l5〉, (3.3.12)

to denote the intersection matrix. From the above example we see that

〈00001|00000〉 = −1. (3.3.13)

The orientation formula, together with the fact that intersection numbers with n even vanish,
ensures that the intersection matrix is anti-symmetric.

The sLags defined by the rotation angles la are not all independent. By employing the
scaling symmetry za 7→ eπiλ/5za we effectively transform the la’s by the formula la 7→ la + λ
for λ ∈ Z5. We have only used the scaling symmetry to make this transformation and so the
two sLags have to be the same. We therefore define an equivalence class

[la] ≡ {la ∼ la + λ, ∀λ ∈ Z5}. (3.3.14)

We calculate the intersection number of two equivalence classes simply by summing the inter-
section numbers of all elements in the classes

〈[ka]|[la]〉 ≡
∑

ka∈[ka],la∈[la]

〈k1k2k3k4k5|l1l2l3l4l5〉. (3.3.15)

This does not give the actual numerical value for the intersection number, but the whole intersec-
tion matrix is scaled by a common factor which of course does not affect its rank. We also want
to compute the intersection matrix of a CICY which is modded out by a discrete group. This
modding out is taken care of in the same way as for the scaling symmetries. The equivalence
classes of sLags are enlarged by the discrete symmetry. For example in the quintic we mod out
by Z5 generated by the cyclic permutation za 7→ za+1, which translates to a permutation of the
la’s, p : la 7→ la−1. We then define a new equivalence class

[la]Z5 ≡ {la ∼ la + λ, la ∼ pκ(l)a = la−κ, ∀λ, κ ∈ Z5}, (3.3.16)

and again the intersection number of equivalence classes is defined by the sum

〈[ka]Z5|[la]Z5〉 ≡
∑

ka∈[ka]Z5 ,la∈[la]Z5

〈k1k2k3k4k5|l1l2l3l4l5〉. (3.3.17)

15Definitions (3.3.10) is valid for all complete intersection CYs, however it needs to be modified a bit when the
ambient space is given by product of projective spaces of odd degree. In these cases, due to the appearance of
square roots in M of (3.2.11), we would need to consider orientation of the single sLags in the definition of the
intersection orientation, see [77] for some examples.
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Using this procedure we find that the rank of the intersection matrix precisely matches the
dimension of the third homology group for both the quintic and the modded out quintic. In fact,
computing the intersection matrix, one can show that only 204 of the 625 sLagsQσUA

are distinct
in homology, and that they span the homology group of the quintic X1,101, [76].

For the four-generation quintic quotient X1,5, the number of distinct A-type sLags on the
quotientX1,5 can be computed to be 129, and the rank of the 129×129 dimensional intersection
matrix is reduced to 12. This matches the dimension of the third homology group for the quintic
quotient, so that the sLags continue to provide a basis for the 3-cycles, as expected. We have
seen in subsection 3.2.3 that the only A-type sLag one has to check for a non-trivial Wilson
line, is the basic one (3.3.4). Moreover, this basic A-type sLag can at most inherit Wilson lines,
and hence Chern-Simons invariants, from the permutation group S.

Wilson lines and Chern-Simons flux on sLags

We can immediately write down the full Chern-Simons flux superpotential. Choosing to embed
the Wilson line only inR, all the Chern-Simons invariants are trivial, and therefore, the superpo-
tential is also trivial. Embedding instead the Wilson line in S, the only non-trivial Chern-Simons
invariant is on the sLag QσA , which on the quotient is the Lens space RP 3/Z5 = S3/Z10. Writ-
ing α = e2πi2k1/10, β = e2πi2k2/10, ρ = e2πi2k3/10 and δ = e2πi2k4/10 (k1,2,3,4 = 0, . . . , 4) in
(3.3.3), and using (3.1.11), the Chern-Simons invariant is immediately given by

CS(A,QσA) = −9

5

(
6k2

1 + k2
2 + k2

3 + k2
4

)
mod Z , (3.3.18)

which reduces to CS(A,QσA) = −108
5
k2

1 mod Z for the SU(3)c× SU(2)L× SU(2)R× U(1)2

model. The full superpotential from the visible sector Wilson lines in the vacuum is then simply:

W = c

(
108

5
k2

1 mod Z
)

= c

(
3

5
k2

1 mod Z
)

(3.3.19)

for c a (possibly) non-vanishing constant, depending on the choice of complex structure. The
mod Z can be interpreted as a possible integer H-flux contribution. There may also be non-
trivial contributions from hidden sector Wilson lines, which could e.g. be chosen to ensure two
or more condensing gauge sectors to help stabilize moduli. Of course, the hidden Wilson lines
project in the same way as the visible ones on each sLag, and they only differ in their explicit
values.

3.3.2 The three generation split-bicubic quotient

We now turn to a potentially realistic compactification, based on a quotient of the split-bicubic
CY threefold [79, 80]. After introducing the CICY and its quotient we will follow the same
procedure as above, which is here somewhat more involved. We identify the A-type and C-type
sLags, and study their topology, particularly in the quotient CICY. Then we can compute the



3.3 Concrete examples 49

relevant Chern-Simons invariants by using the torus decomposition into Seifert fibered man-
ifolds, discussed in section 3.2.4. Finally, we compute the intersection matrix for the sLags
and show that we can generate the full third homology group. In this way, we obtain the full
Chern-Simons flux superpotential.

The split-bicubic CICY It will be useful to have several pictures of the split-bicubic in mind.
The first is as a Schoen manifold, which is a fiber product of two rational elliptic surfaces, B
and B′, with a common base CP 1,

X19,19 = B ×CP 1 B′ = {(b, b′) ∈ B ×B′ | β(b) = β′(b′)}, (3.3.20)

where
β : B → CP 1, β′ : B′ → CP 1, (3.3.21)

are the projections of B and B′ on the common CP 1-base. This can be represented by the
following pull back diagram

X19,19

π

yy

π′

%%
B

β %%

B′

β′yy
CP 1

so that the CY admits a fibration over CP 1 with generic fiber the product of two elliptic curves.
The rational elliptic surfaces B,B′ are known as dP9, due to their similarity to the del Pezzo
surfaces. Indeed, dP9 is a blow up16 of CP 2 at nine points to CP 1 and may be represented by
the configuration matrix [

CP 1 1
CP 2 3

]
. (3.3.22)

In other words, it can be written as the hypersurface

B =
{

(t, ζ) ∈ CP 1 × CP 2 t1f(ζ)− t2g(ζ) = 0
}
, (3.3.23)

where ti (i = 1, 2) are homogeneous coordinates of CP 1, ζj (j = 1, 2, 3) are homogeneous
coordinates of CP 2, and f(ζ) and g(ζ) are cubic polynomials. The equation t1f(ζ)− t2g(ζ) =
0 can be solved uniquely for ti in terms of ζj , except for those nine points of CP 2 where
f(ζ) = 0 = g(ζ). At those nine points of CP 2 the ti are unrestricted and hence parameterize
an entire CP 1.

16A blow up of an n-dimensional complex manifold, M , at m points to CP 1 is diffeomorphic to the connected
sum M]mCP 2, where CP 2 has opposite orientation to M [81]. So dP9 may also be considered as the connected
sum CP 2]9CP 2.
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As there is a similar description for B′, the elliptically fibered Calabi-Yau can also be de-
scribed as a CICY with the configuration matrix: CP 1 1 1

CP 2 3 0
CP 2 0 3

 . (3.3.24)

In other words,

X19,19 =
{

(t, ζ, η) ∈ CP 1 × CP 2 × CP 2 P1(t, ζ) = P2(t, η) = 0
}
, (3.3.25)

where

P1(t, ζ) = t1f(ζ)− t2g(ζ),

P2(t, η) = t1ĝ(η)− t2f̂(η), (3.3.26)

ηj (j = 1, 2, 3) are homogeneous coordinates for the second CP 2 factor, and f, g, f̂ , ĝ are cubic
polynomials. When specifying the polynomials, we have 19 degrees of freedom as the Hodge
number h1,2 = 19 indicates. Here we will make the same choice as in [82],

f(ζ) = ζ3
1 + ζ3

2 + ζ3
3 − a ζ1ζ2ζ3, g(ζ) = −c ζ1ζ2ζ3 ,

ĝ(η) = c η1η2η3, f̂(η) = −η3
1 − η3

2 − η3
3 + b η1η2η3 . (3.3.27)

This turns out to be the most general choice of polynomials for which the split-bicubic has a
freely acting discrete symmetry Γ = R×S withR, S both isomorphic to Z3, with the following
generators17 [82]:

gR : ζj → ωjζj, ηj → ω−jηj, ti → ti ,

gS : ζj → ζj+1, ηj → ηj+1, ti → ti , (3.3.28)

where ω = e2πi/3. The Hodge numbers of the quotient split-bicubic, X3,3 = X19,19/Γ, are
(h1,1, h2,1) = (3, 3). The coefficients a, b, c in (3.3.27) correspond, roughly speaking, to the
three complex structure moduli of X3,3. In order to analyze the equations explicitly, we will
take a = b = 0 and leave c = 1. The polynomials then satisfy f = −f̂ , g = −ĝ and

P1(t, ζ) = t1f(ζ)− t2g(ζ) = t1
(
ζ3

1 + ζ3
2 + ζ3

3

)
+ t2ζ1ζ2ζ3,

P2(t, η) = t2f(η)− t1g(η) = t2
(
η3

1 + η3
2 + η3

3

)
+ t1η1η2η3. (3.3.29)

Note that since dP1∧dP2 does not vanish in this case, the resulting manifold is diffeomorphic to
all smooth split-bicubic CICYs. Putting all three parameters to zero would also be an attractive
choice, but corresponds to a singular limit of X3,3. A heterotic MSSM with no exotics (beyond
hidden sectors and moduli) can be obtained from a compactification on X3,3. To this end,
one introduces an SU(4) holomorphic stable vector bundle, and the following Wilson lines,

17Another, equivalent, choice is made in [80, 83].
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which embed the Z3 × Z3 fundamental group into the SO(10) GUT gauge group using the 10
representation of SO(10) [40, 45, 80]:

WLγ1 =

(
e4πi/315

e2πi/315

)
and WLγ2 =


12

e4πi/313

12

e2πi/313

 .(3.3.30)

As the results on Chern-Simons invariants are usually given in terms of SU(N ) flat connections,
it is useful to note that the above Wilson lines embed into an SU(5) ⊂ U(5) ⊂ SO(10) subgroup
of the SO(10) GUT group.

Having set up the compactification, we are ready to compute the Wilson line contribution
to the superpotential. The split-bicubic X3,3 has both A-type and C-type sLags. We now turn
our attention to studying these sLags in the smooth split-bicubic quotient and computing their
Chern-Simons invariants.

The C-type sLags Let us first consider the C-type sLags. The basic C-type sLag is obtained
from the isometric anti-holomorphic involution:

σC : ζj → η̄j, ηj → ζ̄j, t1 → t̄2, t2 → t̄1 . (3.3.31)

Further C-type sLags can be identified by considering involutions (M,M
−1

) ◦ σC , and those
we will consider are:

(M,M
−1

) ◦ σC : ζj → ωlj η̄j, ηj → ωlj ζ̄j, t1 → t̄2, t2 → t̄1, (3.3.32)

where l1 + l2 + l3 = 0 mod 3. Together, these give three distinct C-type sLags on X19,19.
In order to understand the topology of the C-type sLags, it is enough to consider the basic

one. The sLag QσC can be described by the equations

0 = t1f(ζ)− t̄1 g(ζ) and t1 = t̄2 (3.3.33)

in CP 1 ×CP 2. Notice that on the sLag t1 = t̄2 6= 0, so this equation reduces as a hypersurface
in CP 2 to:

0 = f(ζ)− t̄1
t1
g(ζ) , (3.3.34)

which corresponds to the configuration matrix [CP 2 3] describing a smooth CY 1-fold, that is,
a 2-torus. The total sLag is then a fibration over RP 1 (t1 = t̄2 in CP 1), with smooth fibers T2.
As the monodromy of this torus bundle is clearly trivial, the resulting 3-manifold is simply a
3-torus. All C-type sLags are diffeomorphic to the basic C-type sLag and hence they are also
all 3-tori.

The free action of a cyclic group on a 3-torus corresponds to trivial or free actions along
each of the S1 factors, so that the quotient is again a 3-torus. As explained in section 3.2.4, the
Chern-Simons contributions from discrete Wilson lines on a 3-torus vanish. Hence the C-type
sLags do not contribute to the superpotential for X3,3.
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A-type sLags on the covering CICY Next we consider the A-type sLags, whose basic iso-
metric anti-holomorphic involution is:

σA : ζj → ζ̄j, ηj → η̄j, ti → t̄i . (3.3.35)

Further sLags can be identified from the involutions M ◦ σA, which we take to be:

M ◦ σA : ζj → ωlj ζ̄j, ηj → ωmj η̄j, ti → t̄i, (3.3.36)

where lj,mj ∈ {0, 1, 2}, and l1 + l2 + l3 = m1 + m2 + m3 = 0 mod 3. This gives only nine
A-type sLags in total.

The basic A-type sLag can be described as the complete intersection,

0 = r1f(x)− r2g(x) = r1

(
x3

1 + x3
2 + x3

3

)
+ r2x1x2x3

0 = r2f(y)− r1g(y) = r2

(
y3

1 + y3
2 + y3

3

)
+ r1y1y2y3 (3.3.37)

in RP 1 × RP 2 × RP 2, with ri, xj and yj being the homogeneous coordinates on RP 1, RP 2

and RP 2 respectively. In analogy with the split-bicubic itself, our real 3-manifold can then be
described as a fiber product,

QσA

π

}}

π′

""
N

β ""

N ′

β′||
RP 1

(3.3.38)

where the map π (π′) forgets the yi (xi) coordinates, and the map β (β′) forgets the xi (yi)
coordinates.

In order to understand the topology of QσA , we start by characterizing the topology of the
2-manifolds N and N ′, in analogy to the rational elliptic surface dP9. N is described as the
hypersurface

N =
{

(r, x) ∈ RP 1 × RP 2 r1f(x)− r2g(x) = 0
}
, (3.3.39)

and similarly for N ′. The smooth surface N can be viewed18 as a singular fibration over RP 1

(parameterized by ri) where the fibers are given by the following cubic equation in RP 2:

r1(x3
1 + x3

2 + x3
3) + r2x1x2x3 = 0 . (3.3.40)

This well-known plane cubic curve can immediately be understood with some plots, see figure
3.3. The generic smooth fibers are a single RP 1 for r1/r2 > 0 and r1/r2 < −1/3, or a disjoint

18Just as for the complex case (see the discussion below eq. (3.3.24)), the manifold N can also be viewed as
the blowup of RP 2 at three points (where f(x) = g(x) = 0) to RP 1. This is topologically equivalent to the
connected sum of four RP 2’s, i.e. a 2-sphere with four crosscaps. The Euler characteristic for this blowup is given
by χ(N) = χ(RP 2)− 3χ(point) + 3χ(RP 1) = 1− 3 + 0 = −2.
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Figure 3.3: Solutions to the cubic equation (3.3.40) in RP 2, treating r1/r2 as a parameter. In the
figure, we have used affine coordinates with x3 scaled to unity and plotted x2 against x1. The
complement, x3 = 0, defines an RP 1 which, in the chosen affine coordinates, sits at infinity.
In this way we find apparantly non-compact curves, but the curves that seem noncompact are
connected at infinity due to the antipodal identification on the RP 1 defined by x3 = 0. We see
that for all r1/r2 6= 0 and r1/r2 6= −1/3 we find either a single curve which is topologically
RP 1 ∼= S1 or a disjoint union of two such curves. For r1/r2 = 0, the eq. (3.3.40) reduces to
x1x2x3 = 0, whose solution is three intersecting RP 1’s. In this case the plot is not complete
since the entire RP 1 at infinity, corresponding to x3 = 0, is also a solution but not shown.
Finally, for r1/r2 = −1/3, the solution is a disjoint union of RP 1 and a single point.

union of two RP 1’s for −1/3 < r1/r2 < 0.19 There are also, however, two singular fibers: For
r1/r2 = −1/3, the equation for the fiber is solved both by the RP 1 described by x1 = −x2−x3,
and the point x1 = x2 = x3; for r1 = 0 it gives a connected union of three RP 1’s with three
singular points. It is then straightforward to verify that the surface N has Euler characteristic
(see figure 3.4)

χ(N) = χ(point)× χ(point) + χ(point)× χ(3 intersecting RP 1’s) = 1− 3 = −2 ,

and similarly for N ′.
Building on these results, we can describe the A-type sLag. First of all, we have just seen

from (3.3.38) that it is the fiber product N ×RP 1 N ′, i.e. a singular fibration over RP 1, where
the fibers are products of two plane cubic curves described above (see eq. (3.3.40)). In fact, for
any ratio r1/r2 at least one of the two plane cubic curve fibers is always a single smooth RP 1

(see figure 3.5). By cutting up QσA at two places in the RP 1 base where both fibers are locally
smooth RP 1’s, say at r1 = ±r2, the manifold QσA can be decomposed into two diffeomorphic
pieces (see figure 3.5). We denote the piece corresponding to r := r1/r2 ∈ [−1, 1] by Q̃σA , i.e.

Q̃σA =
{

(r, x, y) ∈ [−1, 1]× RP 2 × RP 2 rf(x)− g(x) = 0 = f(y)− rg(y)
}
. (3.3.41)

Since the fibers above r = ±1 are 2-tori, the above cutting operation is an example of a
torus decomposition, which we discussed in section 3.2.4. The map π̃ : Q̃σA → Ñ , where
π̃(r, x, y) = (r, x) and

Ñ =
{

(r, x) ∈ [−1, 1]× RP 2 rf(x)− g(x) = 0
}
, (3.3.42)

19Indeed, it follows from a classic theorem due to Harnack [84] that a smooth cubic in RP 2 has up to
two connected components, each circles, exactly one of which must correspond to the non-zero element of
H1(RP 2,Z) ∼= Z2.
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Figure 3.4: A singular fiber in theA-type sLag and its quotient, solution to the plane cubic curve
(3.3.40) at r1 = 0. Before modding out by S ∼= Z3, it is a connected union of three RP 1’s,
each two of which intersect at a point. The Euler characteristic of this curve is then given by
χ(3 intersecting RP 1’s) = 3χ(RP 1)−3χ(point) = −3 or χ(3 intersecting RP 1’s) = b0−b1 =
1−4 = −3. Modding out by the permutation symmetry S, leads to a figure of eight, with Euler
characteristic χ(figure of eight) = 2χ(RP 1)− χ(point) = −1.

defines an S1-bundle over Ñ since π̃ projects out smooth S1 fibers (see figure 3.5),

π̃−1(r, x) =
{
y ∈ RP 2 f(y)− rg(y) = 0

} ∼= RP 1 ∼= S1. (3.3.43)

This is a trivial Seifert fibration (i.e. S1-bundle over a smooth surface, Ñ ), where the base Ñ
has two circular boundaries.

Figure 3.5: The A-type sLag QσA as fiber product. The cubic curves in the RP 2 factor param-
eterized by xj’s fibered over RP 1 parameterized by ri’s give a smooth surface, N ∼= ]4RP 2.
The same is true of the cubic curves in RP 2 parameterized by yj’s fibered over RP 1. Alterna-
tively, by cutting up the manifold into two pieces at r1 = ±r2, we obtain two diffeomorphic
S1-bundles over the bounded base Ñ indicated by the shaded area in the figure.

.

A-type sLags on the quotient Up to now, we have identified the A-type sLags in the sim-
ply connected split-bicubic, X19,19, together with their topological structure. Next we have
to understand how the sLags are modified when we mod out X19,19 by the discrete symmetry
Γ = S × R to obtain X3,3. The only A-type sLag on X3,3 that can inherit a Wilson line is
the basic one, which may only inherit a Wilson line associated with S. In the covering space
X19,19, the permutation group does not act on the base RP 1 of the sLag QσA . Therefore, the
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quotient sLag QσA/S
∼= QσA/Z3 can still be described as a fibration over RP 1 with the fibers

being a product of two plane cubic curves (3.3.40) subject to identifications. Let us consider
the action of S on these plane cubic curves. We first note that S is a symmetry of the defining
polynomial (3.3.40) so that for a fixed r = r1/r2 each plane cubic curve is mapped to itself by
S. Moreover the only fixed point of S in the ambient RP 2 is x1 = x2 = x3. We now examine
how the permutation group S acts on the four topologically different types of plane cubic curve
(see figure 3.3). Referring to (3.3.40):

• For r = −1/3, the plane cubic curve is topologically a disjoint union of a circle and the
point x1 = x2 = x3. The permutation S acts freely on the circle component which thus
stays topologically a circle after modding out by S and the point component is a fixed
point.

• For r /∈ [−1/3, 0], the plane cubic curve is topologically a single circle which is mapped
freely to itself by S. Again, the quotient curve remains a circle.

• For r = 0, the plane cubic curve consists of three intersecting circles as depicted in
figure 3.4. Each circle is given by the vanishing of one of the coordinates, and hence the
permutation action maps the circles onto one another. Moreover on each circle there are
two distinguished points that map into each other, namely the intersection points of that
circle with the other two. The quotient topology is then easily verified to be the so-called
figure of eight.

• For r ∈ (−1/3, 0), the plane cubic curve consists of two disjoint circles. The permutation
group S acts freely within each circle component. This can be seen as follows, one of the
two circles has all xj with the same sign (the smaller circle in the corresponding diagrams
of figure 3.3) while the xj in the other circle do not have the same sign.

As S acts trivially on the base RP 1 parameterized by ri, we can now perform essentially
the same torus decomposition as for the unquotiented sLag, namely cut QσA/Z3 along toroidal
boundaries located at r1 = ±r2. Each of the two resulting components is now diffeomorphic
to Q̃σA/Z3. Before we mod out by S, Q̃σA is a S1-bundle over the smooth base Ñ . The
permutation group S ∼= Z3 acts freely within each S1-fiber so that the quotient Q̃σA/Z3 is also
an S1-bundle, but over the base manifold Ñ/Z3. As explained above, Ñ has precisely one fixed
point located at (r, x1, x2, x3) = (−1/3, 1, 1, 1). Increasing r from r = −1/3 to r = −1/3 + ε,
the isolated fixed point grows into a circle (see figure 3.5) so that the coordinates r and x locally
parameterize a disk neighbourhood of the fixed point. The permutation group S ∼= Z3 acts on
this disk neighbourhood by rotating the disk about the fixed point in its center. It is therefore
clear that Ñ/Z3 has an orbifold singularity of order three at the center of the disk whereas
everywhere else the quotient Ñ/Z3 is smooth. Thus the space Q̃σA/Z3 is now a non-trivial
Seifert fibration with one exceptional fiber, see figure 3.7. The manifold has Seifert invariant
(c.f. (3.2.40)):

Q̃σA/Z3 = (O, o, 0; 0, (3, 1)) , (3.3.44)

where we have used that the underlying topology of the orbit surface is a cylinder (see figure
3.6) and recalled that the section obstruction b is trivial on manifolds with boundary.
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Intersection A · A A · C C · C
point 1 1 0
curve 0 0 0
surface -2 0 0

Table 3.2: The intersection numbers for intersections of A- and C-type sLags in the split bicu-
bic, given by the Euler characteristic of the intersection loci.

A basis for the third homology group and the flux superpotential

Finally, we should check whether or not we span the basis for the third homology group, as
required to obtain all the Wilson line contributions to the Chern-Simons flux superpotential. For
the split-bicubic a similar procedure to that used for the quintic holds. We identify sLags using
isometric antiholomorphic involutions of the CICY. Then, using the description of these sLags
as complete intersections, we can easily compute their intersection loci, the corresponding Euler
characteristics and hence the intersection numbers. Taking care of the orientations and the
scaling symmetry as done for the quintic, we can then compute the rank of the intersection
matrix. We will, however, encounter one additional complication, which is that we must pass
through a singular limit of the split-bicubic in order to find sufficient 3-cycles to span a basis of
the third homology group.

Ensuring first a choice of complex structure parameters that give a smooth CY (a = b =
0, c 6= 0), we take:

P1(t, ζ) = t1(ζ3
1 + ζ3

2 + ζ3
3 ) + c t2ζ1ζ2ζ3 ,

P2(t, η) = t2(η3
1 + η3

2 + η3
3) + c t1η1η2η3 . (3.3.45)

As discussed in the main text, this smooth split bicubic has 9 A-type sLags and 3 C-type sLags,
described respectively by (k1, k2, k3, l1, l2, l3) with k1 + k2 + k3 = 0 mod 3, l1 + l2 + l3 =
0 mod 3, and (k1, k2, k3, l1, l2, l3) with k1 + k2 + k3 = l1 + l2 + l3 mod 3 = 0 mod 3, where
we have taken c = ε real. Notice that, as we will discuss further below, more sLags could be
obtained by taking the singular CY with a = b = c = 0, indeed it is then easy to identify
81 A-type sLags and 9 C-type sLag. Also, different sets of 9 A-type and 3 C-type sLags
can be obtained by choosing different smooth choices for c, c = εωn with ω = e2πi/3 and
n = 0, 1, 2. The A-type are labelled by (k1, k2, k3, l1, l2, l3) with k1 + k2 + k3 = 2n mod 3,
l1 + l2 + l3 = 2n mod 3. The C-type are labelled by (k1, k2, k3, l1, l2, l3) with k1 + k2 + k3 =
l1 + l2 + l3 mod 3 = 2n mod 3. The equations describing these sLags as complete intersections
in RP 1×RP 2×RP 2 are identical for all A-type sLags and all C-type sLags. We compute the
orientation of the intersections using formula (3.3.10) as in 3.3.1.

In 3.2 we present the intersection numbers for all A- and C-type sLags in the unmodded
smooth split-bicubic, given by the Euler characteristic of the intersection loci. The only non-
trivial entry in table 3.2 is the surface intersection of two A-type sLags, so let us explain how
this can be obtained. An A-type sLag is given by the solution of

ζj = ωlj ζ̄j, ηj = ωkj η̄j, ti = t̄i, (3.3.46)
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together with the defining polynomials (3.3.45). For two such sLags, a simultaneous solution is
a surface when only one of the angles kj and lj are different. Let us assume that in the smooth
split-bicubic the missing sLags, which are present in the singular limit, are deformed cycles
(actually the sLags in the singular point are all present as sLags in different smooth choice
of the complex structure moduli space), eventually, deformed sLags. We are allowed then
to translate the intersection computation of the singular manifold to smooth points in moduli
space, considering all the intersection loci smooth. Then we consider the basic A-type sLag
with kj = lj = 0 intersecting with the sLag defined by k1 = 1 and other k’s and l’s vanishing.
We find that the intersection locus is defined by ζ1 = 0 and ζ2, ζ3, ηj and ti real. We can denote
ζj = xj , ηj = yj and ti = ri to distinguish from the complex coordinates on the ambient space.
The intersection surface satisfies the equations

0 = r1(x3
2 + x3

3) = r2(y3
1 + y3

2 + y3
3) + r1y1y2y3, (3.3.47)

where r, (x2, x3) ∈ RP 1 and y ∈ RP 2. As indicated in the table 3.2, this surface has Euler
characteristic −2. We can see this by the fact that for r1 6= 0 the first equation simply has a
point solution x2 = −x3, the second equation, has a solution space which is topologically a
RP 1 ∼= S1 except for r2 = 0 and r1 = −3r2. For r2 = 0 the solution space is three intersecting
RP 1’s and for r1 = −3r2 the solution space is a point and a RP 1. The total Euler characteristic
of the surface is determined only by these contributions, i.e. χ = −3 + 1 = −2 where−3 is the
Euler characteristic of the three intersecting RP 1’s.

If we use the sLag allowed just in the smooth split-bicubic, the intersection matrix turns out
to be the zero matrix. A similar computation can be carried out for the modded out split bicubic
but of course the rank of the intersection matrix in all cases turns out to vanish. Note that this
does not imply that all the A-type and C-type sLags are homologically equivalent, but only that
the number of linearly independent homology elements covered by the cycles is at least zero.

We can, however, identify a set of deformed sLags which do span a basis for the third
homology group of the smooth split-bicubic. We do so by considering first the singular split-
bicubic, taking a = b = c = 0:

P1(t, ζ) = t1(ζ3
1 + ζ3

2 + ζ3
3 ) ,

P2(t, η) = t2(η3
1 + η3

2 + η3
3) . (3.3.48)

Assuming this CICY has a well-defined intersection theory, we can fill out its intersection ma-
trix. First note that it is easy to write down equations describing all 81 A-type sLags and 9
C-type sLags, as well as identify point, curve and surface intersections as described above.
Note that each intersection of a given dimension is described by the same equation. Next, ob-
serve that 9 out of the 81 A-type sLags and 3 out of the 9 C-type sLags persist as sLags when
we deform to a smooth CICY, taking c from 0 to ε. Assuming that the intersection numbers
do not change in going back to the singular limit, they are given by table 3.2. Moreover, these
are the intersection numbers for all point, curve and surface intersections, given that they are
described by the same equations. Having filled out the intersection matrix, we can compute its
rank, finding 16 and 8, respectively, for X7,7 = X19,19/S and X3,3 = X19,19/S × R. That is,
the A-type and C-type sLags span the basis for the third homology group of the singular CICY.
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Finally, we know that all these sLags survive as 3-cycles when we deform to a smooth CICY20,
even though they are not all fixed point sets of any isometric antiholomorphic involution (and
thus likely not all sLags). In this way, we obtain a set of deformed sLags that generate the full
third homology group of the smooth (quotient) split bicubic.

Wilson lines on the sLags and their Chern-Simons invariants

Given the Seifert invariant, one can immediately write down a presentation of the fundamental
group (c.f. (3.2.42)):

π1(Q̃σA/Z3) = 〈h, c0, c1, d1, d2 h is central, c0 = c3
1h = c0c1d1d2 = 1〉 . (3.3.49)

This fundamental group is infinite and non-Abelian.

Figure 3.6: The base Ñ/Z3 of the quotient sLag QσA/Z3 after torus decomposition.

We compute now the Chern-Simons invariant of the sLag QσA/S
∼= QσA/Z3 in the quotient

split-bicubic, X3,3. To do so, we first have to understand how the Wilson line associated with
the symmetry group S ∼= Z3, which is a homomorphism ρ : π1(X3,3)→ SO(10), is compatible
with the fundamental group π1(QσA/Z3) of the sLag. In fact, we will show that the Wilson line
associated with S on X3,3 cannot project to a Wilson line on the sLag QσA/Z3.

The strategy is to check whether the fundamental group of the manifold QσA/Z3 admits a
homomorphism ρ : π1(QσA/Z3) → SO(10) whose image can be written as (3.3.30). We start
by recalling that the sLag has been cut into two pieces, Q̃(I)

σA/Z3 with I = 1, 2, as in figure 3.5.
Each piece is a Seifert fibered manifold with boundary and their fundamental group is given
by (3.3.49). In order to understand the generators of the fundamental group, we look at the
fibration structure of the manifold described in section 3.3.2, and list the non-contractible loops
present:

• h(I) is associated with the S1 fiber;
20Indeed, for many kinds of singularities, the map between third homology groups H3(Xsmth) → H3(Xsing)

is surjective, so that cycles can disappear when going to the singular limit, but no new cycles can appear. One way
to see this in our case is to notice that we can define the holomorphic 3-form and the periods in the singular limit,
and deform them away from the singular limit. Therefore, the cycles also exist in the smooth limit.
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Figure 3.7: The exceptional fiber in the Seifert fibration of the quotient Q̃σA/Z3. The excep-
tional fiber lies above the fixed point of the Z3 action in the orbit surface B̃. The figure shows
the structure close to an exceptional fiber as follows. We consider a disk neighbourhood of the
orbifold point (r̃, x̃1/x̃3, x̃2/x̃3) = (−1/3, 1, 1) in the base surface. The disk forms the base of
a fibered solid torus, which is the product D2

r̃,x̃ × Iỹ with the ends of the interval Iỹ identified
after twisting by an angle of 2π/3. The center of the disc {0} lifts to the core circle of the solid
torus, and points in D2

r,x−{0} lift to fibers that wrap 3 times around the core in the longitudinal
direction and 1 times in the meridianal direction. An example of a fiber is shown in blue, the
three line segments are joint together as indicated when the endcaps of the cylinder are glued
together. Thus the data describing the exceptional fiber is (p, q) = (3, 1) or (α, β) = (3, 1) .

• c(I)
0 is associated with an eventual twisting of the base Ñ I ;

• c(I)
1 corresponds to the non-contractible loop around the orbifold point in Ñ I ;

• d(I)
1 , d

(I)
2 , are the two boundaries of the cylinder Ñ I , see figure 3.6.

The next step is to glue the two manifolds Q̃(1)
σA/Z3 and Q̃

(2)
σA/Z3 along the two boundaries

given by the plane cubic curves at the points r = r1/r2 = ±1. As we have already seen,
the boundaries are 2-tori, and the gluing condition is an automorphism of the torus, namely
an SL(2,Z) transformation, that maps the two circular boundaries of Q̃(1)

σA/Z3 to the ones of
Q̃

(2)
σA/Z3 (and the reverse for the other boundary). Note that the symmetry group S ∼= Z3 acts

such that there is no twisting of the two fibers in the neighbourhood of r = r1/r2 = ±1 on the
original uncut manifold, where we recall that the fibers are given by the two plane cubic curves
(see figures 3.5 and 3.3). Therefore, we can write the gluing conditions as follows. Along the
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boundary r = 1 we have

h(1) = d
(2)
1 , (3.3.50)

d
(1)
2 = h(2), (3.3.51)

and along the boundary r = −1 we have

h(2) = d
(1)
1 , (3.3.52)

d
(2)
2 = h(1). (3.3.53)

So far, together with the relations in (3.3.49), we have listed all the topological ingredients
of our sLag QσA/Z3. Wilson lines on the sLag would correspond to the homomorphism
π1(QσA/Z3)→ SO(10), given by:

ρ : h(I) 7→ e2πiY (I)

; ρ : c
(I)
k 7→ e2πiX

(I)
k , k = 0, 1; ρ : d

(I)
l 7→ e2πiD

(I)
l , l = 1, 2;

(3.3.54)
where at least one of the generators of the fundamental group should generate a Z3 subgroup,
in order to be mapped to the matrices in (3.3.30). To check if this is possible we start from the
relations (in (3.3.49)) given by(

c
(I)
1

)3

h = 1 ⇒ (3X
(I)
1 + Y I) ∈ diag(Z), (3.3.55)

c
(I)
0

(
h(I)
)b

= 1 ⇒ (X
(I)
0 + bY I) ∈ diag(Z), (3.3.56)

c
(I)
0 c

(I)
1 d

(I)
1 d

(I)
2 = 1 ⇒ (X

(I)
0 +X

(I)
1 +D

(I)
1 +X

(I)
2 ) ∈ diag(Z), (3.3.57)

where we have used (3.3.54) and diag(Z) is the set of integer valued 10×10 diagonal matrices.
Again using the map ρ in (3.3.54), the boundary gluing conditions (3.3.50-3.3.51) become

Y (1) = D
(2)
1 mod diag(Z), (3.3.58)

D
(1)
2 = Y (2) mod diag(Z). (3.3.59)

and (3.3.52–3.3.53) become

Y (2) = D
(1)
1 mod diag(Z), (3.3.60)

D
(2)
2 = Y (1) mod diag(Z). (3.3.61)

Since we want a Wilson line that is a homomorphism ρ of Z3 into SO(10), suppose that every
generator g fulfils the following relation

g3 = 1. (3.3.62)

This implies that 3X
(I)
1 ∈ diag(Z), which together with (3.3.55) gives also Y (I) ∈ diag(Z).

Plugging these results into (3.3.56), we find that also X(I)
0 ∈ diag(Z). Using now the boundary
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gluing conditions (3.3.58-3.3.61) and, plugging them into (3.3.57), we obtain that also X(I)
1 ∈

diag(Z).
To sum up, we have obtained a completely trivial representation, and therefore Z3 Wilson

lines do not project onto the sLag QσA/Z3. Therefore, the fundamental group together with the
appropriate gluing condition to compose QσA/Z3 = Q̃σA/Z3 ∪ Q̃σA/Z3, does not allow one to
define a Z3 Wilson line consistently on the entire sLag QσA/Z3. We can therefore conclude that
the corresponding Chern-Simons invariant vanishes

CS(A,QσA/Z3) = 0 , (3.3.63)

Summary and superpotential on the split-bicubic: The topology of 27 out of the 81 de-
formed A-type sLags and all deformed C-type sLags are the same as that of the basic A-type
and C-type sLags, as can be seen by considering the different smooth limits, c = ε, εω, εω2

which are diffeomorphic to each other. The rank of the A- and C-type intersection matrix can
be computed to be zero for the smooth split-bicubic21. However, the singular split-bicubic, with
complex structure parameters a = b = c = 0 has additional A-type and C-type sLags, due to its
larger set of isometric anti-holomorphic involutions. Starting from this singular limit, we can
obtain a set of deformed sLags, which do complete a basis for the third homology group of the
smooth quotient split-bicubic. We have to consider the Wilson lines and Chern-Simons invari-
ants for these deformed sLags which complete the basis. Whether or not Wilson lines wrap the
cycles can be inferred from the singular limit, where it is clear from section 3.2.3 that Wilson
lines can project non-trivially on the basic A-type sLag and C-type sLags. All the C-type sLags
in the singular limit of the split-bicubic are smooth, and they are topologically 3-tori. Hence,
like the basic C-type sLag, their Chern-Simons invariants are zero. Recalling that the basic
A-type sLag also has a vanishing Chern-Simons invariant, we therefore conclude that all the
Chern-Simons invariants vanish and we can write down the full Wilson line contribution to the
Chern-Simons flux superpotential,

WCS = 0 . (3.3.64)

In contrast to the quintic, one therefore cannot introduce fractional terms in the flux superpo-
tential coming from the visible or hidden sector Wilson lines. On one hand the consistency
of the leading order 10D supersymmetric CY compactification is clear, and on the other hand
Chern-Simons fluxes from Wilson lines cannot help with moduli stabilization.

3.4 Summary of the results and outlook

Discrete Wilson lines are a key ingredient in heterotic Standard Model constructions based on
Calabi-Yau compactifications.22

21Note that this does not imply that all the A-type and C-type sLags are homologically equivalent, but only that
the number of linearly independent homology elements covered by the cycles is at least zero.

22See [85] for some Standard Model like constructions without Wilson lines on simply-connected Calabi-Yau
spaces.



62 3. Wilson lines & Chern-Simons flux in heterotic CY

They are introduced to break grand unified gauge groups down to the standard model whilst
maintaining supersymmetry and the control that this provides. However, they can sometimes
induce a non-trivial fractional H-flux via their Chern-Simons contributions, which may affect
the internal self-consistency of the assumed string background and could lead to possibly unin-
tended phenomenological consequences such as high-scale supersymmetry breaking. Since, for
a given Wilson line, the presence or absence of fractional H-flux is not a choice, it is important
to develop methods for its computation.

We analyzed this problem for complete intersection Calabi-Yau manifolds that admit freely
acting symmetry groups of discrete rotations, R, and cyclic permutations, S. We used the well
understood special Lagrangian submanifolds based on isometric anti-holomorphic involutions
as explicit representatives for the 3-cycles of the third homology group. If they span a basis for
the third homology group, the full background superpotenial from Chern-Simons flux can be
expressed in terms of Chern-Simons invariants on these submanifolds. The special Lagrangian
submanifolds come in two types, theA-type associated with complex conjugation of the coordi-
nates in the ambient projective spaces, and the C-type associated with complex conjugation and
exchange of coordinates between any two of the ambient projective spaces of equal dimension.
In a systematic analysis we determined which sLags could potentially inherit non-trivial Wilson
lines from the Calabi-Yau space. This first step is model independent.

The actual value of the Chern-Simons invariant depends both on the topology of the sub-
manifold and the choice of Wilson line, but it is computable on a model-by-model basis. As an
illustration we carried out this computation for two explicit complete intersection Calabi-Yau
manifolds, namely for the quintic and the split-bicubic. The 3-dimensional spaces we encoun-
tered in these models are Seifert fibered 3-manifolds or composition thereof. For Wilson lines
in such spaces we can compute the Chern-Simons invariants by applying results from the math-
ematics literature.

For the quintic modded out by Z5 × Z5, we were able to obtain an expression for the full
superpotential induced by Wilson lines. The result depends on whether we choose to embed
the Wilson line in the R or S factor of the Calabi-Yau fundamental group. Notice that the low
energy particle spectrum and couplings are independent of this choice. Choosing an R-type
Wilson line, all Chern-Simons invariants and the superpotential are vanishing in this model. In
this way, we can ensure a consistent leading order supersymmetric Calabi-Yau 10D compacti-
fication. Choosing an S-type Wilson line, by contrast, there is a non-vanishing Chern-Simons
invariant and superpotential, which might be used for moduli stabilization, but may also intro-
duces subtleties regarding the self-consistency of the string background.

We then progressed to the potentially realistic three generation quotient split-bicubic with
two discrete Wilson lines. The special Lagrangian submanifolds we found for the smooth quo-
tient split-bicubic do not generate the full third homology group, but by starting from a more
symmetric singular limit, we were able to identify deformed sLags that do span a basis. Con-
trary to the quintic case we found that the Wilson lines do not generate anyH-flux and therefore
do not contribute to the flux superpotential. This is completely independent of the choice of Wil-
son lines and is due solely to the topological properties of the three dimensional submanifolds
in the split-bicubic. Therefore, we have new evidences that this three generation split-bicubic



3.4 Summary of the results and outlook 63

preserves its consistency as supersymmetric ten-dimensional solution. This is a very interesting
new result, since it supports the self-consistency of the models constructed on the split-bicubic,
but it also means that moduli stabilization must be achieved by some mechanism different to
the one proposed in [46], see e.g. [29, 31, 47, 86, 87].

Our work leaves several important open questions. The consistency of incorporating Chern-
Simons flux into supersymmetric Calabi-Yau compactifications with gaugino condensation has
not yet been established in a definitive way. In any case, it would be necessary to compute
the Chern-Simons flux (and its superpotential) from Wilson lines in any explicit non-simply
connected Calabi-Yau compactification. Our procedure should be applicable to a wide range
of models, but there are also some model dependent steps. It would be relevant to extend our
computation for a broader class of CICYs and to develop methods to implement these within
computerized scans like [88].
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One of the interesting theoretical results of string theory is that it helps defining several nontriv-
ial quantum field theories in dimensions higher than four, which are hard to study with tradi-
tional methods. For example, several five-dimensional superconformal field theories (SCFT5’s)
have been defined, using D4-branes in type I’ [89, 90], M-theory on Calabi–Yau manifolds

65
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with shrinking cycles [90, 91], (p, q)-fivebrane webs [92] (sometimes also including (p, q)-
sevenbranes [93]). These various realizations are dual to each other [93, 94]; some of these
theories are also related by compactification [95] to the four-dimensional “class S” theories [96].

However, not too many AdS6 duals are known to these SCFT5’s. Essentially the reason is
that there is no D-brane stack whose near-horizon limit gives AdS6. Indeed the string realiza-
tions quoted above originate from intersecting branes, whose localized metrics are notoriously
difficult to find, as illustrated for example in [97]; even were they known, the relevant near-
horizon limit would probably be far from obvious. One exception is when one of the branes
is completely inside the other; in such cases some partially delocalized solutions [98] become
actually localized. This was used by Brandhuber and Oz [99] to obtain the first AdS6 solution in
string theory. (It was also anticipated to exist [100] as a lift of a vacuum in the six-dimensional
supergravity of [101].) It is in massive IIA, and it represents the near-horizon limit of a stack
of D4’s near an O8–D8 wall; thus it is dual to the theories in [89]. The internal space is half
an S4; the warping function A and the dilaton φ go to infinity at its boundary. This is just a
consequence of the presence of the O8–D8 system there, and it is a reflection of the peculiar
physics of the corresponding SCFT5’s. The fact that the dilaton diverges at the wall roughly
corresponds to a Yang–Mills kinetic term of the type φFµνF µν ; the scalar φ plays the role of

1
g2YM

, and at the origin φ→ 0 one finds a strongly coupled fixed point.

One can also study a few variations on the Brandhuber–Oz solution, such as orbifolding
it [102] and performing T-duality [103, 104] or even the more recently developed [105, 106]
nonabelian T-duality [104, 107]. The latter is not thought to be an actual duality, but rather a
solution-generating duality; thus the solution should represent some new physics, although its
global features are puzzling [107].

We attack the problem systematically, using the “pure spinor” techniques. In general, the
procedure reformulates the equations for preserved supersymmetry (N = 1, namely 8 real
supercharges in 6 dimensions) in terms of certain differential forms definingG-structures on the
“generalized tangent bundle” T ⊕T ∗. It originates from generalized complex geometry [35,36]
and its first application was to Minkowski4 or AdS4×M6 solutions of type II supergravity [108],
in which case the relevant G was SU(3) × SU(3). In [38] the method was extended (still in
type II supergravity) to any ten-dimensional geometry; in this chapter we apply to AdS6 ×M4

the general system obtained there. We work in IIB, since in massive IIA the Brandhuber–Oz
solution is unique [109], and in eleven-dimensional supergravity there are no solutions, as we
show in appendix B.1. We will classify N = 1 AdS6 solutions of type IIB supergravity that
preserve eight real supercharges in six dimensions.

The relevant structure on T ⊕ T ∗ is an “identity” structure (in other words, G is the trivial
group). Such a structure is defined by a choice of two vielbeine ea± (roughly associated with left-
and right-movers in string theory). We actually prefer working with a single “average” vielbein
ea and with some functions on M4 encoding the map between the two vielbeine ea±. We then
use these data to parameterize the forms appearing in the supersymmetry system. The super-
symmetry equations then determine ea in terms of the functions on M4, thus also determining
completely the local form of the metric. As usual for this kind of formalism, the fluxes also
come out as an output; less commonly, but the Bianchi identities are automatically satisfied.
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When the dust settles, it turns out that we have completely reduced the problem to a system
of two PDEs (see (4.3.12b), (4.3.13) below) on a two-dimensional space Σ. The metric is that
of an S2-fiberation over Σ. This should not come as a surprise: a SCFT5 has an SU(2) R-
symmetry, which manifests itself in the gravity dual as the isometry group of the S2. In 5, for
similar reasons the internal space M3 will be an S2-fiberation over an interval.

The problem is reduced to PDEs, which are harder to study even numerically. Using EDS
techniques (see for example [110, Chap. III] or [111, Sec. 10.4.1]) we have checked that the
system is “well-formed”: the general solution is expected to depend on two functions of one
variable, which can be thought of as the values of the warping function A and the dilaton φ at
the boundary of Σ. (We expect regularity of the metric to fix those degrees of freedom as well,
up to discrete choices.) We do recover two explicit solutions to the PDEs, corresponding to the
abelian and nonabelian T-duals of the Brandhuber–Oz solution mentioned above.

Even though we do not present any new solutions, it seems likely that our PDEs will describe
(p, q)-fivebrane webs. The common directions of the (p, q)-fivebranes would be x0, . . . , x4, and
which would be stretched along a line in the x5–x6 plane (such that x5

x6
= p

q
). It is natural

to conjecture that the solutions to our PDEs would correspond to near-horizon limits of such
configurations, with the x5–x6 plane somehow corresponding to our Σ; the remaining directions
x7, x8, x9 would provide our S2 (as well as the radial direction of AdS6). For such cases we
would expect Σ to have a boundary, at which the S2 shrinks; the (p, q)-fivebranes would then
be pointlike sources at this boundary.

4.1 Supersymmetry and pure spinor equations for AdS6

We will start by presenting the system of pure spinor equations that we need to solve. Although
this is similar to systems in other dimensions, there are some crucial differences, which we will
try to highlight.

The original example of the pure spinor approach to supersymmetry was found for Mink4×
M6 or AdS4 × M6 solutions in type II supergravity [108], where the BPS conditions were
reformulated in terms of certain differential equations on an SU(3) × SU(3) structure on the
“generalized tangent bundle” TM6 ⊕ T ∗M6. Other examples followed over the years; for in-
stance, [112] applied the strategy to Minkd ×M10−d for even d (for d = 2 the situation was
improved in [113–115]); the case R×M9 was considered in [116].

Partially motivated by the need of generating quickly pure-spinor-like equations for dif-
ferent setups, [38] formulated a system directly in ten dimensions, using the geometry of the
generalized tangent bundle of M10. We will adopt the procedure described in 2.3.

The ten-dimensional system contains two “symmetry” equations (2.3.19) that usually sim-
ply fix the normalizations of the pure spinors; two “pairing” equations (2.3.20) that often end up
being redundant (although not always, see [114,117]); and one “exterior” equation (2.3.18) that
usually generates the pure spinor equations one is most interested in. This pattern is repeated
for our case. One important difference is that the spinor decomposition we have to start with is
clumsier than the one in other dimensions. Usually, the ten-dimensional spinors εa are the sum
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of two (or sometimes even one) tensor products. For AdS4×M6 in IIB, for example, we simply
have εa = ζ4 + ⊗ ηa6 + + c.c.. The analogue of this for Mink6 ×M4 in IIB would be

ε1 = ζ6 + ⊗ η1
4 + + ζc6 + ⊗ η1 c

4 +

ε2 = ζ6 + ⊗ η2
4∓ + ζc6 + ⊗ η2 c

4±
(Mink6 ×M4; IIA/IIB) , (4.1.1)

where ( )c ≡ C( )∗ denotes Majorana conjugation. For AdS6 ×M4, however, such an Ansatz
cannot work: compatibility with the negative cosmological constant of AdS6 demands that the
ζ6 obey the Killing spinor equation on AdS6,

Dµζ6 =
1

2
γ(6)
µ ζ6 , (4.1.2)

and solutions to this equation cannot be chiral, while the ζ6 + in (4.1.1) are chiral. This issue
does not arise in AdS4 because in that case (ζ4 +)c has negative chirality; here (ζ6 +)c has positive
chirality. This forces us to add “by hand” to (4.1.1) a second set of spinors with negative
chirality, ending up with the unpromising-looking

ε1 = ζ+η
1
+ + ζc+η

1
+
c

+ ζ−η
1
− + ζc−η

1
−
c

ε2 = ζ+η
2
∓ + ζc+η

2
∓
c

+ ζ−η
2
± + ζc−η

2
±
c (AdS6 ×M4; IIA/IIB) (4.1.3)

where we have dropped the 6 and 4 labels (and the ⊗ sign), as we will do elsewhere. Attractive
or not, (4.1.3) will turn out to be the correct one for our classification.

In the main text from now on we will consider the IIB case (unless otherwise stated). This
is because AdS6 ×M4 solutions in massive IIA were already analyzed in [109], where it was
found that the only solution is the one in [99]. We did find it useful to check our methods on
that solution as well; we sketch how that works in appendix B.2. As for the massless case, we
found it more easily attacked by direct analysis in eleven-dimensional supergravity, which we
present in appendix B.1, given that it is methodologically a bit outside the stream of our pure
spinor analysis in IIB.

4.1.1 Derivation of the system

With the spinor Ansatz (4.1.3) in hand, we can apply the system of differential-forms equations
(2.3.18, 2.3.19):

dH(e−φΦ) = −(K̃ ∧+ιK)F(10) ; (4.1.4a)

LKg = 0 , dK̃ = ιKH . (4.1.4b)

Φ = ε1⊗ ε2 is the key ten-dimensional polyform,1 which is adapted to our background; g is the
ten-dimensional metric while K and K̃ are ten-dimensional one-forms which will be defined

1It should not be confused with the SU(2)-covariant internal even forms Φ±.
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momentarily. The decomposition of the ten-dimensional spinors εa suggests we decompose
accordingly the ten-dimensional gamma matrices:

γ(6+4)
µ = eAγ(6)

µ ⊗ 1 , γ
(6+4)
m+5 = γ(6) ⊗ γ(4)

m . (4.1.5)

Here γ(6)
µ , µ = 0, . . . , 5, are a basis of six-dimensional gamma matrices (γ(6) is the chiral

gamma), while γ(4)
m , m = 1, . . . , 4 are a basis of four-dimensional gamma matrices. We can

now expand via Fierz identities (see formula (A.12) in [38]) the bilinear ε1⊗ ε2, by plugging in
the decomposition (4.1.3) and (C.1.1). We get a sum of terms such as the following:

6∑
k=0

1

8k!

(
ζ+γ

j
(6)γ

(6)
µk...µ1

ζ+

)
γµ1...µk(6)

4∑
j=0

1

4j!

(
η2†
∓ γ

(4)
mj ...m1

η1
+

)
γ
m1...mj
(4) = ∓ζ+ζ+ ∧ η1

+η
2†
∓ .

(4.1.6)
What we mean by e.g. ζ+ζ+ is the six-dimensional polyform corresponding to this bilinear via
the Clifford map (see footnote 2). All in all we get:

Φ = ∓ ζ+ζ+ ∧ η1
+η

2 †
∓ ∓ ζ+ζc+ ∧ η1

+η
2
∓ + ζ−ζ− ∧ η1

−η
2 †
± + ζ−ζc− ∧ η1

−η
2
± +

+ ζ+ζ− ∧ η1
+η

2 †
± + ζ+ζc− ∧ η1

+η
2
∓ ± ζ−ζ+ ∧ η1

−η
2 †
∓ ± ζ−ζc+ ∧ η1

−η
2
∓ + c.c. .

(4.1.7)

The presence of the complex conjugates (of all summands) is due to relations such as ζc±ζ± =

−(ζ±ζc±)∗ and η1 c
± η

2 †
± = −(η1

±η
2
±)∗. If we were interested in the Minkowski case, the system

would only contain the bispinors η1
+ ⊗ η2 †

+ and η1
+ ⊗ (η2 c

+ )†.2 (As usual in the pure spinor
approach, we need not consider spinors of the type e.g. η1

+⊗ η
1 †
+ to formulate a system which is

necessary and sufficient.) Mathematically, this would describe an SU(2) × SU(2) structure on
TM4⊕ T ∗M4. Since in (4.1.3) we also have the negative chirality spinors η1

− and η1 c
− , there are

many more forms we can build. We have the even forms:3

φ1
± = e−Aη1

± ⊗ η
2 †
± , φ2

± = e−Aη1
± ⊗ (η2 c

± )† ≡ e−Aη1
± ⊗ η2

± ; (4.1.8a)

and the odd forms:

ψ1
± = e−Aη1

± ⊗ η
2 †
∓ , ψ2

± = e−Aη1
± ⊗ (η2 c

∓ )† ≡ e−Aη1
± ⊗ η2

∓ . (4.1.8b)

The factors e−A are inserted so that the bispinors have unit norm, in a sense to be clarified
shortly; A is the warping function, defined as usual by

ds2
10 = e2Ads2

AdS6
+ ds2

M4
. (4.1.9)

Already by looking at (4.1.8a), we see that we have two SU(2) × SU(2) structures on TM4 ⊕
T ∗M4. If both of these structures come for example from SU(2) structures on TM4, we see

2As usual, we will identify forms with bispinors via the Clifford map dxm1 ∧ . . . ∧ dxmk 7→ γm1...mk .
3Notice that the 1 or 2 on φ has nothing to do with the 1 or 2 on the η’s; rather, it has to do with whether the

second spinor is Majorana conjugated (2) or not (1). Another caveat is that the ± does not indicate the degree of
the form, as it is often the case in similar contexts; all the φ’s in (4.1.8a) are even forms. One can think of the ± as
indicating whether these forms are self-dual or anti-self-dual.
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that we get an identity structure on TM4, i.e. a vielbein. In fact, this is true in general: (4.1.8a)
always defines a vielbein on M4. We will see in section 4.2 how to parameterize both (4.1.8a)
and (4.1.8b) in terms of the vielbein they define.

Since we already know from (4.1.8a) and (4.1.8b) the forms defined by the bispinors along
the internal spaceM4, we just need to compute the bispinors along AdS6, as ζ+ζ+. The structure
of these bispinors actually depends on how ζ+ is chosen. One way to see this is to notice that
some of the algebraic relations depend on whether the bilinear ζ+ζ− vanishes or not. A more
invariant way to describe the situation is to notice that a pair ζ± of chiral spinors has the same
properties as another pair ζ ′± if they can be related via a Lorentz transformation, ζ ′± = Λζ±; or
in other words if they lie in the same orbit. The orbits for SO(1, 5) have been studied in [118,
Sec. 2.4.5.2]. Two orbits correspond to the case where either ζ+ or ζ− is zero; these are not
compatible with the Killing spinor equation (4.1.2), and are therefore not interesting to us.
There is then a one-parameter family of orbits whose stabilizer (i.e. the little group under the
SO(1, 5) action) is the abelian group R4; each of these orbits has dimension 11. Finally, there is
a four-parameter family of orbits whose stabilizer is SU(2); each of these orbits has dimension
12.

The properties of the forms that one can define from spinor bilinears depend on whether
we consider an orbit with stabilizer R4 or SU(2). The system in [38] will give systems of
equations which are superficially different for these two types of orbits. However, the original
system for supersymmetry is linear in the supersymmetry parameters εa. So its solution space
should be a linear space, which must in fact have dimension 8 (since this is the smallest number
of supercharges for a superalgebra in this dimension). Even if two choices of spinor pairs on
this linear space might give superficially different systems of equations, eventually these two
different systems must agree. So we can choose the spinor pair in such a way as to get the most
convenient system of equations. It turns out that this is one of the orbits with R4 stabilizer.

To get more concrete, let us decompose the external spinors splitting the external index µ
into a “lightcone” part, a = +,−, and a four-dimensional Euclidean part, m = 1, . . . , 4:

γa(6) = σa ⊗ 1(4) =
1

2
(γ0

(6) ± γ1
(6)) , γm(6) = σ3 ⊗ γm(4) , (4.1.10)

with σ± = 1
2
(±σ1 + iσ2). The matrices γµ(6) satisfy the algebra Cl(1, 5) with lightcone metric

η̃µν =
[

0 − 1
2

− 1
2

0

]
⊕ δmn(4) , so that γ(6)

± = −2γ∓(6) and γ(6)
m = γm(6).

Using this decomposition, we choose now a spinor pair of the form

ζ± ≡
(

1
0

)
⊗ χ± , (4.1.11)

with χ± a chiral spinor in four dimensions. This corresponds to an orbit with R4 stabilizer.
(Orbits with SU(2) stabilizer would correspond to taking ζ+ =

(
1
0

)
⊗ χ+, ζ− =

(
0
1

)
⊗ χ−.)

One consequence of this (which would not be true for the SU(2) orbit) is that the one-form
part of the bilinears ζ+ζ+ and ζ−ζ− coincide; we will call it z. It is light-like, and it only has
components in the two-dimensional part of the decomposition (4.1.10). As for the bilinears in
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the four dimensions 1, . . . , 4, they can be evaluated in the same way as those alongM4, in terms
of two one-forms that we will call V and W and which satisfy exactly the same properties as
the forms v and w introduced in (4.2.8).

z and the real and imaginary parts of V and W are independent, and in fact orthogonal.
They are not quite a vielbein: if we think of z as of the element of a vielbein in the null
direction −, we are missing another element in direction +. As stressed in [38], this cannot be
obtained as a bilinear of the supersymmetry parameters; we will see in section 4.1.3 that the
remaining equations in the ten-dimensional system of [38] require picking such a null vector as
an auxiliary piece of data. In conclusion,

{z = e−, e+,ReV, ImV,ReW, ImW} (4.1.12)

is a vielbein in AdS6.
We will also define Ω+ = −V ∧W , Ω− = V̄ ∧W , J± = ± i

2
(V ∧ V̄ ±W ∧ W̄ ), just as in

(4.2.17), (4.2.17b) for M4. With all these definitions, we can evaluate

ζ±ζ± = z ∧ e−iJ± , (4.1.13a)

ζ+ζ− = −z ∧ (V + ∗4V ) , (4.1.13b)

ζ−ζ+ = −z ∧ (V − ∗4V ) , (4.1.13c)

ζ±ζc± = z ∧ Ω± , (4.1.13d)

ζ±ζc∓ = ∓z ∧ (W ± ∗4W ) . (4.1.13e)

Specializing to IIB from now on, we can now plug (4.1.13) into (4.1.7); we have:

ΦIIB = eA
[
(z ∧ e−iJ+) ∧ φ1

+ + (z ∧ e−iJ−) ∧ φ1
−

+ z ∧ Ω+ ∧ φ2
+ + z ∧ Ω− ∧ φ2

−

− z ∧ (V + ∗4V ) ∧ ψ1
+ + z ∧ (V − ∗4V ) ∧ ψ1

−

− z ∧ (W + ∗4W ) ∧ ψ2
+ − z ∧ (W − ∗4W ) ∧ ψ2

− + c.c.
]
.

(4.1.14)

This is an odd form, as should be the case for IIB.
To evaluate (4.1.4a), we need to compute the ten-dimensional exterior derivative of e−φΦ;

schematically, it takes the form:

dH(e−φΦ) = dH

(∑
ext ∧ eA−φ int

)
=
∑

d6ext ∧ eA−φ int + (−)deg(ext)ext ∧ dH(eA−φ int) .
(4.1.15)

d6 is the differential along the AdS6 coordinates, while dH = d4 −H∧ in the last identity is a
combination of the exterior differential d4 along M4 and of the NS three-form H (which only
has components along M4). Since we are looking for vacuum solutions to (4.1.4a) which are
compatible with supersymmetry on AdS6, we need to take the external spinors ζ± to be the
chiral components of a Killing spinor ζ on this spacetime, i.e. Dµζ = 1

2
µγµζ . The norm of the

complex constant µ (which is proportional to
√
−Λ) can be reabsorbed in the warping function
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A; its phase can be reabsorbed by multiplying ηa± by e±iθ. Hence in what follows we will set
µ = 1, resulting in the equation (4.1.2) that we already quoted in the main text.

Exploiting (4.1.2) we can now compute the derivatives of the external forms (4.1.13):

d6(ζ±ζ±) = −2z ∧ (ReV + 2i ∗4 ImV ) , (4.1.16a)

d6(ζ±ζ∓) = ±3iz ∧ ReV ∧ ImV ± 5z ∧ Rev ∧ ImV ∧ ReW ∧ ImW , (4.1.16b)

d6(ζ±ζc±) = −4z ∧ ∗4W , (4.1.16c)

d6(ζ±ζc∓) = ±3z ∧ ReV ∧W . (4.1.16d)

As an illustration, (4.1.16a) is computed as follows:

d6(ζ+ζ+) =
1

2

[
γµ(6), Dµ(ζ+ζ+)

]
=

1

4
(γµγµζ−ζ+ − γµζ+ζ−γµ − γµζ−ζ+γ

µ + ζ+ζ−γµγ
µ)

=
1

2
(−3z ∧ (V − ∗4V )− 3z ∧ (V + ∗4V ) + z ∧ (V − ∗4V ) + z ∧ (V + ∗4V ))

= −2z ∧ (ReV + 2i ∗4 ImV ) , (4.1.17)

having used the formula γµωkγµ = (−)k(D − 2k)ωk for a k-form ωk in D dimensions.
The left-hand side dH(e−φΦ) of (4.1.4a) then contains only unknown derivatives of the

internal forms, since those of the external forms have been traded for the right-hand sides of
(4.1.16). Once we compute its right-hand side, the complete equation will only involve internal
forms and will be valid for any of the sixteen independent components of ζ = ζ+ + ζ−, as
appropriate for an N = 1 vacuum in six dimensions.

Before computing the right-hand side of (4.1.4a), namely −(K̃ ∧ +ιK)F , we will look at
the simpler (4.1.4b): as it happens in other dimensions, they imply that the norms of the internal
spinors are related to the warping function A. Let us see how. First, recall the definitions of K
and K̃ [38]:

K =
1

64
(ε1γ

(10)
M ε1 + ε2γ

(10)
M ε2) dxM , K̃ =

1

64
(ε1γ

(10)
M ε1 − ε2γ(10)

M ε2) dxM . (4.1.18)

Plugging in these formulas the decomposition (4.1.3), we obtain:

K =
e−A

4
z (‖η1‖2 + ‖η2‖2) , K̃ =

e−A

4
z (‖η1‖2 − ‖η2‖2) . (4.1.19)

The external part of the second equation in (4.1.4b) gives e−Ad6z (‖η1‖2 − ‖η2‖2) = 0 (the
right-hand side vanishes since H is purely internal). One can explicitly compute d6z, recalling
that z is the one-form part of ζ±ζ±; using (4.1.2), one can show that it is nonvanishing. Thus
we get:

‖η1‖2 = ‖η2‖2 . (4.1.20)

Hence K = e−A

2
z ‖η1‖2 and K̃ = 0. On the other hand, the first equation in (4.1.4b) says that

K is a Killing vector with respect to the ten-dimensional metric g: its external part says that z
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is Killing with respect to gAdS6 (this is obvious, since z is a bilinear constructed out of Killing
spinors), while its internal part implies ∂m

(
e−A

2
‖η1‖2

)
= 0, which upon integration gives

‖η1‖2 = eA , (4.1.21)

where without loss of generality we have set to one a possible integration constant. Putting
(4.1.20) and (4.1.21) together we get (4.1.25f). Moreover K = z/2. Recalling (4.1.26) we now
have:

−(K̃ ∧+ιK)F(10) = −ιK(e6Avol6 ∧ ∗4λF ) = −e
6A

2
∗6 z ∧ ∗4λF

=
e6A

2
(z ∧ ReV ∧ ImV ∧ ReW ∧ ImW ) ∧ ∗4λF . (4.1.22)

Putting everything together, we can now separate the various terms in (4.1.4a) that multiply
different wedge products of the one-forms in (4.1.12); since those forms are a vielbein in AdS6,
they are linearly independent, and each term has to be set to zero separately. In particular, we
see from (4.1.22) that the RR flux only contributes to one equation. This gives rise to many
equations that can then be arranged in SU(2)R representations defining SU(2)-covariant forms
Φ± and Ψ±. We will rearrange the bispinors (4.1.8) in a very nice way and we will state the
result in the nex sub-section.

4.1.2 SU(2)-covariant system of pure spinors

In the meantime, we can already now notice that the (4.1.8a) and (4.1.8b) can be assembled
more conveniently using the SU(2) R-symmetry. This is the group that rotates

(
ζ
ζc

)
and each

of
(
ηa±
ηa c±

)
as a doublet. One can check that (4.1.3) is then left invariant, so it is a symmetry;

since it acts on the external spinors, we call it an R-symmetry. It is the manifestation of the
R-symmetry of a five-dimensional SCFT. The SU(2) covariant formalist will be used from the
very beginning to yield more manageable results. Let us define

Φ± ≡
(
η1
±
η1 c
±

)
⊗
(
η2 †
± η2

±

)
=

(
φ1
± φ2

±
−(φ2

±)∗ (φ1
±)∗

)
= Reφ1

±Id2 + i(Imφ2
±σ1 + Reφ2

±σ2 + Imφ1
±σ3) ≡ Φ0

±Id2 + iΦα
±σα , (4.1.23a)

Ψ± ≡
(
η1
±
η1 c
±

)
⊗
(
η2 †
∓ η2

∓

)
=

(
ψ1
± ψ2

±
−(ψ2

±)∗ (ψ1
±)∗

)
= Reψ1

±Id2 + i(Imψ2
±σ1 + Reψ2

±σ2 + Imψ1
±σ3) ≡ Ψ0

±Id2 + iΨα
±σα . (4.1.23b)

σα, α = 1, 2, 3, are the Pauli matrices. Here and in what follows, the superscript 0 denotes
an SU(2) singlet, and not the zero-form part; the superscript α denotes an SU(2) triplet, not a
one-form. We hope this will not create confusion.

As we already mentioned, the forms Φ±, Ψ± will define an identity structure on M4. How-
ever, not any random forms Φ±, Ψ± may be written as bispinors as in (4.1.23). In other cases,
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such as for SU(3) × SU(3) structures in six dimensions [108], it is useful to formulate a set of
constraints on the forms that guarantee that they come from spinors; this allows to completely
forget about the original spinors, and formulate supersymmetry completely in terms of some
forms satisfying some constraints. In the present case, it would be possible to set up such a
fancy approach, by saying that Φ± and Ψ± should satisfy a condition on their inner products.
For example we could impose that the Φ’s and Ψ’s be pure spinors on M4 obeying the compat-
ibility conditions4

(Φα
±,Φ

β
±) = (Ψα

±,Ψ
β
±) = δαβ(Φ0

±,Φ
0
±) = δαβ(Ψ0

±,Ψ
0
±) . (4.1.24)

This would however be an overkill, since in section 4.2 we will directly parameterize Φ± and
Ψ± in terms of a vielbein and some functions on M4. This will achieve the end of forgetting
about the spinors ηa± by different means.

We can finally give the system of equations equivalent to preserved supersymmetry:

dH
[
e3A−φ(Ψ− −Ψ+)0

]
− 2e2A−φ(Φ− + Φ+)0 = 0 , (4.1.25a)

dH
[
e4A−φ(Φ− − Φ+)α

]
− 3e3A−φ(Ψ− + Ψ+)α = 0 , (4.1.25b)

dH
[
e5A−φ(Ψ− −Ψ+)α

]
− 4e4A−φ(Φ− + Φ+)α = 0 , (4.1.25c)

dH
[
e6A−φ(Φ− − Φ+)0

]
− 5e5A−φ(Ψ− + Ψ+)0 = −1

4
e6A ∗4 λF , (4.1.25d)

dH
[
e5A−φ(Ψ− + Ψ+)0

]
= 0 ; (4.1.25e)

||η1||2 = ||η2||2 = eA . (4.1.25f)

As usual, φ here is the dilaton; dH = d − H∧; A was defined in (4.1.9); λ is a sign operator
defined in footnote 4; F = F1+F3 is the “total” allowed internal RR flux, which also determines
the external flux via

F(10) = F + e6Avol6 ∧ ∗4λF . (4.1.26)

Again, we remind the reader that the superscript 0 denotes a singlet part, and α a triplet part, as
in (4.1.23).

The last equation, (4.1.25f), can be reformulated in terms of Φ and Ψ. Since ‖ηa‖2 ≡
‖ηa+‖2 + ‖ηa−‖2, we can define ||η1

+|| = eA/2 cos(α/2), ||η1
−|| = eA/2 sin(α/2), ||η2

+|| =
eA/2 cos(α̃/2), ||η2

−|| = eA/2 sin(α̃/2), where α, α̃ ∈ [0, π]; we then get

(Φ0
+,Φ

0
+) =

1

8
cos2(α/2) cos2(α̃/2) , (Φ0

−,Φ
0
−) = −1

8
sin2(α/2) sin2(α̃/2) ;

(Ψ0
+,Ψ

0
−) =

1

8
cos2(α/2) sin2(α̃/2) , (Ψ0

−,Ψ
0
+) = −1

8
sin2(α/2) cos2(α̃/2) .

(4.1.27)

Just as (4.1.24), however, such a fancy formulation will be ultimately made redundant by our
parameterization of Φ and Ψ in section 4.2, which will satisfy (4.1.24) automatically, and where
we will take care to implement (4.1.25f), so that (4.1.27) will be satisfied too.

4The Chevalley–Mukai pairing is defined as (α, β) = (α ∧ λ(β))4, where on a k-form λωk = (−)b
k
2 cωk.
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We can check immediately that (4.1.25) imply the equations of motion for the flux, by acting
on (4.1.25d) with dH and using (4.1.25e). The equations of motion for the metric and dilaton
are then satisfied (as shown in general in [34] for IIA, and in [119] for IIB); the equations of
motion for H are also implied, since they are [33] for Minkowski4 compactifications (which
include Minkowski5 as a particular case, and hence also AdS6 by a conical construction). We
will see later that the Bianchi identities for F and H are also automatically satisfied for this
case.

It is also interesting to compare the system (4.1.25) with the above-mentioned system for
Minkowski6 in [112]. First of all the second summands in the left-hand side of (4.1.25a)–
(4.1.25d) implicitly come with a factor proportional to

√
−Λ that we have set to one (since it

can be reabsorbed in the warping factor A). To take the Mink6 limit, we can imagine to restore
those factors, and then take Λ → 0. Hence all the second summands in the left-hand side of
(4.1.25a)–(4.1.25d) will be set to zero. This is not completely correct, actually, because implicit
in (4.1.25a)–(4.1.25c) there are more equations, that one can get by acting on them with dH
(before taking the Λ → 0 limit); we have to keep these equations as well. So far the limit
works in the same way as for taking the Λ → 0 limit from AdS4 to Minkowski4 in [108]. In
the present case, however, there is one more thing to take into account. As we have seen, in the
Minkowski6 case the spinor Ansatz can be taken to be (4.1.1) rather than the more complicated
(4.1.3) we had to use for AdS6. To go from (4.1.3) to (4.1.1), we can simply set η1

− = 0 and
η2
± = 0. This sets to zero some of our bispinors; for the IIB case on which we are focusing,

it sets to zero everything but Φ+. This makes some of the equations disappear; some others
become redundant. All in all, we are left with

dH(e2A−φΦ0
+) = 0 , dH(e4A−φΦα

+) = 0 , dH(e6A−φΦ0
+) = −1

4
e6A ∗4 λF , (4.1.28)

which is [112, Eq. (4.11)] in our SU(2)-covariant language.

4.1.3 Redundancy of pairing equations

We are now left with equations (2.3.20) of the general ten-dimensional system specialized for
IIB backgrounds of the type AdS6 × M4. We will now show that they are redundant, as we
expected.

It is convenient to rewrite here equations: (2.3.20),5(
e+1
· Φ · e+2

, γMN
(10)

[
±dH(e−φΦ · e+2

) +
1

2
eφd†(e−2φe+2

)Φ− F(10)

])
= 0 , (4.1.29a)(

e+1
· Φ · e+2

,

[
dH(e−φe+1

· Φ)− 1

2
eφd†(e−2φe+2

)Φ− F(10)

]
γMN

(10)

)
= 0 , (4.1.29b)

5The Clifford action from the left (right) of a ten-dimensional gamma matrix on a k-form ωk is given by [38]:

γM(10) ωk = (dxM ∧+gMN ιN )ωk , ωk γ
M
(10) = (−)k(dxM ∧ −gMN ιN )ωk .
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are completely redundant when specialized to AdS6 ×M4 solutions in IIB, i.e. they are auto-
matically satisfied by the expressions for bispinors and fluxes we found in section 4.3. Since the
analysis of the case at hand is similar to the ones presented in [38] and [114] (for four- and two-
dimensional Minkowski vacua respectively), we will briefly describe the main computations
and point out the novelties arising for an AdS vacuum.

Firstly, we need to choose the vectors e+a . Intuitively, these auxiliary vectors are needed
because the form Φ is not enough by itself to specify a vielbein; for more details, see [38]. The
e+a can be chosen quite freely, provided they satisfy the constraints

e2
+a

= 0 , e+axKa =
1

2
. (4.1.30)

Since K1 = K2 = K = 1
2
z has only external indices, we will set

e+1
= e+2

≡ e+ , (4.1.31)

and we will consider e+ to be purely external as well. This is just the one-form that in (4.1.12)
we had to leave undetermined; as we anticipated there, it is an auxiliary piece of data and cannot
be determined as a bilinear of ζ±. For Minkowski vacua, K is a constant vector, and one can
then simply take e+ to be constant too. In AdS, however, the requirement that K be a Killing
vector does not imply that it is constant, and hence there is no reason to have e+ constant either.
However, we will argue that e+ can be chosen in such a way to at least make the d†6e+ terms in
(4.1.29) vanish. To this end, let us first define the spinors ζ̃± along the lines of (4.1.11):

ζ̃± ≡
(

0
1

)
⊗ χ± , (4.1.32)

and the one-form
e+ ≡ (ζ̃+ζ̃+)one-form ∝ ζ̃+γ

(6)
µ ζ̃+ dx

µ , (4.1.33)

which satisfies e2
+ = 0, e+ ·K 6= 0; thus, by appropriate rescaling, taking (4.1.31) and (4.1.33)

will indeed satisfy (4.1.30). Since (4.1.32) now also satisfies the Killing spinor equations
(4.1.2), d†6e+ vanishes.

Another difference with respect to the Minkowski case comes from the term dH(e−φΦ · e+).
Using the formula

{
d, · e+(−)deg

}
= e−A∂+ + dA ∧ e+·, we can write it as

dH(e−φΦ · e+) = (dH(e−φΦ)) · e+ − e−φdA ∧ e+ · Φ− e−(A+φ)∂+Φ . (4.1.34)

As usual, the first term on the right hand side vanishes inside a pairing,6 while the last one
does not (contrary to the Minkowski case), and we must evaluate it. Since ∂+Φ = δ+µDµΦ =
δ+µDµ(ε1ε2), we can use the decomposition (4.1.3) and the equations (4.1.2) to conclude that

∂+Φ =
1

2
e+ · Φ̂ + . . . , (4.1.35)

6This is because e2
+ = 0. Just replace C with (dH(e−φΦ)) · e+ in the formula [38, Sec. B.4]

(e+ · Φ · e+, C) = − (−)deg(Φ)

32
ε1e+Ce+ε2 .
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where the dots denote terms that vanish in the pairing in (4.1.29a), and where we defined

Φ̂ ≡ (ε̂1ε2) , ε̂1 ≡ ζ−η
1
+ + ζc−η

1 c
+ + ζ+η

1
− + ζc+η

1 c
− . (4.1.36)

To sum up, for type IIB AdS6 ×M4 vacua we can rewrite (4.1.29a) as(
e+ · Φ · e+, γ

MN
(10)

[
e−φdA ∧ (e+ · Φ) +

e−(A+φ)

2
e+ · Φ̂− 2F

])
= 0 ; (4.1.37)

to rewrite the flux term we have made use of the formula(
e+ · Φ · e+, F(10)

)
= 2 (e+ · Φ · e+, F ) . (4.1.38)

From now on the analysis parallels the one for Minkowski vacua, and we will not repeat it
here. Specializing (4.1.29a), (4.1.29b) to the case M = m, N = n does not give any equations;
specializing them to the cases M = µ, N = ν and M = m, N = ν gives7(

Ψ0
+ + Ψ0

−, F
)

= e−φ , (4.1.40a)(
Ψα

+ −Ψα
−, F

)
= 0 , (4.1.40b)(

dxm ∧ (Φ0
+ − Φ0

−), F
)

= −eA−φ∂mA , (4.1.40c)(
ιm(Φ0

+ − Φ0
−), F

)
= 0 . (4.1.40d)

It can be shown that these equations transform into identities upon plugging in the expressions
for the solutions to the system (4.1.25). This completes the proof of the redundancy of (4.1.29a)
and (4.1.29b) for AdS6 ×M4 vacua in type IIB.

In summary, in this section we have presented the system (4.1.25), which is equivalent to
preserved supersymmetry for backgrounds of the form AdS6×M4. The forms Φ and Ψ are not
arbitrary: they obey certain algebraic constraints expressing their origin as spinor bilinears in
(4.1.23), (4.1.8). We will now give the general solution to those constraints, and then proceed
in section 4.3 to analyze the system.

4.2 Parameterization of the pure spinors

We have introduced in section 4.1 the even forms Φ± and the odd forms Ψ± (see (4.1.23),
(4.1.8a), (4.1.8b)). These are the main characters in the system (4.1.25), which is equivalent to
preserved supersymmetry. Before we start using the system, however, we need to characterize
what sorts of forms Φ± and Ψ± can be: this is what we will do in this section.

7As a curiosity, notice that (4.1.40c) can also be written as

√
g ∗
(
(Φ0

+ − Φ0
−) ∧ λ(F )

)
= −eA−φdA . (4.1.39)
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4.2.1 Even forms

We will first deal with Φ±. We will actually first focus on Φ+, and then quote the results for
Φ−. The computations in this subsection are actually pretty standard, and we will be brief.

Let us start with the case η1
+ = η2

+ ≡ η+. Assume also for simplicity that ||η+||2 = 1. In
this case the bilinears define an SU(2) structure:

η+η
†
+ =

1

4
e−ij+ , η+η+ =

1

4
ω+ , (4.2.1)

where the two-forms j+, ω+ satisfy

j+ ∧ ω+ = 0 , ω2
+ = 0 , ω+ ∧ ω+ = 2j2

+ = −vol4 . (4.2.2)

We can also compute

ηc+η
c †
+ =

1

4
eij+ , ηc+η

†
+ = −1

4
ω+ . (4.2.3)

Let us now consider the case with two different spinors, η1
+ 6= η2

+; let us again assume that
they have unit norm. We can define (in a similar way as in [120])

η0+ =
1

2
(η1

+ − iη2
+) , η̃0+ =

1

2
(η1

+ + iη2
+) . (4.2.4)

Consider now a+ = η2 †
+ η1

+, b+ = η2
+η

1
+. {η2

+, η
2 c
+ } is a basis for spinors on M4; a+, b+ are then

the coefficients of η1
+ along this basis. Since ηa+ have both unit norm, we have |a+|2 + |b+|2 = 1.

By multiplying ηa+ by phases, we can assume that a+ and b+ are for example purely imaginary,
and we can then parameterize them as a+ = −i cos(θ+), b+ = i sin(θ+). Going back to (4.2.4),
we can now compute their inner products:

η†0+η0+ = cos2

(
θ+

2

)
, η†0+η̃0+ = 0 , η0+η̃0+ =

1

2
sin(θ+) . (4.2.5)

From this we can in particular read off the coefficients of the expansion of η̃0+ along the basis
{η0+, η

c
0+}. This gives η̃0+ = 1

||η0+||2 (η†0+η̃0+η0+ + η0+η̃0+η
c
0+) = tan

(
θ+
2

)
ηc0+. Recalling

(4.2.4), and defining now η0+ = cos
(
θ+
2

)
η+, we get

η1
+ = cos

(
θ+

2

)
η+ + sin

(
θ+

2

)
ηc+ , η2

+ = i

(
cos

(
θ+

2

)
η+ − sin

(
θ+

2

)
ηc+

)
. (4.2.6)

From this it is now easy to compute η1
+η

2 †
+ and η1

+η
2
+. Recall, however, that in the course of our

computation we have first fixed the norms and then the phases of ηa+. The norms of the spinors
we need in this chapter are not one; they were actually already parameterized before (4.1.27), so
as to satisfy (4.1.25f). The factor eA, however, simplifies with the e−A in the definition (4.1.8a).
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Let us also restore the phases we earlier fixed, by rescaling η1
± → eiu±η1

±, η2
± → eit±η2

±. All in
all we get

φ1
+ =

1

4
cos(α/2) cos(α̃/2)ei(u+−t+) cos(θ+) exp

[
− 1

cos(θ+)
(ij+ + sin(θ+)Reω+)

]
,

(4.2.7a)

φ2
+ =

1

4
cos(α/2) cos(α̃/2)ei(u++t+) sin(θ+) exp

[
1

sin(θ+)
(cos(θ+)Reω+ + iImω+)

]
.

(4.2.7b)

The formulas for φ1,2
− can be simply obtained by changing cos(α/2) → sin(α/2), cos(α̃/2)

→ sin(α̃/2), and + → − everywhere. The only difference to keep in mind is that the last
equation in (4.2.2) is now replaced with ω− ∧ ω− = 2j2

− = vol4.

4.2.2 Odd forms

We now turn to the bilinears of “mixed type”, i.e. the ψ1,2
± we defined in (4.1.8b), which result

in odd forms. We will again start from the case where η1
± = η2

± ≡ η±.
There are two vectors we can define:

vm = η2 †
− γmη

1
+ , wm = η2

−γmη
1
+ . (4.2.8)

In bispinor language, we can compute

η+η
†
− =

1

4
(1 + γ)v , ηc+η

c †
− =

1

4
(1 + γ)v , (4.2.9a)

η−η
†
+ =

1

4
(1− γ)v , ηc−η

c †
+ =

1

4
(1− γ)v , (4.2.9b)

and

η+η
c †
− =

1

4
(1 + γ)w , ηc+η

†
− = −1

4
(1 + γ)w , (4.2.9c)

η−η
c †
+ = −1

4
(1− γ)w , ηc−η

†
+ =

1

4
(1− γ)w . (4.2.9d)

(In four Euclidean dimensions, the chiral γ = ∗4λ, so that (1 + γ)v = v + ∗4v, and so on.
See [38, App. A] for more details.) For the more general case where η1

± 6= η2
±, we can simply

refer back to (4.2.6). For example we get

ψ1
+ =

ei(u+−t−)

4
cos(α/2) sin(α̃/2)(1 + γ)

[
cos

(
θ+ + θ−

2

)
Rev + i cos

(
θ+ − θ−

2

)
Imv +

− sin

(
θ+ + θ−

2

)
Rew + i sin

(
θ+ − θ−

2

)
Imw

]
.

(4.2.10)
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For the time being we do not show the lengthy expressions for the other odd bispinors ψ2
+ and

ψ1,2
− , because they will all turn out to simplify quite a bit as soon as we impose the zero-form

equations in (4.1.25).
The v and w we just introduced are a complex vielbein; let us see why. First, a standard

Fierz computation gives
v · η+ = 0 , v · η+ = 2η− , (4.2.11)

where · denotes Clifford product. Multiplying from the left by η†−, we obtain

v2 = 0 , v x v = vmvm = 2 . (4.2.12)

Similarly to (4.2.11), we can compute the action of w:

w · η± = 0 , w · η± = ±2ηc∓ . (4.2.13)

Multiplying by η∓, we get
w2 = 0 , w xw = 2 . (4.2.14)

From (4.2.11) we can also get v · η+η− = 0, v · η+η− = 2η−η−, whose zero-form parts read

v xw = 0 = v xw . (4.2.15)

Together, (4.2.12), (4.2.14), (4.2.15) say that

{Rev, Rew, Imv, Imw} (4.2.16)

are a vielbein.
We can also now try to relate the even forms of section 4.2.1 to this vielbein. From (4.2.11)

we also see v · η+η+ = 0, which says v ∧ω+ = 0; similarly one gets v ∧ω− = 0. Also, (4.2.13)
implies that w · η+η+ = w · ω+ = 0, and thus that w ∧ ω± = 0. So we have ω+ ∝ v ∧ w,
ω− ∝ v ∧ w. One can fix the proportionality constant by a little more work:

ω+ = −v ∧ w , ω− = v ∧ w . (4.2.17a)

Similar considerations also determine the real two-forms:

j± = ± i
2

(v ∧ v ± w ∧ w) . (4.2.17b)

So far we have managed to parameterize all the pure spinors Φ±, Ψ± in terms of a viel-
bein given by (4.2.16). The expressions for Φ+ are given in (4.2.7); Φ− is given by changing
(cos(α/2), cos(α̃/2)) → (sin(α/2), sin(α̃/2)), and + → − everywhere. The forms j±, ω± are
given in (4.2.17) in terms of the vielbein. Among the odd forms of Ψ±, we have only quoted
one example, (4.2.10); similar expressions exist for ψ2

+ and for ψ1,2
− . We will summarize all this

again after the simplest supersymmetry equations will allow us to simplify the parameterization
quite a bit.
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4.3 General analysis

We will now use the parameterization obtained for Φ and Ψ in section 4.2 in the system (4.1.25).
As anticipated in the introduction, we will reduce the system to the two PDEs (4.3.12a), (4.3.13),
and we will determine the local form of the metric and of the fluxes in terms of a solution to
those equations.

4.3.1 Zero-form equations

The only equations in (4.1.25) that have a zero-form part are (4.1.25a) and (4.1.25c):

(Φ+ + Φ−)0
0 = 0 , (Φ+ + Φ−)α0 = 0 . (4.3.1)

The subscript 0 here denotes the zero-form part. (Recall that the superscripts 0 and α denote
SU(2) singlets and triplets respectively.) To simplify the analysis, it is useful to change variables
so as to make the SU(2) R-symmetry more manifest.

In (4.2.7), apart for the overall factor cos(α/2) cos(α̃/2)/4, we have φ1
+ 0 ∝ ei(u+−t+) cos(θ+),

φ2
+ 0 ∝ ei(u++t+) sin(θ+). The singlet is Reφ1

+ 0 ∝ cos(θ+) cos(u+ − t+), and it is a good
idea to give it a name, say x+. On the other hand, the triplet is {Imφ2

+,Reφ2
+, Imφ

1
+} ∝

{sin(θ+) sin(u+ + t+), sin(θ+) cos(u+ + t+), cos(θ+) sin(u+ − t+)}. If we sum their squares,
we obtain:

sin2(θ+) + cos(θ+)2 sin2(u+ − t+) = x2
+ tan2(u+ − t+) + sin2(θ+) = 1− x2

+ . (4.3.2)

This suggests that we parameterize the triplet using the combination
√

1− x2
+ y

α, where yα

should obey yαyα = 1 and can be chosen to be the ` = 1 spherical harmonics on S2. What we
are doing is essentially changing variables on an S3, going from coordinates that exhibit it as
an S1 × S1 fiberation over an interval to coordinates that exhibit it as an S2 fiberation over an
interval: {

cos(θ+)ei(u+−t+), sin(θ+)ei(u++t+)
}
→
{
x+,

√
1− x2

+y
α

}
. (4.3.3)

An identical discussion can of course be given for φ1,2
− . Summing up, we are led to the following

definitions:

x± ≡ cos(θ±) cos(u± − t±) , sin β± ≡
sin(θ+)√

1− x2
+

, γ± ≡
π

2
− u± − t± , (4.3.4)

and
yα± ≡

(
sin(β±) cos(γ±), sin(β±) sin(γ±), cos(β±)

)
, (4.3.5)

in terms of which

Φ+ 0 = cos(α/2) cos(α̃/2)

(
x+ + iyα+

√
1− x2

+σα

)
,

Φ− 0 = sin(α/2) sin(α̃/2)

(
x− + iyα−

√
1− x2

−σα

)
.

(4.3.6)
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Going back to (4.3.1), summing the squares of all four equations we get cos2(α/2) cos2(α̃/2) =
sin2(α/2) sin2(α̃/2). Given that α and α̃ ∈ [0, π], this is uniquely solved by

α̃ = π − α . (4.3.7)

Now (4.3.1) reduces to

− x− = x+ ≡ x , −yα− = yα+ ≡ yα . (4.3.8)

In terms of the original parameters, this means θ+ = θ−, u− = u+, t− = t+ + π.
The parameterization obtained in section 4.2 now simplifies considerably:

φ1
± = ±1

8
sinα cos θ ei(u−t) exp

[
− 1

cos θ
(ij± + sin θReω±)

]
, (4.3.9a)

φ2
± = ±1

8
sinα sin θ ei(u+t) exp

[
1

sin θ
(cos θReω+ + iImω+)

]
; (4.3.9b)

ψ1
± = ∓1

8
(1± cosα)ei(u−t)(1± γ) [cos θRev ± iImv ∓ sin θRew] , (4.3.9c)

ψ2
± = ∓1

8
(1± cosα)ei(u+t)(1± γ) [sin θRev ± iImw ± cos θRew] . (4.3.9d)

We temporarily reverted here to a formulation where SU(2)R is not manifest; however, in what
follows we will almost always use the SU(2)-covariant variables x and yα introduced above.

4.3.2 Geometry

We will now describe how we analyzed the higher-form parts of (4.1.25), although not in such
detail as in section 4.3.1.

The only equations that have a one-form part are (4.1.25b). From (4.3.9c), (4.3.9d), we
see that the second summand (Ψ+ + Ψ−)α1 is a linear combination of the forms in the vielbein
(4.2.16). The first summand consists of derivatives of the parameters we have previously intro-
duced. This gives three constraints on the four elements of the vielbein. We used it to express
Imv, Rew, Imw in terms of Rev;8 the resulting expressions are at this point still not particu-
larly illuminating, and we will not give them here. These expressions are not even manifestly
SU(2)-covariant at this point; however, once one uses them into Φ± and Ψ±, one does find
SU(2)-covariant forms. Just by way of example, we have

(Φ+ + Φ−)α2 = −1

3
e−3A+φ sinαRev ∧ d

(
yα sinα e4A−φ

√
1− x2

)
,

(Ψ− −Ψ+)α1 = yα
√

1− x2 sin2(α)Rev +
1

3
e−3A+φ cosα d

(
yα sinα e4A−φ

√
1− x2

)
.

(4.3.10)

8Doing so requires x 6= 0; the case x = 0 will be analyzed separately in section 4.3.4.
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We chose these particular 2-form and 1-form triplet combinations because they are involved in
the 2-form part of (4.1.25c). The result is a triplet of equations of the form yαE2+dyα∧E1 = 0,
where Ei are i-forms and SU(2)R singlets. If we multiply this by yα, we obtain E2 = 0 (since
yαdy

α = 0); then also E1 = 0 necessarily. The latter gives a simple expression for Rev, the
one-form among the vielbein (4.2.16) that we had not determined yet:

Rev = − e−A

sinα
d(e2A cosα) . (4.3.11)

Once this is used, the two-form equation E2 = 0 is automatically satisfied.
There are some more two-form equations from (4.1.25). The easiest is (4.1.25e), which

gives

d

(
e4A−φ

x
cotα d(e2A cosα) +

1

3x
e2A
√

1− x2d
(
e4A−φ

√
1− x2 sinα

))
= 0 . (4.3.12a)

Locally, this can be solved by saying

xdz = e4A−φ cotα d(e2A cosα) +
1

3
e2A
√

1− x2d
(
e4A−φ

√
1− x2 sinα

)
(4.3.12b)

for some function z. The two-form part of (4.1.25a) reads, on the other hand,

e−8Ad(e6A cosα) ∧ dz = d(xe2A−φ sinα) ∧ d(e2A cosα) . (4.3.13)

If one prefers, dz can be eliminated, giving

3 sin(2α)dA∧dφ = dα∧
(

6dA+sin2(α)
(
−dx2 − 2(x2 + 5)dA+ (1 + 2x2)dφ

) )
. (4.3.14)

We will devote the whole section 4.4 to analyze the PDEs (4.3.12a), (4.3.13) and we will also
exhibit two explicit solutions.

Taking the exterior derivative of (4.3.13) one sees that dα∧dA∧dz = 0. Wedging (4.3.12a)
with an appropriate one-form, one also sees dα∧ dA∧ dx = 0. Taken together, these mean that
only two among the remaining variables (α, x,A, φ) are really independent. For example we
can take α and x to be independent, and

A = A(α, x) , φ = φ(α, x) . (4.3.15)

We are not done with the analysis of (4.1.25), but there will be no longer any purely geomet-
rical equations: the remaining content of (4.1.25) determines the fluxes, as we will see in the
next subsection. Let us then pause to notice that at this point we have already determined the
metric: three of the elements of the vielbein (4.2.16) were determined already at the beginning
of this section in terms of Rev, and the latter was determined in (4.3.11). This gives the metric

ds2 =
cosα

sin2(α)

dq2

q
+

1

9
q(1− x2)

sin2(α)

cosα

(
1

x2

(
dp

p
+ 3 cot2(α)

dq

q

)2

+ ds2
S2

)
, (4.3.16)
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where the S2 is spanned by the functions β and γ introduced in (4.3.5) (namely, ds2
S2 = dβ2 +

sin2(β)dγ2), and we have eliminated A and φ in favor of

q ≡ e2A cosα , p ≡ e4A−φ sinα
√

1− x2 . (4.3.17)

These variables could also be used in the equations (4.3.12a), (4.3.13) above, with marginal
simplification. Notice that positivity of (4.3.16) requires |x| ≤ 1.

Thus we have found in this section that the internal space M4 is an S2 fiberation over a
two-dimensional space Σ, which we can think of as spanned by the coordinates (α, x).

4.3.3 Fluxes

We now turn to the three-form part of (4.1.25b). This is an SU(2)R triplet. It can be written as
yαH = εαβγyβdyγ ∧ Ẽ2 + yαvolS2 ∧ Ẽ1, where Ẽi are i-forms and SU(2)R singlets. Actually,
from (4.3.12a) and (4.3.13) it follows that Ẽ2 = 0; we are then left with a single equation setting
H = volS2 ∧ Ẽ1:

H = − 1

9x
e2A
√

1− x2 sinα

[
− 6dA

sinα
+ 2e−A(1 + x2)d(eA sinα) + sinα d(φ+ x2)

]
∧ volS2 .

(4.3.18)
As expected, H is a singlet under SU(2)R.

All the four-form equations in (4.1.25e), (4.1.25a), (4.1.25c) turn out to be automatically
satisfied. We can then finally turn our attention to (4.1.25d), which we have ignored so far. It
gives the following expressions for the fluxes:

F1 =
e−φ

6x cosα

[
12dA

sinα
+ 4e−A(x2 − 1)d(eA sinα) + e2φ sinα d(e−2φ(1 + 2x2))

]
; (4.3.19a)

F3 =
e2A−φ

54

√
1− x2

sin2(α)

cosα

[
36dA

sinα
+ 4e−A(x2 − 7)d(eA sinα) +

+ e2φ sinα d(e−2φ(1 + 2x2))

]
∧ volS2 . (4.3.19b)

The Bianchi identities

dH = 0 , dF1 = 0 , dF3 +H ∧ F1 = 0 , (4.3.20)

are all automatically satisfied, using of course the PDEs (4.3.12a), (4.3.13). As usual, this
statement is actually true only if one assumes that the various functions appearing in those
equations are smooth. One can introduce sources by relaxing this condition.



4.3 General analysis 85

4.3.4 The case x = 0

In section 4.3.2, we used the three-form part of (4.1.25b) to express Imv, Rew, Imw in terms
of Rev. This actually can only be done for x 6= 0: the expressions we get contain x in the
denominator, as can be seen for example in (4.3.12a). This left out the case x = 0; we will
analyze it in this section, showing that it leads to a single solution, discussed in [103, 104] —
namely, to a T-dual of the AdS6 solution found in [99] and reviewed in our language in appendix
B.2.

Keeping in mind that−x− = x+ = x (from (4.3.8)), from (4.3.4) we have x = cos(θ) cos(u−
t). Imposing x = 0 then means either θ = π

2
or u − t = π

2
. Of these two possibilities, the first

does not look promising, because on the S3 parameterized by (cos(θ)ei(u−t), sin(θ)ei(u+t)) it
effectively restricts us to an S1: only the function u + t is left in the game, and indeed going
further in the analysis one finds that the metric becomes degenerate.9 The second possibility,
u − t = π

2
, restricts us instead to an S2 ⊂ S3; we will now see that this possibility survives. It

gives

β = θ , t = −1

2
γ , u =

π

2
− 1

2
γ . (4.3.21)

This leads to a dramatic simplification in the whole system. The one-form equations from
(4.1.25b) do not involve Imv any more; we can now use them to solve for Rev, Rew, Imw
(rather than for Imv, Rew, Imw as we did in previous subsections, for x 6= 0). This strategy
would actually have been possible for x 6= 0 too, but it would have led to far more involved
expressions; for this reason we decided to isolate the x = 0 case and to treat it separately in this
subsection. We get

Rev =
e−3A+φ

3 cosα
d(sinαe4A−φ) , Rew =

eA

3
sinα dβ , Imw = −e

A

3
sinα sin βdγ .

(4.3.22)
We now turn to the 2-form equation in (4.1.25c). As in the previous subsections of this

section, this can be separated into a 2-form multiplying yα and a 1-form multiplying dyα, which
have to vanish separately:

d(e5A−φRev) = 0 , e5A−φ(3− 4 sin2(α))Rev = d(e6A−φ sinα cosα) . (4.3.23)

Hitting the second equation with d and using the first, we find sinα cosα dα ∧ Rev = 0, and
hence, recalling (4.3.22), to sinαdα ∧ d(4A − φ) = 0. Now, sinα is not allowed to vanish
because of (4.3.22) (recall that Rev, Rew, Imw are part of a vielbein); hence dα∧d(4A−φ) = 0.
This can be interpreted as saying that 4A−φ is a function of α. On the other hand, using (4.3.22)
in the first in (4.3.23), we get d( e2A

cosα
) ∧ d(sinαe4A−φ) = 0, which shows that A = A(α), and

hence also that φ = φ(α). Going back to the second in (4.3.23), it now reads

2(cos2(α) + 2)∂αA+ sin2(α)∂αφ = sin(2α) . (4.3.24)

Turning to (4.1.25e), its 2-form part reads

d(e5A−φImv) = 0 ⇒ Imv = e−(5A−φ)dz (4.3.25)
9At the stage of (4.3.22) below, one would find Rew ∝ Imv.
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for some function z. This completes (4.3.22).
Finally, (4.1.25a) gives(

d(e−2A cosα) + 2e−3A sinαRev
)
∧ Imv = 0 . (4.3.26)

In view of (4.3.25), the parenthesis has to vanish by itself; this leads to

4(7 cos2(α)− 4)∂αA+ 4 sin2(α)∂αφ = − sin(2α) . (4.3.27)

Notice that now (4.3.24) and (4.3.27) are two ordinary (as opposed to partial) differential
equations, which can be solved explicitly:

eA =
c1

cos1/6(α)
, eφ =

c2

sinα cos2/3(α)
, (4.3.28)

where ci are two integration constants. These are exactly the warping and dilaton presented
in [107, (A.1)], for c1 = 3

2
Lm−1/6, c2 = 4/(3L2m2/3). It is now possible to derive the fluxes,

as we did in subsection 4.3.3 for x 6= 0, and check that they coincide with those in [107, (A.1)].
The metric can now be computed too, using the vielbein (4.3.23), (4.3.25); it also agrees

with the one given in [107, (A.1)]. It inherits the singularity at α = π
2

from the Brandhuber–Oz
solution [99]; moreover, it now has a singularity at α = 0. The latter is actually the singularity
one always gets when one T-dualizes along a Hopf direction in a S3 that shrinks somewhere. It
represents an NS5 smeared along the T-dual S1; one expects worldsheet instantons to modify
the metric so that the NS5 singularity gets localized along that direction, as in [121]. As for the
singularity at α = π

2
, it now cannot be associated with an O8–D8 system as it was in IIA, since

we are in IIB. It probably now represents a smeared O7–D7 system; it is indeed always the case
that T-dualizing a brane along a parallel direction in supergravity gives a smeared version of
the correct D-brane solution on the other side, as we just saw for the NS5-brane. It is possible
that again instanton effects localize the singularity, this time to an O7–D7 system. (Even more
correctly, we should expect the O7 to split into an (1, 1)-sevenbrane and an (1,−1)-sevenbranes,
as pointed out in [93] following [122].)

Notice finally that, although we have found it convenient to treat the x = 0 case separately
from the rest, it is in fact a particular case of the general treatment (although a slightly degener-
ate one). Indeed one can check that (4.3.12b) is satisfied by (4.3.28); in contrast to the general
case, this does not determine a function z, but we can use (4.3.14), where z has been eliminated,
instead of (4.3.13), which contains z. Thus the solution presented in this subsection is already
an example of our general formalism. In section 4.4.2 we will see another, more elaborate
example.

4.4 The PDEs

In section 4.3, we reduced the problem of finding AdS6 × M4 solutions to the two PDEs
(4.3.12a), (4.3.13). As anticipated in the introduction, we will not try to find the most general
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solution to these equations in this chapter. In this section we will make some general remarks
about the PDEs, and we will recover via a simple Ansatz the known solution [104], originally
obtained via nonabelian T-duality. (As we mentioned in that section, one can also see the x = 0
case as a particular solution to the PDEs.)

4.4.1 General considerations

We derived in section 4.3.2 the two equations (4.3.12a), (4.3.13). Recall that z is an auxiliary
variable, defined by (4.3.12b). As we already remarked, among the four remaining variables
(α, x,A, φ), only two (for example α and x) are independent. The other two, A and φ, can
be taken to be dependent as in (4.3.15). The equations (4.3.12a) and (4.3.13) can then be
reexpressed as two scalar PDEs in the two dimensions spanned by α and x:

3 sin(2α)(Aαφx − Axφα) = 6Ax + sin2 α
(
−2x− 2(x2 + 5)Ax + (1 + 2x2)φx

)
, (4.4.1a)

cosα(2 + 3xφx) + sinαφα = 2x

(
3

sinα
+ (x2 − 4) sinα

)
(Aαφx − Axφα) + (4.4.1b)

− 2x cosα

(
3

sin2 α
− (5 + x2)

)
Ax + 2

(
3

sinα
− (1 + x2) sinα

)
Aα ,

where Aα ≡ ∂αA etc. As we will see, they are actually easier to study in their original form
manifestations (4.3.12a) and (4.3.13).

These equations are nonlinear, and as such they are rather hard to study. Even so, there are
quite a few techniques that have been developed over the years to tackle such systems. Perhaps
the first natural question is how many solutions one should expect. For a first-order system of
ODEs, it is roughly enough to compare the number of equations to the number of functions.
If there are n equations and n functions, the system is neither over- nor under-constrained:
geometrically, the system gives a vector field in an open set in Rn+1 (including time), and
solving the system means finding integral curves to this vector field. (When the system is
“autonomous”, i.e. it does not depend explicitly on time, one can more simply consider a vector
field on Rn).

The picture is more complicated for a system of PDEs. In general, if we have k “times”
and m functions, the system will define a distribution of dimension k (namely, a choice of
subspaces Vx ⊂ TxRk+m of dimension k for every point x ∈ Rk+m); solving the system then
means finding “integral submanifolds” for the distribution, namely submanifolds S ⊂ Rk+m

such that Vx is tangent to S for every x ∈ S. This distribution is in general however not
guaranteed to admit integral submanifolds. (A famous example is given by Frobenius theorem:
a distribution defined by the span of vector fields vi will only be integrable if all the Lie brackets
[vi, vj] are linear combinations of the vi themselves.) Fortunately, the machinery of “exterior
differential systems” (EDS) has been developed to deal with these issues, culminating in the
Cartan–Kähler theorem (see for example [110, Chap.III], or [111, Sec. 10.4.1] in slightly more
informal language).

Describing and applying such methods in detail is beyond the scope of this thesis, but here
is a sketch. First one defines a “differential ideal”, namely a vector space of the equations in
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the system and their exterior derivatives. In our case, denote by Ei the two two-forms that have
to vanish in (4.3.12a) and (4.3.13); the ideal is then the linear span I = 〈E1, E2, dE2〉 (since
dE1 = 0 automatically). We then want to construct the distribution V on which the forms
in I vanish, in the sense that each multi-vector built from vectors in the distribution has zero
pairing with the forms in I . One proceeds iteratively. We first consider a single vector field e1

on which the forms vanish (in our case this is trivial, since there are no one-forms in I; we can
take for example e1 = ∂α). We then add a second vector: this is done by solving the “polar
equations” H(E1) ≡ {vxe1xEi = 0}. The rank of this system is denoted by c1. (In general
there might be a c0 too, but in our case the first choice of a vector was free because there are no
one-forms in I; c0 is then considered to be 0.) For us it turns out that c1 = 2. In general one
would go on by choosing a solution e2 to the polar equations above, and would consider new
polar equations H(E2) ≡ {vxe1xEi = vxe2xEi = 0, vxe1xe2xdE2 = 0}; the rank of this new
system would be denoted by c2, which in our case also happens to be 2. However, solving our
PDEs means finding a two-dimensional integral manifold, and hence we can stop at the second
step and disregard the higher polar equations H(E2). (The general theory would also show that
for our system there is actually no three-dimensional integral manifold.) We can then apply the
so-called “Cartan test” and a corollary to the Cartan–Kähler theorem (respectively Thm. 1.11
and Cor. 2.3 in [110]) to infer that an integral submanifold of dimension 2 actually does exist.
The proof of the theorem also says that the general solution depends on s1 = c1 − c0 = 2
functions of one variable. (si = ci − ci−1 are called “Cartan characters”.) These two functions
can be thought of as functions at the boundary of the two-dimensional domain in α and x on
which the solution exists.

Having determined the structure of the solutions, it would be nice to find as many as possible
of them. A strategy which is common in this context is to impose some extra symmetry. This
is less obvious than usual to implement. We cannot for example just assume that A and φ do
not depend on one of the coordinates α and x: the metric (4.3.16) would become degenerate.
Another perhaps more promising idea is to use the so-called “method of characteristics” to
reduce the problem to a system of ODEs. We plan to return on this in the future.

Finally, let us point out that two solutions to our PDEs are already known. One is the
case x = 0, which we studied in section 4.3.4. Although we had to treat it separately, we
also mentioned that it is a solution of the general system of PDEs (once we eliminate dz from
(4.3.13), obtaining (4.3.14)).

We will now see another particular solution. Although the global properties of the resulting
M4 are even more puzzling than those of the solution in section 4.3.4, it might be possible
to generalize it to new solutions which are better-behaved; for example, one might start by
studying perturbations around it.

4.4.2 A local solution: nonabelian T-duality

Many PDEs are reduced to ODEs by a separation of variables Ansatz. For our nonlinear PDEs,
this does not work. However, we will now see that a particular case does lead to a solution,
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namely:
φ = f(α) + log(x) , A = A(α) . (4.4.2)

Notice that this Ansatz restricts x to be in (0, 1]. (We already observed after (4.3.16) that |x| ≤ 1
in general.)

We begin by considering (4.3.12b). With (4.4.2), after a few manipulations it reduces to

dz = d

(
e6A−f sinα

6x2

)
− 1

3
e2Ad(e4A−f sinα) +

+
1

x2

[
−1

6
e4Ad(e2A−f sinα) + e4A−f cotα d(e2A cosα)

]
.

(4.4.3)

The first line in (4.4.3) is manifestly exact, since everything is a function of α alone. The second
line is of the form 1

x2
d(function(α)), and cannot be exact unless it vanishes, which leads to

d(e2A−f sinα) = 6e−f cotα d(e2A cosα) . (4.4.4)

The first line in (4.4.3) then determines dz (and can be integrated to produce z). We can now use
this expression for dz in (4.3.13). Most terms in (4.3.13) actually vanish because they involve
wedges of forms proportional to dα; the only one surviving is of the form d(e6A cosα)∧ dx. In
other words, we are forced to take

eA = c1(cosα)−1/6 , (4.4.5)

with c1 an integration constant. Plugging this back into (4.4.4) we get

ef = c2
(cosα)−1/3

sin3 α
(4.4.6)

for c2 another integration constant.
This is actually the solution found in [104]. To see this, one needs to identify

α = θ , x =
e2Â√
r2 + e4Â

, (4.4.7)

where Â is the function denoted by A in [104]. One can check that indeed the fluxes (4.3.18),
(4.3.19) and metric (4.3.16) give the expressions in [104]. The metric one gets has a singularity
at α = π/2, just like the solution [99], and a new singularity at α = 0 [107]. More worryingly,
it is noncompact; it might be possible to find a suitable analytic continuation, with the help of
the PDEs (4.3.12a), (4.3.13).

4.5 Summary of the results and outlook

In this chapter, we analyzed the AdS6 × M4 supersymmetric system of equations of type II
supergravity, given by the vanishing supersymmetry variations with all the fluxes turned on. We
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were able to rewrite this system in terms of pure-spinors for the unique solution of massive type
IIA, namely the Brandhuber and Oz solution [99, 109], see B.2. We also show that there are no
AdS6 solutions in eleven-dimensional supergravity with eight preserved supercharges, B.1.

The main and new result of this chapter is a classification of this type of AdS6 ×M4 back-
grounds in type IIB supergravity. In this case, we reduced the pure-spinors system to two PDEs
in terms of the dilaton and the warp factor, which depends on the local coordinates of a two
dimensional space Σ. M4 is an S2-fiberation over Σ. The metric, the dilaton and the fluxes are
completely determined by the two PDEs, and the classification is given in the sense that each
AdS6 solution of type IIB must be a solution of these two PDEs. As a consistency check and
as a confirmation of our classification result, we recover also two already known solutions in
type IIB by plugging in two different ansatz in the PDEs. One is the T-dual of the Brandhuber
and Oz solution, see 4.3.4, the other one was obtained using non-abelian T-duality [104], and
see section 4.4.2. However, this last solution has some divergences and it is non-compact. It
will be interesting to solve analytically the two PDEs with a clever ansatz (or even numerically)
and/or with a change of coordinates on Σ, in order to find an analytic continuation of the solu-
tion of [104], which makes it compact. In general, it would be nice to find also new compact
solutions, which we believe are dual to five-dimensional superconformal field theories coming
from (p, q)-webs of five and seven-branes.
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Interacting quantum field theories generally become hard to define in more than four dimen-
sions. A Yang–Mills theory, for example, becomes strongly coupled in the UV. In six dimen-
sions, a possible alternative would be to use a two-form gauge field. Its nonabelian formulation
is still unclear, but string theory predicts that a (2, 0)-superconformal completion of such a field
actually exists on the worldvolume of M5-branes. Understanding these branes is still one of
string theory’s most interesting challenges.

This prompts the question of whether other non-trivial six-dimensional theories exist. There
are in fact several other string theory constructions [123–126] that would engineer such theories.
Progress has also been made (see for example [127, 128]) in writing explicitly their classical
actions.

A way to establish the existence of superconformal theories in six dimensions is to look for
supersymmetric AdS7 solutions in string theory. In this chapter, we classify such solutions. As
we will review later, in M-theory, one only has AdS7 × S4 (which is holographically dual to
the (2, 0) theory) or an orbifold thereof. That leaves us with AdS7 ×M3 in IIA with non-zero
Romans mass F0 6= 0 (which cannot be lifted to M-theory) or in IIB.

Here we will show that, while there are no such solutions in IIB, many do exist in IIA with
non-zero Romans mass F0.

Our methods are reminiscent of the generalized complex approach for Mink4 × M6 or
AdS4 × M6 solutions [108]. We start with a similar system [112] for Mink6 × M4, and we
then use the often-used trick of viewing AdS7 as a warped product of Mink6 with a line. This
allows us to obtain a system valid for AdS7 ×M3. A similar procedure was applied in [129] to
derive a system for AdS5 ×M5 from Mink4 ×M6. The system we derive is written in terms
of differential forms satisfying some algebraic constraints; mathematically, these constraints
mean that the forms define a generalized identity×identity structure on TM3 ⊕ T ∗M3

. This fancy
language, however, will not be needed here; we will give a parameterization of such structures
in terms of a vielbein {ea} and some angles, and boil the system down to one written in terms
of those quantities.

When one writes supersymmetry as a set of PDEs in terms of forms, they may have some
interesting geometrical interpretation (such as the one in terms of generalized complex geometry
in [108]); but, to obtain solutions, one usually needs to make some Ansatz, such as that the space
is homogeneous or that it has cohomogeneity one. One then reduces the differential equations
to algebraic equations or to ODEs, respectively.

The AdS7 × M3 case is different with N = 1, or 16 real supercharges preserved in 7
dimensions. As we will see, the equations actually determine explicitly the vielbein {ea} in
terms of derivatives of our parameterization function. This gives a local, explicit form for the
metric, without any Ansatz. By a suitable redefinition we find that the metric describes an S2

fibration over a one-dimensional space.
This is actually to be expected holographically. A (1, 0) superconformal theory has an

Sp(1)∼=SU(2) R-symmetry group, which should appear as the isometry group of the internal
space M3. With a little more work, all the fluxes can also be determined, and they are also left
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invariant by the SU(2) isometry group of our S2 fiber. All the Bianchi identities and equations
of motion are automatically satisfied, and existence of a solution is then reduced to a system of
two coupled ODEs.1 From this point on, our analysis is pretty standard: in order for M3 to be
compact, the coordinate r on which everything depends should in fact parameterize an interval
[rN, rS], and the S2 should shrink at the two endpoints of the interval, which we from now on
will call “poles”. This requirement translates into certain boundary conditions for the system of
ODEs.

We have studied the system numerically. We can obtain regular2 solutions if we insert brane
sources. We exhibit solutions with D6’s, and solutions with one or two D8 stacks, appropriately
stabilized by flux. For example, in the solution with two D8 stacks, they have opposite D6
charge, and their mutual electric attraction is balanced against their gravitational tendency to
shrink. (For D8-branes, there is no problem with the total D-brane charge in a compact space;
usually such problems are found by integrating the flux sourced by the brane over a sphere
surrounding the brane, whereas for a D8 such a transverse sphere is simply an S0.) We think
that there should exist generalizations with an arbitrary number of stacks.

It is natural to think that our regular solutions with D8-branes might be related to D-brane
configurations in [124, 125], which should indeed engineer six-dimensional (1, 0) supercon-
formal theories. Supersymmetric solutions for configurations of that type have actually been
found [130] (see also [131]); non-trivially, they are fully localized. It is in principle possible
that their results are related to ours by some limit. Such a relationship is not obvious, however,
in part because of the SU(2) symmetry, that forces our sources to be only parallel to the S2-fiber.
It would be interesting to explore this possibility further.

5.1 Supersymmetry and pure spinor equations in three di-
mensions

In this section, we will derive a system of differential equations on forms in three dimensions
that is equivalent to preserved supersymmetry for solutions of the type AdS7 ×M3. We will
derive it by a commonly-used trick: namely, by considering AdSd+1 as a warped product of
Minkd and R. We will begin in section 5.1.1 by reviewing a system equivalent to supersymmetry
for Mink6 ×M4. In section 5.1.2 we will then translate it to a system for AdS7 ×M3.

1This is morally a hyper-analogue to the reduction performed in [129] along the generalized Reeb vector,
although in our case the situation is so simple that we need not introduce that reduction formalism.

2On the loci where branes are present, the metric is of course not regular, but such singularities are as usual
excused by the fact that we know that D-branes have an alternative definition as boundary conditions for open
strings, and are thought to be objects in the full theory. The singularity is particularly mild for D8’s, which
manifest themselves as jumps in the derivatives of the metric and other fields — which are themselves continuous.
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5.1.1 Mink6 ×M4

Preserved supersymmetry for Mink4 ×M6 was found [108] to be equivalent to the existence
on M6 of an SU(3) × SU(3) structure satisfying certain differential equations reminiscent of
generalized complex geometry [35, 36].

Similar methods can be useful in other dimensions. For Mink6×M4 solutions, [112] found
a system in terms of SU(2) × SU(2) structure on M4, described by a pair of pure spinors φ1,2.
Similarly to the Mink4×M6 case, they can be characterized in two ways. One is as bilinears of
the internal parts η1,2 of the supersymmetry parameters in (C.1.2):3

φ1
∓ = e−A4η1

+ ⊗ η
2 †
∓ , φ2

∓ = e−A4η1
+ ⊗ η

2c †
∓ , (5.1.1)

where the warping function A4 is defined by

ds2
10 = e2A4ds2

Mink6
+ ds2

M4
. (5.1.2)

The upper index in (5.1.1) is relevant to IIA, the lower index to IIB; so in IIA we have that
φ1,2 are both odd forms, and in IIB that they are both even. One can also give an alternative
characterization of φ1,2, as a pair of pure spinors which are compatible. This stems directly from
their definition as an SU(2)× SU(2) structure, and it means that the corresponding generalized
almost complex structures commute. This latter constraint can also be formulated purely in
terms of pure spinors as (φ1, φ2) = (φ̄1, φ2).4 This can be shown similarly to an analogous
statement in six dimensions; see [132, App. A].

The system equivalent to supersymmetry now reads [112] 5

dH
(
e2A4−φReφ1

∓
)

= 0 , (5.1.3a)

dH
(
e4A4−φImφ1

∓
)

= 0 , (5.1.3b)

dH
(
e4A4−φφ2

∓
)

= 0 , (5.1.3c)

eφF = ∓16 ∗4 λ(dA4 ∧ Reφ1
∓) , (5.1.3d)

(φ1
±, φ

1
±) = (φ2

±, φ
2
±) =

1

4
. (5.1.3e)

Here, φ is the dilaton; dH = d−H∧ is the twisted exterior derivative; A4 was defined in (5.1.2);
F is the internal RR flux, which, as usual, determines the external flux via self-duality:

F(10) ≡ F + e6A4vol6 ∧ ∗4λF . (5.1.4)

Actually, (5.1.3) contains an assumption: that the norms of the ηi are equal. For a noncom-
pact M4, it might be possible to have different norms; (5.1.3) would then have to be slightly

3As usual, we are identifying forms with bispinors via the Clifford map dxm1 ∧ . . . ∧ dxmk 7→ γm1...mk . ∓
denotes chirality, and ηc ≡ B4η

∗ denotes Majorana conjugation; for more details see appendix C.1. The factors
e−A4 are included for later convenience.

4As usual, the Chevalley pairing in this equation is defined as (α, β) = (α ∧ λ(β))top; λ is the sign operator
defined on k-forms as λωk ≡ (−)b

k
2 cωk.

5We have massaged a bit the original system in [112], by eliminating Reφ1
∓ from the first equation of their

(4.11).
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changed. (See [133, Sec. A.3] for comments on this in the Mink4 ×M6 case.) As shown in
appendix C.1, however, for our purposes such a generalization is not relevant.

With this caveat, the system (5.1.3) is equivalent to supersymmetry for Mink6 × M4. It
can be found by direct computation, or also as a consequence of the system for Mink4 ×M6

in [108]: one takesM6 = R2×M4, with warpingA = A4, internal metric ds2
M6

= e2A4((dx4)2+
(dx5)2) + ds2

M4
, and, in the language of [133],

Φ1 = eA4(dx4 + idx5) ∧ φ2
∓ , Φ2 = (1 + ie2A4dx4 ∧ dx5) ∧ φ1

∓ . (5.1.5)

Furthermore, (5.1.3) can also be found as a consequence of the ten-dimensional system in [38].
[112] also give an interpretation of the system in terms of calibrations, along the lines of [134].

5.1.2 AdS7 ×M3

As we anticipated, we will now use the fact that AdS can be used as a warped product of
Minkowski space with a line. We would like to classify solutions of the type AdS7×M3. These
in general will have a metric

ds2
10 = e2A3ds2

AdS7
+ ds2

M3
(5.1.6)

where A3 is a new warping function (different from the A4 in (5.1.2)). Since

ds2
AdS7

=
dρ2

ρ2
+ ρ2ds2

Mink6
, (5.1.7)

(5.1.6) can be put in the form (5.1.2) if we take

eA4 = ρeA3 , ds2
M4

=
e2A3

ρ2
dρ2 + ds2

M3
. (5.1.8)

A genuine AdS7 solution is one where not only the metric is of the form (5.1.7), but where there
are also no fields that break its SO(6,2) invariance. This can be easily achieved by additional
assumptions: for example,A3 should be a function ofM3. The fluxes F andH , which in section
5.1.1 were arbitrary forms on M4, should now be forms on M3. For IIA, F = F0 + F2 + F4:
in order not to break SO(6, 2), we impose F4 = 0, since it would necessarily have a leg along
AdS7; for IIB, F = F1 + F3.

Following this logic, solutions to type II equations of motion of the form AdS7 ×M3 are
a subclass of solutions of the form Mink6 × M4. In appendix C.1, we also show how the
AdS7 ×M3 supercharges get translated in the Mink6 ×M4 framework, and that the internal
spinors have equal norm, as we anticipated in section 5.1.1. Using (C.1.10), we also learn how
to express the φ1,2 in (5.1.1) in terms of bilinears of spinors χ1,2 on M3:

φ1
∓ =

1

2

(
ψ1
∓ + ieA3

dρ

ρ
∧ ψ1

±

)
, φ2

∓ = ∓1

2

(
ψ2
∓ + ieA3

dρ

ρ
∧ ψ2

±

)
, (5.1.9)

with
ψ1 = χ1 ⊗ χ†2 , ψ2 = χ1 ⊗ χc †2 . (5.1.10)
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As in section 5.1.1, we have implicitly mapped forms to bispinors via the Clifford map, and in
(5.1.9) the subscripts ± refer to taking the even or odd form part. (Recall also that φ1,2

− is relevant
to IIA, and φ1,2

+ to IIB; see (5.1.3).) The spinors χ1,2 have been taken to have unit norm.
ψ1,2 are differential forms on M3, but not just any forms. (5.1.10) imply that they should

obey some algebraic constraints. Those constraints could be interpreted in a fancy way as saying
that they define an identity×identity structure on TM3 ⊕ T ∗M3

. However, three-dimensional
spinorial geometry is simple enough that we can avoid such language: rather, in section 5.2 we
will give a parameterization that will allow us to solve all the algebraic constraints resulting
from (5.1.10).

We can now use (5.1.9) in (5.1.3). Each of those equations can now be decomposed in
a part that contains dρ and one that does not. Thus, the number of equations would double.
However, for (5.1.3a), (5.1.3b) and (5.1.3c), the part that does not contain dρ actually follows
from the part that does. The “norm” equation, (5.1.3e), simply reduces to a similar equation for
a three-dimensional norm. Summing up:

dHIm(e3A3−φψ1
±) = −2e2A3−φReψ1

∓ , (5.1.11a)

dHRe(e5A3−φψ1
±) = 4e4A3−φImψ1

∓ , (5.1.11b)

dH(e5A3−φψ2
±) = −4ie4A3−φψ2

∓ , (5.1.11c)

± 1

8
eφ ∗3 λF = dA3 ∧ Imψ1

± + e−A3Reψ1
∓ , (5.1.11d)

dA3 ∧ Reψ1
∓ = 0 , (5.1.11e)

(ψ1,2
+ , ψ1,2

− ) = − i
2

; (5.1.11f)

again with the upper sign for IIA, and the lower for IIB.
The system (5.1.11) is equivalent to supersymmetry for AdS7×M3. As we show in appendix

C.1, a supersymmetric AdS7 ×M3 solution can be viewed as a supersymmetric Mink6 ×M4

solution, and for this the system (5.1.3) is equivalent to supersymmetry. (5.1.11) can also be
obtained directly from the ten-dimensional system in subsection 2.3.2, but other equations also
appear, and extra work is needed to show that those extra equations are redundant. The deriva-
tion of the supersymmetry conditions by using the ten-dimensional system of 2.3.2 was work
done in the master thesis [135].

In (5.1.11) the cosmological constant of AdS7 does not appear directly, since we have taken
its radius to be one in (5.1.7). We did so because a non-unit radius can be reabsorbed in the
factor e2A3 in (5.1.6).

Before we can solve (5.1.11), we have to solve the algebraic constraints that follow from the
definition of ψ1,2 in (5.1.10); we will now turn to this problem.
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5.2 Parameterization of the pure spinors

In section 5.1.2 we obtained a system of differential equations, (5.1.11), that is equivalent to
supersymmetry for an AdS7 ×M3 solution. The ψ1,2 appearing in that system are not arbitrary
forms; they should have the property that they can be rewritten as bispinors (via the Clifford
map dxi1 ∧ . . .∧dxik 7→ γi1...ik) as in (5.1.10). In this section, we will obtain a parameterization
for the most general set of ψ1,2 that has this property. This will allow us to analyze (5.1.11)
more explicitly in section 5.3.

We will begin in section 5.2.1 with a quick review of the case χ1 = χ2, and then show in
section 5.2.2 how to attack the more general situation where χ1 6= χ2.

5.2.1 One spinor

We will use the Pauli matrices σi as gamma matrices, and use B3 = σ2 as a conjugation matrix
(so that B3σi = −σtiB3 = −σ∗iB3). We will define

χc ≡ B3χ
∗ , χ ≡ χtB3 ; (5.2.1)

notice that χc † = χtB†3 = χ.
We will now evaluate ψ1,2 in (5.1.10) when χ1 = χ2 ≡ χ; as we noted in section 5.1.2, χ is

normalized to one. Notice first a general point about the Clifford map αk = 1
k!
αi1...ikdx

i1 ∧ . . .∧
dxik 7→��αk ≡ 1

k!
αi1...ikγ

i1...ik in three dimensions (and, more generally, in any odd dimension).
Unlike what happens in even dimensions, the antisymmetrized gamma matrices γi1...ik are a
redundant basis for bispinors. For example, we see that the slash of the volume form is a
number: ���vol3 = σ1σ2σ3 = i. More generally we have

�α = −i���∗λα. (5.2.2)

In other words, when we identify a form with its image under the Clifford map, we lose some
information: we effectively have an equivalence α ∼= −i ∗ λα. When evaluating ψ1,2, we can
give the corresponding forms as an even form, or as an odd form, or as a mix of the two.

Let us first consider χ⊗ χ†. We can choose to express it as an odd form. In its Fierz expan-
sion, both its one-form part and its three-form part are a priori non-zero; we can parameterize
them as

χ⊗ χ† =
1

2
(e3 − ivol3) . (5.2.3)

(We can also write this in a mixed even/odd form as χ ⊗ χ† = 1
2
(1 + e3); recall that the right

hand sides have to be understood with a Clifford map applied to them.) e3 is clearly a real
vector, whose name has been chosen for later convenience. The fact that the three-form part is
simply − i

2
vol3 follows from ||χ|| = 1. Notice also that

e3χ = σiχe
i
3 = σiχχ

†σiχ =
1

2
(−e3 − 3ivol3)χ ⇒ e3χ = χ (5.2.4)
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where we have used (5.2.3), and that σiαkσi = (−)k(3−2k)αk on a k-form. (5.2.4) also implies
that e3 has norm one.6

Coming now to χ⊗χ, we notice that the three-form part in its Fierz expansion is zero, since
χχ = χtB3χ = 0. The one-form part is now a priori no longer real; so we write

χ⊗ χ =
1

2
(e1 + ie2) . (5.2.5)

Similar manipulations as in (5.2.4) show that (e1 + ie2)χ = 0; using this, we get that

ei · ej = δij . (5.2.6)

In other words, {ei} is a vielbein, as notation would suggest.

5.2.2 Two spinors

We will now analyze the case with two spinors χ1 6= χ2 (again both with norm one). We will
proceed in a similar fashion as in [120, Sec. 3.1].

Our aim is to parameterize the bispinors ψ1,2 in (5.1.10). Let us first consider their zero-
form parts, χ†2χ1 and χc †2 χ1. The parameterization (5.2.4) can be applied to both χ1 and χ2,
resulting in two one-forms ei3. (This notation is a bit inconvenient, but these two one-forms will
cease to be useful very soon.) Using then (5.2.3) twice, we see that

|χ†2χ1|2 = χ†2χ1χ
†
1χ2 = Tr(χ1χ

†
1χ2χ

†
2) =

1

4
Tr
(
(1 + e1

3)(1 + e2
3)
)

=
1

2
(1 + e1

3 · e2
3) . (5.2.7)

Similarly we have

|χc †2 χ1|2 = Tr(χ1χ
c †
1 χ2χ

c †
2 ) =

1

4
Tr
(
(1 + e1

3)(1− e2
3)
)

=
1

2
(1−e1

3 ·e2
3) = 1−|χ†2χ1|2 . (5.2.8)

Both |χ†2χ1|2 and |χc †2 χ1|2 are positive and ≤ 1. Thus we can parameterize χ†2χ1 = eia cos(ψ),
χc †2 χ1 = eib sin(ψ). (The name of this angle should not be confused with the forms ψ1,2.) By
suitably multiplying χ1 and χ2 by two phases, we can assume a = −π

2
and b = π

2
; we will

reinstate generic values of these phases at the very end. Thus we have

χ†2χ1 = −i cos(ψ) , χc †2 χ1 = i sin(ψ) . (5.2.9)

Just as in [120, Sec. 3.1], we can now introduce

χ0 =
1

2
(χ1 − iχ2) , χ̃0 =

1

2
(χ1 + iχ2) . (5.2.10)

6An alternative, perhaps more amusing, way of seeing this is to consider χ ⊗ χ† as a two-by-two spinorial
matrix. It has rank one, which will be true if and only if its determinant is one. Using that det(A) = 1

2 (Tr(A)2 −
Tr(A2)) for 2×2 matrices, one gets easily that e3 has norm one.
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In three Euclidean dimensions, a spinor and its conjugate form a (pointwise) basis of the space
of spinors. For example, χ0 and χc0 are a basis. We can then expand χ̃0 on this basis. Actually,
its projection on χ0 vanishes, due to (5.2.9): χ†0χ̃0 = i

4
(χ†1χ2 + χ†2χ1) = 0. With a few more

steps we get

χ̃0 =
χc †0 χ̃0

||χ0||2
χc0 = tan

(
ψ

2

)
χc0 . (5.2.11)

We can now invert (5.2.10) for χ1 and χ2, and use (5.2.11). It is actually more symmetric-
looking to define χ0 ≡ cos

(
ψ
2

)
χ, to get

χ1 = cos

(
ψ

2

)
χ+ sin

(
ψ

2

)
χc , χ2 = i

(
cos

(
ψ

2

)
χ− sin

(
ψ

2

)
χc
)
. (5.2.12)

We have thus obtained a parameterization of two spinors χ1 and χ2 in terms of a single spinor
χ and of an angle ψ. Let us count our parameters, to see if our result makes sense. A spinor χ
of norm 1 accounts for 3 real parameters; ψ is one more. We should also recall we have rotated
both χ1,2 by a phase at the beginning of our computation, to make things easier. We have a
grand total of 6 real parameters, which is correct for two spinors of norm 1 in three dimensions.

We can now use the parameterization (5.2.12), and the bilinears (5.2.3), (5.2.5) obtained in
section 5.2.1:

χ1 ⊗ χ†2 = −i
[
cos2

(
ψ

2

)
χχ† − sin2

(
ψ

2

)
χcχc † + cos

(
ψ

2

)
sin

(
ψ

2

)
(χcχ† − χχc †)

]
= − i

2
[e3 − i sin(ψ)e2 − i cos(ψ)vol3] . (5.2.13)

A computation along these lines allows us to evaluate χ1 ⊗ χ2 as well. We can also reinstate at
this point the phases of χ1 and χ2, absorbing the overall factor −i. The bilinear in (5.2.13) is
expressed as an odd form, but we will also need its even-form expression; this can be obtained
by using (5.2.2). Recalling the definition (5.1.10), we get:

ψ1
+ =

eiθ1

2
[cos(ψ) + e1 ∧ (−ie2 + sin(ψ)e3)] , ψ1

− =
eiθ1

2
[e3 − i sin(ψ)e2 − i cos(ψ)vol3] ;

(5.2.14a)

ψ2
+ =

eiθ2

2
[sin(ψ)− (ie2 + cos(ψ)e1) ∧ e3] , ψ2

− =
eiθ2

2
[e1 + i cos(ψ)e2 − i sin(ψ)vol3] .

(5.2.14b)

Notice that these satisfy automatically (5.1.11f).
Armed with this parameterization, we will now attack the system (5.1.11) for AdS7 ×M3

solutions.

5.3 General results

In section 5.1.2, we have obtained the system (5.1.11), equivalent to supersymmetry for AdS7×
M3 solutions. The ψ1,2

± appearing in that system are not just any forms; they should have the
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property that they can be written as bispinors as in (5.1.10). In section 5.2.2, we have obtained a
parameterization for the most general set of ψ1,2

± that fulfills that constraint; it is (5.2.14), where
{ei} is a vielbein.

Thus we can now use (5.2.14) into the differential system (5.1.11), and explore its conse-
quences.

5.3.1 Purely geometrical equations

We will start by looking at the equations in (5.1.11) that do not involve any fluxes. These are
(5.1.11e), and the lowest-component form part of (5.1.11a), (5.1.11b) and (5.1.11c).

First of all, we can observe quite quickly that the IIB case cannot possibly work. (5.1.11a),
(5.1.11b) and (5.1.11c) all have a zero-form part coming from their right-hand side, which,
using (5.2.14), read respectively

cos(ψ) cos(θ1) = 0 , cos(ψ) sin(θ1) = 0 , sin(ψ)eiθ2 = 0 . (5.3.1)

These cannot be satisfied for any choice of ψ, θ1 and θ2. Thus we can already exclude the IIB
case.7

Having disposed of IIB so quickly, we will devote the rest of this chapter to IIA. Actually, we
already know that we can get something new only with non-zero Romans mass, F0 6= 0. This
is because for F0 = 0 we can lift to an eleven-dimensional supergravity solution AdS7 × N4.
There, we only have a four-form flux G4 at our disposal, and the only way not to break the
SO(6,2) invariance of AdS7 is to switch it on along the internal four-manifold N4. This is the
Freund–Rubin Ansatz, which requires N4 to admit a Killing spinor. This means that the cone
C(N4) over N4 admits a covariantly constant spinor; but in five dimensions the only manifold
with restricted holonomy is R5 (or one of its orbifolds, of the form R4/Γ× R). Thus we know
already that all solutions with F0 = 0 lift to AdS7×S4 (or AdS7×S4/Γ) in eleven dimensions.
(In fact we will see later how AdS7 × S4 reduces to ten dimensions.) We will thus focus on
F0 6= 0, and use the case F0 = 0 as a control.

In IIA, the lowest-degree equations of (5.1.11a), (5.1.11b) and (5.1.11c) are one-forms; they
are less dramatic than (5.3.1), but still rather interesting. Using (5.2.14), after some manipula-
tions we get

e1 = −1

4
eA sin(ψ)dθ2 , e2 =

1

4
eA(dψ + tan(ψ)d(5A− φ)) ,

e3 =
1

4
eA
(
− cos(ψ)dθ1 +

cot(θ1)

cos(ψ)
d(5A− φ)

)
,

(5.3.2)

and
xdx = (1 + x2)dφ− (5 + x2)dA , (5.3.3)

7This quick death is reminiscent of the fate of AdS4×M6 with SU(3) structure in IIB. The system in [108] has
a zero-form equation and two-form equation coming from the right-hand side of its fluxless equation, which look
like cos(θ) = 0 = sin(θ)J , where θ is an angle similar to ψ in (5.2.14). This is consistent with a no-go found with
lengthier computations in [136].
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where
x ≡ cos(ψ) sin(θ1) , (5.3.4)

and we have dropped the subscript 3 on the warping function: A ≡ A3 from now on. Notice that
(5.3.2) determine the vielbein. Usually (i.e. in other dimensions), the geometrical part of the
differential system coming from supersymmetry gives the derivative of the forms defining the
metric. In this case, the forms themselves are determined in terms of derivatives of the angles
appearing in our parameterizations. This will allow us to give a more complete and concrete
classification than is usually possible.

We still have (5.1.11e). Notice that (5.1.11a) allows to write it as dA ∧ d(e3A−φx) = 0.
Using also (5.3.3), we get

dA ∧ dφ = 0 . (5.3.5)

This means that φ is functionally dependent on A:8

φ = φ(A) . (5.3.6)

(5.3.3) then means that x too is functionally dependent on A: x = x(A).

5.3.2 Fluxes

So far, we have analyzed (5.1.11e), and the one-form part of (5.1.11a), (5.1.11b) and (5.1.11c).
Before we look at their three-form part too, it is convenient to look at (5.1.11d), which gives us
the RR flux, for reasons that will become apparent.

First we compute F0 from (5.1.11d):

F0 = 4xe−A−φ
3− ∂Aφ

5− 2x2 − ∂Aφ
. (5.3.7)

The Bianchi identity for F0 says that it should be (piecewise) constant. It will thus be convenient
to use (5.3.7) to eliminate ∂Aφ from our equations.

Before we go on to analyze our equations, let us also introduce the new angle β by

sin2(β) =
sin2(ψ)

1− x2
. (5.3.8)

We can now use x as defined in (5.3.4) to eliminate θ1, and β to eliminate ψ. This turns out
to be very convenient in the following, especially in our analysis of the metric in section 5.3.4
below (which was our original motivation to introduce β).

After these preliminaries, let us give the expression for F2 as one obtains it from (5.1.11d):

F2 =
1

16

√
1− x2eA−φ(xeA+φF0 − 4)volS2 , (5.3.9)

8(5.3.6) excludes the case where A is constant in a region. However, it is easy to see that this case cannot work.
Indeed, in this case (5.3.3) can be integrated as eφ ∝

√
1− x2, which is incompatible with (5.3.7) below.
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where
volS2 = sin(β)dβ ∧ dθ2 (5.3.10)

is formally identical to the volume form for a round S2 with coordinates {β, θ2}. We will see
later that this is no coincidence.

Finally, let us look at the three-form part of (5.1.11a), (5.1.11b) and (5.1.11c). One of them
can be used to determine H:

H =
1

8
e2A
√

1− x2
6 + xF0e

A+φ

4 + xF0eA+φ
dx ∧ volS2 , (5.3.11)

while the other two turn out to be identically satisfied.
Our analysis is not over: we should of course now impose the equation of motion, and the

Bianchi identities for our fluxes. The equation of motion for F2, d ∗ F2 + H ∗ F0 = 0, follows
automatically from (5.1.11d), much as it happens in the pure spinor system for AdS4 × M6

solutions [108]. We should then impose the Bianchi identity for F2, which reads dF2 −HF0 =
0 (away from sources). This does not follow manifestly from (5.1.11d), but in fact it is a
consequence of the explicit expressions (5.3.7), (5.3.9) and (5.3.11) above. When F0 6= 0, it
also implies that the B field such that H = dB can be locally written as

B2 =
F2

F0

+ b (5.3.12)

for a closed two-form b. Using a gauge transformation, it can be assumed to be proportional (by
a constant) to volS2; we then have that it is a constant, ∂Ab = 0.

The equation of motion for H , which reads for us d(e7A−2φ ∗3 H) = e7AF0 ∗3 F2 (again
away from sources), is also automatically satisfied, as shown in general in [33]. Finally, since
we have checked all the conditions for preserved supersymmetry, the Bianchi identities and the
equations of motion for the fluxes, the equations of motion for the dilaton and for the metric
will now follow [34].

5.3.3 The system of ODEs

Let us now sum up the results of our analysis of (5.1.11). Most of our equations determine
some fields: (5.3.2) give the vielbein, and (5.3.7), (5.3.9), (5.3.11) give the fluxes. The only
genuine differential equations we have are (5.3.3), and the condition that F0 should be constant.
Recalling that φ is functionally dependent on A, (5.3.6), these two equations can be written as

∂Aφ = 5− 2x2 +
8x(x2 − 1)

4x− F0eA+φ
, (5.3.13a)

∂Ax = 2(x2 − 1)
xeA+φF0 + 4

4x− F0eA+φ
. (5.3.13b)

We thus have reduced the existence of a supersymmetric solution of the form AdS7 ×M3

in IIA to solving the system of ODEs (5.3.13). It might look slightly unsettling that we are
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essentially using at this point A as a coordinate, which might not always be a wise choice (since
A might not be monotonic). For that matter, our analysis has so far been completely local; we
will start looking at global issues in section 5.3.4, and especially 5.3.6.

Unfortunately we have not been able to find analytic solutions to (5.3.13), other than in
the F0 = 0 case (which we will see in section 5.4.1). For the more interesting F0 6= 0 case,
we can gain some intuition by noticing that the system becomes autonomous (i.e. it no longer
has explicit dependence on the “time” variable A) if one defines φ̃ ≡ φ + A. The system for
{∂Aφ̃, ∂Ax} can now be thought of as a vector field in two dimensions; we plot it in figure 5.1.

-4 -2 0

-1

0

1

-4 -2 0

-1

0

1

x

Φ
�

=A+Φ

Figure 5.1: A plot of the vector field induced by (5.3.13) on {φ̃ ≡ φ + A, x}, for F0 = 40/2π
(in agreement with flux quantization, (5.3.37) below). The green circle represents the point
{φ + A = log(4/F0), x = 1}, whose role will become apparent in section 5.3.7. The dashed
line represents the locus along which the denominators in (5.3.13) vanish.

We will study the system (5.3.13) numerically in section 5.4. Before we do that, we should
understand what boundary conditions we should impose. We will achieve this by analyzing
global issues about our set-up, that we have so far ignored.

5.3.4 Metric

The metric

ds2
M3

= eaea (5.3.14)
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following from (5.3.2) looks quite complicated. However, it simplifies enormously if we rewrite
it in terms of β in (5.3.8):9

ds2
M3

= e2A(1− x2)

[
16

(4x− eA+φF0)2
dA2 +

1

16
ds2

S2

]
, ds2

S2 = dβ2 + sin2(β)dθ2
2 .

(5.3.15)
Without any Ansatz, the metric has taken the form of a fibration of a round S2, with coordi-
nates {β, θ2}, over an interval with coordinate A. Notice that none of the scalars appearing in
(5.3.15) (and indeed in the fluxes (5.3.7), (5.3.9), (5.3.11)) were originally intended as coor-
dinates, but rather as functions in the parameterization of the pure spinors ψ1,2. Usually, one
would then need to introduce coordinates independently, and to make an Ansatz about how
all functions should depend on those coordinates, sometimes imposing the presence of some
particular isometry group in the process.

Here, on the other hand, the functions we have introduced are suggesting themselves as
coordinates to us rather automatically. Since so far our expressions for the metric and fluxes
were local, we are free to take their suggestion. We will take β to be in the range [0, π], and θ2

to be periodic with period 2π, so that together they describe an S2 as suggested by (5.3.15), and
also by the two-form (5.3.10) that appeared in (5.3.9), (5.3.11).10

It is not hard to understand why this S2 has emerged. The holographic dual of any solutions
we might find is a (1, 0) CFT in six dimensions. Such a theory would have SU(2) R-symmetry;
an SU(2) isometry group should then appear naturally on the gravity side as well. This is what
we are seeing in (5.3.15).

The fact that the S2 in (5.3.15) is rotated by R-symmetry also helps to explain a possible
puzzle about IIB. Often, given a IIA solution, one can produce a IIB one via T-duality along an
isometry. All the Killing vectors of the S2 in (5.3.15) vanish in two points; T-dualizing along
any such direction would produce a non-compact solution in IIB, but still a valid one. But the
IIB case died very quickly in section 5.3.1; there are no solutions, not even non-compact or
singular ones. Here is how this puzzle is resolved. Since the SU(2) isometry group of the S2 is
an R-symmetry, supercharges transform as a doublet under it (we will see this more explicitly in
section 5.3.5). Thus even the strange IIB geometry produced by T-duality along a U(1) isometry
of S2 would not be supersymmetric.

Even though we have promoted β and θ2 to coordinates, it is hard to do the same for A,
which actually enters in the seven-dimensional metric (see (5.1.6)). We would like to be able to
cover cases whereA is non-monotonic. One possibility would be to useA as a coordinate piece-
wise. We find it clearer, however, to introduce a coordinate r defined by dr = 4eA

√
1−x2

4x−eA+φF0
dA,

so that the metric now reads

ds2
M3

= dr2 +
1

16
e2A(1− x2)ds2

S2 . (5.3.16)

9In fact, the definition of β was originally found by trying to understand the global properties of the metric
(5.3.14). Looking at a slice x =const, one finds that the metric in {θ1, θ2} has constant positive curvature; the
definition of β becomes then natural. Nontrivially, this definition also gets rid of non-diagonal terms of the type
dAdθ1 that would arise from (5.3.2).

10A slight variation is to take RP2 = S2/Z2 instead of S2; this will not play much of a role in what follows,
except for some solutions with O6-planes that we will mention in sections 5.4.1 and 5.4.2.
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In other words, r measures the distance along the base of the S2 fibration. Now A, x and φ have
become functions of r. From (5.3.13) and the definition of r we have

∂rφ =
1

4

e−A√
1− x2

(12x+ (2x2 − 5)F0e
A+φ) ,

∂rx = −1

2
e−A
√

1− x2(4 + xF0e
A+φ) ,

∂rA =
1

4

e−A√
1− x2

(4x− F0e
A+φ) .

(5.3.17)

We have introduced a square root in the system, but notice that −1 ≤ x ≤ 1 already follows
from requiring that ds2

M3
in (5.3.15) has positive signature. (We choose the positive branch of

the square root.)
Let us also record here that the NS three-form also simplifies in the coordinates introduced

in this section:
H = −(6e−A + xF0e

φ)vol3 , (5.3.18)

where vol3 is the volume form of the metric ds2
M3

in (5.3.16) or (5.3.15).
We have obtained so far that the metric is the fibration of an S2 (with coordinates (β, θ2))

over a one-dimensional space. The SU(2) isometry group of the S2 is to be identified holograph-
ically with the R-symmetry group of the (1, 0)-superconformal dual theory. For holographic
applications, we would actually like to know whether the total space of the S2-fibration can be
made compact. We will look at this issue in section 5.3.6. Right now, however, we would like
to take a small detour and see a little more clearly how the R-symmetry SU(2) emerges in the
pure spinors ψ1,2.

5.3.5 SU(2)-covariance

We have just seen that the metric takes the particularly simple form (5.3.16) in coordinates
(r, β, θ2); the appearance of the S2 is related to the SU(2) R-symmetry group of the (1, 0)
holographic dual.

Since these coordinates are so successful with the metric, let us see whether they also sim-
plify the pure spinors ψ1,2. We can start by the zero-form parts of (5.2.14), which read

ψ1
0 = ix+

√
1− x2 cos(β) , ψ2

0 =
√

1− x2 sin(β)eiθ2 . (5.3.19)

Recalling that (β, θ2) are the polar coordinates on the S2 (see the expression of ds2
S2 in (5.3.15)),

we recognize in (5.3.19) the appearance of the ` = 1 spherical harmonics

yα = {sin(β) cos(θ2), sin(β) sin(θ2), cos(β)} . (5.3.20)

Notice that y3 appears in ψ1 = χ1⊗χ†2, while y1 + iy2 appears in ψ2 = χ1⊗χc †2 . This suggests
that we introduce a 2×2 matrix of bispinors. From (C.1.4) we see that for IIA

(
χ1

χc1

)
and

(
χ2

−χc2

)
are both SU(2) doublets, so that it is natural to define

Ψ =

(
χ1

χc1

)
⊗ (χ†2 ,−χ

c †
2 ) =

(
ψ1 ψ2

(−)deg(ψ2)∗ −(−)deg(ψ1)∗

)
, (5.3.21)
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where (−)deg acts as ± on a even (odd) form. The even-form part can then be written as

Ψab
+ = iImψ1

+ Id2 +
(
Reψ2

+σ1 − Imψ2
+σ2 + Reψ1

+σ3

)
, (5.3.22a)

where σα are the Pauli matrices while the odd-form part is

Ψab
− = Reψ1

− Id2 + i
(
Imψ2

−σ1 + Reψ2
−σ2 + Imψ1

−σ3

)
. (5.3.22b)

(5.3.22) shows more explicitly how the R-symmetry SU(2) acts on the bispinors Ψab, which
split between a singlet and a triplet. If we go back to our original system (5.1.11), we see that
(5.1.11a), (5.1.11d), (5.1.11e) each behave as a singlet, while (5.1.11b), (5.1.11c) behave as a
triplet — thanks also to the fact that the factor e5A−φ appears in both those equations.

More concretely, (5.3.19) can now be written as

Ψab
0 = ix Id2 +

√
1− x2 yασα ; (5.3.23a)

the one-form part reads

Ψab
1 =

√
1− x2dr Id2 + i

[
xyαdr +

1

4
eA
√

1− x2 dyα
]
σα . (5.3.23b)

The rest of Ψab can be determined by (5.2.2): Ψab
3 = −i ∗3 Ψab

0 = −iΨab
0 vol3, Ψab

2 = −i ∗3 Ψab
1 .

(The three-dimensional Hodge star can be easily computed from (5.3.16).)
We will now turn to the global analysis of the metric (5.3.16).

5.3.6 Topology

We now wonder whether the S2 fibration in (5.3.15) can be made compact.
One possible strategy would be for r to be periodically identified, so that the topology of

M3 would become S1 × S2. This is actually impossible: from (5.3.17) we have

∂r(xe
3A−φ) = −2

√
1− x2e2A−φ ≤ 0 . (5.3.24)

This can also be derived quickly from (5.1.11a) using the singlet part of (5.3.23). Now, xe3A−φ is
continuous;11 for r to be periodically identified, xe3A−φ should be a periodic function. However,
thanks to (5.3.24), it is nowhere-increasing. It also cannot be constant, since x would be ±1 for
all r, which makes the metric in (5.3.15) vanish. Thus r cannot be periodically identified.

We then have to look for another way to make M3 compact. The only other possibility is in
fact to shrink the S2 at two values of r, which we will call rN and rS; the topology of M3 would
then be S3. The subscripts stand for “north” and “south”; we can visualize these two points as
the two poles of the S3, and the other, non-shrunk copies of S2 over any r ∈ (rN, rS) to be the
“parallels” of the S3. Of course, since (5.3.17) does not depend on r, we can assume without
any loss of generality that rN = 0.

We will now analyze this latter possibility in detail.
11This might not be fully obvious in presence of D8-branes, but we will see later that it is true even in that case,

basically because φ is a physical field, and A and x appear as coefficients in the metric.
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5.3.7 Local analysis around poles

We have just suggested to make M3 compact by having the S2 fiber over an interval [rN, rS],
and by shrinking it at the two extrema. In this case M3 would be homeomorphic to S3.

To realize this idea, from (5.3.16) we see that x should go to 1 or −1 at the two poles rN

and rS. To make up for the vanishing of the
√

1− x2’s in the denominators in (5.3.17), we
should also make the numerators vanish. This is accomplished by having eA+φ = ±4/F0 at
those two poles (which is obviously only possible when F0 6= 0). We can now also see that
∂rx ∼ −4e−A

√
1− x2 ≤ 0 around the poles. Since, as we noticed earlier, −1 ≤ x ≤ 1, x

should actually be 1 at rN, and −1 at rS. Summing up:{
x = 1, eA+φ =

4

F0

}
at r = rN ,

{
x = −1, eA+φ = − 4

F0

}
at r = rS . (5.3.25)

Since we made both numerators and denominators in (5.3.17) vanish at the poles, we should
be careful about what happens in the vicinity of those points. We want to study the system
around the boundary conditions (5.3.25) in a power-series approach. (The same could also be
done directly with (5.3.13).) Let us first expand around rN. As mentioned earlier, thanks to
translational invariance in r we can assume rN = 0 without any loss of generality. We get

φ = −A+
0 + log

(
4

F0

)
− 5e−2A+

0 r2 +
172

9
e−4A+

0 r4 +O(r)6 ,

x = 1− 8e−2A+
0 r2 +

400

9
e−4A+

0 r4 +O(r)6 ,

A = A+
0 −

1

3
e−2A+

0 r2 − 4

27
e−4A+

0 r4 +O(r)6 .

(5.3.26)

A+
0 here is a free parameter. The way it appears in (5.3.26) is explained by noticing that (5.3.17)

is symmetric under

A→ A+ ∆A , φ→ φ−∆A , x→ x , r → e∆Ar . (5.3.27)

Applying (5.3.26) to (5.3.16), and setting for a moment rN = 0, we find that the metric has
the leading behavior

ds2
M3

= dr2 + r2ds2
S2 +O(r)4 = ds2

R3 +O(r)4 . (5.3.28)

This means that the metric is regular around r = rN. The expansion of the fluxes (5.3.9),
(5.3.11) is

F2 = −10

3
F0e

−A+
0 r3volS2 +O(r)5 , H = −10e−A

+
0 r2dr ∧ volS2 +O(r)3 . (5.3.29)

As for the B field, recall that it can be written as in (5.3.12). (5.3.29) shows that around r =
rN = 0, the term F2/F0 is regular as it is, without the addition of b; this suggests that one should
set b = 0. To make this more precise, consider the limit

lim
r→0

∫
∆r

H = lim
r→0

∫
S2
r

B2 (5.3.30)
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where ∆r is a three-dimensional ball such that ∂∆r = S2
r . In (5.3.12), the first term goes to

zero because x → 1; so the limit is equal to
∫
S2 b, which is constant. This constant signals a

delta in H . So we are forced to conclude that

b = 0 (5.3.31)

near the pole. (However, we will see in section 5.3.8 that b can become non-zero if one crosses
a D8 while going away from the pole.)

To be more precise, (5.3.31) should be understood up to gauge transformations. B is not a
two-form, but a ‘connection on a gerbe’, in the sense that it transforms non-trivially on chart
intersections: on U ∩ U ′, BU − BU ′ can be a ‘small’ gauge transformation dλ, for λ a 1-form,
or more generally a ‘large’ gauge transformation, namely a two-form whose periods are integer
multiples of 4π2. In our case, if we cover S3 with two patches UN and US, around the equator
we can have BN − BS = NπvolS2 . In this case

∫
S3 H = BN − BS = NπvolS2 = (4π2)N ,

in agreement with flux quantization for H . Thus b = 0 is also gauge equivalent to any integer
multiple of πvolS2 . In practice, however, we will prefer to work with b = 0 around the poles,
and perform a gauge transformation whenever

b̂(r) ≡ 1

4π

∫
S2
r

B2 (5.3.32)

gets outside the “fundamental region” [0, π]. In other words, we will consider b̂ to be a variable
with values in [0, π], and let it begin and end at 0 at the two poles. b̂ will then wind an integer
number N of times around [0, π], and this will make sure that

∫
S3 H = (4π2)N , thus taking

care of flux quantization for H .
So far we have discussed the expansion around the north pole; a similar discussion holds for

the expansion around the south pole rS. The expressions that replace (5.3.26), (5.3.28), (5.3.29)
can be obtained by using the symmetry of (5.3.17) under

x→ −x , F0 → −F0 , r → −r . (5.3.33)

The free parameter A+
0 can now be changed to a possibly different free parameter A−0 .

We have hence checked that the boundary conditions (5.3.25) are compatible with our sys-
tem (5.3.17), and that they give rise to a regular metric at the poles.

5.3.8 D8

There is one more ingredient that we will need in section 5.4 to exhibit compact solutions:
brane sources. In presence of branes the metric cannot be called regular: their gravitational
backreaction will give rise to a singularity. A random singularity would call into question
the validity of a solution, since the curvature and possibly the dilaton12 would diverge there,

12In presence of Romans mass, the string coupling is bounded by the inverse radius of curvature in string units:
eφ ∼<

ls
Rcurv

, and is actually generically of the order of the bound [137].
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making the supergravity approximation untrustworthy. We are however sure of the existence
of D-branes, in spite of the singularities in their geometry, because we have an open string
realization for them.

D8-branes in particular are even more benign, in a way, because the singularity manifests
itself simply as a discontinuity in the derivatives of the coefficients in the metric. In general
relativity, such a discontinuity would be subject to the so-called Israel junction conditions [138],
which are a consequence of the Einstein equations. As we mentioned earlier, in our case,
however, supersymmetry guarantees that the equations of motion for the dilaton and metric
are automatically satisfied [34]. Hence, the conditions on the first derivatives will follow from
imposing continuity of the fields and supersymmetry.

Let us be more concrete. We will suppose we have a stack of nD8 D8-branes, possibly with a
worldvolume gauge field-strength f2 (not to be confused with the RR field-strength F2), which
induces a D6-brane charge distribution on it. The Bianchi identity for such an object reads

dHF =
1

2π
nD8e

Fδ ⇒ dF̃ =
1

2π
nD8e

2πf2δ (δ ≡ drδ(r)) . (5.3.34)

As usual F = B2 + 2πf2; recall from section 5.1.2 that F = F0 + F2; and likewise we have
defined

F̃ ≡ e−B2F = F0 + (F2 −B2F0) . (5.3.35)

In other words, F̃ = F0 + F̃2, with F̃2 = F2 − B2F0. Since F̃2 is closed away from sources, it
makes sense to define

n2 ≡
1

2π

∫
S2

F̃2 . (5.3.36)

Flux quantization then requires n2 to be an integer, and that

F0 =
n0

2π
, (5.3.37)

with n0 an integer. (We are working in string units where ls = 1.) Integrating now (5.3.34)
across the magnetized stack of D8’s gives

∆n0 = nD8 , ∆F̃2 = f2∆n0 . (5.3.38)

All physical fields should be continuous across the D8 stack. For example, ∆φ = 0. Also,
the coefficients of the metric should not jump; in particular, from (5.1.6), we see that ∆A = 0.
Also, since x appears in front of ds2

S2 in (5.3.16), we should have ∆x = 0.
Imposing that the B field does not jump is trickier. A first caveat is that B would actually

be allowed to jump by a gauge transformation, as discussed in section 5.3.7. However, we find
it less confusing to put the intersection between the charts UN and US away from the D8’s, and
to treat

∫
S2 B2 as a periodic variable as described in section 5.3.7.

Thus we will simply impose that B does not jump. First, recall that it can be written as in
(5.3.12), when F0 6= 0. The b term was shown in (5.3.31) to be vanishing near the pole, but we



110 5. All AdS7 solutions of type II supergravity

will soon see that this conclusion is not valid between D8’s. In fact, it is connected to the flux
integer n2 defined in (5.3.36): from (5.3.12) we have

F̃2 = −F0b ; (5.3.39)

integrating this on S2, we get 2πn2 = −F0

∫
S2 b, or in other words

b = − n2

2F0

volS2 . (5.3.40)

We can use our result (5.3.9) for F2; for this section, it will be convenient to define

p ≡ 1

16
x
√

1− x2e2A , q ≡ 1

4

√
1− x2eA−φ , (5.3.41)

so that
F2 = (pF0 − q)volS2 . (5.3.42)

From this and (5.3.40) we now have

B2 =

(
p− q

F0

− n2

2F0

)
volS2 . (5.3.43)

Let us call n0, n2 the flux integers on one side of the D8 stack, and n′0, n′2 the fluxes on the other
side. Let us at first assume that both n0 and n′0 are non-zero. Then, equating B on the two sides,
we see that p cancels out, and we get

1

n0

(
q +

1

2
n2

)
=

1

n′0

(
q +

1

2
n′2

)
, (5.3.44)

or in other words

q|r=rD8
=
n′2n0 − n2n

′
0

2(n′0 − n0)
, (5.3.45)

with q as defined in (5.3.41). Notice that, in (5.3.12), the term F2/F0 and b can both separately
jump, while the whole B2 is staying continuous. For this reason, as we anticipated in section
5.3.7, the conclusion b = 0 (which implies n2 = 0 by (5.3.40)) will hold near the poles, but
can cease to hold after one crosses a D8. (5.3.45) is also satisfying in that it is symmetric under
exchange {n0, n2} ↔ {n′0, n′2}. Notice also that, under a gauge transformation for the B field,
n2 → n2 + n0∆B, n′2 → n′2 + n′0∆B, and (5.3.45) remains unchanged.

A constraint on the discontinuity should also come from the F2 Bianchi identity (5.3.34).
Using (5.3.42), we see that the only discontinuities are coming from the jump in F0, so that we
get

dHF = ∆F0(1 + pvolS2)δ = ∆F0 e
pvolS2δ . (5.3.46)

Comparing this with (5.3.34) we see that F = pvolS2 . It also follows that

dF̃2 = ∆F0(−B2 + pvolS2)δ =
∆F0

F0

(
q +

1

2
n2

)
volS2 . (5.3.47)
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The expression on the right-hand side is not ambiguous thanks to (5.3.42). Comparing (5.3.47)
with (5.3.34) again, we see that f2 = 1

F0

(
q + n2

2

)
. Going back to (5.3.38), we learn that

∆n2

∆n0

=
1

n0

(
q +

1

2
n2

)
. (5.3.48)

This is actually nothing but (5.3.45) again.
(5.3.47) shows that our D8 is actually also charged under F2, and thus that it is actually a

D8/D6 bound state.
In fact, we should mention that it also acts as a source for H . This should not come as a

surprise: it comes from the fact that B appears in the DBI brane action. The simplest way to
see this phenomenon for us is to notice that H in (5.3.18) contains F0. Since F0 jumps across
the D8, so does H , and its equation of motion now gets corrected to

d(e7A−2φ ∗H)− e7AF0 ∗ F2 = −xe7A−φ∆F0δ . (5.3.49)

The localized term on the right hand side is exactly what one obtains by varying the DBI action
−
∫
S2 e

7A−φ
√

det(g + F): the variation for a single D8 is −e7A−φ F
det(g+F)

δ = −xe7A−φδ. This
was guaranteed to work: the equation of motion for H was shown in [33] to follow in general
from supersymmetry even in presence of sources. (The CS term

∫
CeF does not contribute, as

remarked below [33, (B.7)].)
Yet another check one could perform is whether the D8 source is now BPS — namely,

whether the supersymmetry variation induced on its worldvolume theory can be canceled by
an appropriate κ-symmetry transformation. This check is made simpler by the fact that brane
calibrations are actually the same forms that appear in the bulk supersymmetry conditions (as
first noticed in [134] for compactifications to four dimensions). In our case, we see from [112,
Table 1] that the appropriate calibration for a space-filling brane is e6A4−φReφ1

−; for our AdS7

case, we should pick in (5.1.9) its part along dρ. So our brane calibration is

e7A−φImψ1
+ . (5.3.50)

The condition that a single brane should be BPS boils down to demanding that the pull-back of
the form eF Imψ1

+ equal the generalized volume form
√

det(g + F) on the brane. Alternatively,
this is equivalent to demanding that the pullback on the brane of

eFReψ1
+ , eFψ2

+ (5.3.51)

vanish. We checked explicitly that this condition holds precisely if (5.3.45) does.
We should be a bit more careful, however, about what happens for multiple branes. In that

case, (5.3.51) become non-abelian, because they both contain the worldsheet field f2. Satisfying
this condition now requires F to be proportional to the identity, and this in turn requires that
the D6-brane charge ∆n2 should be an integer multiple of nD8 = ∆n0. In other words, a bunch
of D8-branes should be made of magnetized branes which all have the same induced D6-brane
charge.
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Finally, in our analysis so far we have left out the case where F0 is zero on one of the sides
of the D8 stack, say the right side, so that n′0 = 0. This time we cannot apply (5.3.43) on the
right side of the D8. An expression for B in this case will be given in (5.4.8) below. Imposing
continuity of B this time does not lead to (5.3.45), but to a different condition in terms of the
integration constants appearing in (5.4.8). However, the Bianchi identity for F2 can still be
applied on the left side of the D8, where F0 6= 0; this still leads to (5.3.45). In other words,
in this case we have (5.3.45) plus an extra condition imposing continuity of B. This will be
important in our example with two D8’s in section 5.4.3.

Let us summarize the results of this section. We have obtained that one can insert D8’s in
our set-up, provided their position rD8 is such that the condition (5.3.45) is satisfied. When F0

is non-zero on both sides of the D8, this ensures that the Bianchi for F2 is satisfied, and that B
is continuous. In the special case where F0 = 0 on one side, continuity of B has to be imposed
independently.

5.3.9 Summary of this section

Supersymmetric solutions of the form AdS7 ×M3 cannot exist in IIB. In IIA we have reduced
the problem to solving the system of ODEs (5.3.13) (or (5.3.17)). Given a solution to this
system, the flux is given by (5.3.7), (5.3.9) and (5.3.11), and the metric is given by (5.3.15) (or
(5.3.16)). This describes an S2 fibration over a segment; the space is compact if the S2 fiber
shrinks at the endpoints of the segment, giving a topologyM3 = S3. This imposes the boundary
conditions (5.3.25) on the system (5.3.17). D8-branes can be inserted along the S2, at values
r = rD8 that satisfy (5.3.45).

We now turn to a numerical study of the system, which will show that nontrivial solutions
do indeed exist.

5.4 Explicit solutions

We will now show some explicit AdS7×M3 solutions, by solving the system (5.3.17). We will
start in section 5.4.1 by looking briefly at the massless solution, which is in a sense unique; it
has a D6-brane and an anti-D6 at the two poles. In section 5.4.2 we will switch on Romans
mass, and we will obtain a solution with a D6 at one pole only. In section 5.4.3 we will then
obtain regular solutions with D8-branes.

5.4.1 Warm-up: review of the F0 = 0 solution

We will warm up by reviewing the solution one can get for F0 = 0.
As we remarked in section 5.3.1, in the massless case one can always lift to eleven-dimensional

supergravity, and there we can only have AdS7×S4 (or an orbifold thereof). The metric simply
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reads

ds2
11 = R2

(
ds2

AdS7
+

1

4
ds2

S4

)
, (5.4.1)

being R an overall radius. Let us now have a look at how this reduces to IIA. It is not obvious
whether the reduction will preserve any supersymmetry; but, as we will now see, this can be
arranged.

To reduce, we have to choose an isometry. Since S4 has Euler characteristic χ = 2, like any
even-dimensional sphere, any vector field has at least two zeros, and so our reduction will have
at least two points where the dilaton goes to zero; we expect some other strange feature at those
two points, and as we will see this expectation is borne out.

How should we choose the isometry? We can think about U(1) isometries on Sd as rotations
in Rd+1. The infinitesimal generator v is an element of the Lie algebra so(d + 1), namely
an antisymmetric (d + 1) × (d + 1) matrix v. Moreover, two such elements vi that can be
related by conjugation, v1 = Ov2O

t, for O ∈ SO(d + 1), can be thought of as equivalent. Any
antisymmetric matrix can be put in a canonical block-diagonal form where every block is of the
form ( 0 a

−a 0 ), with a an angle. For even d, this implies that there is at least one zero eigenvalue,
which corresponds to the fact that there is no vector field without zeros on the sphere. For d = 4,
we have two angles a1 and a2. Our solution can be reduced along any of these vector fields, but
we also want the reduction to preserve some supersymmetry. The infinitesimal spinorial action
of the vector field we just described is proportional to a1γ12 + a2γ34. If we demand that this
matrix annihilates at least one spinor χ (so that, at the finite level, χ is kept invariant), we get
either a1 = a2 or a1 = −a2.

To make things more concrete, let us introduce a coordinate system on S4 adapted to the
isometry we just found:

ds2
S4 = dα2 + sin2(α)ds2

S3 = dα2 + sin2(α)

(
1

4
ds2

S2 + (dy + C1)2

)
, dC1 =

1

2
volS2

(5.4.2)
with α ∈ [0, π]. We have written the S3 metric as a Hopf fibration over S2; the 1/4 is introduced
so that all spheres have unitary radius. The reduction will now proceed along the vector

∂y . (5.4.3)

We can actually generalize this a bit by considering the orbifold S4/Zk, where Zk is taken to be
a subgroup of the U(1) generated by ∂y. This is equivalent to multiplying the (dy + C1)2 term
in (5.4.2) by 1

k2
.

We can now reduce the eleven-dimensional metric (5.4.1), quotiented by the Zk we just
mentioned, using the string-frame reduction ds2

11 = e−
2
3
φds2

10 + e
4
3
φ(dy + C1)2. We obtain a

metric of the form (5.1.6), with

e2A = R2e
2
3
φ =

R3

2k
sin(α) , ds2

M3
=
R3

8k
sin(α)

(
dα2 +

1

4
sin2(α)ds2

S2

)
. (5.4.4)

We could now also reduce the Killing spinors on S4, which are given in appendix C.2 in our
coordinates. There are indeed two of them which can be reduced, confirming our earlier argu-
ments. This would allow us to compute directly the ψ1,2. We will instead proceed by using the
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equations we derived in section 5.3. It is actually more convenient, in this case, to work directly
with the system (5.3.13), that can be more easily solved explicitly:

x =
√

1− e4(A−A0) , φ = 3A− φ0 (5.4.5)

where A0 and φ0 are two integration constants. This can be seen to be the same as (5.4.4) by
taking

x = cos(α) , A0 =
1

2
log

(
R3

2k

)
, φ0 = 3 logR . (5.4.6)

The fluxes can now be computed from (5.3.9) and (5.3.11):

F2 = −1

2
kvolS2 , H = − 3

32

R3

k
sin3(α)dα ∧ volS2 ; (5.4.7)

the B field then can be written as

B2 =
3

32

R3

k

(
x− x3

3

)
volS2 + b (5.4.8)

where again b is a closed two-form. The simple result for F2 in (5.4.7) could be expected from
the fact that the metric (5.4.2) is an S1 fibration over S2 with Chern class c1 = −k.

However, (5.4.4) might appear problematic for two reasons. First of all, the warping func-
tion goes to zero at the two poles α = 0, α = π.13 Second, ds2

M3
would be singular at the poles

even if it were not multiplied by an overall factor e2A = R3

2k
sin(α), because of the 1/4 in front

of ds2
S2 . Indeed, when we expand it around, say, α = 0, we find dα2 + α2

4
ds2

S2; this would be
regular without the 1/4, but as it stands it has a conical singularity.

However, these singularities at the poles have the behavior one expects near a D6. Near the
north pole α = 0, ds2

M3
in (5.4.4) looks like ds2

M3
∼ α

(
dα2 + 1

4
α2ds2

S2

)
. In terms of the r

variable we used in (5.3.16), this looks like

ds2
M3
∼ dr2 +

(
3

4
r

)2

ds2
S2 . (5.4.9)

Near the ordinary flat-space D6-brane metric, ds2
M3
∼ ρ−1/2(dρ2 + ρ2ds2

S2), which also looks
like (5.4.9) with r = 4

3
ρ3/4.

The presence of D6’s could actually be inferred more directly. First of all, we know that
D6-branes result from loci where the size of the eleventh dimension goes to zero; this indeed
happens at the two poles. Moreover, from the expression of F2 in (5.4.7), the integral of F2 over
the S2 is constant and equal to −2πk. We can take the S2 close to the north or the south pole,
where it signals the presence of D6-brane charge. More precisely, there are k anti-D6-branes at
the north pole and k D6-branes at the south pole.

13The warping function also goes to zero at the equator of the AdS6×S4 solution [99], recently shown [109] to
be the only AdS6 solution in massive IIA. This solution can also be T-dualized, without breaking supersymmetry,
both using its non-abelian and the more usual abelian isometries [104], differently from what we saw for AdS7 in
section 5.3.4.
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One crucial difference with the usual D6 behavior, however, is the presence of the NS three-
form H . From (5.4.7) we see that it does not vanish near the D6. Rather, it diverges: near the
anti-D6 at r = rN = 0,14

H ∼ r−1/3vol3 . (5.4.10)

This can also be inferred directly from eleven-dimensional supergravity, using the reduction
formula G4 = eφ/3H ∧ e11. Since φ ∼ r, the three-form energy density diverges as e−2φH2 ∼
(rN − r)−8/3. We should remember, in any case, that this solution is non-singular in eleven
dimensions; the diverging behavior in (5.4.10) is cured by M-theory, just like the divergence of
the curvature of (5.4.9) is.

The simultaneous presence of D6’s and anti-D6’s in a BPS solution might look unsettling at
first, since in flat space they cannot be BPS together. It is true that the conditions imposed on
the supersymmetry parameters εi by a D6 and by an anti-D6 brane are incompatible. But in flat
space the εi are constant, while in our present case they are not. The condition changes from
the north pole to the south pole; so much so that an anti-D6 is BPS at the north pole, and a D6
is BPS at the south pole. Although we have not been working explicitly with spinors, but rather
with forms, we can see this by performing a brane probe analysis in the language of calibrations,
as we did for D8-branes at the end of section 5.3.8. The relevant polyform is again (5.3.50); for
a D6 we should use its zero-form part, which from (5.2.14) is simply cos(θ1) sin(ψ) = x. For a
D6 or anti-D6, this should be equal to plus or minus the internal volume form of the D6, which
is ±1; this happens precisely at the north and south pole.

In figure 5.2 we show some parameters for the solution as a function of the r defined in
(5.3.16), for uniformity with latter cases. We also show the radius of the transverse sphere,
which near the poles has the angular coefficient 3/4 of (5.4.9).

We have obtained this massless IIA solution by reducing the M-theory solution AdS7 ×
S4/Zk, but other orbifolds would be possible as well. One could for example have quotiented
by the D̂k−2 groups, which would have resulted in IIA in an orientifold by the action of the
antipodal map on the S2. The transverse S2 would have been replaced by an RP2; at the poles
we would have had O6’s together with the k D6’s/anti-D6’s of the Ak case.

We will see in section 5.4.3 solutions with F0 6= 0 and without any D6-branes. But we will
at first try in the next subsection to introduce F0 without any D8-branes.

5.4.2 Massive solution without D8-branes

In section 5.4.1 we reviewed the only solution for F0 = 0, related to AdS7×S4 by dimensional
reduction; it has a D6 and an anti-D6 at the poles of M3

∼= S3.
We now start looking at what happens in presence of a non-zero Romans mass, F0 6= 0. We

saw in section 5.3.7 that in this case it is possible for the poles to be regular points. It remains to
be seen whether those boundary conditions can be joined by a solution of the system (5.3.17).

14It is interesting to ask what happens in the Minkowski limit. From (5.3.18) we see that H = −6e−Avol3;
taking R→∞, e−A tends to zero except than in a region α� R−1/3, which gets smaller and smaller in the limit.
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Figure 5.2: Massless solution in IIA. We show here the radius of the S2 (orange), the warping
factor e2A (black; multiplied by a factor 1/20), and the string coupling eφ (green; multiplied by
a factor 5). We see that the warping goes to zero at the two poles. The angular coefficient of
the orange line can be seen to be 3/4 as in (5.4.9). The two singularities are due to k D6 and k
anti-D6 (in this picture, k = 20).

We can for example impose the boundary condition (5.3.25) at r = rN, and evolve numer-
ically towards positive r using (5.3.17). The procedure is standard: we use the approximate
power-series solution (5.3.26) from r = rN = 0 to a very small r, and then use the values of
A, φ, x thus found as boundary conditions for a numerical evolution of (5.3.17). One example
of solution is shown in figure 5.3(a). It stops at a finite value of r, where it resembles there the
south pole behavior of the massless case in figure 5.2; for example, eA goes to zero at the right
extremum.

This is actually easy to understand already from the system, both in (5.3.13) and in (5.3.17).
As A and φ get negative, they suppress the terms containing F0, and the system tends to the one
for the massless case.

An alternative, and perhaps more intuitive, understanding can be found using the form
(5.3.13) of the system, which we drew in figure 5.1 as a vector field flow on the space {A+φ, x}.
The green circle in that figure represents the point {A + φ = log(4/F0), x = 1}, which is the
appropriate boundary condition for the north pole in (5.3.25). In that figure the ‘time’ variable
is A. From (5.3.26), we see that A has a local maximum at r = rN. So the stream in figure
5.1 has to be followed backwards, starting from the green circle at the top. We can see that
the integral curve asymptotically approaches x = −1, but does not get there in finite ‘time’;
in other words, A → −∞. The flow corresponding to the solution in figure 5.3(a) is shown in
figure 5.3(b).

In the massless case, we saw in section 5.4.1 that the singularities at the poles are actually
D6-branes. In this case too we have D6’s at the south pole. This is confirmed by considering
the integral of F2 along a sphere S2 in the limit where it reaches the south pole: it gives a non-
zero number. By tuning A+

0 , this can be arranged to be 2π times an integer k, where k is the
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Figure 5.3: Solution for F0 = 40/2π. We imposed regularity at the north pole, and evolved
towards positive r. In (a) we again plot the radius of the S2 (orange), the warping factor e2A

(black; multiplied by a factor 1/20), and the string coupling eφ (green; multiplied by a factor
5). With increasing r, the plot gets more and more similar to the one for the massless case in
figure 5.2. There is a stack of D6’s at the south pole (in this picture, k = 112 of them), as in
the massless case, although this time it also has a diverging NS three-form H . Notice that the
size of the S2 goes linearly near both poles, but with angular coefficients 1 near the north pole
(appropriate for a regular point) and 3/4 for the south pole (appropriate for a D6, as seen in
(5.4.9)). In (b), we see the path described by the solution in the {A + φ, x} plane, overlaid to
the vector field shown in figure 5.1.

number of D6-branes at the south pole. The presence of these D6-branes without any anti-D6
is not incompatible with the Bianchi identity dF2 − HF0 = kδD6, because integrating it gives
−F0

∫
H = k. In other words, the flux lines of the D6’s are absorbed by H-flux, as is often the

case for flux compactifications. Notice also that these D6’s are calibrated; the computation runs
along similar lines as the one we presented for the massless solution in section 5.4.1.

To be more precise, the singularity is not the usual D6 singularity, in that there is also a NS
three-form H diverging as in (5.4.10). This is consistent with the prediction in [139, Eq. (4.15)]
(given there in Einstein frame), and in general with the analysis of [140–142], which found that
it is problematic to have ordinary D6-brane behavior in a massive AdS7 × S3 set-up precisely
like the one we are considering here. (In the language of [140], the parameter α of our solution
goes to a negative constant; this enables the solution to exist and to evade the global no-go they
found, but at the cost of the diverging H in (5.4.10), [139, Eq. (4.15)].) More precisely, the
asymptotic behavior we find is the one discovered in [141, Eq. (3.4)].

Thus the singularity at the south pole in figure 5.3 is the same we found in the massless
case we saw in section 5.4.1. In that case, the singularity is cured by M-theory. In the present
case, the non-vanishing Romans mass prevents us from doing that. However, we still think it
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should be interpreted as the appropriate response to a D6; for this reason we think it is a physical
solution.

So far we have examined what happens when we impose that the north pole is regular. It is
also possible to have a D6 and anti-D6 singularity at both poles, as in the previous section, or an
O6 at one of the poles (keeping D6’s at the other pole). Roughly speaking, this corresponds to a
trajectory similar to the one in figure 5.3(b), in which one “misses” the green circle to the left or
to the right, respectively. As we have seen, the D6 solution is very similar to the massless one.
The O6 solutions also turn out to be very similar to their massless counterpart:15 near the pole,
their asymptotics is eA ∼ r−1/5, eφ ∼ r−3/5, x ∼ 1 − r4/5. This leads to the same asymptotics
for the metric as in the massless O6 solution near the critical radius ρ0 = gsls. Once again,
however, in the massive case we have a diverging NS three-form; this time H ∼ r−3/5vol3.
Finally, in such a case the S2 is replaced by an RP2 because of the orientifold action.

5.4.3 Regular massive solution with D8-branes

We will now examine what happens in presence of D8-branes.
The first possibility that comes to mind is to put all of them together in a single stack. The

idea is the following. We once again use the power-series expansion (5.3.26) from r = rN = 0
to a small r, and use the resulting values of A, φ and x as boundary conditions for a numerical
evolution of (5.3.17). This time, however, we should stop the evolution at a value of r where
(5.3.45) is satisfied. At this point F0 will change, and (5.3.17) will change as well. Generically,
the evolution on the other side of the D8 will lead to a D6 or an O6 singularity, as discussed
in section 5.4.2. However, if F0 is negative, according to (5.3.25), the point {x = −1, eA+φ =
− 4
F0
} leads to a regular South Pole. Fortunately, our solution still has a free parameter, namely

A+
0 = A(rN). By fine-tuning this parameter, we can try to reach {x = −1, eA+φ = − 4

F0
} and

obtain a regular solution.
Alternatively, after stopping the evolution from the North Pole to the D8, one can look for

a similar solution starting from the South Pole, and then match the two — in the sense that one
should make sure that A, φ, and x are continuous. One combination of them, namely q, will
already match by construction. It is then enough to match two variables, say A and x; this can
be done by adjusting A+

0 and A−0 .
Naively, however, we face a problem when we try to choose the flux parameters on the two

sides of the D8’s. We concluded in (5.3.31) that near the poles we should have b = 0; this seems
to imply, via (5.3.40), that n2 = 0 on both sides of the D8. (5.3.45) would then lead to q = 0 on
the D8, which can only be true at the poles x = ±1.

This confusion is easily cleared once we remember that B can undergo a large gauge trans-
formation that shifts it by kπvolS2 , as we explained towards the end of section 5.3.7. We saw
there that we can keep track of this by introducing the variable b̂ in (5.3.32). We now simply
have to make sure that b̂ winds an integer amount of times N around the fundamental domain

15In the different set-up of [143], an O6 in presence of F0 gets modified in such a way that its singularity
disappears. This does not happen here.
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[0, π]; this can be interpreted as the presence of N large gauge transformations, or as the pres-
ence of a non-zero quantized flux N = 1

4π2

∫
H .

We still face one last apparent problem. It might seem that making sure that b̂ winds an
integer amount of times requires a further fine-tuning on the solution; this we cannot afford,
since we have already used both our free parameters A±0 to make sure all the variables are
continuous, and that the poles are regular.

Fortunately, such an extra fine-tuning is in fact not necessary. Let us call (n0, n2) the flux
parameters before the D8, and (n′0, n

′
2) after it. For simplicity let us also assume n′2 = 0, so

that no large gauge transformations are needed on that side. As we remarked at the end of
section 5.3.8, ∆n2 = n′2 − n2 = −n2 should be an integer multiple of ∆n0 = n′0 − n0 = nD8:
∆n2 = µ∆n0, µ ∈ Z. To take care of flux quantization, it is enough to also demand that
n2 = Nn0 for N integer. Indeed, from (5.3.37), (5.3.40), (5.3.32), we see that in that case
at the North Pole we get b̂ = −πN ; since this is an integer multiple of π, it can be brought to
zero by using large gauge transformations. Together, the conditions we have imposed determine
n′0 = n0

(
1− N

µ

)
.

All this gives a strategy to obtain solutions with one D8 stack. We show one concrete
example in figure 5.4. One might find it intuitively strange that the D8-branes are not “slipping”
towards the South Pole. The branes back-react on the geometry, bending the S3, much as a
rubber band on a balloon. This by itself, however, would not be enough to prevent them from
slipping. Rather, we also have to take into account the Wess–Zumino term in the brane action.
This term, which takes into account the interaction of the branes with the flux, balances with
the gravitational DBI term to stabilize the D8’s. The formal check of this is that the branes
are calibrated, something we have already seen in section 5.3.8 (see discussion around (5.3.50),
(5.3.51)). The D8 stack is made of nD8 = 50 D8-branes; each of these D8’s has worldsheet
flux f2 such that

∫
S2 f2 = −2π, which means that it has an effective D6-brane charge equal to

−1. A single D8/D6 bound state probe with this charge is calibrated exactly at r = rD8, and
thus will not slip to the South Pole. The solution can perhaps be thought of as arising from
the one in figure 5.3 via some version of Myers’ effect. These solutions are consistent with
the analysis in [142, 144], or more recently in [145, 146], and they might give some evidence
on the polarization of D6-branes solutions into regular solution with D8-branes. See the list of
references in [140–142, 144–146] for polarization mechanisms in other set-ups like M-theory
or IIB.

We can also look for a configuration with two stacks of D8-branes, again with regular poles.
The easiest thing to attempt is a symmetric configuration where the two stacks have the same
number of D8’s, with opposite D6 charge. As for the solution with one D8, (5.3.25) implies
F0 at the north pole and negative F0 at the south pole. For our symmetric configuration, these
two values will be opposite, and there will be a central region between the two D8 stacks where
F0 = 0.

We show one such solution in figure 5.5. As for the previous solution with one D8, we have
started from the North Pole and South Pole; now, however, we did not try to match these two
solutions directly, but we inserted a massless region in between. From the northern solutions,
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Figure 5.4: Regular solution with one D8 stack. Its position can be seen in the graph as the
value of r where the derivatives of the functions jump; it is fixed by (5.3.45). In (a) we again
plot the radius of the S2 (orange), the warping factor e2A (black; rescaled by a factor 1/20), and
the string coupling eφ. We also plot 1

π
b̂(r) = 1

4π2

∫
S2
r
B2 (dashed, light green); to guide the eye,

we have periodically identified it as described in section 5.3.7. (The apparent discontinuities are
an artifact of the identification.) The fact that it starts and ends at b̂ = 0 is in compliance with
flux quantization forH; we have 1

4π2

∫
H = −5. The flux parameters are {n0, n2} = {10,−50}

on the left (namely, near the north pole), {−40, 0} on the right (near the south pole). In (b), we
see the path described by the solution in the {A + φ, x} plane, overlaid to the relevant vector
field, that this time changes with n0.

again we found at which value of r = rD8 it satisfies (5.3.45). We then stopped the evolution of
the system there, evaluated A, φ, x at rD8, and used them as a boundary condition for the evolu-
tion of (5.3.17), now with F0 = 0. Now we matched this solution to the southern one; namely,
we found at which values of r = rD8′ their A, φ and x matched. This requires translating the
southern solution in r by an appropriate amount, and picking A−0 = A+

0 . Given the symmetry
of our configuration, this is not surprising: the southern solution is related to the northern one
under (5.3.33). Moreover, matching a region with F0 6= 0 to the massless one means imposing
an extra condition, namely the continuity of B in rD8, as we mentioned at the end of 5.3.8.

The parameter A+
0 = A−0 = A0 would at this point be still free. However, one still has to

impose flux quantization for H . As we recalled above, this is equivalent to requiring that the
periodic variable b̂ starts and ends at zero. Unlike the case with one D8 above, this time we do
need a fine-tuning to achieve this, since the expression for B is not simply controlled by the
massive expression (5.3.43). Fortunately we can use the parameter A0 for this purpose. The
solution in the end has no moduli.

As for the solution with one D8 stack we saw earlier, in this case too the D8-branes are not
“slipping” towards the North and South Pole because of their interaction with the RR flux: each
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Figure 5.5: Regular solution with two D8 stacks. As in figure 5.4, their positions are the two
values of r where the derivatives of the functions jump. In (a) we again plot the radius of the
S2 (orange), the warping factor e2A (black; rescaled by a factor 1/20), and the string coupling
eφ (green; rescaled by a factor 5), and b̂ (as in figure 5.4; this time 1

4π2

∫
H = −3). The flux

parameters are: {n0, n2} = {40, 0} on the left (namely, near the north pole); {0,−40} in the
middle; {−40, 0} on the right (near the south pole). The region in the middle thus has F0 = 0;
it is indeed very similar to the massless case of figure 5.2. In (b), we see the path described
by the solution in the {A+ φ, x} plane, overlaid to the relevant vector field, that again changes
with n0.

of the two stacks is calibrated. In this case, intuitively this interaction can be understood as the
mutual electric attraction between the two D8 stacks, which indeed have opposite charge under
F2; the balance between this attraction and the “elastic” DBI term is what stabilizes the branes.

Let us also remark that for both solutions (the one with one D8 stack, and the one with two)
it is easy to make sure, by taking the flux integers to be large enough, that the curvature and the
string coupling eφ are as small as one wishes, so that we remain in the supergravity regime of
string theory. In figures 5.4 and 5.5 they are already rather small (moreover, in the figure we
use some rescalings for visualization purposes).

Thus we have found regular solutions, with one or two stacks of D8-branes. It is now
in principle possible to go on, and to add more D8’s. We have found examples with four D8
stacks, which we are not showing here. We expect that generalizations with an arbitrary number
of stacks should exist, especially if there is a link with the brane configurations in [124, 125].
Another possibility that might also be realized is having an O8-plane at the equator of the S3.
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5.5 Summary of the results and outlook

As in the previous chapter, we reduced the supersymmetric system of equation, given by the
vanishing of the supersymmetry variation, to a system of ODEs, by applying the same tech-
niques described in 4. All the fluxes are turned on and they backreact on the internal geometry.
We also show that in type IIB there are no solutions, whereas in massless type IIA we got
that the solution is the reduction of the known Freund-Rubin AdS7 × S4 (and its orbifolds)
background of eleven-dimensinal supergravity.

The main and new result is of this chapter is the complete and explicit classification of all
the AdS7 ×M3 solutions in type IIA. Especially the solutions in massive type IIA are new and
infinitely many and preserve 16 supercharges in seven dimensions. We reached this goal by
solving numerically the ODEs. We determined the fluxes and the metric. The topology of M3

is the same as a 3-sphere, which is explicitly given by a S2-fiberation over an interval. All the
functions, namely warping, dilaton and radius of the S2 depend on the interval coordinate r.
The S3 is not exactly round, but is distorted by space-time filling D6-branes/O6-planes at the
poles and/or by space-time filling D8-branes/D8-planes wrapping the S2 inside M3. Among all
the solutions, the subclass with only D8-branes is regular. All these backgrounds are gravity
dual to the 6d (1,0) sCFT, described in [125, 147, 148]. One subclass of these backgrounds
were previously locally studied in [139–142] in the context of stability of solutions with D6-
branes, which manifest a divergent near-brane behaviour of the energy density for the H-flux.
The global geometry, together with completely regular new solutions with D8-branes, suggest
that the singularity tend to be resolved by a polarization mechanisms of the D6-branes into the
D8’s [142, 144–146]. Our new results clarify several aspects of the backreaction of branes and
fluxes on the geometry of the vacuum solutions and the stability thereof.

It would be very interesting also to rigorously show the supersymmetry breaking of the nu-
merical solutions found in [144], which manifest a modulus that seems to break supersymmetry,
and to generalize them to regular non-supersymmetric solution with D8-branes. We would also
like to understand physically the supersymmetry breaking mechanism. Finally, starting from
our explicit solutions, it would be also nice to study the operator content of the 6d sCFT theo-
ries using the AdS/CFT dictionary.
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6.5.2 The Itsios–Núñez–Sfetsos–Thompson (INST) solution . . . . . . . . 144
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The study of supersymmetric conformal field theories (CFT) in four dimensions using holog-
raphy is by now a venerable subject. Their holographic duals are AdS5 solutions in either IIB
supergravity or M-theory. A comprehensive analysis of supersymmetric AdS5 solutions of IIB
supergravity was carried out in [119]; these include the Freund-Rubin compactifications and
the Pilch-Warner solution [149], see also [129, 150]. Analogous studies were performed for
N = 1 [155] and N = 2 [151] supersymmetric AdS5 backgrounds of M-theory, where new
analytic solutions were found. AdS5 solutions in M-theory usually have a higher-dimensional
origin: they are compactifications (“twisted” in a certain way) of CFT’s in six dimensions.
Actually this latter CFT is essentially always the (2, 0) theory living on the world-volume of
M5-branes, as in [152] (and in the more recent examples [153–155]).

In chapter 5 we have classified AdS7 solutions in type II supergravity. A new infinite class
of solutions was found in massive IIA: the internal space M3 is always topologically an S3,
but its shape is not round — rather, it is a fiberation of a round S2 over an interval.1 Both
D6’s and D8’s can be present (and, a bit more exotically, O6’s and O8’s). The CFT duals of
these solutions are (1, 0)-supersymmetric theories, which were argued in [147] to be the ones
obtained in [124, 125] from NS5-D6-D8 configurations (see also [156, 157] for earlier related
theories). A similar class of (1, 0) theories can be found in F-theory [148, 158].

This prompts the question of whether these (1, 0) theories, when compactified on a Rie-
mann surface, can also give rise to CFTs in four dimensions. If so, their duals should be AdS5

solutions in massive IIA.
In this chapter we classify AdS5 solutions of massive IIA, and we find many analytic ex-

amples. The new (and physically sensible) ones are in bijective correspondence with the AdS7

solutions and they have 8 real supercharges preserved in 5 dimensions; this strongly suggests
that their dual CFT4 are indeed twisted compactifications of the (1, 0) CFT6. The correspon-
dence is via a simple universal map, which was directly inspired by the map in [159] from AdS4

1This Ansatz was also considered in [139–141, 144], also in a non-supersymmetric setting.
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to AdS7 solutions. At the level of the metric it reads

e2A(ds2
AdS5

+ ds2
Σg) + dr2 + e2Av2ds2

S2 →√
4

3

(
4

3
e2Ads2

AdS7
+ dr2 +

v2

1 + 3v2
e2Ads2

S2

)
,

(6.0.1)

where A, v are functions of r and Σg is a Riemann surface of genus g ≥ 2. This map is so
simple that it also allows us to find analytic expressions for the AdS7 solutions. For example,
the simplest massive AdS5 solution has metric

ds2 =

√
3

4

n2

F0

(√
ỹ + 2 (ds2

AdS5
+ ds2

Σg) +
dỹ2

4(1− ỹ)
√
ỹ + 2

+
1

9

(1− ỹ)(ỹ + 2)3/2

2− ỹ
ds2

S2

)
(6.0.2)

with ỹ ∈ [−2, 1]. Its AdS7 “mother”, obtained via the map (6.0.1), reads on the other hand

ds2 =
n2

F0

(
4

3

√
ỹ + 2 ds2

AdS7
+

dỹ2

4(1− ỹ)
√
ỹ + 2

+
1

3

(1− ỹ)(ỹ + 2)3/2

8− 4ỹ − ỹ2
ds2

S2

)
. (6.0.3)

Both these solutions have a stack of n2 D6-branes at ỹ = 2, and are regular elsewhere. The D6’s
can also partially or totally be replaced by several D8-branes, much like in a Myers effect [160].
(In a way, these solutions realize the vision of [161].) Such more complicated solutions are
obtained by gluing together copies of (6.0.3), or sometimes also of a more complicated metric
that we will see later on.

We start our analysis in complete generality. We use the time-honored trick of reducing the
study of AdS5 solutions to that of Minkowski4 solutions whose internal space M6 has a conical
isometry. One can then use the general classification of [108], which uses generalized complex
geometry on M6. Due to the conical structure of M6, the “pure spinor equations” of [108]
become a certain new set of equations on M5. (The idea of applying the pure spinor equations
to AdS5 solutions in this way goes back to [129, 150], where it was applied to IIB solutions.) It
is immediately seen that the only possibility that leads to solutions is that of an SU(2) structure
on M6 (where the pure spinors are of so-called type 1 and type 2), which means in turn that
there is an identity structure on M5.

The practical consequence of this is that we can determine the metric on M5 in full gener-
ality. It is a fiberation of a three-dimensional fiber M3 over a two-dimensional space C. The
three-dimensional fiber also has a Killing vector, which is holographically dual to R-symmetry
on the field theory side. The fluxes are also fully determined. The independent functions (one
function a2 in the metric, the warping A, and the dilaton φ) have to satisfy a total of six PDEs.

The problem simplifies dramatically once we impose what we will call the “compactification
Ansatz”. This consists in imposing that: 1) The metric of C is conformally related to that of a
surface Σ, which does not depend on the coordinates of the three-dimensional space orthogonal
to C inside M5. The conformal factor is equal to the warping function e2A in front of the AdS5

metric; 2) neitherA, nor the dilaton φ, nor the function a2 entering the metric and fluxes, depend
on the coordinates of Σ. Under this Ansatz, Σ has constant curvature2 (and we can compactify

2For compactifications of (2, 0) theories, the fact that Σ has constant curvature was explained in [162].
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it to produce a compact Riemann surface Σg); the PDEs reduce to only three. Moreover, these
PDEs are all polynomial in one of the local coordinates on M3. Thus they can be in fact
reduced to a set of ODEs. At this point the analysis branches out in several possibilities; for
each of those, only one ODE survives. In the massless case, there is a “generic case”, which is
the reduction to IIA of the BBBW solution [154,163], and two special cases being the reduction
of the N = 1 Maldacena–Núñez solution [152] and the INST solution [164]. In the massive
case, we get new solutions. Again there is a generic case and two special cases. In the generic
case, we solve the ODE explicitly, but the solution appears not to be physically sensible: it has
singularities which we cannot interpret. The first special case, with positive curvature on Σg,
again has singularities. The second, with constant negative curvature3 on Σg, leads to physically
sensible solutions.

Solving the ODE produces several solutions, of which (6.0.2) is the simplest. Without D8’s,
the most general solution has either two D6 stacks (unlike (6.0.2), which has one), or one D6
stack and one O6. As we already mentioned, there is also the possibility of introducing D8’s,
which can be done by gluing together copies of (6.0.2), of the Maldacena–Núñez solution, and
possibly also of the more complicated solution we just mentioned. As we also anticipated, the
map (6.0.1) can then be used to produce analytical expressions for all the AdS7 solutions in 5
and [147].

All these new explicit solutions are begging further investigation, particularly regarding their
field theory interpretation. This might be the beginning of a correspondence between CFT6 and
CFT4 similar to the celebrated class S theories [96] (although notice that we do not discuss
Riemann surfaces with punctures here, as was done in [153]). A feature that those theories
also had is that (at the supergravity level) the ratio of the number of degrees of freedom in four
and six dimensions is proportional to g − 1, just like for [153] (and for [154]); this is a simple
consequence of the map (6.0.1). We compute the central charges for the CFT6 in a couple of
simple cases; for example, for a symmetric solution with two D8’s. Along with the NSNS flux
integer N , there is also another flux integer µ, which is basically the D6 charge of the D8’s;
the number of degrees of freedom is a simple cubic polynomial in N and µ, and agrees with an
earlier approximate computation in [147]. It would be interesting to also compute contributions
from stringy corrections, which we have not done here.

6.1 The conditions for supersymmetry

In this section, we will derive a system of differential equations on forms in five dimensions that
is equivalent to preserved supersymmetry for solutions of the type AdS5 ×M5. We will derive
it by considering AdS5 as a warped product of Mink4 and R. We will begin in section 6.1.1 by
reviewing a system equivalent to supersymmetry for Mink4×M6. In section 6.1.2 we will then
translate it to a system for AdS5 ×M5.

3Compactifying on T 2 the NS5–D6–D8 configurations of [124, 125] and T-dualizing twice should lead to the
NS5–D4–D6 system of [165]; the holographic dual to those solutions was found in [166].
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6.1.1 Mink4 ×M6

Preserved supersymmetry for Mink4 ×M6 was found [108] to be equivalent to the existence
on M6 of an SU(3) × SU(3) structure satisfying a set of differential equations. The system is
described by a pair of pure spinors

φ− ≡ e−A6χ+
1 ⊗ χ

−†
2 , φ+ ≡ e−A6χ+

1 ⊗ χ
+ †
2 , (6.1.1)

where the warping function A6 is defined by

ds2
10 = e2A6ds2

Mink4
+ ds2

M6
, (6.1.2)

and the ± superscripts indicate the chirality of χ1 and χ2. The pure spinors φ− and φ+ can be
expressed as a sum of odd and even forms respectively, via application of the Fierz expansion
and the Clifford map

dxm1 ∧ · · · ∧ dxmk → γm1...mk . (6.1.3)

The system of differential equations equivalent to supersymmetry for type IIA supergravity
reads:

dH
(
e2A6−φReφ−

)
= −c−

16
F , (6.1.4a)

dH
(
e3A6−φφ+

)
= 0 , (6.1.4b)

dH
(
e4A6−φImφ−

)
= −c+e

4A6

16
∗6 λF . (6.1.4c)

Here, φ is the dilaton, dH = d−H∧ is the twisted exterior derivative and c± are constants such
that

‖χ1‖2 ± ‖χ2‖2 = c±e
±A6 . (6.1.5)

F is the internal Ramond-Ramond flux which determines the external flux via self-duality:

F(10) ≡ F + e6A6vol4 ∧ ∗6λF . (6.1.6)

λ is an operator acting on a p-form Fp as λFp = (−1)[
p
2 ]Fp, where square brackets denote the

integer part.

6.1.2 AdS5 ×M5

As we anticipated, we will now use the fact that anti-de Sitter space can be treated as a warped
product of Minkowski space with a line. We would like to classify solutions of the type AdS5×
M5. These in general will have a metric4

ds2
10 = e2Ads2

AdS5
+ ds2

M5
. (6.1.7)

4Here ds2
AdS5

is the unit radius metric on AdS5.
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Since

ds2
AdS5

=
dρ2

ρ2
+ ρ2ds2

Mink4
, (6.1.8)

ds2
10 in equation (6.1.7) can be put in the form of equation (6.1.2) if we take

eA6 = ρeA , ds2
M6

=
e2A

ρ2
dρ2 + ds2

M5
. (6.1.9)

In order to preserve the SO(4, 2) invariance of AdS5, A should be a function of M5. In
addition, the fluxes F and H , which in subsection 6.1.1 were arbitrary forms on M6, should
now be forms on M5. For IIA, F = F0 + F2 + F4 + F6; in order not to break SO(4, 2), we
impose F6 = 0.

Following the decomposition of the geometry of M6 we wish to decompose the system of
equations (6.1.4) so as to obtain the system equivalent to preserved supersymmetry for AdS5 ×
M5. We start by decomposing the generators of Cliff(6) as

γ(6)
ρ =

eA

ρ
1⊗ σ1 , γ(6)

m = γm ⊗ σ2 , m = 1, . . . , 5 (6.1.10)

where σ1, σ2 are the Pauli matrices and γm generate Cliff(5). Accordingly, the chirality matrix
γ

(6)
7 = 1⊗ σ3 and the chiral spinors χ+

1 , χ−2 are decomposed in terms of Spin(5) spinors η1, η2

as

χ+
1 =

√
ρ

2
η1 ⊗

(
1
0

)
, χ−2 =

√
ρ

2
η2 ⊗

(
0
1

)
. (6.1.11)

φ− and φ+ now read

φ− =
1

2

(
eA

ρ
dρ ∧ ψ1

+ + iψ1
−

)
, φ+ =

1

2

(
−ie

A

ρ
dρ ∧ ψ2

− + ψ2
+

)
, (6.1.12)

where

ψ1 ≡ e−Aη1 ⊗ η†2 , ψ2 ≡ e−Aη1 ⊗ η2 . (6.1.13)

The bar is defined as η ≡ (ηc)† ≡ (Bη∗)† = −ηtB, where B is a conjugation matrix that in
five Euclidean dimensions can be taken to satisfy B∗ = B, Bt = −B, B2 = BB∗ = −1. The
subscripts plus and minus on ψ1, ψ2 refer to taking the even and odd form part respectively,
in their expansion as forms. One should keep in mind here a comment about odd dimensions:
the Clifford map (6.1.3) is not injective. Rather, a form ω and its cousin ∗λω are mapped to
the same bispinor (recall the definition of λ right after (6.1.6)). Thus a bispinor can always be
expressed both as an even and as an odd form, and in particular we have

ψ1,2
− = ∗λψ1,2

+ . (6.1.14)
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Applying the decomposition (6.1.12) to equations (6.1.4) we obtain a necessary and suffi-
cient system of equations for supersymmetric AdS5 ×M5 solutions:

dH
(
e3A−φReψ1

+

)
+ 2e2A−φImψ1

− = 0 , (6.1.15a)

dH
(
e4A−φψ2

−
)
− 3ie3A−φψ2

+ = 0 , (6.1.15b)

dH
(
e4A−φReψ1

−
)

= 0 , (6.1.15c)

dH
(
e5A−φImψ1

+

)
− 4e4A−φReψ1

− =
c+

8
e5A ∗ λF . (6.1.15d)

We also obtain the condition c− = 0; it follows that the relation ‖χ1‖2 ± ‖χ2‖2 = c±e
±A6

becomes
‖η1‖2 = ‖η2‖2 =

1

2
c+e

A . (6.1.16)

Henceforth, without loss of generality, we set c+ = 2.
The stabilizer group G ∈ Spin(5) of η1 and η2 can be either SU(2) or the identity group.

In the next section we parametrize ψ1, ψ2 in terms of these structures. We will see however
that only the identity case leads to supersymmetric solutions. An identity structure is actually a
choice of vielbein; so we will end up parameterizing the ψ1 and ψ2 in terms of a vielbein.

6.1.3 Parametrization of ψ1, ψ2 and the identity structure

We first consider the case where there is only one spinor, η1 = η2 of norm e
A
2 . In five dimensions

it defines an SU(2) structure. This can be read off from the Fierz expansions of η1 ⊗ η†1 and
η1 ⊗ η1, which as remarked in (6.1.14) can be written both as even and as odd forms:

ψ1
+ =

1

4
e−ij , ψ2

+ =
1

4
ω ,

ψ1
− =

1

4
v ∧ e−ij , ψ2

− = v ∧ ω .
(6.1.17)

Application of Fierz identities yields
vη1 = η1 (6.1.18)

and the following set of algebraic constraints on the 1-form v and 2-forms j and ω:

ιvv = 1 , ιvj = ιvω = 0

j ∧ ω = 0 , ω ∧ ω = 0 , ω ∧ ω = 2j ∧ j = vol4, (6.1.19)

where vol4 is the volume form on the four-dimensional subspace orthogonal to v. This set of
forms and constraints define precisely an SU(2) structure in five dimensions.

In this case, however, the two-form part of (6.1.15b) tells us ψ2 = 0, which is only possible
for η1 = 0. Hence, there are no supersymmetric AdS5 ×M5 solutions in type IIA supergravity
with an SU(2) structure on M5.
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Let us then consider the case of two spinors η1 and η2, which as mentioned earlier define an
identity structure. We can expand η2 in terms of η1 as

η2 = aη1 + a0η
c
1 +

1

2
bw η1 , (6.1.20)

where a, a0 ∈ C, b ∈ R andw is a complex vector that we normalize such thatw ·w = 2 (so that
Rew and Imw are orthogonal and have norm 1). Also, by redefining if necessary a→ a+ b

2
w ·v,

w → w − (w · v)v (which leaves (6.1.20) invariant, upon using (6.1.18)), we can assume

w · v = 0 . (6.1.21)

Now (6.1.16) implies
|a|2 + |a0|2 + b2 = 1 . (6.1.22)

The identity structure is then spanned by v, w and

u ≡ 1

2
ιw ω , (6.1.23)

in terms of which
ω = w ∧ u , −ij =

1

2
(w ∧ w + u ∧ u) . (6.1.24)

From (6.1.19) we now see that u is also orthogonal to v, as well as to w and w; moreover, it
satisfies u · u = 2. In other words,

{v,Rew, Imw,Reu, Imu} (6.1.25)

are a vielbein.
We can now expand ψ1 and ψ2 in terms of this vielbein. We separate out their even and odd

parts:

ψ1
+ =

1

4
a exp

[
−ij +

b

a
v ∧ w

]
, ψ2

+ = −a0

4
exp

[
−ij +

u

a0

∧ (a+w − bv)

]
,

ψ1
− =

1

4
(av + bw) ∧ e−ij , ψ2

− = −1

4
(a0v + bu) ∧ exp

[
−ij +

u

a0

∧ (a+w − bv)

]
.

(6.1.26)

6.2 Analysis of the conditions for supersymmetry

Having obtained the expansions (6.1.26) of ψ1, ψ2 in terms of the identity structure on M5, we
can proceed with the study of the system (6.1.15). In section 6.2.1 we study the constraints
imposed on the geometry of M5 while in section 6.2.2 we obtain the expressions of the fluxes
in terms of the geometry. The analysis in 6.2.1 is local.
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6.2.1 Geometry

The equations of the system (6.1.15) which constrain the geometry ofM5 are (6.1.15a), (6.1.15b)
and (6.1.15c) with the exception of the three-form part of (6.1.15a) which determines H . In the
following study of these constraints, it is convenient to introduce the notation

a ≡ a1 + ia2 , k1 ≡ av + bw , k2 ≡ −bv + aw . (6.2.1)

The zero form part of (6.1.15b), the one-form part of (6.1.15a), the two-form part of (6.1.15c)
and the two-form part (6.1.15b) yield the following set of equations:

a0 = 0 , (6.2.2a)

d
(
e3A−φa1

)
+ 2e2A−φImk1 = 0 , (6.2.2b)

d
(
e4A−φRek1

)
= 0 , (6.2.2c)

d
(
e4A−φbu

)
− 3ie3A−φu ∧ k2 = 0 . (6.2.2d)

It can then be shown that the higher-form parts of (6.1.15a), (6.1.15b) and (6.1.15c) follow from
the above equations.

(6.2.2a) simplifies quite a bit (6.1.26), which now becomes

ψ1
+ =

1

4
a exp

[
−ij +

b

a
v ∧ w

]
, ψ2

+ =
1

4
(aw − bv) ∧ u ∧ e−ij ,

ψ1
− =

1

4
(av + bw) ∧ e−ij , ψ2

− = −1

4
bu ∧ exp

[
−ij − a

b
v ∧ w

]
.

(6.2.3)

It is also interesting to see what the pure spinors φ± on M6 look like:

φ+ =
1

4
E1∧E2∧ exp

[
1

2
E3 ∧ E3

]
, φ− = E3∧ exp

[
1

2
(E1 ∧ E1 + E2 ∧ E2)

]
, (6.2.4)

where

E1 ≡ ieAb
dρ

ρ
+ aw − bv , E2 ≡ u , E3 ≡ eAa

dρ

ρ
+ i(av + bw) . (6.2.5)

(6.2.4) are the canonical forms of a type 1 – type 2 pure spinor pair (where the “type” of a pure
spinor is the lowest form appearing in it); or, in other words, of a pure spinor pair associated
with an SU(2) structure on M6 (although remember that the structure on M5 is the identity).
It would be interesting to push this further, and to start an analysis similar to the one in [129]:
in that paper, the language of generalized complex geometry is used to set up a generalized
reduction procedure, which eventually leads to a set of four-dimensional equations.

Let us now go back to (6.2.2). Given (6.2.2a), equation (6.1.22) becomes

a2
1 + a2

2 + b2 = 1 . (6.2.6)
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Equations (6.2.2b) and (6.2.2c) can be integrated by introducing local coordinates y,

y = −1

2
e3A−φa1 , (6.2.7)

and x such that
Imk1 = e−2A+φdy , Rek1 = e−4A+φdx . (6.2.8)

M5 possesses an abelian isometry generated by the Killing vector

ξ ≡ 1

2
(η†1γ

mη2 − η†2γmη2)∂m = −eAb(Rek2)] (6.2.9)

where m = 1, . . . , 5 and the ] superscript denotes the vector dual to the one-form it acts on. A
straightforward way to show that ξ is a Killing vector is to work directly with the supersymmetry
variations (see appendix D.1) which yield D(m ξν) = 0 and Lξφ = LξA = 0, where D is
the spin connection associated to the Levi-Civita connection and Lξ is the Lie derivative with
respect to ξ. It would be interesting to show this directly using the language of generalized
complex geometry, and to make contact with the analysis in [129, 167].

Expressing w, v in terms of Rek2, Rek1, and Imk1 we can write the metric on M5 as

ds2
M5

= ds2
C + (Rek2)2 +

e−4A+2φ

b2

[
(b2 + a2

2)e−4Adx2 + (b2 + a2
1)dy2 + 2a1a2e

−2Adxdy
]
,

(6.2.10)
where ds2

C = uu, and C denotes the two-dimensional subspace spanned by u.
Let us introduce local coordinates xI , I = 1, 2, 3 such that

ds2
C + (Rek2)2 = gIJ(xI , x, y)dxIdxJ . (6.2.11)

φ, A and a2 are in principle functions of xI , x and y. Given the fact that LξRek1 = LξImk1 =
05, we can further introduce a coordinate x3 ≡ ψ adapted to the the Killing vector

ξ = 3∂ψ , (6.2.12)

in terms of which

Rek2 = −1

3
eAbDψ , Dψ ≡ dψ + ρ , ρ = ρi(x

i, x, y)dxi . (6.2.13)

where xi, i = 1, 2 are local coordinates on C. Thus

gIJ(xI , x, y)dxIdxJ = (gC)ij(x
i, x, y)dxidxj +

1

9
e2Ab2Dψ2. (6.2.14)

In addition, since ξ is a Killing vector and Lξφ = LξA = 0, A, φ and a2 are independent of ψ.
The exterior derivative on M5 can be decomposed as

d = d2 + dψ ∧ ∂ψ + dx ∧ ∂x + dy ∧ ∂y , (6.2.15)

5Deduced from ιξRek1 = ιξImk1 = 0 and equation (6.2.8)
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where d2 is the exterior derivative on C. We can thus further refine equation (6.2.2d) as follows:

d2u = iρ0 ∧ u , (6.2.16a)
∂ψu = iu , (6.2.16b)
∂xu = f1u , (6.2.16c)
∂yu = f2u , (6.2.16d)

where

ρ0 ≡ ρ+ ∗2d2 log
(
be4A−φ) , (6.2.17a)

f1(xi, x, y) ≡ −∂x log
(
e4A−φb

)
+

3e−5A+φa2

b2
, (6.2.17b)

f2(xi, x, y) ≡ −∂y log
(
e4A−φb

)
+

3e−3A+φa1

b2
. (6.2.17c)

∗2 is the Hodge star defined by gC , such that ∗2u = −iu. Integrability of equations (6.2.16)
yields the constraints

∂yf1 = ∂xf2 (6.2.18)

and

∂xρ0 = − ∗2 d2f1 , (6.2.19a)
∂yρ0 = − ∗2 d2f2 . (6.2.19b)

We can write ds2
C as

ds2
C = e2ϕ(xi,x,y)(dx2

1 + dx2
2) . (6.2.20)

The Gaussian curvature or one-half the scalar curvature of C, `(xi, x, y), is

`(xi, x, y) = −e−2ϕ(∂2
x1

+ ∂2
x2

)ϕ . (6.2.21)

Equations (6.2.16b) and (6.2.16c), (6.2.16d) are solved by

u = eϕ+iψ(dx1 + idx2) , ∂xϕ = f1 , ∂yϕ = f2 . (6.2.22)

Equation (6.2.16a) then yields

ρ0 = ∂x2ϕdx1 − ∂x1ϕdx2 , (6.2.23)

and thus
d2ρ0 = `(xi, x, y)volC . (6.2.24)

Compatibility of (6.2.24) with (6.2.19a), (6.2.19b) requires that ` obey the equations

∂x`+ 2f1` = ∆2f1 , (6.2.25a)
∂y`+ 2f2` = ∆2f2 , (6.2.25b)

where ∆2 ≡ d2
†d2 + d2d2

†. The last two equations also follow from (6.2.21), bearing in mind
that ∆2ϕ = −e−2ϕ(∂2

x1
+ ∂2

x2
)ϕ.
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6.2.2 Fluxes

In this section we give the expressions for the fluxes in terms of the geometry of M5. In the
following expressions we employ the notation

ζ1 ≡ Re(ak1)] = −2yeA∂x − a2e
2A−φ∂y ,

ζ2 ≡
1

b2
Im(ak1)] = a2e

4A−φ∂x − 2ye−A∂y .
(6.2.26)

The NSNS three-form flux H is given by the three-form part of equation (6.1.15a):

H = d

(
1

6y
dx ∧Dψ +

1

3
eARe(ak1) ∧Dψ +

e3A−φa2

2y
volC

)
− 1

6y2
dx ∧ dy ∧Dψ +

e−2A

y
dx ∧ volC +

e3A−φa2

2y2
dy ∧ volC ,

(6.2.27a)

where Re(ak1) = −2ye−7A+2φdx− a2e
−2A+φdy.

The RR fluxes can be computed from equation (6.1.15d):

F0 = − 4e2A−2φb2∂yA− e−Aιζ1d
(
eA−φa2

)
, (6.2.28a)

F2 =
[
−4e−A−φa2 + 4e4A−2φ∂xA− e−5Aιζ2d

(
e5A−φa2

)]
volC

+
1

3
d
(
eA−φa2

)
∧Dψ + F0

1

3
eARe(ak1) ∧Dψ (6.2.28b)

− e−A

b2
∗2 d2

(
eA−φa2

)
∧ Im(ak1) + 4e−4A ∗2 d2A ∧ dx ,

F4 =
1

3

[
e−6A∂y

(
e5A−φa2

)
dx− e−2A∂x

(
e5A−φa2

)
dy − 4e−2Ady

]
∧ dψ ∧ volC

− 1

3

[
4e−φa2 + e−4Aιζ2d

(
e5A−φa2

)]
Re(ak1) ∧ dψ ∧ volC (6.2.28c)

− 1

3
e−10A+2φ ∗2

[
d2

(
e5A−φa2

)]
∧ dx ∧ dy ∧Dψ ,

where Im(ak1) = a2e
−4A+φdx− 2ye−5A+2φdy.

The fluxes can also be computed from the expression

F = J+ · dH(e−φImφ−) (6.2.29)

on M6 [132]. The operator J+· is associated with the pure spinor φ+, which can be found in
(6.2.4):

J+· =
i

2

2∑
i=1

(Ei ∧ Eix−Ei ∧ Eix) +
i

2
(E3xE3x+E3 ∧ E3∧) . (6.2.30)

The degree of difficulty of computing the fluxes from (6.2.29) is proportional to the degree of
the flux. The opposite is true for computing the fluxes from (6.1.15d).
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6.2.3 Bianchi identities

In order to have a complete supersymmetric AdS5 ×M5 solution, apart from the conditions for
supersymmetry (which imply the equations of motion [34]) the Bianchi identities of the fluxes
need to be imposed. In this section we study the latter and the extra constraints that follow from
their application.

We start with the Bianchi identity of H i.e. dH = 0. We find that it determines

d2ρ = e−2A
[
6 + 12y(∂yA− f2)− 6e5A−φa2(∂xA− f1) + 3∂x

(
e5A−φa2

)]
volC . (6.2.31)

Next, we turn to the Bianchi identities of the RR fluxes. The Bianchi identity of F0 just says
that it is a constant. The Bianchi identity of F2 is

dF2 − F0H = 0 . (6.2.32)

The non-zero components on the left-hand side are the dx∧volC and dy∧volC components and
imposing that they vanish yields the equations:

∂xQ+ 2f1Q−
[

1

3
∂x
(
eA−φa2

)
− F0

6y

]
∗2 d2ρ− F0

e−2A

y
(6.2.33a)

+ ∆2

(
eA−φa2

)e−5A+φa2

b2
−∆2(e−4A)− d2

(
eA−φa2

)
· d2

(
2e−5A+φa2

b2

)
= 0 ,

∂yQ+ 2f2Q−
1

3
∂y
(
eA−φa2

)
∗2 d2ρ− F0

e3A−φa2

2y2
(6.2.33b)

−∆2

(
eA−φa2

)2e−6A+2φy

b2
+ d2

(
eA−φa2

)
· d2

(
4e−6A+2φy

b2

)
= 0 .

where

Q(xi, x, y) ≡ −4e−A−φa2 + 4e4A−2φ∂xA− e−5Aιζ2d
(
e5A−φa2

)
− F0

e3A−φa2

2y
. (6.2.34)

Finally, the Bianchi identity of F4

dF4 −H ∧ F2 = 0 , (6.2.35)

is automatically satisfied.

6.2.4 Summary so far

So far, we have analyzed the constraints imposed by supersymmetry and the Bianchi identities
without any Ansatz; let us summarize what we have obtained.
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First of all, we have already determined the local form of the metric: (6.2.10), (6.2.13).
Most notably, we see the emergence of a Killing vector ξ generating a U(1) isometry, and of a
two-dimensional space C. The geometry of C is constrained by (6.2.16). The S1 upon which
the U(1) acts is fibered over C with ρ being the connection of the fiberation. The curvature of
the connection is given by (6.2.31).

In fact the U(1) isometry is a symmetry of the full solution as it also leaves invariant the
fluxes; the latter can be verified by computing the Lie derivative with respect to ξ of the fluxes’
expressions as presented in section 6.2.2. This symmetry was to be expected: it is a U(1) R-
symmetry corresponding to the R-symmetry of the dualN = 1 field theory. The surface C is of
less immediate interpretation, but already at this stage it seems to suggest that the field theory
should be a compactification on C of a six-dimensional field theory. We will see later that this
expectation is indeed borne out for the explicit solutions we will find.

We have also reduced the task of finding solutions to a set of partial differential equations on
three functions: a2, the dilaton φ, and the warp factor A, which in general depend on four vari-
ables i.e. the coordinates xi, x, y. Supersymmetry equations alone give us (6.2.18), (6.2.25a),
(6.2.25b). Moreover, the fluxes should satisfy the relevant Bianchi identities, which away from
sources give the further equations (6.2.28a), (6.2.33a), (6.2.33b). Thus we have a total of six
partial differential equations. Solving all of them might seem a daunting task, but we will see
in the next section that they simplify dramatically with a simple Ansatz. This will allow us to
find many explicit solutions.

6.3 A simple Ansatz

We assume that φ and A are functions of y only and that gC is independent of x i.e. f1 = 0.
From equation (6.2.17b) it follows that a2 = 0. The metric becomes

ds2
M5

= ds2
C +

1

9
e2Ab2Dψ2 + e−8A+2φdx2 +

e−4A+2φ

b2
dy2 , (6.3.1)

where now b2 = 1 − a2
1. Equation (6.2.18) is satisfied trivially while equations (6.2.19a) and

(6.2.19b) yield ∂xρ = ∂yρ = 0 (in the present Ansatz ρ0 = ρ). A(y) and φ(y) are subject to the
differential equations coming from the Bianchi identities of F0 and F2, and equation (6.2.25b),

∂y`+ 2f2` = 0 . (6.3.2)

` is determined by (6.2.24) and (6.2.31) to be ` = 6e−2A + 12e−2Ay(∂yA− f2).
We first look at the Bianchi identity of F2; it yields:

F0(∂yA− f2) = 0 , (6.3.3)

so either F0 = 0 or f2 = ∂yA. We consider the two cases F0 = 0 and F0 6= 0 separately.
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6.3.1 F0 = 0

In this case, from the expression (6.2.28a) for F0 we conclude that ∂yA = 0 i.e. A is constant
which without loss of generality we set to zero. F2 is zero, as can be seen from its expression
(6.2.28c). We thus need to solve equation (6.3.2). This yields the ODE

∂yf2 + 2f 2
2 = 0 , (6.3.4)

which is solved by

f2 =
1

2

c

cy − k
, c, k = const. . (6.3.5)

Recalling the definition (6.2.17c) of f2, equation (6.3.5) is in turn solved for

e2φ =
k − cy

2(c1 − ky2)
, c1 = const. . (6.3.6)

Equations (6.2.16) are then solved by

u = eiψ
√

2(k − cy) û(x1, x2) . (6.3.7)

Substituting (6.3.5) and (6.3.7) in (6.2.31) yields

d2ρ = 12k volΣ , (6.3.8)

where Σ is the surface spanned by û. Its Gaussian curvature is thus 12k.
This solution was first discovered by Gauntlett, Martelli, Sparks and Waldram [155] (see

section 6.5.1), and it is the T-dual of the AdS5 × Y p,q solution in type IIB supergravity.

6.3.2 F0 6= 0

In this case f2 = ∂yA; equations (6.2.16) are solved by

u = eiψeA û(x1, x2) . (6.3.9)

` = 6e−2A obeys equation (6.3.2) automatically and

d2ρ = 6volΣ . (6.3.10)

Substituting f2 in (6.2.17b) gives

e4A = − 1

12y
∂yβ , (6.3.11)

where β(y) ≡ e10A−2φb2. The Bianchi identity of F0 becomes then an ODE for ε:

e12AF0 = −β ∂ye4A . (6.3.12)
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The situation appears promising: we have reduced the problem to the ODE (6.3.12). How-
ever, as we will now see, one cannot obtain physical compact solutions to this system.

Let us introduce the coordinate ỹ by dỹ = e−2A+φ

b
dy, so that the metric (6.3.1) contains dỹ2.

(6.3.11) now reads
F0 = 16e−φb2∂ỹA . (6.3.13)

In order to obtain a compact solution, we should have the factor in front of the S1 in (6.3.1),
namely eAb, go to zero for some y = y0. For a regular point, this is impossible: since A and φ
should go to constant at y0, we should have b go to zero; but from (6.3.13) we see that this is
in contradiction with F0 6= 0. We might think of having a singularity corresponding to a brane,
but since only an S1 would shrink at y = y0, such a brane would be codimension-2; there are
no such objects in IIA supergravity.

6.4 A compactification Ansatz

We have reduced the general classification problem to a set of six PDEs. To simplify the prob-
lem, we will now make an Ansatz.

We assume that A, φ and a2 are functions of x and y only, and that

ds2
C = e2Ads2

Σ(x1, x2) . (6.4.1)

In other words, the ten-dimensional metric becomes ds2
10 = e2A(ds2

AdS5
+ ds2

Σ) + ds2
M3

. It will
soon follow that Σ has constant curvature; from now on we will assume it to be a compact
Riemann surface Σg. For g ≥ 1 this involves a quotient by a discrete subgroup, but since no
functions depend on its coordinates, this presents no difficulty.

This Ansatz is motivated by the fact that most known solutions in eleven-dimensional su-
pergravity (and hence in massless IIA) are of this type. We also have in mind our original
motivation: finding solutions dual to twisted compactifications of CFT6. If one wants to study
a CFT6 on R4 × Σg rather than on R6, one needs to replace ds2

AdS7
= dρ2

ρ2
+ ρ2ds2

R6 with
dρ2

ρ2
+ ρ2(ds2

R4 + ds2
Σ) in the UV, and then look for a solution that represents the flow to the

IR. Our Ansatz is basically that in the IR fixed point this metric is only modified in the ρ2 term
multiplying ds2

Σ, which drops out and becomes a constant.
Whatever its origin, we will now see that this Ansatz is remarkably effective at simplify-

ing the system of PDEs: we will be able to completely classify the resulting solutions. One
particular case will be source of many solutions, which will be analyzed in section 6.6.

6.4.1 Simplifying the PDEs

(6.4.1) implies
f1 = ∂xA , f2 = ∂yA . (6.4.2)

The integrability condition (6.2.18) is then satisfied trivially, while equations (6.2.19a) and
(6.2.19b) yield ∂xρ = ∂yρ = 0 (in the present Ansatz ρ0 = ρ).
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Equations (6.2.24), (6.2.31) yield ` = e−2A[6 + 3∂x(e
5A−φa2)]. (6.2.25a), (6.2.25b) are then

solved by
e5A−φa2 = cx+ ε c = const. , (6.4.3)

where ε = ε(y) is a function of y only. It follows that

` = e−2A(6 + 3c) (6.4.4)

i.e. the Gaussian curvature of Σg is equal to 6 + 3c.
Given the definitions (6.2.17b), (6.2.17c), the equations f1 = ∂xA and f2 = ∂yA become

∂x
(
e10A−2φb2

)
= 6e5A−φa2 , (6.4.5a)

∂y
(
e10A−2φb2

)
= 6e7A−φa1 . (6.4.5b)

Recall that a1 = −2ye−3A+φ and b2 = 1− a2
1 − a2

2. Using (6.4.3) we can solve these for

e10A−2φ − 4y2e4A = c(c+ 3)x2 + 2(c+ 3)εx+ β , (6.4.6a)

e4A = − ε′

2y
x− 1

12y
(β′ − 2εε′) , (6.4.6b)

where β = β(y) is a function of y only, and a prime denotes differentiation with respect to y.
So far we have solved the differential equations imposed by supersymmetry; we now need

to impose the Bianchi identities. First, the expression for F0, (6.2.28a), becomes

e12AF0 = −[c(c+ 3)x2 + 2(c+ 3)εx+ β](e4A)′ + e4A∂y(cx+ ε)2 + 2e8Acy . (6.4.7)

Recalling (6.4.6b), we see that this equation is polynomial in x, of degree 3. In other words, we
can view it as a set of four ODEs in y.

The Bianchi identities for F2, (6.2.33), become

∂2
x(e

6A−2φ) = 0 , (6.4.8a)

∂y∂x(e
6A−2φ) + F0

ε′

2y
= 0 . (6.4.8b)

Substituting equations (6.4.3) and (6.4.6) in (6.4.8a) yields the differential equation

36(ε′)2β = −(c+ 3)(β′ − 2εε′) [cβ′ − 2(c+ 6)εε′] . (6.4.9)

Notice that the x dependence has dropped out from this equation. Concerning (6.4.8b), just as
for (6.4.7), it can be written as a polynomial in x of degree 3, and viewed as four ODEs in y.

So we appear to have reduced the problem to four ODEs from (6.4.7), one from (6.4.8a)
(which becomes (6.4.9)), and four from (6.4.8b), for a total of nine ODEs in y. However, many
of these ODEs actually happen not to be independent from each other. For example, the x3

component of both (6.4.7) and (6.4.8b) gives

4c(c+ 3)

(
ε′

y

)′
+ F0

(
ε′

y

)3

= 0 , (6.4.10)
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as well as the x2 component of (6.4.8b).
To analyze the remaining ODEs, as a warm-up we will first look at the case F0 = 0, where

we will reproduce several known solutions. We will then look at the case F0 6= 0, which we
will further split into a generic case where ε′ 6= 0, and a special case where ε′ = 0; both will
give rise to new solutions.

6.4.2 F0 = 0

For F0 = 0, (6.4.10) becomes c(c+3)(ε′−yε′′) = 0. We can then have either ε′ = yε′′, c = −3,
or c = 0. In the c = 0 case, actually the x2 coefficient of (6.4.7) gives again ε′ = yε′′. So this
case becomes a subcase of the ε′ = yε′′ case.

• Case 1: ε′ = yε′′. In this case we have

ε =
1

2
c1y

2 + c2 , c1, c2 = const. . (6.4.11)

The x3 component of (6.4.7) is (6.4.10), which we just looked at. The x2 and x1 compo-
nents both require (

β′

y

)′
= 2

c+ 3

c+ 6
c1y . (6.4.12)

The solution to this ODE is

β =
c+ 6

c+ 3

1

4
c2

1y
4 +

1

2
c3y

2 + c4 c3, c4 = const. . (6.4.13)

The x0 component of (6.4.7) then gives

(2c1c2 − c3)(2(c+ 6)c1c2 − cc3) +
36

(c+ 3)
c2

1c4 = 0 . (6.4.14)

Generically this can be solved for c4. In this case, the transformation

x→ x+
δ

c
, c2 → c2 − δ , β → β +

(3 + c)(δ2 − 2δε)

c
(6.4.15)

leaves the solution invariant and δ can be chosen such that

β =
c+ 6

c+ 3
ε2. (6.4.16)

This branch reproduces the solution obtained from reduction to ten dimensions of the
BBBW AdS5 solution of M-theory [154], as described in section 6.5.4.

This however does not cover the case c1 = 0. Treating this separately, we find that
(6.4.14) leads to c = 0. This branch reproduces the INST solution [164], discussed in
section 6.5.2.
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• Case 2: c = −3. In this case, the x2 component of (6.4.7) gives ε′ = 0. With this, the
whole of (6.4.7) gives

2β(β′ − yβ′′) + yβ′2 = 0 . (6.4.17)

This equation is nonlinear, but if one defines z = y2/2 it becomes 2β∂2
zβ = (∂zβ)2,

which is easily solved by the square of a linear function; in other words, by

β = c2(y2 + 4c1)2 , c1, c2 = const. . (6.4.18)

This case reproduces the solution obtained from reduction to ten dimensions of the Maldacena–
Núñez AdS5 solution of M-theory [152], described in section 6.5.3.

6.4.3 F0 6= 0

We will divide the analysis in the generic case, where c 6= 0 and −3, and two special cases
c = 0 or −3. Let us note that from (6.4.9), we see that ε′ = 0 implies either c = 0 or −3; in
other words, if c 6= 0 and −3, then ε′ 6= 0. On the other hand, from (6.4.10), we see that ε′ 6= 0
implies c 6= 0 and −3; in other words, if c = 0 or −3, then ε′ = 0.

Generic case

We begin by analyzing (6.4.7) with the aid of (6.4.10) and (6.4.9). In particular, combining the
last two we derive

(e4A)′ =
(ε′)2

8c(c+ 3)y3

[
F0ε

′x+
1

6
F0(β′ − 2εε′)− 4cy2

]
. (6.4.19)

Substituting (e4A)′ as expressed in the above equation, and β as expressed in (6.4.9), in (6.4.7),
the whole of the latter gives

β′ =
c+ 3

c
2εε′ . (6.4.20)

(6.4.9) then actually fixes

β =
c+ 3

c
ε2 . (6.4.21)

Finally, (6.4.8b) follows from (6.4.9) and (6.4.10), which can be solved by quadrature. The
solution is

ε = −
2
√

2c(c+ 3)

3F 2
0

(F0y − 2c1)
√
F0y + c1 + c2 , c1, c2 = const. . (6.4.22)

This yields an AdS5 solution which was not known before; we will analyze its features here.
Let us define

x̃ ≡ cx+ ε , (6.4.23)
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since this quantity will appear several times. We know already, from (6.4.3), that e5A−φa2 = x̃.
By substituting β in (6.4.6a), we also find e10A−2φ(1− a2

1) = c+3
c
x̃2. Recalling (6.2.6), we also

find e5A−φb =
√

3
c
x̃. Again from the expression of β and from (6.4.6b) we find A:

e4A = − ε′

2cy
x̃ , (6.4.24)

while (6.4.6a) determines φ:

eφ =
√
c x̃3/4

(
−2cy

ε′

)−5/4

(−2yε′ + (c+ 3)x̃)−1/2 . (6.4.25)

Finally, collecting everything and recalling the expression of the metric (6.2.10), we can write
the metric for this solution as

ds2 = e2Ads2
Σg + e−8A+2φ

(
x̃2

3c
Dψ2 +

c+ 3

c
dQ2 +

2yε′ − (c+ 3)x̃

2(c+ 3)y

ε′

c
dy2

)
(6.4.26)

= e2Ads2
Σg +

√
− cε′

2yx̃

(
1

−2yε′ + (c+ 3)x̃

(
x̃2

3c
Dψ2 +

c+ 3

c
dQ2

)
− ε′

2c(c+ 3)y
dy2

)
,

where Q ≡ x+ 1
c+3

ε.
Unfortunately, as it stands the metric (6.4.26) appears to be unphysical. To make M5 com-

pact, we should be able to find some locus where the coefficient of Dψ2 vanishes. One way
this could happen is if x̃ = 0. However, this also leads to eA = 0. Hence this cannot be a
regular point. One might think about the presence of a brane (where eA might legitimately go
to zero), but the locus x̃ = 0 appears to be codimension 2, and there are no such branes in IIA
supergravity.

So we look for other loci where the coefficient of Dψ2 might vanish. Notice that the coeffi-

cient
√
− cε′

2yx̃
cannot go to zero, since ε′ = −y

√
2c(c+3)
√
F0y+c1

. Nonetheless, we have the combination

− 2yε′ + 3ε =
c1[2c(c+ 3)]1/2

F 2
0

F0y + 2c1√
F0y + c1

+ 3c2 . (6.4.27)

So the denominator −2yε′ + (c+ 3)x̃ can go to infinity where F0y + c1 = 0. However, on this
locus eφ → 0, and this locus cannot be regular. It also cannot correspond to the presence of
branes, for the same reason noted above for the locus x̃ = 0.

One last possibility, which we will not analyze here, would be to try to glue this solution to
other solutions (perhaps ones with F0 = 0) along a D8, much as we will do in the next section.
As we will see, such gluing can happen along loci where

√
1− a2

1e
A−φ is constant; in our case

this happens to be proportional to y
ε′

, which is a function of y. We leave the study of such a
possibility for the future.
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Special cases

• For c = 0, equation (6.4.10) is trivially satisfied, while the x1 component of (6.4.7) yields
ε = 0. Then a2 = 0 and this leads to the (unphysical) massive solution of section 6.3.

• For c = −3, (6.4.10) is again trivially satisfied, while (6.4.7) yields the following ODE
for β:

e12AF0 = −β (e4A)′ − 6e8Ay . (6.4.28)

Using (6.4.6b) we see e4A = − β′

12y
. This ODE is nonlinear, and a little tougher than the

ones we saw so far in this subsection. Hence we defer its further analysis to the next
section. We will see there that it leads to many new AdS5 solutions.

6.5 Recovered solutions

In this section we discuss a set of known, supersymmetric AdS5 ×M5 solutions of type IIA
supergravity with zero Romans mass, which we recovered in our analysis. Two of them descend
from AdS5 solutions of M-theory, whose reduction to ten dimensions we present. We focus on
the geometry of the solutions, as the fluxes are determined by it. We aim to adhere to the
notation of the original papers; whenever there is overlap with notation used in the main body
of this chapter, we add a hatˆ.

There are more supersymmetric AdS5 solutions in IIA [105, 166, 168, 169] that should be
particular cases of our general classification of section 6.2. These are outside the compactifica-
tion Ansatz of section 6.4.

6.5.1 The Gauntlett–Martelli–Sparks–Waldram (GMSW) solution

The metric on M5 reads

ds2
M5

=
k − cy
6m2

ds2
Ck

+ e−6λ sec2 ζ +
1

9m2
cos2 ζDψ2 + e−6λdx2

3 , (6.5.1)

where

e6λ =
2m2(â− ky2)

k − cy
, cos2 ζ =

â− 3ky2 + 2cy2

â− ky2
. (6.5.2)

The dilaton is given by e−2φ = e6λ.
â, c are constants, k = 0,±1 and m−1 is the radius of AdS5. Ck is a Riemann surface of unit

radius; it is a sphere S2, a torus T 2 or a hyperbolic space H2 for k = 1, 0 or −1 respectively.
The GMSW solution is the reduction to ten dimensions of an AdS5×M6 solution of M-theory,
where M6 is a fiberation of S2 over Ck × T 2 and the reduction is along an S1 ∈ T 2.

The solution is the one recovered in subsection 6.3.1. The constants c and k are identified
with the corresponding of 6.3.1, while â = c1. The coordinate x3 is related to x via x3 = −x; a
minus is introduced for matching the expressions of the fluxes. Finally, in 6.3.1 m = 1.
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6.5.2 The Itsios–Núñez–Sfetsos–Thompson (INST) solution

The INST solution [164] was discovered by nonabelian T-dualizing the AdS5×T 1,1 solution in
type IIB supergravity. The metric on M5 reads

ds2
M5

= λ2
1ds

2
S2 +

λ2
2λ

2

∆
x2

1Dψ
2 +

1

∆

[
(x2

1 + λ2λ2
2)dx2

1 + (x2
2 + λ4

2)dx2
2 + 2x1x2dx1dx2

]
,

(6.5.3)

where

∆ = λ2
2x

2
1 + λ2(x2

2 + λ4
2) , λ2

1 = λ2
2 =

1

6
, λ2 =

1

9
, (6.5.4)

and
ds2

S2 = dθ2
1 + sin2 θ1φ

2
1 , ρ = cos θ1dφ1 . (6.5.5)

The dilaton is given by e−2φ = ∆.
The INST solution fits into the c1 = 0 branch of the first case of subsection 6.4.2 for c3 =

−12 (achieved by setting the constant warp factor to zero) and ε = c2 = λλ2
2. Σg is S2 of radius

1√
6
. The coordinate transformation relating x1, x2 to x, y is:

x2
1 = −36y2 + 36εx+ 6c4 − 6ε2 , x2 = 6y . (6.5.6)

6.5.3 The Maldacena–Núñez solution

We write the metric of the N = 1 Maldacena–Núñez solution [152] in the form presented
in [155]:

e−2λds2
11 = ds2

AdS5
+

1

3
ds2

H2 + e−6λ sec2 ζdy2 +
1

9m2
cos2 ζ

(
(dψ + P̃ )2 + ds2

S2

)
, (6.5.7)

where

e6λ = â+ y2 , cos2 ζ =
â− 3y2

â+ y2
, (6.5.8)

and m−1 is the radius of AdS5. The metrics on H2 and S2 are

ds2
H2 =

dX2 + dY 2

Y 2
, ds2

S2 = dθ2 + cos2 θdν2 , (6.5.9)

while the connection of the fiberation of ψ is

P̃ = − cos θdν − dX

Y
. (6.5.10)
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Reduction to ten dimensions

We reduce the Maldacena–Núñez solution to ten dimensions, along ν. In order to do so, we
rewrite the part of ds2

M6
involving dψ or dν as

1

9m2
cos2 ζ

[
(dν + A1)2 + sin2 θDψ2

]
, (6.5.11)

where
A1 = − cos θDψ , ρ = −dX

Y
. (6.5.12)

Reducing along dν yields then

ds2
10 = e2Ads2

AdS5
+ ds2

M5
, (6.5.13)

where

e−2Ads2
M5

=
1

3
ds2

H2 + e−6A+2φ sec2 ζdy2 +
1

9m2
cos2 ζ

(
dθ2 + sin2 θDψ2

)
. (6.5.14)

Furthermore,

φ =
3

4
log

(
1

9m2
e2λ cos2 ζ

)
, A = λ+

1

3
φ . (6.5.15)

The reduced Maldacena–Núñez solution fits into the second case of section 6.4.2, for ε = 0
(achieved by by a x → x + ε

3
shift), c1 = − â

12
and c2 = 1. Σg is H2 of radius 1√

3
. In our

conventions m = 1. The coordinate transformation relating x, y to θ is:

x = −1

9
(â− 3y2) cos θ . (6.5.16)

AdS7 variables

For our discussion in the main text, it is useful to also include two parameters R and k which
are usually set to one. If we use the slightly awkward-looking

β =
4

k2

(
y2 − 34

210
R6

)2

(6.5.17)

the corresponding solution, using (6.6.4) and (6.6.7), is

ds2
M5

= e2Ads2
σg +

1

33/2k

64dy2√
92R6 − 322y2

+
(92R6 − 322y2)3/2

16(35R6 + 322y2)
, (6.5.18)

e4A =
92R6 − 322y2

3 · 28k2
, e4φ =

(92R6 − 322y2)3

2 · 63k6(35R6 + 322y2)2
. (6.5.19)

These again look messy, but upon using the map (6.6.16) and defining an angle α via

cosα ≡ 32

9R3
y (6.5.20)
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turn into the expressions for the metric, A and φ of the massless AdS7 solution, obtained by
reducing AdS7 × S4/Zk to IIA supergravity: see section 5.4.1.

In the main text we will need an expression for the B field of the AdS5 solution. We give it
directly in terms of x7, which is related to (6.6.14) via (6.6.16):

B =
R3

48k
x7

(5− x2
7)

1 + 1
3
x2

7

volS2 +
1√
3

x7√
1− x2

7

cos θvolΣg . (6.5.21)

This is similar to the one given for the AdS7 solution in (5.4.8).

6.5.4 The Bah–Beem–Bobev–Wecht (BBBW) solution

The metric of the BBBW [154] solution is

ds2
11 = e2λ

[
ds2

AdS5
+ e2ν+2Â(x1,x1)(dx2

1 + dx2
2)
]

+ e−4λds2
M4

, (6.5.22)

where ds2
AdS5

is the unit radius metric on AdS5, and Â(x1, x2) is the conformal factor of the
constant curvature metric on the Riemann surface Σ̂g of genus g, obeying

(∂2
x1

+ ∂2
x2

)Â+ κe2Â = 0 . (6.5.23)

The constant κ is the Gaussian curvature of the Riemann surface which is set to 1, 0 or −1 for
the sphere S2, the torus T 2 or a hyperbolic surface respectively. ν is a real constant. The metric
ds2

M4
is

ds2
M4

=

(
1 +

4y2

qf

)
dy2 +

qf

k

(
dq +

12yk

qf
dy

)2

+
â2

1

4

fk

q
(dχ+ V )2 +

qf

9
(dψ + ρ̂)2 .

(6.5.24)

The metric functions are

e6λ = qf + 4y2 , f(y) ≡ 1 + 6
â2

â1

y2 , k(q) ≡ â2

â1

q2 + q − 1

36
, (6.5.25)

while the one-forms which determine the fiberation of the ψ and χ directions are given by

ρ̂ = (2− 2g)V − 1

2

(
â2 +

â1

2q

)
(dχ+ V ) , dV =

κ

2− 2g
e2Âdx1 ∧ dx2 . (6.5.26)

The constants â1, â2 are fixed as

â1 ≡
2(2− 2g)e2ν

κ
, â2 ≡ 2(2− 2g)

(
1− 6e2ν

κ

)
. (6.5.27)
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Reduction to ten dimensions

We reduce the BBBW solution to ten dimensions, along χ. In order to do so, we rewrite the
part of ds2

M4
involving dψ or dχ as

e2α1(dχ+ A1)2 + e2α2Dψ2 , (6.5.28)

where

e2α1(y,q) ≡ â2
1

4

fk

q
+

1

4

qf

9

(
â2 +

â1

2q

)2

, (6.5.29a)

e2α2(y,q) ≡ qf

9
− 1

4

(
qf

9

)2(
â2 +

â1

2q

)2

, (6.5.29b)

and

ρ = (2− 2g)V , A1 = V − qf

9

1

2

(
â2 +

â1

2q

)
e−α1Dψ . (6.5.30)

Reducing along dχ yields then

ds2
10 = e2A

[
ds2

AdS5
+ e2ν+2Â(dx2

1 + dx2
2)
]

+ ds2
M3

, (6.5.31)

where

e4A−2φds2
M3

=

(
1 +

4y2

qf

)
dy2 +

qf

k

(
dq +

12yk

qf
dy

)2

+ e2α2Dψ2 . (6.5.32)

Furthermore,

φ =
3

2
(α1 − 2λ) , A =

1

2
α1 . (6.5.33)

The reduced BBBW solution fits into the generic branch of the first case of subsection 6.4.2 for
c1 = 9â1+â2

108
, c2 = (9â1+â2)â2

18â1
and c = â2

3â1
. The coordinate transformation relating x, y to q is:

x = − â1(18â1 + â2 + 18â2q)

36â2

(
1 + 6

â2

â1

y2

)
. (6.5.34)

Certain generalizations of the BBBW class of solutions have also appeared [170, 171]. It
would be interesting to reduce these to solutions of IIA supergravity and verify that they fit in
our classification of section 6.2.

6.6 Compactification solutions

We will now analyze further the case we started considering in section 6.4.3. We will see that
it corresponds to a compactification of the AdS7 solutions considered in chapter 5. Moreover,
we will be able to find the most general explicit solution, thus providing a new infinite class of
AdS5 solutions.
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6.6.1 Metric and fluxes

In section 6.4.3, we found that there are AdS5 solutions associated with solutions of the ODE
(6.4.28). Replacing the expression of A given there, we have

β (yβ′′ − β′) =
1

2
y(β′)2 − F0

144y
(β′)3 . (6.6.1)

This equation is non-linear; however, it can be rewritten as

(q2
5)′ =

2

9
F0 , q5 ≡ −

4y
√
β

β′
. (6.6.2)

We will see later that q5 has actually a useful physical interpretation (similar to the q of 5): it
will turn out to be related to D8-brane positions. In any case, the trick (6.6.2) allows us to solve
the ODE (6.6.1): indeed we can write 16y2 β

(β′)2
= 2

9
F0(y − ŷ0), which can now be integrated

by quadrature.
We will postpone the detailed analysis of the solutions of (6.6.1) to sections 6.6.5 and 6.6.6.

For the time being, in this subsection we will collect various features of the resulting AdS5

solutions.
The internal metric for the class we are considering can be extracted from the general ex-

pression (6.2.10). However, at first its global meaning is not transparent. It proves useful to
trade the coordinate x for a new coordinate θ, defined by

cos θ =
−3x+ ε√

β
. (6.6.3)

The metric then becomes

ds2
M5

= e2Ads2
Σg + ds2

M3
, ds2

M3
= dr2 +

1

9
e2A(1− a2

1)ds2
S2 . (6.6.4)

Here
ds2

S2 = dθ2 + sin2 θDψ2 (6.6.5)

is the metric of the round S2, fibered over Σg, which is a Riemann surface of Gaussian curvature
−3 (recalling (6.4.4), and c = −3) and hence g ≥ 2; The new coordinate r is defined by

dr =
e3A

√
β
dy . (6.6.6)

Moreover, from (6.2.7) and (6.4.6) we have

1− a2
1 =

3β

3β − yβ′
, e4A = − β′

12y
, eφ =

√
3e5A

√
3β − yβ′

. (6.6.7)

We can now remark that the q5 defined in (6.6.2) is

q5 ≡ e−φRS2 ≡ 1

3
eA−φ

√
1− a2

1 = −4y
√
β

β′
. (6.6.8)



6.6 Compactification solutions 149

RS2 = 1
3
eA
√

1− a2
1 is the radius of the round S2, as inferred from (6.6.4). The role of this

particular combination of the radius and dilaton will become clearer in section 6.6.4.
From (6.6.8) and (6.6.7) we see that for the solution to make sense we must require

β ≥ 0 , −β
′

y
≥ 0 . (6.6.9)

We can now also obtain the fluxes, from the formulas in section 6.2.2. We have

F2 = q5

[
−(volS2 + 3 cos θvolΣg) +

1

3
F0a1e

A+φvolS2

]
, (6.6.10)

where volS2 ≡ sin θdθ ∧Dψ. The four-form flux reads

F4 =
1

3
volΣg ∧

[
2yβ

3β − yβ′
cos θvolS2 + sin2 θDψ ∧ dy

]
. (6.6.11)

When F0 6= 0, we need not give an expression for H: as usual for massive IIA, it can be written
as H = dB, where

B =
F2

F0

+ b , (6.6.12)

where b is a closed two-form. When F0 = 0, the only solution in the class we are considering
in this section is the Maldacena–Núñez solution; an expression for B is presented for that case
in (6.5.21).

We can observe already now that the metric (6.6.4) and the flux (6.6.10) look related to
those for the AdS7 solutions in 5; see (5.3.16) and (5.3.9). The expressions are very similar;
one obvious difference is that the three-dimensional metric in (6.6.4) is fibered over Σg, and
that the flux (6.6.10) has extra legs along Σg. Except for a few numerical factors, everything
seems to correspond nicely; the role of x in chapter 5 seems to be played here by a1:

x in AdS7 → a1 here. (6.6.13)

Actually this correspondence can be justified a little better. In 5, x is the zero-form part of Imψ1
+

introduced in 5.3.1, which is the calibration for a D6-brane extended along AdS7. The analogue
of this in our case would be a D6-brane extended along AdS5 × Σg; the relevant calibration is
the part along u∧ ū of Imψ1

+ of the present work. Looking at (6.1.26), we see that that is indeed
Rea = a1.

Motivated by this, in this section we will also use the name

x5 ≡ a1 . (6.6.14)

This x5 is meant to evoke the x in 5.3.1, and is not to be confused with the coordinate x we
temporarily used in sections 6.2 and 6.4.
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6.6.2 Correspondence with AdS7

We will now show that solutions of the type considered in section 6.4.3 are in one-to-one corre-
spondence with the AdS7 solutions in 5. The map we will find is directly inspired from a similar
map from AdS4 to AdS7 found in [159]. It would be possible to present our new AdS5 solutions
perfectly independently from the map to AdS7; in fact, in finding the analytic solutions the map
does not help at all. However, the existence of the map tells us right away that infinitely many
regular solutions do exist, and what data they depend on.

Let us start from (6.6.1). Using the definition (6.6.6), the expressions (6.6.7) and the expres-
sion x5 = a1 = −2ye−3A+φ from (6.6.14), (6.2.7), we can see that

∂rφ =
1

4

e−A√
1− x2

5

(11x5 − 2x3
5 + (2x2

5 − 5)F0e
A+φ) ,

∂rx5 = −1

2
e−A
√

1− x2
5(4− x2

5 + x5F0e
A+φ) , (6.6.15)

∂rA =
1

4

e−A√
1− x2

5

(3x5 − F0e
A+φ) .

Conversely, given a solution to this system, one may define β = e10A−2φ(1−x2
5), y = −1

2
x5e

3A−φ

(with an eye to (6.4.6), (6.2.7), which correspond to (6.6.7)); if one then eliminates r from
(6.6.15), the resulting equations imply β′ = −12ye4A (the second in (6.6.7)), and (6.6.1). So
the system (6.6.15) is in fact an equivalent way to characterize our solutions. It looks much
more complicated than the original ODE (6.6.1). We write it because it bears an uncanny re-
semblance with the system in (5.3.17): a few numerical factors have changed, and two new
terms have appeared. This suggests that there might be a close relationship between solutions
of one system and solutions of the other. This is in fact the case: to any solution (φ5, x5, A5) of
(6.6.15) one can associate a solution (φ7, x7, A7) of (5.3.17) given by

eφ7 =

(
3

4

)1/4
eφ5√

1− 1
4
x2

5

, eA7 =

(
4

3

)3/4

eA5 ,

x7 =

(
3

4

)1/2
x5√

1− 1
4
x2

5

, r7 =

(
4

3

)1/4

r5 .

(6.6.16)

Comparing (6.6.4) with (5.3.16), we find that the map acts on the metrics as

e2A5(ds2
AdS5

+ ds2
Σg) + dr2

5+
1− x2

5

9
e2A5ds2

S2 →√
4

3

(
4

3
e2A5ds2

AdS7
+ dr2

5 +
e2A5

12

1− x2
5

1− 1
4
x2

5

ds2
S2

)
.

(6.6.17)

Conversely, to any solution (φ7, x7, A7) of (5.3.17), one can associate a solution (φ5, x5, A5) of
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(6.6.15) given by

eφ5 =

(
4

3

)1/4
eφ7√

1 + 1
3
x2

7

, eA5 =

(
3

4

)3/4

eA7 ,

x5 =

(
4

3

)1/2
x7√

1 + 1
3
x2

7

, r5 =

(
3

4

)1/4

r7 .

(6.6.18)

This inverse map now acts on the metrics as

e2A7ds2
AdS7

+ dr2
7+

1− x2
7

16
e2A7ds2

S2 →√
3

4

(
3

4
e2A7(ds2

AdS5
+ ds2

Σg) + dr2
7 +

1

12

1− x2
7

1 + 1
3
x2

7

e2A7ds2
S2

)
.

(6.6.19)

The simplicity of this map is basically a generalization of the simple Maldacena–Núñez solution
[152], with the 1 + 1

3
x2

7 factor ultimately playing the role of the ∆ = 1 + sin2 θ factor in [152].
One can also apply (6.6.16) directly to (6.6.7), and infer the expressions for the variables of

the seven-dimensional solution:

eA7 =
2

3

(
−β

′

y

)1/4

, x7 =

√
−yβ′

4β − yβ′
, eφ7 =

(−β′/y)5/4

12
√

4β − yβ′
. (6.6.20)

Moreover, dr7 =
(

3
4

)2 e3A7√
β
dy.

In 5, solving the system of ODEs in (5.3.17) was only part of the problem. First, one had to
take care of flux quantization; second, most solutions include D8’s, and one must take care that
supersymmetry be preserved also on top of them. We will see in section 6.6.4 that the relevant
conditions also map nicely under (6.6.16); that will lead us to conclude that there are infinitely
many AdS5 solutions, each one of them corresponding to the AdS7 solutions in 5 and [147].
Moreover, the map is quite simple: for example, it acts on the metrics as in (6.6.19).

6.6.3 Regularity analysis

We showed that solutions of (6.6.1) are in one-to-one correspondence with solutions of the
system of ODEs relevant for AdS7 solutions. However, (6.6.1) looks much simpler than that
system; hence one may hope to learn more about both the AdS5 and the AdS7 solutions by
studying it.

In this subsection we will see what boundary conditions on (6.6.1) have to be imposed in
order to obtain compact and regular solutions.

We saw in (6.6.4) that the internal metric consists of an M3 fibered over a Riemann surface
Σg; M3 is itself a fiberation of S2 over a one-dimensional space with coordinate r.
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To make M3 compact, we can use the same logic as for the AdS7 solutions of 5. One might
think of making it compact by periodically identifying r, but this doesn’t work for the same
reason as in (5.3.24): the quantity y = −1

2
e3A−φx5 is monotonic — from (6.6.15) we see ∂ry =

e2A−φ
√

1− x2
5, which is always positive; or also, directly from (6.6.6) we see ∂y

∂r
= e−3A

√
β.

So periodically identifying r is not an option. The other way to makeM3 compact is to make the
S2 shrink for two values of r, just like in chapter 5. This is what we will now devote ourselves
to.

To make the S2 shrink, we should make the coefficient (1−a2
1) in (6.6.4) go to zero, which,

recalling (6.6.7), can be accomplished by making β vanish. If β has a single zero,

β = β1(y − y0) +O(y − y0)2 , (6.6.21)

the metric (6.6.4) near y0 is proportional to

dy2

4(y − y0)
+ (y − y0)ds2

S2 , (6.6.22)

which in fact upon defining r =
√
y − y0 turns into

dr2 + r2ds2
S2 , (6.6.23)

which is the flat metric on R3. Hence if β has a single zero at y0 6= 0 the metric is regular.
One might wonder what happens if β has a double zero:

β = β2(y − y0)2 +O(y − y0)3 . (6.6.24)

In this case, (6.6.4) is proportional to dy2√
y−y0 + (y− y0)3/2ds2

S2 , which upon defining ρ = y− y0

turns into
1
√
ρ

(dρ2 + ρ2ds2
S2) ; (6.6.25)

we also have eA ∼ ρ1/4, eφ ∼ ρ3/4. This is obviously not a regular point, but it is the local
behavior appropriate for a D6 stack whose transverse directions are ρ and the S2.

Higher-order zeros do not lead to anything of physical relevance, and in fact they would
not lead to solutions, as we will see later. However, given that we have obtained boundary
conditions corresponding to a regular point and to presence of a D6 stack, it is natural to wonder
whether we can find boundary conditions corresponding to presence of an O6. This is realized
when

β = β0 + β1/2

√
y − y0 +O(y − y0) ; (6.6.26)

in this case the metric is proportional to (y − y0)1/4
(

dy2

y−y0 + 16α2
0ds

2
S2

)
, with α0 ≡

β1/2
β0

. With

the definition ρ =
√
y − y0, this turns into

√
ρ
(
dρ2 + 4α2

0ds
2
S2

)
; (6.6.27)
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moreover, eA ∼ ρ−1/4, eφ ∼ ρ−3/4. These are the appropriate behaviors for fields near the
beginning of an O6 hole: to see this, one can start from the flat space O6 metric, given by
ds2
⊥ = H1/2(dρ2 + ρ2ds2

S2), eA = H1/4, eφ ∝ H3/4, H = 1 − ρ0
ρ

, and expand around ρ = ρ0,
which is indeed the boundary of the O6 hole.

This concludes our study of the physically relevant boundary conditions for the ODE (6.6.1);
as it will turn out, these are the only ones which are actually realized in its solutions. Later in
this section we will turn to the task of finding such solutions.

6.6.4 Flux quantization, D8 branes

Before we look at explicit solutions, we will discuss flux quantization. We will also introduce
D8-branes in our construction, as we have done in 5. This subsection is in many ways similar
to 5.3.8.

We will start with some preliminary comments about theB field. In (6.6.12) we expressed it
in terms of a closed two-form b. We will need this second term because the term F2

F0
in (6.6.12)

will jump as we cross a D8 (since F0 will jump there, by definition). More precisely, looking at
F2 we see that only the term proportional to volS2 + 3 cos θvolΣg jumps (since in the other term
an F0 cancels out). Thus we can limit ourselves to considering b of the form

b = b0(volS2 + 3 cos θvolΣg) , (6.6.28)

which is indeed closed (while volS2 = sin θdθ ∧Dψ would not be, because of the presence of
ρ). (6.6.12) now becomes

B =

(
b0 −

q5

F0

)
(volS2 + 3 cos θvolΣg) +

q5

3
x5e

A+φvolS2 . (6.6.29)

At the poles, for regularity we should have that what multiplies volS2 should go to zero.
However, more precisely B should be understood as a “connection on a gerbe”. Concretely,

this means that it is not necessarily a globally well-defined two-form. On a chart intersection
U∩U ′,BU−BU ′ can be any closed two-form whose periods are integer multiples of 4π2 (known
as a “large gauge transformation”). This translates into the requirement that the coefficient of
volS2 in (6.6.29) should wind π× an integer number of times in going from the north to the
south pole. Alternatively, using Stokes’ theorem, we see that the integral of H between rN and
rS (the positions of the two poles) is∫

M3

H =

∫
S2

∫ rS

rN

drH =

∫
S2

(B(rN)−B(rS)) ; (6.6.30)

thus
∫
M3
H will be an integer multiple of 4π2, in agreement with flux quantization.

After these comments on the NSNS flux H , let us now consider the RR fluxes. First of all,
the zero-form should satisfy F0 = n0

2π
, n0 ∈ Z. For the higher forms, we should consider

F̃2 ≡ F2 −BF0 , F̃4 ≡ F4 −B ∧ F2 +
1

2
B ∧BF0 , (6.6.31)
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which are d-closed (unlike the original F2 and F4, which in our notation are (d−H∧)-closed).
Flux quantization imposes that those should have integer periods. For the two-form we simply
have

F̃2 = −bF0 = −b0F0(volS2 + 3 cos θvolΣg) . (6.6.32)

Integrating this on the fiber S2 and imposing that it is of the form 2πn2, n2 ∈ Z, we find

b0 = − n2

2F0

= −πn2

n0

, (6.6.33)

just like in 5. A gauge transformation will change b0 → b0 + kπ, and simultaneously n2 →
n2 − k, so that (6.6.33) remains satisfied.

Near the north and south pole it is convenient to work in a gauge where B is regular; then∫
F̃2 →

∫
F2, and n2 should be equal to the limit near the pole of

(
b0 − q5

F0
+ q5

3
x5e

A+φ
)

, the
coefficient of volS2 in (6.6.29). For a regular point, n2 near the pole is zero, and both q5 → 0
and q5x5e

A+φ → 0. For a stack of n2 D6-branes, q5x5e
A+φ → 0, and q5 → −n2

2
. In section

6.6.3, we saw that presence of a D6 corresponds to a double zero in β, (6.6.24). The condition
we just saw will then discretize the parameter β2, giving

β2 =

(
4y0

n2

)2

. (6.6.34)

An O6 point is different: n2 = ±1 (depending on whether we are considering the north or
south pole), q5 → 0, but q5

3
x5e

A+φ is non zero, and will have to tend to − n2

2F0
. Again in section

6.6.3 we saw that an O6 corresponds in our class of solutions to the presence of a square root,
(6.6.26). Flux quantization will then fix

β0 = (18y0)2 . (6.6.35)

The four-form F̃4 can now be written, after some manipulations, as

F̃4 =

(
3

F0

(
−q2

5 +
n2

2

4

)
cos θvolS2 +

1

3
sin2 θDψ ∧ dy

)
∧ volΣg . (6.6.36)

Using (6.6.2) we can also write F̃4 = dC̃3, where

C̃3 =
3

2F0

(
−q2

5 +
n2

2

4

)
sin2 θDψ ∧ volΣg . (6.6.37)

If both poles are regular points, C̃3 is a regular form. Indeed, as we saw, at such a pole we
should have n2 = 0 and q5 → 0. So the coefficient

(
−q2

5 +
n2
2

4

)
will actually go to zero at the

pole. Now, using the fact that β has a single zero (6.6.21), from (6.6.6) and (6.6.8) we see that
q5 starts with a linear power in r. Hence we have

C̃3 ∼ r2 sin2 θDψ ∧ volΣg . (6.6.38)
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Now, r2 sin2 θdψ, going from spherical to cartesian coordinates xi, i = 1, 2, 3, is proportional
to x1dx2 − x2dx1, and hence is regular. All in all, we conclude that F̃4 does not have any
non-zero periods, since it is exact. In presence of a D6 or O6 point, it is best to go back to
(6.6.36). The space is topologically an S3 fiberation over Σg; standard topological arguments
tell us that its cohomology is just the product of that of S3 and that of Σg. As such it would have
no four-cycles. Thus so far flux quantization for F̃4 is not an issue.

We will now introduce D8-branes. We will consider them to be extended along all directions
except r. Their treatment is very similar to chapter 5 and we will be brief. The defining feature
of a D8 stack is that the Romans mass F0 jumps as we go across them. Let us call n0 and n′0 the
flux integers on the two sides. Moreover, we will allow the D8’s to have non-zero worldsheet
flux, which can also be thought of as a smeared D6 charge. This will make the flux integer for F̃2

jump as well; we will call n2 and n′2 its value on the two sides. The “slope” µ ≡ ∆n2

∆n0
≡ n′2−n2

n′0−n0

needs to be an integer. With this notation, imposing that (6.6.29) be continuous we find the
condition

q5|D8 =
1

2

n′2n0 − n2n
′
0

n′0 − n0

=
1

2
(−n2 + µn0) =

1

2
(−n′2 + µn′0) . (6.6.39)

This is to be read as a condition fixing the D8’s position.
One might now also wonder whether the flux of F̃4 along Σg × S2 might jump between

D8’s, as does the integral of F̃2. But actually
∫
S2 cos θvolS2 = 0. So even in presence of D8’s

we need not worry about flux quantization for F̃4.
Crucially, (6.6.39) is exactly the same condition that was found for D8-branes in (5.3.45).

The function called q in chapter 5, which we will call q7 here, is not exactly the same as our q5

defined in (6.6.8): indeed q7 ≡ 1
4
eA7−φ7

√
1− x2

7. However, using the map (6.6.16), we see that
the different overall factor is reabsorbed:6

q5 = q7 . (6.6.40)

So (6.6.39) fixes the D8’s at exactly the same position in an AdS5 solution and in its AdS7

solution.
Since (6.6.39) was found by imposing that B should be continuous, it looks easy to impose

the condition on flux quantization. As remarked earlier, by Stokes’ theorem we can relate the
integrality of H to the periodicity of the coefficient of volS2 in B. (This periodicity was ex-
pressed visually in several figures in 5 and [147], as a dashed green line.) However, in presence
of D8’s one might encounter a region where F0 = 0; generically such a region will exist (al-
though there are also “limiting cases” where it does not exist; see [147, Sec. 4.2]). In such a
region, (6.6.12) (and hence (6.6.29)) cannot be used; we have to resort to (6.5.21). This allows
to write a general expression for the integral of H , as shown in [147, Eq.(4.7)].

Since we are going to simplify that formula for AdS7 solutions, let us review it quickly
here. To simplify things a bit, one derives first an expression for the integral in the “northern

6Actually, the condition that the system (6.6.15) be mapped to the similar system (5.3.17) for AdS7 solutions
only fixed the map (6.6.16) up to a constant. We fixed the constant so that (6.6.39) would look exactly equal to
(5.3.45).



156 6. Supersymmetric AdS5 solutions of type IIA supergravity

hemisphere”, between x7 = 1 and x7 = 0; it can be shown that x7 = 0 is in the massless region,
where F0 = 0. There might be many D8’s; let D8n be the one right before the massless region,
{n2,n, n0,n = 0} the flux parameters right after it, and {n2,n−1, n0,n−1} the ones right before it.
Then we can divide the integral into a contribution from the massive region and one from the
massless region:∫

north

H =

∫ D8n

rN

H +

∫ x=0

D8n

H

= 4π

[
q7

(
x7

4
eA7+φ7 − 1

F0,n−1

)
− n2,n−1

2F0,n−1

+
3

32

R3

n2,n

(
x7 −

x3
7

3

)]
D8n

= 4π

[
−πµn +

1

4
qx7e

A7+φ7 − 1

4
q7x7e

A7+φ7
3− x2

7

1− x2
7

]
D8n

= 4π

[
−πµn +

R3

16n2,n

x7

]
D8n

.

(6.6.41)

We have used that for the massless solution −8q7
eA7+φ7

1−x27
= −2 e2A7√

1−x27
= R3

n2
, where R is a

constant. After this simplification, and putting together the contribution from
∫

south
H from the

“southern hemisphere”, we can write

N ≡ − 1

4π2

∫
H = (|µn|+ |µn+1|) +

1

4π
e2A(x=0)(|xn|+ |xn+1|) , (6.6.42)

where xn and xn+1 are the values of x7 at the branes D8n and D8n+1.7

To derive a similar expression for AdS5 solutions, we follow a similar logic. It proves con-
venient to use from the very beginning (A7, x7, φ7) variables, which are related to (A5, x5, φ5)
variables via (6.6.16). We can use (6.6.29) and (6.5.21), the latter of which is already expressed
in terms of x7. Some factors in the computation change, but remarkably the result turns out to
be exactly the same as in (6.6.42). As a consequence, if the H flux quantization is satisfied for
an AdS7 solution, it is also satisfied for an AdS5 solution, and viceversa.

So the conclusion of this section is that the flux quantization conditions and the constraints
fixing the D8-brane positions are all precisely mapped by (6.6.16), in such a way that if they are
satisfied for an AdS7 solution they are also automatically satisfied for an AdS5 solution. This
proves that the map (6.6.16) produces infinitely many AdS5 solutions.

6.6.5 The simplest massive solution

We will now start studying solutions to (6.6.1), and their associated physics. We have already
indicated in (6.6.2) how to solve it analytically. However, in this section we will warm up by
a perturbative study, which we find instructive and which will allow us to isolate a particularly
nice and useful solution.

7The µi and xi before the massless region are positive, while those after the massless region are negative.
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In section 6.6.3 we studied the boundary conditions for the ODE (6.6.1). We can now
proceed to study it in the neighborhood of such a solution. We will do so by assuming analytic
behavior around y0: β =

∑∞
k=1 βk(y − y0)k, by plugging this Taylor expansion in (6.6.1), and

solving order by order.
Already at order zero we find (

β1 −
72y2

0

F0

)
β2

1 = 0 . (6.6.43)

The first branch, β1 =
72y20
F0

, lets β have a single zero, which as we saw after (6.6.21) corresponds
to a regular point. The second branch, β1 = 0, makes β have a double zero, which as we saw
after (6.6.24) corresponds to a D6. In this section we will use the first branch, leaving the second
for section 6.6.6.

Continuing to solve (6.6.1) perturbatively after having set β1 =
72y20
F0

, we find a nice surprise:
the perturbative expansion stops after three iterations. This leads to a very simple solution to
(6.6.1):

β =
8

F0

(y − y0)(y + 2y0)2 . (6.6.44)

This has the desired single zero at y = y0, and it also has a double zero at y = −2y0, signaling
that M3 has a D6 stack there. These are the qualitative features one expects from the solution in
5.4.2; in that chapter, that solution was argued to exist (along with many others, which we shall
discuss in due course) on numerical grounds — see in particular 5.3. It would also be possible
to find (6.6.44) by finding the general solution, and imposing the presence of a simple zero; we
will see this in section 6.6.6.

(6.6.44) looks superficially very similar to (6.4.18). Taking c1 = −y2
0/4, we see that (6.4.18)

has two double zeros, at y = ±y0, corresponding to two D6 stacks. This is indeed correct for that
massless solution: the two D6 stacks are generated by the reduction from eleven dimensions,
in a similar way as in section 5.4.1. Notice also that the massless limit of (6.6.44), on the other
hand, does not exist, since F0 appears there in the denominator.

Now that we have obtained one solution of (6.6.44), we can pause to explore what the
resulting AdS5 solution looks like; moreover, using the map (6.6.16), we can also produce an
AdS7 solution which will indeed be the one found numerically in section 5.4.2.

The conditions (6.6.9) give us two possibilities:

{y0 < 0, F0 > 0, y ∈ [y0,−2y0]} or {y0 > 0, F0 < 0, y ∈ [−2y0, y0]} . (6.6.45)

We will assume the first possibility. One can then write the metric and fields most conveniently
in terms of

ỹ ≡ y

y0

, (6.6.46)

which then has to belong to [−2, 1]. We have

ds2
M5

= e2Ads2
Σg +

√
− y0

8F0

(
dỹ2

(1− ỹ)
√
ỹ + 2

+
4

9

(1− ỹ)(ỹ + 2)3/2

2− ỹ
ds2

S2

)
, (6.6.47)
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and

e4A = −2
y0

F0

(2 + ỹ) , e2φ =

√
− 1

2y0F 3
0

(ỹ + 2)3/2

2− ỹ
. (6.6.48)

We also need to implement flux quantization, which in this case is the statement that the D6
stack at the ỹ = −2 point has an integer number n2 of D6-branes. This constraint was discussed
right below (6.6.33). From (6.6.8) and (6.6.44) we find q5 = 1

3

√
2F0(y − y0), which implies

y0 = −3

8

n2
2

F0

. (6.6.49)

We did not replace this constraint in (6.6.47), as we did in (6.0.2), because later we will glue
pieces of it together with other metrics and with itself, and in that context the parameter y0 will
be fixed by flux quantization a bit differently.

The AdS7 solutions can now be found easily by applying the map (6.6.16), and in particular
its action on the metric, (6.6.17). The internal metric on M3 is

ds2
M3

=

√
− y0

6F0

(
dỹ2

(1− ỹ)
√
ỹ + 2

+
4

3

(1− ỹ)(ỹ + 2)3/2

8− 4ỹ − ỹ2
ds2

S2

)
, (6.6.50)

and

e4A = −
(

4

3

)3

2
y0

F0

(ỹ + 2) , e2φ =

√
− 6

y0F 3
0

(ỹ + 2)3/2

8− 4ỹ − ỹ2
. (6.6.51)

(6.6.50) and (6.6.51) give analytically the solution found numerically in section 5.4.2. The flux
F2 can be read off from the expression F2 = q(x7

4
F0e

A+φ − 1)volS2 in (5.3.42):

F2 =
k√
3

(1− ỹ)3/2(ỹ + 4)

8− 4ỹ − ỹ2
vol2 . (6.6.52)

For both the AdS5 and AdS7 solutions, from (6.6.49) we can see that, making n2 large, cur-
vature and string coupling become as small as one wishes. This guarantees that the supergravity
approximation is applicable. Similar limits can be taken for the solutions that we will present
later. (This was shown in general in [147, Sec. 4.1].)

6.6.6 General massive solution

Let us now go back to (6.6.43) and see what happens if we use the branch β1 = 0. This means
that β has a double zero, which corresponds to presence of a D6 stack at y = −2y0.

The perturbative expansion for (6.6.1) now does not truncate anymore. It is possible to go to
higher order, guess an expression for the k-th term βk in the Taylor expansion β =

∑∞
k=1 βk(y−

y0)k, and resum this guess. (This is in fact the way we originally proceeded.) At this point it
is of course much easier to use the trick explained below (6.6.2), and find the general solution
directly. Assuming y0 > 0, it reads

β =
y3

0

b3
2F0

(√
ŷ − 6

)2 (
ŷ + 6

√
ŷ + 6b2 − 72

)2

, (6.6.53)
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where

ŷ ≡ 2b2

(
y

y0

− 1

)
+ 36 , b2 ≡

F0

y0

β2 . (6.6.54)

This solution now depends on the two parameters y0 and b2, rather than just one as (6.6.44), and
we expect it to be the most general solution to (6.6.1). To see whether this is true, let us analyze
its features and compare them to what we expect from the qualitative study in section 5.4.2.

(6.6.53) has zeros in ŷ = 36 (which corresponds to y = y0) and for b2 < 12 also in
ŷ =

√
−3 +

√
81− 6b2. Also, at ŷ = 0 it has a point where it behaves as β ∼ β0 +

√
ŷ+O(ŷ),

which up to translation is the same as in (6.6.26), which corresponds to an O6 point. Taking also
into account the constraints in (6.6.9), we find two possibilities, and one special case between
them.

• If b2 < 12, the solution is defined in the interval ŷ ∈ [
√
−3 +

√
81− 6b2, 36]; there are

two double zeros at both extrema. This represents a solution with two D6 stacks at both
ends, but where the numbers of D6s are not the same on the two sides (unlike for (6.4.18)).
Under the map (6.6.16) to AdS7, it becomes a solution that was briefly mentioned at the
end of 5.4.2; in terms of the graph in 5.3 in chapter 5, its path would come from below
and miss the green dot on the top side from the left, so as to end up in a D6 asymptotics
on the top side as well.

• If b2 > 12, the solution is defined for ŷ ∈ [0, 36]; there is a double zero at ŷ = 36, and
an O6 singularity (see (6.6.26)) at ŷ = 0. This represents a solution with one D6 stack at
one end, and one O6 at the other extremum. Under the map to AdS7, it becomes another
solution that was briefly mentioned in section 5.4.2; in terms of the graph in 5.3 in chapter
5, its path would come from below and miss the green dot on the top side from the right,
so as to end up in an O6 asymptotics on the top side.

• In the limiting case, b2 = 12, the solution is again defined for ŷ ∈ [0, 36]; under the map
to AdS7 we expect to find the case where (again referring to 5.3) we hit the green dot at
the top, which should correspond to having a regular point. Indeed in this case (6.6.53)
reduces to

β =
y3

0

1728F0

ŷ(ŷ − 36)2 , (6.6.55)

which has a double zero in ŷ = 36 and a single zero in ŷ = 0; it is essentially (6.6.44).
It would have been possible to obtain (6.6.44) this way, but we chose to highlight it in a
subsection by itself because of its simplicity.

So the solution (6.6.53) has the features we expected from the qualitative analysis in 5.4.2.
We record also here some data of the corresponding solutions. For the AdS5 solution, the
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metric, warping and dilaton read

ds2
M5

= e2Ads2
Σg +

y
5/4
0 dŷ2

4(b5
2F

3
0 ŷ

3β)1/4
+

(b7
2F0ŷ)1/4

18y
7/4
0

β3/4ds2
S2

2(b2 − 18)2 + 18(b2 − 12)
√
ŷ − (b2 − 18)ŷ

,

e8A =
b2β

F0y0ŷ
, e8φ =

b11
2 β

3

16F 3
0 y

11
0 ŷ

3
(
2(b2 − 18)2 + 18(b2 − 12)

√
ŷ − (b2 − 18)ŷ

)4 .

(6.6.56)

The AdS7 solution reads

ds2
M3

=
y

5/4
0 dŷ2

4(b5
2F

3
0 ŷ

3β)1/4
+

(b7
2F0ŷ)1/4

3y
7/4
0

β3/4ds2
S2

12(b2 − 18)2 + 144(b2 − 12)
√
ŷ − 12(b2 − 18)ŷ − ŷ2

,

e8A =
212b2β

36F0y0ŷ
, e8φ =

144b11
2 β

3

F 3
0 y

11
0 ŷ

3
(
−12(b2 − 18)2 − 144(b2 − 12)

√
ŷ + 12(b2 − 18)ŷ + ŷ2

)4 .

(6.6.57)

Finally, flux quantization can be taken into account by using (6.6.33), (6.6.34) and the ex-
pansion of β around its zeros (or around its zero and its square root point, for the O6–D6 case).
We obtain two equations, which discretize the two parameters b2 and y0. The expressions are
not particularly inspiring (especially in the D6–D6 case) and we will not give them here.

6.6.7 Some solutions with D8’s

We will now show two simple examples of solutions with D8-branes. These will be the ones
studied numerically in 5.4.3; here we will give their analytic expressions. We will simply have
to piece together solutions we have already studied; all we will have to work out is the position
of the D8’s.

The first example is a solution with only one D8 stack. This can be obtained by gluing two
metrics of the type (6.6.47). We will assume

y0 < 0 , F0 > 0 ; y′0 > 0 , F ′0 < 0 . (6.6.58)

Following the logic in section 5.4.3, the flux quantization conditions can be satisfied by taking
for example the two-form flux integer after the D8 stack to vanish, n′2 = 0, n2 = µ(n′0 − n0),
µ ∈ Z, and

n′0 = n0

(
1− N

µ

)
, (6.6.59)

where N = 1
4π2

∫
H is the NSNS flux integer. (Recall that F0 = n0

2π
, and similarly for F ′0.) As

usual the metric can be written as ds2
M5

= e2Ads2
Σg

+ ds2
M3

, and putting together two copies of
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(6.6.47) we can write8

ds2
M3

=


1√
8F0

(
dy2

(y − y0)
√
−2y0 − y

+
4

9

(y − y0)(−2y0 − y)3/2

−y0(y − 2y0)
ds2

S2

)
, y0 < y < yD8 ;

1√
−8F ′0

(
dy2

(y′0 − y)
√

2y′0 + y
+

4

9

(y′0 − y)(2y′0 + y)3/2

y′0(2y′0 − y)
ds2

S2

)
, yD8 < y < y′0 .

(6.6.60)
We reverted to using y rather than ŷ, so as to be able to use the same coordinate before and after
the D8 stack. Imposing that A and φ (or, equivalently, that β and β′) be continuous across the
D8 stack, we get

y0 =
1

2

2F0 − F ′0
F0 + F ′0

yD8 , y′0 =
1

2

2F ′0 − F0

F0 + F ′0
yD8 . (6.6.61)

We also have to impose (6.6.39), which fixes

yD8 = y0 +
9(F ′0)2n2

2

8F0(F0 − F ′0)2
, (6.6.62)

which together with (6.6.61) and (6.6.59) gives

y0 = −3

2
F0π

2(N2−µ2) , y′0 =
3

2
F0π

2(N−µ)(2N−µ) , yD8 = 3F0π
2(N−2µ)(N−µ) .

(6.6.63)
One can also obtain the corresponding AdS7 solution. This can be done using the map

(6.6.19) on (6.6.60). Alternatively, we can just write one copy of (6.6.50) for y0 < y < yD8, and
a second copy of (6.6.50), formally obtained by y → −y, y0 → −y′0, F0 → −F ′0. This provides
the analytic expression of the solution in figure 5.4.

We can also consider a configuration with two D8 stacks. We will take it to by symmetric,
in the sense that the flux integers before the first D8 stack will be (n0, 0), between the two
stacks (0, n2 = −k < 0), and after the second stack (−n0, 0). This corresponds to figure
5.5. Again we will assume y0 < 0; the positions of the two D8 stacks will be yD8 < 0 and
yD8′ = −yD8 > 0. We will give only the AdS7 internal metric:

ds2
M3

=



1√
6F0

(
dy2

(y − y0)
√
−2y0 − y

+
4

3

(y − y0)(−2y0 − y)3/2

8y2
0 − 4yy0 − y2

ds2
S2

)
, y0 < y < yD8 ;

244R6dy2 + (92R6 − 322y2)2ds2
S2

3 · 65(92R6 − 322y2)1/2
, yD8 < y < −yD8 ;

1√
6F0

(
dy2

(−y0 − y)
√
−2y0 + y

+
4

3

(−y0 − y)(−2y0 + y)3/2

8y0 + 4yy0 − y2
ds2

S2

)
−yD8 < y < −y0 ;

(6.6.64)
8The sign differences between the expression before and after the D8 have to do with the simplification of

factors involving
√
F 2

0 = |F0| from applying (6.6.7) to (6.6.44).



162 6. Supersymmetric AdS5 solutions of type IIA supergravity

the metric in the middle region is the known massless metric in (5.4.4), with the change of
coordinate (6.5.20).

We now have three unknowns: R, y0, yD8. Continuity of β and β′ this time only imposes
one condition; we then have (6.6.39) and the condition (6.6.42). We get

y0 = −9

4
kπ(N − µ) , yD8 = −9

4
kπ(N − 2µ) ,

R6 =
64

3
k2π2(3N2 − 4µ2) ,

(6.6.65)

where in this case µ = k
n0

. Notice that the in this case the bound in [147, Eq.(4.10)] (which can
also be found by (6.6.42)) implies N > 2µ.

It would now be possible to produce solutions with a larger number of D8’s. It is in fact
possible to introduce an arbitrary number of them, although there are certain constraints on
their numbers and their D6 charges [147, Sec. 4]. The most general solution can be labeled by
the choice of two Young diagrams; there is also a one-to-one correspondence with the brane
configurations in [124, 125]. One can in fact think of the AdS7 solutions as a particular near-
horizon limit of the brane configurations. For more details, see [147]. For these more general
solutions, we expect to have to glue together not only pieces of the solution in subsection 6.6.5
and of the massless solution, but also pieces of the more complicated solution in 6.6.6.

6.6.8 Field theory interpretation

In this section we have found infinitely many new AdS5 solutions in massive IIA, and we have
established that they are in one-to-one correspondence with the AdS7 solutions of 5 and [147].

It is easy to guess the field theory interpretation of this correspondence. Recall first the
Maldacena–Núñez N = 2 solutions [152]. The original AdS7 × S4 solution of M-theory
has an SO(5) R-symmetry; when one compactifies on a Riemann surface Σg, one “mixes”
the SO(2) of local transformations on Σg with an SO(2) ⊂ SO(5) subgroup; the commutant
SO(2)×SO(3)∼=U(2) remains as the R-symmetry of the resultingN = 2 CFT4. This is reflected
in the form of the metric of the S4, that gets distorted (except for the directions protected by the
R-symmetry).

In similar N = 1 solutions [152, 154], the SO(2) is embedded in SO(5) in a more intricate
way, so that its commutant is a U(1), which is indeed the R-symmetry of an N = 1 theory.

For us, the CFT6 has only (1, 0) supersymmetry, and thus its R-symmetry is already only
SU(2). The twisting is very similar to the usual one in [152]: it is signaled by the fact that the
ψ coordinate is fibered over the Riemann surface Σg.

When we mix this with the SO(2) of local transformations on Σg, the commutant is only a
U(1). So in principle there is no symmetry protecting the shape of the internal S2 in the AdS7

solutions; indeed the metric (6.6.4) does not have SO(3) isometry, because the ψ direction
is fibered over Σg. What is a bit surprising is that the breaking is not more severe: (6.6.5)
might have become considerably more complicated, with sin θ for example being replaced by
a different function. Likewise, in the fluxes, one can see that there is no SO(3) symmetry: the



6.6 Compactification solutions 163

cos θ in front of volΣg , for example, breaks it. Still, there are various nice volS2 terms which
were not guaranteed to appear.

In any case, we interpret our solutions as the twisted compactification of the CFT6 dual to
the AdS7 solutions in 5 and [147]. Recently, there has been a lot of progress in understanding
such compactifications for the (2, 0) theories [96, 153, 154], and it would be very interesting
to extend those results to our AdS5 solutions. Here, we will limit ourselves to pointing out a
couple of preliminary results about the number of degrees of freedom.

A common way of estimating the number of degrees of freedom using holography in any
dimension is to introduce a cut-off in AdS, and estimate the Bekenstein–Hawking entropy (see

for example [172, Sec. 3.1.3]). This leads to
R5

AdS7

GN,7
in AdS7, and to

R3
AdS5

GN,5
in AdS5, where GN,d

is Newton’s constant in d dimensions. The latter can be computed as 1
g2s

vol10−d. In a warped
compactification with non-constant dilaton, both RAdS and gs are non-constant, and should be
integrated over the internal space. In our case, for AdS7 this leads to

F0,6 ≡
∫
M3

e5A7−2φ7vol3 (6.6.66)

and for AdS5 to F0,4 ≡
∫
M5
e5A5−2φ5vol5. These can be thought of as the coefficient in the

thermal partition function, F = F0,dV T
d, where V is the volume of space and T is temperature.

These computations however are basically the same for the coefficients in the Weyl anomaly, at
least at leading order (i.e. in the supergravity approximation).

As a consequence of our map (6.6.16), F0,6 and F0,4 are related. Taking into account the
transformation of the volume form according to (6.6.17), we find

F0,4 =

(
3

4

)4

F0,6Vol(Σg) . (6.6.67)

The volume of Σg can be easily computed using Gauss–Bonnet and the fact that its scalar
curvature equals −6: we get

Vol(Σg) =
4

3
π(g − 1) . (6.6.68)

So the ratio of degrees of fredom in four and six dimensions is universal, in that it depends only
on g and not on the precise (1, 0) theory we are considering in our class. This is reminiscent
of what happens for compactifications of the (2, 0) theory; see e.g. [153, Eq.(2.8)], or [154,
Eq. (2.22)].

We have not computed F0,6 in full generality for the (1, 0) theories. This would now be
possible in principle, since the analytic expressions are now known. One first example is the
solution in section 6.6.5. The corresponding brane configuration according to the identification
in [147] consists in k D6’s ending on N = k

n0
NS5-branes; see figure 6.1(a). We get

F0,6 =
512

45
k2π4N3 , (6.6.69)

which reassuringly goes like N3. (By way of comparison, for the massless case one gets F0,6 =
128
3
k2π4N3.)
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(a) (b)

Figure 6.1: Brane configurations for two sample theories. The circles represent stacks of N
NS5-branes; the horizontal lines represent D6-branes; the vertical lines represent D8-branes. In
the second case, on each side we have n0 = 2 D8-branes; |µ| = 3 D6-branes end on each, for a
total of k = n0|µ| = 6.

We also computed F0,6 for the solution (6.6.64), which has two D8’s and a massless region
between them. The corresponding brane configuration would be N NS5-branes in the middle
with k = µn0 D6’s sticking out of them, ending on n0 D8-branes both on the left and on
the right; see figure 6.1(b). This case was considered in [147, Sec. 5], where approximate
expressions for F0,6 were computed, using perturbation theory around the massless limit. Using
(6.6.64) we can now obtain the exact result:

F0,6 =
128

3
k2π4

(
N3 − 4Nµ2 +

16

5
µ3

)
. (6.6.70)

This agrees with [147, Sec. 5], but is now exact. Recall that µ = k
n0

; since this number can be
large, the second and third term are also large, and are not competing with stringy corrections.
Using (6.6.67), and comparing with the (2, 0) theory to fix the proportionality factors, we get
that for the CFT4 theory a = c = 1

3
(g − 1)

(
N3 − 4Nµ2 + 16

5
µ3
)
. Stringy corrections will

modify this result with terms linear in N and probably in µ.

6.7 Summary of the results and outlook

The main achieved goal of this chapter is the classification of AdS5 ×M5 solutions of massive
type IIA supergravity. As in 4 and 5, we reduced the supersymmetry equations in terms of
six PDEs. All the fields, such us the dilaton, the metric and the fluxes, would be completely
determined by the solution of those PDE’s. The geometry of M5 is given by a fiberation of
a three-dimensional manifold, M3, over a two-dimensional space C. We were able to recover
many known solutions, mainly arising from compactification of eleven-dimensional supergrav-
ity or obtained before by T-dualitizing type IIB solutions.

The most relevant new result is that we found a subclass of infinitely many new solutions
which are in one-to-one correspondence with all the AdS7 × S3 backgrounds classified in 5,
moreover, they preserve eight supercharges in five dimensions. We were able to explicitly find
the map between this subclass of AdS5 ×M5 backgrounds and all the AdS7 × S3, where the
geometry of M3 inside M5 is the same as the distorted S3 in the AdS7 compactification. C has
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to be a Riemann surface with constant negative curvature and genus, g > 1. We also needed
to twist the S2 over C, breaking the SU(2)-isometry of the S3 to U(1), as we expected from
the dual, N = 1, CFT picture in four dimensions. For this subclass of AdS5 backgrounds of
massive type IIA supergravity, the PDEs simplify to some algebraic conditions together with
a single ODE. A second surprising new result was that we were able to analytically solve this
equation. We have, then, a nice analytical version of all the AdS7 solutions in 5, by means of
the map that relates them to the new subclass of the AdS5 backgrounds found in this chapter.

Due to the analytic expressions for the fields on the gravity side, we can explicitly compute
the free energy for some example of 4d, N = 1, and 6d, (1, 0), CFTs with large N , by using
the AdS/CFT dictionary, perhaps along the lines of [96]. It would be very interesting to probe
further some general aspect, using these gravity duals. Another interesting development would
be to study the RG-flows by looking at seven-dimensional gauged supergravity and how it is
related to our solutions, in the spirit of [173–176]. It would be nice to find a gauged supergrav-
ity, which is a consistent truncation and includes all the solutions we found, perhaps, by also
extending the computation in [177] turning on all the components of the embedding tensor in
the 7d gauged supergravity. It would be also nice to make contact of all our AdS compactifica-
tions with the extended generalized geometry formalism developed in [178–180] and how we
can recduce to a consistent truncation using the extended generalized geometry approach along
the lines of [181]. We would also like to apply the same pure spinor techinques used in this
chapter to study N = 2 solutions of massive type IIA supergravity.





Appendix A

Useful Definitions and Notations

In this thesis capital letter indices, (M,N, . . .), are 10-dimensional, whereas Greek letter, (µ, ν, . . .),
are indices of the external Minkowski or anti-de-Sitter spaces. (n,m, . . . , r, s) are indices for
internal compact spaces and (a, b, . . .) are usually their holomorphic version. (i, j, . . .) are
sometimes used as indices which transform in some representation of the gauge groups, other
times they indicate some general coordinates system. This distinction will be clear from the
context. At this point we can introduce some useful definitions, which we have omitted in the
previous chapter.

A.1 Operators on Differential Forms

The Hodge dual is an operator, which, for a d-dimensional manifold Md, acts on k-forms in the
following way:

∗d : ΛkT ∗M → Λd−kT ∗M (A.1.1)

where ΛkT ∗M is the space of k-forms. In components we have that for a k-form ωk

(∗ωk)n1...ik =
1

(d− k)!

√
|g|εn1...nkmk+1...mdω

mk+1...md (A.1.2)

where we need a metric gmn in order to rise and to lower the indices. where the form ε is the
levi-civita form in d dimensions:

εn1...nn =


sign

(
1 2 ... d
n1 n2 ... nd

)
, all indices n1, n2, ..., nd are distinct;

0, otherwise.

(A.1.3)

The Symbol, T ∗M , means the cotangent bundle for any manifold M . Another important oper-
ator is the wedge product between forms.

The wedge product or external product between two forms is a map, such that

( ∧ ) : (ΛkT ∗M,ΛlT ∗M)→ Λk+lT ∗M (A.1.4)
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for every k-form and l-form and we have that the components

(α ∧ β)n1...nk+l =
∑

σ∈Sk+l

sign σ αnσ1 ...nσkβnσk+1
...nσk+l

. (A.1.5)

where σ is an element in the permutation group Sk+l. The fundamental property of the wedge
product is that

αk ∧ βl = (−1)klαl ∧ βk. (A.1.6)

for this property when k and l are odd the wedge product vanishes. We have another useful
operator

The contraction is a map, such that

ιn ≡ ι∂n : ΛkT ∗M → Λk−1T ∗M (A.1.7)

such that the action on the basis of differentials is

ιn(dxn1 ∧ ... ∧ dxnp) = pδ[n1
n dxn2 ∧ ... ∧ dxnp]; (A.1.8)

sometimes one can use an equivalent notation for contraction of a vector v on a one-form w,

vxw. (A.1.9)

Finally, the exterior differential on a d-dimensional manifold is a map, such that d2 = 0

d : ΛkT ∗M → Λk+1T ∗M (A.1.10)

and, in coordinates {xn} with n = 1, ..., d, it is given by

d = ∂ndx
n. (A.1.11)

The action on a k-form ωk is given by (in coordinates)

dω = ∂[nωn1...nk]dx
n ∧ dxn1 ∧ ... ∧ dxnk . (A.1.12)

In an almost complex manifold, M , one can define the Dolbeault operators ∂ and ∂ such
that

∂ω(p,q) = ω(p+1.q), ∂ω(p,q) = ω(p,q+1), (A.1.13)

where the ω’s are all three-form as real form, but different (p, q) forms with respect to an ACS
I defined on the manifold M . Moreover the exterior differential on a (p, q)-form reads

dω(p,q) = ω(p−1,q+2) + ω(p,q+1) + ω(p+1,q) + ω(p+2,q−1). (A.1.14)

When M is a complex manifold the ω(p−1,q+2) = 0 and ω(p+2,q−1) = 0, and the exterior differ-
ential can be decomposed into d = ∂ + ∂.

The Lie derivative of a differential form, ωp, along a vector field, v, is (Cartan’s formula):

Lvωp = {d, ιv}ωp = ιvdωp + d(ιvωp). (A.1.15)
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More AdS6 systems

B.1 AdS6 solutions in eleven-dimensional supergravity . . . . . . . . . . . . . 169
B.2 The massive IIA solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.1 AdS6 solutions in eleven-dimensional supergravity

We will show here that there are no AdS6 ×M5 solutions in eleven-dimensional supergravity.1

This case is easy enough that we will deal with it by using the original fermionic form of the
supersymmetry equations, without trying to reformulate them in terms of bilinears as we did in
the main text for IIB.

The bosonic fields of eleven-dimensional supergravity consist of a metric g11 and a three-
form potential C with four-form field strength G = dC. The action is

S =
1

(2π)8`9
p

∫
R ∗11 1− 1

2
G ∧ ∗11G−

1

6
C ∧G ∧G , (B.1.1)

with `p the eleven-dimensional Planck length.
We take the eleven-dimensional metric to have the warped product form

ds2
11 = e2Ads2

AdS6
+ ds2

M5
. (B.1.2)

In order to preserve the SO(2, 5) invariance of AdS6 we take the warping factor to be a function
of M5, and G to be a four-form on M5. Preserved supersymmetry is equivalent to the existence
of a Majorana spinor ε satisfying the equation

DMε+
1

288

(
γ

(11)NPQR
M − 8δNMγ

PQR
(11)

)
GNPQR ε = 0 . (B.1.3)

1This conclusion was also reached independently by F. Canoura and D. Martelli and later reported also in [182].
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We may decompose the eleven-dimensional gamma matrices via

γ(6+5)
µ = eAγ(6)

µ ⊗ 1 , γ
(6+5)
m+5 = γ(6) ⊗ γ(5)

m . (B.1.4)

Here γ(6)
µ , µ = 0, . . . , 5 are a basis of six-dimensional gamma matrices (γ(6) is the chiral

gamma), while γ(5)
m , m = 1, . . . , 5 are a basis of five-dimensional gamma matrices. The spinor

Anzatz preserving N = 1 supersymmetry in AdS6 is

ε = ζ+η+ + ζ−η− + c.c. (B.1.5)

where ζ± are the chiral components of a Killing spinor on AdS6 satisfying

Dµζ± =
1

2
γ(6)
µ ζ∓ , (B.1.6)

while η± are Dirac spinors on M5.
Substituting (B.1.5) in (B.1.3) leads to the following equations for the spinors η±:

1

2
e−Aη∓ ±

1

2
γm(5)∂mAη± +

1

12
∗5 Gmγ

m
(5)η± = 0 , (B.1.7a)

Dmη± ±
1

4
∗5 Gmη± ∓

1

6
∗5 Gnγ

(5)
m γn(5)η± = 0 . (B.1.7b)

Using (B.1.7) it is possible to derive the following differential conditions on the norms η†±η± ≡
eB± of the internal spinors:

∗5G = ∓6 d5B± , (B.1.8)
B+ = −B− + const. . (B.1.9)

We can absorb the constant in a redefinition of η− so that B+ = −B− ≡ B; thus

∗5 G = −6 d5B . (B.1.10)

The equation of motion for G is then automatically satisfied; in absence of sources, the Bianchi
identity reads d5G = 0, resulting in ∗5G being harmonic. This is in contradiction with ∗5G
being exact. This still leaves open the possibility of adding M5-branes extended along AdS6,
which would modify the Bianchi identity to d5G = δM5. However, we will now show that even
that possibility is not realized.

Defining η̃± ≡ e−B/2η± we can rewrite (B.1.7b) as

Dmη̃± ± ∂nB γnmη̃± = 0 . (B.1.11)

Upon rescaling the metric ds2
M5
→ e−4Bds2

M ′5
the equation for η̃+ becomes

D′mη̃+ = 0 . (B.1.12)
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In five dimensions the only compact manifold admitting parallel spinors is the torus T 5, so we
are forced to set ds2

M ′5
= ds2

T 5 . Similarly if we rescale the metric ds2
M5
→ e4Bds2

M ′′5
the equation

for η̃− becomes
D′′mη̃− = 0 , (B.1.13)

so that ds2
M ′′5

= ds2
T 5 .2 We are thus led to the relation

e−4Bds2
M ′5

= e4Bds2
M ′′5

. (B.1.14)

Since ds2
M ′5

= ds2
M ′′5

= ds2
T 5 , this implies B = 0, and hence G = 0 (from (B.1.10)). This makes

the whole system collapse to flat space.

B.2 The massive IIA solution

We have shown in appendix B.1 that there are no AdS6 solutions in eleven-dimensional super-
gravity — and hence in massless IIA. As for massive IIA, it was shown in [109] that the only
solution is the one in [99]. In this section, we show how that solution fits in the IIA version of
the formalism presented in the main text.

For the bispinors Φ and Ψ, we will keep using the definitions given in section 4.1 and the
parameterizations given in section 5.2. The main difference is the system for supersymmetry,
which in IIB was (5.1.3), and in IIA reads instead

dH
[
e3A−φ(Φ− + Φ+)0

]
+ 2e2A−φ(Ψ− −Ψ+)0 = 0 , (B.2.1a)

dH
[
e4A−φ(Ψ− + Ψ+)α

]
+ 3e3A−φ(Φ− − Φ+)α = 0 , (B.2.1b)

dH
[
e5A−φ(Φ− + Φ+)α

]
+ 4e4A−φ(Ψ− −Ψ+)α = 0 , (B.2.1c)

dH
[
e6A−φ(Ψ− + Ψ+)0

]
+ 5e5A−φ(Φ− − Φ+)0 = −1

4
e6A ∗4 λF , (B.2.1d)

dH
[
e5A−φ(Φ− − Φ+)0

]
= 0 ; (B.2.1e)

||η1||2 = ||η2||2 = eA . (B.2.1f)

The bispinors Φ and Ψ can be easily extracted from the supersymmetry parameters: in terms
of the vielbein {eα, e4},

eα = −w−1/6 1

2
sinα êα , e4 = −w−1/6dα , w ≡ 3

2
F0 cosα , (B.2.2)

where êα are the left-invariant one-forms on S3, satisfying

dêα =
1

2
εαβγ ê

β ∧ êγ , (B.2.3)

2One might try to avoid this conclusion by setting η̃− to zero. However, (B.1.7a) would then also set η̃+ to
zero.
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we have

Φ± =
1

8
(±1− cosα)

(
(1± vol4)Id2 + i

(
1

2
εαβγe

β ∧ eγ ∓ eα ∧ e4

)
σα

)
; (B.2.4a)

Ψ± =
1

8
sinα (1± ∗4)

(
∓ e4Id2 + ieασα

)
, (B.2.4b)

being σα the Pauli matrices.
The physical fields then read:

eφ = w−5/6 , eA =
3

2
w−1/6 , ds2

M4
= eαeα + e4e4 , F4 =

10

3
w vol4 . (B.2.5)
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In these appendices there is some overlap with the master thesis [135], however we decided to
include the following material for convenience.

C.1 Supercharges

At the beginning of section 5.1.2 we reviewed an old argument that shows how a solution of the
form AdS7×M3 can also be viewed as a solution of the type Mink6×M4. In this appendix we
show how the AdS7 ×M3 supercharges get translated in the Mink6 ×M4 framework.

A decomposition of gamma matrices appropriate to six-dimensional compactifications reads

γ(6+4)
µ = eA4γ(6)

µ ⊗ 1 , γ
(6+4)
m+5 = γ(6) ⊗ γ(4)

m . (C.1.1)

Here γ(6)
µ , µ = 0, . . . , 5, are a basis of six-dimensional gamma matrices, while γ(4)

m , m =
1, . . . , 4 are a basis of four-dimensional gamma matrices. For a supersymmetric Mink6 ×M4

solution, the supersymmetry parameters can be taken to be

ε
(6+4)
1 = ζ0

+ ⊗ η1
+ + ζ0 c

+ ⊗ η1 c
+ ,

ε
(6+4)
2 = ζ0

+ ⊗ η2
∓ + ζ0 c

+ ⊗ η2 c
∓ ,

(C.1.2)

where ζ+ is a constant spinor; ∓ denotes the chirality, and c Majorana conjugation both in six
and four dimensions. Supersymmetry implies that the norms of the internal spinors satisfy
||η1||2 ± ||η2||2 = c±e

±A4 , where c± are constant.
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On the other hand, for seven-dimensional compactifications a possible gamma matrix de-
composition reads

γ(7+3)
µ = eA3γ(7)

µ ⊗ 1⊗ σ2 ,

γ
(7+3)
i+6 = 1⊗ σi ⊗ σ1 .

(C.1.3)

This time γ(7)
µ , µ = 0, . . . , 6, are a basis of seven-dimensional gamma matrices, and σi, i =

1, 2, 3, are a basis of gamma matrices in three dimensions (which in flat indices can be taken to
be the Pauli matrices). For a supersymmetric solution of the form AdS7 ×M3, the supersym-
metry parameters are now of the form

ε
(7+3)
1 = (ζ ⊗ χ1 + ζc ⊗ χc1)⊗ v+ ,

ε
(7+3)
2 = (ζ ⊗ χ2 ∓ ζc ⊗ χc2)⊗ v∓ .

(C.1.4)

Here, χ1,2 are spinors on M3, with χc1,2 ≡ B3χ
∗
1,2 their Majorana conjugates; a possible choice

of B3 is B3 = σ2. ζ is a spinor on AdS7, and ζc ≡ B7ζ
∗ is its Majorana conjugate; there exists

a choice of B7 which is real and satisfies B7γµ = γ∗µB7. (It also obeys B7B
∗
7 = −1, which

is the famous statement that one cannot impose the Majorana condition in seven Lorentzian
dimensions.) The ten-dimensional conjugation matrix can then be taken to be B10 = B7⊗B3⊗
σ3; the last factor in (C.1.4), v±, are then spinors chosen in such a way as to give the ε(7+3)

i

the correct chirality, and to make them Majorana; with the above choice of B10, v+ = 1√
2

(
1
−1

)
,

v− = 1√
2

(
1
1

)
. The minus sign (for the IIA case) in front of the term ζc ⊗ χc2 in (C.1.4) is due

to the fact that, both in seven Lorentzian and three Euclidean dimensions, conjugation does not
square to one: (ζc)c = −ζ , (χc)c = −χ.

The presence of the cosmological constant in seven dimensions means that ζ is not constant,
but rather that it satisfies the so-called Killing spinor equation, which for RAdS = 1 reads

Dµζ =
1

2
γ(7)
µ ζ . (C.1.5)

One class of solutions to this equation [183, 184] is simply of the form

ζ+ = ρ1/2ζ0
+ . (C.1.6)

The coordinate ρ appears in (5.1.7), which expresses AdS7 as a warped product of Mink6 and
R. ζ0

+ is a spinor constant along Mink6 and such that γρ̂ζ0
+ = ζ0

+ (the hat denoting a flat index).
Just like for Mink6×M4, supersymmetry again implies that the norms of the internal spinors

χ1,2 should be related to the warping function: ||χ1||2±||χ2||2 = c±e
±A3 , where c± are constant.

We will now see, however, that for AdS7 ×M3 actually c− = 0. We use the ten-dimensional
system in [38, Eq. (3.1)]. As we mentioned in section 5.1, it can be used to derive quickly the
system 5.1.1, while applying it directly to AdS7 ×M3 to derive (5.1.11) is more lengthy. For
our purposes, however, it will be enough to apply one equation of that system to the AdS7×M3

setup, namely
dK̃ = ιKH (C.1.7)
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This is equation (3.1b) in [38], but it appeared previously in [116, 185, 186]. K and K̃ are
the ten-dimensional vector and one-form defined by K = 1

64
(ε̄1γ

(10)
M ε1 + ε̄2γ

(10)
M ε2)dxM and

K̃ = 1
64

(ε̄1γ
(10)
M ε1−ε̄2γ(10)

M ε2)dxM . Plugging the decomposed spinors (C.1.4) in these definitions
and calling β1 = eA3(1

8
ζ̄γ

(7)
µ ζ)dxµ, the part of (C.1.7) along AdS7 leads to eA3d7β1(||χ1||2 −

||χ2||2) = (d7β1)c− = 0, where d7 is the exterior derivative along AdS7. (The right hand
side does not contribute, because H has only internal components.) On the other hand, using
the Killing spinor equation (C.1.5) in AdS7, we have that d7β1 = e2A3(ζ̄γ

(7)
µν ζ)dxµν ≡ β2.

A spinor in seven dimensions can be in different orbits (defining an SU(3) or an SU(2)nR5

structure [187, 188]), but for none of them the bilinear β2 is identically zero. Consequently, the
norms of the two Killing spinors have to be equal, namely c− = 0.

Let us now see how to translate the spinors εi for an AdS7 ×M3 solution into a language
relevant for Mink6 ×M4. First, we split the seven-dimensional gamma matrices γ(7)

µ ; the first
six give a basis of gamma matrices in six dimensions, γ̃(6)

µ = ργ
(7)
µ , µ = 0, . . . , 5, while the

radial direction, γ(7)
ρ̂ = γ(6) becomes the chiral gamma in six dimensions. (The hat denotes

a flat index.) This split is by itself not enough to turn (C.1.3) into (C.1.1), because the three-
dimensional gamma’s in (C.1.3) have no γ(6) in front. This can be cured by applying a change
of basis:

γ
(6+4)
M = Oγ

(7+3)
M O−1 , O =

1√
2

(1− iγ(7+3)
ρ̂ ) , (C.1.8)

with, however, a change of basis in six dimensions: γ(6)
µ → −iγ(6)γ

(6)
µ . Likewise, the spinors

(C.1.4) are related to (C.1.2) by

ε
(6+4)
i = Oε

(7+3)
i , (C.1.9)

if we take

η1 = ρ1/2 χ1 ⊗ v+ =
1√
2
ρ1/2 χ1 ⊗

(
1

−1

)
, η2 = ρ1/2 χ2 ⊗ v∓ =

1√
2
ρ1/2 χ2 ⊗

(
1

±1

)
.

(C.1.10)
Notice that the two ηi have equal norm, because the χi have equal norm, as shown earlier.
Moreover, since the norm of the χi is eA3/2, and because of the factor ρ1/2 in (C.1.10), the ηi

have norm equal to ρ1/2eA3/2; recalling (6.1.9), this is equal to eA4/2, as it should.
Besides (C.1.6), there is also a second class of solution to the Killing spinor equationDµζ =

1
2
γ

(7)
µ ζ on AdS7: it reads ζ = (ρ−1/2 + ρ1/2xµγ

(7)
µ )ζ0

−, where now γρ̂ζ
0
− = −ζ0

−. If we plug this
into (C.1.4) and use the above procedure (C.1.9) to translate it in the Mink6 ×M4 language,
we find a generalization of (C.1.2) where both a positive and negative chirality six-dimensional
spinor appear (namely, xµγµζ0

− and ζ0
−) instead of just a positive chirality spinor ζ0

+. Because
of the xµγµ factor, this spinor Ansatz would break Poincaré invariance if used by itself; if
four supercharges of the form (C.1.2) are preserved, Poincaré invariance is present, and these
additional supercharges simply signal that an AdS7×M3 solution isN = 2 in terms of Mink6×
M4.
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C.2 Killing spinors on S4

The AdS7 × S4 is a familiar Freund–Rubin solution; the flux is taken to be proportional to the
internal volume form, G4 = gvolS4 . The eleven-dimensional supersymmetry transformation
reads

(
∇M + 1

144
GNPQR(γNPQRM − 8γNPQδRM)

)
ε11 = 0; decomposing ε11 =

∑4
a=1 ζa ⊗

ηa + c.c., and using (C.1.5), one reduces the requirement of supersymmetry (for RAdS = 1) to
taking g = 3/4, and to the equation

(∇m −
1

2
γγm)η = 0 (C.2.1)

on S4. This is an alternative form of the Killing spinor equation; it was solved in [189] in any
dimension. However, we are using different coordinates, adapted to the S1 reduction used in
section 5.4.1; we will here solve (C.2.1) again, using more or less the same method.

The idea is to start from the easiest components of the equation, and to work one’s way to
the more complicated ones. Our coordinates in section 5.4.1 are α, β, γ, y, the latter being the
reduction coordinate. Our vielbein reads e1 = dα, e2 = 1

2
sin(α)dβ, e3 = 1

2
sin(α) sin(β)dγ,

e4 = 1
2

sin(α)(dy + cos(β)dγ). We begin with the α component of (C.2.1):

∂αη =
1

2
γγ1η ⇒ η = e

1
2
αγγ1η1 . (C.2.2)

The next component we use is(
∂β −

1

4
cos(α)

)
η =

1

4
sin(α)γγ2η . (C.2.3)

This can be manipulated as follows:

0 =

(
∂β −

1

4
eαγγ1γ12

)
η = e

1
2
αγγ1

(
∂β −

1

4
γ12

)
η1 ⇒ η1 = e

1
4
βγ12η2 . (C.2.4)

We proceed in a similar way for the two remaining coordinates; the details are complicated, and
we omit them here. The final result is

η = exp
[α

2
γγ1

]
exp

[
β

4
γ12 +

β − π
4

γ34

]
exp

[
y + γ

4
γ13 +

y − γ
4

γ24

]
η0 (C.2.5)

where η0 is a constant spinor. When we reduce, we demand that ∂yη = 0, which becomes
(γ13 + γ24)η0 = 0; this condition indeed keeps two out of four spinors, as anticipated in our
discussion in section 5.4.1.

C.3 Sufficiency of the system (5.1.11)

In section 5.1.2 we obtained the system of equations (5.1.11) starting from (5.1.3) and using
the fact that AdS7 can be considered as a warped product of Mink6 and R. In this section we
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will explain how one can show that (5.1.11) is completely equivalent to supersymmetry for
AdS7 ×M3 with a direct computation. Our strategy will be very similar to the one in [133,
Sec. A.4], with some relevant differences that we will promptly point out.

To begin with, we write the system of equations resulting from setting to zero the type II su-
persymmetry variations (of gravitinos and dilatinos) using the spinorial decomposition (C.1.4):1

(
Dm −

1

4
Hm

)
χ1 −

eφ

8
Fσmχ2 = 0 , (C.3.1a)(

Dm +
1

4
Hm

)
χ2 −

eφ

8
λ(F )σmχ1 = 0 , (C.3.1b)

1

2
e−Aχ1 −

i

2
∂Aχ1 + i

eφ

8
Fχ2 = 0 , (C.3.1c)

1

2
e−Aχ2 +

i

2
∂Aχ2 − i

eφ

8
λ(F )χ1 = 0 , (C.3.1d)(

D − 1

4
H

)
χ1 + i

7

2
e−Aχ1 +

(
7

2
∂A− ∂φ

)
χ1 = 0 , (C.3.1e)(

D +
1

4
H

)
χ2 − i

7

2
e−Aχ2 +

(
7

2
∂A− ∂φ

)
χ2 = 0 . (C.3.1f)

As in [133, Sec. A.4], we introduce a set of intrinsic torsions pam, qam, and T a, T̂ a, with a = 1, 2:

(
Dm −

1

4
Hm

)
χ1 ≡ p1

mχ1 + q1
mχ

c
1 ,

(
Dm +

1

4
Hm

)
χ2 ≡ p2

mχ2 + q2
mχ

c
2 , (C.3.2a)(

D − 1

4
H

)
χ1 ≡ T 1χ1 + T̂ 1χc1 ,

(
D +

1

4
H

)
χ2 ≡ T 2χ2 + T̂ 2χc2 , (C.3.2b)

where D = γm(7)Dm, Hm ≡ 1
2
Hmnpγ

np
(7), H ≡

1
6
Hmnpγ

mnp
(7) as usual. We used the fact that χ1 and

χc1 (or χ2 and χc2) constitute a basis for the three-dimensional spinors. Taking tensor products
of these two bases, we also obtain a basis for bispinors, on which we can now expand F :

F ≡ R00 χ1 ⊗ χ†2 +R10 χ
c
1 ⊗ χ

†
2 +R01 χ1 ⊗ χc†2 +R11 χ

c
1 ⊗ χ

c†
2 . (C.3.3)

Using (C.3.2) and (C.3.3) in (C.3.1), we can rewrite the conditions for unbroken supersymmetry
as a set of equations relating the intrinsic torsions to the coefficients Rij . Let us call this system
of equations the “spinorial system”. Using instead (C.3.2) and (C.3.3) in (5.1.11), we obtain a
second set of equations, again in terms of the intrinsic torsions and Rij; let us call this system
the “form system”. Our aim is to show the equivalence between the spinorial and the form
systems.

Although we are using the same technique appearing in [133, Sec. A.4] (there applied to
four-dimensional vacua), proving this equivalence in the case at hand is more involved. Relying

1We choose to show the equivalence in the IIA case, hence we pick ε(7+3)
1 and ε(7+3)

2 with opposite chirality.
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on a superficial counting, it would seem that the form system contains fewer equations than the
spinorial one. To see why this happens, we first notice that the definitions (C.3.2) are redundant.
Indeed the torsions T a and T̂ a can be rewritten in terms of the torsions pa, qa and H; however,
in three dimensions, γ(7)

mnp, hence H , is proportional to the identity (use (5.2.2) with α = H).
Thus in (C.3.2b) four complex numbers (T ’s and T̂ ’s) are used to describe a single real number
H . This suggests that some of the equations in the spinorial system are redundant and could be
dropped. However, this redundancy is not manifest.

To make it manifest, we could use the following strategy. On the one hand (C.3.1a) and
(C.3.1b) give a natural expansion of the torsions pa and qa in terms of the vielbein eb, with
a 6= b, defined by the spinor χb (see (5.2.3) and (5.2.5)); that is, they transform into equations
for the components q1 · e2

3, q1 · e2
1 and so forth. On the other hand the intrinsic torsions T a and

T̂ a give expressions like q1 ·e1
3, q1 ·e1

1. Therefore, we would need a formula relating the vielbein
e1 defined by χ1 to the vielbein e2 defined by χ2.

Actually, there exists a simpler method. Indeed we can use the following equations,

dH(e2A3−φReψ1
−) = 0 ,

dH(e4A3−φImψ1
−) = 0 ,

dH(e4A3−φψ2
−) = 0 ,

(C.3.4)

obtained by simply applying dH to the equations (5.1.11a), (5.1.11b) and (5.1.11c) respectively
(in other words, they are redundant with respect to the original system (5.1.11)). If we now
express (C.3.4) in terms of (C.3.2), and add the resulting equations to the form system we ob-
tained earlier, we obtain a new, equivalent expression for the form system. With some linear
manipulations, it can now be shown that it is equivalent to the spinorial system. This concludes
our alternative proof that (5.1.11) is completely equivalent to the requirement of unbroken su-
persymmetry.
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More on AdS5

D.1 Supersymmetry variations and the Killing vector

Setting to zero the type IIA supersymmetry variations (of gravitinos and dilatinos) yields the
following set of equations1

0 =

(
DM +

1

4
HM

)
ε1 +

eφ

16
λ(F )ΓMε2 , (D.1.1a)

0 =

(
DM −

1

4
HM

)
ε2 +

eφ

16
F ΓMε1 , (D.1.1b)

0 =

(
D − ∂φ+

1

4
H

)
ε1 , (D.1.1c)

0 =

(
D − ∂φ− 1

4
H

)
ε1 , (D.1.1d)

where suppressed indices are contracted with antisymmetric products of gamma matrices and
ε1, ε2 are Spin(1, 9) Majorana–Weyl spinors of opposite chirality.

We wish to obtain a set of differential and algebraic equations for the Spin(5) spinors η1, η2

and so we decompose the the generators of Cliff(1, 9) as

Γµ = eAγ(1,4)
µ ⊗ 1⊗ σ3 Γi = 1⊗ γ(5)

m ⊗ σ1 , (D.1.2)

where µ = 0, . . . , 4, m = 1, . . . , 5 and σ1 and σ3 are the Pauli matrices; γ(1,4)
µ generate

Cliff(1, 4) and γ(5)
m Cliff(5). Accordingly, the chirality matrix Γ11 and the intertwiner B10 relat-

ing ΓM and Γ∗M , are decomposed as

Γ11 = 1⊗ 1⊗ σ2 , B10 = B1,4 ⊗B5 ⊗ σ1 . (D.1.3)

1The first two equations follow from setting the gravitino variation δψM to zero, while the last two equations
follow from ΓMδψM − δλ = 0 where λ is the dilatino.
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Furthermore, the supersymmetry parameters ε1, ε2 split as

ε1 = (ζ ⊗ η1 + ζc ⊗ ηc1)⊗ θ , (D.1.4a)
ε2 = (ζ ⊗ η2 + ζc ⊗ ηc2)⊗ θ∗ , (D.1.4b)

where ηc1,2 = B5η
∗
1,2 and ζc = B1,4ζ

∗. ζ is a Spin(1, 4) spinor obeying the AdS5 Killing spinor
equation

Dµζ =
1

2
γµζ , (D.1.5)

while θ obeys σ2θ = θ and σ1θ = θ∗.
Applying the above decomposition, the equations (D.1.1) become

0 =

(
Di +

1

4
Hi

)
η1 +

eφ

16
λ(F )γ(5)

m η2 , (D.1.6a)

0 =

(
Di −

1

4
Hi

)
η2 +

eφ

16
F γ(5)

m η1 , (D.1.6b)

0 =

(
i

2
e−A − 1

2
∂A

)
η1 −

eφ

16
λ(F )η2 , (D.1.6c)

0 =

(
i

2
e−A +

1

2
∂A

)
η2 +

eφ

16
Fη1 , (D.1.6d)

0 =

(
5i

2
e−A −D − 5

2
∂A+ ∂φ− 1

4
H

)
η1 , (D.1.6e)

0 =

(
5i

2
e−A +D +

5

2
∂A− ∂φ− 1

4
H

)
η2 . (D.1.6f)

Using equations (D.1.6a) and (D.1.6b) it is straightforward to show that ξ ≡ 1
2
(η†1γ

mη2 −
η†2γ

mη2)∂m satisfies
D(m ξn) = 0 , (D.1.7)

i.e. that ξ is a Killing vector, while equations (D.1.6c) and (D.1.6d) yield LξA = 0. That Lξφ =
0 follows from the algebraic equations obtained from (D.1.6e) and (D.1.6f) after eliminating D,
using (D.1.6a) and (D.1.6b).2

2These conditions also follow directly from setting the dilatino variation δλ to zero.
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[27] T. Hübsch, “Calabi-Yau manifolds: A Bestiary for physicists,”.

[28] S. Gukov, C. Vafa, and E. Witten, “CFT’s from Calabi–Yau four-folds,” Nucl. Phys. B584
(2000) 69–108, hep-th/9906070.

http://arXiv.org/abs/hep-th/0502168
http://arXiv.org/abs/hep-th/0511122
http://arXiv.org/abs/1007.0236
http://arXiv.org/abs/1202.1278
https://dl.dropboxusercontent.com/u/9571828/comp-dual.pdf
http://www.aei.mpg.de/~theisen/lectures.pdf
http://www.aei.mpg.de/~theisen/lectures.pdf
http://arXiv.org/abs/0808.3621
http://arXiv.org/abs/hep-th/9906070


BIBLIOGRAPHY 183

[29] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, “Stabilizing All Geometric Moduli in
Heterotic Calabi-Yau Vacua,” Phys.Rev. D83 (2011) 106011, 1102.0011.

[30] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, “Stabilizing the Complex Structure in
Heterotic Calabi-Yau Vacua,” JHEP 1102 (2011) 088, 1010.0255.

[31] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, “The Atiyah Class and Complex Struc-
ture Stabilization in Heterotic Calabi-Yau Compactifications,” JHEP 1110 (2011) 032,
1107.5076.

[32] L. B. Anderson, J. Gray, A. Lukas, and B. Ovrut, “Vacuum Varieties, Holomorphic Bun-
dles and Complex Structure Stabilization in Heterotic Theories,” JHEP 1307 (2013) 017,
1304.2704.

[33] P. Koerber and D. Tsimpis, “Supersymmetric sources, integrability and generalized-
structure compactifications,” arXiv:0706.1244 [hep-th].
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