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Abstract

Traditional methods in planning of gas transport networks rely on series of network
simulations. New legal and economical requirements render these methods insufficient, so
alternative approaches for accurate planning of large-scale networks are highly desired.
The increasing importance of natural gas in Europe and new demands imposed by new
techniques like power to gas drive the need for an automated determination of optimal
network settings.

This thesis covers two optimization problems occurring in gas transportation. The problem
of validation of nominations rises the question, if given supply and discharge rates at the
entries and exits of the network result in a feasible network state. To this end, a MINLP
model is presented including a detailed description of stationary gas physics and technical
properties of the network elements. To be able to apply general-purpose nonlinear solvers,
two separate optimization problems are described. A nonlinear model with reduced
complexity is derived from the MINLP model. Complementarity constraints model
discrete aspects. This results in a mathematical program with equilibrium constraints
(MPEC). Furthermore, a highly accurate NLP model is described, covering all physical
aspects of the MINLP model under given discrete decisions. Numerical experiments on
large-scale networks show the applicability of regularization techniques on the MPEC and
the success in validating nominations when both models are combined. Comparisons with
commercial simulation software underline the high level of detail of the gained solutions.

The second problem discussed in this thesis is the determination of technical capacities of
a network. A mathematical problem description of this new problem class is derived from
the legal regulations resulting in a mixed-integer nonlinear adjustable robust problem.
It turns out that the criteria for an optimal capacity are not well-defined. A sensible
interpretation results in a Pareto optimization problem. Analysis of the capacity problem
shows that monotony and convexity of technical capacities are typically not given in
reality. The implications are explained based on small network examples.

Keywords: technical capacities of gas networks, mixed-integer nonlinear optimization,
complementarity constraints, MPEC
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Zusammenfassung

Etablierte Methoden zur Planung von Gastransportnetzen beruhen auf Simulationen
verschiedener Netzzustände. Durch neue rechtliche und wirtschaftliche Anforderungen
ist dieses Vorgehen häufig nicht mehr ausreichend und neue Ansätze sind gefordert.
Neue Bedürfnisse durch die Entwicklung des Energiemarktes machen eine automatisierte
Bestimmung optimaler Netzentscheidungen notwendig.

In dieser Arbeit werden zwei Probleme der Gastransportplanung näher betrachtet. Bei
der Nominierungsvalidierung wird eine zulässige Netzkofiguration zu gegebenen Ein-
und Ausspeisungen gesucht. Hierfür wird eine detaillierte Abbildung der physikalischen
und technischen Eigenschaften in einem MINLP Modell vorgestellt. Um moderne NLP-
Löser anwenden zu können, wird ein nichtlineares Modell mit reduziertem Detailgrad
abgeleitet. Diskrete Entscheidungen werden mittels Komplementaritätsbedingungen ab-
gebildet. Desweiteren wird ein nichtlineares Modell hoher Modellgenauigkeit vorgestellt,
das gegebene diskrete Entscheidungen voraussetzt. Numerische Untersuchungen auf rea-
listischen Gasnetzen zeigen die Praktikabilität verschiedener Regularisierungsansätze für
die Komplementaritätsbedigungen und den Erfolg der beiden Modelle bei der Nominie-
rungsvalidierung. Vergleiche mit kommerziellen Simulationsprogrammen bestätigen den
hohen Detailgrad der Lösungen.

Der zweite Aspekt dieser Arbeit ist die Bestimmung technischer Kapazitäten von Gasnet-
zen. Anhand der rechtlichen Vorschriften wird ein gemischt-ganzzahliges, nichtlineares,
anpassbar robustes Problem hergeleitet, wobei sich herausstellt, dass die rechtliche Vor-
gabe nicht zu einem wohldefinierten Problem führt. Eine mögliche Interpretation der
Vorschriften führt zu einem Pareto-Optimum. Eine Analyse des Kapazitätsproblems
zeigt, dass Monotonie und Konvexität im Allgemeinen nicht angenommen werden können.
Auswirkungen werden anhand kleiner Beispielnetze erläutert.

Schlüsselworte: technische Kapazitäten von Gasnetzen, gemischt-ganzzahlige nichtli-
neare Optimierung, Komplementaritätsbedingungen, MPEC
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1. Introduction

Production and distribution of energy is one of the main problems of modern humanity.
Besides crude oil and coal, natural gas is still one of the most important sources of primary
energy. It is required for heating, power generation and industrial processes. However, the
distribution of gas sources does usually not coincide with the main consumers. The total
consumption of natural gas in the European Union amounts to 443.9× 109 m3 but only
164.6× 109 m3 are extracted within the EU. Germany alone consumes 75.2× 109 m3 and
covers only 12% by own extraction [21]. The main suppliers of Germany in 2013 were
Russia (38.7%), Norway (29.4%), Netherlands (26.1%) and others, including Denmark
and the United Kingdom (5.8%) [15]. Most of this gas is gained from gas fields in the
North Sea and Siberia.

Normally, the location, where natural gas is extracted, is far away from the place, where
the majority is consumed. Depending on the distance and target area, different means
of transportation are possible. For distances above 2000 km or to reach isolated islands
liquefied natural gas (LNG) carriers are the most economic choice. On the other side,
tank trucks may be the only sensible choice to supply rural regions. Nevertheless, one of
the most important ways to transport gas from its sources to consumers are gas transport
networks. These technical facilities consist mainly of pipelines and pressure-regulating
devices.

Natural gas is of increasing importance for the medium-term energy supply. The reduction
of nuclear energy increases the demand for other energy sources. Natural gas is the fossil
fuel with lowest carbon dioxide output, which helps to satisfy the self-appointed carbon
dioxide limits in Europe until the energy output of regenerative energies has improved.
New pipeline projects like Nord Stream, Nabucco and the Trans Adriatic Pipeline, as well
as planned LNG capable ports underline the importance of natural gas. Furthermore,
the existing infrastructure can be used by power-to-gas technologies. Here, excess power
is transformed into fuel gas like hydrogen or methane that is then supplied into the gas
transport network. By doing so the fluctuating output of regenerative fuels is balanced
out.

1



1. Introduction

On the other hand, the foreseeable shortage of fossil fuel and increasing environmental
concerns have strengthened the focus on an efficient operation of the transport systems.
To gain an increase in efficiency, the European Union decided to liberalize the gas market.
New legal regulations in course of the market liberalization put new requirements on the
transport system operators. The unbundling of the gas market enforces the independence
of the transport system operator from customers and traders.

Prior to the market restructuring, the network operator was also the gas trader. Often,
they also possessed storage facilities and extraction sites. Network customers usually
had no alternative when buying gas since the owner of the local transport network was
also the responsible trader. Without market competition the gas companies had a price
monopoly at their trading points. Covering the whole value chain was a big strategic and
organizational advantage for the gas companies.

The unbundling process led to a separation of transport, trading and shipping to open
the market and increase competition and transparency of transport. Network operators
have the obligation to determine and offer the maximum possible capacities independent
of predefined transport paths. To ensure security of supply all stakeholders are obliged to
cooperate. Furthermore, network operators have to reinvest their revenues to eliminate
network congestions and increase the maximum capacities. The legal requirements are
laid down in the GasNZV [16].

In practice, a transport customer books capacity rights prior to the actual transport,
usually some weeks to years in advance. The day before he supplies or discharges the gas,
the customer nominates the actual amount he trades within the bounds he has booked.
Usually, he can changes his nomination up to two hours prior to the trade. This process
has several challenges for the transporting company. First, he has to check whether the
booking can be accepted. To this end a certain percentage of partial nominations has
to be realizable to minimize the risk of contractual penalties on one hand and omitting
improbable infeasible nominations on the other hand. In course of the booking validation
and when the customer communicates his nomination the question for possible transport
routes arises. If several possibilities exist, it is desirable to find the most efficient one.
If however a booking must be declined, the network operator is obliged to check for
reasonable network extensions to resolve the congestion.

The traditional work flow handling these problems typically incorporates one or several
expert-generated nominations that are validated by a series of simulation runs until
working network settings are determined.
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Due to the increasing importance of natural gas along with enforced legal requirements
current manual approaches are not sufficient anymore. The recent development of the gas
market introduced new challenges. The unbundling results in a reduction of available
information, the development of future demand is unknown, discrepancies between legal
definitions and their practical realizations exists and the increasing importance strengthen
the need for an efficient transport and maximum capacities. German network operators
are now obliged by law to publish still available capacities of the network. New pipeline
projects and changing consumption profiles require the extension of existing infrastructure,
resulting in network topology problems. This thesis concentrates on two problem classes
of gas transport networks and their formulation as a mathematical optimization problem,
validation of nominations (NoVa) and the determination of technical capacities. The aim
is to solve both problems by applying general-purpose nonlinear problem (NLP) solvers.

Transport networks span large distances in order to direct gas from the sources to
customers and local distribution networks. They consist mainly of pipelines and connect
places where gas is supplied into the network, so called entries, with places where gas
is discharged, so called exits. Typical suppliers are gas fields and LNG capable ports,
while typical recipients of gas are power plants, industrial customers, and connection
points to local distribution networks. Some connection points may belong to either group,
depending on the situation. Typical examples of these bidirectional places are storage
facilities and network gateways, i.e. connection points to adjacent transport networks.

In general, gas flows from high pressure to low pressure. Thus, pressure regulating devices
are required in the gas network to control the flow of the gas and to balance out the pressure
loss caused inside the pipelines. The energy for the transport process can conveniently be
taken from the network itself. Since this consumed energy reduces the amount of actually
usable gas, it is an obvious demand to minimize its amount. Conversely, gas transport
networks are a critical factor for the society and any interruption is not justifiable. Thus,
the gas transport has to be modeled highly accurate to prevent misconfigurations and a
stop in support.

Subsequent to this introduction to gas networks, an overview of the basic theory of
nonlinear optimization and mathematical programs with equilibrium constraints (MPEC)
is given. Both classes will be used in the third chapter to describe a solution approach
for the NoVa problem. The approach is based on a solution framework developed in
course of the research project ForNe [71], in which the Zuse-Institute Berlin, Technis-
che Universität Darmstadt, Friedrich-Alexander-Universität Erlangen-Nürnberg, Leibniz
Universität Hannover, Universität Duisburg-Essen, Humboldt-Universität zu Berlin, and

3



1. Introduction

Weierstrass Institute for Applied Analysis and Stochastics cooperate with Open Grid
Europe to find optimal solutions to the upper problem classes. A mixed-integer nonlinear
model of physical and technical properties of gas networks is first described. Afterwards
an MPEC is derived from this model and discrete model aspects are reformulated using
complementarity constraints. In Section 3.4 an NLP model is described with variants for
several model aspects, making it customizable for different problem requirements.

In Chapter 4 numerical experiments based on the public gas library GasLib [56] prove
the applicability of the MPEC approach on realistic nominations and network sizes. A
large-scale analysis of network elements also shows the comparability of variants of the
NLP model with current commercial simulation packages.

Technical capacities are the subject of Chapter 5. A problem description is derived from
the legal regulations and the relation to robust optimization is explained. Deficiencies in
the legal definitions and possible interpretations are illustrated. Properties of technical
capacities and related sets are examined and minimal network examples illustrate the
findings. A short outlook on possible solution strategies and their pitfalls is finally given.
Chapter 6 summarizes the results of this thesis and offers some ideas for future research.

For a better readability, notation is kept consistent throughout this thesis. Constraints
are denoted by c, a constraint indexed by a set represents the vector of constraints with
an index of the index set, e.g., cE is equivalent to the vector (ci)i∈E . Continuous variables
are usually denoted by x and z represents a discrete variable. If vectors are compared by
relations like =, ≥ or >, the relation is defined component-wise, i.e. cI(x) ≥ 0 means
ci(x) ≥ 0 for all ß ∈ I. Upper and lower bounds of a variable x are denoted by x− and
x+. Notation specific to gas networks will be discussed in Section 3.1.

Parts of Section 3.3, Section 3.4 and Chapter 4 have been published in [54, 114] or will
be published in [71, 104] together with the results of the project ForNe.

This work has been supported by the German Federal Ministry of Economics and
Technology owing to a decision of the German Bundestag.
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2. Theoretical Basics

2.1. An Introduction to the Theory of Nonlinear Programs

Nonlinear programs (NLP) model optimization tasks where the objective function and
constraints may be described by nonlinear functions. A typical field of application is
engineering, where the fundamental physics is often highly nonlinear.

The aim of a nonlinear program is to find values of a variable vector x ∈ Rn that minimizes
an objective function f . In addition, the solution has to satisfy a set of equality constraints
cE(x) = 0, and a set of inequality constraints cI(x) ≥ 0. E denotes the finite index set of
the equality constraints and I is the finite index set of the inequality constraints. Both
index sets are disjoint. The notation and structure of this section is based on [94].

Generally, nonlinear programs can be formulated as

min
x∈Rn

f(x) (2.1a)

s.t. cE(x) = 0, (2.1b)

cI(x) ≥ 0, (2.1c)

x ∈ [x−, x+]. (2.1d)

The objective function f : Rn → R and the constraints ci : Rn → R have to be smooth,
i.e. twice continuously differentiable.

Definition 1 (Feasible point). A variable vector x∗ ∈ Rn is called feasible, when it
satisfies all equality and inequality constraints, i.e.

cE(x∗) = 0, cI(x∗) ≥ 0.

Thus, the set of feasible points is defined as

F = {x ∈ Rn : cE(x) = 0, cI(x) ≥ 0} .

5



2. Theoretical Basics

Since the desired solution of the nonlinear program (2.1) needs to fulfill all constraints, it
is part of the feasible set F .

Definition 2 (Active set). Let x∗ ∈ Rn be a feasible point of the NLP (2.1). A constraint
ci, i ∈ E ∪ I, is called active, if ci(x∗) = 0. The set of active constraints A(x∗) is defined
by

A(x∗) = E ∪ {i ∈ I : ci(x
∗) = 0} .

Note that equality constraints are always active at a feasible point. Inequality constraints,
which are not active, are called inactive.

Definition 3 (Local solution). Let x∗ ∈ Rn be a feasible point of the NLP (2.1). x∗ is
called a local solution of the NLP (2.1), if there exists a neighborhood N of x∗, such that

f(x∗) ≤ f(x) for all x ∈ N ∩ F .

The feasible set may contain several local solutions. In contrast to convex and linear
optimization, a local solution is not automatically a feasible point with the overall best
value of the objective function, i.e. a global solution, but for many applications a local
solution is sufficient. In the following, first order necessary conditions of local solutions, the
so-called Karush-Kuhn-Tucker (KKT) conditions, are described. For the KKT conditions
to hold at a minimizer, the constraints must fulfill a constraint qualification. For details
see [57, 94]. Two constraint qualifications are stated here, which guarantee the required
properties at a given feasible point.

Definition 4 (LICQ). Let x∗ ∈ Rn be a feasible point of the NLP (2.1) and let A(x∗) be
the according active set. The linear independence constraint qualification (LICQ) holds at
x∗, if the set of gradients

{∇ci(x∗) : i ∈ A(x∗)}

is linearly independent.

Definition 5 (MFCQ). Let x∗ ∈ Rn be a feasible point of the NLP (2.1). The
Mangasarian–Fromovitz constraint qualification (MFCQ) holds at x∗, if there is a vector
d ∈ Rn satisfying

∇ci(x∗)Td > 0 for all i ∈ A(x∗) ∩ I,
∇ci(x∗)Td = 0 for all i ∈ E ,

and if the set {∇ci(x∗) : i ∈ E} is linearly independent.
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2.1. An Introduction to the Theory of NLPs

Theorem 1. LICQ implies MFCQ.

Proof. Since LICQ holds, all constraint gradients are linearly independent, in particular
the subset {∇ci(x∗) : i ∈ E}. Due to the linear independence, the matrix

M =

(
∇ci(x∗)T
∇cj(x∗)T

)
i∈A(x∗)∩I, j∈E

has full rank. Thus, for every b ∈ R|A(x∗)| there exists a vector d ∈ Rn such that

Md = b.

Choose the first |A(x∗) ∩ I| entries of b as 1 and the others as 0. Then a d ∈ Rn exists
satisfying Md = b, i.e.

∇ci(x∗)Td = 1 > 0 for all i ∈ A(x∗) ∩ I,
∇ci(x∗)Td = 0 for all i ∈ E ,

so MFCQ holds.

MFCQ is weaker than LICQ, i.e. the reverse direction of Theorem 1 does not hold. For a
detailed analysis of the differences see Henrion [61].

The stationarity concept which is used in the KKT condition is based on the Lagrangian
function

L(x, λ) = f(x)−
∑
i∈E∪I

λici(x).

The entries of the variable vector λ are called the Lagrangian multipliers or dual vari-
ables.

Definition 6 (KKT-stationarity). A feasible point x∗ is called KKT-stationary, if there
exists a Lagrangian multiplier λ∗, so that the KKT-conditions

∇xL(x∗, λ∗) = 0, (2.2a)

cE(x∗) = 0, (2.2b)

cI(x∗) ≥ 0, (2.2c)

λ∗I ≥ 0, (2.2d)

cI(x∗)Tλ∗I = 0, (2.2e)

7



2. Theoretical Basics

are satisfied.

The conditions (2.2b) and (2.2c) ensure primal feasibility. Since x∗ is feasible, these are
automatically satisfied. Condition (2.2d) is the dual feasibility. The last condition is
the complementarity condition, which states that ci, i ∈ I, is active or λi = 0 holds for
the corresponding multiplier. Based on this stationarity concept first order necessary
conditions are now stated.

Theorem 2 (First order necessary conditions based on MFCQ). Let x∗ ∈ Rn be a local
solution of the NLP (2.1) and assume that MFCQ holds at x∗. Then there exists a bounded
set of dual variables λ∗, so that x∗ is KKT-stationary.

A proof is given in [57].

Theorem 3 (First order necessary conditions based on LICQ). Let x∗ be a local solution
of (2.1) and assume that LICQ holds at x∗. Then there exist unique dual variables λ∗, so
that x∗ is KKT-stationary.

Proof. Since LICQ implies MFCQ, the KKT-stationarity follows directly from Theorem 2.
Condition (2.2e) implies λi = 0 for i /∈ A(x∗). From condition (2.2a) and the definition
of LICQ follows the uniqueness of λA(x∗).

2.2. An Introduction to the Theory of Mathematical
Programs with Equilibrium Constraints

2.2.1. Definition of an MPEC

Mathematical programs with equilibrium constraints (MPEC) have been an important
topic of research in the recent decades. They are strongly related to the problem of
Stackelberg game and bilevel programming [79]. MPEC formulations are also applied to
a large number of problems in economics and industry like spot market models [70, 125],
robotics [101, 102], and chemical engineering [6]. For a large number of examples see the
survey of Ferris and Pang [40].
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2.2. An Introduction to the Theory of MPECs

In the following, we concentrate on MPECs of the form

min
x∈Rn

f(x) (2.3a)

s.t. cE(x) = 0, (2.3b)

cI(x) ≥ 0, (2.3c)

0 ≤ φ(x) ⊥ ψ(x) ≥ 0. (2.3d)

Equation (2.3d) states, that the two functions φ : Rn → R|C| and ψ : Rn → R|C| are
disjunctive, i.e. φ(x)Tψ(x) = 0. C denotes the index set of the disjunctive functions.
Equivalent formulations of this complementary are

φ(x) ≥ 0, ψ(x) ≥ 0, φ(x)Tψ(x) = 0, (2.4)

φ(x)i ≥ 0, ψ(x)i ≥ 0, φ(x)iψ(x)i = 0 for all i ∈ C, (2.5)

min(φ(x)i, ψ(x)i) = 0 for all i ∈ C. (2.6)

The notation and structure of this section is based on [94] and [111].

By applying the reformulation (2.4) or (2.5), the MPEC (2.3) is in accordance with (2.1),
thus it is an NLP.

2.2.2. Constraint Qualifications for MPECs

Despite the fact that MPECs of type (2.3) can be formulated as NLPs by applying (2.4),
many results of NLP theory cannot be applied directly. A central difficulty of MPECs is
that many common constraint qualifications do not hold at any feasible point. The proof
of the following theorem is based on [47].

Theorem 4. At every feasible point x∗ ∈ Rn of (2.3) MFCQ is violated.

Proof. Let c⊥(x) = φ(x)
T
ψ(x) denote the complementarity constraint and let x∗ be a

feasible point of (2.3). Define the index sets

Aφ = {i ∈ C : φi(x
∗) = 0} ,

Aψ = {i ∈ C : ψi(x
∗) = 0} ,

Aφψ = Aφ ∩ Aψ.

9
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As a consequence C = Aφ ∪ Aψ is true. Assume that MFCQ holds for the MPEC in x∗.
If Aφψ = C, it follows that

∇c⊥(x∗) =
∑
i∈C

(φi(x
∗)∇ψi(x∗) + ψi(x

∗)∇φi(x∗)) = 0,

since φi(x∗) = ψi(x
∗) = 0 for all i ∈ C.

By this, ∇c⊥(x∗) is not linearly independent to the other constraint gradients, which
contradicts the requirement of MFCQ, that the gradients of the active constraints need
to be linearly independent, see Definition 5.

If C \ Aφψ 6= ∅, then

∇c⊥(x∗)
T
d = d

T

(∑
i∈C

(φi(x
∗)∇ψi(x∗) + ψi(x

∗)∇φi(x∗))
)

=
∑

i∈Aψ\Aφ
φi(x

∗)∇ψi(x∗)
T
d+

∑
i∈Aφ\Aψ

ψi(x
∗)∇φi(x∗)

T
d > 0

holds, since

φi(x
∗), ∇ψi(x∗)

T
d > 0 for all i ∈ Aψ \ Aφ,

ψi(x
∗), ∇φi(x∗)

T
d > 0 for all i ∈ Aφ \ Aψ,

due to MFCQ. This contradicts the condition ∇c⊥(x∗)
T
d = 0 of MFCQ.

Lemma 1. LICQ is violated at every feasible point x∗ ∈ Rn of the MPEC.

Proof. This follows directly from Theorem 4 and Theorem 1.

Since LICQ, MFCQ and further standard constraint qualifications do not hold at any
feasible point in case of MPECs [48], the central stationarity and optimality results of
NLPs cannot be applied to MPECs. In particular, the Karush-Kuhn-Tucker theorems 2
and 3 do not hold, which are a core element of most NLP algorithms. As a result, new
MPEC-specific constraint qualifications are developed, under which a minimizer of the
MPEC satisfies some kind of stationarity concept, see [47, 67, 79, 100, 111, 125].
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Let x∗ ∈ Rn be a feasible point of 2.3. The NLP

min
x∈Rn

f(x)

s.t. cE(x) = 0,

cI(x) ≥ 0, (TNLP(x∗))

φAφ(x) = 0, φAψ\Aφ(x) ≥ 0,

ψAψ(x) = 0, ψAφ\Aψ(x) ≥ 0,

is called the tightened NLP in x∗ (TNLP(x∗)). Based on the TNLP, Scheel and Scholtes
[111] define the constraint qualifications MPEC-LICQ and MPEC-MFCQ.

Definition 7 (MPEC-MFCQ, MPEC-LICQ). Let x∗ ∈ Rn be a feasible point of the
MPEC (2.3). The MPEC satisfies MPEC-LICQ (MPEC-MFCQ) in x∗, if TNLP(x∗)
satisfies LICQ (MFCQ) in x∗.

Alternatively, these constraint qualifications can be defined by using the relaxed NLP
(RNLP(x∗)) at a feasible point x∗,

min
x∈Rn

f(x)

s.t. cE(x) = 0,

cI(x) ≥ 0, (RNLP(x∗))

φAφ\Aψ(x) = 0, φAψ(x) ≥ 0,

ψAψ\Aφ(x) = 0, ψAφ(x) ≥ 0.

The only difference to TNLP(x∗) lies in the handling of the biactive complementarity
constraints, i.e. those with an index in the set Aφψ(x∗).

Lemma 2. The RNLP(x∗) satisfies LICQ(MFCQ) in x∗, if and only if TNLP(x∗) satisfies
LICQ(MFCQ) in x∗.

Proof. The set of active constraints in x∗ is identical for RNLP(x∗) and TNLP(x∗).

Besides the MPEC-LICQ and MPEC-MFCQ, several other constraint qualifications are
examined in the context of MPECs, e.g. the Abadie constraint qualification, resulting in
MPEC-ACQ [48], and the Guignard constraint qualification (GCQ) [50]. An overview
of the relations of many constraint qualifications are given in [139]. Together with the

11



2. Theoretical Basics

MPEC-specific constraint qualifications, stationarity concepts are in the focus of recent
research.

2.2.3. Stationarity Concepts for MPECs

Associate with an MPEC the Lagrangian function of (2.3) without the complementarity
constraints, i.e.

L(x, λE , λI , λφ, λψ) = f(x)− λTE cE(x)− λTI cI(x)− λTφφ(x)− λTψψ(x).

This resembles the Lagrangian function of TNLP(x∗) and RNLP(x∗) for any feasible
x∗.

Definition 8 (B-stationary). Let x∗ ∈ Rn be a feasible point of (2.3). It is called
Bouligand-stationary (B-stationary), if it is a local minimizer of the linearized MPEC,
i.e. ∇f(x∗)Td ≥ 0 for all d:

∇ci(x∗)Td ≥ 0 for all i ∈ A(x∗) ∩ I
∇ci(x∗)Td = 0 for all i ∈ E
∇φi(x∗)Td = 0 for all i ∈ Aφ \ Aψ
∇φi(x∗)Td = 0 for all i ∈ Aψ \ Aφ

min{∇φi(x∗)Td,∇ψi(x∗)Td} = 0 for all i ∈ Aφψ.

Definition 9 (W-stationarity). Be x∗ ∈ Rn a feasible point of the MPEC (2.3). It is
called weakly stationary (W-stationary), if it is a KKT-stationary point of TNLP(x∗).

Definition 10 (S-stationarity). Be x∗ ∈ Rn a feasible point of the MPEC (2.3). It is
called strongly stationary (S-stationary), if it is a KKT-stationary point of RNLP(x∗).

Definition 11 (C-stationarity). Be x∗ ∈ Rn a feasible point of the MPEC (2.3). It
is called Clarke stationary (C-stationary), if it is weakly stationary and in addition
λφ,iλψ,i = 0 for all i ∈ Aφψ.

For a detailed analysis of these stationarity concepts and their relations see [111]. Further
stationarity concepts have been discussed in the literature, like M-stationarity [49, 51,
100, 139] and A-stationarity [47, 50]. Based on these stationarity concepts and constraint
qualifications, first order necessary conditions for MPECs are deduced.
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Lemma 3. Let x∗ ∈ Rn be a local minimizer of the MPEC (2.3) and assume that
MPEC-MFCQ holds in x∗. Then x∗ is C-stationary and W-stationary.

A proof is given in [111]. For further first order necessary conditions see [47, 111, 139].

2.2.4. Solution Strategies for MPECs

For nonlinear programs, a large number of field-tested and successful algorithms have
been developed in the recent decades. However, most of them require LICQ or MFCQ to
hold for the problem to solve. Since this is not the case for MPECs at any feasible point,
these algorithms do not necessarily converge to a (local) minimum, so different solution
approaches are required. Mainly, two different groups of strategies exist currently for
solving MPECs.

The first group of approaches suggests new algorithms based on stationarity concepts
mentioned above or similar ones. Partly these algorithms require a specific form of the
MPEC, as the trust region methods suggested in [98, 99]. For general MPECs, sequential
methods solving a series of partly linearized problems were suggested by Stöhr [124], and
Leyffer and Munson [77].

The second group acts on the assumption that an NLP solver is available. The common
idea is to replace the MPEC by an parameterized nonlinear problem NLP(ξ). By this,
the NLP solver can be applied directly or with minor modifications. These so-called
regularization schemes usually solve a sequence NLP(ξk), ξk → 0, with the aim that the
solutions of the sequence converge to a solution of the original MPEC. Three groups of
these regularization schemes are mainly used: penalization, relaxation and smoothing.

The penalization approach removes the complementarity constraint from the model and
penalizes its violation in the objective function. This results in the NLP

min
x∈Rn

f(x) +
1

ξ
Π(φ(x), ψ(x)) (2.9a)

s.t. cE(x) = 0, cI(x) ≥ 0, (2.9b)

φ(x) ≥ 0, ψ(x) ≥ 0, (2.9c)

with a twice continuously differentiable penalization function Π,

Π(φ(x), ψ(x)) = 0 ⇐⇒ φ(x) = 0 or ψ(x) = 0.
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The intuitive candidate Π(φ(x), ψ(x)) = φ(x)Tψ(x) was successfully applied by Tin-Loi
[41, 42, 130]. A detailed examination of the general case (2.9) by Hu and Ralph [63]
shows, that the sequence of stationary points x∗(ξk) of NLP(ξk), ξk → 0, converges to
a C-stationary point x∗ of the original MPEC under MPEC-LICQ. Under additional
conditions B-stationarity is shown.

Scholtes proposed in [117] the relaxation scheme based on the relaxation of the comple-
mentarity function:

min
x∈Rn

f(x) (2.10a)

s.t. cE(x) = 0, cI(x) ≥ 0, (2.10b)

φ(x) ≥ 0, ψ(x) ≥ 0, (2.10c)

φ(x)iψ(x)i ≤ ξ, i ∈ C. (2.10d)

By this modification, the feasible set of the complementarity constraint is not restricted
to the lines φ(x) = 0 and ψ(x) = 0, but has now an interior, see Figure 2.1 for an
illustration.

0 2 4 6 8 10
0

2

4
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8

10

φi

ψ
i

Figure 2.1. Feasible set of the relaxation scheme in the φi-ψi-plane, ξ = 1

Scholtes [117] was able to show, that if the sequence of feasible points x∗(ξ) of NLP(ξ)
converges and MPEC-LICQ holds in the limit x∗, then x∗ is C-stationary. Under additional
assumptions the limit x∗ is B-stationary.
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DeMiguel et al. [28] extend this scheme by relaxing (2.10c) to

φ(x), ψ(x) ≥ −θ, with θ ≥ 0.

Here, either ξ or θ is driven to zero. By this, the feasible set has a nonempty interior even
in the limit. Under certain assumptions, S-stationarity can be shown for this scheme, see
[28].

The third group of approaches, called smoothing approaches, replaces the complementarity
constraint by a smoothed NCP-function.

Definition 12 (NCP-function). A function F : R2 → R is called NCP-function, if

F (x, y) = 0 ⇐⇒ x, y ≥ 0, xy = 0.

These functions originate from the analysis of nonlinear complementarity problems (NCP)
[22, 24, 68, 126], which are a specialization of the complementarity constraint (2.4). Two
popular NCP-functions are the Fischer-Burmeister function [45]

FFB(x, y) = x+ y −
√
x2 + y2,

and the minimum function

Fmin(x, y) = min(x, y) =
1

2

(
x+ y −

√
(x− y)2

)
.

Both functions are not twice continuously differentiable in the origin, thus cannot replace
the complementarity constraints directly, when an NLP is desired. Nevertheless, both
functions can be smoothed by

FFB−s(x, y, ξ) = x+ y −
√
x2 + y2 + ξ, (2.11)

Fmin−s(x, y, ξ) =
1

2

(
x+ y −

√
(x− y)2 + ξ

)
, (2.12)

or a similar smoothing. Leyffer [75] has shown strong stationarity for the smoothed
Fischer-Burmeister function.

All regularization schemes need to drive a parameter ξ to zero for gaining a solution of the
original MPEC. Typically, the stationarity proofs assume a series of NLP(ξk) with ξk → 0,
where for each ξk an NLP is solved. Every single NLP has to be solved to optimality for
convergence of the algorithm. In addition, solving several nonlinear problems may be very
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time-consuming. Therefore, different approaches have been suggested, e.g. controlling
ξ between the iterations of an interior point method (IPM), see [76, 113], or sequential
quadratic programming (SQP) framework, see [75]. A different idea is to handle the
parameter ξ as a variable and reduce it by a suitable constraint, e.g.

eξ − 1 = 0, (2.13)

assuming a positive initial value [66]. Another way of reducing ξ without solving a
sequence of NLPs is to minimize the parameter in the objective function [4].
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When a customer of a gas network is going to supply or discharge gas, he contacts the
network operator and nominates the required amounts. The operator ensures, that the
planned transactions are within the bounds of the contract with the customer and that
the combined transport situation considering all customers is realizable. To check this,
the operator collects information about the balanced demands of his customers at the
entries and exits, the contractual pressure bounds of the network and the supplied gas
composition at each entry. The validation of nominations (NoVa) verifies whether this
nomination is realizable or not.

The validation of nominations is an important problem of mid-term planning of gas
networks and it is a core aspect of several other problems, like booking validation or the
determination of technical capacities. The current state-of-the-art to validate a nomination
is based on repetitive simulation of a stationary, i.e. time-independent, network model. A
specialist with profound knowledge of the transport network decides the settings of all
controllable network elements and checks his decision with a simulation of the network.
If this check turns out successful, the nomination is validated. Otherwise other settings
are tested until the nomination is validated or no feasible setting has been found after
several tries and the nomination is finally rejected.

Simulating gas networks has a long history and highly accurate models exist for several
decades. Transient simulation models of long pipelines including partial differential systems
and isothermal ideal gas were already formulated in the 1960s and 1970s [129, 135]. Single
effects like temperature dynamics [69, 133] or supercompressibility [2, 74, 103, 122] were
researched and found their way into simulation models. For an overview of the simulation
models of this time see Fincham and Goldwater [43]. Detailed models for other network
elements like compressor groups were also developed [72]. A detailed overview of network
elements and model alternatives is given in [85] and [97]. These results lead to highly
detailed, non-isothermal simulation of gas networks and tracking of gas composition
[14, 112, 140]. The simulation models were also extended to special situations like
ruptures [46].
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While simulation models are well developed and are applicable even for large networks,
the described process to validate a nomination is highly tedious and a feasible setting may
be missed. Hence, validation of nominations can strongly profit from mathematical opti-
mization. The optimization of gas networks is young compared to simulation approaches.
Suggestions for stationary [64] and transient [65, 132] optimization models and procedures
were derived from the experiences of the simulation models. These attempts still based
on predefined decisions of the active elements. Later studies developed heuristics and
nonlinear mixed-integer models of compressor groups for given flow and pressure situations
[19, 96, 136]. These works often based on linear pressure change and simplified models of
the power consumption and specific change in adiabatic enthalpy. Further works study
discontinuities of gas network optimization models [20] and more sophisticated models of
compressors [12, 95, 138].

Later, the results were combined and first attempts were started to handle nonlinearities
and discrete decisions of stationary models. The resulting MINLP models proved to be
intractable by current optimization algorithms [30]. Two groups of approaches emerged,
both try to circumvent the weaknesses of general purpose MINLP solvers.

The first type of approaches focuses on a linearization of the nonlinear aspects, leading to
a mixed-integer linear problem (MILP) [27, 58, 60, 83, 84, 87, 105, 118, 119]. The results
are extended on transient models [82, 90]. The second type of approaches introduces
two steps. The discrete aspects are decided by a coarse MILP model and are fixed in a
subsequent, purely nonlinear model [10, 11, 107, 108, 131, 137]. Again, some results are
developed for transient models [37, 38, 123]. Domschke et al. [30] offer a comparison of
both groups.

In both approaches the pressure loss on pipes is mostly based on a quadratic approximation,
only a few publications consider discretizations of ordinary differential equations of the
gas dynamics [37, 38, 123]. The considered networks typically have a lower double-digit
number of network elements. The aim of this work is to solve large gas distribution network
of real-world size with a detailed model of the physical phenomena and technical devices.
To this end, Section 3.1 introduces a graph notation for gas transport networks. Based on
this notation a nonsmooth stationary MINLP model with differential algebraic equations
(DAE) as constraints is described in Section 3.2. The work is based on recent results
developed in the project ForNe [54, 71, 81, 104, 115, 116]. This optimization problem is
too complex to be solved by current optimization software. Even an MINLP model of
a realistic network with approximated differential equations, constant temperature and
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gas quality parameters cannot be solved by general-purpose MINLP solvers at the time
[104].

To be able to validate nominations on real-world networks anyway, the subsequent sections
present a new two-step approach based on the detailed MINLP model. The two-step
framework was developed in the project ForNe in cooperation with the workgroups of
M. Grötschel (Zuse-Institute Berlin), M. Pfetsch (Technische Universität Darmstadt),
A. Martin (Friedrich-Alexander-Universität Erlangen-Nürnberg), R. Schultz (Universität
Duisburg-Essen), W. Römisch (Humboldt-Universität zu Berlin), and R. Henrion (Weier-
strass Institute for Applied Analysis and Stochastics). In the first step, discrete decisions
of active network elements are determined and a solution of the network situation is
gained. The solution is verified in the second step by a highly accurate NLP, resulting in
a more detailed solution. For details, including several alternatives for the first step, see
[71].

Section 3.3 describes a heuristic to decide the states of active elements, like valves, control
valves and compressor groups, and the active configurations of compressor groups in the
first step. This approach is based on a nonlinear model of the main aspects of a gas
network derived from the model described in Section 3.2. The discrete states of the active
network elements are modeled by complementarity constraints

χ1(x)Tχ2(x) = 0, χ1(x), χ2(x) ≥ 0.

This results in a mathematical program with equilibrium constraints (MPEC). By applying
several smoothing techniques, approximations and regularization schemes, the MPEC
model is further reformulated into a nonlinear problem, which can be solved by general-
purpose NLP solvers.

The central aim of this MPEC approach is to find reliable solutions fast. It can be applied
as an initial heuristic in a MIP or MINLP framework, or it can be used as a stand-alone
solution approach.

In the second step, the solution of the MPEC approach is validated by an NLP (ValNLP),
which is introduced in Section 3.4. The ValNLP model is closely related to the descriptions
in Section 3.2 resulting in a highly detailed model. The states of the active elements and
the flow directions on the arcs are adopted from the solution of the MPEC approach, thus
the discrete decisions are eliminated. The initial values for the ValNLP are extrapolated
from the solution of the MPEC approach. The resulting nonlinear problem is suited
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for standard NLP solvers. By including multiple choices for several model aspects, the
ValNLP offers an adjustable trade-off between solution accuracy and solving time.

3.1. Graph Topology and Notation

The topology of transport networks offers an immanent structure which is a great starting
point for a mathematical model. A natural way to use this problem topology is to model
the network as a directed graph G = (V,A). In gas transport networks the set of vertices
V includes entries V+, exits V− and junctions V0. Entries are also known as sources and
describe places where gas is supplied into the network. Exists, also known as sinks, are
locations, where gas is discharged from the network. Vertices, where no gas exchange
takes place, are represented by junctions. Entries and exits are summarized as boundary
nodes V◦, since they are the connection points to industrial customers, storage facilities
and other transport networks.

Each arc a = (u, v) in the set of arcs A connects its tail u with its head v. The set of
arcs can be separated into pipes Api, compressor groups Acg, valves Avl, control valves
Acv, resistors Are and shortcuts Asc.

Based on the graph topology, a node u may be the head of one or several arcs, so-called
inlet arcs of u,

δ−u = {a ∈ A : a = (v, u)} ,

and it may be the tail of other arcs, so-called outlet arcs of u,

δ+
u = {a ∈ A : a = (u, v)} .

The set of all incident arcs is δu. The degree of a node is the combined number of inlet
and outlet arcs. Note, that a node with degree one is typically a boundary node.

The models of the next sections make strong use of the graph topology. Variables and
constraints belonging to a network element are indexed with the element, e.g. pu is
the pressure at node u and qa is the mass flow at arc a. Some quantities x like gas
temperature change along an arc. Their values at the tail u and head v of the arc differ
and are denoted with xa:u and xa:v. These quantities are often discontinuous at a node,
i.e. xa:u and xb:u of two incident arcs a and b are not necessarily equal.

Certain constraints depend on the direction of flow. A flow from tail to head is defined as
positive and a flow from head to tail is defined as negative. Accordingly, at every node u
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there exist inflow arcs Iu and outflow arcs Ou,

Iu = {a ∈ δ−i : qa ≥ 0} ∪ {a ∈ δ+
i : qa ≤ 0},

Ou = {a ∈ δ−i : qa < 0} ∪ {a ∈ δ+
i : qa > 0}.

Similarly, the tail u is called the inflow node of arc (u, v) in case of positive flow and
outflow node otherwise. The values at the inflow node and outflow node of a quantity x
that varies along an arc are written as

xin
a =

xa:u, qa ≥ 0,

xa:v, qa < 0,
xout
a =

xa:v, qa ≥ 0,

xa:u, qa < 0.
(3.1)

if xa:u and xa:v are defined, otherwise the values at the appropriate nodes are used, i.e.

xin
a =

xu, qa ≥ 0,

xv, qa < 0,
xout
a =

xv, qa ≥ 0,

xu, qa < 0.
(3.2)

Models using these inflow and outflow values often have a nonsmooth transition when
the flow direction changes.

3.2. A Nonsmooth MINLP Model with ODE Constraints

Given a gas network G = (V,A), pressure bounds p−u , p+
u for all u ∈ V and supplied

gas qu with gas parameters Xu for all u ∈ V+, is there a setting for the active network
devices, such that all demanded flows qv, v ∈ V− are satisfied?

To answer this question, a mathematical model of a gas network is necessary, which
has to combine several different aspects. Stationary gas physics is partially based on
ordinary differential equations (ODE) and contains nonsmooth phenomena, the states of
controllable network elements introduce discrete decisions and the technical properties of
network devices are only known by empirical data in many cases.
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3. Validation of Nominations

In this section, MINLP-techniques are used to create an existence problem of type

∃ x ∈ Rnx , y ∈ R→ Rny , z ∈ {0, 1}nz

s.t. cE(x, z) = 0,

cI(x, z) ≥ 0,

cD(x, y, ẏ) = 0,

cA(x, y) = 0,

which is a MINLP with nonsmooth constraints cE(x, z), cI(x, z), and differential algebraic
equations (DAE) as constraints cD(x, y, ẏ) and cA(x, y).

3.2.1. Component-Unspecific Aspects

While often physical equations are designed for ideal gas, the model of a real-world gas
network need adjustments, since gas has slightly different attributes in reality. Gas inside
transport networks does not consist of a single chemical element, but is a combination
of methane, ethane, propane, butane and others. Due to interaction between the gas
particles, real gas shows a different relation between pressure, temperature and volume
than ideal gas, which has an impact on many physical phenomena. To model this
difference, a compressibility factor z is introduced. This factor depends on the pressure
p, temperature T and the gas composition. During the last decades several different
empirical models of this compressibility factor have been developed. Two examples are
the equation of the American Gas Association (AGA), see [73],

zAGA(p, T, pc, Tc) = 1 + 0.257
p

pc
− 0.533

p

pc

Tc
T
, (3.4)

which is sufficiently accurate for pressures up to 70 bar [78], and the Papay’s equation
[103, 110]

zPapay(p, T, pc, Tc) = 1− 3.52
p

pc
e−2.26 T

Tc + 0.274

(
p

pc

)2

e−1.878 T
Tc , (3.5)

which is appropriate up to 150 bar [78]. The gas parameter pc denotes the pseudocritical
pressure and Tc the pseudocritical temperature of the real gas.

Several other models are known in the literature. High-detailed online simulation often
incorporates the detailed models AGA-DC92 [122] or GERG-2004 [74]. These sophisticated
models consist of a system of nonlinear equations and require detailed information on the
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3.2. A Nonsmooth MINLP Model with ODE Constraints

specific gas consumption for an increased accuracy. In mid-term planning processes, the
required information is usually only partially known and has to be estimated, effectively
eliminating the advantage in accuracy.

Besides the compressibility, other main differences between ideal and real gas are the
specific heat capacity cp and the molar heat capacity c̃p = mcp of real gas. These sizes
express the energy, which is necessary to increase the temperature of one kilogram or
mole of gas by one Kelvin at a fixed pressure. They are modeled by

cp =
1

m

(
c̃0
p(T, Ã, B̃, C̃) + ∆c̃p(p, T, pc, Tc)

)
, (3.6a)

c̃0
p = Ã+ B̃T + C̃T 2, (3.6b)

∆c̃p = −R
∫ p

0

1

p̃

(
2T

∂z(p̃, T, pc, Tc)

∂T
+ T 2∂

2z(p̃, T, pc, Tc)

∂T 2

)
dp̃. (3.6c)

The molar heat capacity consists of the molar heat capacity of ideal gas c̃0
p and a correction

term for real gas ∆c̃p. c̃0
p is modeled by a least squares fit using the parameters Ã, B̃, C̃,

which depend on the specific gas composition. The correction term expresses the difference
to ideal gas. If the AGA formula (3.4) is chosen to model the compressibility factor,
the correction term evaluates to zero. For Papay’s equation the integral can be solved
analytically [71].

The density of gas ρ is strongly related to the pressure p and temperature T . For increasing
pressure the density also increases, while the density decreases when the temperature
rises. This interrelation is modeled by an equation of state. Several equations of state
with different ranges of validity exists, common ones are the thermodynamical standard
equation [122] and the empirical equation of state of Redlich–Kwong [106].

The thermodynamical standard equation incorporates the molar mass m and the com-
pressibility factor z. The formula is

0 = ρz(p, T, pc, Tc)RT − pm. (3.7)

The Redlich–Kwong equation is defined as

0 =
RT

Vm − b
− a√

TVm(Vm + b)
− p,

a = 0.4278
R2T 2.5

c

pc
,

b = 0.0867
RTc
pc

.
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In addition to pressure, temperature and density, the equation uses the molar volume
Vm = m/ρ and the universal gas constant R = 8.314 462 1 JK−1 mol−1.

At several network elements a pressure change occurs without heat transfer to the
environment. This results in a temperature change, described by the Joule–Thomson
effect,

T2 − T1 =

∫ p2

p1

µJT(p, T ) dp, µJT(p, T ) =
T 2

p

R

c̃p

∂z

∂T
. (3.9)

3.2.2. Nodes and Arcs

Every node u ∈ V holds information about the pressure pu ∈ [p−u , p
+
u ] and Tu ∈ [T−u , T

+
u ]

at this location, and the adjacent arcs define the relations of these values to the connected
nodes.

The mass flow, which is discharged or supplied at a boundary node u, is denoted by
qu ∈ [q−u , q

+
u ], with

qu ≥ 0, u ∈ V+,

qu ≤ 0, u ∈ V−,

qu = 0, u ∈ V0.

At every node u of the network graph the law of Kirchhoff defines a flow balance. It
states that the amount of inlet mass flow and supplied mass flow equals the amount of
outlet mass flow and discharged mass flow, i.e.

0 = qu +
∑
a∈δ−u

qa −
∑
a∈δ+

u

qa, (3.10)

with qa denoting the mass flow on arc a. Based on the common linguistic usage nominated
gas is defined as a non-negative flow value qext ≥ 0 and it is considered in the model by

qu = qext
u , for all u ∈ V+,

qu = −qext
u , for all u ∈ V−.

Adding up all balance equations (3.10) and considering qext
V+

= qV+ and qext
V−

= −qV−

results in the equality ∑
u∈V+

qext
u =

∑
u∈V−

qext
u ,
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3.2. A Nonsmooth MINLP Model with ODE Constraints

i.e. a nomination has to be balanced [53].

At nodes, the inflow gas is mixed and flows into the outlet arcs. The mixing has a strong
impact on the composition of the gas inside the pipeline. The composition of supplied gas
depends on the original source of the gas. Since chemical properties of the gas like molar
mass m, calorific value Hc, pseudocritical pressure pc, pseudocritical temperature Tc and
coefficients of the heat capacity Ã, B̃ and C̃ depend on the composition, knowledge of
the exact ratios increases the accuracy of the data basis of the physical and technical
constraints. The importance of composition tracking will further increase in the future,
when biogas and power to gas techniques, like methanation or electrolysis, further diversify
the gas composition.

Mixing of the gas parameters X = (m,Hc, pc, Tc, Ã, B̃, C̃) takes place with respect to
the molar flow q̂ = q/m. Which gas is mixed at a node depends on the flow direction of
incident arcs.

Based on the sets Iu and Ou, the gas mixture at node u is defined as

Xu =

(
[q̂u]+Xext

u +
∑

a∈Iu |q̂a|Xa

)(
[q̂u]+ +

∑
a∈Iu |q̂a|

) , Xa = Xu, ∀a ∈ Ou, (3.11)

and the mixed gas parameters are propagated on the outlet arcs. Here Xext
u denotes the

gas parameters of supplied gas at node u ∈ V+. At junctions and exits, this vector is
assumed to be zero. The vector Xa describes the gas parameters at arc a, and [q̂u]+ is
the supplied molar flow q̂u, i.e.

[q̂u]+ =

q̂u, if u ∈ V+,

0, else.

The temperature of gas arriving at a node varies between the inflow arcs. When the gas
of the inflow arcs is mixed an average temperature results. The mixing equation for the
temperature is derived from the conservation of energy and has the same structure as
(3.11). Using the molar heat capacity c̃p the mixed temperature Tu at node u is

Tu =
c̃ext
p,u [q̂u]+ T ext

u +
∑

a∈Iu c̃p,a|q̂a|Ta:u

c̃ext
p,u [q̂u]+ +

∑
a∈Iu c̃p,a|q̂a|

, (3.12)

where c̃ext
p,u denotes the constant molar capacity of the supplied gas and T ext

u its tempera-
ture.
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Note that all mixing equations are discontinuous, since the gas is mixed with respect to
the absolute value of the mass flow on the inflow arcs and the set of inflow arcs depend
on the flow direction.

3.2.3. Pipes

When people think of gas networks, they usually have a picture of large tubes made of
metal or plastic in mind. Indeed, pipes outnumber all other network elements of a gas
network, and they are the only elements with a noteworthy length La, compared to the
size of the network.

A pipe is characterized by its length La, diameter Da and integral roughness ka. The
cross-sectional area Aa of a pipe is considered to be circular, so

Aa =
π

4
D2
a.

The slope of a pipe is assumed to be constant, sa = ∆h/La. The roughness of the pipe
describes the quality of the internal pipe wall. In this work the integral (or average)
roughness ka is used. It summarizes the effects of several aspects of a pipe causing friction
and hence pressure loss: wall roughness, sedimentation, measurement devices, welding
seams, production tolerances in pipe diameters and similar. While a detailed knowledge
is useful or even necessary for the in-depth analysis of fluid dynamics inside a pipe like in
[3], most of the single aspects are hard or impossible to determine when solving problems
on an operating gas network however. Hence the integral roughness is used, since it can
comparatively easily be measured or estimated. It is the foundation of historical data
and research, and it allows some tolerances for the manufacturer [128].

The roughness of the pipe has a major influence on the friction factor λ(qa) and thereby
on the pressure loss inside the pipe. Other aspects influencing the friction factor are the
diameter of the pipe and the Reynolds number of the current flow situation,

Re(qa) =
Da

Aaη
|qa|,

η denotes the dynamic viscosity. Two kinds of friction factors are common in the literature:
the Darcy friction factor λd and the Fanning friction factor λf . They only differ in a
scaling constant:

λd = 4λf .

In this work the Darcy friction factor is used and the index is omitted.
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3.2. A Nonsmooth MINLP Model with ODE Constraints

The dimensionless Reynolds number Re characterizes types of flow in a pipe [85]. For
small mass flows qa, the flow inside the pipe is laminar. Here, the friction factor is
expressed exactly by the law of Hagen–Poiseuille [44, 85],

λHP(qa) =
64

Re(qa)
. (3.13)

For larger mass flows with a Reynolds number above the critical value Recrit ≈ 2320, the
flow situation is turbulent. Here, laminar flow breaks down and vortices occur [97]. For
this situation no exact law is known, but a lot of empirical models have been developed
in the last century. One of the pioneers of this research area was Johann Nikuradse, who
roughened the inside of pipes by applying grains of sand with a known size and made a
detailed analysis on these pipes in 1933 [92, 93]. He developed the formula

λNik =
1(

1.74 + 2 log
(
Da
2ka

))2 .

This model is independent of the flow, i.e. it is constant for a given pipe. In 1939
Colebrook [26] published an implicit formula regarding the flow,

1√
λPC(qa)

= −2 log10

(
2.51

Re(qa)
√
λPC(qa)

+
ka

3.71Da

)
. (3.14)

This formula is generally known as the Colebrook–White equation, in German literature
sometimes also Prandtl–Colebrook equation, or just Colebrook equation. Originally, this
formula could not be used directly due to its implicit nature, so graphical representations
were created. Examples are the Rouse diagram [109] and the Moody diagram [88]. With
the upcoming of computers, the equations could be solved iteratively. In the recent years
explicit reformulations have been found [89].

Several other equations of the friction have been developed, like the Hofer equation
[62, 86]

λHof(qa) =

(
−2 log

(
4.518

Re(qa)
log

(
Re(qa)

7

)
+

ka
3.71Da

))−2

,

or the PMT-1025 equation [25, 86]

λPMT(qa) = 0.067

(
158

Re(qa)
+

2ka
Da

)0.2

.

Hofer’s formula is an explicit approximation of the Colebrook equation [86]. For qa →∞
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the result of Hofer’s formula converges to the value of Nikuradse’s formula. Further
friction models are given in [13, 85, 86, 97].
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Figure 3.1. Comparison of friction models for small and large mass flow
(Da = 1m, ka = 10−6 m)

The stated friction models are displayed in Figure 3.1 for the transition point between
laminar and turbulent flow, and for large flow. While the graphs of Hofer and Colebrook–
White are hardly distinguishable, the PMT-1025 formula leads to significantly smaller
values in case of large flows. The constant value of Nikuradse’s formula is inaccurate
for small flow values but closes in to the values of Colebrook’s and Hofer’s formulas
for growing flow values. This is to be expected, since it is the convergence limit of
Hofer’s formula for large mass flows. At the transition from laminar to turbulent, i.e.
at the critical Reynolds number, there exists a jump discontinuity between the law of
Hagen–Poiseuille and the turbulent models.

Resistance and gravitational forces based on friction and slope have a major impact on
pressure and temperature change along a pipe. In full complexity, these changes and
the conservation of mass are described by Euler equations for compressible fluids in
cylindrical pipes, which are a specialization of the Navier–Stokes equations [39]. In the
following, these equations are stated as partial differential equations in location x and
time t, together with some short motivations, based on [5, 73, 80].

The continuity equation is derived from the mass conservation law

d

dt

∫ x2(t)

x1(t)
Aaρa(x, t)dx = 0

using the density at position x at time t in an arbitrary pipe segment [x1(t), x2(t)] . Based
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on Reynolds’ transport theorem, this is equivalent to∫ x2(t)

x1(t)
Aa

∂

∂t
ρa(x, t)dx+Aaρa(x, t)|x2(t)

dx2

dt
−Aaρa(x, t)|x1(t)

dx1

dt
= 0.

The terms dx1/dt and dx2/dt correspond to the velocities v(x1, t) and v(x2, t) at the
bounds of the considered pipe segment. Hence,∫ x2(t)

x1(t)
Aa

∂

∂t
ρa(x, t)dx+Aava(x, t)ρa(x, t)|x2(t) −Aava(x, t)ρa(x, t)|x1(t) = 0

⇐⇒
∫ x2(t)

x1(t)
Aa

∂

∂t
ρa(x, t)dx+

∫ x2(t)

x1(t)
Aa

∂

∂x
[va(x, t)ρa(x, t)] dx = 0

⇐⇒
∫ x2(t)

x1(t)

∂ρa(x, t)

∂t
+
∂(va(x, t)ρa(x, t))

∂x
dx = 0.

Since these equations hold for any segment [x1(t), x2(t)], the continuity equation

∂ρa
∂t

+
∂vaρa
∂x

= 0 (3.15)

is gained.

The momentum equation is based on Newton’s second law of motion, the sum of forces
acting on an object equals the change in time of its momentum. The relevant forces are
the pressure force

Aa

∫ x2(t)

x1(t)

∂pa(x, t)

∂x
dx,

the gravitational force with the gravitational acceleration g

Aa

∫ x2(t)

x1(t)
ρa(x, t)gsa dx,

and the friction forces

Aa

∫ x2(t)

x1(t)

λ(qa)

2Da
ρa(x, t)|va(x, t)|va(x, t) dx.
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In summary, Newton’s second law is stated as

0 = Aa
d

dt

∫ x2(t)

x1(t)
vaρa dx−Aa

∫ x2(t)

x1(t)

∂pa
∂x

dx

−Aa
∫ x2(t)

x1(t)
ρagsa dx−Aa

∫ x2(t)

x1(t)

λ(qa)

2Da
ρa|va|va dx.

By applying Reynolds’ transport theorem, this results in

0 =

∫ x2(t)

x1(t)

∂vaρa
∂t

+
∂ρav

2
a

∂x
dx−

∫ x2(t)

x1(t)

∂pa
∂x

+ ρagsa +
λ(qa)

2Da
ρa|va|va dx (3.16)

⇐⇒ 0 =
∂ρava
∂t

+
∂ρav

2
a

∂x
− ∂pa

∂x
− ρagsa −

λ(qa)

2Da
ρa|va|va, (3.17)

since the equation holds for any x1 and x2. Some publications describe the equivalent
formulation

ρa
∂va
∂x

+ ρava
∂va
∂x
− ∂pa

∂x
− ρagsa −

λ(qa)

2Da
ρa|va|va = 0.

This is achieved by applying the product rule and (3.15) on the first and second term of
(3.17) [80].

The temperature dynamics are described by the law of energy conservation. Here, they are
modeled by the same differential equation as in [78]. Essentially, this equation incorporates
changes due to the Joule–Thomson effect (3.9) and heat exchange with the environment,

0 = Aaρacp

(
dTa
dt
− µJT

dpa
dt

)
−Aa

dpa
dt

+Aavagρasa + πDacHT (Ta − Tsoil) .

The specific heat capacity is abbreviated by cp,a, cHT denotes the constant heat transfer
coefficient of the pipe and the temperature of the surrounding soil is written as Tsoil. By
expanding the total derivatives and applying (3.9) the equation is transformed into the
energy equation

0 = Aaρacp,a

(
∂Ta
∂t

+ va
∂Ta
∂x

)
−Aa

(
1 +

Ta
za

∂za
∂Ta

)
∂pa
∂t

−Aava
Ta
za

∂za
∂Ta

∂pa
∂x

+Aaρavagsa + πDacHT (Ta − Tsoil) .

The compressibility factor z(pa(x, t), Ta(x, t), pc,a, Tc,a) is abbreviated by za.
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In summary, the transient gas dynamics are modeled by

0 =
∂ρa
∂t

+
∂(ρava)

∂x
, (3.18a)

0 =
∂(ρava)

∂t
+
∂pa
∂x

+
∂(ρav

2
a)

∂x
+ gρasa + λ(qa)

|va|va
2Da

ρa, (3.18b)

0 = Aaρacp,a

(
∂Ta
∂t

+ va
∂Ta
∂x

)
−Aa

(
1 +

Ta
za

∂za
∂Ta

)
∂pa
∂t

−Aava
Ta
za

∂za
∂Ta

∂pa
∂x

+Aaρavagsa + πDacHT (Ta − Tsoil) . (3.18c)

The gas velocity va is expressed by the mass flow qa, density ρa and the cross-sectional
area of the pipe Aa using

qa(x, t) = Aaρa(x, t)va(x, t). (3.19)

In practice, the gas velocity is desired to be in specific bounds, since high velocities create
a considerable sound pollution which is not acceptable in inhabited areas and the resulting
vibrations could damage the wall material.

For a stationary model of a pipe a = (u, v) the time-dependent partial derivatives
are dropped from (3.18). Together with (3.19) and an equation of state, e.g. the
thermodynamical standard equation (3.7), this results in a differential algebraic equation
(DAE)

0 =
∂qa(x)

∂x
, (3.20a)

0 =
∂pa(x)

∂x
+
q2
a(x)

A2
a

∂

∂x

1

ρa(x)
+ gρa(x)sa + λ(qa(x))

|qa(x)|qa(x)

2A2
aDaρa(x)

, (3.20b)

0 = qa(x)cp,a
∂Ta(x)

∂x

− qa(x)Ta(x)

ρa(x)za

∂za
∂Ta(x)

∂pa(x)

∂x

+ qa(x)gsa + πDacHT(Ta(x)− Tsoil), (3.20c)

0 = ρa(x)zaRTa(x)− pa(x)m, (3.20d)

0 = pa(0)− pu, (3.20e)

0 = Ta(0)− Tu, (3.20f)

0 = qa(0)− qa. (3.20g)

It follows from the continuity equation (3.20a) that the gas flow qa(x) through the pipe
is constant.
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Figure 3.2. Profiles of pressure and temperature of three horizontal pipes with differing
diameters (La = 25 km, ka = 0.06mm, qa = 500 kg s−1).

Figure 3.2 displays the change of pressure and temperature along a pipe and the influence
of the diameter. It shows the increasing loss in pressure and temperature for decreasing
diameter. The trends of pressure and temperature are quite similar.

3.2.4. Resistors

Some network devices, like measurement devices, narrow kinks in pipes, filters and internal
station piping lead to additional pressure loss. Sometimes, it is not desirable to incorporate
this into the integral roughness of a pipe or it is just not possible, since the devices are
attached to other network elements than pipes. Typically, the exact characteristics of the
pressure loss are unknown and only empirical data is available. To model the pressure
drop anyway, fictitious resistors are included.

Two different models are presented for these fictitious network elements, depending on the
available data. The first model of a resistor a = (u, v) is based on a constant non-negative
pressure loss ξa,

0 = pu − pv − sign(qa)ξa. (3.21)

The second model incorporates a pressure loss similar to the Darcy–Weisbach equation
[44, 80] with fictitious diameter Da:

0 = pu − pv −
1

2
ζaρin|vin|vin = pu − pv −

8ζa
π2D4

a

|qa|qa
ρin

. (3.22)
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Here, ζa denotes a non-negative resistance coefficient. The change of pressure leads to a
change of temperature. This effect is governed by the Joule–Thomson effect (3.9).

Note, that in both models the pressure loss depends on the flow direction. Values indexed
by in refer to the inflow side of the resistor. This results in nonsmooth aspects in both
models. The sign function in (3.21) introduces a nonsmoothness of first order and the
absolute value in (3.22) introduces a nonsmoothness of second order.

3.2.5. Valves

Valves are controlled by the network operator to redirect the flow of the gas. Thus, they
are active network elements and they can be either open or closed. An open valve does
not influence the gas, i.e. there is no change of pressure, temperature or flow. On the
opposite, a closed valve prevents any gas from passing through, and the closed valve
induces no relation between the values at the beginning of the valve and its end. The
consequences of both states are listed in Table 3.1.

open closed

flow: – qa = 0
pressure: pu = pv –

Table 3.1. States of a valve a = (u, v) and their consequences on pressure and flow

By closing valves, subnetworks can be decoupled, e.g. for maintenance, and the route of
the flow can be controlled, e.g. to direct gas to a compressor group. Therefore, valves are
frequently found in combination with compressor groups and control valve stations.

Several types of valves exist, but typically they have some kind of changeable obstacle to
close themselves. For example, a gate valve raises or drops a wall-like barrier into the pipe,
whereas a ball valve is based on a ball with a cylindrical hole through its center. When
the hole is parallel to the valve, the gas can flow freely, while the gas flow is interrupted,
when the hole is perpendicular to the valve.

A valve a ∈ Avl is described by a linear mixed-integer model using big-M -formulations.
It uses sufficiently large constants Mp,MT > 0 and a discrete variable za ∈ {0, 1} which
describes the state of the valve. An open valve is represented by za = 1, while a closed
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valve is represented by za = 0. The resulting mixed-integer model is

0 ≤ (1− za)M+
p + (pu − pv),

0 ≤ (1− za)M−p − (pu − pv),
0 ≤ (1− za)M+

T + (Ta:u − Ta:v),

0 ≤ (1− za)M−T − (Ta:u − Ta:v),

0 ≤ zaq+
a − qa,

0 ≤ qa − zaq−a .

The smallest possible constants are M+
p = p+

u − p−v , M−p = p+
v − p−u , M+

T = T+
a:u − T−a:v

and M−T = T+
a:v − T−a:u. If any of these constants is negative there has to be a difference

in temperature or pressure between the nodes, thus the valve has to be closed.

3.2.6. Shortcuts

Similar to resistors, shortcuts are fictitious network elements. They are introduced to
simplify the modeling of sophisticated network situations, like combinations of compressor
groups or exchange nodes, which can be both entries and exits (just not at the same
time). The model is similar to an open valve, i.e.

0 = pu − pv, (3.23a)

0 = Ta:u − Ta:v. (3.23b)

3.2.7. Control Valves

Typically, the pressure levels of gas transporting networks are too high for attached
distribution networks and industrial customers. To fit their demands on the maximum
allowed pressure, control valve stations are incorporated into the network to decrease the
gas pressure. Two kinds of control valves are presented here: those with remote access
and those without.

The pressure loss at a control valve with remote access is directly controlled by the
network operator. This is not the case for control valves without remote access. Here, a
pressure value pset is set and the pressure is reduced to this value, if the inflow pressure
is larger. If the pressure in the subsequent subnetwork rises above the preset value, the
control valve without remote access closes automatically.
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A control valve station of either type consists of several elements. The actual reduction
of pressure is done by the control valve. Additional devices like filters, station piping
or measurement devices reduce the pressure loss further and are summarized in inlet
and outlet resistors, see Section 3.2.4 for modeling details. A large pressure drop may
lead to hydratized gas, which is undesirable in gas transport networks. To prevent this
from happening, a gas preheater is activated, when the gas temperature falls below a
given minimum T−a:v. In (transient) reality, the preheater heats the gas in front of the
active control valve based on readings of temperature sensors located behind the control
valve. Here, the model is simplified and the preheater has direct control of the outlet
temperature.

A control valve station is either active, closed or bypassed. In case of an active control
valve station, the operator specifies the pressure drop ∆p caused by the control valve,
when remote access is available. Otherwise, the outlet pressure is reduced to a preset
pressure value pset. The pressure reduction leads to a change of temperature based on
the Joule–Thomson effect, see (3.9). The inlet and outlet resistors result in additional
changes of pressure and temperature. An active control valve station can only operate in
direction of the arc, so the flow through the station has to be positive, qa ≥ 0.

A closed control valve station interrupts the gas flow and decouples the ends of the
element. It is modeled like a closed valve.

A control valve station in bypass has no influence on the pressure and the gas can flow
freely through the element. Whether the resistors are circumvented in bypass mode
depends on the type of the control valve. If remote access is available, the resistors are
also bypassed, otherwise they are always regarded. The states and their conditions of a
control valve with remote access are summarized in Table 3.2. The same information is
given for control valves without remote access in Table 3.3.

open closed

active bypass

flow: qa ≥ 0 – qa = 0
pressure: pu ≥ pv pu = pv –

Table 3.2. States and their consequences on pressure and flow of a control valve with
remote access a = (u, v).

35



3. Validation of Nominations

active bypass closed

flow: qa ≥ 0 – qa = 0
pressure at tail: p1 ≥ pset,a p1 ≤ pset,a –

pressure at head: p2 = pset,a p2 = p1 p2 ≥ pset,a

Table 3.3. States and their consequences on pressure and flow of a control valve without
remote access a = (u, v).

Similar to valves, a mixed-integer formulation models the control valve station. Since
a control valve station has three possible states, two binary variables z1, z2 ∈ {1, 0} are
required. In the following model, z1 represents the decision between an open (z1 = 1) and
closed (z1 = 0) station, while z2 represents an active control valve station (z2 = 1) or an
inactive one (z2 = 0). Thus, the states of the control valve station are represented by

closed: z1 = 0, z2 = 0,
bypass: z1 = 1, z2 = 0,
active: z1 = 1, z2 = 1.

Since an active station has to be open, the choice z1 = 0, z2 = 1 is not possible.

Additional nodes and arcs have to be introduced, since a control valve station consists of
several devices. The whole control valve station is modeled as a subgraph, see Figure 3.3.

0
u

re-in re-out

4
v

control valve preheater

1 2 3

bypass

Figure 3.3. Schematic control valve station

When regarding the control valve as sub-arc a1, the inlet resistor is sub-arc a0, the outlet
resistor is sub-arc a2 and the preheater is the sub-arc a3. In summary, an active control
valve station consists of four sub-arcs. Each sub-arc ai connects sub-node i with sub-node
i + 1. Each sub-node i = 1, 2, 3, has a pressure and temperature variable, thus define
xi = (pi, Ti), i = 1, 2, 3. The sub-node 0 is identified with u and sub-node 4 with v.

Let the inlet resistor be represented by ca0(qa, pu, p1, Ta:u, T1) = 0 and the outlet resistor
by ca2(qa, p2, p3, T2, T3) = 0. In addition, let the Joule–Thomson effect (3.9) at an active
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control valve be modeled by cjt(p1, p2, T1, T2) = 0. The constraints

0 = Ta:v −max(T3, T
−
a:v), (3.24a)

0 = p3 − pv, (3.24b)

0 ≤ (1− z1)Mjt − cjt(p1, p2, T1, T2), (3.24c)

0 ≤ (1− z1)Mjt + cjt(p1, p2, T1, T2), (3.24d)

0 ≤ z1q
+
a − qa, (3.24e)

0 ≤ qa − z1q
−
a , (3.24f)

0 ≤ qa − (1− z2)q−a , (3.24g)

0 ≤ z1 − z2 (3.24h)

are valid for both types of control valves. The equations (3.24a) and (3.24b) model the
gas preheater.

The model of a control valve station with remote access contains the additional constraints

0 ≤ (1− z1)Ma0 − ca0(qa, pu, p1, Ta:u, T1), (3.25a)

0 ≤ (1− z1)Ma0 + ca0(qa, pu, p1, Ta:u, T1), (3.25b)

0 ≤ (1− z1)Ma2 + ca2(qa, p2, p3, T2, T3), (3.25c)

0 ≤ (1− z1)Ma2 − ca2(qa, p2, p3, T2, T3), (3.25d)

0 ≤ (1− z1)Ma1 − (p1 − p2 − z2∆p), (3.25e)

0 ≤ (1− z1)Ma1 + (p1 − p2 − z2∆p). (3.25f)

The vector-valued constants Mjt, Ma0 , Ma1 and Ma2 are sufficiently large.

The state of a control valve without remote access depends on the relation of the inflow
pressure p1 and the outlet pressure p2 to the preset pressure pset,a. Based on the properties
stated in Table 3.3 for a control valve without remote access, the mutual constraints
(3.24) are extended by the constraints

0 = c0(qa, pu, p1, Ta:u, T1),

0 = c2(qa, p2, p3, T2, T3),

0 ≤ (p−1 − pset,a)z2 + p1 − p−1 ,
0 ≤ (pset,a − p+

2 )z1 − p2 + p+
2 ,

0 ≤ (pset,a − p+
1 )(z1 − z2)− p1 + p+

1 ,
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0 ≤ (pset,a − p−2 )(z1 − z2) + p2 − pset,a,

0 ≤ (p+
2 − p−1 )(1− z1)− (p2 − p1),

0 ≤ (p+
1 − pset,a)(1 + z2 − z1)− (p1 − p2).

The models of both types of control valves combine discrete variables z1 and z2, mixed-
integer linear functions, nonlinear functions c0, c2 and cjt, and a nonsmooth temperature
model of the gas preheater (3.24a).

3.2.8. Compressor Groups

Due to the pressure loss inside the network, the pressure of the input gas may not be
sufficient to transport gas to all exits and to satisfy the lower pressure limits at exchange
points to adjacent transport networks. Compressor groups offer the network operator the
ability to increase the pressure within certain technical limits. Thus, pressure losses are
compensated and it is possible to transport gas over larger distances.

The network operator has the choice to either close a compressor group, bypass it or let
the group operate actively. A closed compressor group acts similar to a closed valve, i.e.
the mathematical model is just

qa = 0.

When the compressor group is bypassed, pressure and temperature are not influenced
and gas can flow in either direction. The model is similar to a shortcut,

0 = pu − pv,
0 = Tu − Tv.

In case of an active compressor group a = (u, v) several technical devices have impact on
the gas passing the group. Filters, sensors, interior pipings and other elements causing
additional pressure loss are modeled by inflow and outflow resistors. One or several active
compressor units increase the pressure at a compressor group and a gas cooler is activated,
when a critical gas temperature is reached.

The pressure increase at the compressor group is generated by multiple compressor units
and each compressor unit is powered by a drive. Each compressor unit has a specific
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k1

k2

k1 k2

k1

k2

Figure 3.4. All possible configurations of a compressor group with two units k1 and k2

k1

k2

k3

k4

Figure 3.5. Configuration with two serial stages of parallel units

range of operation, which induces lower and upper bounds on the gas flow and pressure
increase.

The technical description of a compressor group a typically contains a set of configurations
Ka, which describes all possible combinations of the compressor units of the compressor
group. Each configuration i ∈ Ka consists of a set of serial stages Si and each stage
j ∈ Si contains a set of compressor units Uj which are operated in parallel. Only a single
configuration can be active at the same time.

Figure 3.4 lists all possible configurations of a compressor group with two compressor units:
there is either a single unit active or they operate serially or in parallel. When compressor
units work parallel, the overall flow is split between the units and the maximum flow the
station is larger than when a single unit is active. The drawback is, that the pressure
increase is limited by the weakest unit, i.e. the unit with the smallest possible pressure
increase, since the outflow pressures of the parallel units are identical. In contrast, the
serialization of compressor units allows successive pressure increase and thereby a larger
outflow pressure than a single unit. The maximum possible flow which can be compressed
by a serialization of units is bounded by the smallest maximum flow the serial stages
can handle. If more than two units belong to a compressor group these settings can be
combined. Figure 3.5 shows a configuration with four active compressor units arranged in
two serial stages with two parallel units each. A schematic graph of a compressor group
is illustrated in Figure 3.6.

The feasible set of a configuration Fi, i ∈ Ka, depends on the included compressor units
and how they are combined. At each serial stage j ∈ Si the flow through the compressor
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u
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config 1

...

config |Ka|

reout cooler

v

1 2 3

configurations

bypass

Figure 3.6. Subgraph of a compressor group

group is divided between the compressor units k ∈ Uj of this stage,

0 = qa −
∑
k∈Uj

qk ∀j ∈ Si. (3.26)

The outlet pressure pj of a stage j is the inlet pressure of the compressor units in the
subsequent stage j + 1. The outlet temperatures T out

k , k ∈ Uj , are mixed according to
(3.12), the mixed temperature Tj is the inlet temperature of the subsequent stage.

Two kinds of compressor units are common: turbo compressors and piston compressors.
Both types are based on different mechanical principles. Nevertheless, they have some
basics in common.

The compression of the gas is adiabatic, i.e. the pressure increase takes place without
heat transfer, and is reversible, hence it is isentropic. The energy, which is necessary
to compress 1 kg real gas from given pressure and temperature to a target pressure, is
expressed by the specific change in adiabatic enthalpy Had. For a compressor unit k the
specific change in adiabatic enthalpy is modeled by

Had,k = zj−1Tj−1
R

ma

κk
κk − 1

( pj
pj−1

)κk−1

κk − 1

 ,

zj−1 = z(pj−1, Tj−1, pc,a, Tc,a),

with the universal gas constant R and the isentropic exponent κ. The isentropic exponent
depends on the change in pressure and temperature. Several empirical models of the
isentropic exponent exist. The following selection is based on [78]. In the most detailed
model presented in this work κ is a mean value, modeled by

κk =
1

2

(
κin
k + κout

k

)
, (3.27)
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where κin and κout are the adiabatic efficiencies with respect to the inflow and outflow
gas of the compressor unit. They are both computed via

κin
k = κdef(pj−1, Tj−1, cp,j−1,ma, pc,a, Tc,a),

κout
k = κdef(pj , T

out
k , cout

p ,ma, pc,a, Tc,a),

using the functions

κdef(p, T, cp,ma, pc,a, Tc,a) =
macpz(p, T, pc,a, Tc,a)

mcpZp(p, T, pc,a, Tc,a)− ZT (p, T, pc,a, Tc,a)2Rs
, (3.28)

Zp(p, T, pc,a, Tc,a) = z − p∂z
∂p
, (3.29)

ZT (p, T, pc,a, Tc,a) = z + T
∂z

∂T
. (3.30)

The quantities cp,j−1 and cout
p denote the heat capacity of the inflow and outflow gas, see

(3.6).

An alternative model makes use of a mean temperature Tm,k, e.g.

Tm,k =
1

2

(
Tj−1 + T out

k

)
,

and expresses the isentropic exponent by

κk = 1.29 + 5.8824× 10−4(Tm,k − T0).

By choosing the mean temperature as the constant value T0, this model further simplifies
to κ = 1.29. In practice, this constant value is often chosen instead of a more sophisticated
model.

The power P consumed by the compressor depends on the flow through the unit, the
specific change in adiabatic enthalpy Had and the adiabatic efficiency ηad,

Pk =
qaHad,k

ηad,k
.

The pressure increase at a compressor results in a temperature increase of the gas. Again,
several empirical models exist. All models given in [115] base on a certain number of
fixed-point iterations using

T l+1
k = T init

k

z(pj−1, Tj−1, pc,a, Tc,a)

z(pj , T lk, pc,a, Tc,a)
, T 0

k = T init
k , j = 0, 1, 2, . . . , (3.31)
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Figure 3.7. Schematic turbo compressor [91]

with a certain choice of the initial temperature T init. The standard model uses a single
iteration, T out

k = T 1
k , and defines

T init
k = Tj−1

(
pj
pj−1

)(κk−1)/(κkηad,k)

. (3.32)

Most of the type-specific, technical restrictions are modeled by least-squares fits based on
empirical measurements. The resulting polynomials are either of the form

ψ(x;β) = β0 + β1x+ β2x
2 (3.33)

or

χ(x, y;B) =

 1

x

x2


T b00 b01 b02

b10 b11 b12

b20 b21 b22


 1

y

y2

 . (3.34)

B and b are the unit-specific and constraint-specific fitted parameters.

Turbo compressors are designed for large throughput by moderate compression. Their
principle of operation resembles a jet turbine, and essentially they share the same build-up.
Figure 3.7 contains a schematic representation of a turbo compressor. The displayed rows
of airfoils alternate between rotating and stationary. The rotating rows accelerate the gas,
while the stationary rows transform the increased kinetic energy to a pressure increase by
diffusion.

The set of feasible working points of a turbo compressor, i.e. tuples of specific change
in adiabatic enthalpy and volumetric flow, is described by a characteristic diagram. An
example is given in Figure 3.8a.
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Figure 3.8. Examples of characteristic diagrams

The diagram is defined by the isolines for speed

Had(Q,n) = χ(Q,n;BHad), (3.35)

and the isolines for adiabatic efficiency

ηad(Q,n) = χ(Q,n;Bηad)

and limits to the left and right. The volumetric flow Q results from mass flow and density
by the equation Q = qa/ρ. Since the range of the compressor speed n is limited, the
set of feasible working points has upper and lower limits defined by the maximum and
minimum speed isolines. The left limit of the characteristic diagram is called the surgeline.
Left-above this line, there is not enough gas flowing through the compressor unit to realize
the desired specific change in adiabatic enthalpy, so

Had,k ≤ ψ(Qk;βsurge).

On the right side the feasible operating range of the compressor unit is restricted by the
chokeline. Points below and at the right of this line overcharge the compressor unit, i.e.
the amount of gas through the unit is too large to be compressed any further than this
line allows,

Had,k ≥ ψ(Qk;βchoke).
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Both surgeline and chokeline do not necessarily coincide with an isoline for adiabatic
efficiency.

Piston compressors periodically capsulate a certain amount of gas, compress it and release
it into the network. Its basic principle is similar to an air pump. Compared to turbo
compressors, they can reach higher compression ratios, but compress a smaller amount of
gas in the same time span. Their characteristic diagram is defined by volumetric flow
Q and the shaft torque M . An example is given in Figure 3.8b. The diagram is less
sophisticated than its counterpart of turbo compressors. The volumetric flow a piston
compressor can handle is defined by the operating volume V0, i.e. the volume which is
compressed during one cycle and the speed of the crankshaft which is driving the unit,

Qk = V0,knk.

It is bounded by the feasible range of the compressor speed n ∈ [n−, n+].

The torque of the shaft M is defined by

Mk =
V0,kHad,k

2πηad,k
ρj−1,

where ρj−1 denotes the density of the inflow gas of a compressor in stage j. In case
of piston compressors the adiabatic efficiency ηad is a constant parameter of the unit.
Depending on the specific piston compressor k ∈ Uj and the available technical data, the
compression ratio is limited by one of the inequalities

pj ≤ ε+k pj−1,

pj ≤ pj−1 + ∆p+
k ,

Mk ≤M+
k ,

using a constant maximum ration ε+k , constant maximum pressure increase ∆p+
k or

constant maximum torque M+
k .

All compressor units are powered by drives. The correlation of drive d and compressor
unit k is defined by the mapping σ (k) = d. While every compressor has one drive
attached, some may share the same drive, i.e. a single drive may power several compressor
units. Three different types of drives are presented in the following: gas turbines, gas
driven motors and electric motors. Gas turbines and gas driven motors use gas from
the network as a power source. They are combined in the set of gas consuming drives,
Afuel. In contrast, electrical motors use electrical power. They build the set of electricity
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consuming drives, Ael. The maximum power Pd+, that a drive d can deliver, is the upper
bound of the combined powers the connected compressor units can consume, i.e.∑

k∈σ−1(d)

Pk = Pd ≤ Pd+.

The maximal power depends on the speed of the drive, which equals the speed of
the connected compressors. If several units are connected, their speeds are therefore
identical.

Additionally, all types of drives are modeled by a subset of the equations

bd = ψ(Pd;βbd), (3.37)

Pd
+ = χ(nk, Tamb;BPd+), (3.38)

Pd
+ = ψ(nk;βPd+), (3.39)

where bd denotes the specific energy consumption rate. Which equations of (3.37) to
(3.39) are appropriate for a drive depends on its type.

The model of gas turbines is defined by the specific energy consumption rate bd, the
generated power and a relation between the maximal power Pd+, the speed of the
compressor nk, and the constant ambient temperature Tamb, thus, gas turbines are
modelled by (3.37) and (3.38). Gas driven motors behave like gas turbines except that
the maximal power does not depend on the ambient temperature, i.e. they are modelled
by (3.37) and (3.39). Electric motors do not consume fuel gas, but electrical power.
Depending on the drive the ambient temperature may or may not have an influence on
the upper power limit, hence they are modeled either by (3.38) or (3.39).

The fuel which is consumed by a gas driven motor or a gas turbine is calculated via

qfuel
d =

bdma

Hu,a
.

Hu denotes the lower calorific value, which is a constant fraction of the calorific value Hc,
thus Hu = cHc.

In summary, the model of a compressor group contains descriptions of the inlet and outlet
resistors, constraints representing the configurations and a model of the gas cooler. Three
additional nodes are introduced to describe the relation between these model aspects:
the node a : 1 between the inflow resistor and the configurations, node a : 2 between the
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configurations and the outflow resistor, and node a : 3 between the outflow resistor and
the gas cooler. See the graph of a compressor group in Figure 3.6 for an illustration.

A model of a configuration summarizes the models of all of its stages and links the stage
models up. The model of a stage consists of the flow distribution (3.26), constraints
modeling the feasible working sets of the corresponding compressor units and their drives,
and a mixing equation for the gas temperature leaving the compressor units. The feasible
set of a configuration i ∈ Ka is thus modeled by a set of constraints

0 = cE,a,i(qa, pa:1, Ta:1, pa:2, Ta:2, xi),

0 ≤ cI,a,i(qa, pa:1, Ta:1, pa:2, Ta:2, xi),

and additional variables required for the intermediate stages denoted by xi. Inlet and
outlet resistors are modeled by

0 = cresIn
a (qa, pa:1, pa:2, Ta:1, Ta:2, x

resIn
a ),

0 = cresOut
a (qa, pa:2, pa:3, Ta:2, Ta:3, x

resOut
a ),

for details see the description of the model of a resistor stated in Section 3.2.4.

The compression of the gas leads to an increase in temperature. The temperature may
reach a critical level, hence a gas cooler is commonly part of a compressor group. If
the outflow temperature of the outlet resistor Ta:3 exceeds the critical limit T+

a:v, the gas
cooler is activated to reduce the temperature to a save value,

0 = ccooler
a (pa:3, pv, Ta:3, Ta:v) =

(
pa:3 − pv

Ta:v −min(Ta:3, T
+
a:v)

)
. (3.40)

Similar to control valves and valves, a compressor group can be modeled using a big-M-
notation, but with a potentially much larger number of discrete variables, since the choice
of the active configuration has to be regarded as well. Denote the set of configurations as
Ka and a single configuration by i ∈ Ka. Then, the discrete variables zi ∈ {0, 1}, i ∈ Ka,
represent the configurations. In addition, the discrete variable za,open ∈ {0, 1} represents
the choice between open and closed, while the discrete variable za,active ∈ {0, 1} represents
the choice between active and inactive.

The compressor group is working, when it is open, i.e. za,open = 1, and active, i.e.
za,active = 1. When the group is in bypass mode, za,open = 1 and za,active = 0 hold. A
closed group is represented by za,open = 0 and za,active = 0. Logically, an active group
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cannot be closed. Since the choice of the active configuration is unique, only one of
the variables zi, i ∈ Ka differs from zero. In addition, a configuration is only active,
when the group is active. By representing the feasible set of a configuration i with
cE,a,i(qa, pa:1, pa:2, Ta:1, Ta:2) and cI,a,i(qa, pa:1, pa:2, Ta:1, Ta:2) the model of the compressor
group a is

0 ≤ z2M
resIn
a + cresIn

a (qa, pa:0, pa:1, Ta:0, Ta:1, x
resIn
a ),

0 ≤ z2M
resIn
a − cresIn

a (qa, pa:0, pa:1, Ta:0, Ta:1, x
resOut
a ),

0 ≤ z2M
resOut
a + cresOut

a (qa, pa:2, pa:3, Ta:2, Ta:3),

0 ≤ z2M
resOut
a − cresOut

a (qa, pa:2, pa:3, Ta:2, Ta:3),

0 ≤ z2M
cooler
a + ccooler

a (pa:3, pv, Ta:3, Ta:v),

0 ≤ z2M
cooler
a − ccooler

a (pa:3, pv, Ta:3, Ta:v),

0 ≤ ziMa,E,i + cE,a,i(qa, pa:1, pa:2, Ta:1, Ta:2, xi), for all i ∈ Ka,
0 ≤ ziMa,E,i − cE,a,i(qa, pa:1, pa:2, Ta:1, Ta:2, xi), for all i ∈ Ka,
0 ≤ ziMa,I,i − cI,a,i(qa, pa:1, pa:2, Ta:1, Ta:2, xi), for all i ∈ Ka,
0 ≤ za,openq

+
a − qa,

0 ≤ qa − za,openq
−
a ,

0 ≤ qa − (1− za,active)q
−
a ,

0 ≤ za,open − za,active,

0 = za,active −
∑
i∈Ka

zi.

3.2.9. Variable Bounds

Almost all of the introduced quantities possess lower or upper bounds. These bounds
results from physical principles, technical restrictions and legal requirements. Technical
limitations typically result in stronger bounds than physical principles, e.g. the maximum
regulated pressure loss at a control valve is subject to the specific technical capabilities,
and the capabilities of compressor units induce lower and upper bounds of the power,
specific change in adiabatic enthalpy and volumetric flow. These bounds are chosen
according to the specific element.

Other restrictions are introduced for security reasons and legal requirements, e.g. the
velocity of gas inside the network is restricted to reduce vibrations which cause noise
pollution and may lead to material failure. In addition, regulation agencies define
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specifications of maximum permitted pressure bounds and their interrelation in connected
subnetworks to prevent pipeline ruptures.

Note that even wide physical bounds should be modeled explicitly, since empirical and
approximated model aspects may lead to meaningless values, e.g. the natural lower bound
of the compressibility factor is zero, but the presented models (3.4) and (3.5) result in
negative values for z for physically possible values of pressure and temperature outside
the range of validity of the equations.

3.3. Handling Discrete Decisions by Complementarity
Constraints

In this section a mathematical program with equilibrium constraints,

min
x∈Rn

f(x) (3.41a)

s.t. cE(x) = 0, cI(x) ≥ 0, (3.41b)

φ(x) ≥ 0, ψ(x) ≥ 0, (3.41c)

φ(x)Tψ(x) = 0, (3.41d)

is derived based on the model described in Section 3.2. The aim is an approach which
determines the decisions for the active network elements fast and reliable. As described
in Section 2.1, the objective function f : Rn → R and constraints ci(x) : Rn → R are
supposed to be twice continuously differentiable and the variable vector x is an element of
Rn. The model of Section 3.2 has to be adjusted in several points to meet these conditions.
The differential equations (3.20) with their continuous variables have to be described by
a finite dimensional model. Nonsmooth model aspects, e.g. for resistors and pipes, need
to be smoothed and discrete model aspects have to be replaced.

The level of detail is reduced in comparison to Section 3.2. Some of the chosen adjustments
are approximative. Furthermore, the model described in this section is isothermal, i.e. the
gas temperature T is assumed to be constant, and the gas composition is uniform, i.e. the
gas parameters X are globally constant. Besides resulting in a reduced model complexity
these decisions avoid the nonsmoothness of the mixing constraints (3.11) and (3.12). The
small additional pressure losses occurring in control valve stations and compressor groups
are neglected, thus inflow and outflow resistors are not regarded. Stand-alone resistors
however are modeled. The main focus of the MPEC approach lies on finding feasible
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decisions for the active network elements with. The subsequent ValNLP on the other
hand will govern the missing physical aspects.

The MPEC approach described in this section consists of two stages, each modeled by
its own optimization problem. The first stage is an MPEC strongly based on the 2-state
models described in [114]. To this end, characteristic functions χ are introduced to
represent the states of the active network elements:

χA(x) = 0 ⇐⇒ all conditions of state A are satisfied.

The characteristic functions corresponding to the same network element are coupled by
complementarity constraints.

The aim of the first stage is to determine for each active element in the network, whether
the element is closed or open. In case of control valves and compressor groups the first
stage determines also if the element is active or in bypass, providing that it is open. In a
second stage the decisions of the first stage are fixed. An NLP is solved to determine the
active configurations of the compressor groups heuristically.

3.3.1. Nodes and Arcs

For every node u ∈ V of the network a pressure variable pu ∈ [p−u , p
+
u ] is introduced. Since

the MPEC model is isothermal, no temperature variable and no temperature tracking
constraints like (3.12) are required. Since the gas composition is assumed to be uniform,
parameter mixing based on (3.11) is not necessary either. For the same reason, no
temperature variable and variables for gas composition quantities are required for arcs.
The vector of variables that are common for all types of arcs xbase

a , a = (u, v) ∈ A, consists
solely of the mass flow qa ∈ [q−a , q

+
a ].

The only constraint introduced at a node governs the mass balance (3.10),

0 = cmass−bal(qδu , qu) = qu +
∑
a∈δ−u

qa −
∑
a∈δ+

u

qa, (3.42)

with qδu denoting the vector of mass flows on all incident arcs. The mass flow exchanged
at the node qu is fixed in the NoVa problem according to flow given by the specific
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nomination qext
u ≥ 0,

0 = cflow−fix(qu) = qu − qext
u , u ∈ V+,

0 = cflow−fix(qu) = qu + qext
u , u ∈ V−.

The full model of a node u consists of the constraints

0 = cE,u(xbase
δu , qu) =

(
cflow−fix(qu)

cmass−bal(qδu , qu),

)

and the variable xu = (qu, pu).

The model of an arc depends on the type of network device it is representing. In most
cases the type-specific model introduces additional variables.

3.3.2. Pipes

The central aspects of the model of a pipe a = (u, v) ∈ Api in Section 3.2.3 are the
differential algebraic equations consisting of the differential equations (3.20) and an
equation of state, e.g. (3.7), which couples pressure, temperature and density. In the
stationary, isothermal case this model is simplified. The continuity equation (3.20a)
implies a constant flow on the arc which is governed by the variable of the mass flow on
the arc. The energy equation (3.20c) is not necessary, since the model is isothermal. The
remaining momentum equation is replaced by a nonlinear approximation. Using nonlinear
approximations of the momentum equation has a long history in gas engineering, so
several suitable and field-tested formulations are given in the literature [85].

Under the assumption of an isothermal, stationary gas model and mean compressibility
zm,a, the solution of the momentum equation of a sloped pipe is approximated by the
equation

0 = p2
v −

(
p2
u − Λa(zm,a)λa(qa)|qa|qa

eSa(zm,a) − 1

Sa(zm,a)

)
e−Sa(zm,a), (3.43)

where Λa and Sa are defined by

Λa(zm,a) =
La

A2
aDa

zm,aTR

m
,

Sa(zm,a) = 2
gLasam

zm,aTR
,
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cf. [5, 80]. In case of a horizontal pipe, the equation simplifies to

0 = p2
v −

(
p2
u − Λa(zm,a)λa(qa)|qa|qa

)
.

Both depend on the constant molar mass m, the constant temperature T , the universal
gas constant R and a mean compressibility factor zm,a. The compressibility factor is
based on a mean pressure pm,a and the AGA formula (3.4),

cz−mean(zm,a, pm,a) = zm,a − zAGA(pm,a, T, pc, Tc).

Since the gas composition is uniform, the pseudocritical pressure pc and pseudocritical
temperature Tc are constant.

In the MPEC approach, the mean pressure is defined by

cp−mean(pu, pv, pm,a) = pm,a −
2

3

(
pu + pv −

pupv
pu + pv

)
.

See [85] for this equation and some alternatives.

By using equation (3.43), the momentum equation is successfully replaced by a nonlinear
equation. However, the friction term λa(qa) is not continuous for the transition between
laminar and turbulent flow, as long as it is based on the models described in Section 3.2.3.
In addition, the term |qa|qa is nonsmooth for zero flow. Hence, the term λa|qa|qa is
replaced by a smooth friction approximation φa(qa), based on the law of Hagen–Poiseuille
(3.13) and the equation of Colebrook–White (3.14). This approximation has originally
been developed for water networks [17, 18], but applies also to gas networks [115]. The
corresponding constraint reads

0 = csfa
a (φa, qa) = φa − qaλ̃a

(√
q2
a + e2

a + ba +
ca√
q2
a + d2

a

)
, (3.44)

λ̃a = (2 log10 βa)
−2, ba = 2δa, ca = (lnβa + 1)δ2

a −
e2
a

2
,

αa =
2.51Aaη

Da
, βa =

ka
3.71Da

, δa =
2αa

βa ln 10
.

The approximation (3.44) is asymptotically correct for |q| → ∞ and the two smoothing
parameters da, ea have to be positive [18].
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Figure 3.9. Friction term λ(q)|q|q according to Hagen–Poiseuille and Colebrook–White
(HPCW) and smooth approximation φ (q) (SFA) vs. mass flow q in kg s−1

Figure 3.9 illustrates the graphs of the nonsmooth friction model and the smooth approxi-
mation. The smoothing of the nonsmooth transition between laminar and turbulent flows
results in a small deviation for tiny mass flows, but the smooth friction approximation
converges fast against the values of the Colebrook–White formula, so that there is no
visible difference in Figure 3.9b.

Applying the smooth friction approximation yields the smooth pressure loss constraint

cmom−approx
a (pu, pv, φa, zm,a) = p2

v −
(
p2
u − Λa(zm,a)φa

eSa(zm,a) − 1

Sa(zm,a)

)
e−Sa(zm,a)

in case of a sloped pipe and

cmom−approx
a (pu, pv, φa, zm,a) = p2

v −
(
p2
u − Λa(zm,a)φa

)
otherwise. Finally, the complete pipe model is given by

cE,a(xu, xv, xa) =


cmom−approx
a (pu, pv, φa, zm,a)

csfa
a (φa, qa)

cp−mean(pu, pv, pm,a)

cz−mean(zm,a, pm,a)

 ,

xa = (xbase
a , φa, zm,a, pm,a).
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3.3.3. Resistors

Both resistor models presented in Section 3.2.4 have to be sufficiently smoothed for the
desired MPEC model, since they contain first and second order discontinuities. The
resistor model with linear pressure loss (3.21) contains the discontinuous sign function, the
nonlinear pressure loss model (3.22) contains the second-order discontinuous term |qa|qa
and the inflow density required in model (3.22) depends on the flow direction through
the resistor.

Since sign(qa) = qa/|qa|, a smooth approximation of the absolute value function resolves
the first two discontinuities. An appropriate smoothing is |x| ≈ √x+ ε with a smoothing
parameter ε > 0. The impact of different values of ε on the smoothing function is
illustrated in Figure 3.10. For decreasing ε, the quality of the smoothing improves, but
in case of the sign-function, the derivation in the origin increases fast and in case of the
absolute value, the second derivation increases.

−1 −0.5 0 0.5

−1

0

1 sign(x)

ε = 10−1

ε = 10−2

ε = 10−3

(a) Smoothing of sign(x)

−0.5 0 0.5 1

0

0.5

1 |x|
ε = 10−1

ε = 10−2

ε = 10−3

(b) Smoothing of absolute value |x|

Figure 3.10. Smoothings of sign and the absolute value for some values of ε

The smoothed linear pressure loss model is expressed by the constraint

0 = cE,a(xu, xv, xa) = pu − pv −
qa√
qa + ε

ξa.

No additional variables are required, thus xa = xbase
a .

The nonlinear pressure loss equation (3.22) of a = (u, v) requires the inflow density ρin
a .

Since the flow direction is usually unknown a priori, it is unclear whether the inflow
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density corresponds to the density at the tail ρa:u or to the density at the head ρv. Hence,
the inflow density is replaced by a mean density ρm,a, which is defined by the constraint

0 = cd−mean(ρm,a, ρa:u, ρa:v) = 2ρm,a − (ρa:u + ρa:v).

The densities at the head and tail of the resistor are computed via the equation of state
(3.7). The AGA formula (3.4) is chosen for the required compressibility factors. This
leads to the constraints

0 = cd−tail(ρa:u, za:u, pu) = ρa:uza:uRT − pum,
0 = cd−head(ρa:v, za:v, pv) = ρa:vza:vRT − pvm,
0 = cz−tail(za:u, pu) = za:u − zAGA(pu, T, pc, Tc),

0 = cz−head(za:v, pv) = za:v − zAGA(pv, T, pc, Tc).

Combining the smoothing of the absolute value and the mean density with the pressure
loss equation (3.22) results in the pressure loss constraint

0 = cp−loss
a (qa, pu, pv, ρm,a) = pu − pv −

8ζa
π2D4

a

qa
√
q2
a + ε

ρm,a
,

which is sufficiently smooth and independent of the flow direction. In summary, the
nonlinear pressure loss model of the resistor a = (u, v) consists of the constraints

0 = cE,a(xu, xv, xa) =



cd−mean(ρm,a, ρa:u, ρa:v)

cd−tail(ρa:u, za:u, pu)

cd−head(ρa:v, za:v, pv)

cz−tail(za:u, pu)

cz−head(za:v, pv)

cp−loss
a (qa, pu, pv, ρm,a)


,

and the variable vector xa = (xbase
a , ρm,a, ρa:u, ρa:v, za:u, za:v).

3.3.4. Valves and Shortcuts

The model of a valve given in Section 3.2.5 contains a discrete variable, which defines
the state of a valve a = (u, v). The two possible states are open and closed. Based on
the properties stated in Table 3.1, the appropriate characteristic functions are easily
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derived:

χactive(pu, pv) = pu − pv, (3.45)

χclosed(qa) = qa. (3.46)

Thus, the mixed-integer model of a valve is equivalently reformulated into

0 = cC,a(xu, xv, xa) = χactive(pu, pv)χclosed(qa),

xa = xbase
a .

No additional equality or inequality constraints besides the complementarity constraint
are necessary.

The model of a shortcut a = (u, v) equals the model of an open valve, i.e.

0 = cE,a(xu, xv, xa) = pu − pv.

No additional variables are required, thus xa = xbase
a .

3.3.5. Control Valves

In Section 3.2.7 two types of control valves are introduced. Both types have the three
possible states closed, active and bypass. In the MPEC approach, these states are repre-
sented by characteristic functions and the decision process is modeled by complementarity
constraints based on the properties stated in Table 3.2 and Table 3.3. The resistors of
a control valve station are not regarded in the MPEC approach, thus the control valve
directly connects the nodes u and v. Since the temperature is a global constant, a model
of the gas preheater is not required.

A closed control valve with remote access interrupts the flow on the arc. The characteristic
function is

χclosed(qa) = qa.

For an open control valve, the pressure at the tail pu, the pressure at the head pv and the
non-negative pressure reduction ∆pa at the control valve are related by pv = pu −∆pa.

Consequently, the characteristic function reads

χopen(pu, pv,∆pa) = pv − pu + ∆pa.
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Whether an open control valve is active or bypassed depends on the flow direction and
the pressure reduction ∆pa ≥ 0. If the reduction is positive, the control valve is active,
otherwise it is bypassed. An active element can work only in arc direction, i.e.

∆paqa ≥ 0.

The full model of a control valve with remote access is

0 = cC,a(xu, xv, xa) = χopen(pu, pv,∆pa)χclosed(qa), (3.47a)

0 ≤ cI,a(xu, xv, xa) = ∆paqa, (3.47b)

xa = (xbase
a ,∆pa). (3.47c)

Besides the complementarity constraint, no additional equality constraints are necessary.
Note that this model is equivalent to an isothermal version of (3.25), only when the
inlet and outlet resistors cause no additional pressure loss and the lower bound of the
pressure reduction in the MINLP model is zero. Available real-world data never contained
a strictly positive lower bound, thus the requirement ∆p−a = 0 is not considered to be too
restrictive.

A control valve without remote access is more difficult to model, since the state depends
on the pressures at the head and tail and their relation to a threshold pset.

Based on the properties stated in Table 3.3, characteristic functions of the states active,
bypass and closed are

χactive(pu, pv, qa) = min(0, pu − pset,a)−min(0, qa)− (pv − pset,a)
2 , (3.48a)

χbypass(pu, pv) = max(0, pu − pset,a)− (pu − pv)2 , (3.48b)

χclosed(pv, qa) = min(0, pv − pset,a)− q2
a. (3.48c)

The nonsmoothness introduced by the min and max functions has to be eliminated before
these characteristic functions can be used in an MPEC model. A possible way is to use
the smoothing functions

min(0, x) ≈ 1

2

(
x−

√
x2 + ξ

)
, (3.49)

max(0, x) ≈ 1

2

(
x+

√
x2 + ξ

)
. (3.50)

Applying these approximations on the characteristic functions leads to the smoothed
characteristic functions χs

active, χ
s
bypass and χs

closed. With these functions the model of a
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control valve without remote control is

0 = cE,a(xu, xv, xa) = xaba − χs
active(pu, pv, qa)χ

s
bypass(pu, pv), (3.51a)

0 = cC,a(xu, xv, xa) = xaba χ
s
closed(qa), (3.51b)

xa =
(
xbase
a , xaba

)
. (3.51c)

No inequality constraints are required. Alternatively, a variable splitting

x = x+ − x−, x+x− = 0, x+, x− ≥ 0,

can be used. The minimum and maximum functions in (3.48) are then represented by
min(0, x) = −x− and max(0, x) = x+. In contrast to the smoothed model (3.51), this
reformulation is exact, but introduces additional complementarity constraints.

A third approach uses also complementarity constraints, but does not model the character-
istic functions of the states explicitly. Instead, addition inequalities ensure the properties
stated in Table 3.3. To this end, the pressure related quantities

∆pa = pu − pv, p̃a = pv − pset,a, p̂a = ∆paqa

are defined. A control valve without remote control is then modeled by

0 = cE,a(xu, xv, xa) =

∆pa − pu + pv

p̃a − pv + pset,a

p̂a −∆paqa

 ,

0 = cC,a(xu, xv, xa) = p̂ap̃a

0 ≤ cI,a(xu, xv, xa) =

−q
2
ap̃a

∆p2
ap̃a

q2
a∆pa

 ,

xa =
(
xbase
a ,∆pa, p̃a, p̂a

)
.

This model choice contains only a single complementarity constraint p̂ap̃a = 0 per control
valve.
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3.3.6. Compressor Groups

The basic decision, whether a compressor group a = (u, v) open, i.e. actively compressing
or in bypass, or closed is modeled similarly to a control valve with remote control. The
only difference is the direction of the pressure change ∆pa ≥ 0 caused by the element.
Hence, the characteristic function of a closed compressor group is

χclosed(qa) = qa,

the characteristic function of the open state reads

χopen(pu, pv,∆pa) = pv − pu −∆pa,

and the complete model of a compressor group is

0 = cE,a(xu, xv, xa) = χopen(pu, pv,∆pa)χclosed(qa), (3.52a)

0 ≤ cI,a(xu, xv, xa) = ∆paqa, (3.52b)

xa = (xbase
a ,∆pa). (3.52c)

3.3.7. Complete MPEC Model

An MPEC model is derived from the descriptions given in Section 3.2 by smoothing
and approximating some model aspects and reformulating discrete decisions as comple-
mentarity constraints. The differential algebraic model of pipes is replaced by a smooth
approximation of the pressure loss and the descriptions of resistors are smoothed as is the
model of a control valve station without remote access in one of the presented model vari-
ants. All these techniques lead to the following existence problem with complementarity
constraints cC,a

∃?x (3.53a)

s.t. cE,a(x) = 0, a ∈ A, (3.53b)

cI,a(x) ≥ 0, a ∈ Acg ∪ Acv, (3.53c)

cC,a(x) = 0, a ∈ Acg ∪ Acv ∪ Avl, (3.53d)

x ∈ [x−, x+]. (3.53e)

The variable vector x consists of the arc and node variables xA and xV.
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Some complementarity constraints are not of type Equation 2.3d, but at least one of
the incorporated functions has a nonzero lower bound or no lower bound at all. If these
constraints are biactive or one of φ and ψ has the lower bound zero and is active, LICQ
and MFCQ are violated. In contrast to the complementarity constraints governed in
Section 2.2, this is not the case for every feasible point. However, since the model of
the bypass mode of compressor groups and control valves is one of the problematic
constellations, both constraint qualifications will be violated with high probability in the
optimal solution for realistic network situations.

Besides complementarity constraints, the MPEC (3.53) contains inequality constraints of
the form

φ(x)ψ(x) ≥ 0, φ(x) ≥ 0. (3.54)

Although these are no classical complementarity constraints, they yield similar problems.
If the inequality is active for a feasible point x∗ because φ(x∗) = 0 holds, LICQ is not
satisfied in x∗. These constraints occur in the model of compressor groups (3.52) and
control valve stations (3.47). The problematic constellation relates to the bypass mode of
both types of network elements and is expected to happen frequently. If in addition ψ(x)

is also active, i.e. the inequality constraint φ(x)ψ(x) ≥ 0 is biactive, MFCQ is violated
also.

3.3.8. An Heuristic to Determine Active Configurations

Solving problem (3.53) results in a description of the stationary flow and pressure dis-
tribution in the gas network. The values of the variables coupled by complementarity
constraints are translated into decisions whether the valves, control valves and compressor
groups are open, closed or bypassed. Still, information about the active configurations is
not part of the solution of (3.53). The active configurations are determined in a second
stage. Here, an additional optimization problem of the network is solved. The passive
network elements pipes, resistors and shortcuts are modeled as in (3.53). Control valves,
valves and closed or bypassed compressor groups (denoted by Ainactive

cg ) are fixed to the
state given by the solution of (3.53), i.e. their model is condensed to the decided state
without any complementarity constraints, yielding

0 = cfix
E,a(x), a ∈ Avl ∪ Acv ∪ Ainactive

cg .

For compressor groups that are decided as active, a heuristic models the decision between
the configurations.
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The configurations are essentially modeled as in Section 3.2.8. The heuristic described in
the following adds all configurations to a compressor group as shown in Figure 3.11.

config 1

...

config |Ka|

u v

Figure 3.11. Schematic idea of the compressor group heuristic

Inflow and outflow resistors are omitted and a gas cooler is not required since the
temperature is constant. The inlet pressure of each configuration equals the inlet pressure
of the compressor group pu and the flow through each configuration equals the flow on
the arc of the group qa. The outlet pressure pv is a convex combination of the outlet
pressures of the configurations pout

Ka ,

0 = ccoupl(pv, p
out
Ka , σKa) =

(
pv −

∑
i∈Ka σip

out
i

1−∑i∈Ka σi

)
. (3.55)

A configuration i ∈ Ka consists of |Si| stages and each stage in turn contains |Uj | ≥ 1

parallel compressor units.

The models of the compressors in stage j ∈ Si of configuration i ∈ Ka require an inlet
pressure pj−1, an inlet density variable ρj−1 and a variable for the compressibility factor of
the inflow gas zj−1. The inlet pressure of the first stage of every configuration is identified
with the pressure pu. These three quantities are coupled by the AGA formula (3.4),

0 = cz(zj−1, pj−1) = zj−1 − zAGA(pj−1, T, pc, Tc),

and the equation of state

0 = ceos(ρj−1, zj−1, pj−1) = ρj−1zj−1RT − pj−1m.

In addition, the model of a single stage j ∈ Si is build up by the models of the contained
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compressor units and a flow distribution constraint, i.e.

0 = cE,j(xbase
a , xj−1, xj , xUj ) =

(
cflow−dist
j (qa, qUj )

(cE,k(xbase
a , xj−1, xj , xk))k∈Uj

)
,

0 ≤ cI,j(xbase
a , xj−1, xj , xUj ) =

(
cI,k(xbase

a , xj−1, xj , xk)
)
k∈Uj

.

Here, k ∈ Uj denotes a compressor unit of stage j ∈ Si. The flow through the compressor
group is distributed between these parallel compressor units,

0 = cflow−dist
j (qa, qUj ) = qa −

∑
k∈Uj

qk. (3.56)

The feasible operating ranges displayed in Figure 3.8 are modeled in detail for both types
of compressor units. Both diagrams are defined in volumetric flow, which is gained from
the mass flow via the constraint

0 = cvolconv(Qk, qk, ρj−1) = ρj−1Qk − qk.

The specific change in adiabatic enthalpy Had,k of a compressor k ∈ Uj of either type is
defined by the constraint

0 = cadiabatic(Had,k, pj−1, pj , zj−1) = Had,k − zj−1T
R

m

κ

κ− 1

((
pj
pj−1

)(κ−1)/κ

− 1

)
.

The isentropic exponent κ is set to the constant value 1.29. The power Pk required for
increasing the pressure depends on the mass flow qk through the unit k ∈ Uj , the specific
change in adiabatic enthalpy Had,k and the adiabatic efficiency ηad,k:

cpower(Pk, qk, Had,k, ηad,k) = Pkηad,k − qkHad,k.

A turbo compressor is modeled by the speed isolines

0 = cspeed(Had,k, Qk, nk) = Had,k − χ
(
Qk, nk;BHad,k

)
,

the efficiency isolines

0 = ceff(ηad,k, Qk, nk) = ηad,k − χ
(
Qk, nk;Bηad,k

)
,
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the surgeline
0 ≤ csurge(Qk, Had,k) = ψ (Qk, bs,k)−Had,k,

and the chokeline

0 ≤ cchoke(Qk, Had,k) = Had,k − ψ (Qk, bc,k) .

In summary, the complete model of a turbo compressor k reads

0 = cE,k(x
base
a , xj−1, xj , xk)

=



cvolconv(Qk, qk, ρj−1)

cadiabatic(Had,k, pj−1, pj , zj−1)

cpower(Pk, qk, Had,k, ηad,k)

cspeed(Had,k, Qk, nk)

ceff(ηad,k, Qk, nk)


,

0 ≤ cI,k(xj−1, xj , xk) =

csurge(Qk, Had,k)

cchoke(Qk, Had,k)

 ,

with the vector of variables

xk = (Qk, qk, Pk, Had,k, ηad,k, nk).

The model of a piston compressor requires a constraint for the operated volumetric flow,

0 = cvol(Qk, nk) = Qk,−V0,knk,

and a constraint defining the shaft torque Mk,

0 = ctorque(ρj−1,Mk, Had,k) = Mk −
V0,kHad,k

2πηad,k
ρj−1.

Here, the adiabatic efficiency ηad,k is a constant parameter.

Depending on the specific machine and the available technical data, the compression ratio
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is limited in one of the following ways:

0 ≤ climit(pj−1, pj ,Mk) =


ε+ − pj/pj−1,

pj−1 − pj + ∆p+,

M+
k −Mk.

Here ε+ denotes an upper limit on the compression ratio, ∆p+ an upper limit on the
pressure increase and M+

k an upper torque limit.

A piston compressor is thus modeled by the constraints

0 = cE,k(x
base
a , xj−1, xj , xk) =



cvolconv(Qk, qk, ρj−1)

cadiabatic(Had,k, pj−1, pj , zj−1)

cpower(Pk, qk, Had,k, ηad,k)

ctorque(ρj−1,Mk, Had,k)

cvol(Qk, nk)


,

0 ≤ cI,k(xj−1, xj , xk) = climit(pj−1, pj ,Mk),

and the variables
xk = (Qk, qk, Pk, Had,k,Mk, nk).

Thus, the feasible set Fi of a configuration i ∈ Ka is modeled by the constraints

0 = cE,i(xbase
a , xu, xi) =

(
cE,i(xbase

a , xj−1, xj , xUj )
)
j∈Si

0 ≤ cI,i(xbase
a , xu, xi) =

(
cI,aj (x

base
a , xj−1, xj , xUj )

)
j∈Si

,

and the variable vector
xi =

(
xSi ,

(
xUj
)
j∈Si

)
.

The predecessor of the first stage is identified with the node u and its associated variables.

Since the configurations of a compressor group are designed to cover a large range of
possible situations, their feasible sets have little in common. Hence, with high probability
there exists no point x which is feasible for all configurations, so at least one constraint
of a configuration is violated. This renders the whole optimization problem infeasible.

To resolve this problem, the constraints of the feasible set of a configuration Fi are relaxed
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by the variable vectors s+
E,i, s

−
E,i, s

+
I,i ≥ 0,

0 = c̃E,i(xbase
a , xu, xi) = cE,i(xbase

a , xu, xi) + s+
E,i − s−E,i,

0 ≤ c̃I,i(xbase
a , xu, xi) = cI,i(xbase

a , xu, xi) + s+
I,i,

and the sum of the relaxation variables is minimized in the objective of the second MPEC
stage. The model of a compressor group in stage two of the MPEC approach is finally
stated as follows:

0 = cE,a(xu, xv, xa) =

(
ccoupl(pv, p

out
Ka , σKa)

c̃E,Ka(xbase
a , xu, xi)

)
,

0 ≤ cI,a(xu, xv, xa) = c̃I,Ka(xbase
a , xu, xi).

The resulting problem of the second MPEC stage

min
∑
i∈Ka

∑
i∈E

∑
j∈I

s+
i,i + s−i,i + s+

i,i (3.57a)

s.t. cE,a(x) = 0, a ∈ A, (3.57b)

cI,a(x) ≥ 0, a ∈ Acg ∪ Acv, (3.57c)

x ∈ [x−, x+], (3.57d)

does not contain any complementarity constraints. Thus, (3.57) is a standard NLP. Its
solution is analyzed and based on the sum of relaxation variables s+

E,i, s
−
E,i, s

+
I,i and the

values of the coefficients σi a configuration is selected as the active one for each compressor
group.

An alternative approach to the described heuristic extracts each compressor group from
the gas network and fixes the flow on the arc and the pressures at the head and the tail
according to the solution of (3.53). While the MINLP model described in Section 3.2.8
is too difficult to solve on large networks, first promising results have been gained on
single compressor groups, see Section 4.1. Solving each compressor group by a small
MINLP has the advantage that no heuristic interpretation of relaxation variables and
convex coefficients is required. On the other hand the compressor groups are decoupled
from the other network elements. The fixed pressure and flow values gained from the
simplistic compressor model of the first stage of the MPEC approach may lead to an
infeasible MINLP model of a compressor group despite the fact that the MINLP may
be feasible under slight changes of the fixed values. Net-wide interactions cannot be
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regarded when the compressor groups are solved separately. To generate proposals for
active configurations anyway, a relaxation scheme could be applied on the small MINLPs,
in the hope that the ValNLP of the following section will compensate minor violations
with the help of other network elements.

3.4. High Accuracy Optimization (ValNLP)

Successfully applying the MPEC approach results in discrete decisions for the active
network elements and an approximative description of the gas flow inside the network.
However, several physical aspects are simplified or neglected at all, like gas temperature
or gas composition. The applied approximations and smoothing techniques reduce the
level of detail further.

To compensate the reduction of accuracy, a highly detailed NLP model is created based
on the solution of the MPEC approach and the model descriptions in Section 3.2. The
resulting optimization problem

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x) ≥ 0

requires twice continuously differentiable functions f , cE and cI and an finite dimensional
vector of variables x. Thus, the preconditions are equivalent to the MPEC (3.41), as are
the necessary adjustments of the MINLP: The differential equations (3.20) and nonsmooth
model aspects have to be replaced by a smooth, finite dimensional model, and discrete
model aspects have to be replaced. Latter is achieved by fixing the discrete model aspects
a priori according to the solution of the MPEC approach.

While the model requirements of the ValNLP and the MPEC approach are similar, the
adjustments of the MINLP model are quite different. Since the discrete aspects are given,
the main focus lies on a extensive consideration of the physics and technical descriptions.
The sections 3.4.1 through 3.4.8 describe the relating mathematical models. The structure
is similar to Section 3.2.1. Where applicable, different model variants are incorporated.
This actually results in a family of models for the ValNLP, so the user can choose his
desired trade-off between computation time and accuracy. Section 3.4.8 summarizes all
aspects in the ValNLP.
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If the ValNLP converged to a (local) optimum, the solution of the MPEC approach
is confirmed as a valid approximation of the underlying MINLP model. However, no
immediate conclusion can be drawn, if the validation NLP is not successfully solved. An
approach to interpret arising infeasibilities is presented in Section 3.4.9.

3.4.1. Common Model Aspects

In Section 3.2.1 four model aspects are described that are relevant for several network
components: the gas compressibility factor, the molar heat capacity, the Joule–Thomson
effect and interrelation of pressure temperature and density. All these phenomena depend
on the specific gas composition

X = (m,Hc, pc, Tc, Ã, B̃, C̃).

The describing equations can mostly be translated into constraints with only minor
adjustments.

In the ValNLP, two models for the compressibility factor z are regarded: the AGA
equation (3.4) and Papay’s formula (3.5). Since both have a different range of validity,
the user chooses the appropriate formula based on the expected pressures in the network.
Depending on the user’s choice, the constraint representing the compressibility factor is
either

0 = cz(z, p, T, pc, Tc) = z − zaga(p, T, pc, Tc), or (3.59)

0 = cz(z, p, T, pc, Tc) = z − zpapay(p, T, pc, Tc). (3.60)

In contrast to the MPEC approach, the ValNLP is capable of tracking the gas temperature.
For this, a model of the specific or molar heat capacity is required. The model 3.6 leads
to the three constraints

0 = cmhc−real(m, cp, c̃
0
p,∆c̃p) = mcp − (c̃0

p + ∆c̃p), (3.61a)

0 = cmhc−ideal(c̃0
p, T, Ã, B̃, C̃) = c̃0

p − (Ã+ B̃T + C̃T 2), (3.61b)

0 = cmhc−corr(∆c̃p, p, T, pc, Tc) (3.61c)

= ∆c̃p +R

∫ p

0

1

p

(
2T

∂z

∂T
(p̃, T, pc, Tc) + T 2 ∂

2z

∂T 2
(p̃, T, pc, Tc)

)
dp̃. (3.61d)
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As already mentioned in Section 3.2.1, the integral in Equation 3.61c vanishes in case of
the AGA formula. For Papay’s formula it can be solved analytically. The full model of
the molar heat capacity is given by the constraint vector

0 = cheat−cap(p, T,X, xheat-cap) =


cmhc−real(m, cp, c̃

0
p,∆c̃p)

cmhc−ideal(c̃0
p, T, Ã, B̃, C̃)

cmhc−corr(∆c̃p, p, T, pc, Tc)

 (3.62)

with associated variables
xheat-cap = (cp, c̃

0
p,∆c̃p).

A second phenomenon related to the gas temperature is the Joule–Thomson effect (3.9).
Since the relevant data required for temperature calculations like ambient temperature
or supplied gas temperature is inaccurate in mid-term planning by nature, a coarse
discretization by a single Euler step is typically sufficient thus yielding

0 = cjt(pin, pout, Tin, Tout, X, µJT, cp,out)

=

µJT −
T 2

out
pout

R

mcp,out

∂z

∂T
(pout, Tout, pc, Tc)

Tout − Tin − (pout − pin)µJT

 . (3.63)

For the interrelation of pressure temperature and density the thermodynamical standard
equation (3.7) is chosen. It results in the constraint

0 = ceos(p, T, ρ,m, z) = ρzRT − pm. (3.64)

3.4.2. Nodes and Arcs

Every node u ∈ V has a pressure variable pu and a temperature variable Tu. The incident
arcs define relations between the pressures and temperatures of the connected nodes.
While the model of an arc depends on the modeled network component, all arcs have some
basic variables in common: a mass flow variable qa, variables for the gas temperatures at
tail and head, Ta:u and Ta:v, and a quality parameter vector Xa. These are summarized
in a common basic variable vector

xbase
a = (qa, Ta:u, Ta:v, Xa).
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At every node, the flows of the incident arcs qδu and the supplied and discharged flow qu

yield to a mass balance equation similar to (3.42):

0 = cmass−bal(qδu , qu) = qu +
∑
a∈δ−u

qa −
∑
a∈δ+

u

qa. (3.65)

The exchanged mass flow qu is typically fixed to the value in the given nomination, i.e.
non-negative supply value and non-positive discharge value. For inner nodes, qu is set to
zero.

Since the NLP model considers the gas composition and gas temperature, the mixing
of gas at every node is part of the model. Under the assumption of perfect mixing at
the nodes, the gas composition in the outflow arcs is identical. The resulting mixing
constraint reads

0 = cmix
u (qIu , XIu , Xu)

= Xu

(
q̂ext
u +

∑
a∈Iu

q̂a

)
−
(
q̂ext
u Xext

u +
∑
a∈Iu

q̂aXa

)
.

(3.66)

and the propagation is represented by the constraints

0 = cprop
u (Xu, Xa) = Xu −Xa ∀a ∈ Ou.

The mixture of the gas temperature is described by Equation 3.12. Under the assumption
of identical heat capacities the mixture equation for temperature and its propagation is
approximated by

0 = cmix−temp
u (qIu ,mIu , (Ta:u)a∈Iu , Tu)

= Tu

(
q̂ext
u +

∑
a∈Iu

q̂a

)
−
(
q̂ext
u T ext

u +
∑
a∈Iu

q̂aTa:u

)
,

(3.67)

0 = cprop−temp
u (Tu, Ta:u) = Tu − Ta:u ∀a ∈ Ou. (3.68)

The heat capacities cancel each other out. Note that all mixing constraints are discon-
tinuous since Iu and Ou depend on the flow directions. To obtain a smooth model, we
fix all flow directions according to the solution of the MPEC approach by restricting the
bounds of qa to either [0, q+

a ] or [q−a , 0].
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Summarizing, the full set of constraints at a node u reads

0 = cu(xu, x
base
δu ) =



cmass−bal(qδu , qu)

cmix
u (qIu , XIu , Xu)

(cprop
u (Xu, Xa))a∈Ou

cmix−temp
u (qIu ,mIu , (Ta:u)a∈Iu , Tu)

(cprop−temp
u (Tu, Ta:u)a∈Ou


with variable vector

xu = (qu, pu, Tu, Xu).

3.4.3. Pipes

The pipe model (3.20) described in Section 3.2.3 feature a nonsmooth friction term and
infinite dimensional variables. Both characteristics are not applicable in an NLP model,
thus they have to be cared for.

In Section 3.3.2 the smooth friction approximation (3.44) has already been introduced as
an alternative to the friction term λ(qa)|qa|qa. The corresponding constraint

0 = csfa
a (φa, qa) = φa − λ̃a

(√
q2
a + e2

a + ba +
ca√
q2
a + d2

a

)
qa

with the constants described in Section 3.3.2 is also applied in the ValNLP model.

For the differential equations (3.20) are replaced by a smooth and finite dimensional model.
Since the continuity equation (3.20a) implies constant mass flow along the pipe, its effect
is already represented by the unique variable qa, so there is no need of a representing
constraint in the ValNLP model. For the momentum equation and the energy equation
two different approaches are introduced.

The first approach is based on a discretization of the momentum equation and energy
equation. Depending on an a priori chosen grid, 0 = xa,0 < · · · < xa,d = La, the
discretization results in a model with a potentially large number of finite-dimensional
nonlinear constraints. The accuracy of the model can be controlled via the choice of the
grid points. Refining the grid leads to a more accurate model, but also add additional
constraints.
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The continuous variables in (3.20b) and (3.20c) are evaluated at the grid points. For this
purpose, the following abbreviations are introduced for k = 0, . . . , d:

pa,k = p(xa,k), za,k = z(pa,k, Ta,k, pc,a, Tc,a),

Ta,k = T (xa,k), cp,a,k = cp(pa,k, Ta,k, Xa),

ρa,k = ρ(xa,k), zT,a,k =
∂z

∂T
(pa,k, Ta,k, pc,a, Tc,a).

In the following, the discretization is illustrated by applying a simple Euler scheme, but
many suitable schemes of higher order exist and may be applied instead. When denoting
step sizes by ∆xa,k = xa,k − xa,k−1, the Euler scheme yields the discrete gradients

f ′(xa,k) ≈
f(xa,k)− f(xa,k−1)

∆xa,k
=

∆fa,k
∆xa,k

, k = 1, . . . , d,

for pressure, temperature and density. This leads to the discretized ODE constraints

0 = cmom−discr
a (qa, pa,k, pa,k−1, ρa,k, ρa,k−1, φa)

= ρa,k
∆pa,k
∆xa,k

− q2
a

A2
a

∆ρa,k
∆xa,k

1

ρa,k
+ gρ2

a,ksa +
φa

2A2
aDa

, (3.69a)

0 = cener−discr
a (qa, pa,k, pa,k−1, Ta,k, Ta,k−1, ρa,k, cp,a,k, za,k, pc,a, Tc,a)

= qacp,a,k
∆Ta,k
∆xa,k

− qaTa,k
ρa,kza,k

zT,a,k
∆pa,k
∆xa,k

+ qagsa + πDacHT,a(Ta,k − Tamb). (3.69b)

The model of the dynamic system is completed by additional constraints for the com-
pressibility factor, heat capacity and equation of state in every discretization point:

0 = cdyn
a,k (xbase

a , xdyn
a,k , x

dyn
a,k−1, φa, xu, xv)

=



cmom−discr
a (qa, pa,k, pa,k−1, ρa,k, ρa,k−1, φa)

cener−discr
a (qa, pa,k, pa,k−1, Ta,k, Ta,k−1, ρa,k, cp,a,k, za,k, pc,a, Tc,a)

ceos(pa,k, Ta,k, ρa,k,ma, za,k)

cz(za,k, pa,k, Ta,k, pc,a, Tc,a),

cheat−cap
a (pa,k, Ta,k, Xa, x

heat-cap
a,k )


,

for k = 1, . . . , d, where the required additional dynamic variables are defined as

xdyn
k = (pa,k, Ta,k, ρa,k, za,k, x

heat-cap
a,k ), k = 1, . . . , d− 1,

xdyn
k = (ρa,k, za,k, x

heat-cap
a,k ), k ∈ {0, d}.
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Together with the smooth approximation of the friction term, the complete model of the
discretized dynamic system finally reads

0 = cdyn
a (xbase

a , xdyn
a , xu, xv) =

 csfa
a (φa, qa)(

cdyn
k (xbase

a , xdyn
k , xdyn

a,k−1, φa, xu, xv)
)d
k=1

 ,

xdyn
a = (φa, (x

dyn
a,k )dk=0).

Depending on the flow direction the presented Euler scheme corresponds to an implicit
Euler scheme for positive flow and an explicit Euler scheme otherwise. Since the flow
directions are fixed anyway for the mixing equations, an implicit Euler can always be
achieved. If the flow directions were not fixed, this could result in decreased accuracy.

A second possible approach replacing the momentum equation has already been presented
in Section 3.3.2: the smooth second order approximation (3.43) yielding the constraint

0 = cmom−approx
a (pu, pv, φa, Tm,a, zm,a,ma)

= p2
v −

(
p2
u − Λaφa

eSa − 1

Sa

)
e−Sa (3.70)

with

Λa = Λa(Tm,a, zm,a,ma) =
La

A2
aDa

zm,aTm,aR

ma
,

Sa = Sa(Tm,a, zm,a,ma) = 2gLasa
ma

zm,aTm,aR
.

An approximation of the energy equation can be derived under similar assumptions,
including a constant heat capacity cp and a mean density ρm,a = pm,a/(Rszm,aTm,a) [115].
The resulting smooth nonlinear constraint is

0 = cener−approx
a (qa, p

in
a , p

out
a , T in

a , T
out
a , ρm,a, pm,a, Tm,a, zm,a, pc,a, Tc,a)

= qa

(
T out
a − T in

a +
gsaLa
cp

)
− zT,m,a
cpρm,azm,a

T out
a qa(p

out
a − pin

a )

+
πDacHT,aLa

cp
(T out
a − Tsoil), (3.71)

where
zT,m,a =

∂z

∂T
(pm,a, Tm,a, pc,a, Tc,a).

The inflow and outflow values are chosen as described in (3.1) and (3.2). The differences
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of the discretized energy equation (3.69b) and the approximation (3.71) are illustrated in
Figure 3.12. On the left, the temperature profile is displayed with respect to the position
in the pipe and on the right it is On the left, the temperature profile along a pipe is
displayed along the pipe and on the right the outflow temperature is presented for varying
mass flow.

0 5 10 15 20 25

280

290

300

ODE
Approximation

(a) Gas temperature vs. pipe length.
0 100 200 300 400 500

280

290

ODE
Approximation

(b) Gas temperature vs. mass flow.

Figure 3.12. Gas temperature according to ODE discretization and approximation
(L = 24 km, D = 1m, k = 0.1mm, q = 500 kg s−1)

Both approximating constraints (3.70) and (3.71) incorporate mean values of pressure
pm,a and temperature Tm,a. A simple method to derive these values is averaging the
according variable bounds:

pm,a =
1

2
(max(p−u , p

−
v ) + min(p+

u , p
+
v )),

Tm,a =
1

2
(max(T−a:u, T

−
a:v) + min(T+

a:u, T
+
a:v)).

A more sophisticated model contains a constraint to include the mean values as variables
that depend on pressures and temperatures at the pipe [85]:

0 = cmean(pm,a, Tm,a, pu, pv, Ta:u, Ta:v) =

 pm,a − 2
3

(
pu + pv − pupv

pu+pv

)
Tm,a − 2

3

(
Ta:u + Ta:v − Ta:uTa:v

Ta:u+Ta:v

)
 .

Another possible choice for the mean pressure is [85]

0 = pm,a −
2

3

(
p3
u − p3

v

p2
u − p2

v

)
.
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Finally, the full approximation model of the differential equations (3.20) with variables
for the mean values is thus expressed by the constraints

0 = capprox
a (xbase

a , xdyn
a , xu, xv)

=



csfa
a (φa, qa)

cmom−approx
a (pu, pv, φa, Tm,a, zm,a,ma)

cener−approx
a (qa, pu, pv, Ta:u, Ta:v, ρm,a, pm,a, Tm,a, zm,a, pc,a, Tc,a)

cz(zm,a, pm,a, Tm,a, pc,a, Tc,a)

cmean(pm,a, Tm,a, pu, pv, Ta:u, Ta:v)


and variables

xapprox
a = (φa, ρm,a, pm,a, Tm,a, zm,a).

An aspect not governed so far is the restriction of the gas velocity to avoid sound pollution
and material failure, see Section 3.2.3. Equation 3.20 leads to a monotone change along
the pipe for constant flow. The velocity limits are controlled at the end points of the pipe
a = (u, v). To this end, the bounded variables xvel

a = (va:u, va:v) and the constraint

cvel−flow
a (q, v, ρ) = Aaρv − q (3.72)

are introduced. Extended by the necessary constraints for the density this yields the
velocity model

0 = cvel
a (xbase

a , xvel
a , xu, xv) =



cvel−flow
a (qa, va:u, ρa:u)

cvel−flow
a (qa, va:v, ρa:v)

ceos(pu, Ta:u, ρa:u,ma, za:u)

ceos(pv, Ta:v, ρa:v,ma, za:v)

cz(za:u, pu, Ta:u, pc,a, Tc,a)

cz(za:v, pv, Ta:v, pc,a, Tc,a)


,

xvel
a = (va:u, va:v, ρa:u, ρa:v, za:u, za:v).

If the discretization scheme is applied on the momentum equation and energy equation,
the densities ρa:u and ρa:v coincide with the densities ρ0 and ρd, hence the equations of
state and the constraints for the compressibility factors are already regarded in the model.
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The velocity constraints thus reduce to

0 = cvel
a (xbase

a , xdyn
a , xvel

a ) =

cvel−flow
a (qa, v0, ρ0)

cvel−flow
a (qa, vd, ρd)


and only variables for velocity have to be added, xvel

a = (va:u, va:v). In summary, the
complete pipe model consists of the constraints cdyn

a and cvel
a , yielding either

0 = cE,a(xa, xu, xv) =

capprox
a (xbase

a , xdyn
a , xu, xv)

cvel
a (xbase

a , xdyn
a , xvel

a )


or

0 = cE,a(xa, xu, xv) =

 cdyn
a (xbase

a , xdyn
a , xu, xv)

cvel
a (xbase

a , xdyn
a , xvel

a , xu, xv)

 ,

xa = (xbase
a , xdyn

a , xvel
a )

with the additional variables xa = (xbase
a , xdyn

a , xvel
a ), depending on the model of the flow

dynamics and the required velocity constraints.

The alternative descriptions of the physical aspects offer several model variants, leading
to a family of possible pipe models. A model variant with a small number of nonlinear
constraints and modest accuracy is similar to the one proposed for the MPEC approach:
the smooth quadratic approximation (3.70) is combined with the choice of the AGA
formula for the compressibility factor, constant mean values for pressure and temperature
and an isothermal model, so no energy equation will be required. The solution of the
MPEC approach will typically offer good initial values for this model choice. While it
is one of the most inaccurate choices presented, it proves to be sufficiently accurate for
several practical purposes.

A very accurate model choice consists of the discretized ODE equations (3.69a) and
(3.69b) and Papay’s equation for the compressibility factor. The drawback of this variant
is the large number of nonlinear constraints which likely leads to an increased computation
time and the model differences to the MPEC approach reduce the quality of the initial
may even require different choices for the discrete model aspects.
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3.4.4. Resistors

The resistor model in Section 3.2.4 describes points of nonsmooth behavior for both
resistor types. The MPEC approach resolves this by appropriate smoothing functions,
which introduce inaccuracies for small flow values. In the ValNLP model, the flow direction
is fixed a priori to the direction stated in the solution of the MPEC approach. Thus, the
pressure loss of a resistor a = (u, v) ∈ Are is either modeled by the linear constraint

0 = cp−loss
a (pu, pv, qa) = pu − pv − sign(qa)ξa, (3.73)

or it is modeled by the nonlinear constraint

0 = cp−loss
a (pu, pv, qa, ρ

in
a ) = pu − pv −

8ζa
π2D4

a

qa|qa|
ρin
a

. (3.74)

The pressure loss induces a temperature change due to the Joule–Thomson effect (3.63)
yielding additional constraints. Accordingly, the full resistor model is either

0 = cE,a(xu, xv, xa) =


cp−loss
a (qa, pu, pv)

cheat−cap
a (pu, Tu, Xa, x

heat-cap
a,out )

cjt(pu, pv, Ta:u, Ta:v, Xa, µJT,a, cp,a,out)

 , (3.75)

xa = (xbase
a , xheat-cap

a,out , µJT,a)

or

0 = cE,a(xu, xv, xa) =



cp−loss
a (qa, pu, pv, ρ

in
a )

cheat−cap
a (pu, Tu, Xa, x

heat-cap
a,out )

cjt(pu, pv, Ta:u, Ta:v, Xa, µJT,a, cp,a,out)

ceos(pin
a , T

in
a , ρ

in
a ,ma, zu,in)

cz(zin
u , p

in
a , T

in
a , pc, Tc)


, (3.76)

xa = (xbase
a , xheat-cap

a,out , µJT,a, ρ
in
a , z

in
u ).

The pressure loss at resistors, parameter mixing and temperature mixing are the only
model aspects that depend on the flow direction. If gas parameters and gas temperature are
approximated by mean values and the pressure loss is approximated as in Section 3.3.3, the
flow directions do not have to be fixed. Otherwise, information about the flow directions
are required in addition to the discrete decisions of the active elements.
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3.4.5. Valves and Shortcuts

The model (3.23) of a shortcut a = (u, v) ∈ Asc needs no further adjustments, thus the
constraints are

0 = cE,a(xu, xv, xa) =

(
pu − pv

Ta:u − Ta:v

)
, xa = xbase

a . (3.77)

The state of a valve a = (u, v) ∈ Avl is chosen based on the solution of the given solution
of the MPEC approach, so a valve model is required for each state. An open valve is
modeled similar to a shortcut by (3.77). A closed valve implies zero flow and decouples
the incident pressure and temperature variables:

0 = cE,a(xa) = qa, xa = xbase
a . (3.78)

3.4.6. Control Valve Stations

Fixing the state of a control valve station a = (u, v) ∈ Acv according to a given solution
reduces the complexity of its model considerably. The control valve station is modeled as
a subgraph as in the previous models, see Figure 3.3 on page 36.

A closed control valve station is modeled as a closed valve, see Equation 3.78. If the
station has no remote access, the lower bounds of the pressure variables pu and pv are
additionally set to pset,a.

The bypass mode of a control valve station differs between stations with and without
remote access. A bypassed control valve station with remote access is modeled as an open
valve, see (3.77). In contrast, for stations without remote access the inlet resistor a0 and
the outlet resistor a2 have to be considered,

0 = ca0(xu, xa,1, x
base
a , xa0),

0 = ca2(xa,2, xa,3, x
base
a , xa2),

see Section 3.4.4 for details, and the gas heater is offline. A bypassed control valve without
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remote access is hence represented by

0 = cE,a(xu, xv, xa) =


ca0(xu, xa,1, x

base
a , xa0)

xa,1 − xa,2
ca2(xa,2, xa,3, x

base
a , xa2)

pa,3 − pv
Ta,3 − Tv

 ,

xa = (xbase
a , xa,1, xa,2, xa,3, xa0 , xa2),

and the upper bound of the incident pressure variables is set to pset,a if it is larger.

An active control valve station with remote access reduces the pressure by ∆pa. The
constraint representing the linear pressure loss is

0 = cp−loss
a1

(pa,1, pa,2,∆pa) = pa,1 − pa,2 −∆pa.

In case of a control valve without remote access the outlet pressure pa,2 is set to pset,a,

0 = cp−loss
a1

(pa,2) = pa,2 − pset,a,

and the lower bound of the inlet pressure pa,1 is increased to pset,a, if it is smaller. The
pressure decrease results in a temperature change due to the Joule–Thomson effect, thus
the control valve model is

0 = ca1(xa,1, xa,2, x
base
a , xa1) =


cp−loss
a1 (pa,1, pa,2,∆pa)

cheat−cap(pa,1, Ta,1, Xa, x
heat-cap
a1 )

cjt(pa,1, pa,2, Ta,1, Ta,2, Xa, µJT,a1 , cp,a1)

 ,

xa1 = (∆pa, µJT,a1 , x
heat-cap
a1

),

for control valves with remote access and otherwise it is

0 = ca1(xa,1, xa,2, x
base
a , xa1) =


cp−loss
a1 (pa,2)

cheat−cap(pa,1, Ta,1, Xa, x
heat-cap
a1 )

cjt(pa,1, pa,2, Ta,1, Ta,2, Xa, µJT,a1 , cp,a1)

 ,

xa1 = (µJT,a1 , x
heat-cap
a1

).

The gas temperature of an active control valve station is controlled by the gas preheater. Its
model in Section 3.2.7 is nonsmooth, thus it has to be replaced by a smooth approximation
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in order to gain an NLP formulation. To this end, the smooth approximation of the
minimum function (3.49) is applied, resulting in

0 = ca3(pa,3, pv, Ta,3, Ta:v) =

(
pa,3 − pv

Ta:v − T−a:v − 1
2

(√
∆T 2

a + ε+ ∆Ta

)) ,
∆Ta = Ta,3 − T−a:v,

with a suitable smoothing parameter ε > 0. The complete model of an active control
valve station then reads

0 = cE,a(xu, xv, xa) =


ca0(xu, xa,1, x

base
a , xa0)

ca1(xa,1, x2, x
base
a , xa1)

ca2(xa,2, xa,3, x
base
a , xa2)

ca3(xa,3, xv, x
base
a )

 ,

xa = (xbase
a , xa,1, xa,2, xa,3, xa0 , xa1 , xa2).

3.4.7. Compressor Groups

To eliminate the discrete aspects of the compressor group model in Section 3.2.8 informa-
tion about the general state, i.e. closed, active or bypass, is required and the operating
configuration has to be defined in case of an active compressor group. Similar to control
valve stations with remote access, a closed compressor group is modeled by (3.78) and a
compressor group in bypass mode acts like a shortcut, see (3.77). The model of an active
compressor unit is based on a sub-graph representing the compressor group. In contrast to
the MINLP model in Section 3.2.8 and the heuristic model in Section 3.3.8, the notation
is adjusted, since the configuration is already fixed. The model of an active group includes
the inlet resistor a0, stages Si = {a1, . . . , as̄} of the known active configuration i ∈ Ka,
the outlet resistor as̄+1 and the gas cooler as̄+2. Note that a sub-arc aj connects the
sub-nodes j and j + 1 in contrast to the compressor model of the MINLP and MPEC.
Figure 3.13 illustrates this build-up.
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0
u

rein reout cooler

s̄+ 3

v

1 s̄+ 1 s̄+ 2

active configuration

bypass

Figure 3.13. Subgraph of a compressor group

Associated with every inner sub-node is a variable vector, xj = (pj , Tj), j = 1, . . . , s̄+ 2.
The sub-nodes 0 and s̄+ 3 are synonyms for u and v, respectively.

The inlet and outlet resistors are modeled by (3.76), resulting in the constraints

0 = cE,a0(xu, x1, x
base
a , xa0), xa0 = (xheat-cap

a0
, µJT,a,a0).

0 = cE,as̄+1(xs̄+1, xs̄+2, x
base
a , xas̄+1), xas̄+1 = (xheat-cap

as̄+1
, µJT,a,as̄+1)

in case of linear resistors. The nonsmooth maximum function in the model of the gas
cooler (3.40) is smoothed by applying the smoothing function (3.50). This yields the
constraint

0 = cE,as+2(pa,s+2, pv, Ta,s+2, Ta:v) =

(
pa,s+2 − pv

Ta:v − T+
a:v + 1

2

(√
∆T 2

a + ε−∆Ta

)) ,
with ∆Ta = Ta,s+2 − T+

a:v and ε > 0.

An active compressor group a = (u, v) premises a flow in arc direction, i.e. qa ≥ 0. The
model of stage aj , j ∈ Si, consists of a constraint modeling the distribution of the arc
flow qa between the parallel units Uj ,

0 = cflow−dist
aj (qa, qUj ) = qa −

∑
k∈Uj

qk, for all j ∈ Si,

the mixing of the outflow temperatures T out
k , k ∈ Uj , of the parallel units,

0 = cmix−temp
aj (qUj , Ta,j+1, T

out
Uj )

= Ta,j+1

∑
k∈Uj

qk −
∑
k∈Uj

qkT
out
k ,

and the constraints representing the compressor units ck, k ∈ Uj . The constraints of
compressor units are partly identical for both turbo compressors and piston compressors.
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The specific change in adiabatic enthalpy is modeled by the constraint

0 = cadiabatic(Had,k, pj , Tj , pj+1, zj ,ma, κk)

= Had,k − zjTj
R

ma

κk
κk − 1

((
pj+1

pj

)(κk−1)/κk

− 1

)
(3.79)

for a compressor k ∈ Uj of either type. The required power Pk is modeled by

cpower(Pk, qk, Had,k, ηad,k) = Pk −
qkHad,k

ηad,k
. (3.80)

Equations (3.27) and (3.28) describe how the isentropic exponent κk is calculated, yielding
the constraint

0 = cisen−exp−lin(κk, κ
in
k , κ

out
k ) = κk −

1

2
(κin
k + κout

k ),

where κin
k and κout

k are defined by the constraint

0 = cisen−exp−def(κ, p, T, z, cp, Xa) = κ− Rcpz

RcpZp(z, p, T, pc, Tc)−mZT (z, p, T, pc, Tc)2
.

For Zp and ZT , see (3.29) and (3.30). Extended by the constraints for the required heat
capacity and using the additional variables

xisen-exp
k = (κk, κ

in
k , κ

out
k , xheat-cap

k,in , xheat-cap
k,out ), (3.81)

the model of the isentropic exponent is

0 = cisen−exp(pj , Tj , zj , pj+1, T
out
k , zout

k , xbase
a , xisen-exp

k )

=



cisen−exp−lin(κk, κ
in
k , κ

out
k )

cisen−exp−def(κin
k , pj , Tj , zj , cp,k,in, Xa)

cisen−exp−def(κout
k , pj+1, T

out
k , zout

k , cp,k,out, Xa)

cheat−cap(pj , Tj , Xa, x
heat-cap
k,in )

cheat−cap(pj+1, T
out
k , Xa, x

heat-cap
k,out )

cz(zout
k , pj+1, T

out
k , pc,a, Tc,a)


.

A constraint modeling the compressibility factor zj is outsourced since is involved in
several model aspects of a compressor unit.
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A alternative simplified model is based on a linear function of the temperature

0 = cisen−exp(Tj , T
out
k , xisen-exp

k )

=

κk − 1.29 + 5.8824× 10−4(Tm,k − T0)

Tm,k − 1
2(Tj + T out

k )

 , (3.82)

xisen-exp
k = (κk, Tm,k).

Last but not least, choosing κk = 1.29 as described in Section 3.2.8 yields the basic
model

0 = cisen−exp(κk) = κk − 1.29. (3.83)

This constraint can either be added to the model directly or all occurrences of the
isentropic exponent are replaced by the constant value instead.

The pressure change caused by a compressor unit results in a change of the temperature
due to the Joule–Thomson effect. Equations (3.31) and (3.32) describe an empirical
model. They result in the constraint

0 = ctemp−inc(pj , Tj , zj , pj+1, T
out
k , zinit

k , T init
k , κk, ηad,k, Xa)

=


T out
k zinit

k − T init
k zj

T init
k − Tj

(
pj+1

pj

)(κk−1)/(κkηad,k)

cz(zinit
k , pj+1, T

init
k , pc,a, Tc,a)

 .

The models of both types of compressors involve the volumetric flow Q = q/ρ. To
determine the density at the inlet of the compressor unit a constraint ceos modeling the
equation of state is further required. Similarly, the models of both types of compressors
require the speed of the compressor nk. Summarizing all constraints defined in this section
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so far results in the core model of a compressor unit,

0 = cbase
k (xbase

a , xj , xj+1, x
base
k )

=



cadiabatic(Had,k, pj , Tj , pj+1, zj ,ma, κk)

cpower(Pk, qk, Had,k, ηad,k)

cisen−exp(pj , Tj , zj , pj+1, T
out
k , zout

k , xbase
a , xisen-exp

k )

ctemp−inc(pj , Tj , zj , pj+1, T
out
k , zinit

k , T init
k , κk, ηad,k, Xa)

cz(zj , pj , Tj , pc,a, Tc,a)

ceos(pj , Tj , ρj ,ma, zj)


, (3.84)

xbase
k = (qk, Pk, Had,k, ηad,k, T

out
k , zj , z

out
k , zinit

k , T init
k , xisen-exp

k , nk).

This model of the common constraints is extended by type-specific constraints modeling
the characteristic diagrams of the compressor units.

The characteristic diagram of a turbo compressor, see Figure 3.8a, is described by quadratic
least-squares fits (3.33) and (3.34). The curved lower and upper border of the feasible
operating range results from the technical limits of the compressor speed nk ∈ [n−k , n

+
k ]

and the constraint for the speed isolines (3.35)

0 = cspeed(Had,k, qk, ρj , nk)

= Had,k − χ
(
qk
ρj
, nk;AHad,k

)
.

Here, the volumetric flow rate Qk is replaced by qk/ρj . To the left and right, the feasible
operating range is bounded by the surgeline and chokeline

0 ≤ csurge(qk, ρj , Had,k) = ψ

(
qk
ρj
, as,k

)
−Had,k,

0 ≤ cchoke(qk, ρj , Had,k) = Had,k − ψ
(
qk
ρj
, ac,k

)
.

The adiabatic efficiency ηad,k ∈ [0, 1] of the turbo compressor is modeled by

0 = ceff(ηad,k, qk, ρj , nk)

= ηad,k − χ
(
qk
ρj
, nk;Aηad,k

)
,

In summary, the complete model of a turbo compressor k ∈ Uj of stage j consists of the
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common constraints (3.84) and the description of the feasible working range, yielding

0 = cE,k(x
base
a , xj , xj+1, xk)

=


cbase
k (xbase

a , xj , xj+1, x
base
k )

cspeed(Had,k, qk, ρj , nk)

ceff(ηad,k, qk, ρj , nk)

 ,

0 ≤ cI,k(xj , xj+1, xk) =

csurge(qk, ρj , Had,k)

cchoke(qk, ρj , Had,k)

 ,

xk = (xbase
k ).

This model introduces the first inequalities so far to the ValNLP.

In contrast to the complex nonlinear model of turbo compressors, the model of a piston
compressor k ∈ Uj is less sophisticated. Essentially, the maximum possible volumetric
flow is restricted by the amount, the compressor can process per rotation,

0 = cvol(qk, ρj , nk) =
qk
ρj
− V0nk,

and the maximum allowed torque is restricted on one of three possible ways:

0 = ctorque(ρj ,Mk, Had,k) = Mk −
V0Had,k

2πηad,k
ρj ,

0 ≤ climit(pj , pj+1,Mk) =


ε+ − pj+1/pj ,

pj − pj+1 + ∆p+,

M+
k −Mk.

Details on the parameters are given in Section 3.2.8. These constraints are summarized
in the model of a piston compressor k ∈ Uj

0 = cE,k(x
base
a , xj , xj+1, xk) =


cbase
k (xbase

a , xj , xj+1, x
base
k )

ctorque(ρj ,Mk, Had,k)

cvol(Qk, nk)

 ,

0 ≤ cI,k(xj , xj+1, xk) = climit(pj , pj+1,Mk),

with the variables
xk = (xbase

k , ρj , zj ,Mk, nk).
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Each compressor unit of either type has a drive d attached, which powers the compressor
unit. The mapping from a compressor unit to its connected drive is denoted by σ(k). The
power Pk a compressor consumes is limited by the maximum power Pd+ the connected
drive d can create,

0 ≤ cI,d(Pk, Pd+) = Pd
+ − Pk. (3.85)

How this power is generated depends on the type of the drive. All drives are modeled as
a subset of the constraints

0 = cfuel(qfuel
d , bd,ma, Hc,a) = qfuel

d − bdma

Hu,a
,

0 = cspec−ener(bd, Pk) = bd − ψ(Pk, abd),

0 = cquad−power(Pd
+, nk) = Pd

+ − χ(nk;Tamb, AP ),

0 = clin−power(Pd
+, nk) = Pd

+ − ψ(nk; aP ).

The subset of constraints applicable for gas turbines is

0 = cE,d(xk, xd) =


cfuel

(
qfuel
d , bd,ma, Hc,a

)
cspec−ener(bd, Pk)

cquad−power(Pd
+, nk)

 , xd = (qfuel
d , bd, Pd

+).

Gas driven motors are modeled by

0 = cE,d(xk, xd) =


cfuel

(
qfuel
d , bd,ma, Hc,a

)
cspec−ener(bd, Pk)

clin−power(Pd
+, nk)

 , xd = (qfuel
d , bd, Pd

+),

and electric motors are either modeled by

0 = cE,d(xk, xd) =

 cspec−ener(bd, Pk)

clin−power(Pd
+, nk)

 , xd = (bd, Pd
+)

or

0 = cE,d(xk, xd) =

 cspec−ener(bd, Pk)

cquad−power(Pd
+, nk)

 , xd = (bd, Pd
+).
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Electric engines do not consume any fuel qfuel
d however they cause electricity costs correlated

to the generated power Pk.

All different compressor units, drives and connecting model aspects of a compression
stage aj , j ∈ Si of the configuration i, are now defined. Putting all these parts together
results in the stage model

0 = cE,aj (xj , xj+1, x
base
a , xj) =


cflow−dist
aj (xbase

a , qUj )

cmix−temp
aj (qUj , Ta,l+1, Tj)

(cE,k(xbase
a , xj , xj+1, xk))k∈Uj

(cE,σ(k)(xk, xσ(k)))k∈Uj

 ,

0 ≤ cI,aj (xj , xj+1, x
base
a , xj) =

cI,k(xbase
a , xj , xj+1, xk)

cI,σ(k)(xk, xσ(k))


k∈Uj

,

xj = (qaj , (xk, xσ(k))k∈Uj ).

Finally, the complete model of a compressor group is represented in terms of its sub-arcs,
the inlet resistor a0 the compression stages aj , j ∈ Si = {1, . . . , s̄}, the outlet resistor
as̄+1 and the gas cooler as̄+2. The model of a compressor group now reads

0 = cE,a(xu, xv, xa) =


cE,a0(xu, x1, x

base
a , xa0)

cE,aj (xj , xj+1, x
base
a , xj)

s̄
j=1,

cE,as̄+1(xs̄+1, xs̄+2, x
base
a , xas̄+1)

cE,as̄+2(xs̄+2, xv, x
base
a )

 ,

0 ≤ cI,a(xa) =
(
cI,aj (xj , xj+1, x

base
a , xj)

)s̄
j=1

,

xa = (xbase
a , (xj)

s̄+2
j=1, (xaj )

s̄+1
j=0).

3.4.8. A Concrete Validation Model

For each network component introduced in Section 3.2 an NLP model has now been
described. For a nonlinear problem of the form (3.58) an objective function is missing.
For the sole purpose of validating a nomination no objective function is necessary, just a
feasible point is required. To this end, the constant objective f const(contV ar) = 0 could
be chosen. However, a zero objective leads to an ill-posed optimization problem and since
an optimization problem is solved anyway, a sensible objective function does not harm.
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For a transport network operator the most intuitive objective function is probably a
minimization of the operating cost. Besides mostly constant maintenance investments, the
regular expenses are dominated by the fuel costs of compressor groups, strictly speaking
the costs caused by gas-powered drives Dgas and electricity-powered drives Del. When the
cost per unit fuel is denoted by the coefficient ωd an appropriate objective function is

f cost(qfuel
Dgas

, PDel
) =

∑
d∈Dgas

ωdq
fuel
d +

∑
d∈Del

ωdPd.

Under consideration of the increasing environmental awareness an ecological point of
view may be preferable to the economical approach of cost minimization. To this end,
minimizing the consumption of fossil natural gas may be an important aim, leading to

f fuel(qfuel
Dgas

) =
∑
d∈Dgas

qfuel
d .

Alternatively, the focus may rest on minimum energy dissipation. For this, the power
consumed by compressor groups is reduced instead of its cost,

fpower(PAcg) =
∑
a∈Acg

Pa.

Here, Pa denotes the combined power of all active compressor units of the compressor
group a.

After choosing the desired optimization aim, the full validation NLP finally is

min
x

f(x) (3.86a)

s.t. cV(x) = 0, (3.86b)

cE,A(x) = 0, (3.86c)

cI,Acg(x) ≥ 0, (3.86d)

x ∈ [x−, x+], (3.86e)

with the variables
x = (xV, xA).

Finally, the objective function and all constraints of (3.86) are smooth and standard NLP
solvers are applicable.
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3.4.9. Relaxations

Solving the ValNLP (3.86) has essentially two possible outcomes. The applied nonlinear
solver either converges to a (local) minimum or it diverges. If the solver stops at a feasible
point, the solution of the MPEC approach allows a feasible network operation under the
physical and technical sophisticated model of the ValNLP. The MPEC solution is thus
validated to be a sufficient approximation and is adjusted by the ValNLP with respect
to the more detailed model. However, if model (3.86) does not yield a feasible point, no
conclusion can be drawn. Since standard NLP solvers are local solvers, they may diverge
even when a solution exists and usually they do not indicate any possible reasons in this
case. Though global solvers exist and would resolve this dilemma, problem (3.86) is too
hard for them to solve, see Section 4.1.

To gain additional information in case of an infeasible result, we introduce slack variables
s+ and s− and relax the NLP (3.86) yielding

min
x,s+,s−

f relax(x, s+, s−) (3.87a)

s.t. cE(x) + s+
E − s−E = 0, (3.87b)

cI(x) + s+
I ≥ 0, (3.87c)

x ∈ [x−, x+], (3.87d)

s+, s− ≥ 0. (3.87e)

The constraints cE,V and cE,A are summarized in cE and cI corresponds to cI,Acg . A
constraint is called violated, if one of the associated slack variables is nonzero. The main
focus lies on finding a feasible solution of (3.86). Thus, the objective function f relax is
a norm of the vector of slack variables, i.e. the objective function of (3.86) is omitted
and (3.87) minimizes the violation of the original constraints. A standard choice for the
objective function is the `1-norm,

f relax(x, s+, s−) = ‖(s+, s−)‖1 =
∑
i∈E∪I

s+
i +

∑
i∈E

s−. (3.88)

In practice, this results in a few (if any) positive slack variables and their indices give
a hint of the network elements affected by the infeasibility. This information is of high
interest for practitioners. A second natural choice is the `∞-norm, which is gained by
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minimizing a common upper bound of all slack variables s̄,

f relax(x, s+, s−, s̄) = s̄, s+, s− ≤ s̄.

Numerical experiments show that the maximum slack value under the `∞-norm is typically
smaller than under the `1-norm, but the `∞-norm often results in a much larger number
of non-vanishing slack variables when the value of the objective function is nonzero. No
useful information for pin-pointing the infeasibility can be gained in this case.

The advantage of the relaxed nonlinear problem is that under the assumption of nonempty
variable bounds problem (3.87) has always a feasible point. If x̂ is an infeasible point of
the unrelaxed problem set s+

i = −min(ci(x̂), 0) and s−i = max(ci(x̂), 0) for all i ∈ E with
ci(x̂) 6= 0. Additionally set s−j = max(cj(x̂), 0) for all j ∈ I. The point (x̂, ŝ+, ŝ−) is then
a feasible point of (3.87). It follows that the x-component of a feasible point of the relaxed
problem is a feasible point of the original ValNLP, if and only if f relax(x, s+, s−) = 0 holds,
i.e. s+ = s− = 0. The chosen NLP solver should always be able to find a feasible point of
the relaxed problem which may provide useful information about the constraints which
are hard to satisfy, at least in a heuristic way. While the index of a nonzero slack variable
may indicate a problematic network element, there is no direct information about the
significance of the violation, since the slack variables are of different physical quantities.
A slack value of 10 has a different impact if it is in bar or kW. In addition, the slack
values have usually complex type depending on the exact formulation of the corresponding
constraint. For evaluation and comparison of resulting slack values a simple common unit
like bar or kg s−1 is preferable.

To derive an interpretable value from a slack variable value, two interpretation schemes
are introduced. For both, a small set of physical quantities from the component model is
selected, e.g. pressure and mass flow, and the slack value is interpreted in terms of one
of these quantities. The first suggested way to translate slack values is to reorder the
corresponding constraint until one of the reference quantities is singled out. For pressure
as the reference quantity, the equation of state (3.64) is thus transformed into

0 =
ρzRT

m
− p. (3.89)

The reinterpreted slack value s̄ is then gained by setting the solution x∗ into (3.89),
yielding

s̄ =
ρ∗z∗RT ∗

m∗
− p∗.
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This approach has some drawbacks. If several nonzero slack values are associated with
the same network element, each violated constraint will almost surely lead to a different
interpreted value. These values have different physical units, if the constraints cannot
be solved for the same reference quantity. Thus, the user has to judge several different
values in different units for a single network element. Lastly, the transformation is only
applicable if the constraint can be solved for one of the reference quantities.

As an alternative approach for arcs, an heuristic based on a small NLP for each network
element a = (u, v) with violated constraints is presented. The arc is modeled as described
in the previous sections. The values at the incident nodes and the flow qa are fixed
according to the solution x∗ of the relaxed ValNLP, except for the reference quantity.
The difference between xref and its value in the solution x∗ref is minimized. In summary,
the following NLP is solved:

min
x

|xref − x∗ref | (3.90a)

s.t. cE,a(x) = 0, (3.90b)

cI,a(x) ≥ 0, (3.90c)

xi − x∗i = 0, for all xi ∈ {xu, xv, qa} \ {xref}, (3.90d)

x ∈ [x−, x+]. (3.90e)

The variable vector x summarizes xu, xv and xa. The value of the objective function is
returned as the interpretation of the violation at the element a after a successful solution
of (3.90).

This approach has some desirable properties. The constraints of the validation NLP are
reused without requiring any changes. The constraints do not need to satisfy any special
properties except for the basics described in Section 2.1. In particular, implicit functions
are possible. From the practitioner’s point of view the main advantage of this approach
is the single value it returns. However, there is also a drawback. This approach may
fail, if the infeasibility cannot be expressed in a single quantity xref . As an example, if a
turbo compressor has to be operated above its upper speed limit and to the right of the
chokeline in the relaxed solution, this infeasibility cannot be expressed in pressure or flow
alone. In addition, the return value is not a direct interpretation of the nonzero slack
values associated with arc a, but interpret the full local situation.
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In this chapter the models presented in Chapter 3 are further examined by numerical
experiments. In Section 4.1 a short overview of the applicability of MINLP solvers for
gas network problems is given. It is illustrated why another approach is required for
large-scale problems like the validation of nominations (NoVa) on real-world networks.

In Section 4.2 the MPEC approach is applied on NoVa problems based on instances
of the gas network library GasLib [56]. Several regularization strategies and parameter
settings are compared with emphasis on the penalization strategy (2.9) and the relaxation
approach (2.10) which are discussed in Section 2.2.4.

The accuracy of multiple model variants of the ValNLP is investigated in Section 4.3.
To this end, the conditions of transported gas is computed for a large number of single
network elements and several settings of pressure and flow based on the models described
in Section 3.4. The results are compared to those gained by the commercial simulation
software SIMONE 5.73 [120, 141].

All computations take place on a desktop PC with an Intel i7 920 CPU and 12GB memory
running openSUSE 12.3. Calculations based on the models described in Section 3 are
conducted using GAMS 24.0.2 [55].

4.1. Solving Mixed-Integer Nonlinear Problems Directly

Since the problem of validation of nominations is in fact an MINLP, the usage of state-
of-the-art MINLP solvers suggests itself. Some modifications of the model described in
Section 3.2 are necessary, since MINLP solvers commonly require twice continuously
differentiable constraints and objective functions. To this end, the techniques described
in Section 3.3 and 3.4 can be re-used.

However, Pfetsch et al. [104] observed that MINLP solvers are not reliable on real-
world network sizes. The authors tested an isothermal MINLP model with uniform
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gas composition including the quadratic pressure loss equation (3.43) and nonlinear
representations of the characteristic diagrams of compressors, see Section 3.4.7, on a set of
real-world network data. A feasible solution is found only for a small number of the tested
instances within the time limit of 4 h and infeasibility is not proven for any infeasible
case. Pfetsch et al. concluded that current general-purpose MINLP solvers cannot solve
large-scale NoVa problems. Nevertheless, there exist further applications which may
benefit from a global MINLP solver, e.g. solving the ValNLP (Section 3.4.8) to a global
minimum, solving the interpretation NLPs (Section 3.4.9) to a global minimum and
solving mixed-integer nonlinear models of small subnetworks like compressor groups.

Applying MINLP solvers on small-scale problems like single network elements or small
subnetworks offers an alternative approach to the second stage of the MPEC heuristic.
Instead of solving the NLP described in Section 3.3.8, each compressor group is solved for
the pressure and flow demands at the incident nodes according to the solution of the first
stage. The drawback of this approach is that the compressor groups are solved separately
and overloaded compressor groups thus cannot be supported by other compressor groups.
To test the applicability of MINLP solvers on these kinds of subnetwork problems, 16

feasibility problems concerning a compressor group incorporating 6 compressor units
and 11 configurations are solved. Each problem defines a different combination of inflow
pressure, outflow pressure and flow through the compressor group. All but one instances
are solved successfully by BARON within the time limit of 10min. The validation NLP is
able to verify 14 of the gained solutions. In most successful cases BARON takes between
one and three seconds, only two cases require 76 s and 158 s. SCIP decides 7 instances
as feasible, all are verified by the validation NLP. The remaining instances however are
decided as infeasible, which is not correct for at least those instances that are successfully
verified based on the solution generated by BARON. SCIP also requires between 1 and 3

seconds per instance, except for one case that takes 23 seconds.

While SCIP performs quite poorly on this test set of small MINLP problems, only two
instances do not result in a solution by BARON that can be verified by the validation
NLP. The results show, that BARON is applicable for MINLP feasibility problems of
small-scale networks and subnetworks. By applying a suitable objective function, BARON
may also be applicable on cost minimization problems of compressor groups.

Solving the relaxed validation NLP to a global optimum increases the significance of any
remaining non-zero relaxation variables and their interpretation for the practitioner, since
the global solution indicates the location and quantity of the reason of violated constraints
at least as accurate as a local solution does. The applicability of global MINLP solvers
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for this task is tested on spot tests. To this end, ValNLP models of four instances of
gaslib-582 from GasLib [56] are selected. The models are generated during the numerical
analysis of the MPEC, the required discrete decisions are thus generated by the MPEC,
see Section 4.2 for details. Here, the `1-objective function (3.88) was chosen. Two of the
selected models are solved by Ipopt 3.10[134] with vanishing objective value, one model is
solved to optimality with a positive objective value and the fourth model is reported to
be infeasible by Ipopt. To fit the needs of global solvers the models are extended by lower
and upper variable bounds if not yet existent. These adjusted models are solved by the
global MINLP solvers BARON 11.9.1 [127] and SCIP 3.0 [1], and by the local NLP solver
Ipopt to check the impact of the additional variable bounds. The time limit is set to one
hour for each computation.

The originally infeasible instance is confirmed to be infeasible by all solvers. Both global
solvers detect the infeasibility in preprocessing, SCIP finishes after only 0.2 s while BARON
requires 35 s. Ipopt stops after 2.3 s. In case of the instance with nonzero objective function,
BARON comes to the same objective value than Ipopt, but requires 22.3 s compared to
3 s. SCIP fails to find any feasible solution within the time limit. The first instance with
originally vanishing objective value is solved by Ipopt in 2.5 s and by BARON in 11.6 s.
Both solvers confirm the vanishing objective value. SCIP fails again to find a feasible
solution within the time limit. In contrast, the last instance shows a discrepancy in the
results. Ipopt converges with a vanishing objective value after 3.73 s. BARON however
spends 728 s in preprocessing before concluding with the alleged global optimal solution
with an objective value of 141.81. Clearly this cannot be the global optimum, since
the local solver Ipopt finds a solution with vanishing objective value (which is a global
solution). Again, SCIP does not find any feasible solution within the time limit.

In summary, several observations are made. The additional variable bounds have no
significant impact on the result of Ipopt in any case. SCIP fails to find any feasible solution.
The solver only concludes successfully in case of the infeasible instance. In contrast, all
results computed by BARON are achieved during its preprocessing, the quality of BARONs
results however are unsatisfactory. In three cases, BARON stops with the same objective
value as Ipopt but requires significantly more time. In the last described case, BARON
calls a solution a global optimum which clearly is not. While the larger runtime may be
regarded as a reasonable price for a global solution, the solutions of BARON seem not to
be reliable enough to gain an advantage over a local solver. In contrast, in every tested
case the solution of Ipopt is the best in terms of required computation time and objective
value.
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The reliability of MINLP solvers improves for small nonlinear problems. In the ForNe
project MINLP solvers are successfully used to compute variable bounds of compressor
units. For this purpose, a set of continuous nonlinear optimization problems is solved,
minimizing and maximizing the desired variables with respect to the nonlinear model of
the compressor unit. A similar field of application of global solvers are the interpretation
problems 3.90 in Section 3.4.9. Knowing xref to correlate to the global minimum offers
the practitioner a better basis for rating different solutions than the result of a local NLP
solver.

In summary, general-purpose global MINLP solvers are applicable for small subnetworks
and the analysis of single network elements as in case of the compressor group optimization.
They are already applied in practice on nonlinear models of single arcs to generate global
solutions. However, in case of large-scale gas transport networks however these approaches
typically fail to generate reliable solutions. In case of large-scale continuous nonlinear
models this improves slightly but the global solvers may stop in a false global optimum,
thus offering no advantage over a significantly faster local NLP solver.

The following section examines if a multi-stage approach consisting of the MPEC approach
presented in Section 3.3 and the validation NLP of Section 3.4 is better fitted for large-scale
NoVa problems.

4.2. Solving NoVa with the MPEC Approach

In Section 3.3 a group of reformulation techniques were presented, that are suitable to
derive an MPEC from the nonsmooth MINLP problem presented in Section 3.2. The
aim of the combined approach of MPEC and ValNLP described in Chapter 3 is to find a
solution of the NoVa problem by applying standard NLP solvers in short time. However,
the MPEC resulting from the descriptions in Section 3.3 does not satisfy the necessary
preconditions for most state-of-the-art NLP solvers, see Section 2.2. For this reason,
regularization schemes introduced in Section 2.2 are applied to the MPEC (3.53).

The strategies introduced in Section 2.2 all are based on solving a sequence of NLPs in
which a regularization parameter ξ is driven to zero and the sequence of solutions of the
NLPs converges to the solution of the original MPEC. This approach has two drawbacks.
First, for a successful run each NLP of the sequence needs to be solved to optimality. As
soon as one of the NLP runs fails to converge, the whole process fails. Second, solving
a sequence of NLP requires a lot of time which contradicts the aim of a fast validation.
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Thus, the approaches presented in the following sections solve just a single optimization
problem by handling the regularization parameter as part of the model.

Overall, the regularization parameter ξ is handled in three different ways. The first simply
sets the regularization parameter ξ to a constant value. Another way to control the
regularization parameter is to handle it as a variable that is minimized in the objective
function. If the variable is minimized to zero, all complementarity constraints of the
MPEC are satisfied. The third approach adds the constraint eξ − 1 = 0to the problem,
see Section 2.2.4. Again, the regularization parameter is handled as a variable. The
variable ξ is zero for every feasible point, thus every feasible point is also feasible for the
MPEC.

Not every combination of control mechanism and regularization approach is sensible.
For example, an appropriately chosen constant value may result in good results for
the penalization approach, while any nonzero value is not applicable in case of the
relaxation approach. A constant nonzero value would not enforce the satisfaction of the
complementarity constraints in any way.

The complementarity constraints of the MPEC (3.53) differ from the complementarity
constraints handled in Section 2.2 since the factors are not always non-negative. As an
example, both characteristic functions (3.45) and (3.46) of valves have no designated sign.
Possible adjustments of the regularization approaches are described in the corresponding
subsections.

Since there is no generally acknowledged superior regularization strategy and the suitability
of regularization strategies is in fact problem-dependent, several adjusted strategies are
tested. In addition, the success of the applied regularization schemes may depend on the
choice of the NLP solver. Hence, the interior-point method Ipopt 3.10 [134], the SQP
method SNOPT 7.2-12 [59] and the generalized reduced gradient method CONOPT in
version 3 and 4 [31, 32, 33, 34] are applied.

The solvers and regularization schemes are compared based on the results of 500 randomly
chosen instances of the network gaslib-582 from GasLib [56]. The full list of tested instances
is stated in Section A.3. For each instance a validation of nominations process is computed
that consists of three stages. Stage 1 is the regularized version of the MPEC (3.53), in
stage 2 the heuristic for finding active configurations (3.57) is applied on the instances
passing the first stage and the instances passing the second stage are finally validated by
a ValNLP run in the third stage. The objective function of the ValNLP is the `1-norm of
slack variables (3.88). A problem instance is considered to be validated successfully, if
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Figure 4.1. Successfully solved instances when solving the MPEC directly

the objective value of the ValNLP is at most 10−3. This values results from experiences
gained in the project ForNe [71] and offers a tradeoff between realizability of the solution
and a successful solution process. The value is small enough, that occurring violations
can typically be compensated in practice.

While the different solvers and regularization schemes are applied on the MPEC problem
(3.53), both the heuristic (3.57) and the ValNLP are solved by Ipopt. None of the test
instances contained a control valve without remote access, hence its model variant in the
MPEC has not to be decided. For the validation NLP, an isothermal model variant with
uniform gas composition and the quadratic pressure loss model (3.70) is chosen.

4.2.1. Direct Approach

Convergence theory of most standard NLP solvers is not applicable for the MPEC (3.53),
since this problem does neither satisfy LICQ nor MFCQ. However, this does not imply that
an NLP solver will fail to solve the MPEC (3.53) for all chosen instances. The solution
process of an instance may result in a feasible point anyway, but with an assumably slow
rate of convergence.

To see the effect of regularization approaches, the 500 chosen problem instances are first
solved without a regularization scheme, i.e. this direct approach solves the unmodified
complementarity constraints

φi(x)ψi(x) = 0, i ∈ C. (4.1)

The results of all solvers are illustrated in Figure 4.1. It shows the numbers of instances
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solver direct approach modified direct approach

stage 1 stage 2 ValNLP stage 1 stage 2 ValNLP

CONOPT4 3.7 1.9 1.4 9.2 1.7 2.2
CONOPT3 1.5 1.1 – – – –

Ipopt 49.5 1.3 1.8 68.2 1.6 1.9
SNOPT 5 1.6 1.4 19.5 1.7 2.2

Table 4.1. Average runtimes in seconds of the direct approach

solved successfully in the MPEC (stage 1), the heuristic for determining the active
configurations (stage 2) and the ValNLP. While the solvers CONOPT4, SNOPT and Ipopt
successfully solve more than 400 instances of the MPEC, the quality of the gained MPEC
results differ. Ipopt finds 469 results in stage 1, of which 402 pass the second stage, but
only 134 pass successfully the validation NLP. In contrast, applying CONOPT4 results
in 422 successfully solved instances of stage 1, of which 375 pass the second stage and
235 are finally validated by the validation NLP. The older version of CONOPT seems
not to cope well with the complementarity constraints. Only a single instance passes the
first and second stage and was rejected by the ValNLP. SNOPT is comparable to Ipopt.
Combining the results of the different solvers shows that their sets of solved instances
differ. In summary, all 500 instances pass the first stage, 472 the second stage for at
least one solver and 312 instances are successfully validated by the ValNLP. These are 77

instances more than in case of the best single solver, CONOPT4.

Table 4.1 shows the average computation times of the successfully solved or validated
instances. The second stage and the ValNLP take 1 s to 2 s. In contrast, the different
solvers result in very different runtimes of the first stage. While CONOPT4 requires an
average time of 3.7 s and SNOPT requires 5 s, Ipopt has an average runtime of 49.5 s.

In summary, implementing the complementarity constraints directly without a regular-
ization scheme works surprisingly well for most solvers. Ipopt, SNOPT and CONOPT4
solve at least 84% of the test cases despite the drawbacks of complementarity constraints.
The best solver of the tested ones for solving the MPEC (3.53) without adjustments is
CONOPT4. It results in the largest rate of successfully validated instances and is compa-
rably fast. CONOPT3 however seems to suffer under the loss of constraint qualifications.
The changes between both versions of CONOPT significantly improve the results. Ipopt
and SNOPT result in a large number of cases that pass the second stage but are not
validated. This indicates, that the heuristic in stage 2 is not able to suggest feasible
configurations in these cases, i.e. the first stage solutions overestimate the possibilities
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of the compressor groups. Besides a more sophisticated model for compressor groups in
the first stage this may be countered heuristically by minimizing the pressure increase at
compressor groups or minimizing the distance of the working point to the center of the
feasible working range as suggested for the MILP model in [71].

While Ipopt solves the largest number of cases in the first stage, it often has to fall back
to a restoration phase and an emergency mode in these cases. This is the main reason
for the comparatively large computation time in the first stage and indicates, that the
problems with complementarity constraints are hard to solve, despite the good rate of
success.

Besides complementarity constraints the model of the first stage contains inequalities
of type (3.54), which result also in a violation of LICQ and MFCQ in certain cases as
described in Section 3.3.7. The direct approach is modified to tackle this problem by
relaxing the inequality constraint and minimizing the value of the relaxation variable,
yielding

φi(x)ψi(x) + si ≥ 0, φi(x) ≥ 0, si ≥ 0, i ∈ IAcv ∪ IAcg , (4.2a)

fmod(x, s) = f(x) +
∑

i∈IAcv∪IAcg

si. (4.2b)

This renews the idea of Scholtes’ relaxation approach [117] and constraint qualifications
are typically satisfied at every feasible point (x∗, s∗) with s∗ > 0.

Besides violating LICQ in certain cases, the solutions computed by the direct approach
without any modifications show a tendency to artificial flow in loops of arcs without
pressure loss, e.g. bypassed control valve stations and compressor groups, shortcuts, and
open valves. Here, additional flow of arbitrary size (within the variable bounds) may
circle around the loops without entering or leaving the loop. This does not contradict the
flow balance equations (3.10), but without countermeasures this may even influence the
decision of complementarity constraints during computation. For example, artificial flow
through a valve, which would have zero flow otherwise, prevents the closing of the valve.
Thus, the sum of the flows through valves, compressor groups and control valve stations
is minimized also. Applying the changes

φi(x)ψi(x) + si ≥ 0, φi(x) ≥ 0, si ≥ 0, i ∈ IAcv ∪ IAcg , (4.3a)

f rel−flow(x, s) = fmod(x, s) +
∑

a∈Avl∪Acg∪Acv

q2
a, (4.3b)
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Figure 4.2. Successfully solved instances for the direct approach with modifications (4.3)

to the MPEC model (3.53) leads to improved results for Ipopt and SNOPT. Figure 4.2 and
Table 4.1 illustrate the new test results. The number of instances passing the first stage
increased for all solvers except CONOPT3, which now finds no solution at all. While the
number of successfully validated instances does not change when CONOPT4 is applied,
it drastically increases for Ipopt and SNOPT, which now lead to 218 and 230 validated
instances, respectively. A drawback is the increase of the runtimes, when (4.3) is applied.
While the increased time of stage 2 and the ValNLP are small, the increase in stage 1 is
between 5.5 s and 18.7 s.

In total, all instances passed the first stage and again 472 instances pass the second stage
for at least one solver. Now 343 instances are successfully validated in total, this is an
increase of 33 instances compared to the direct approach without (4.2a) and (4.3b).

Both applied modifications have different consequences for the MPEC approach. The
relaxation (4.2a) reduces the number of constraints violating LICQ. This is the main
reason for the increased numbers of successfully solved first-stage-instances for SNOPT,
Ipopt and CONOPT4. The minimization of flow on active arcs is first and foremost a
heuristic improving the coupling of the first and second stage. It results in better discrete
decisions and initial values. The improved initial values also lead to a reduction of artificial
flow in loops in the solutions of the second stage and thus to better initial values for the
validation NLP. Minimization of the flows increase the problem complexity compared
to the sole feasibility problem of the unmodified direct approach and leads to increased
computation times.

Summarizing, the applied modifications support the solvers in the first stage and de-
crease the gap between the number of successfully solved second stage solutions and the
successfully validated cases. Hence, they are also applied in the following, if possible.
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4.2.2. Penalization Approach

The penalization approach (2.9) requires several adjustments before general NLP solvers
can be applied. This approach must cope with complementarity constraints containing
characteristic functions with arbitrary sign while it is designed for nonnegative factors φ
and ψ. The characteristic functions cannot be shifted by a constant value since they have
to evaluate to zero if their represented state is active and taking the absolute value is not
a smooth function that is required for general NLP solvers. Therefore, the characteristic
functions are squared if necessary, i.e. functions φ(x) and ψ(x) are defined as

φ(x) = χ1(x)τ1 , ψ(x) = χ2(x)τ2 ,

with τi = 1, i ∈ {1, 2}, if χi(x) ≥ 0 and τi = 2 else. By doing so, the resulting
complementarity constraint φ(x)ψ(x) = 0 is consistent with Section 2.2.4 and can be
handled by the penalization approach.

Since the modifications (4.3) have a significant positive influence on the results of Ipopt
and SNOPT in case of the direct approach, they are also applied in combination with the
penalization approach.

Three possible control mechanisms for the parameter ξ have been suggested so far: an
appropriately chosen constant value, the minimization of a representing variable and the
adding of the constraint (2.13). Practical experience shows, that minimizing ξ in the
objective usually does not result in a vanishing ξ. Thus the penalization parameter is
either chosen constant or handled by constraint (2.13).

A properly chosen small constant value leads to minimized violation of the complementarity
constraints. Figure 4.3a shows the results gained for the penalization approach

fpenalty(x) = f(x) +
1

ξ

∑
i∈C

φi(x)τiψi(x)τi , (4.4a)

ξ = 10−6, (4.4b)

with constant penalization parameter. Figure 4.3b shows the results for

fpenalty(x) = f(x) +
1

ξ

∑
i∈C

φi(x)τiψi(x)τi , (4.5a)

ξ = 10−4, (4.5b)
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(a) Constant parameter ξ = 10−6
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(b) Constant parameter ξ = 10−4

Figure 4.3. Successful instances for the penalization approach with adjustments (4.3)
and constant parameter ξ

While the choice of ξ has a rather marginal influence on the result of Ipopt and SNOPT, at
least when it is small enough, it is critical for CONOPT4. If the penalization parameter is
chosen as 10−4, CONOPT4 results in a feasible point for 465 instances of stage 1, of which
85 test cases are validated by the ValNLP. In contrast, no instance is solved successfully
for ξ = 10−6.

For both choices of the penalization parameter Ipopt proves to be the best solver in terms
of validated instances. 181 cases are validated with ξ = 10−4 and 179 are validated for
the other choice. CONOPT3 however does not find any solution for neither parameter
setting.

Combining all solvers, all instances pass stage 1 for both choices of the penalization
parameter. If the parameter ξ is set to 10−6, 478 instances pass the second stage. 200 of
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solver ξ = 10−6 ξ = 10−4

stage 1 stage 2 ValNLP stage 1 stage 2 ValNLP

CONOPT4 – – – 32.3 3.2 1.6
CONOPT3 – – – – – –

Ipopt 12.3 3.2 3 6.1 1.7 1.7
SNOPT 168.8 5.9 2.3 113.2 19.8 1.7

Table 4.2. Average runtimes in seconds of the penalization approach

solver stage 1 stage 2 ValNLP

CONOPT4 – – –
CONOPT3 – – –

Ipopt 8.3 2.2 1.7
SNOPT 108.4 84.9 1.4

Table 4.3. Average runtimes of successful instances using the penalization approach (4.7)
and the controlling constraint (4.6)

them are successfully validated in total. For ξ = 10−4 one instance less passes the second
stage, but 211 are successfully validated.

Table 4.2 shows the corresponding runtimes. Ipopt profits considerably from the regu-
larization, the average runtime of the first stage with ξ = 10−4 is only one tenth of the
average runtime required for the modified direct approach. In contrast, both SNOPT and
CONOPT4 take longer than when the direct approach is applied. The second stage and
the validation NLP require about 2 s, except for SNOPT where the second stage takes
significantly longer. A possible reason might be, that the complementarity constraints
are not satisfied as good as with the other solvers.

Overall, the success rate of the first stage is considerably higher than in case of the
direct approach for all instances. This is to be expected, since the penalization approach
does not guarantee a satisfaction of all complementarity constraints and the resulting
problems should be easier to solve. Interestingly, the penalization approach with a constant
penalization parameter has no positive effect for any solver on the tested scenarios when
compared to the direct approach with modifications. In fact, the number of successfully
solved instances has decreased for every solver. The value 10−6 for the penalization
parameter has a positive influence on Ipopt only, all other solvers gain better results for
the larger value. It is possible that the smaller value leads to numerical difficulties in the
solution process.
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Figure 4.4. Number of successful instances using the penalization approach (4.7) and
the controlling constraint (4.6)

Controlling the penalization parameter by the constraint

0 = eξ − 1, (4.6)

and an initial value of 1 for ξ yields the penalization approach

fpenalty(x) = f(x) +
1

ξ

∑
i∈C

φi(x)τiψi(x)τi , (4.7a)

0 = eξ − 1. (4.7b)

This setting does not harmonize well with CONOPT3, CONOPT4 and SNOPT, see
Figure 4.4. Both versions of CONOPT do not find any solution in stage one, while
SNOPT solves 313 instances, but only 31 pass the second stage of which 3 are successfully
validated. The results of Ipopt however are comparable to a constant choice of ξ. All
instances pass the first stage, 463 the second stage and 173 are successfully validated.
Ipopt finds feasible solutions faster in all instances with the additional constraint than
with a constant parameter, see Table 4.3. The average times are 8.3 s, 2.2 s and 1.7 s for
stage 1, stage 2 and the validation NLP, respectively. In combination, 174 instances are
successfully validated, meaning SNOPT only contributes a single instance not solved by
Ipopt.

The controlling constraint (4.7b) results in a penalization parameter of 0. This may result
in numerical difficulties in the evaluation of the objective function and to a ill-conditioned
problem. The same holds for very small constant choices of the regularization parameter.
Because of this, CONOPT4 fails for ξ = 10−6 and problem formulation (4.7). As a
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countermeasure (4.7b) may be replaced by

0 = eξ−ε − 1,

with ε > 0, resulting in ξ → ε during computation.

On the chosen test set, the penalization approach is an improvement over the unmodified
direct approach only for Ipopt, independent of the handling of the regularization parameter.
Based on the validation NLP results, the modified direct approach is superior even for Ipopt,
despite a larger number of solved first stage instances. The large number of instances
failing the second stage in case of SNOPT for all tested variants of the penalization
approach indicates that the complementarity terms in the objective functions are not
minimized to zero for many test cases resulting in infeasible decisions. In case of Ipopt
most instances fail the validation NLP. The reasons are twofold. First, the abilities of
compressor groups are again overestimated in the first stage. Second, some cases of
nonzero complementarity terms in the first stage are compensated by positive slacks in
the second stage heuristic.

4.2.3. Relaxation Approach

The second relaxation scheme presented in Section 2.2 is the relaxation scheme suggested by
Scholtes [117]. Every complementarity constraint is replaced by an inequality constraint

φ(x)ψ(x) ≤ ξ, (4.8)

with φ(x), ψ(x) ≥ 0 and ξ ≥ 0. Note that setting the relaxation parameter ξ to zero
coincides with the direct approach, since φ, ψ ≥ 0.

The handling of the relaxation parameter differs from the previous section. When choosing
a constant nonzero value the product φ(x)ψ(x) is not forced to zero by any means and
the original complementarity constraint is typically not satisfied. Two control mechanisms
of the relaxation parameter ξ are therefore tested. First, the relaxation parameter is
minimized in the objective. If it is minimized to zero, the original complementarity
constraint is satisfied. Second, the constraint (2.13) is applied instead with a sufficiently
large initial value for ξ.

Similar to the penalization approach, the relaxation approach cannot be applied directly,
if φ or ψ does not have a nonnegative lower bound. Without zero as a lower bound, the
product φψ can become negative and the inequality (4.8) of the relaxation approach does
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Figure 4.5. Successfully solved instances of the relaxation approach minimizing ξ (4.9)

not converge to the complementarity constraint for ξ → 0. Squaring all relevant factors
as suggested for the penalization approach resolves this issue.

Figure 4.5 shows the number of feasible instances for the relaxation scheme

f relax(x) = f(x) + ξ, (4.9a)

ξ ≥ φi(x)τiψi(x)τi , i ∈ C, (4.9b)

and two different choices for the initial value of the relaxation parameter, ξ0 ∈ {1, 100}.
In addition, the modification (4.2) is applied. The impact of the initial value is negligible,
the number of feasible instances in each stage is nearly the same, except for CONOPT3,
where 18 instances more are solved for the larger initial value in stage 2, and CONOPT4,
where 28 instances more are successfully validated by the validation NLP. This is the
first approach presented, where CONOPT3 solves a noteworthy number of instances. In

105



4. Numerical Experiments

solver ξ0 = 1 ξ0 = 100

stage 1 stage 2 ValNLP stage 1 stage 2 ValNLP

CONOPT4 31.7 1.1 1.5 28.4 1.2 1.5
CONOPT3 15.3 1.2 1.5 28.6 2.7 2.7

Ipopt 146.1 1 – – – –
SNOPT 28.6 1.2 1.6 36.4 1.6 2.4

Table 4.4. Average runtimes in seconds for the relaxation approach minimizing ξ (4.9)

contrast, Ipopt seems not to cope well with the relaxation approach. The best result
is a single instance that passed the second stage for the smaller initial value. The best
solver in this setting is CONOPT4. For the small choice of the initial value 498 instances
pass the first stage, of which 441 succeed in the second stage. 221 instances are finally
validated.

The main reason of the differences is the handling of infeasible initial points. The initial
primal infeasibility is about 109 to 1010 due to the squared complementarity constraints.
All solvers perform significant work to get to a feasible point. CONOPT and SNOPT cope
better with the large primal infeasibility than Ipopt, which often fails in its restoration
phase [134].

Combining the results of all solvers, all instances pass the first stage for both choices
of the initial value. The second stage is passed by 482 and 486 instances for the small
and large initial value, respectively. Of all instances, 294 (ξ0 = 1) and 275 (ξ0 = 100)
instances are validated in at least one setting.

Table 4.4 lists the average runtimes. When ignoring the single instance solved by Ipopt,
the runtimes of the solvers are more equal than in previous approaches and the largest
average runtime is 36 s in the first stage, while the other stages take between 1 s and
2.7 s. Finding feasible solutions in about half a minute is a significant improvement over
the manual determination by sequential simulation, however most settings of the direct
approach are significantly faster, see Section 4.2.1.

When the relaxation parameter is controlled by the additional constraint (2.13), i.e. the
relaxation model

ξ ≥ φi(x)τiψi(x)τi , i ∈ C, (4.10a)

0 = eξ − 1, (4.10b)
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Figure 4.6. Successfully solved instances of the symmetric relaxation approach (4.11)
minimizing ξ

replaces the complementarity constraints, only CONOPT4 and SNOPT find solutions
in the first stage. CONOPT4 solves 18 instances in stage 1, 9 in stage 2 and 6 are
successfully validated. The average runtime of the first stage is 122.6 s. SNOPT performs
better, solving 393, 289 and 115 instances. Here, the average runtime of the first stage
is 105.7 s. The sets of successfully validated instances are disjunctive, so 121 instances
are validated in total. The controlling constraint performs worse than minimizing the
relaxation parameter in the objective function. Significantly less instances if any are
solved and the average runtime is more than three times larger.

The drawback of squaring the factors of the complementarity function is a worsening of the
condition of the optimization problem. This may be the reason why Ipopt has problems
finding a feasible point. In the following, two alternative approaches are presented that
do not increase the problem complexity significantly.
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solver ξ0 = 1.0 ξ0 = 100.0

stage 1 stage 2 ValNLP stage 1 stage 2 ValNLP

CONOPT4 8.2 1.1 1.4 6.9 2.5 1.8
CONOPT3 7.5 1.3 1.5 5.5 1.5 1.6

Ipopt 6.6 1.6 1.4 11.9 3.3 3
SNOPT 15.3 2.1 1.4 25.6 2 2.7

Table 4.5. Average runtimes in seconds for the symmetric relaxation approach

The first alternative is called the symmetric relaxation approach. Complementarity
constraints without lower bound zero are now symmetrically relaxed in both directions,

f relax(x) = f(x) + ξ, (4.11a)

−ξ ≤ φi(x)ψi(x) ≤ ξ, i ∈ C. (4.11b)

Figure 4.6 illustrates the computation results for two initial values of ξ. The number of
feasible instances in the first stage improves for all solvers, at least 486 instances are solved.
The same holds for the second stage except for CONOPT4, which solves 7 and 17 less
instances for ξ0 = 1.0 and ξ0 = 100.0, respectively. The number of successfully validated
instances increases for all solvers except for CONOPT4 where the number decreased
slightly. In total, all instances are solved by at least one solver in the first stage, 495 and
500 instances pass the second stage. With 289 and 295 cases, the combined number of
validated instances is comparable to the relaxation approach with squared factors.

While the number of feasible instances in stage 1 increases for all solvers, the required
average runtime decreases significantly as stated in Table 4.5. Five of eight settings have
an average runtime of less than nine seconds in the first stage while most settings of the
relaxation approach with squared factors require about 30 seconds in average.

In summary, the symmetric relaxation improves the performance in the first stage
significantly. More instances are solved by every solver in considerably less time. However,
while the number of validated instances increases, it is still smaller than the direct
approach, except for CONOPT3.

If the relaxation parameter is not minimized in the objective but handled by

−ξ ≤ φi(x)ψi(x) ≤ ξ, i ∈ C, (4.12a)

0 = eξ − 1, (4.12b)
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Figure 4.7. Successfully solved instances of the symmetric relaxation approach (4.11)
with additional constraint (4.12b)

the number of instances passing the first stage drops a bit for each solver except CONOPT3,
which solves no instance anymore. However, the number of instances finally validated
increases for the three other solvers, as can be seen in Figure 4.7. As a drawback, only
CONOPT4 keeps a small average runtime of the first stage with 5.7 s. The average runtime
of Ipopt increases to 317.7 s and the one of SNOPT increases to 43.4 s. The second stage
and the ValNLP takes between one and two seconds in average in any case.

The second alternative seizes the idea of taking the absolute value. To avoid nonsmooth
functions, the absolute value is not applied directly, but a variable splitting is applied on
every factor of the complementarity constraint without lower bound zero. If both factors
φ and ψ have to be treated, the resulting set of constraints replacing the complementarity
constraint reads

0 = φi(x) + s+
φi
− s−φi , s+

φi
, s−φi ≥ 0, (4.13a)

0 = ψi(x) + s+
ψi
− s−ψi , s+

ψi
, s−ψi ≥ 0, (4.13b)

ξ ≥ (s+
φi

+ s−φi)(s
+
ψi

+ s−ψi). (4.13c)

To prevent unnecessarily large splitting variables without adding additional complemen-
tarity constraints, the splitting variables are added to the objective function.

The results stated in Figure 4.8 show, that the variable splitting (4.13) with the objective
function

f split(x, s) = f relax(x, s) +
∑
i∈C

(s+
φi

+ s−φi) (4.14)

and the inequality modification (4.2) is a huge improvement over the squaring of the
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Figure 4.8. Successfully solved instances of the relaxation approach with variable split-
ting and minimized ξ
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solver ξ0 = 1.0 ξ0 = 100.0

stage 1 stage 2 ValNLP stage 1 stage 2 ValNLP

CONOPT4 4.9 0.9 1.3 9.3 1.5 2.5
CONOPT3 4.9 0.8 1.3 9.5 1.7 2.4

Ipopt 9.2 0.9 1.3 5.2 1.4 1.3
SNOPT 7.2 0.8 1.3 7.2 0.9 1.3

Table 4.6. Average runtimes in seconds for the relaxation approach with variable splitting
and minimized ξ

factors and the symmetric relaxation. At least 493 instances pass the first stage for
all NLP solvers independent of the initial value, except for CONOPT3 that solves 479
instances successfully in the first stage for ξ0 = 1.0. Compared to the regularization
schemes presented so far, the number of validated instances is by far the best: between
321 instances in case of Ipopt with ξ0 = 1.0 and 355 instances in case of CONOPT4 with
ξ0 = 1.0 are successfully validated by the ValNLP. The choice of the initial value of the
relaxation parameter hardly makes a difference. In total, all instances pass the first stage
of at least one solver. Only for 26 (ξ0 = 1.0) and 27 (ξ0 = 100.0) instances no active
configurations can be found in the second stage and 373 and 371 instances are successfully
validated for ξ0 = 1.0 and ξ0 = 100.0, respectively.

Besides generating validated solutions for a large number of instances, the relaxation
approach with variable splitting is even faster in many cases than the symmetric relaxation
approach previously presented, see Table 4.6. Noteworthy is the very small average runtime
of about 0.8 s of the second stage for ξ0 = 1.0 and every solver and the average runtime
of about 1.3 s of the validation NLP. A reason might be, that the solution of the previous
stage is a very good initial value.

If the relaxation parameter is not a part of the objective function but is controlled by
the constraint (2.13), the results are not as good in terms of validated instances, see
Figure 4.9. The average runtimes are about 4 seconds for CONOPT3 and CONOPT4 and
about 31 seconds for Ipopt and SNOPT.

4.2.4. Further Approaches

Besides the penalization approach and the relaxation approach, the Fischer–Burmeister
function (2.11) and the smoothed minimum function (2.12) are suggested as regularization
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Figure 4.9. Successfully solved instances of the relaxation approach with variable split-
ting and constraint (2.13)

schemes in Section 2.2.4. Both NCP functions are applied on complementarity constraints
with squared factors if necessary.

The regularization parameter of the Fischer–Burmeister function is minimized in the
objective. This approach results in 24 successfully solved instances in the first stage when
CONOPT4 is chosen as the solver and 31 successfully solved instances for SNOPT. Only 5
and 7 instances pass the validation stage, respectively. Neither CONOPT3 nor Ipopt finds
any solution in the first stage at all.

The smoothed minimum function is tested with a constant choice of the regularization
parameter, ξ = 10−6. Only SNOPT was able to find any solutions. Of the 19 instances
passing the first stage, 18 pass the second and 5 are finally validated.

Neither tested NCP function can compete with the other regularization schemes or the
direct approach. Due to the bad results of all solvers and the similarity of the functions,
other mechanisms to control the regularization parameter inside the model are not to be
expected to lead to significantly better results.

4.2.5. Conclusion

In total, the MPEC formulation of the first stage and the configuration heuristic of the
second stage is solved for all instances by at least one solver. The validation NLP accepts
discrete decisions determined by the second stages in 386 cases. It is unknown, for how
many instances discrete decisions exist, that result in a feasible state with respect to the
model of the validation NLP. However, the large variety of different solution strategies
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applied in this chapter lets assume, that the actual number is not much larger than 386,
if at all.

Of all approaches, those involving the objective function, e.g. the penalization schemes
or the relaxation schemes with minimized regularization parameter, show the best first
stage results. This is to be expected, since these approaches relax the feasible range of
the original MPEC and do not guarantee the satisfaction of the original complementarity
constraints. However, the small gap between the number of successful solutions of the
first stage and the second stage indicates, that the first stage solutions can be interpreted
as sensible discrete decisions in most cases. Only the penalization approaches solved by
SNOPT results in large gaps.

In most cases the majority of the unsuccessful instances pass the second stage but are
rejected by the validation NLP. Possible reasons of failure are an overestimation of the
capabilities of the compressor groups by the first stage and a bad choice of the active
configuration in the second stage.

Figure 4.10 groups the results of the regularization schemes listed in Table 4.7 by solvers.
Each solver has some approaches that harmonizes well and some do not. CONOPT3 gains
results for only half of the tested approaches whereas the newer version CONOPT4 shows
a better behavior with problems in case of the penalization approach and the use of the
constraint (2.13). The interior point method Ipopt does not cope well with the relaxation
approach. Of all solvers SNOPT offers the most balanced results with a large number of
first stage solution for all approaches.

Despite the violation of LICQ and MFCQ, the direct approach works well with all
solvers except CONOPT3. In combination with the modifications (4.3) more instances are
successfully validated than by many of the other tested approaches. The best solution
approach is the relaxation approach with variable splitting (4.13). In combination with
CONOPT4, 355 of the 386 solved instances are validated (92%).

Results of the MPEC approach applied on different data sets are given in [71] for a smaller
number of solution approaches, excluding the relaxation approach with variable splitting.
In comparison, the success rate of the combinations of solver and solution approach differ
between the data sets, e.g. Ipopt and the penalization approach (4.4) was the best setting
for one data set. In consequence, the best choice of solver and solution approach depends
on the data set and there is no unique recommendation. Nevertheless, the very good
results of the relaxation approach with variable splitting in combination with all tested
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solvers indicates a suitability of this approach in many situations, not only for the data
set tested in this work.

(D) direct approach (4.1)

(mD) modified direct approach (4.3)

(P6) penalization, ξ0 = 10−6 (4.4)

(P4) penalization, ξ0 = 10−4 (4.5)

(Pe) penalization, eξ − 1 = 0 (4.7)

(R1) relaxation, ξ0 = 1 (4.9)

(R2) relaxation, ξ0 = 100 (4.9)

(Re) relaxation, eξ − 1 = 0 (4.10)

(sR1) symmetric, ξ0 = 1 (4.11)

(sR2) symmetric, ξ0 = 100 (4.11)

(sRe) symmetric, eξ − 1 = 0 (4.12)

(S1) splitting, ξ0 = 1 (4.13), (4.14)

(S2) splitting, ξ0 = 100 (4.13), (4.14)

(Se) splitting, eξ − 1 = 0 (4.13)

Table 4.7. Compared regularization approaches
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Figure 4.10. Solvers and their numbers of feasible instances for all solution approaches
listed in Table 4.7
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4.3. Accuracy of the Validation NLP

The model of the validation NLP (ValNLP) described in Section 3.4 is created with
the purpose to gain a highly detailed mathematical description of a gas network, which
is applicable for optimization. In this section it is evaluated how well the aim of high
accuracy is met.

Since gaining a sufficient amount of test data at real-world gas networks for stationary gas
flow is impractical, the validation is based on a comparison to the commercial gas network
simulation software SIMONE [120, 140], version 5.73. To this end, each gas component is
analyzed separately for different technical and physical settings. Each test case models an
entry u, an exit v and an arc a = (u, v). For a proper comparison, the settings have to be
identical in both the ValNLP and SIMONE. Thus, the settings are restricted to the mutual
possible ones. The highest common level of detail was chosen, including temperature
and gas parameter tracking. In addition, the test cases describe a unique flow situation
for deterministic reference values, i.e. the technical parameters (e.g. length, diameter,
drag factor, characteristic diagram, . . . ) and the gas parameters (pc, Tc, ρ0, z0, Ã, B̃,
C̃, m, Hc, . . .) are chosen identical and the transport situation incorporating Q0, pu, Tu,
Tsoil, . . . is fixed such that no degree of freedom remains.

The main focus lies on the comparison of realistic parameters of network devices. Since
real-world network data is available in the project ForNe, a comparison based on the
elements of this network suggests itself. However, the API of SIMONE does not offer
control over every required parameter like the slope of the pipe, so each network element
would have to be generated manually. Since this is not practical for the intended large
amount of test cases, data for the externally controllable parameters are extracted from a
real-world network supplied by the industrial partner OGE. For each technical parameter
the 10%, 35%, 65% and 90% quantiles are chosen. For the remaining quantities, like
inflow pressure, inflow temperature and flow, a small set of cases are created manually.
The Cartesian product of the manually created parameter set and the quantiles define
the set of test cases.

The lower and upper 10% are discarded to eliminate the risk of outliers, which would
result in unrealistic test cases for most parameter combinations and would distort the
analysis. However, unrealistic combinations are not prevented completely, e.g. very long
pipes with a small diameter and high value of roughness. These combinations may still
have a distorting impact on the results, thus stating maximum deviations is pointless and
the following results concentrate on average deviations.
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Three different measures of deviation are regarded for an examined quantity x, e.g. outflow
pressure or outflow temperature. Probably the most intuitive are the absolute deviation

eabs(x) = |xNLP − xSim| ,

and the relative deviation

erel(x) =
|xNLP − xSim|
|xSim| ,

between the result of the ValNLP xNLP and the result of SIMONE xSim. A third measure
is applied for values which change along an arc, e.g. gas temperature. Here, the relative
deviation is computed with respect to the change along the arc, i.e.

e∆(x) = erel(∆x), ∆x = xu − xv .

Since the inflow values are fixed a priori, this is identical to

e∆(x) =
|xNLP
v − xSim

v |
|xSim
u − xSim

v |
.

This value is only computed when the change is at least 1% of the inflow value.

There exists a known model difference in case of zero flow for all elements. In SIMONE the
outflow temperature is set to the soil temperature, while in case of the NLP the outflow
temperature is set to the inflow temperature. For this reason, the case of zero flow is not
considered for any element.

SIMONE and the ValNLP also differ in the handling of several variable bounds. While
all variable bounds are part of the model of the ValNLP, SIMONE does not regard all
bounds during computation, e.g. the bounds of gas velocity. Thus, several instances are
computed successfully in SIMONE but not in the ValNLP. For this reason, only those
cases are regarded for the analysis that converge in both the ValNLP and SIMONE.

4.3.1. Pipes

For pipes the values computed by SIMONE are compared to the values gained by the
quadratic approximation (3.70), (3.71) and the discretized differential equations (3.69a),
(3.69b).

The compressibility factor is computed using the AGA formula (3.59) and Papay’s formula
(3.60). The data sets for the technical parameters and transportation situations are stated
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quantity samples unit

La 0.01, 0.1, 0.9, 46 km
Da 150, 310, 405, 1185 mm
ka 0.006, 0.02, 0.1, 0.5 mm
hv -500, 0, 500 m
pu 3.9, 15.3, 53.8, 74.4 bar
Tu 288.15, 298.15, 308.15, 318.15 K
Q0,u 50, 250, 500, 750 1000Nm3/h

Table 4.8. Parameters for test cases of pipes

setting valid pairs x eabs(x) erel(x) erel(∆x)

approximation, AGA 2419 pv 0.11 0.008 61 0.058
Tv 1.10 0.003 84 0.161

approximation, Papay 2651 pv 0.10 0.009 42 0.059
Tv 1.00 0.003 49 0.150

ODE, AGA 2658 pv 0.05 0.003 07 0.032
Tv 0.23 0.000 75 0.046

ODE, Papay 2659 pv 0.05 0.003 33 0.033
Tv 0.15 0.000 51 0.029

Table 4.9. Mean deviations of pressure (bar) and temperature (K) of pipes

in Table 4.8. The height of the entry u is fixed to 0m. In summary, four model choices
are examined for 12 288 parameter choices, resulting in 49 152 different test cases. Test
cases with an unrealistic large slope are skipped.

Table 4.9 shows the resulting average deviations. The deviations between SIMONE
and the discretized ODE model are smaller than between SIMONE and the quadratic
approximation. This is to be expected, since SIMONE solves the differential equations
(3.18) by numerical integration [140].

A mean deviation of about 1K is visible in the outflow temperatures of the approximation
model and SIMONE. Thus, the deviations in case of the approximation is about ten times
larger than in case of the discretized ODEs. A possible reason is visible in Figure 3.12b.
The approximation lacks the convex part for small temperatures. In many cases the
approximation seems to overestimate the outflow temperature at least for most realistic
flow values. However, the mean absolute deviation of about 1K lies within the range of
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Figure 4.11. Logarithmically scaled frequencies of absolute deviations of pressure and

temperature for discretized ODEs and Papay’s formula

technical parameters scenario

L = 46 km pin = 74.44 bar
D = 1185mm Tin = 318.15K
k = 0.006mm
s = 0.01

Table 4.10. Exemplary setting of a pipe with large deviation in temperature compared
to SIMONE

data accuracy, since more accurate temperature forecasts are typically not available in
mid-term planning.

The logarithmically scaled histograms in Figure 4.11 show the distribution of the absolute
errors. The majority of test cases concentrates on the far left, i.e. they result in very
small absolute deviations. A handful of cases lie further to the right. Spot tests show
that these cases mainly coincide with atypical parameter combinations resulting in a very
large pressure loss along the pipe. The standard deviation for pressure is about 0.24 and
in case of temperature it is about 0.29.

Table 4.10 shows exemplary data of a pipe for which a large deviation in the outlet
temperature occurs. The outflow pressure in dependence of the normal volumetric flow
are given in Figure 4.12. The outflow temperature is visualized in Figure 4.13. The
graphs of the discretized ODE model and SIMONE run next to each other for pressure
and temperature. The quadratic approximation model offer comparable pressure values
for a moderate pressure loss but it underestimates the pressure loss for larger flow values
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Figure 4.12. Outflow pressure vs. normal volumetric flow for the pipe of Table 4.10
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Figure 4.13. Outflow temperature vs. normal volumetric flow for the pipe of Table 4.10
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Figure 4.14. Comparison of outflow pressure and temperature values for two versions of
SIMONE and small normal volumetric flows (for pipe data see Table 4.10)

in this example. In Figure 4.13a the lack of the convex curvature information in case of
the approximation model is again visible. While the graph of the approximation model
follows the trends of the other two models and is qualitatively comparable, this difference
results in an absolute temperature deviation up to 5K, see Figure 4.13b.

Another noteworthy phenomenon in Figure 4.13 is the spike for small flows in the graph
of SIMONE. This temperature spike has no physical reason. Spot checks with version 5.83
of SIMONE do not show the same behavior, see Figure 4.14b. Thus the nonsmooth spike
seems to be a bug in SIMONE version 5.73, which is fixed in version 5.83. Nevertheless,
both versions have a nonsmooth transition in pressure between zero flow and positive
flow, but with different amplitude. This is shown in Figure 4.14a. The pressure and
temperature values also differ between both versions, despite identical settings. The
maximum pressure difference for this example is 1.1 bar and the maximum temperature
difference is 0.5K.

4.3.2. Resistors

The parameters used for both resistor models (3.73), (3.74) are stated in Table 4.11.
They result in 90 test cases for the linear model and 360 cases for the nonlinear model.
The inflow pressure, the inflow temperature and the supplied flow are fixed and the
outflow pressure (bar) and temperature (K) are computed and compared. The results
of the comparisons for the linear model are stated in Table 4.12. The distribution of
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quantity samples unit

ξa 2, 4, 6, 8, 10 bar
Da 300, 525, 775, 1000 mm
ζa 5, 20, 50, 70, 90 1
pu 20, 40, 60 bar
Tu 283.15, 300.15, 318.15 K
Q0,u 500, 1000 1000Nm3/h

Table 4.11. Parameters of test cases of resistors

setting valid pairs x eabs(x) erel(x) erel(∆x)

AGA 90 pv 5.05× 10−5 2.05× 10−6 1.16× 10−5

Papay 90 pv 5.03× 10−5 2.05× 10−6 1.15× 10−5

AGA 90 Tv 8.85× 10−1 3.01× 10−3 3.37× 10−1

Papay 90 Tv 9.83× 10−2 3.34× 10−4 3.57× 10−2

Table 4.12. Mean deviations of pressure (bar) and temperature (K) in case of the linear
pressure loss model of a resistor

the absolute temperature deviation is given in Figure 4.15a for the AGA formula (3.59)
and Figure 4.15a states the same for Papay’s formula (3.60). If the AGA formula is
chosen for the compressibility factor, the mean deviation of temperature is about ten
times larger than in case of Papay’s formula, and the absolute deviation is not better
than 0.2. The standard deviation of the absolute values is 0.44 in case of AGA and 0.08

in case of Papay.

Since the pressure loss equation in case of the linear model is linear, the mean deviation
in the outflow pressure of about 5× 10−5 bar for both choices of the compressibility
factor offers an indication for the accuracy of SIMONE. Since the results of the NLP are
computed and stored at least with double precision, the SIMONE API seems to return
pressure values in single precision. Either SIMONE computes in single precision, or the
API does not return the full accuracy.

The results for the nonlinear pressure loss model are stated in Table 4.13 and the absolute
deviations are visualized in Figure 4.16 and Figure 4.17. Note that the axis of the frequency
is logarithmically scaled. The absolute pressure deviation is small but measurable for
both choices of the compressibility factor. The reason may be a larger internal precision
of SIMONE or discrepancies between the implemented model and its documentation in
SIMONE.
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Figure 4.15. Frequencies of absolute deviations of outflow temperature in case of the
linear pressure loss model of a resistor

setting valid pairs x eabs(x) erel(x) erel(∆x)

AGA 317 pv 6.01× 10−3 6.31× 10−4 1.31× 10−3

Papay 318 pv 8.27× 10−3 8.34× 10−4 1.82× 10−3

AGA 317 Tv 6.83× 10−1 2.35× 10−3 3.34× 10−1

Papay 318 Tv 2.23× 10−1 8.04× 10−4 7.39× 10−2

Table 4.13. Mean deviations of pressure (bar) and temperature (K) in case of the
nonlinear pressure loss model of a resistor
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Figure 4.16. Logarithmically scaled frequencies of absolute deviations of outflow pressure
in case of the nonlinear pressure loss model of a resistor
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Figure 4.17. Logarithmically scaled frequencies of absolute deviations of outflow tem-
perature in case of the nonlinear pressure loss model of a resistor

When applying the AGA formula, 317 tested cases are feasible in both programs and 318

cases are valid in case of Papay’s formula. The failed test cases lead to an outlet pressure
below 1.0325bar. While the major part of the valid test cases result in an absolute
temperature deviation up to 0.2K for both models of the compressibility factor, some few
outliers cause a deviation up to 8.5K. These outliers coincide with resistor settings that
cause a very large pressure loss. The largest outlier for the temperature and the AGA
formula corresponds to a resistor with ζ = 50 and D = 300mm. The normal volumetric
flow of 106 Nm3/h is supplied with a pressure of 50 bar, resulting in a pressure loss of
45.95 bar in SIMONE. Since no pressure loss at resistors with nonlinear model above
3.2 bar occurred in the successfully validated cases of a validation process containing 4227

nominations on a real-world network and 22 275 pressure loss values in total, it can be
safely assumed that such large pressure losses and their causing parameter settings are
unrealistic. Furthermore, the temperature change in both resistor models is identically
based on the Joule–Thomson effect (3.63) and the fixed pressure loss settings in case of
the linear model do not result in such large outliers. Ignoring all test cases with a pressure
loss above 4 bar in SIMONE the mean absolute deviation reduces to 5.96× 10−3 K with a
standard deviation of 9.9× 10−3. The average relative deviation is 1.765 85× 10−5.

For both linear and nonlinear pressure loss model there is a visible difference in the mean
temperatures between the choices for the compressibility factor. The results computed
with the AGA formula result in three to ten times larger deviations.
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quantity samples unit

∆p 0, 5, 10 bar
pu 20, 40, 60 bar
Tu 283.15, 300.15, 318.15 K
Q0,u 500, 1000 1000Nm3/h

Table 4.14. Parameters of test cases of control valves

setting valid pairs x eabs(x) erel(x) erel(∆x)

AGA 54 pv 4.47× 10−5 1.44× 10−6 6.77× 10−6

Papay 54 pv 4.47× 10−5 1.44× 10−6 6.77× 10−6

AGA 54 Tv 7.39× 10−1 2.51× 10−3 3.38× 10−1

Papay 54 Tv 9.38× 10−2 3.19× 10−4 4.09× 10−2

Table 4.15. Mean deviations of pressure (bar) and temperature (K) of control valves

4.3.3. Control Valves with Remote Access

To get a deterministic situation for a control valve with remote access, the inflow pressure,
inflow temperature, the pressure reduction and thus the outflow pressure are a priori fixed.
The data samples are given in Table 4.14. They result in 108 different test cases. Due
to these fixations, the NLP model is equivalent to that of the resistor model with linear
pressure loss. The pressures are coupled linearly and the temperature change is modeled
by Joule–Thomson (3.63). The resulting deviations are stated in Table 4.15 and the
frequencies of the absolute deviations of temperature are illustrated in Figure 4.18. As to
be expected, the results are very similar to the results of resistors with linear pressure loss
model. Again, there exists a mean absolute deviation in pressure of about 5× 10−5 bar.

4.3.4. Compressors

In case of compressors, the inflow pressure, the pressure increase, the flow through the
unit and the inflow temperature are fixed to receive a deterministic scenario. Based on the
fixed values, the specific change in adiabatic enthalpy (kJ kg−1), power (MW) and outflow
temperature (K) are compared for 18 model settings, including different choices for the
compressibility factor, isentropic exponent and temperature rise equations. In summary,
1458 test cases are examined for both piston compressors and turbo compressors. Tables
4.16 and 4.17 list the settings used for piston compressors and turbo compressors. They
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Figure 4.18. Frequencies of absolute deviations of outflow temperature of control valves

quantity samples unit

∆p 10, 15, 20 bar
pu 45, 50, 55 bar
Tu 283.15, 300.15, 318.15 K
Q0,u 300, 400, 500 1000Nm3/h

Table 4.16. Parameters of test cases of piston compressors

differ only in the flow values, which are slightly larger for turbo compressors. The
results are given in Table 4.18 and Table 4.19. All relative pressure deviations are at most
0.2% and the relative deviations with respect to the temperature change are about 2%.
The reason for the remaining differences may lie in the calculated isentropic exponent
and adiabatic efficiency. Since both sizes cannot be accessed directly in SIMONE and thus
cannot be compared directly to the values computed by the NLP, further examination is
difficult.

quantity samples unit

∆p 10, 15, 20 bar
pu 45, 50, 55 bar
Tu 283.15, 300.15, 318.15 K
Q0,u 400, 500, 600 1000Nm3/h

Table 4.17. Parameters of test cases of turbo compressors
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Figure 4.19. Frequencies of absolute deviations of specific change in adiabatic enthalpy,
power and outflow temperature for piston compressors
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Figure 4.20. Frequencies of absolute deviations of specific change in adiabatic enthalpy,
power and outflow temperature for turbo compressors
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setting valid pairs x eabs(x) erel(x) erel(∆x)

AGA 513 Had 7.21× 10−2 2.08× 10−3 –
AGA 513 P 4.36× 10−3 1.40× 10−3 –
AGA 513 Tv 6.60× 10−1 2.07× 10−3 2.63× 10−2

Papay 513 Had 4.37× 10−2 1.20× 10−3 –
Papay 513 P 5.32× 10−3 1.70× 10−3 –
Papay 513 Tv 6.06× 10−1 1.86× 10−3 2.43× 10−2

Table 4.18. Mean deviations of piston compressors

setting valid pairs x eabs(x) erel(x) erel(∆x)

AGA 513 Had 7.29× 10−2 1.85× 10−3 –
AGA 513 P 5.83× 10−3 8.93× 10−4 –
AGA 513 Tv 6.81× 10−1 2.08× 10−3 1.99× 10−2

Papay 513 Had 3.88× 10−2 9.61× 10−4 –
Papay 513 P 1.05× 10−2 1.58× 10−3 –
Papay 513 Tv 6.20× 10−1 1.85× 10−3 1.88× 10−2

Table 4.19. Mean deviations of turbo compressors

Figure 4.19 shows histograms of the absolute deviations in specific change in adiabatic
enthalpy, power and outflow temperature for piston compressors, Figure 4.20 shows the
same for turbo compressors. Note that the frequencies are logarithmically scaled. In the
figures 4.19b, 4.19f, 4.20b and 4.20f there is a visible partition. A large part of instances
results in a very small absolute deviation, while a second group of instances results in a
noteworthy deviation in outflow temperature and specific change in adiabatic enthalpy.
The groups coincide with the model choice for the isentropic exponent κ. While the
constant model (3.83) and the linear model (3.82) result in mean absolute temperature
deviations of 10−3 K to 7× 10−3 K, the nonlinear model (3.81) corresponds to the other
group of instances and results in mean temperature deviations of 1.8K to 2K. This
strongly indicates a difference in the implementation of the model (3.81) between the
ValNLP and SIMONE.

4.3.5. Conclusion

The comparisons point out several differences between the ValNLP and SIMONE. Besides
known issues like the different handling of variable bounds and a different model for
temperature in case of zero flow, the results indicate additional discrepancies. The
deviations of the outflow temperatures of resistors and control valves are larger when the
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AGA formula is chosen for the compressibility factor than when Papay’s formula is chosen.
Since this difference is not observed in case of pipes, there seems to be a discrepancy in
the Joule–Thomson model or the associated compressibility factor. Another observed
discrepancy lies with the nonlinear model of the isentropic exponent. The mean deviation
is significantly larger than in case of the other model choices. Furthermore, the differences
in the outflow temperature of linear resistors despite the linear model indicate a low
accuracy of the values returned by the API of SIMONE and a low internal accuracy cannot
be ruled out.

Despite the observed differences in modeling, data handling and accuracy, the resulting
mean relative deviations are in the range of 10−6 to 10−3 for all settings. Differences are
always to be expected even when the models are based on the same equations due to
differences in the solution method and implementation. As seen, this holds true even for
the comparison of different versions of the same software. The conducted experiments
show that the presented models are on par with the level of detail provided by the
commercial simulation software SIMONE. Since the source codes of simulation packages
are usually not available, there is no practical way of eliminating the remaining differences,
but the reach level of accuracy is sufficient for the validation of nominations and similar
midterm planing tasks.
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Recent developments of European and German regulations of the gas market established
new tasks for transport system operators which results in new mathematical problems
of significant practical importance. A central topic is the obligation of transport system
operators to determine for every entry or exit the maximum bookable amount of suppliable
and dischargable gas, such that the integrity of the network and the network operation is
ensured [16]. The maximum bookable amount qTC

u at a boundary node u ∈ V◦ is called
the technical capacity of u. The operator is furthermore obligated to publish the available
capacities, i.e. the difference between the technical capacities and the already sold capacity
rights. The definition of a technical capacity induces that all partial nominations of the
published capacities must result in a feasible state of the network.

In the following sections, a mathematical formulation of the determination of technical
capacities is developed and its properties are examined.

5.1. Problem Description

Given a gas network G = (V,A), the vector of capacities qTC ∈ R|V
◦|
≥0 is a technical capacity,

if and only if all possible (in particular balanced) nominations 0 ≤ qext = (qext
u )u∈V◦ ≤ qTC

result in a feasible network state. To render this definition more precisely, several sets of
flows are introduced. To ease notation and illustrations the definition of discharged flow
at exits is aligned to general linguistic usage in gas business. Since capacities of entries
and exits are usually stated in positive numbers, the sign of discharged flow at exits is
switched compared to the models in Chapter 3, i.e. qu ≥ 0, for all u ∈ V−. This induces
switched signs the mass balance equations (3.10), (3.42), and (3.65).

The set of bounded flows at the boundary nodes is defined by

Q =
{
q : qu ∈ [q−u , q

+
u ] ∀u ∈ V+, qv ∈ [−q+

v ,−q−v ] ∀v ∈ V−
}
.
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This is a |V◦|-dimensional cuboid. The set of balanced and bounded boundary flows, i.e.
nominations, is the intersection of the cuboid Q and the (|V◦|−1)-dimensional hyperplane
of the balance equation ∑

u∈V+

qext
u −

∑
u∈V−

qext
u = 0.

It is denoted by

B =

qext ∈ Q :
∑
u∈V+

qext
u =

∑
u∈V−

qext
u

 .

A nomination has to be balanced, however not all balanced nominations result in a feasible
network state. In the following, feasibility is defined in terms of a discrete-continuous
model of the gas network,

cE(x, z; qext) = 0,

cI(x, z; qext) ≥ 0,

with x ∈ Rnx and z ∈ {0, 1}nz . The set of feasible nominations is hence defined as

Fq =
{
qext ∈ B : ∃(x, z) ∈ Rnx × {0, 1}nz : cE(x, z; qext) = 0, cI(x, z; qext) ≥ 0

}
.

Since mass balance is one of the most fundamental aspects of gas physics, equation (3.10)
is assumed to part of every mathematical model describing gas networks, it follows that
Fq ⊆ B.

The technical capacity qTC defines itself a cuboid of flow ranges

T(qTC) =
{
qext ∈ Q : qext ≤ qTC} ,

such that all nominations within have to be feasible. Hence, the problem of finding a
technical capacity is to find a maximized vector qTC such that B ∩ T(qTC) ⊆ Fq, i.e.

∀qext ∈ B ∩ T(qTC) : qext ∈ Fq. (5.1)

Figure 5.1 depicts the described sets for a network containing three boundary vertices
and illustrates their relations.
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Figure 5.1. Flow sets concerning technical capacities

Given a stationary gas network model

cE(x, z; qext) = 0,

cI(x, z; qext) ≥ 0,

with the corresponding feasible set F(qext), the problem of determining technical capacities
can similarly be formulated as

max f(qTC) : ∀qext ∈ T(qTC) ∃(x, z) ∈ Rnx × Rnz : (x, z) ∈ F(qext). (5.2)

Define the maximum exchanged amount of gas of a set of nodes P ⊆ V◦ by

q+
P = max

{∑
u∈P
|qu| : cE(x, z) = 0, cI(x, z) ≥ 0

}
.

The constraints cE and cI do not depend on a nomination qext, instead, the boundary
flows qV◦ are bounded. The following lemma defines some upper bounds of the technical
capacity of node u.

Lemma 4. Let P(V) denote the power set of V.

1. qTC
u ≤ q+

u , for all u ∈ V◦.

2. qTC
u ≤ q+

V−
= q+

V+
, for all u ∈ V◦.
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3. Let γV− = min{q+
P : P ∈ P(V−), u ∈ P} denote the smallest maximum discharged

gas of all subsets of exits containing u and let P−u (V−) denote the corresponding
set. It holds that qTC

u ≤ γV− for all u ∈ V−.

4. Let γV+ = min{q+
P : P ∈ P(V+), u ∈ P} denote the smallest maximum supplied gas

of all subsets of exits containing u and let P−u (V+) denote the corresponding set. It
holds that qTC

u ≤ γV+ for all u ∈ V+.

Proof. 1. Follows directly from the fact, that all subnominations of the technical
capacity have to be feasible.

2. Assume q+
V−

> q+
V+

, then there exists a feasible nomination discharging q+
V−

and
hence supplying more gas than q+

V+
, since the nomination is balanced. This contra-

dicts the definition of q+
V+

. Accordingly, q+
V−

< q+
V+

leads to a similar contradiction.

3. Assume qTC
u > γV− . It follows that

qTC
u > max

 ∑
u∈P−

u (V−)

|qu| : cE(x, z) = 0, cI(x, z) ≥ 0


≥ max {|qu| : cE(x, z) = 0, cI(x, z) ≥ 0} .

This contradicts the feasibility of the technical capacity of node u.

4. Similar to 3.

5.2. Relation to Robust Optimization

Optimization with respect to all possible realizations of a parameter is subject of robust
optimization. This area of research has its source in operation research of the 1970s.
Originally, it focused on planning tasks under uncertainty, where the optimal result x
needs to be valid under all possible occurrences of the unknown parameter p with its
uncertainty set U . Robust optimization stands in contrast to stochastic optimization,where
the validity is guaranteed with a given probability. While the traditional subjects of
robust optimization are linear programming (LP), second-order cone programming (SOC)
and semi-definite programming (SDP)[8], in recent years several advances in nonlinear
robust optimization have been made [23, 29, 142].
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The general robust optimization problem can be stated as the optimization over a set of
optimization problems{

min
x
{f(x; p); cE(x; p) = 0, cI(x; p) ≤ 0}

}
p∈U

. (5.3)

A vector x is called a robust feasible solution of (5.3), if it satisfies

cE(x; p) = 0, cI(x; p) ≤ 0,

for all realizations of p ∈ U and the robust objective value f̂(x) is defined as the largest
value of the objective over all possible data values:

f̂(x) = sup
p∈U

f(x; p).

The optimization of the robust objective value under all robust feasible solutions leads
to the robust counterpart of the robust optimization problem (5.3). It is defined as the
optimization problem

min
x

{
f̂(x); cE(x; p) = 0, cI(x; p) ≤ 0,∀p ∈ U

}
. (5.4)

and substantiate the solution of (5.3): the solution of (5.4) is called robust optimal
solution of (5.3) and its optimal value is called the robust optimal value of (5.3).

The general principle of robust optimization is based on three assumptions [8]:

A1 The optimization variables x are independent of the actual realization of p.

A2 The optimum is only valid for parameters in U but not necessarily for other
realizations.

A3 For all p ∈ U the constraints are hard, i.e. no violations are tolerated.

Some work is done to relax these assumptions under certain conditions, see [8].

Considering the technical capacity problem, it would stand to reason that the nomination
qext is regarded as the uncertain parameter and T(qTC) is its uncertainty set.

Lemma 5. Given a general gas network G = (V,A), |V◦| ≥ 1, the determination of a
maximum qTC cannot be formulated as a robust optimization problem.
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Proof. As already mentioned, mass flow balance is part of the physical model, i.e. the
optimization problem contains the linear constraints (3.10) and the fixations of the
supplied and discharged gas due to the nomination,

qu = qext
u , u ∈ V+, −qu = qext

u , u ∈ V−.

This results in a linear equation system

A

(
qA

qV◦

)
=

(
0

qext

)
,

with Aij ∈ {−1, 0, 1}. For each nomination qext several feasible flow distributions qA
between the arcs may exit, but each vector q = (qA, qV◦) corresponds to exactly one
nomination. Thus it is not possible to find a solution x containing q that is valid for
several nominations, let alone all nominations within T(qTC).

There exist some significant differences between the technical capacity problem and a
general robust optimization problem.

D1 In case of the technical capacity problem, all nominations qext ∈ T(qTC) must
lead to a feasible solution and the solutions usually depend on the nomination,
contradicting Assumption A1.

D2 The uncertainty set U is not a fix set of possible realizations but depends on the
optimization variables qTC.

In case of qTC > 0 Difference D2 can be eliminated by the parameter transformation

qext ∈ T(qTC)

⇐⇒ qext
u ∈

[
0, qTC

u

]
, for all u ∈ V◦

⇐⇒ qext
u

qTC
u

∈ [0, 1] , for all u ∈ V◦.

Difference D1 induces, that applying robust optimization on the problem of determining
technical capacities is too conservative. Looking for a solution that is feasible for all
nominations within T(qTC) is obviously more restricting than just confirming, that all
nominations within T(qTC) result in a feasible network state. Difference D1 is subject
of adjustable robust optimization [8, 7], also known as quantified optimization [35, 36].
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Adjustable robust optimization consists of a collection of optimization problems, called
instances,

P =
{

min
x
{f(x; p), c(x; p) ≤ 0} : p ∈ U

}
.

The objective f(x; p) and the constraints c(x; p) depend on the uncertain data p inside
the uncertainty set U . The corresponding adjustable robust counterpart is

min
t,X
{t; ∀p ∈ U : f(X(p); p) ≤ t, c(X(p); p) ≤ 0} .

Here, the dependence on p, or adjustability, can be modeled by defining a variable xi by
a decision rule

xi = X(p).

The technical capacity problem (5.2) can now be seen as the adjustable robust optimization
problem

P =
{

max
{
f(qTC) : (x, z) ∈ F(qext)

}
; qext ∈ T(qTC)

}
.

5.3. Properties of Technical Capacities and the Set of
Feasible Nominations

The size of the technical capacities of a gas transport network depend substantially on
the properties of the set of feasible nominations Fq. Thus, knowledge of the properties
of Fq and their influence on the technical capacity is crucial for the design of solution
methods. The main properties can already be observed at very small exemplary networks
and simplified physical models. However, a systematic analysis of all networks up to a
given size becomes rapidly impracticable due to the large numbers of possible topologies
and element types. Figure 5.2 lists some possible topologies, all of these can be combined
with several types of arcs. The graph notation is explained in Section A.1. Several of
these topologies will be used in the following sections to illustrate specific properties of
technical capacities and the set of feasible nominations. Some properties do not require a
full nonlinear mixed-integer model of the network to occur. Three levels of detail will
thus be used for the underlying model. First, a basic flow model incorporating flow
bounds, supplied and discharged flow values and the mass balance equations (3.10). The
second model adds pressure bounds and a pressure loss model for pipes, see Section 3.4.3.
Third, the most detailed model used for the illustrating examples incorporates also active
network elements like compressor groups.
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Figure 5.2. All network topologies with at most two entries, two exits, one required
inner node and five arcs

5.3.1. Existence and Uniqueness of Technical Capacities

The regulations concerning technical capacities presume the existence of technical capaci-
ties in any case. Looking at the problem definition (5.1) the zero vector is the smallest
possible candidate according to amount. It is equivalent to shutting down the transport
network which seems to be a drastic but possible state of any network. However, it is
theoretically possible to design networks with a strictly positive supply at an entry based
on the models described in Section 3. A strictly positive flow for the single pipe a in
Figure 5.3 may be caused in several ways. Different pressure requirements of supplier and
discharger may result in p+

u < p−v , i.e. a pressure loss is required along the pipe. This
induces a positive flow through the pipe, if the pipe is not sloped. Having a strong down-
ward slope at the pipe and the lower pressure bound at the entry is hardly smaller than
the upper pressure bound at the exit may also result in a strictly positive flow to satisfy
the pressure bounds. In these cases the zero vector is not part of Fq, thus there exists
no technical capacity such that T(qTC) ⊂ Fq since it is impossible to nominate nothing.

u v
qa

Figure 5.3. Single pipe a connecting entry u and exit v
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u

v

µ

ν

a

Figure 5.4. Network with infinite possible technical capacities

While it is interesting from a theoretical point of view that technical capacities may not
be defined for a network and a given physical model, both described situations are usually
prohibited by either the network operator or safety regulations. In the following examples,
the zero vector is hence considered a feasible nomination. As already mentioned, the
technical capacity is defined as the maximum capacity that the network operator can
offer any transport customers with respect to the integrity of the network. However, this
definition is ill-defined. As the following example illustrates, the technical capacities of
the boundary nodes are correlated and there typically exists no unique maximum.

Figure 5.4 shows a network with two entries on the left side and two exists on the right,
connected by a pipe a and four shortcuts. The pipe acts as a bottle neck in this example
by restricting the maximum flow through the network. A basic flow model is sufficient
for illustrating the ambiguity and correlation of technical capacities. Assume flow bounds
q−a = 0 kg s−1 and q+

a = 50 kg s−1 at the pipe and no other bounds, thus 50 kg s−1 is
the largest amount of gas that can be discharged, thus qTC

µ , qTC
ν ≤ 50 kg s−1. The same

holds for the technical capacities at the entries. In addition, the upper flow bound q+
a

restricts the sum of supply capacities or the sum of discharge capacities to 50 kg s−1. If
the supplied gas is limited, i.e. qTC

u + qTC
v = 50 kg s−1, the technical capacities of the

exits can both be set to 50 kg s−1. All nominations within these technical capacities
are feasible, since a nomination is balanced by definition. Every nomination within the
technical capacities supplies at most 50 kg s−1 gas and thus discharges at most the same
amount, never violating the only restriction of the network at the connecting pipe. The
technical capacities of the exits are never exhausted at the same time. This example shows
that the vector of technical capacities qTC of a network with |V◦| > 2 is not necessarily
balanced itself and due to the symmetry of the network similar observations hold for
qTC
µ + qTC

ν = 50 kg s−1. Either way, this results in a infinite number of possible choices
for the technical capacities, some examples are listed in Table 5.1.

The example in Figure 5.4 also shows that there may exist a set P ∈ P(V−) or P ∈ P(V+)

with u ∈ P and
∑

v∈P q
TC
v > q+

P . However, the following relation between the technical
capacities and the supplied or discharged flow holds.
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qTC
u qTC

v qTC
µ qTC

ν

50 0 50 50
50 50 0 50
50 50 25 25
50 50 10 40

Table 5.1. Some valid choices for technical capacities in kg s−1 of the network in Fig-
ure 5.4

Lemma 6. In every gas network G it holds that either
∑

u∈V+
qTC
u ≤ q+

V+
,
∑

u∈V−
qTC
u ≤

q+
V−

, or both.

Proof. Assume that
∑

u∈V+
qTC
u > q+

V+
and

∑
u∈V−

qTC
u > q+

V−
. Due to Lemma 4 q+

V+
=

q+
V−

. Then there exists a nomination qext within the bounds of the technical capacities
with qext ≤ qTC and

∑
u∈V+

qext
u >

∑
u∈V+

q+
V+

. This nomination is infeasible since more
gas supply is demanded than possible. This conflicts with the requirement of technical
capacities, that all partial nominations have to be feasible.

Lemma 6 is also valid for each connected component of a network graph, since each
component is itself a gas network.

In a nutshell, the technical capacities of the boundary nodes compete with each other.
Increasing the capacity of one node decreases the capacities of others. The legal regulations
do not define an objective function incorporating the vector qTC. A possible interpretation
of the legal regulations is the maximization of a (weighted) sum of the capacities. However,
this interpretation is very restrictive since there are nodes where customers are not
interested in buying more capacities. The least restrictive interpretation sees the capacity
problem as a Pareto optimization problem.

In any case, the weighting of the boundary nodes lies in the hands of the network operator.
In the upper example, the operator has the choice to lay the focus of the technical
capacities either on the entries or on the exits by setting their technical capacities to
50 kg s−1 and he decides the distribution between the nodes of the other type.

5.3.2. Geometry of the Set of Feasible Nominations

Knowing the possible geometric features of the set of feasible nominations Fq is important
for the development of solution algorithms for the determination of technical capacities,
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u

µ

ν

Figure 5.5. Y-shaped network with entry u and exits µ and ν

0
q+µ

q+ν

q+u

0 q+µ

0

q+ν

q+u

Figure 5.6. Set of feasible flows of the Y-shaped network in Figure 5.5 and its projection
into the qµ-qν-plane in case of a linear flow model

since Fq is a central part of their definition. The following examples will examine
connectivity and convexity of Fq and smoothness of its border.

Applying a flow model with the bounds qu ∈ [q−u , q
+
u ], qµ ∈ [q−µ , q

+
µ ], and qν ∈ [q−ν , q

+
ν ] on

the network shown in Figure 5.5 results in a linearly bounded set of feasible flows, see
Figure 5.6. The technical capacity of every node is unique in this case. It is the smallest
maximum amount of suppliable or dischargable gas of the network.

Figure 5.7 illustrates the change when a nonlinear pressure loss model is regarded at
the pipes. Here, the isothermal quadratic approximation (3.70) is chosen. Upper mass
flow limits are set to qu = 1000 kg s−1, qµ = 800 kg s−1 and qν = 600 kg s−1. The inflow
pressure pu is set to 70 bar. The set of feasible nominations is piecewise nonlinear bounded,
both upper right boundaries are slightly curved. These boundaries are caused by reaching
the lower pressure limit of 1.013 25bar at one of the exits.

In contrast to the linear model, the technical capacities are not unique when the nonlinear
pressure loss model is added. Three technical capacities are intuitive and relate to
three vertices of the feasible set. The vertex marked by A in Figure 5.7 corresponds
to the nomination qext

A = (qext
u , qext

µ , qext
ν ) = (800, 199, 600) that maximizes the exit flow
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0 800

600

1000

0 200 400 600 800

0

200

400

600
A

B

C

qµ

q ν

Figure 5.7. Set of feasible flows of the Y-shaped network in Figure 5.5 and its projection
into the qµ-qν-plane regarding nonlinear pressure loss at pipes (each L =
50 km, D = 1.1m, k = 0.01mm) and an inflow pressure of pu = 70 bar

qν . This nomination can be extended to the (unbalanced) technical capacity qTC =

(qTC
u , qTC

µ , qTC
ν ) = (800, 600, 600) by following the line qµ + qν = 800 through Fq until it

hits another boundary of Fq, i.e.

max qµ

s.t. qµ + qν − qu = 0,

qu = 800,

(qu, qµ, qν) ∈ Fq.

This is possible since Fq is convex and 0 ∈ Fq in this example, so every partial nomination
of every feasible flow combination is feasible too. The nomination qext = (707, 707, 0)

in vertex C maximizes qµ and leads by similar means to the technical capacity qTC =

(707, 707, 600). Finally, qext = (896, 448, 448) in vertex B is itself a technical capacity
maximizing qu, since no other flow can be increased further. In addition to these technical
capacities, there exists an infinite number in between.

So far, the set of feasible nominations has been connected and convex. However, this
is not necessarily the case. Consider the network in Figure 5.8 which is similar to the
network Figure 5.5 except for the compressor group. All pipes stay unchanged. The
compressor group has a minimum flow qmin

CS required for the active operation mode. The
schematic illustration in Figure 5.9 shows the change caused by adding the compressor
group. The compressor group has no effect on the capability of exit ν, but due to the
pressure increase in case of qµ ≥ qmin

CS , the possible pressure loss along the pipe leading to
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u

µ

ν

Figure 5.8. Y-shaped network with a compressor group

0

200

400

600

0 qmin
CS

800

qµ

q ν

Figure 5.9. Nonconvex set of feasible nominations of the Y-shaped network with a
compressor group in Figure 5.8 (schematic representation)
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u v
a

(a) Network consisting of a compressor
group and a pipe with high pressure
loss

0 qmax
a qmin

CS q+u
qu

q v

(b) Two disjunctive areas of feasible nom-
inations

Figure 5.10. Series of a compressor group and a pipe resulting in two disjunctive sets
of feasible nominations

µ grows and larger amounts of gas can be discharged from exit µ. The discrete activation
of the compressor group results in a kink in the boundary at qµ = qmin

CS and Fq becomes
nonconvex.

The discrete states of active elements also may result in a set of feasible nominations
not being connected. Proper choices of the parameters of the network in Figure 5.10a
results in Fq with disjunctive sets. If the maximum possible flow through the pipe due to
pressure loss qmax

a is smaller than the minimum flow required by the compressor group
be active, the feasible set looks like Figure 5.10b. The lower left part of the feasible set
corresponds to the situation when the compressor is in bypass while the upper right part
is valid for an active compressor. For the computation of the technical capacities only the
lower left part can be considered, otherwise not all partial nominations would be possible
– those lying in the gap. The technical capacity is hence qTC

u = qTC
v = qmax

a . This is also
one of the most basic examples showing that monotonicity is not valid for nominations,
i.e. given a feasible nomination qext∗ not all nominations qext with qext

i ≤ qext∗ have to
be feasible too.

In summary, the set of feasible nominations of a complex gas transport network cannot
be assumed to be convex and it may consist of disjunctive subsets. The existence of
gaps as in Figure 5.10b lets assume that holes inside Fq are possible for more complex
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networks when the sets of feasible nominations of different choices of discrete network
aspects partially overlap.

5.4. Approaches

In summary, determining technical capacities based on a detailed physical and technical
model is a nonconvex, mixed-integer nonlinear robust Pareto optimization problem. So it
combines several different areas of mathematical optimization which are hard to handle
by themselves. There exists currently no general solution approach to tackle this problem
class.

The current approach in practice is usually based on the validation by simulation of several
nominations which are assumed to be worst-case. A technical capacity is conducted from
these computations. This manual approach heavily depends on a deep knowledge of the
network and a proper choice of the test cases. It also assumes convexity and monotonicity
of the set of feasible nominations since all nominations between the test cases are assumed
to be feasible.

A possible solution approach uses the fact that technical capacities are related to maximum
bookings, see Section 5.1. Solution approaches for validating bookings have been developed
in the ForNe project and could be used as an oracle [71]. However, validating a single
booking is very time-consuming and testing several bookings may contain redundant tests
of very similar nominations [71].

Other approaches determine a description of the set of feasible nominations and conducts
the technical capacity based on this information. The feasible set shown in Figure 5.7 was
determined by tracking the borders of the feasible set using a homotopy method. This
procedure is impractical for larger networks since it contains rasterizing flow variables
and setting other variables and inequalities to their bounds. The number of combinations
of variable bounds and inequality ranges that have to be considered grow exponentially
with the model complexity and network size.

Another possibility is to dissect the set of possible nominations Q within the bounds of
the flow variables and apply a validation of nomination on each grid point. If an infeasible
nomination qext∗ is found, all nominations with qext

i ≥ qext
i
∗
, i ∈ V◦ are irrelevant for

the technical capacity and can be skipped, see Figure 5.11. This bears some similarities
to filters in nonlinear programming [52], however in a higher dimension. Such a grid
approach is based on the assumption that a feasible nomination possesses a neighborhood
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Figure 5.11. Two instances validated as infeasible (circled) cut off a large part of
nominations (red)

of technically feasible nominations as large as the grid size, so all nonconvexities are
covered. Furthermore, the dissected flows need lower and upper bounds. If not already
given, these can be gained in a preprocessing step by computing the maximum and
minimum possible flow using the same optimization model as for the technical capacity.

This approach has some advantages over the homotopy method. The dimension of the
grid only depends on the number of entries and exits, not on the network layout or the
chosen optimization model. The validation of a grid point can be handled by a NoVa
solver, see Section 3. Since the proposed MPEC approach cannot prove infeasibility, i.e.
a failed validation does not necessarily imply an infeasible nomination, it will yield an
inner approximation of the set of feasible nominations, if failed validations are treated as
infeasible anyway. In contrast, choosing a MIP approach or global MINLP approach for
the determination of the discrete decisions leads to a detailed description of the set of
feasible nominations depending on the grid size. These approaches can prove infeasibility,
however longer computation times than the MPEC approach are to be expected.

Hayn et al. [71] are working on a related approach based on the same assumptions. Here,
the space of nominations is also rasterized. A grid block is treated as a feasible area, if a
valid nomination is found within the block. For this, a modified validation of nominations
run based on a MIP model is performed, where the nomination is replaced by flow bounds
according to the grid block.

All approaches based on a subdivision of variable spaces suffer from curse of dimensionality.
The complexity increases exponentially with the dimension of the subdivided space. Thus,
only a small number of boundary vertices can be handled. For large scale networks the
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solution time of the subproblems has to be very small. Besides accelerating the solution
process, implementing expert knowledge to aggregate or skip nodes decrease the number
of computed capacities and thus the problem complexity.
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6. Conclusion

The role of optimization in the gas industry has drastically increased in recent years.
New requirements due to market regulations and the foreseeable shortage of this natural
resource is driving the need for improved network efficiency. This thesis covers two of
the current main problems in gas transportation, validation of nominations and the
determination of technical capacities.

Based on a stationary mixed-integer nonlinear model of a gas network and a two-stage
solution framework developed in the project ForNe, a solution approach for the problem
of validation of nominations is presented.

The first stage determines the discrete settings of the active network elements and the
general situation in the gas network while the second stage validates the solution against
a high-detailed NLP model, resulting in a very accurate description of the network state.
In this work an MPEC approach is suggested for the first stage. Differential equations
and nonsmooth model aspects of the underlying MINLP model are replaced by smooth
approximations and discrete model aspects modelling decisions of active network elements
like valves, control valves and compressors are transformed into smooth constraints
using complementarity constraints. Detailed decisions within a compressor group are
heuristically determined separately. To be able to apply general-purpose NLP solvers on
the resulting MPEC problem several well-known regularization schemes are suggested.
They are adjusted to fit the special needs of the network model.

To prove the practical relevance of the results gained from the MPEC approach they
are validated in a second step. To this end, a class of NLP models is suggested with
alternatives for many model aspects. The model variants offer the possibility to adjust
the model for the best trade-off between required model accuracy and run-time.

The complexity of the underlying MINLP model is thus divided into two separate problems,
offering an advantage over the direct application of current MINLP solvers. Numerical
experiments in the literature and in this work show, that state-of-the-art MINLP solvers
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are not yet capable of reliably solving large-scale network problems with a detailed
mixed-integer nonlinear model of gas physics and technical devices in acceptable time.

Extensive numerical experiments on realistic network instances of the library GasLib
[56] prove the practicability for many regularization techniques and solvers. Validated
solutions are generated for a large number of test instances. It is safe to assume that
the major part of the unsolved instances are infeasible. Modifications of a relaxation
scheme originally proposed by Scholtes stand out with the largest rate of success and an
average solution time of about ten seconds. The automated determination of feasible
network settings within seconds is a significant improvement over the established process
based on simulation runs. The numerical analysis underlines the practicability of the
suggested MPEC approach as a primal heuristic for MIP and MINLP approaches as well
as a stand-alone approach.

Despite the successful application on realistic large-scale problems there is still room for
improvement. Some well-established regularization schemes like the Fischer-Burmeister
function do not perform as well as expected. While some possible reasons are discussed,
the actual cause is not known by certainty. Further research at this point is required.

The MPEC model covers the most important network elements and restrictions, however,
further interesting aspects of gas networks exist. So far, the reformulation based on
complementarity constraints focuses on discrete states of the same network element.
In practice, the states of network elements are sometimes correlated, e.g. in complex
structures of compressor groups and valves. Here, only a subset of the discrete decisions
is permitted. Further research is required to include this type of constraints into the
MPEC model without the application of integer variables.

Numerical analysis of MINLPs in Section 4.1 indicates a possible alternative for the current
heuristic in the second MPEC stage. Further research has to show, if the operation modes
of compressor groups within the gas transport network can be determined in separated
optimization runs and which model formulations are best fitted for compressor group
optimization.

The NLP model that is used to validate the results of the MPEC approach features a high
level of detail. The numerical results on the GasLib instances show, that a solution for a
problem of validation of nominations on a large-scale network is computed in only a few
seconds despite the high level of detail of the model. A comparison with the commercial
simulation software SIMONE is conducted on a large number of single network elements.
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It shows that the accuracy of the validation NLP model is on par with current simulation
software.

The solution process of both the MPEC and the validation NLP can be increased further
by eliminating the overhead of the modeling system. This would have a significant impact
on the determination of technical capacities based on a discretized set of nominations,
since the overhead would fall away for every verified nomination.

With increased model complexity the demands on the initial value and the applied NLP
solver increase as well, since raising model accuracy typically makes a problem harder to
solve. A sequence of NLPs with increasing complexity, where a solution is used as the
initial point in the next step, may improve the rate of success. An automatic choice of
the model variant for single network elements based on indicators like pressure bounds,
would make the model locally adaptable, which would improve the trade-off between
practical solvability and model accuracy. However, the proposed model variants are not
strictly ordered, hence such a sequence of models or an automatic choice does not suggest
itself. The variety of model choices with multiple interdependences show some generic
properties, that are not gas-specific but relevant for most transport and distribution
network problems. The generalization of these structures is topic of current research and
may lead to a guiding toolbox for future network modelers.

Having a reliable and fast solution approach for the problem of validation of nomination
may be a keystone in solving the technical capacity problem. It is shown, that the legal
definition of the technical capacity is an ill-posed mathematical problem. Reasonable
interpretations of the legal requirements result in an adjustable robust optimization
problem. Central properties of this problem class are discussed and illustrated by means
of basic network examples. So far, no solution approach exists that covers all aspects of
technical capacities. Further research in this area is strongly required, since an accurate
determination of the capacities is crucial for all gas transport system operators.
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A.1. Symbols of Network Elements

network element symbol

entry

exit
inner node
pipe
shortcut

compressor (group)
control valve (group)
valve
resistor

Table A.1. Network elements used in the network graphs throughout this work

A.2. Physical Quantities

The equations describing the physics of a gas network are based on many quantities of
natural gas, but a small group are inherent to almost all model components. This group
consists of the pressure p, given in Pa or bar, temperature T in K, density ρ in kgm−3,
and mass flow q in kg s−1.

Besides the mass flow, two other quantities describe the amount of gas flowing through an
element. Some technical devices are described by models in volumetric flow Q (m3 s−1),
while calculations of the gas industry are often based on the normal volumetric flow Q0

under normal conditions, p0 = 1.013 25 bar, T0 = 273.15K. These flow quantities are
translated by

q = ρQ = ρ0Q0.
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symbol explanation unit

A cross sectional area m2

D diameter m
h height above sea level m
k integral roughness m
L length m
λ friction factor 1
M shaft torque of a piston compressor Nm
n speed of a compressor s−1

V0 operating volume of a piston compressor m3

ξa linear pressure loss of a resistor Pa
ζa resistance coefficient of a resistor 1

Table A.2. Technical parameters of network elements

symbol explanation value and unit

g gravitational acceleration 9.806 65ms−2

p0 normal pressure 101 325Pa
R universal gas constant 8.314 462 1 Jmol−1 K−1

T0 normal temperature 273.15K

Table A.3. Constants required for the optimization models

The norm density ρ0 (kgm−3) is a gas parameter, which is constant for a given gas compo-
sition. Other composition-specific parameters are molar massm (kgmol−1), pseudocritical
pressure pc (bar), pseudocritical temperature Tc (K), molar calorific value Hc Jmol−1,
and parameters of the molar heat capacity Ã (Jmol−1 K−1), B̃ (Jmol−1 K−2), and C̃

(Jmol−1 K−3). Table A.4 lists physical quantities inherent to the models of several arc
types described in this work and Table A.3 lists required constants. Technical parameters
of the network elements are listed in Table A.2.
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symbol explanation unit

Ã, B̃, C̃ coefficients of isobaric molar heat capacity Jmol−1 K−α, α = 1, 2, 3
bd specific energy consumption rate W
cp specific isobaric heat capacity J kg−1 K−1

c̃p molar heat capacity Jmol−1 K−1

cHT heat transfer coefficient Wm−2 K−1

ηad adiabatic efficiency 1
η dynamic viscosity kgm−1 s−1

Had specific change in adiabatic enthalpy J kg−1

Hc calorific value Jmol−1

Hu lower calorific value J kg−1

κ isentropic exponent 1
m molar mass kgmol−1

µJT Joule–Thomson coefficient KPa−1

p pressure Pa
pc pseudocritical pressure Pa
P energy flow rate (heating power) W
q mass flow rate kg s−1

Q volumetric flow rate m3 s−1

Q0 normal volumetric flow rate m3 h−1

ρ density kgm−3

ρ0 normal density kgm−3

Rs specific gas constant J kg−1 K−1

Re Reynolds number 1
T temperature K
Tc pseudocritical temperature K
Tamb ambient temperature K
Tsoil soil temperature K
v velocity m s−1

z compressibility factor 1
z0 compressibility factor under normal conditions 1

Table A.4. Physical quantities used in the model descriptions

A.3. List of Used GasLib-582 Instances

The following 500 randomly selected instances of GasLib v1 [56] are processed for the
computations described in Section 4.2:

cold_1028
cold_1033

cold_1037
cold_1108

cold_1126
cold_1137

cold_1235
cold_1255

cold_1268
cold_1283
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cold_1336
cold_1338
cold_1373
cold_1403
cold_1482
cold_1539
cold_1548
cold_1626
cold_1629
cold_1728
cold_1742
cold_1768
cold_1810
cold_1817
cold_1842
cold_1860
cold_1939
cold_1944
cold_1948
cold_1988
cold_202
cold_2056
cold_2061
cold_2067
cold_2119
cold_2143
cold_2232
cold_2256
cold_2261
cold_2266
cold_232
cold_2376
cold_2428
cold_2439
cold_2501
cold_2535
cold_2561

cold_2606
cold_2635
cold_2646
cold_265
cold_2653
cold_2693
cold_2715
cold_2727
cold_2746
cold_2757
cold_2815
cold_2840
cold_2901
cold_2908
cold_2936
cold_2944
cold_2968
cold_3002
cold_3035
cold_309
cold_310
cold_3103
cold_3120
cold_3159
cold_3163
cold_3165
cold_3195
cold_3218
cold_3240
cold_3271
cold_3304
cold_3321
cold_334
cold_3353
cold_3426
cold_3436
cold_3472

cold_3562
cold_365
cold_3655
cold_3669
cold_3788
cold_3806
cold_382
cold_3929
cold_3999
cold_4006
cold_4016
cold_4039
cold_4041
cold_4051
cold_4088
cold_4106
cold_4128
cold_4143
cold_4148
cold_4182
cold_4199
cold_4201
cold_4214
cold_447
cold_491
cold_509
cold_528
cold_571
cold_574
cold_587
cold_598
cold_623
cold_638
cold_717
cold_723
cold_729
cold_73

cold_771
cold_782
cold_796
cold_8
cold_801
cold_89
cold_929
cold_942
cold_959
cold_978
cold_983
cool_1052
cool_1059
cool_1063
cool_1079
cool_1133
cool_1135
cool_115
cool_1168
cool_1175
cool_1188
cool_1227
cool_1256
cool_1275
cool_1297
cool_1308
cool_131
cool_1316
cool_1319
cool_1325
cool_1369
cool_1380
cool_1384
cool_1411
cool_1438
cool_1488
cool_1543

cool_1588
cool_1600
cool_1643
cool_1696
cool_1708
cool_1719
cool_1723
cool_1744
cool_1752
cool_1777
cool_1782
cool_1790
cool_1816
cool_1822
cool_1837
cool_1875
cool_1893
cool_1934
cool_1945
cool_1949
cool_195
cool_196
cool_1985
cool_200
cool_2014
cool_2022
cool_2095
cool_2126
cool_2153
cool_2187
cool_2207
cool_2251
cool_2388
cool_2434
cool_2447
cool_2461
cool_250
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cool_2506
cool_2620
cool_2624
cool_2627
cool_2649
cool_271
cool_2713
cool_272
cool_2721
cool_275
cool_2751
cool_2775
cool_2863
cool_287
cool_2878
cool_2926
cool_2937
cool_2946
cool_2959
cool_2972
cool_2974
cool_2996
cool_3069
cool_3082
cool_3137
cool_314
cool_315
cool_3222
cool_3258
cool_326
cool_3273
cool_3299
cool_3320
cool_333
cool_3346
cool_337
cool_3402

cool_3422
cool_3495
cool_3500
cool_351
cool_3511
cool_3543
cool_3644
cool_366
cool_3668
cool_3684
cool_3689
cool_3692
cool_3708
cool_3738
cool_3741
cool_3790
cool_3805
cool_3817
cool_3831
cool_3839
cool_3841
cool_3867
cool_3874
cool_3887
cool_391
cool_3938
cool_4014
cool_4078
cool_4090
cool_4100
cool_4119
cool_4122
cool_4141
cool_4147
cool_4194
cool_4206
cool_453

cool_472
cool_55
cool_555
cool_584
cool_601
cool_639
cool_657
cool_757
cool_803
cool_818
cool_832
cool_836
cool_939
cool_966
cool_998
freezing_10
freezing_1035
freezing_1065
freezing_1096
freezing_1098
freezing_1151
freezing_1222
freezing_1257
freezing_1360
freezing_1376
freezing_1432
freezing_1468
freezing_1497
freezing_1532
freezing_1658
freezing_1669
freezing_1745
freezing_176
freezing_1851
freezing_2058
freezing_2063
freezing_2069

freezing_207
freezing_2115
freezing_2163
freezing_2183
freezing_2242
freezing_2331
freezing_2380
freezing_2385
freezing_2415
freezing_2574
freezing_2593
freezing_26
freezing_2603
freezing_2619
freezing_2741
freezing_2864
freezing_2868
freezing_2881
freezing_2892
freezing_2893
freezing_2952
freezing_2957
freezing_2975
freezing_3042
freezing_3050
freezing_3061
freezing_3142
freezing_3202
freezing_3210
freezing_3316
freezing_3324
freezing_3339
freezing_3362
freezing_3398
freezing_3430
freezing_3434
freezing_346

freezing_3556
freezing_3566
freezing_3581
freezing_3617
freezing_3683
freezing_3703
freezing_3704
freezing_3744
freezing_376
freezing_3857
freezing_3859
freezing_3885
freezing_3927
freezing_3951
freezing_3973
freezing_407
freezing_4073
freezing_4074
freezing_4084
freezing_4085
freezing_4094
freezing_4112
freezing_4138
freezing_4142
freezing_4180
freezing_4227
freezing_437
freezing_542
freezing_586
freezing_592
freezing_614
freezing_648
freezing_666
freezing_67
freezing_682
freezing_698
freezing_71
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freezing_804
freezing_85
freezing_955
freezing_96
mild_1074
mild_1085
mild_1105
mild_114
mild_1171
mild_1209
mild_1234
mild_1277
mild_1294
mild_1391
mild_1412
mild_1435
mild_1469
mild_1506
mild_1642
mild_1679
mild_1869
mild_1873
mild_1892
mild_1920

mild_1935
mild_1958
mild_2044
mild_2101
mild_2231
mild_2346
mild_2460
mild_2497
mild_2602
mild_262
mild_2631
mild_264
mild_2647
mild_2666
mild_2703
mild_2725
mild_2771
mild_2922
mild_3089
mild_3172
mild_3176
mild_3221
mild_3365
mild_3375

mild_3390
mild_3420
mild_3485
mild_3493
mild_350
mild_3513
mild_3545
mild_3546
mild_3705
mild_3784
mild_3794
mild_3845
mild_3897
mild_3926
mild_3953
mild_3957
mild_3998
mild_4023
mild_4066
mild_4068
mild_4179
mild_4205
mild_503
mild_529

mild_533
mild_568
mild_629
mild_686
mild_714
mild_769
mild_863
mild_87
mild_870
mild_914
mild_961
mild_99
warm_1000
warm_112
warm_1260
warm_154
warm_1721
warm_180
warm_1844
warm_1938
warm_1959
warm_1999
warm_2025
warm_2097

warm_2239
warm_2247
warm_2342
warm_2754
warm_2786
warm_2839
warm_3036
warm_3056
warm_3247
warm_3337
warm_3462
warm_3533
warm_3553
warm_3630
warm_3767
warm_3946
warm_4113
warm_4135
warm_4145
warm_4155
warm_4174
warm_496
warm_986
warm_993
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