
Interactive Energy Minimizing Segmentation

Frameworks

Von der Fakultät für Elektrotechnik und Informatik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

Doktor-Ingenieur

(abgekürzt: Dr.-Ing.)

genehmigte

Dissertation

von

Dipl.-Math. Björn Scheuermann

geboren am 16. Februar 1983 in Gehrden.

2014



Referent: Prof. Dr.-Ing. B. Rosenhahn
Korreferent: Prof. Dr.-Ing. V. Roth
Vorsitzender: Prof. Dr.-Ing. J. Ostermann
Tag der Promotion: 13.08.2014



III

Acknowledgement

The time working at the Institut für Informationsverarbeitung (TNT), Leibniz
Universität Hannover, to earn a Doctor of Engineering degree has been one of the
greatest times in my life. There is so much I learned on image segmentation, com-
puter vision, doing good research and so on. Working towards a Doctor degree
means lots of hours of work, setbacks and sleepless nights. But it also means meet-
ing great people, traveling to conferences, moments of excitement and having a lot
of fun with my colleagues after hours. All this would not have been possible without
the help, guidance, support and criticism of many people I have gotten to know.

I owe very much to my supervisor Prof. Dr.-Ing. Bodo Rosenhahn for giving me
the opportunity to work in such an awesome group. I like to thank him for guiding,
inspiring and challenging me. His vision and his leadership largely contributed to
making this thesis a success.

I also like to thank Prof. Dr.-Ing. Volker Roth for being my second supervisor
and Prof. Dr.-Ing. Jörn Ostermann, the chair of my defense committee.

A special thank goes to all my colleagues at the TNT. You all contribute to this
great and fun place to work! I would particularly like to mention my o�cemate Kai
Cordes, my best man Florian Baumann, Stephan Preihs, Matthias Reso and Hanno
Ackerman. I ’m glad to have found you as good friends.

A Special thanks also goes to Matthias Schuh and the secretaries, Mrs. Brodersen,
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Abstract

Image segmentation is the process of partitioning an image into at least two regions.
It is one of the fundamental research areas in computer vision and has been widely
studied in the last years. A popular application in movie post production build upon
image segmentation is the integration of virtual objects. Because of many aspects
in real-world scenarios image segmentation is a very challenging task.

The segmentation problem can be formulated as an energy minimization problem.
Active contours or level set representations are an e�cient way to find minimas of a
continuous energy functionals. In the discrete domain the problem can be formulated
using probabilistic models like Markov or conditional random fields. The maximum
a posteriori solution of such a model corresponds to the discrete optimization of an
appropriate energy function that can be solved using graph cuts.

Usually, all those methods use Bayes’ theorem to combine di↵erent features, aris-
ing from color distribution, texture and scale information or additional sensors like
depth information. Therefore, the features are assumed to be statistically indepen-
dent and the joint probability is given by the product rule. Due to inaccurate and
incomplete or conflictive features this fusion can lead to unsatisfactory segmentation
results.

The first part of this dissertation addresses the problem of feature combination by
proposing to use Dempster’s theory of evidence to fuse the information. This theory
of evidence o↵ers an elegant and intuitive way to fuse information from di↵erent
feature channels and o↵ers an alternative to Bayes’ theory. In contrast to Bayes’
theory, Dempster’s theory allows to explicitly model inaccuracy and uncertainty of
features at the same time. Thus it provides a way to incorporate the reliability
of a feature. In this dissertation the classical energy minimizing frameworks are
extended by means of this theory. Experiments on (interactive) image and video
segmentation will demonstrate the properties and advantages of using Dempster’s
theory of evidence for image segmentation.

The second problem addressed in this thesis relates to the e�cient minimization of
the discrete energy function using graph cuts. It has been shown, that these methods
are impracticable for high-resolution images or video sequences due to their running
time and memory requirements. Two methods are presented to reduce the problem
size. The first method reduces the underlying graph while maintaining the maximum
flow property. The second method groups similar variables using the terms of the
energy function itself and Dempster’s theory of evidence. Experiments will show
that these methods are able to drastically reduce the problem size and thus the
runtime of the graph cut algorithm itself.

Keywords: interactive image segmentation, video segmentation, energy minimizing
methods, Dempster’s theory of evidence, feature fusion
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Kurzfassung

Die Bildsegmentierung beschreibt den Prozess der Unterteilung eines Bildes in
mindestens zwei Bereiche. Im Gebiet Computer Vision zählt die Bildsegmentierung
zu den fundamentalen Problemen. Eine beliebte Anwendung findet sich in der Film-
Postproduktion, wo virtuelle Objekte in Filmszenen integriert werden. Aufgrund
unterschiedlicher Aspekte in realen Szenarien ist die Bildsegmentierung eine sehr
anspruchsvolle Aufgabe.

Die Segmentierung kann mathematisch als Energieminimierungsproblem
formuliert werden. Level-Set-Methoden bieten eine e�ziente Möglichkeit, solch
eine kontinuierliche Energiefunktion zu minimieren. Im diskreten Fall kann das
Problem mit probabilistischen Modellen wie Markov oder Conditional Random
Fields formuliert werden. Die Maximum-a-posteriori Lösung eines solchen Modells
entspricht der diskreten Optimierung einer geeigneten Energiefunktion, die durch
Berechnung des minimalen Schnittes eines Graphen bestimmt werden kann.

In der Regel kombinieren alle diese Methoden mit Hilfe des Theorem
von Bayes verschiedene Merkmale, z.B. Farbverteilungen, Textur- und Skalen-
Informationen oder Daten von Tiefensensoren. Die Merkmale werden als statistisch
unabhängig angenommen und die Gesamtwahrscheinlichkeit ergibt sich dann aus
der Produktregel. Durch unvollständige oder ungenaue Merkmale kann diese Art
der Fusion zu unbefriedigenden Segmentierungen führen.

Der erste Teil der Arbeit befasst sich mit der Fusion verschiedener Merkmale. Es
wird vorgeschlagen Dempster’s Theorie der Evidenzen zur Fusion der Informationen
zu nutzen. Im Gegensatz zur Bayeschen Theorie ermöglicht Dempster’s Theorie
explizit die zeitgleiche Modellierung von Ungenauigkeit und Unsicherheit. So bietet
sie eine Möglichkeit, die Glaubwürdigkeit eines Merkmals miteinzubeziehen. In dieser
Dissertation werden die klassischen energieminimierenden Verfahren durch diese
Theorie erweitert. Experimente demonstrieren die Eigenschaften und Vorteile von
Dempster’s Theorie der Evidenzen in der Bildsegmentierung.

Im zweiten Teil wird die diskrete Minimierung durch minimale Schnitte in
einem Graphen betrachtet. Durch hohe Laufzeiten und Speicheranforderungen sind
diese Verfahren nicht für hochauflösende Bilder oder Videosequenzen geeignet. Im
Rahmen dieser Arbeit werden zwei Verfahren vorgestellt, die die Problemgröße
reduzieren. Das erste Verfahren verkleinert den zugrunde liegenden Graphen ohne
den maximalen Fluss zu verändern. Das zweite Verfahren gruppiert ähnliche
Variablen über die Terme der Energiefunktion selbst und Dempster’s Theorie der
Evidenzen. Experimente zeigen, dass beide Verfahren die Problemgröße und damit
die Laufzeit des Graph-Cut Algorithmus drastisch reduzieren können.

Stichworte: interaktive Bildsegmentierung, Videosegmentierung, energieminimie-
rende Verfahren, Dempster’s Evidenztheorie, Merkmalsfusion
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(a) (b) (c)

Figure 1.1: Example of an interactive binary segmentation: Given an image, the user
roughly marks foreground (blue) and background (red) regions with scribbles (a).
An interactive segmentation system labels each pixel as either foreground (white)
or background (black) (b); in (c) the two regions are visualized using the boundary
between.

Motivation

This thesis deals with the problem of feature fusion for interactive binary image
segmentation. Given some prior information on the object and the background of
an image (usually rough user scribbles), the goal of an interactive segmentation
system is to label each pixel in the image as either foreground or background. The
result is a dense labeling of the image, see Figure 1.1.

A crucial step of every segmentation system is the choice of features used to solve
the problem. Usually, features like gray values, color and texture are available. In
some scenarios additional information like motion (in video sequences) or depth (e.g.
from a Time-of-Flight camera) is existent. Considering the example in Figure 1.2
color and depth information, so-called RGB-D image pairs, are given. Using only
the color features to segment the person yields an insu�cient segmentation result
in the first example, since foreground and background color features are indistin-
guishable. Utilizing the available depth information instead, yields a visually good
segmentation, since the depth histograms of foreground and background are well
separated. Choosing another RGB-D image pair from the same video sequence (2nd
example in Figure 1.2), the situation changes considerably. The depth histograms
of foreground and background are overlapping, resulting in an insu�cient segmen-
tation of the person. On the contrary, color information is much more significant to
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segment the person and yields a good segmentation.

This example clarifies, that the choice of features depends on the application and
the scenario. In some situations one feature is more discriminative and in the next
situation another feature is better suited. Thus, using all the available information
can help to improve the overall performance of a segmentation system. State-of-
the-art methods, e.g. energy minimizing approaches, usually assume statistically
independent features and use the traditional Bayesian framework to fuse the avail-
able information. Due to the product law, this approach tends to favor features with
low support to a region. Because of this tendency inaccurate, incomplete or conflic-
tive features with low support have an immoderate influence on the segmentation
result.

A generalization of the Bayesian theory is given by Dempster’s theory of evidence.
It allows to explicitly model inaccuracy and uncertainty information at the same time
and to describe conflicts in the information fusion process. In this thesis, Dempster’s
theory of evidence is integrated into an energy minimizing segmentation systems to
improve the segmentation quality by a more intuitive and elegant feature fusion.

Besides the feature selection and fusion, the runtime of an interactive segmenta-
tion system is another important aspect. Since the user has the ability to refine a
segmentation result by providing additional information, the lag between user in-
teraction and computed segmentation should be as small as possible. In case of a
discrete energy minimizing segmentation framework, this thesis proposes two novel
algorithms that reduce the complexity of the graph and thus the runtime. There-
fore, pixels are grouped based on a defined similarity. The first algorithm proposed,
simplifies the underlying graph without changing the maximum flow property. The
second algorithm uses the terms of the energy function to simplify the graph and
approximate the original segmentation.

Contributions

The main contributions of this thesis can be divided into two parts:

• Application of Dempster’s theory of evidence for image segmentation

• Graph simplification and variable grouping for image segmentation

In the following, both types of contributions are shortly reviewed.

Application of Dempster’s theory of evidence for image segmentation:

Continuous and discrete energy minimizing approaches for the problem of binary
image segmentation have become very popular in the last decades. In this thesis,
those frameworks are extended by means of Dempster’s theory of evidence to fuse
information arising from di↵erent feature channels, e.g. di↵erent sensors. Dempster’s
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1st example: color and depth image pair

segmentation using

color information

segmentation using

depth information

2nd example: color and depth image pair

segmentation using

color information

segmentation using

depth information

Figure 1.2: Example segmentation results using di↵erent features. In the first row of
each example a color and depth (RGB-D) image pair is given. The second row shows
the segmentation results using either color or depth information only. Obviously,
in the first example the depth information is more reliable and produces a visually
better segmentation result. The second image pair shows an example where the color
information is more reliable. Images are taken from the ToFCut dataset [WZYZ10].
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theory of evidence can be described as a generalization of the Bayesian approach. It
allows to model inaccuracy and uncertainty of the information and thus provides an
elegant way to fuse information and o↵ers an alternative to the classical probabilistic
Bayesian model. A prerequisite for Dempster’s theory of evidence are so-called
mass functions. Appropriate mass functions modeling the available information
are proposed and integrated in both, the continuous segmentation framework and
the discrete segmentation framework. Furthermore, Dempster’s theory of evidence
is used to extend the continuous level set approach by means of user interaction.
Thus, a complete user interactive segmentation framework is developed and the
experimental results show, that this framework outperforms similar approaches in
terms of segmentation accuracy and user e↵ort. To summarize the contributions:

• appropriate mass functions modeling the information are defined

• integration of Dempster’s theory of evidence in the continuous level set frame-
work

• extension of the level set framework by means of user interaction based on
Dempster’s theory of evidence

• an example application, combining the level set framework with other segmen-
tation systems is given

• integration of Dempster’s theory of evidence in the discrete graph cut frame-
work

Graph simplification and variable grouping for image segmentation:

Discrete energy minimizing approaches based on graph cuts are a widely used
technique to solve binary segmentation problems. However, the complexity of these
algorithms is a crucial drawback since each pixel in an image corresponds to an
unknown variable of the energy function. Roughly speaking, that means that graph
cut approaches are not able to e�ciently segment high-resolution images or video
sequences due to their running time and memory requirements. That is why it is
important to reduce the complexity of the algorithm. This thesis proposes two algo-
rithms reducing the complexity by simplifying the graph or grouping the variables of
similar pixels. The first approach, the so-called SlimCuts, proposes to contract sim-
ple edges. Those edges are e�cient to find and contracting them reduces the graph
and thus the problem size. It is proven that the maximum flow is preserved by
contracting simple edges, which means that the segmentation result is not changed.
Since the amount of graph reduction is limited by the number of simple edges a
second algorithm for variable grouping is proposed. In this algorithm the similarity
of neighboring pixels (or neighboring groups of pixels) is measured using Dempster’s
theory of evidence. Therefore the unary and pairwise potentials of the energy func-
tions are interpreted as information on the similarity and appropriate mass functions
are defined and fused within the framework of Dempster’s theory of evidence. The
experiments show that the amount of reduction is drastic, while the changes in the
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segmentation result are negligible. To summarize the contributions:

• SlimCuts: a graph simplification method that maintains the maximum flow
property

• a variable grouping algorithm based on Dempster’s theory of evidence

Structure of the thesis

The outline of this thesis is as follows.

Chapter 2: In Chapter 2, the basic terms of (interactive) image segmentation
are introduced and reviewed. The problem is mathematically defined and the gen-
eral components of a segmentation system are given. Di↵erent energy minimizing
approaches are stated and categorized. Furthermore, the workflow of an interactive,
energy minimizing image segmentation system is summarized. The chapter con-
cludes with a brief review of typical benchmarks and performance measures used to
evaluate segmentation frameworks.

Chapter 3: In this chapter, the used energy minimizing segmentation frame-
works, namely level sets and graph cuts are described and reviewed. The level set
framework minimizes an energy function in the continuous domain by propagating
a curve in normal direction. In contrast to the level set framework, the graph cut
framework minimizes an objective function in the discrete domain. Therefore, the
energy function is represented by a network graph and the minimum cut of this graph
yields a minimum of the objective function. The connection of both frameworks is
clarified by a probabilistic interpretation. Finally, the idea of fusing available fea-
tures for image segmentation using Dempster’s theory of evidence is explained. This
theory is reviewed and the relation to classical probability theory is given.

Chapter 4: The level set framework described in the previous chapter is ex-
tended by means of Dempster’s theory of evidence. Therefore, appropriate mass
functions are defined and the joint mass is included in the energy function. The
mass functions are based on the image likelihoods similar to the classical approach.
In contrast to the classical Bayesian approach, Dempster’s theory of evidence o↵ers a
sound and intuitive way to model inaccuracy and uncertainty of a feature. Based on
this novel framework, user constraints are integrated to develop an interactive, level
set based image segmentation system. Experiments on real and synthetic images
demonstrate the properties and advantages of the proposed frameworks. The chap-
ter concludes with a review and discussion of the proposed variational frameworks.
Previous versions of this chapter appeared in [SR10] and [SR11a].

Chapter 5: In Chapter 5, the discrete segmentation framework graph cut
is extended by means of Dempster’s theory of evidence to fuse color and depth
information. Beforehand, the chapter concentrates on reducing the complexity of the
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approach by simplifying the underlying network graph. Simplifying the graph means
a reduction of unknown variables and thus a more e�cient segmentation framework.
First, the so-called SlimCut approach is introduced. This approach contracts simple
edges so that the maximum flow property is maintained, which means that the
segmentation result does not change. In a second approach Dempster’s theory of
evidence is used to group similar pixels to one variable. Thus, the graph can be
simplified, while the segmentation results stay comparable. The experimental results
of both approaches show that the number of variables can be reduced dramatically.
In case of the variable grouping framework, the results show that the changes in
the segmentation results are negligible. Parts of this chapter appeared earlier in
[SR11b, SSR12, SGR13].

Chapter 6: The last and concluding chapter of this dissertation summarizes
the whole work and lists the main contributions. At the end of the chapter some
promising future developments are discussed.
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In this chapter, the terms segmentation and interactive segmentation (as they have
been used in this work) are defined and related work is shortly reviewed. At the
end of the chapter typical benchmarks, that are used to analyze the quality of a
segmentation algorithm, are summarized.

2.1 Image Segmentation

Image segmentation is the process (or the result of the process) of partitioning an
image into at least two regions. More precisely, the process of assigning a label to
every pixel in an image is called image segmentation. Thus, image segmentation
is a special kind of classification or labeling problem. Pixels having the same label
share characteristics with respect to a given uniformity criterion. Therefore, similar
pixels are grouped based on this criterion. Typical uniformity criteria for image
segmentation are pixel-intensities, color, texture, depth or motion. In computer
vision, the problem of segmenting an image has been studied for decades and now
it is one of the most widely studied problems [Sze10]. Formally, the segmentation
problem is defined such that the image domain � is partitioned into K (disjoint)
regions �i:

� =

K€

i=1
�i , (and �i fl �j = ÿ ’ i ”= j) (2.1)

In this thesis, unless otherwise stated, the segmentation problem is restricted to the
special case K = 2 which is referred to as binary segmentation. The two subsets
�1,2 are denoted foreground (FG) and background (BG). An example of visualizing
a binary segmentation result is given in Figure 2.1. The case K > 2 is denoted as
multi-label segmentation.

The general components of a segmentation system are visualized in Figure 2.2.
After defining the segmentation problem (i.e. binary or multi-label), the application
needs to be specified. This can either be task dependent, object dependent, or image
dependent. The next decisions to be made are:

• which features are available and useful to solve the problem

• how these features can be statistically modeled to fit the requirements

Features used in this thesis are gray values, color, texture and depth. Those his-
togram features can be modeled using Parzen estimates or Gaussian mixture models.
Having di↵erent features available, the feature fusion is a crucial step. This thesis
proposes to use Dempster’s theory of evidence to fuse di↵erent features. Since this
theory allows to model inaccuracy and uncertainty explicitly, the feature fusion be-
comes more intuitive compared to the feature fusion in classical probability theory.
After all these requirements are determined, the segmentation concept that will solve
the problem needs to be chosen. For Instance, this could be a simple thresholding
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(a) image (b) segmentation mask (c) segmentation boundary

Figure 2.1: Visualizing segmentation results. Given the input image in (a), the image
domain is partitioned into foreground (FG) and background (BG). The segmentation
result is typically illustrated with a FG/BG mask (b) or by the boundary separating
FG and BG (c).

or an energy minimizing approach using a variational or a discrete formulation. Due
to their capabilities, in this thesis, energy minimizing approaches are used to solve
the segmentation problem.

From a user point of view, segmentation systems can be categorized into super-
vised, interactive (semi-supervised), and unsupervised systems [Sze10]. Unsuper-
vised segmentation systems segment the image according to some priors that hold
for every image. These systems run fully automatic and are typically designed
for a special task, e.g. segmentation of anatomical structures in medical images
[PFK+05, CSFB08]. Hence, unsupervised segmentation systems are useful to extract
similar regions/objects from a large database of images. In supervised segmentation
systems the user has to manually assign a label to each pixel of an image. Even
though, this is very time consuming, for some applications it is necessary that the
user has the complete control over the segmentation result.

This thesis focuses on interactive segmentation systems utilizing energy minimiz-
ing approaches. Interactive segmentation systems try to combine the advantages of
the two other systems. Typically, some image regions are roughly marked by the
user and utilized to learn a prior, e.g. the appearance of the marked regions. This
prior is then used to segment the remaining image regions [BJ01, CFRA07].
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Segmentation problem:
binary or multi-label

Prior knowledge:
task dependent (unsupervised) or image dependent (interactive)

Features and their statistical modeling:
gray values, color, texture, depth, motion, ...

Gaussian, Parzen, Gaussian mixture model, multivariate, ...

Features fusion:
classical probability theory, Dempster’s theory, ...

Segmentation concept:
variational formulation, discrete formulation, ...

Figure 2.2: General components of a segmentation system including problem and
feature definition, feature modeling as well as concepts to fuse features and algorithm
to solve the segmentation problem. The contributions of this thesis can be arranged
in the feature fusion and segmentation concept stage.

Well known algorithms for unsupervised image segmentation include thresholding
[SS04], region merging [Sze10], mean-shift [CM02], k-means clustering [Sze10], and
many more. Even though the focus of this thesis is feature fusion for interactive
segmentation approaches, a short overview of basic concepts and algorithms follows.
This is motivated by the fact that there exist many similarities and the methods
share some common concepts.

The most simple methods are pixel based segmentation schemes. The decision
whether a pixel belongs to a specific region is taken separately for every pixel in the
image domain. Well-established is the segmentation by thresholding the image based
on some uniformity criterion [MM03, SS04]. Incorporating spatial information is one
possibility to enhance segmentation performance, even if those methods in general
work on single pixels.

An elementary assumption for image segmentation is that regions in an image
contain pixels that are similar with respect to some similarity criterion. Thus, it can
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also be interpreted such that there exists a dissimilarity at the edges of two adjacent
image regions. This dissimilarity can be detected using image derivatives that build
the basis for edge-based segmentation schemes. A popular method finding those
edges is the Canny edge detector proposed by Canny [Can86]. Sonka et al. [SHB07]
give an extensive overview of segmentation schemes, that use such edge detectors
to find connected contours. An example segmentation scheme, based on those edge
detectors, is the Hough transformation and its extensions [HP60, IK88].

In contrast to edge-based approaches, region-based segmentation schemes try to
find and exploit the similarity criterion directly. Well known examples are region
merging, the watershed approach [VS91, Beu91] and the split-and-merge approach
[HP74].

Some more advanced segmentation schemes use a combination of edge-based and
region-based techniques, more complex and higher-dimensional feature spaces or ad-
ditional shape-constraints, e.g. such that resulting regions are spatially connected
and somehow compact. The mean-shift segmentation approach, proposed by Co-
maniciu and Meer [CM02], is such an approach. It uses a feature space composed
of color and spatial information to cluster the image into similar regions.

Shape based segmentation approaches use additional a priori information about
the rough shape of the object that needs to be segmented [HP60, PFK+05]. This
information restricts the segmentation result to be close to a given shape. Typically,
shape constraints are combined with other methods to improve segmentation results
[RP02, PRR02, CSS03, CZ05, CSB08].

As mentioned earlier, the selection of image features is very important to solve the
segmentation problem. Most of the aforementioned algorithms use single features,
e.g. the gray value or color, to define the similarity criterion for segmentation. If
other features, like texture or depth, are available or useful, the combination of those
features is as important as their selection. Traditionally, the di↵erent features are
assumed to be independent, see Chapter 3.1. Thus, classical probability theory can
be used to fuse features. In contrast to others, this thesis proposes to use Dempster’s
theory of evidence to fuse information arising from di↵erent feature channels. This
theory allows to model inaccuracy and uncertainty explicitly. Thus, the feature
fusion using Dempster’s theory of evidence becomes much more reasonable.

Earlier works on image segmentation using Dempster’s theory of evidence, that
are somehow related to this thesis have been presented in [MM03, CSFB08, CSFB09,
AO07, RZ02]. These works combine the evidence theory with either a simple
thresholding [MM03], a decisional procedure [CSFB08], a fuzzy clustering algorithm
[CSFB09], a region merging algorithm [AO07] or a k-means clustering algorithm
[RZ02]. All cited works use Dempster’s theory of evidence to fuse the information
arising from three color channels. In contrast to these works the proposed ap-
proaches combine the evidence theory with a variational (or discrete) segmentation
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continuous domain:

explicit boundary:
E(C(s)) =

s 1
0 . . .

and C(s) is a spline
(e.g. Kass et al. [KWT88])

implicit boundary:
E(C) =

s
� . . .

where C = {(x,y) | Ï(x,y) = 0}
(e.g. Chan and Vese [CV99])

discrete domain:

explicit boundary:
E(P ) =

qn≠1
i=1 f(ei,i+1)

where P is a path
(e.g. Mortensen and Barrett
[MB98])

implicit boundary:
E(L) =

q
� ...

where L is a labeling
(e.g. Boykov and Jolly [BJ01])

Figure 2.3: Overview of energy minimizing segmentation approaches. Segmentation
approaches can be divided into four categories based on the domain of the objec-
tive function (discrete or continuous) and the boundary representation (explicit or
implicit).

framework, including statistical modeling of regions, the respective Euler-Lagrange
equations and a smoothness term.

The aforementioned algorithms are useful, but it has been shown that they do
not succeed in many complex situations. Recent state-of-the-art algorithms often
minimize an appropriate objective function that takes into account region properties
and some regularization term, e.g. boundary length. Those methods are summarized
in the following chapter.

2.2 Segmentation as Energy Minimization

The problem of image segmentation has been formalized in 1985 by Mumford and
Shah as the minimization of an objective function [MS85]. In 1988 Kass, Witkin and
Terzopoulos [KWT88]1 used a parametric curve to minimize an objective function.
As shown by many papers and textbooks on image segmentation using energy mini-
mizing frameworks [OS88, MB98, CV99, CSV00, SM00, CV01, BJ01, OP03, FH04]
there has been a lot of progress in the last decades.

1This breakthrough is one of the most cited papers in computer vision.
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Energy minimizing segmentation approaches can be divided into four categories,
see Figure 2.3. They are divided based on the boundary representation, which can
be explicit or implicit, and on the domain of the objective function, which can be
defined in the discrete or continuous domain. Most methods, where the objective
function is defined in the continuous domain, use variational methods (e.g. Euler-
Lagrange equation, partial di↵erential equations, total variation) to minimize the
objective function. On the other hand, if the objective function is defined in the
discrete domain (on pixel level), graph-based methods (e.g. shortest path, graph
cuts, method by Felzenszwalb and Huttenlocher) are used for minimization.

In the continuous domain

• ... using an explicit boundary representation (snakes and active contours):
The curve, dividing two regions, is typically given as a parametric curve, e.g.
a spline function. The objective function is defined over the curve and usually
includes the image gradient under the curve and regularization terms defined
on the curve, e.g. the length of the curve. The minimization of the objective
function leads to an evolving curve. A limitation of these methods is that it
is hard to change the topology of an evolving parametric curve, [KWT88].

• ... using an implicit boundary representation (level sets): The curve, de-
scribing object boundaries is typically embedded as the zero level set of a
higher-dimensional function. The objective function is defined in the im-
age domain and usually includes visual cues like object/background color and
boundary length [CV99, CSV00, CV01] or curvature and gradient information
[OS88, OP03].

In the discrete domain

• ... using an explicit boundary representation (dynamic programming and path-
based): Typically, a path between given points on the boundary of an object is
searched by minimizing an objective function. Analogously to the continuous
domain, the objective function includes the length of the path and the image
gradient along the path. A very well known example is intelligent scissors,
proposed by Mortensen and Barrett [MB98].

• ... using an explicit boundary representation (graph cuts): Typically the object
is separated from the background by cutting a (network) graph. The objective
function is defined on nodes of the graph (pixels, image domain) and similarly
includes cues like color, texture and boundary length [BJ01].

This thesis concentrates on methods using an implicit boundary representations.
The objective function of these methods, is typically defined in the image domain.
Therefore, it is straight forward to take into account model-specific visual cues and
contextual information in order to segment a particular object of interest. These
methods are explained in more detail in Chapter 3.
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(a) image (b) iPad (c) Rubik’s cube (d) stapler

(e) multi-label (f) iPad (g) Rubik’s cube (h) stapler

Figure 2.4: Examples of di↵erent segmentation results to show the ambiguity of
the problem. (a) input image; (b - c) possible binary segmentations; (d) multi-
label segmentation mask; (e - f) binary segmentation masks (foreground depicted in
white).

2.3 Interactive Segmentation

Fully automated (unsupervised) image segmentation still is an unsolved problem
and only possible for very specific tasks. On the other hand, manual pixel labeling
is accurate but very time consuming. Hence manually assigning each pixel in the
image a corresponding region label is unacceptable. Furthermore, already the binary
segmentation problem is highly ambiguous (see Figure 2.4). In (b - d) and (f -
h) binary segmentation problems are solved to obtain the iPad, Rubik’s cube or
the stapler from a natural scene (a). A possible multi-label segmentation problem
(K = 4) was solved in (e). Here each color represents a region. In the given example
all regions are spatially connected, but this is not required by the definition given
in Equation (2.1).

Since the segmentation problem is highly ambiguous and at the end task de-
pendent, a useful segmentation system needs some task specific prior to solve the
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problem. Else it is likely useless for many applications. Here the user, that needs to
solve the segmentation problem comes into the process loop. The user has to pro-
vide prior information to restrict the solution space. The prior information used in
this thesis is a user input marking foreground and background. Typically this prior
information comes from user scribbles (strokes), a rectangle around the foreground
object or a so-called lasso initialization that roughly marks object edges. Other
possible priors could be connectivity priors, shape priors, texture priors or object
class priors [CZ05, CRD07].

The role of the user is a fundamental aspect of interactive segmentation systems.
In many applications, e.g. medical image analysis, it is very important that the user
maintains control over the segmentation result. Therefore an optimal interactive seg-
mentation framework involves the user with very little e↵ort but full control. Thus
it allows segmenting objects quickly and accurately with only minor supervisions.
Common and well known methods for interactive image segmentation are intelli-
gent scissors, proposed by Mortensen and Barrett [MB98], seeded region growing,
proposed by Adams and Bischof [AB94, Zuc76], magic wand, proposed by Adobe
[Inc02], level sets [CSV00], geodesic active contours [CKS97], weighted total vari-
ation [BElV+07, UPT+08], graph cuts [BJ01, RKB04] and geodesic segmentation
[Toi96, BS07, PS07].

The present thesis focuses on feature fusion for interactive, energy minimizing im-
age segmentation to improve segmentation results. Interactive image segmentation
using level sets by Chan and Vese [CSV00] and Cremers et al. [CFRA07] and using
graph cuts by Boykov and Jolly [BJ01], respectively, build the basis for this thesis.
Therefore, their methods and related work are reviewed in more detail in Chapter
3.

Figure 2.5 summarizes the general workflow of an interactive segmentation system.
Before the segmentation takes place, the user needs to provide prior information
on the regions. Based on this prior information statistical models, e.g. Gaussian
distributions, are learned for each region. An interactive segmentation algorithm
aims to search for the best segmentation according to the statistical models. If the
segmentation result is not accurate enough the user can refine the segmentation
by providing additional priors, e.g. by marking more object/background regions.
Chapter 4 shows how Dempster’s theory of evidence is used to include such prior
information in a variational segmentation framework.

Yet another important aspect of an interactive segmentation framework is the
runtime. It is crucial to get a fast feedback (segmentation result) based on given
prior information to see if additional priors are necessary to satisfactory solve the
task. For a human user it would not be acceptable to wait several minutes or
hours for a single segmentation that might be not satisfying. Many papers address
this problem for variational segmentation methods. In [AS95], Adalsteinsson and
Sethian proposed to evaluate the curve only in a so-called narrowband to decrease
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General Workflow:

User Interaction:
• prior provided by the user (e.g. scribbles)

Segmentation:
• learn a statistical model for each region
• search for the best assignment
(minimize an objective function)

User editing:
• provide additional priors
• relearn region models
• -> segmentation

input image:

1st prior: 1st result:

2nd prior: 2nd result:

further refinement

Figure 2.5: General interactive segmentation workflow.

computational complexity. Di↵erent data structures, e.g. sparse fields, octaves
or run-length encoded curves, have been shown to speedup existing segmentation
approaches [Whi98, Bri03, Str99, LGF04, HNB+06]. To further improve the com-
plexity Sethian [Set96, Set99] and Osher and Fedkiw [Set96] proposed to combine
the level set method and the fast marching method. GPU implementations of vari-
ational approaches have been shown to outperform traditional algorithms in terms
of computational time [LCW03, CLW04, RPSM10].

Besides the improvements on variational segmentation approaches there has also
been a lot of progress in the discrete domain. Existing works either improve the aug-
menting path algorithm by Boykov and Kolmogorov [BJ01, BK04], that is a widely
used algorithm in computer vision, or push-relabel algorithms, that are paralleliz-
able [DB08]. Besides those approaches to develop more e�cient algorithms for the
general maximum flow / minimum cut problem researches are also trying to reduce
the size of the labeling problem itself by grouping variables [LSTS04, WBC+05,
LSS09, KNKY11] or multi-scale approaches [PB99, SG06, KLR10]. Chapter 5 will
show how Dempster’s theory of evidence is used to speed up a discrete segmentation
framework, by reducing the problem size e�ciently, in order to enhance usability.
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2.4 Benchmarks

Performance evaluation for (interactive) segmentation systems is very important
for developing a real world application. Traditionally, computer vision algorithms
are evaluated on a benchmark with preselected training and test data. Typical
segmentation benchmarks are the Berkeley segmentation benchmark (BSD500 or
BSD300)2,3 and the Grab Cut benchmark, provided by Microsoft4 [RKB04]. The
Berkeley segmentation benchmark [MFTM01, AMFM11] consist of 300 (500) images
and ground truth segmentations. As stated by the authors, the main goal of this
dataset is to provide an empirical basis for research on image segmentation and
boundary detection. Therefore most of the images are chosen to fit into the problems
multi-region segmentation or boundary detection. Since this thesis deals with the
problem of (interactive) binary segmentation the Microsoft Grab Cut dataset is used
in most experiments. It consists of 50 real world images and corresponding ground
truth segmentations, see Figure 2.6 (a) and (b). This dataset was especially designed
to measure the performance of binary segmentation algorithms.

The performance is typically given as the Hamming distance of the segmentation
result and the ground truth segmentation [BRB+04]:

‘ =

no. misclassified pixels

no. pixels in unclassified region
, (2.2)

where the denominator is the number of pixels that are not classified by the user.
Other performance measures used in this thesis are Precision, Recall and F1-measure
[MO10, MFTM01].

Therefore a fixed set of user-interactions is commonly used to initialize an in-
teractive segmentation system and simulate the human user. In this work the set
of interactions provided by the Microsoft dataset (rectangle or lasso trimaps) and
our own brush stroke trimaps, see Figure 2.6 (c) are used for initialization. These
trimaps provide a priori information about the object, background and unclassified
regions to simulate the user. Furthermore the proposed methods are evaluated with
a user study measuring the number of user interactions needed for satisfactory seg-
mentation results. In order to evaluate the methods on synthetic textured images
the Prague texture segmentation data-generator and benchmark [HM08]5 is used.
Segmenting video sequences is an additional application of the proposed methods.
Therefore videos sequences from the KTH action dataset [SLC04]6, videos provided

2
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

3
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html

4
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediti

ng/segmentation/grabcut.htm

5
http://mosaic.utia.cas.cz

6
http://www.nada.kth.se/cvap/actions/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://mosaic.utia.cas.cz
http://www.nada.kth.se/cvap/actions/
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by Sand and Teller [ST06]7 and the ToFCut dataset including depth information
[WZYZ10]8 are used for evaluation.

A critical point, that all the benchmark images share, is the small image resolution.
Typically, the size of these images is less than 0.5 megapixels. In contrast, nowadays
digital cameras are able to take images with more than 20 megapixels. Thus, it is
an important aspect to evaluate the segmentation performance and runtime on such
high-resolution images. Therefore, images found on the web with resolutions up
to 26 megapixels are further used for evaluation. A similar aspect is to evaluate
the segmentation performance and runtime on resource-limited systems. For that,
benchmark images with up to 2.5 megapixels are evaluated on Apple’s iPhone 4.

7
http://rvsn.csail.mit.edu/pv/

8
http://vis.uky.edu/%7Egravity/Research/ToFMatting/ToFMatting.htm

http://rvsn.csail.mit.edu/pv/
http://vis.uky.edu/%7Egravity/Research/ToFMatting/ToFMatting.htm
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(a) images

(b) ground truth segmentations

(c) user stroke initializations

Figure 2.6: Images (a) and ground truth segmentations (b) from the Microsoft Grab-
Cut Benchmark [RKB04]. Since the benchmark does not include stroke initializa-
tions our own initializations are used(c). Note: Some images are cropped for a
smooth illustration. In the experiments the original images are used.
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In this chapter the energy minimizing segmentation frameworks using level sets
and graph cuts are described and recapitulated. A probabilistic interpretation of
both frameworks is given to clarify the connection between both frameworks. At the
end of the chapter, the proposed feature fusion using Dempster’s theory of evidence
is explained and the relation to Bayes’ theory is explained.

3.1 Segmentation Using a Variational Framework

The variational segmentation framework used in this work is based on the works of
[CV01, CRD07]. Using a level set representation of the curve C, describing object
boundaries, has several well known advantages, e.g. the naturally given possibility
to handle topological changes of the boundary curve. This is especially important if
the object is partially occluded by another object or if the object consists of multiple
parts.

3.1.1 Chan-Vese Energy Functional

In case of a binary segmentation, the level set function Ï : � æ R splits the image
domain � into foreground and background regions FG, BG ™ � with FG fl BG = ÿ
and FG fi BG = �. Usually, Ï is defined by a signed distance function, see Figure
3.1a, that holds:

Ï(x) =

Y
]

[
Ø 0, if Lx œ FG

< 0, if Lx œ BG
, (3.1)

where L = {Lx | x œ � · Lx œ {FG,BG}} is the labeling. The zero-level line of the
function Ï(x) represents the boundary C between the object, which is sought to be
extracted, and the background.

C = {x œ � | Ï(x) = 0} . (3.2)

Minimizing an objective function should propagate the curve C in normal direction,
see Figure 3.1b

The basis segmentation framework in this thesis is the so-called Chan-Vese energy
functional [CV01] for gray-scale images. Therefore, let I : � ‘æ R be the image,
a function that maps the image domain to the space of real numbers. Chan and
Vese assume that the image is formed by two regions (FG and BG), that have a
homogeneous but distinct gray value distribution. Furthermore it is assumed, that
the distributions can be approximated by the mean values µFG and µBG. Using the
Heaviside function H it is possible to indicate to which region a pixel belongs. It is
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Ï(x)

(a)

N

N

N

Inside
Ï > 0

Outside
Ï < 0

Outside
Ï < 0

Curve C

Ï =

0

(b)

Figure 3.1: (a): Level set representation of a curve. (b): Curve C = {x œ � | Ï(x) =

0} propagating in normal direction.

defined by:

H(z) =

Y
]

[
1, if z Ø 0

0, if z < 0 ,
ÒH(z) = ”(z) =

Y
]

[
1, if z = 0

0, else ,
(3.3)

The derivative of the Heaviside function is the well known Dirac measure, that is
used to indicate points on the curve C. Using the aforementioned notation, the
Chan-Vese energy functional in its original form is given by:

E(µF G,µBG,Ï) = ⁄1

⁄

�
|I(x) ≠ µF G|2H(Ï) dx

+ ⁄2

⁄

�
|I(x) ≠ µBG|2(1 ≠ H(Ï)) dx

+ ‹1 ·
⁄

�
|ÒH(Ï)| dx + ‹2 ·

⁄

�
H(Ï) dx .

(3.4)

The first two terms are the external energy, taking into account the image data and
the other two terms are the internal energy, that acts directly on the curve. Note:
For the sake of convenience Ï(x) is shorten by Ï.

Minimizing the external energy with ⁄1 = ⁄2 and ‹1 = ‹2 = 0, results in the best
labeling by minimizing the squared distances to the mean values of foreground and
background. In other words: a pixel x is labeled as foreground, if |I(x) ≠ µF G|2 <
|I(x)≠µBG|2. Ignoring the internal energy, the energy minimization is a special case
of the k-means clustering with k = 2.
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≠2 ≠1 0 1 2

0

0.5

1

z

H(z)
H̃1/3(z)

(a) Heaviside function

≠2 ≠1 0 1 2

0

0.5

1

z

”(z)
”̃1/3(z)

(b) Dirac measure

Figure 3.2: Visualization of the Heaviside function and its derivative, the Dirac
measure (red) and the corresponding regularized functions (blue) with ‘ = 1/3.

The internal energy is used for regularization by minimizing the length of the
curve C and the area inside the curve:

Length(C) =

⁄

�
|ÒH(Ï)| dx , Area(inside(C)) =

⁄

�
H(Ï) dx . (3.5)

Keeping the level set function Ï fixed and minimizing the energy E(µF G,µBG,Ï)

(see Equation (3.4)) with respect to µF G and µBG yields:

µF G =

⁄

�
I(x)H(Ï(x)) dx

⁄

�
H(Ï(x)) dx

and µBG =

⁄

�
I(x)(1 ≠ H(Ï(x))) dx
⁄

�
(1 ≠ H(Ï(x))) dx

, (3.6)

if
s

� H(Ï(x)) dx > 0 and if
s

�(1 ≠ H(Ï(x))) dx > 0. In the end, this comes down to
compute the mean value of FG and BG.

In order to minimize the energy with respect to Ï, regularized versions of the
Heaviside function and the Dirac measure are considered. They need to hold:

(i) lim

zæ≠ inf
˜H(z) = 0 , (ii) lim

zæinf
˜H(z) = 1 , (iii) ˜H(0) = 0.5 . (3.7)

One family of such regularizations can be defined by:

˜HÁ(z) =

1

2

+

1

fi
arctan

s

Á
. (3.8)

For Á æ 0, ˜H(z) converges to the Heaviside function H(z). An important property
of this approximation is that it acts on all level curves, what makes it more robust
to local minima [CV01]. A comparison for Á = 1/3 is visualized in Figure 3.2. In
the following, H(z) and ”(z) denote their regularized versions.
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Minimizing the energy functional with respect to Ï while keeping µF G and µBG

fixed can be performed by solving the corresponding Euler-Lagrange equation. The
Euler-Lagrange equation is a necessary condition for an extremum of the energy
functional. The energy functional has the form:

E(Ï) =

⁄

�
L(Ï,ÒÏ) dx (3.9)

and the corresponding Euler-Lagrange equation is given by:

dE

dÏ
=

ˆL
ˆÏ

≠ ˆ

ˆx1

ˆL
ˆÏx1

≠ ˆ

ˆx2

ˆL
ˆÏx2

= 0 . (3.10)

Inserting the energy function from Equation (3.4) or building the derivatives of the
corresponding terms of the energy function, respectively, leads to:

dE

dÏ
= ”(Ï)

C

⁄1|I(x) ≠ µF G|2 ≠ ⁄2|I(x) ≠ µBG|2 + ‹2 ≠ ‹1 · div
A ÒÏ

|ÒÏ|
BD

, (3.11)

where div is the divergence (see Appendix A.1 for more details).

Parameterizing the descent direction by an artificial time [CV01], the Euler-
Lagrange equation leads to the following partial di↵erential equation (PDE):

ˆÏ

ˆt
= ≠dE

dÏ
= ”(Ï)

C

⁄2|I(x) ≠ µBG|2 ≠ ⁄1|I(x) ≠ µF G|2 ≠ ‹2 + ‹1 · div
A ÒÏ

|ÒÏ|
BD

,

(3.12)
that can be solved using numerical methods. The final curve C, describing the
boundary between foreground and background, is computed by alternating between
the gradient descent step and the parameter optimization of µF G and µBG [CRD07].
Starting with some (manually given) initial contour Ï0, this is an initial value prob-
lem. As a consequence, the quality of the segmentation process is limited by the
initial curve. A block diagram of the algorithm is given in Figure 3.3. Given a curve
Ïn, the parameters µF G and µBG are updated according to Equation (3.6). Next,
the curve is evolved according to the following discretization and linearization of
Equation (3.11), which is in principal the well known Euler method (see [CV01]):

Ïn+1
= Ïn

+ �t · ”(Ï)

C

⁄2|I(x) ≠ µBG|2 ≠ ⁄1|I(x) ≠ µF G|2 ≠ ‹2 + ‹1 · div
A ÒÏ

|ÒÏ|
BD

,

(3.13)
where �t is the time step. To improve segmentation results, more advanced tech-
niques can be used to solve the partial di↵erential equation. E.g. in [SR09], a 2nd
order Runge-Kutta method, that outperforms the Euler method, is proposed.

Equation (3.4) is a special case of the piecewise constant Mumford Shah model
[MS89]:

⁄

F G
|I(x) ≠ cF G|— dx +

⁄

BG
|I(x) ≠ cBG|— dx + ‹ · (|ˆFG| + |ˆBG|) , (3.14)
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Initialize the curve (manually): Ï0, n = 0

update parameters µF G and µBG according to Equation (3.6)

evolve the curve according to the PDE given in Equation (3.11)

check if the curve is stationary, n = n + 1

Figure 3.3: General workflow of the level set segmentation framework.

with — = 2 and |ˆFG| represents the length of the boundary of the region FG.
Keeping cF G and cBG fixed, the Mumford Shah model for image segmentation has
the form of a Pott’s model [Pot52].

One general assumption of the original Chan-Vese energy functional is, that the
two regions can be modeled by two disjoint, unimodal distributions. If this assump-
tion is violated, e.g. by overlapping and/or multimodal distributions, the segmen-
tation will easily fail.

A natural extension is given by the following energy function:

E(Ï) = ≠
⁄

�
H(Ï) log p1 + (1 ≠ H(Ï)) log p2 dx

+ ‹
⁄

�
|ÒH(Ï)| dx ,

(3.15)

where ‹ Ø 0 weights the influence of the internal energy, H(s) is a regularized
Heaviside function and p1 and p2 are conditional probability densities of FG and
BG:

p1 = p1(I(x)) = p(I(x) | Lx = FG) , p2 = p2(I(x)) = p(I(x) | Lx = BG) (3.16)

Given the two conditional probabilities p1 and p2, the total a posteriori probability
is maximized by minimizing the first term of Equation (3.15), i.e. pixels are assigned
to the most probable region according to Bayes’ rule. Minimizing the second term
penalizes the length of the contour. It can be interpreted as a priori knowledge
and acts as a smoothing term. In comparison to the original energy functional, see
Equation (3.4), the regularization using the area inside the curve is omitted, since
it reduces to a constant shrinking bias (see Equation (3.13) and [CRD07]).
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Similarly, minimization of the energy functional (3.15) can be performed by solving
the Euler-Lagrange equation with respect to Ï [CV01]. This leads to the following
partial di↵erential equation:

ˆÏ

ˆt
= ”(Ï)

A

log

A
p1
p2

B

+ ‹ div

A ÒÏ

|ÒÏ|
BB

, (3.17)

Again, starting with some initial contour Ï0 and given the conditional probability
densities p1 and p2 an initial value problem has to be solved. The idea of curve
evolution by iteratively solving the partial di↵erential equation is clarified in Figure
3.4.

As a consequence, the quality of the segmentation process is limited by the initial
contour and the way the foreground and background probabilities p1 and p2 are
modeled. For the variational segmentation approach in this thesis, the nonpara-
metric Parzen estimates [RBD03], which is a well known histogram-based method,
is used. This Model is chosen since, compared to multivariate Gaussian Mixture
Models (GMM), it leads to similar results without the need of estimating model
parameters. An example, showing the di↵erence between both models for a gray
value image is given in Figure 3.5.

Other possibilities to model the probability densities given the image cues are, e.g.,
a Gaussian density with fixed standard deviation [CV01] or a generalized Laplacian
[HS05]. In scenes with complex objects, shadows, and highlights, where di↵erences
between the object and the background are often only locally visible, a local Gaus-
sian probability density that varies with the position x œ � in the image can be
used[KB03, RBW07].

For the proposed method it is necessary to extend this segmentation framework
from gray-scale images to feature vector images I = (I1, . . . , Im). This extension
is straight forward and has been applied to the Chan-Vese model [CSV00]. It is
assumed that the channels Ij are independent. Thus, the conditional probability
density pi(I(x)) of foreground or background is the product of the separated condi-
tional probabilities pi(Ij(x)) = p(Ij(x) | Lx = i):

pi(I(x)) = p(I1(x) fl . . . fl Im(x) | Lx = i)

= p(I1 | Lx = i) · . . . · p(Im | Lx = i)

= pi(I1(x)) · . . . · pi(Im(x)) .

(3.18)
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C0 C100 C200 C400

Figure 3.4: Example curve evolution using a level set representation. Upper part:
Given the partial di↵erential equation, an one dimensional image and an initial level
set, the probabilities for each pixel are computed and the curve is evolved. In this
example the probabilities for yellow (blue) pixels forces the level set function to move
upwards (downwards). Thus the curve, depicted in red, evolves to the right. Lower
part: Example of an evolving curve for a real image.
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Figure 3.5: Comparison of the nonparametric Parzen estimates (top right) and a
Gaussian Mixture Model with 5 kernels (bottom right) for foreground and back-
ground regions of the image on the left.

The Chan-Vese model (3.15) for vector images now reads:

E(Ï) = ≠
⁄

�
H(Ï)

mÿ

j=1
log p1,j dx

≠
⁄

�
(1 ≠ H(Ï))

mÿ

j=1
log p2,j dx

+ ‹
⁄

�
|ÒH(Ï)| dx ,

(3.19)

where pi,j = pi(Ij(x)). Solving the corresponding Euler-Lagrange equation yields to
the following partial di↵erential equation:

ˆÏ

ˆt
= ”(Ï)

S

U
mÿ

j=1
log

A
p1,j

p2,j

B

+ ‹ div

A ÒÏ

|ÒÏ|
BT

V . (3.20)

Because of their independency, the pi,j can be estimated for each region i and each
channel j separately. In other words, for each pixel in the image the foreground
probability

qm
j=1 log p1,j and the background probability

qm
j=1 log p2,j is computed

over all feature channels j. Possible image features to be incorporated by means of
this model are color, texture [BW06, RBD03], motion [CS05] or depth.
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3.1.2 Probabilistic View

Besides the aforementioned derivation, the problem of image segmentation using
level sets also has a probabilistic meaning. Given are the conditional probabilities
p1 and p2, that are also referred to as likelihoods, modeling foreground and back-
ground statistics of an input image I : � æ R, see Equation (3.16). For the sake
of simplicity only single valued images are considered. The goal of the level set
segmentation approach can be interpreted as computing the most likely level set
function Ï separating foreground and background by maximizing the a posteriori
distribution p(Ï | I). With Bayes’ theorem this becomes:

p(Ï | I) =

p(I | Ï)p(Ï)

p(I)

Ã p(I | Ï)p(Ï) , (3.21)

since the evidence p(I) is independent from the level set function Ï. The first term
in the product of Equation (3.21) allows to integrate the conditional probabilities p1
and p2 by defining:

p(I(x) | Ï(x)) =

Y
]

[
p1(I(x)) , if Ï(x) Ø 0

p2(I(x)) , else
. (3.22)

Assuming, that the intensities at di↵erent spatial locations in an image are statisti-
cally independent, this leads to:

p(I | Ï) =

Ÿ

xœ�
[p(I(x) | Ï(x))]

dx . (3.23)

The bin value dx guarantees the correct continuum limit, see [CRD07, BC07].

The second term p(Ï) in the product of Equation (3.21) can be interpreted as
prior knowledge on the embedding function, that could incorporate a priori more
likely segmentations, e.g. smooth curves or special shapes. In the aforementioned
Chan-Vese energy functional, this prior on the level set function is a constraint on
the length of the curve:

p(Ï) = exp

3
≠‹

⁄
|ÒH(Ï)|dx

4
. (3.24)

The particular choices of the conditional probability in Equation (3.23) and the
prior probability in Equation (3.24) are due to the Chan-Vese segmentation model,
see Equation (3.15). More sophisticated prior knowledge, e.g. knowledge about the
shape or statistical shape priors can also be included [CRD07].

Maximizing the a posteriori probability p(Ï | I) is equivalent to minimizing its
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negative logarithm. This leads to:

max

Ï
p(Ï | I) Ã max

Ï
p(I | Ï)p(Ï)

… min

Ï
≠ log [p(I | Ï)) ≠ log(p(Ï)]

= min

Ï
≠ log

Q

a
Ÿ

xœ�
[p(I(x) | Ï(x))]

dx

R

b ≠ log

3
exp

3
≠‹

⁄
|ÒH(Ï)|dx)

44

= min

Ï

ÿ

iœ{F G,BG}

⁄

i
≠ log (pi(I(x))) dx + ‹

⁄
|ÒH(Ï)|dx ,

(3.25)

which is equivalent to the Chan-Vese energy functional.

3.2 Segmentation by Discrete Energy
Minimization

An important drawback of the aforementioned variational segmentation approach
using level sets is the dependence of the segmentation result from the initial contour.
This is caused by the gradient descent approach to minimize the energy function.
Since an image is defined in the discrete domain, another straightforward idea is to
formulate the energy function in the discrete domain.

Due to the works of Boykov and Jolly [BJ01], Rother et al. [RKB04] and many
others [GPS89, KZ04, BRB+04, KT05, Li09] image segmentation by discrete energy
minimization using graph cuts became a powerful and widely used framework. The
main advantage of the graph cut framework is the ability to globally minimize a
certain set of energy functions. The discrete segmentation framework used in this
thesis directly builds upon the framework proposed by Boykov and Jolly [BJ01].

3.2.1 Discrete Energy Model

The discrete energy E : Ln æ R for the problem of binary image labeling can be
written as the sum of unary ·i and pairwise potentials ·i,j

E(L) =

ÿ

iœV
·i(Li) +

ÿ

(i,j)œE
·i,j(Li,Lj) , (3.26)

where V corresponds to the set of all image pixels and E is the set of all edges between
pixels in a defined neighborhood N . For the problem of binary image segmentation,
which is addressed in this thesis, the labeling L consists of foreground (FG) and a
background (BG) labels.
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Figure 3.6: The pairwise potential ·i,j(Li,Lj) given in Equation (3.30) for Li ”= Lj,
— = 1/100, “ = 1 and pixels with a distance of one.

Note: In the literature, e.g. [KZ04, BKR11], typically the unary and pairwise
potentials are defined by Ïi and Ïi,j or Di and Vi,j. Since in this thesis Ï is already
used for the level set function and D for the depth image, ·i and ·i,j are used instead.

In comparison to the variational approach, the unary potential represents the
external energy and the pairwise potential the internal energy, that is used for reg-
ularization.

The unary potential ·i is given as the negative log-likelihood of a learned fore-
ground/background model. Typically, a standard Gaussian mixture model (GMM)
p(·) [RKB04] is used. Thus, the unary potential is defined by

·i(Li) = ≠ log p(I(i) | Li = S) , (3.27)

where S is either foreground or background. In [BJ01, RKB04] it is assumed that
such likelihoods are known a priori or learned directly from user labeled pixels,
so-called seeds. The set of seeds is denoted by:

U = {x œ V | x marked as FG} fi {x œ V | x marked as BG} = O fi B , (3.28)

that impose hard constraints on the segmentation result:

’ x œ O ∆ Lx = FG · ’ x œ B ∆ Ly = BG . (3.29)

The pairwise potential ·i,j takes the form of a contrast sensitive Ising model,
defined by:

·i,j(Li,Lj) = “ · dist(i,j)

≠1 · [Li ”= Lj] · exp(≠—ÎI(i) ≠ I(j)Î2
) . (3.30)

Here I(i) describes the feature vector (e.g. color) of pixel i and dist(i,j) is the Eu-
clidean distance of the pixels i and j. [·] is the indicator function and the parameter
“ specifies the impact of the pairwise function. The indicator function is defined by

[Li ”= Lj] =

Y
]

[
1, if Li ”= Lj

0, else
(3.31)
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Table 3.1: Edge weights of a network graph according to Boykov and Jolly [BJ01]
to represent the energy function (3.26).

edge weight (cost) for

{x,y} ·x,y(Lx, Ly) with Lx ”= Ly {x,y} œ E

{x,S}
·x(BG) x œ V · x /œ O fi B

K x œ O
0 x œ B

{x,T}
·x(FG) x œ V · x /œ O fi B

0 x œ O
K x œ B

K = 1 + max

xœV

q

y:{x,y}œE
· Lx ”=Ly

·x,y(Lx, Ly)

and allows to capture gradient information only along the segmentation boundary.
The constant — includes the feature variance of the image and is just as defined as
in [BJ01, RKB04]:

— =

1
2 ·

e
(I(i) ≠ I(j))

2
f2≠1

, (3.32)

where È(I(i) ≠ I(j))

2Í denotes expectation over the image. For traceability the pair-
wise potential is illustrated in Figure 3.6. In contrast to the level set approach
the pairwise potential is contrast sensitive, whereas the internal energy in Equation
(3.15) does not include gradient information. A small “ leads to a strong unary term
whereas a large “ leads to a weak unary term.

Using the defined unary and pairwise functions, the energy (3.26) is submodular.
A function E : {0,1}n æ R is submodular if and only if, for all label assignments
L1, L2 œ {0,1}n, the function satisfies the condition (see [BKR11]):

E(L1) + E(L2) Ø E(L1 ‚ L2) + E(L1 · L2) . (3.33)

For the energy function in Equation (3.26) that has an arity of 2, this simplifies to
the condition:

E(1,0) + E(0,1) Ø E(1,1) + E(0,0) . (3.34)

It is easy to see that the energy function (3.26) fulfills this condition.

Represented as a (network) graph, globally minimizing the submodular energy
function corresponds to the problem of finding the minimum cut in the graph [BJ01,
KZ04].

The graph G = (VG, EG), representing the energy function, consists of a set of
vertices VG and a set of edges EG ™ VG ◊ VG. Analogously to [BJ01] the set of
vertices is the set of pixels unified with two special vertices, the so-called terminals,
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denoting the source S and the sink T of the network. Thus, VG = V fi {S,T}, where
V is the set of image pixels.

The set of edges EG consists of two di↵erent types of edges. First, the so-called
neighboring links (n-links), that is the set of edges between neighboring pixels E .
Second, there is an edge between each pixel and the source and sink, respectively.
These are the so-called terminal links (t-links). Thus, EG = Efi{(S,p),(p,T ) | p œ V}.
The capacities c(e) of all edges e œ EG are defined according to Boykov et al. [BJ01]
so that the graph represents the energy function. The capacities of the n-links
represent the pairwise potential and the capacities of the t-links correspond to the
unary potential. They are defined according to Table 3.1.

A cut C µ EG of the graph G is a set of edges so that G \ C = GS fi GT , where
S œ GS and T œ GT . That is, removing the edges C from the graph G partitions
the graph into two disjoint sets GS and GT separating source and sink. Such a cut
is also referred to as s-t-cut. The cost of a cut is defined as the sum of all edge
capacities, whose endpoints belong to di↵erent sets:

|C| =

ÿ

eœC
c(e) =

ÿ

(i,j)œEG
iœGS ,jœGT

c(i,j) . (3.35)

Ford and Fulkerson [FF56] and Elias et al. [EFS56] showed independently, that
the problem of finding the minimum cut is equivalent to the problem of finding the
maximum flow between S and T . Since the minimum energy state of (3.26) cor-
responds to the minimum cut of the graph G, standard maximum flow algorithms
[BVZ01, BK04, DB08] can be used to solve the labeling problem. Given the max-
imum flow of a graph, a so-called residual graph is implied. The residual graph is
given by all edges that are not saturated by the maximum flow. The minimum cut
and thus the labeling is determined by a simple reachability test on the residual
graph. Figure 3.7 summarizes this approach and shows some exemplary segmenta-
tion results.

An extension to classical graph cuts is the GrabCut algorithm proposed by Rother
et al. [RKB04]. This algorithm iteratively uses graph cuts to minimize the energy
function and based on the segmentation result, the foreground and background mod-
els are refined/relearned.

3.2.2 Probabilistic View

Similarly to the variational energy minimization (see Chapter 3.1.2), the discrete
energy minimization can also be interpreted from a probabilistic point of view. Mini-
mizing the discrete energy given in Equation (3.26) is also known as the maximum
a posteriori estimation of a Markov Random Field (map-mrf problem) [BVZ98,
Li09, BKR11]. Markov Random Fields were first introduced into computer vision by
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Figure 3.7: Upper part: General workflow of the graph cut framework explained by
taking an example 3 ◊ 3 image (referring to [BFL06]). The seeds are O = {3} and
B = {7}. The weight of an edge, defined by the boundary term or regional term,
is reflected by the edge’s thickness. By computing the minimum cost cut a global
optimal segmentation is defined. Lower part: Some exemplary results using graph
cuts. Foreground and background seeds are visualized in blue and red, respectively.



36 3 Background
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Figure 3.8: Commonly used mrf and crf modeling the segmentation problem. The
random field consists of random variables corresponding to the pixels in an image.
If the unary term takes the form of an Ising model, the segmentation problem is
modeled as an mrf since the pairwise potentials are independent from the image
data. For a contrast sensitive Ising model, modeling the pairwise term, the problem
is modeled as a crf.

Geman and Geman [GG84] and Greig et al. [GPS89] were the first discovering graph
cut algorithms from combinatorial optimization by using a graph cut algorithm for
restoration of binary images. The problem was formulated as a map-mrf problem
that required minimization of an energy function similar to (3.26).

A Markov Random Field (mrf) consist of:

• a set V = {1, . . . , n} of sites (in this case pixels)

• a neighborhood system E = {Np | p œ V}, where each Np is a set of pixels
describing the neighbors of site (pixel) p

• a field (or set) of random variables Ln
= {Lp | p œ V}

• a joint distribution p(Lm
= L) > 0

Each random variable Lp takes a value of the label set l = {FG,BG}. p(Lm
=

L) is the probability of the joint event Lm
= L where L = {Lp | p œ V} is a

configuration of Ln. In order to fulfill the Markovian property, the random field
must satisfy:

p(Lp | LV≠{p}) = p(Lp | LNp) ’p œ V and p(L) > 0 ’L œ Ln . (3.36)

A Conditional Random Field (crf) can be seen as a mrf globally conditioned on
the image data. A graphical model of a pairwise mrf and a pairwise crf is given
in Figure 3.8. The Hammersley-Cli↵ord theorem [HC71] states that the conditional
distribution over the random variables of the crf is a Gibbs distribution:

p(L | I) =

1

Z
exp

A

≠ ÿ

cœC

·c(Lc)

B

, (3.37)
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where Z is a normalizing factor and C is the set of all cliques1 [LMP01]. The
corresponding Gibbs energy is given by:

E(L) = ≠ log p(L | I) ≠ log Z =

ÿ

cœC

·c(Lc) (3.38)

The most probable or maximum a posteriori labeling Lú of the random field is
defined as

Lú
= arg max

LœLn
p(L | I) (3.39)

and can be found by minimizing Equation (3.38). For the binary segmentation
problem only up to pairwise clique potentials are nonzero. Thus, the Gibbs energy
can be written in the form:

E(L) =

ÿ

iœV
·i(Li) +

ÿ

iœV

ÿ

jœNi

·i,j(Li,Lj) , (3.40)

which is equivalent to the energy given in Equation (3.26).

3.3 Feature Fusion using Dempster’s Theory of
Evidence

The probabilistic interpretation, of image segmentation using variational (see Chap-
ter 3.1.2) or discrete energy minimization (see Chapter 3.2.2), clarified that it is
very important how to model the conditional probabilities or likelihoods, respec-
tively. Due to this question it is important how to fuse likelihoods arising from
di↵erent feature channels. The classical probability theory assumes independent
feature channels and uses Bayes’ theorem to get the joint probability by multiply-
ing the likelihoods, see Chapter 3.3.2. In contrast, Dempster’s theory of evidence
is proposed to fuse information from di↵erent feature channels (likelihoods). The
basic ideas and all necessary notations are illustrated in the following chapter.

Dempster’s theory of evidence, also called Dempster-Shafer theory of evidence or
short evidence theory, was first introduced in the late 60s by A.P. Dempster [Dem68],
and formalized in 1976 by G. Shafer [Sha76].

This theory is often described as a generalization of the Bayesian theory. It allows
to explicitly model inaccuracy and uncertainty information at the same time and to
describe conflicts in the information fusion process. In the classical Bayesian frame-
work a probability x for a hypothesis �1 directly leads to a (1 ≠ x) probability that
refuses the hypothesis. Mathematically this can be expressed by p(�1) + p(�1) = 1,
the so-called additivity rule which results directly from the axioms of Kolmogorov

1A clique is a set of random variables xc that are conditionally dependent on each other
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[SV05]. Using di↵erent feature channels for the problem of image segmentation the
validity of this connectivity is limited. The learned models for di↵erent hypotheses
in the segmentation framework are only approximations. Thus, making a statement
on the occurrence of a hypothesis �2 from the learned model of hypothesis �1 is
questionable. In fact the probability (1 ≠ x) only represents the inaccuracy of the
model, that will be interpreted as the uncertainty.

Using Dempster’s theory of evidence to explicitly model uncertainty, conflicting
information for a pixel get another meaning. The occurrence of a conflict in that
sense means, that di↵erent models argue for di↵erent labels (hypotheses) for a given
pixel.

In the present work the properties of Dempster’s theory of evidence to model
uncertainty and account for conflicts to fuse di↵erent feature channels are utilized.
Section 3.3.1 introduces the theoretical background of Dempster’s theory of evidence
and with the help of simple examples the di↵erences to classical probability theory
are emphasized.

The following introduction to Dempster’s theory of evidence is based on the paper
of G. Shafer [Sha76].

3.3.1 Dempster’s Theory of Evidence

The basic idea of the evidence theory is to define a so-called mass function on
a hypotheses set �, also called frame of discernment. The hypotheses set � is
composed of n single mutually exclusive subsets �i, which is symbolized by:

� = {�1, �2, . . . , �n} , with �i fl �j = ÿ ’ i ”= j . (3.41)

For the problem of image segmentation the frame of discernment is the set of possible
regions, e.g. for a binary segmentation:

� = {FG, BG}, (3.42)

where FG/BG denotes foreground/background respectively. The power set of �, 2

�

or ˝(�) describes the set of hierarchically ordered hypotheses. For the example of
binary image segmentation this means: ˝(�) = {ÿ,FG, BG, {FG, BG}}. Thereby
the power set includes the impossible hypothesis, the empty set ({ÿ}), all hypotheses
from the frame of discernment (�i) and all disjoint combinations of these elements.

Assuming a hypotheses set composed of three single mutually exclusive subsets
�i, the power set consists of seven hypotheses, see first column in Table 3.2.

In order to express a degree of confidence for each element A œ ˝(�) of the
power set, an elementary function m(A) is defined. The function m(A) is the so-
called mass function, or basic probability assignment (bpa). Similar to the Bayesian
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Table 3.2: Example showing the basic elements of Dempster’s theory of evidence.

A ™ ˝(�) m(A) Bel(A) Pl(A) Pl(A) ≠ Bel(A)

ÿ 0 0 0 0
�1 0.30 0.30 0.55 0.25

�2 0.25 0.25 0.48 0.23

�3 0.15 0.15 0.37 0.22

�1, �2 0.08 0.63 0.85 0.22

�1, �3 0.07 0.52 0.75 0.23

�2, �3 0.05 0.45 0.7 0.25

�1, �2, �3 0.10 1.00 1.00 0.00

theory each hypothesis is assigned a probability. Furthermore, in Dempster’s theory
of evidence each element of the power set is assigned a probability. The function
m : ˝(�) æ [0,1] is a mass function if it fulfills the following conditions:

(i) m(ÿ) = 0

(ii)
ÿ

A™�
m(A) = 1 . (3.43)

In this context, m(A) can be interpreted as the belief strictly placed on hypothesis
A. Compared to a classical probability function, the totality of the belief is not only
distributed on simple classes, but also on composed classes. The modeling shows
the impossibility to dissociate several hypotheses, which characterizes the principal
advantage of the evidence theory. Besides it is possible to assign a probability to
exact one hypothesis or on a set of hypotheses without considering their complement.
The assignment of the remaining probability to � can than be interpreted as a degree
of ignorance or uncertainty:

m(�) = 1 ≠ ÿ

Aµ�
m(A) . (3.44)

An element A œ � with m(A) > 0 is called a focal element. For the aforementioned
example with three single mutually exclusive subsets, a possible mass function is
defined in Table 3.2.

From the basic probability assignment m, a belief function Bel : ˝(�) æ [0,1] and
a plausibility function Pl : ˝(�) æ [0,1] can be defined as

Bel(A) =

ÿ

An™A

m(An) , P l(A) =

ÿ

AflAn ”=ÿ
m(An) , (3.45)

with An œ ˝(�). Bel(A), that is, the mass of A itself plus the mass attached to all
subsets of A, is interpreted as the total belief committed to hypothesis A. Bel(A)
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then is the total positive e↵ect the body of evidence has on a value being in A. It
quantifies the minimal degree of belief in hypothesis A.

A particular characteristic of Dempster’s theory of evidence (one which makes it
di↵erent from classical probability theory) is that if Bel(A) < 1, then the remaining
evidence 1 ≠ Bel(A) needs not necessarily refute A (i.e., support its negation A).
That is, the so-called additivity rule needs not to be true, e.g. Bel(A)+Bel(A) Æ 1.
Some of the remaining evidence may be assigned to propositions which are not
disjoint from A, and hence could be plausibly transferable to A in the light of new
information. This is formally represented by the plausibility function Pl(A) (see
Equation (3.45)). Pl(A) is the mass of hypothesis A and the mass of all sets which
intersect with A, i.e. those sets which might transfer their mass to A. It is the
extent to which the available evidence fails to refute A. It quantifies the maximal
degree of belief in hypothesis A.

The relation between mass function, belief function and plausibility function is
described by:

m(A) Æ Bel(A) Æ Pl(A) ’A œ ˝(�) . (3.46)

The belief function and the plausibility function define the lower and upper bound
of the interval [Bel(A), P l(A)]. The width of this interval can also be interpreted as
the uncertainty of hypothesis A. Table 3.2, clarifies the relations between all these
functions with a simple example.

Dempster’s rule of combination

The Dempster-Shafer theory of evidence has one important operation, Dempster’s
rule of combination, for pooling evidence from a variety of sources. This rule com-
bines two independent sets of basic probability assignments defined over the same
frame of discernment. It derives the shared belief between two mass functions and
ignores all the conflicting belief through a normalization factor. Let m1 and m2 be
two mass functions associated with two independent bodies of evidence defined over
the same frame of discernment. Mathematically, the combination or joint mass m
of these two sets of mass functions is defined by:

m(ÿ) = 0

m(A) = m1(A) ¢ m2(A)

=

ÿ

BflC=A

m1(B)m2(C)

1 ≠ K
,with K =

ÿ

BflC=ÿ
m1(B)m2(C) .

(3.47)

The normalization factor K can be interpreted as conflict between the two mass
functions. Dempster’s rule of combination computes a measure of agreement be-
tween two mass functions concerning various propositions from a common frame of
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Table 3.3: Example of combing two mass functions into one body of evidence. Light
gray cells denote the evidence of the joint mass for hypothesis �1 and dark gray the
evidence of hypothesis �.

¢ m1(A)

A = �1 �2 �

B = 0.4 0.2 0.4
m

2(
B

)

�1 0.6 0.24 0.12 0.24
�2 0.2 0.08 0.04 0.08
� 0.2 0.08 0.04 0.08

discernment. Since Dempster’s rule of combination is associative, fusion of informa-
tion coming from more than two feature channels is straight forward.

The following example will demonstrate the idea of feature fusion using Dempster’s
rule of combination. Assume the following two mass functions m1,2 defined on the
frame of discernment � = {�1, �2}.

m1(�1) = 0.4 , m1(�2) = 0.2 , m1(�) = 0.4 ,

m2(�1) = 0.6 , m2(�2) = 0.2 , m2(�) = 0.2 .
(3.48)

The combination using Dempster’s rule of combination can be clarified by a so-called
combination table, that is given in Table 3.3. For the hypothesis �1 this yields (light
gray cells):

m(�1) =

m1(�1)m2(�1) + m1(�1)m2(�) + m1(�)m2(�1)

1 ≠ m1(�1)m2(�2) ≠ m1(�2)m2(�1)

=

0.24 + 0.08 + 0.24

1 ≠ 0.08 ≠ 0.12

= 0.7 .

(3.49)

Overall, fusing m1 and m2 yields the joint mass m:

m(�1) = 0.7 , m(�2) = 0.2 , m(�) = 0.1 . (3.50)

Other possibilities to combine di↵erent mass functions are given by Yager’s rule
[Yag87], that does not use a normalization of the result or Inagaki’s rule [Ina91], a
parameterized class of combination rules. A survey of these and other combination
rules is presented in [SF02].

3.3.2 Relation To Classical Probability Theory

Analogously to Dempster’s theory of evidence, a hypothesis set � composed of n
single mutually exclusive subsets �i is assumed (see Equation (3.41)). Every element
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Feature Fusion Using Bayes’ Theory:

sensor 1
learn likelihood

p(E1 | �i)

sensor 2
learn likelihood

p(E2 | �i)

. . . . . .

sensor j
learn likelihood

p(Ej | �i)

combine like-
lihoods using
the chain rule

Feature Fusion Using Dempster’s Theory:

sensor 1
learn likelihood

p(E1 | �i)

compute mass
function m1

sensor 2
learn likelihood

p(E2 | �i)

compute mass
function m2

. . . . . . . . .
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learn likelihood

p(Ej | �i)

compute mass
function mj

combine masses
according to

Dempster’s rule

Figure 3.9: Comparison of feature fusion according to Bayes and Dempster-Shafer.
Using the same feature models this thesis proposes to use mass functions and Demp-
ster’s rule of combination to fuse information from di↵erent feature channels.

�i, e.g. FG and BG can be the result of a sensor E. Using Bayes’ theorem yields
the conditional probability

p(�i | E) =

p(E | �i) · p(�i)qn
k=1 p(E | �k) · p(�k)

, (3.51)

where p(�i | E) denotes the a posteriori probability of hypothesis �i constrained to
sensor E, p(�i) the a priori probability of hypothesis �i, p(E | �i) the likelihood
of the measurement of sensor E constrained to �i. The normalization factor (the
denominator) is the so-called evidence. Using multiple sensors Ej, Equation (3.51)
can be extended to

p(�i | E1 fl . . . fl Ej) =

p(E1 fl . . . fl Ej | �i) · p(�i)qn
k=1 p(E1 fl . . . fl Ej | �k) · p(�k)

, (3.52)
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which denotes the joined probability of hypothesis �i constrained to the sensor
measurements. Assuming statistically independent sensors, which is usually done in
segmentation schemes, the joined probability simplifies to:

p(�i | E1 fl . . . fl Ej) =

p(E1 fl . . . fl Ej | �i) · p(�i)qn
k=1 p(E1 fl . . . fl Ej | �k) · p(�k)

=

p(E1 | �i) · . . . · p(Ej | �i) · p(�i)qn
k=1 p(E1 fl . . . fl Ej | �k) · p(�k)

,

(3.53)

using the chain rule that implies

p(E1 fl . . . fl Ej | �i) = p(E1 | �i) · . . . · p(Ej | �i) , (3.54)

if the sensor measurements are statistically independent. The basic fusion strategies
of Bayes and Dempster’s theory are depicted in Figure 3.9.

3.3.3 Examples

The following examples will show the di↵erences of combining feature channels with
Dempster’s rule of combination and classical probability theory. Two independent
models p1 and p2, that describe the probability for a pixel x belonging to fore-
ground are assumed. They are given by p1(FG) = 0.8 and p2(FG) = 0.6. Using
Bayesian theory this directly implies probabilities that refuse the hypothesis fore-
ground: p1(BG) = 0.2 and p2(BG) = 0.4. Since both models are independent it fol-
lows that the combined probability p is given by2: p(FG) ¥ 0.86 and p(BG) ¥ 0.14.

Using Dempster’s theory of evidence in the same scenario the following mass
functions are defined:

m1(FG) = 0.8 , m1(BG) = 0 , m1({FG, BG}) = 0.2 ,

m2(FG) = 0.6 , m2(BG) = 0 , m2({FB, BG}) = 0.4 .
(3.55)

That means that, in contrast to Bayesian theory, the probability 1 ≠ pi(FG) is as-
signed to the disjoint combination of our hypotheses, and quantifies the uncertainty.
Using Dempster’s rule of combination to compute the joint mass m is visualized in
Table 3.4. The joint mass m is then given by:

m(FG) = 0.92 , m(BG) = 0 , m({FG, BG}) = 0.08 . (3.56)

Thus, the combination leads to a strong belief of foreground and some uncertainty
while, in contrast to the Bayesian approach, the belief in background is zero. The
di↵erence between the Dempster’s theory of evidence and the Bayesian framework

2The a priori probabilities are assumed to be equally distributed.
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Table 3.4: Example one of combing two mass functions into one body of evidence.
Light gray cells denote the evidence of the joint mass for the hypothesis FG and
dark gray the evidence of hypothesis {FG,BG}.

¢ m1(A)

A = FG BG FG, BG
B = 0.8 0.0 0.2

m
2(

B
) FG 0.6 0.48 0.0 0.12

BG 0.0 0.0 0.0 0.0
FG, BG 0.4 0.32 0.0 0.08

Table 3.5: Example two of combing two mass functions with di↵erent support for
one hypothesis into one body of evidence. Light gray cells denote the evidence
of the joint mass for the hypothesis FG and dark gray the evidence of hypothesis
{FG,BG}.

¢ m1(A)

A = FG BG FG, BG
B = 0.7 0.0 0.3

m
2(

B
) FG 0.2 0.14 0.0 0.06

BG 0.0 0.0 0.0 0.0
FG, BG 0.8 0.56 0.0 0.24

become more clearly in the next example where one model gives very low support
to hypothesis FG. The two models are now assumed to be: p1(FG) = 0.7 and
p2(FG) = 0.2. In classical probability theory the second model implies probability
of 0.8 for the pixel to be labeled as background (which is even higher than the
probability of model one for foreground). The combined probability is now given
by: p(FG) ¥ 0.37 and p(BG) ¥ 0.63. This means that the combination of two
probabilities modeling the foreground results in a high probability for that pixel to
be background, which is not intuitive at all.

Using Dempster’s rule of combination with mass functions m1 and m2 defined
analogously to Equation (3.55) the joint mass is given by (see Table 3.5):

m(FG) = 0.76 , m(BG) = 0 , m({FG, BG}) = 0.24 . (3.57)

Compared to the combination in classical probability theory this result is more in-
tuitive. Given two models describing the probability of a pixel labeled as foreground
and combine them with Dempster’s theory of evidence results in a probability for
foreground and a degree of ignorance given by m({FG, BG}).

The last examples will show how Dempster’s theory of evidence will be used to
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give more support to significant features in a segmentation framework. Therefore,
two foreground and background models estimated on the gray values of an image are
assumed. The foreground models p1,1(I(x)) and p1,2(I(x)) and background models
p2,1(I(x)) and p2,2(I(x)) for gray values I(x) œ [0,255] of pixels x œ � are given by
Gaussian distributions:

p1 (I(x) | Lx = FG) = N (200, 10) , p2(I(x) | Lx = FG) = N (170, 10) ,

p1(I(x) | Lx = BG) = N (100, 40) , p2(I(x) | Lx = BG) = N (140, 40) .
(3.58)

According to the probability distributions the mass functions are defined by:

m1(FG) = m1(I(x) | Lx = FG) = p1(I(x) | Lx = FG) ,

m1(BG) = m1(I(x) | Lx = BG) = p1(I(x) | Lx = BG) ,

m1(FG,BG) = m1(I(x) | Lx = FG,BG) = 1 ≠ (m1(FG) + m1(BG))

m2(FG) = m2(I(x) | Lx = FG) = p2(I(x) | Lx = FG) ,

m2(BG) = m2(I(x) | Lx = BG) = p2(I(x) | Lx = BG) ,

m2(FG,BG) = m2(I(x) | Lx = FG,BG) = 1 ≠ (m2(FG) + m2(BG)) .

(3.59)

Here m1(I(x) | Lx = FG) describes the mass of pixel x having label FG and
m1(I(x) | Lx = FG,BG) is the mass of pixel x having label FG or label BG. This
is the inaccuracy of the model. The combinations using classical probability theory
are:

p(I(x) | Lx = FG) = p1(I(x) | Lx = FG) · p2(I(x) | Lx = FG) ,

p(I(x) | Lx = BG) = p1(I(x) | Lx = BG) · p2(I(x) | Lx = BG) .
(3.60)

Using Dempster’s theory of evidence the combination of m1 and m2 leads to the
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joint mass m given by:

m(I(x) | Lx = FG) = m1(I(x) | Lx = FG) ¢ m2(I(x) | Lx = FG)

=

ÿ

BflC=F G

m1(B)m2(C)

1 ≠ K
, with K =

ÿ

BflC=ÿ
m1(B)m2(C)

=

m1(FG)m2(FG) + m1(FG)m2(FG,BG) + m1(FG,BG)m2(FG)

1 ≠ (m1(FG)m2(BG) + m1(BG)m2(FG))

m(I(x) | Lx = BG) = m1(I(x) | Lx = BG) ¢ m2(I(x) | Lx = BG)

=

ÿ

BflC=BG

m1(B)m2(C)

1 ≠ K
, with K =

ÿ

BflC=ÿ
m1(B)m2(C)

=

m1(BG)m2(BG) + m1(BG)m2(FG,BG) + m1(FG,BG)m2(BG)

1 ≠ (m1(FG)m2(BG) + m1(BG)m2(FG))

m(I(x) | Lx = FG,BG) = m1(I(x) | Lx = FG,BG) ¢ m2(I(x) | Lx = FG,BG)

= 1 ≠ (m(I(x) | Lx = FG) + m(I(x) | Lx = BG)) .
(3.61)

The di↵erences are visualized in Figure 3.10. Here it becomes clear that the joint
mass favors mass functions with high support, whereas classical probability theory
supports small probabilities. This property enlarges the area of supported fore-
ground in this example.

A more drastically example is shown in Figure 3.11. If the two foreground models
are conflicting, the combination with Bayes leads to a joint distribution that is very
small. Thus, the fusion using Dempster’s theory is much more intuitive.
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Figure 3.10: Example comparing the results of a feature fusion using classical prob-
ability theory and Dempster’s theory of evidence. It can be seen, that the feature
fusion with Dempster’ theory enlarges the area of supported foreground (gray dotted
area) when comparing it to classical fusion.
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Figure 3.11: Example feature fusion of two conflicting models. It can be seen from the
supported foreground area (gray dotted area), that Dempster’s theory of evidence
leads to a more intuitive result.
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Bayes Dempster-Shafer Bayes Dempster-Shafer

Figure 4.1: Segmentation results comparing the probabilistic Bayesian model or
Dempster’s theory of evidence to fuse separated RGB color models.

In many image segmentation scenarios, multiple information from di↵erent sensors
are available. Examples include: (i) separated color information, e.g. RGB-Color,
HSV-Color or CieLab-Color [ZY96]; (ii) Texture information, e.g. the nonlinear
structure tensor or Gabor filtering [RBD03, CRD07] ; (iii) motion information
[CS05]; (iv) shape knowledge [MSV95];(v) depth information [KCB+05] or (vi) ther-
mographic information. Thus, the need for an accurate and elegant fusion method is
given. As stated earlier, Dempster’s theory of evidence provide such a feature fusion
and compared to the Bayesian fusion it is easy to model inaccuracy and uncertainty
within this framework.

This chapter shows how to fuse the available information using mass functions
and how the uncertainty of a sensor (feature channel) is modeled. After the feature
fusion, the joint mass is integrated into a variational energy minimizing framework.
Furthermore, the framework is extended by means of user interactions and other
segmentation methods are integrated as additional information sources. This chapter
is directly based on the publications [SR10, SR11a].

4.1 Energy Function including Dempster’s
Theory of Evidence

To introduce the proposed method, using the Dempster-Shafer evidence theory to
fuse information arising from di↵erent feature channels, the following example is
considered. Let I : � æ R2 be a vector image with two feature channels (I(x) =
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(I1(x),I2(x))) and Ït with t Ø 0 a contour dividing the image into foreground and
background. To minimize the energy functional (3.19), foreground and background
likelihoods need to be learned for both feature channels. E.g., for a full Gaussian
density the mean µi,j and standard deviation ‡i,j (its variance is therefore ‡2

i,j) need
to be learned. Thus, the likelihoods are defined by:

p(Ij(x) | Lx = i) = pi,j(I(x)) =

1Ô
2fi‡i,j

e
≠

(Ij (x)≠µi,j )2

2‡2
i,j , (4.1)

for i,j œ {1,2}, where i = 1 defines foreground probabilities and i = 2 background
probabilities, j characterize the feature channel and Lx œ {FG,BG} denotes the
label of pixel x. Using the Bayesian model and disregarding the smoothness term in
Equation (3.19), a pixel is defined as foreground if (see Equations (3.19) and (3.18))

2ÿ

i=1
log

A
p1,i

p2,i

B

> 0

… log(p1,1) + log(p1,2) > log(p2,1) + log(p2,2)

… log(p1,1 · p1,2) > log(p2,1 · p2,2)

… p1,1 · p1,2 > p2,1 · p2,2

… p(I(x) | Lx = FG) > p(I(x) | Lx = BG) .

(4.2)

In other words, the joint probability for foreground needs to be bigger than the joint
probability for background.

The proposed method uses the Dempster-Shafer theory of evidence to fuse the
information coming from di↵erent feature channels. Therefore, appropriate mass
functions mi : ˝(�) æ [0,1] for each feature channel i have to be defined. In case
of a two-phase segmentation, the frame of discernment becomes � = {FG, BG}.
Dempster’s rule of combination, see Equation (3.47), is used to fuse the two bodies
of evidence. The joined mass function m = m1 ¢ m2, represents a measure of
agreement between both mass functions.

For a two-phase segmentation, the total belief committed to a focal element �i is
equal to the belief strictly placed on �i. Thus it holds:

Bel(�i) = m(�i) for �i œ {FG, BG} and Bel(�) = 1 . (4.3)

Using the total belief committed to a focal element and disregarding the smoothing
term, a pixel should be foreground if

Bel(FG) > Bel(BG) … log

A
Bel(FG)

Bel(BG)

B

= log

A
m(FG)

m(BG)

B

> 0 . (4.4)
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General segmentation paradigm:

image channel 1 ... image channel k

learn models
p1,1 and p2,1

... learn models
p1,k and p2,k

compute mass functions: mi(�j) for i œ {1, . . . , k} and �j œ ˝(�)

fuse information according to Dempster’s rule of combination

evolve curve according to the Euler-Lagrange equation

Figure 4.2: Proposed image segmentation paradigm based on combining the varia-
tional framework and Dempster’s theory of evidence.

In other words, a pixel should be foreground if the total belief committed to fore-
ground is bigger than the total belief committed to background.

In the same context, the plausibility function Pl(�i), which quantifies the maximal
degree of belief of a hypothesis �i should define a pixel as foreground if

log

A
Pl(FG)

Pl(BG)

B

= log

A
m(FG) + m(�)

m(BG) + m(�)

B

> 0 . (4.5)

Obviously, the following relation holds:

log

A
Pl(FG)

Pl(BG)

B

> 0 … log

A
Bel(FG)

Bel(BG)

B

> 0 , (4.6)

and the uncertainty m(�) can be interpreted as a smoothing term.

Therefore, the proposed method uses the total belief committed to foreground or
background regions. To define appropriate mass functions, the learned conditional
likelihoods pi,j are used (the same likelihoods are also used in the Bayesian approach).
The proposed mass functions are explained in more detail in the following section.
Figure 4.2 shows the general segmentation paradigm to evolve a contour combining
the variational framework and Dempster-Shafer evidence theory.
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Assuming k di↵erent image channels, first a foreground p1,j and a background p2,j

model is learned for each channel j œ {1, . . . k}. Based on this learned conditional
likelihoods for each channel, appropriate mass functions are computed. The k dif-
ferent mass functions are fused using Dempster’s rule of combination, see Equation
(3.47). The joint mass m is included in the energy function and finally, the curve is
evolved according to minimize the Euler-Lagrange equation.

The next step includes the joint mass of all feature channels in the energy function
by replacing the conditional likelihoods (joint probabilities). In general, let I : � ∆
Rk be a vector image (I(x) = (I1(x), . . . , Ik(x))) with k feature channels. Assuming
independent feature channels and using the Bayesian model, the total a posteriori
probability of a region is the product of the separated conditional probabilities (see
Equations (3.18) and (3.53)). With Dempster’s theory of evidence, the information
arising from the k feature channels is fused using Dempster’s rule of combination,
resulting in the joint mass:

m = m1 ¢ m2 ¢ . . . ¢ mk , (4.7)

where mj models the mass of feature channel j. Now, the mass committed to a region
is used as the conditional likelihood of a region. Thus, the new energy functional of
the proposed method is given by:

E(Ï) = ≠
⁄

�
H(Ï) log m(FG) dx ≠

⁄

�
(1 ≠ H(Ï)) log m(BG) dx

+ ‹
⁄

�
|ÒH(Ï)| dx

(4.8)

and yields the following Euler-Lagrange equation:

ˆÏ

ˆt
= ”(Ï)

C

log

A
m(FG)

m(BG)

B

+ ‹ div

A ÒÏ

|ÒÏ|
BD

. (4.9)

From a probabilistic point of view, the conditional likelihood is now defined by the
joint mass instead of the joint probability.

As shown in Chapter 3.3, the advantage of Dempster’s theory of evidence is the
fact, that it supports large masses (or probabilities) whereas the Bayesian model
tends to supports small probabilities. One advantage of the Bayesian model is that
a pixel is assigned to �i, if ÷k with pj,k ¥ 0 for i ”= j. This advantage can easily be
integrated in our framework but it contradict our interpretation of supporting large
likelihoods.

Other properties of the Bayesian model, e.g., to include shape priors [RP02], can
be transferred straightforward to the proposed framework by adding terms to the
new energy functional (4.8).
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4.1.1 Defining Appropriate Mass Functions

Given the novel energy function, see Equation (4.8), including the joint mass for dif-
ferent feature channels, appropriate mass functions mj for each feature channel need
to be defined. Intuitively, the likelihoods for foreground and background, learned
from the image, should be used to define the mass functions. Therefore, a simple
definition would be:

mj(Lx = i) = p(Ij(x) | Lx = i) =

pi,j(I(x))

pF G,j(I(x)) + pBG,j(I(x))

for i œ {FG,BG} ,

mj(�) = mj(ÿ) = 0 .
(4.10)

This definition totally ignores the possibility of modeling uncertainty and inaccuracy
by setting mj(�) = 0. Furthermore, a fusion with Dempster’s rule of combination
would be equivalent to Bayesian probability fusion, since the joined mass m fulfills:

m(FG) > m(BG) … p(I(x) | Lx = FG) > p(I(x) | Lx = BG) . (4.11)

The idea is to use the union of the conditional likelihoods p(Ij(x) | FG fi BG) =

p(Ij(x) | FG)+p(Ij(x) | BG) as a measurement of uncertainty. This means, that the
mass function of a feature channel will have a large uncertainty if both conditional
likelihoods are small. Thus, the influence of such a mass function will be minimized.
The proposed mass function mj of feature channel j is defined by:

mj(ÿ) = 0 ,

mj(FG) = mj(Lx = FG) = p(Ij(x) | Lx = FG) ,

mj(BG) = mj(Lx = BG) = p(Ij(x) | Lx = BG) ,

mj(�) = 1 ≠ (p(Ij(x) | Lx = FG) + p(Ij(x) | Lx = BG)) .

(4.12)

In practice, the defined mass functions fulfill Eq. (3.43):
q

A™� m(A) = 1. For
the case that the sum of likelihoods is bigger than one, p(Ij(x) | Lx = FG) +

p(Ij(x) | Lx = BG) > 1, mj(�) is set to zero and the other terms are normalized to
one.

To include prior knowledge about the accurateness of a feature channel, a weight-
ing parameter ⁄j can be integrated to control the influence of a mass function mj

to the joint mass m. The mass function of feature channel j is then defined by:

mj(ÿ) = 0 ,

mj(�) =

⁄j · (1 ≠ (p(Ij(x) | Lx = FG) + p(Ij(x) | Lx = BG)))

K
,

mj(FG) = (1 ≠ mj(�)) · p(Ij(x) | Lx = FG)

p(Ij(x) | Lx = FG) + p(Ij(x) | Lx = BG)

,

mj(BG) = (1 ≠ mj(�)) · p(Ij(x) | Lx = BG)

p(Ij(x) | Lx = FG) + p(Ij(x) | Lx = BG)

,

(4.13)
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(a) (b) (c) (d) (e) (f)

Figure 4.3: (a) and (d): Two di↵erent initializations for the segmentation meth-
ods, (b) and (e): final segmentations using the Bayesian model, (c) and (f): final
segmentations using Dempster-Shafer evidence theory. While the proposed method
converges to almost identical results, the Bayesian model get stuck in two di↵erent
local minima, due to one inadequate foreground histogram. Evaluating the energy
of the results shows that the energy of (e) is bigger than the other ones, which means
that this is a local minimum.

where K is an additional normalization term that can be used to force
q

j mj(�) = 1,
so that the sum of modeled uncertainty is one. The parameters ⁄j œ [0,1] for
each channel j are small, if the channel is accurate and high otherwise. Choosing
⁄j = K = 1 for all feature channels leads to the same definition given in Equation
(4.12). Integrating prior knowledge can be useful in situations where a sensor is
more meaningful than another one. An example is shown in Chapter 5.3, where
depth and color information are fused using Dempster’s theory of evidence. For the
following experiments no prior knowledge is assumed.

4.1.2 Experimental Results

Chapter 4.1 introduced a segmentation method that integrates the Dempster-Shafer
theory of evidence into a variational segmentation framework. To show the e↵ect of
the new approach, some results of the proposed method are presented and compared
to segmentation results using the traditional Bayesian framework to fuse informa-
tion arising from di↵erent feature channels. The method is evaluated on real images
taken from the Berkeley segmentation dataset [MFTM01] as well as on synthetic
textured images from the Prague texture segmentation data-generator and bench-
mark [HM08]. A 2nd order Runge-Kutta method was used to solve the partial
di↵erential equation and minimize the proposed energy functional, since it has been
shown that it outperforms the Euler method [SR09]. In most of the experiments
the CieLab-Color channels are used. This implies that, besides the experiments on
the textured images, no additional information such as texture or shape priors are
used in the experiments. To demonstrate the advantages of the proposed framework
texture features such as the nonlinear structure tensor are additionally used for the
experiments on the synthetic textured images.
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A situation in which the advantages of the proposed method become apparent
is the synthetic example shown in Figure 4.3. While the segmentation using the
Bayesian model computes di↵erent segmentation boundaries for the two initializa-
tions, the proposed methods converges to almost identical results for both initial-
izations. The reason for the di↵erent segmentation results with the initialization in
Figure 4.3e is an inadequate foreground statistic for one of the two feature chan-
nels (red and green). For the upper part of the object, that has to be segmented,
this inadequate feature channel (green) supports the foreground with very small
probabilities. More formally:

÷j œ {1,2} | p(Ij(x) | Lx = FG) ¥ 0 ’x œ A , (4.14)

where A describes the upper part of the object. The Bayesian approach yields

p1(I(x)) =

Ÿ

j

p(Ij(x) | Lx = FG) ¥ 0 . (4.15)

Because of the noisy background, these statistics have a larger standard deviation
than the foreground statistics. For the example this results in

p1,1(I(x)) œ [0.024; 0.040] , p1,2(x) ¥ 0 ,

p2,1(I(x)) œ [0.006; 0.004] , p2,2(x) œ [0.007; 0.006] ,
(4.16)

for x œ A, which results in

p2(I(x)) =

Ÿ

j

p(Ij(x) | Lx = BG) > p1(I(x)) ’x œ A . (4.17)

Apparently the first feature channel (red) is not considered, even if it supports
the foreground with the highest probability. Using the mass functions defined in
Equation (4.12) and fuse them with Dempster’s rule of combination, this problem
is solved elegantly, since in the aforementioned case it yields

Bel(FG) > Bel(BG) ’x œ A . (4.18)

This may be explained by the fact, that the Dempster-Shafer evidence theory as-
signs more support to high probabilities whereas the Bayesian model more strongly
supports small probabilities.

The same e↵ect of the evidence theory can be observed in real images, where the
Bayesian model does not segment parts of the object, because one of the feature
channel is close to zero (e.g. Figure 4.1, or the tent in Figure 4.6). Conversely,
the proposed method converges to a good segmentation in these regions because
the other feature channels strongly support the foreground region. The e↵ect of a
feature channel close to zero can also be seen in Figure 4.5. Analyzing the upper
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Figure 4.4: Precision-Recall-Diagram. Circles mark the performance using
Dempster-Shafer theory of evidence, x marks the performance using Bayes. The
black marks mark the mean performance (Dempster-Shafer: 0.93, 0.83; Bayes: 0.81,
0.82).

part of the flower, the proposed method converges to a good segmentation because
of this e↵ect. In some situation this e↵ect can also lead to better results using the
Bayesian approach (see lower left part). Visually the Bayesian model leads to a
better segmentation. However, analyzing the statistical models the segmentation
result of the proposed result is more meaningful.

To evaluate and demonstrate the impact of the novel feature fusion, 47 images
from the Berkeley segmentation dataset [MFTM01] were chosen. The restriction to
this small subset is due to practical reasons, because most of the other images are
not suited for binary variational image segmentation. To measure the performance,
precision and recall are calculated for each of the images, which are defined by:

Precision =

|G fl R|
|G fl R| + |R \ G| , Recall =

|G fl R|
|G fl R| + |G \ R| , (4.19)

where G is the ground-truth foreground object and the region R is the object-
segment derived from the segmentation. A precision value near one means that
only a few non object regions are segmented and a recall value near one means that
most object regions are segmented. Thus, a perfect segmentation has a precision
and recall value near one. The ground-truth foreground is the manual segmented
foreground from [MO10], which is publicly available. For both frameworks the same
manually selected initialization is used for each image, which was typically a rectan-
gle inside the object. Manually initializations are used, since both methods find local
minimizers of the given energy functional, thus a manual initialization yields more
reliable results. The regularization parameter was chosen slightly di↵erent between
the frameworks but remained the same for all images. The probability densities
where modeled as nonparametric Parzen estimates [RBD03]. In these examples,



4.1 Energy Function including Dempster’s Theory of Evidence 57

Figure 4.5: Image taken from the Berkeley dataset [MFTM01]. The left image shows
the segmentation result using the Bayesian model to fuse the CieLab-Color channels,
the right image shows the result using Dempster-Shafer theory of evidence to fuse
the information. Di↵erences in the segmentation result are highlighted.

modeling the densities as multivariate Gaussian-Mixture-Models for the Bayesian
approach had no positive e↵ect.

The performance of all images is shown in Figure 4.4. Using the Bayesian frame-
work to fuse the information leads to a mean precision of 0.81 and a mean recall
of 0.82 while the mean precision using the proposed Dempster-Shafer theory is 0.92

and the mean recall is 0.83.

Figures 4.1, 4.5 and 4.6 show some example segmentations on images from the
Berkeley segmentation dataset. Using the proposed method to fuse the di↵erent
information helps to segment and separate much better the semantically interesting
and di↵erent regions by searching for features that support the foreground region
or the background region. Analyzing the lower right Example of Figure 4.6 shows,
that the Bayesian model segment parts of the swamp, because one channel does not
support the background. However, in some situations the proposed model leads to
slightly worse segmentations. E.g. analyzing the tail or the pecker of the bird, some
parts are not segmented due to the smoothness term.

Example segmentations integrating texture features are given in Figure 4.7. The
texture features used here are defined by the structure tensor:

J‡ = K‡ ú (ÒIÒIT
) =

A
K‡ ú I2

x1 K‡ ú Ix1Ix2

K‡ ú Ix1Ix2 K‡ ú I2
x2

B

. (4.20)

Thus, the structure tensor is defined by the spatial derivatives smoothed by a Gaus-
sian kernel K‡ with standard deviation ‡ [DZ86, BGW91, CRD07].
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Figure 4.6: Images taken from the Berkeley dataset [MFTM01]. The left image
shows the segmentation results using the Bayesian model to fuse the CieLab-Color
channels, the right image shows the results using Dempster’s theory of evidence to
fuse the information. Each example shows that the evidence theory can help to
improve the segmentation.
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Bayes Dempster-Shafer Bayes Dempster-Shafer

Figure 4.7: Segmentation results using either the probabilistic Bayesian model or
Dempster’s theory of evidence to fuse color and texture information.

Again the proposed method separates the interesting regions much better than
the Bayesian approach.

In [DPTA+13], Derraz et al. proposed to use a minimization scheme based on the
Split Bregman method [GBO10] to globally optimize the energy functional. They
used the same definition of mass functions given in Equation (4.12) and showed that
for some images a global minimum outperforms the proposed local segmentation
scheme. However, in some situations a global minimum does not yield the desired
results. This is due to the fact, that the model assumptions are not always fulfilled.
Therefore, additional user priors are suitable to be included in the segmentation
scheme. The next chapter will show how such user priors, interpreted as hard
constraints are integrated into the proposed variational segmentation method.

4.2 Interactive Variational Image Segmentation

Most existing level set methods [CV01, RP02, CRD07], e.g. the one proposed in
the previous chapter, are not qualified as an interactive segmentation tool. The
corresponding initial value problem propagates the region boundary to a local min-
imum of the continuous energy function without allowing the user to correct the
final segmentation result. Thus, the only user interaction a↵ecting the segmentation
result is providing an initial curve, e.g. a rectangle around the object of interest. In
contrast to the variational approaches, discrete energy minimization segmentation
frameworks such as graph cut approaches [SM00, BJ01, RKB04] provide an elegant
way to treat user interaction to guide or correct the segmentation process.

A simple rule-based reasoning is usually used to integrate user interaction into
the segmentation process:

• if the user marks a pixel as an object, then it is forced to be object,
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Figure 4.8: Segmentation results using the proposed user-interactive segmentation
framework. The left example is a James Bond photo from the Internet1and the right
one is from the Berkeley Segmentation Database [MFTM01].

• on the contrary a pixel is background if the user marks it as background,

• pixels that are not marked by the user are either foreground or background.

These so-called hard constraints can also be found in [BJ01, RKB04, CFRA07].
These methods learn foreground and background appearance based on the given
user information, whereas variational approaches use the current curve to learn
these models.

4.2.1 Integration of User Constraints

Level set methods for interactive organ segmentation have been proposed earlier by
Cremers et al. [CFRA07]. They developed a statistical framework integrating user
interactions. In addition to an initial boundary they provide a framework, where
the user is able to mark object and background regions in terms similar to a shape
prior. Thus the user can indicate which areas are likely to be part of the object or the
background. However, the foreground and background appearances are not learned
from the given user information. In contrast, the proposed framework based on
Dempster’s theory of evidence which actually also uses the appearance information
contained in the user defined regions.

The evolving boundary is directly driven by the following three terms:

• the intensity information contained in the image [ZY96],

• the user labeling in terms similar to a shape prior [CFRA07] and

• the intensity information of the user labeling ([BJ01, SR11a]).

Due to these terms, user defined regions have a global influence on the segmenta-
tion, whereas other frameworks only allow local refinement of the segmentation (e.g.
[CFRA07, BJ01]).

1
http://www.moviepilot.de/files/images/0005/1919/James_Bond_article.jpg

http://www.moviepilot.de/files/images/0005/1919/James_Bond_article.jpg
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Analogue to Cremers et al. [CFRA07] a given image I : � æ Rn and a user input
L, marking certain image locations as object or background regions, are assumed.

L : � æ {≠1,0,1} , (4.21)

where the label values reflect the user input:

L(x) =

Y
__]

__[

1, x marked as object,

≠1, x marked as background,

0, x not marked.

(4.22)

This user-defined labeling L(x) needs to be integrated as a constraint into the energy
function (4.8). This is realized by the following novel energy function:

E(Ï) = Eimage(Ï) + Ecurve(Ï) + Euser(Ï)

¸ ˚˙ ˝
new

(4.23)

where the user term Euser consists of two di↵erent terms:

Euser = ‹2 · Euser≠shape + Euser≠image . (4.24)

The first term of this user-defined energy function is defined similar to [CFRA07]
by

Euser≠shape = ≠1

2

⁄

�
L‡(x)sign(Ï(x)) dx , (4.25)

with a Gaussian smoothed label function

L‡(x) =

⁄

�
L(x)K‡(x) dx . (4.26)

Thus, the label function is smoothed by a Gaussian kernel K‡ with standard devi-
ation ‡:

K‡(x) =

1

2fi‡2 exp

A

≠(x1 ≠ x2)
2

2‡2

B

. (4.27)

This model has two free parameters ‹2 and ‡ which can be interpreted as follows.
The parameter ‹2 provides the overall weight of the user interaction and determine
how strongly the user input will a↵ect the segmentation. The parameter ‡ defines
the spatial range within which a point labeled as object or background will a↵ect
the segmentation. It can therefore be interpreted as a brush size.

Having in mind, that the sign function can be expressed using the Heaviside
function sign(Ï(x)) = 2H(Ï(x)) ≠ 1 the user-shape energy can be written in the
form

Euser≠shape = ≠
⁄

�
L‡(x)H(Ï(x)) dx , (4.28)
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since the term ≠1
2L‡(x) is independent from Ï(x).

The novel second term Euser≠image of Euser is inspired by the image energy Eimage

and is defined as follows:

Euser≠image =

⁄

�
H(Ï) log muser(FG) dx

≠
⁄

�
(1 ≠ H(Ï)) log muser(BG) dx .

(4.29)

The mass function muser is, in contrast to the mass function mimage, defined by the
marked regions while the function mimage is defined by the image regions divided
by the curve. Finally, the terms Eimage(Ï) and Ecurve(Ï) are given by (see Equation
(4.8)):

Eimage(Ï) = ≠
⁄

�
H(Ï) log mimage(FG) dx

≠
⁄

�
(1 ≠ H(Ï)) log mimage(BG) dx ,

Ecurve(Ï) = ‹1

⁄

�
|ÒH(Ï)| dx

(4.30)

Thus, mimage = mimage,1 ¢ . . . ¢ mimage,k is the joint mass of the di↵erent image
channels, that are given according to Equation (4.12):

mimage,j(ÿ) = 0 ,

mimage,j(FG) = mimage,j(Lx = FG) = pimage(Ij(x) | Lx = FG) ,

mimage,j(BG) = mimage,j(Lx = BG) = pimage(Ij(x) | Lx = BG) ,

mimage,j(�) = 1 ≠ (pimage(Ij(x) | Lx = FG) + pimage(Ij(x) | Lx = BG)) .

(4.31)

This is the same information used in the previous chapter, where the likelihoods
p(Ij(x) | Lx = FG) = pimage(Ij(x) | Lx = FG) are learned on basis of the current
contour.

In contrast, muser = muser,1¢. . .¢muser,k is directly learned from the user labeling
L:

muser,j(ÿ) = 0 ,

muser,j(FG) = muser,j(Lx = FG) = puser(Ij(x) | Lx = FG) ,

muser,j(BG) = muser,j(Lx = BG) = puser(Ij(x) | Lx = BG) ,

muser,j(�) = 1 ≠ (puser(Ij(x) | Lx = FG) + puser(Ij(x) | Lx = BG)) .

(4.32)

Euser≠shape can be interpreted as a user-defined shape prior, while Euser≠image

takes the image information on the marked regions into account and can therefore
be interpreted as an indicator for the appearance of a region.
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Fusing the mass functions mim and muser contained in Eimage and Euser≠image

respectively, with Dempster’s rule of combination yields an energy functional of the
form:

E(Ï) = ≠
⁄

�
H(Ï) log m(FG) dx ≠

⁄

�
(1 ≠ H(Ï)) log m(BG) dx

¸ ˚˙ ˝
data term + user defined term

+ ‹1

⁄

�
|ÒH(Ï)| dx

¸ ˚˙ ˝
curve constraint

≠‹2

⁄

�
L‡H(Ï) dx

¸ ˚˙ ˝
user-shape

,
(4.33)

where the mass function m = mimage ¢ muser fuses the image data given by mimage

and the user data given by muser according to Dempster’s rule of combination. Min-
imizing (4.33) using variational methods and gradient descent leads to the following
partial di↵erential equation:

ˆÏ

ˆt
= ”(Ï)

C

log

A
m(FG)

m(BG)

B

+ ‹1div

A ÒÏ

|ÒÏ|
B

+ ‹2L‡

D

. (4.34)

The Dempster-Shafer theory of evidence is used to fuse the information since fea-
ture channels with low support have a lower influence on the evolving boundary.
This is helpful because the user-defined regions can be very sparse, which means
that the resulting channel-histograms can have regions where neither the object nor
the background region is supported. Using the Bayesian framework for fusing this
information would lead to small probabilities for both regions, ignoring all other fea-
ture channels, especially the image feature channels. With the proposed framework
based on Dempster’s rule of combination, this would be interpreted as uncertainty
meaning that the other feature channels are not a↵ected by this feature.

In contrast to the work of Cremers et al. [CFRA07] the proposed framework not
merely provides an indication in terms of a shape prior for the segmentation, but
actually uses the intensity information given by the user labeling. This information
is further combined with Dempster’s rule of combination, instead of multiplying
the di↵erent probabilities, to represent inaccuracy and uncertainty. While the user
labels in [CFRA07] principally have only local support to the evolving boundary and
thus to the final segmentation, our framework allows global support for user defined
regions. Figure 4.9 shows the proposed general interactive segmentation workflow.
Given an initial curve without additional user information marking foreground or
background, the segmentation follows the left hand side of the figure, that is the
same framework proposed in the previous chapter. If the user provides additional
information, e.g. in form of user strokes, likelihoods are learned and included in the
minimization process (see the right hand side of the figure). An important property,
of the proposed framework is the possibility to directly a↵ect the evolution of the
curve.
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General Interactive Segmentation Paradigm:

select initial boundary

check for new user information

image channel 1 ... image channel k user channel 1 ... user channel k

learn image
models pimage,i,1

... learn image
models pimage,i,k

learn user
models puser,i,1

... learn user
models puser,i,k

compute mass functions mimage,j compute mass functions muser,j

fuse image information to mimage fuse user information muser

fuse image and user information according to Dempster’s rule of combination

evolve curve according to Euler-Lagrange equation

Figure 4.9: Proposed user interactive image segmentation paradigm based on com-
bining the variational framework and Dempster-Shafer theory of evidence to fuse
image and user given information. First the user has to select an initial curve;
Without further user information, the segmentation follows our previously proposed
method. During curve evolution, the user can provide additional information, that
is included in the minimization process to refine the segmentation.
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Table 4.1: Results of our user study. While the mean F1-measure is comparable for
all methods, the proposed method (highlighted in blue) required significantly fewer
user interactions, comparing the average number of strokes.

Image Graph Cuts [CFRA07] proposed Method

Lady Bug 4.33 str. 1.3 str. + 2 clicks 1.3 str. + 2 clicks
Eagle 9.33 str. 7 str. + 2 clicks 5.5 str. + 2 clicks
Bird 7.83 str. 2.3 str. + 2 clicks 1.83str. + 2 clicks
Flowers 7.17 str. 6.6 str. + 2 clicks 4 str. + 2 clicks
Soldier 9.33 str. 10.3 str. + 2 clicks 7.33 str. + 2 clicks
mean F1 0.9623 0.9491 0.9547

4.2.2 Experimental Results

In this section experimental results of the proposed user-interactive segmentation
framework are presented. Several qualitative results are shown in Figures 4.8 and
4.10 where the proposed method is compared to graph cuts [BJ01], see Chapter
3.2. This method was chosen for comparison since it is a widely used interactive
segmentation method. The example images used for the experiments are natural
images taken from the Berkeley segmentation dataset [MFTM01]. Furthermore the
proposed framework is quantitatively compared to the user-interactive framework
proposed in [CFRA07].

Additionally to the qualitative results, a user study was performed, where six
persons segmented five real images with the proposed framework, the framework
in [CFRA07] and the graph cut segmentation tool. In these moderately di�cult
examples (e.g. the soldier in Figure 4.11) the proposed framework needed signifi-
cantly fewer user-interactions while the mean F1 measure over all segmented images
is comparable. The F1 measurement used here is the harmonic mean of precision
and recall calculated on the foreground pixels. It is defined by:

F1 = 2 · Precision · Recall

Precision + Recall
. (4.35)

The quantitative results of our user study are summarized in Table 4.1. Figure
4.11 shows some qualitative results of the segmented images. Important to notice
is the fact, that users tend to make longer strokes using graph cuts. Especially
the two initial strokes are very large (see Figure 4.10 and 4.11) compared to the
small strokes in our framework. The average stroke size (length) with the proposed
method is approximately half of the stroke size within the graph cut framework.
Although the proposed method is not implemented on the GPU, the total time for
segmenting the images was almost the same for both methods. In addition the users
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are able to guide the evolving boundary instead of changing the final segmentation,
which is slightly more intuitive.

Note: The proposed method was not compared to other segmentation frameworks
like e.g. GrabCut [RKB04], but the results presented in [RKB04] are very close to
what the users achieved in the study.

4.3 Discussion

In Chapter 4 the Dempster-Shafer theory of evidence, as an extension of the Bayesian
model, is proposed for the task of variational image segmentation based on level sets.
Appropriate mass functions are defined and integrated in the energy minimization
process. The main property of this theory, in contrast to Bayes, is to combine
information arising from di↵erent feature channels by modeling inaccuracy and un-
certainty at the same time. It therefore allows to fuse these information and resolve
conflicts more intuitively. Several experiments on real and synthetic images demon-
strated the properties and advantages of using the Dempster-Shafer evidence theory
for image segmentation.

Furthermore the model including Dempster’s theory of evidence is extended by
means of user interaction, resulting in an intuitive interactive segmentation frame-
work. The user interactions, in form of strokes marking foreground and/or back-
ground, are integrated elegantly into the framework to allow more precise segmen-
tations. Therefore, a user-defined shape prior (local influence) and a user-defined
image model (global influence) is defined and combined with the traditional frame-
work. The impact of the proposed framework is demonstrated by several experi-
ments on natural images and a user study, comparing the framework to other well
known interactive segmentation frameworks. With the novel extensions the level
set based interactive segmentation framework allows small user interactions having
global influence on the evolving boundary. In comparison to graph cut, the pre-
sented framework needs significantly fewer user interactions to produce high-quality
segmentations.

Overall, a segmentation framework is developed, that involves the user with very
little e↵ort but full control to allow segmenting objects in an image quickly and
accurately. The proposed variational segmentation framework based on Demp-
ster’s theory of evidence was further extended to integrate available 3D information
[FSRW10]. Therefore, a segmentation scheme using multi-view silhouette fusion is
integrated into the proposed framework as additional information. A quick review
of this approach can be found in the Appendix A.2.
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initialization (2 clicks) initialization (5 strokes)

segmentation result segmentation result

user interactivity (4 additional
strokes)

user interactivity (9 additional
strokes)

segmentation result after user re-
finement (initialization (2 clicks),
1 foreground- and 3 background
strokes)

segmentation result after user re-
finement (11 foreground- and 3
background strokes)

Figure 4.10: Segmentation results comparing the proposed interactive segmentation
framework (left) and graph cut (right). The proposed segmentation algorithm needs
significant fewer user interactions (red and blue strokes) to produce a slightly better
result.
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2 strokes + 2 clicks 12 strokes 6 strokes + 2 clicks 11 strokes

6 strokes + 2 clicks 9 strokes

3 strokes + 2 clicks 5 strokes

Figure 4.11: Segmentation results from the user study using the proposed variational
framework (left) and graph cut (right). The yellow curves describe the segmentation
boundaries, while the blue and red strokes mark the user defined regions.
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Since Boykov and Jolly [BJ01] presented their approach for interactive image seg-
mentation, discrete energy minimization using graph cuts became a widely used
framework for image segmentation. Besides variational approaches using level sets,
see Chapter 4, graph cut approaches are often used for binary segmentation problems
[GPS89, KZ04, BRB+04, KT05, Li09]. In the recent years, the graph cut approach
was continuously extended, e.g. to solve multi-label problems [DB09].

However, an important drawback of the discrete optimization approach is their
complexity. This means, that the approach by Boykov and Jolly is not able to e�-
ciently segment high resolution images or video sequences due to their running time
and memory requirements. The reason for this drawback is the correspondence be-
tween number of variables in the energy function and number of pixels in the image.
Since the graph cut framework is an approach for interactive image segmentation it
is necessary to have a small lag of time between user interaction and segmentation
result. Therefore, it is important to reduce the complexity of the approach or the
runtime to minimize the energy function.

The contributions of this chapter aim to reduce the complexity of the approach
by simplifying the graph corresponding to the discrete energy function. Simplify-
ing the graph means reducing the number of variables and thus reducing the lag
of time between user interaction and the segmentation result. The first proposed
approach, called SlimCuts simplifies the graph by contracting so-called simple edges.
By contracting an edge in the graph the number of variables is reduced by one. An
important characteristic of these simple edges is that they are e�ciently to find and
by contracting those edges, the maximum flow is preserved. Thus the segmenta-
tion result computed on the simplified graph is equal to the result computed on the
original graph.

The amount of graph reduction of the SlimCut approach is limited by the number
of simple edges. Therefore a second approach, that contract edges of similar pixels
is proposed. Dempster’s theory of evidence is used to fuse the terms of the discrete
energy function to define a similarity weight for neighboring pixels. Similar pixels
in the image are grouped by contracting the edge connecting the pixels in the un-
derlying graph. The experimental results show that the number of variables can be
reduced dramatically with only small changes in the segmentation result.

Finally, Dempster’s theory of evidence is integrated into the discrete energy mini-
mizing framework to fuse color and depth information in a novel way. The following
chapters base directly on my publications [SR11b, SSR12, SGR13].
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5.1 SlimCuts: High Resolution Image
Segmentation

This chapter proposes an algorithm for interactive image segmentation using graph
cuts. It can be used to e�ciently solve labeling problems on high resolution images
or resource-limited systems. The basic idea of the proposed algorithm is to simplify
the original graph while maintaining the maximum flow properties. Thereby the seg-
mentation result stays the same. The resulting Slim Graph can be solved with stan-
dard maximum flow/minimum cut-algorithms. It will be shown that the maximum
flow/minimum cut of the Slim Graph corresponds to the maximum flow/minimum
cut of the original graph. Experiments on image segmentation show that using the
proposed graph simplification leads to a significant speedup and memory reduction
of the labeling problem. Thus large-scale labeling problems can be solved in an
e�cient manner even on resource-limited systems.

Discrete optimization of energy minimization problems using maximum flow al-
gorithms have become very popular in the fields of computer vision [BK04]. This
has been driven by their ability to e�ciently compute a global minimum of special
energy functions occurring in computer vision problems. Examples for such energy
functions include image segmentation, image restoration, dense stereo estimation
and shape matching [BRB+04, BK03, LB07].

In parallel to the improvement of discrete energy minimization algorithms [BVZ01,
BK03, KT05, RKB04, BT08, Kom10], the resolution of single images and image se-
quences increased significantly. Compared to standard benchmark images, which
have an approximate size of 120.000 pixels, nowadays commercial cameras capture
images with many more pixels, e.g. more than 20 million. Since most energy func-
tions for image segmentation or stereo matching contain one discrete variable per
pixel, the minimization using maximum flow algorithms can be computationally
extremely expensive.

Prior Work

Research on solving discrete optimization problems using maximum flow / minimum
cut algorithms for applications in computer vision can be divided into the following
approaches:

Augmenting paths: Due to the works of Boykov and Kolmogorov the so-called
Boykov and Kolmogorov augmenting paths algorithm (BK-algorithm) [BJ01, BK04]
is widely used for computer vision problems. This algorithm e�ciently solves mod-
erately sized 2D and 3D problems with low connectivity. In [SK10] Strandmark and
Kahl proposed a parallel implementation of the BK-algorithm, where subproblems
are iteratively solved on multiple cores or multiple machines.
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(a) (b) (c)

Figure 5.1: Example segmentation using Apple’s iPhone 4. (a) shows the image
with user scribbles marking foreground (red) and background (blue); (b) label map
defined by the proposed Slim Graph. White and gray pixels denote fore- and back-
ground, black regions are unlabeled pixels; (c) final segmentation depicted in red.

Push-relabel: Most parallelized maximum flow/minimum cut algorithms have
been focused on push-relabel algorithms [DB08]. These methods outperform the
traditional BK-algorithm for huge and highly connected grids [BK04]. An algorithm
that involves GPU processing is CUDA cuts, presented by Vineet and Narayanan
[VN08]. In contrast to these algorithms the proposed SlimCuts does not use special
hardware (multiple cores, GPU) to reduce the computational time.

Convex optimization: Formulating the maximum flow/minimum cut problem
as a linear program is another promising approach to parallelize graph cuts. Assum-
ing only bidirectional edges, the maximum flow problem can be reformulated as an
l1 minimization problem [BT08]. In [KSK+08] Klodt et al. used GPU based convex
optimization to solve continuous versions of graph cuts. However, the speedup using
a GPU is low compared to the BK-algorithm and the main advantage of continuous
cuts is to reduce metrication errors due to discretization.

Multi-Scale: Besides the approaches to parallelize the maximum flow/minimum
cut problem to outperform existing algorithms, multi-scale processing is an approach
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to reduce memory and computational requirements of optimization algorithms. The
idea to e�ciently solve large scale optimization problem is to first solve the problem
at low resolution using standard techniques [PB99]. The resulting low resolution
labeling is refined on the high resolution problem in a following optimization step.
Boundary banded algorithms [LSGX05, SG06] are examples for multi-scale image
segmentation of high resolution images. Kohli et al. [KLR10] proposed an un-
certainty driven multi-scale approach for energy minimization allowing to compute
solutions close to the globally optimum. However, both approaches su↵er from the
problem that they are not able to e�ciently recover from large scale errors present
in the low resolution result.

Grouping of variables: Another simple and widely used technique merges vari-
ables of the energy function. The number of variables is reduced by segmenting
the image into a small number of patches (called superpixels) [SM00, FH04]. Those
groups are represented by a single variable in the energy function. This idea has
been used for solving problem instances of object segmentation and stereo matching.
Besides a number of well known image partitioning methods [FH04, CM02, LSK+09,
VBM10], Kim et al. presented a method [KNKY11] where the terms of the energy
function and the algorithm proposed by Felzenszwalb and Huttenlocher [FH04] are
used to decide if two variables should be merged.

Graph sparsification: In the field of applied mathematics graph sparsification
and graph simplification is an important matter. Karger and Stein proposed the
Recursive Contraction Algorithm in [KS96]. The algorithm relies on the idea that
the minimum cut is a small set of edges and a randomly chosen edge is unlikely
to be in this set. They randomly contract edges and showed that the minimum
cut is found with high probability. However, it is not guaranteed that the cut is
optimal and it does not exist a fast prove that the minimum cut is found. Simi-
larly Bencúr and Karger [BK96] and Spielman and Teng [ST04] proposed algorithms
based on random sampling to approximate the minimum cut of a given graph. In
contrast to these approximating algorithms, the proposed SlimCuts maintain the
global optimal solution. In [CGK+97], Chekuri, Goldberg et al. developed heuris-
tics to improve practical performance of minimum cut algorithms. They propose
to use the Padberg-Rinaldi heuristic [PR90] to contract edges that are not in the
minimum cut. Therefore they apply several so-called PR tests to identify those
edges. In practice the PR tests are computationally too expensive for large graphs.
In [HKR+01], Hogstedt et al. proposed a number of heuristically graph algorithms
to simplify partitioning of distributed object applications. For the special case of
an s-t minimum cut (two machine nodes) their condition for graph simplification
preserves one minimum cut. In 2011, Lermé et al. proposed a similar approach
for graph sparsification [LLM11]. Based on flow assumptions on regions, where the
total flow on the boundary is analyzed, the graph simplified. In the experiments,
the minimum cut was preserved. However they did not showed that the maximum
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flow is preserved in all cases.

In contrast to these approaches, the edges to build a Slim Graph are e�cient
to find and contract and the simplification guarantees that all minimum cuts are
preserved. Thus, the maximum flow is preserved.

Contribution

To e�ciently solve large-scale labeling problems a so-called Slim Graph is computed
by simplifying the original graph. Therefore, nodes that are connected by a so-
called simple edge are identified and contracted, without changing the value of the
maximum flow and the corresponding minimum cut. Nodes that are connected by
a simple edge will have the same label in the final segmentation. Thus, they can
be merged into a single node and the number of variables is reduced. The original
graph is hence reduced to a Slim Graph without changing the minimum energy
state. The proposed simplification can be applied to each of the aforementioned
algorithms. Thus the proposed algorithm provides a general speedup and memory
reduction without su↵ering from the problem of large scale errors or the use of special
hardware, e.g. GPU or multiple processors.

Besides the speedup and memory reduction, the merged nodes can help the user to
set the parameter included in the minimization problem and to guide the user. Vi-
sualizing the simplified graph reveals which areas of the image / graph are assigned
to foreground or background because of the prior information. Even for high reso-
lution images, this provides a fast feedback where further user strokes are necessary
to satisfactory solve the segmentation problem.

The proposed algorithm is neither a parallelization of an existing algorithm nor a
multi-scale approach to speedup and reduce the amount of memory of graph cuts.
Hence, it does not su↵er from the problems of these methods. In contrast to the
works in the field of applied mathematics on graph sparsification and graph simpli-
fication, where the minimum cut is approximated, the proposed method guarantees
that the value of the minimum cut is preserved. The given condition to test whether
an edge is simple or not is computationally cheap and applicable for large-scale
problems.

5.1.1 Constructing Slim Graph

In this section the construction of a so-called Slim Graph it explained. By merging
or rather contracting nodes that are connected by simple edges, the original graph
is reduced to a Slim Graph. First, these special simple edges are defined and it is
proven that these edges are not part of any minimum cut. Based on this Lemma,
it is proven that the minimum cut of a Slim Graph corresponds to the minimum
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cut of the original graph and can be used to minimize the large-scale optimization
problem.

Lemma 1 Let G = (VG, EG) be a graph, A,B œ VG, eA,B œ EG the edge from node A
to node B and C a minimum s-t-cut.
If

c(eA,B) >
ÿ

i:ei,AœEG
i”=B

c(ei,A) or c(eA,B) >
ÿ

i:eB,iœEG
i”=A

c(eB,i) (5.1)

then
eA,B /œ C. (5.2)

Simply spoken: If the weight of one edge e of node A is bigger then the sum of all
edges adjacent to A, then the minimum cut C does not contain the edge e.

Proof: Following Shannon, the value of the maximum flow is equal to the value
of a minimum cut. The value of the maximum flow in G can be computed with
the augmenting path-algorithm of Ford-Fulkerson [FF56]. Following this algorithm
paths from s to t are searched and augmented, as long as there exists a path from
s to t. Because of Equation (5.1) the edge eA,B will never become saturated, which
means that the edge is not part of the minimum cut C ∆ eA,B /œ C. ⇤

Those edges eA,B œ EG fulfilling Equation (5.1) are called simple edges.

A similar Lemma was also given by Hogstedt et al. [HKR+01]. They defined a
so-called dominant edge, with a stronger condition. Having a dominant edge e, there
exists a minimum cut not containing this edge. In contrast, condition (5.1) results
in a simple edge e that is not contained in any minimum cut. That means that all
minimum cuts are preserved when contracting only simple edges.

Simplifying a graph:

With the following rules a graph is simplified and the number of variables of the
maximum flow/minimum cut problem is reduced:
Let G = (VG, EG) be a graph with a simple edge eA,B œ EG connecting nodes A,B œ
VG. Without loss of generality, let eA,B fulfill the left condition of Equation (5.1).
Then the Slim Graph ÂG = (

ÂVG, ÂEG) is constructed as follows:

Nodes:

ÂVG = VG \ {A,B} fi {AB}. That means nodes A and B are merged to
node AB by contracting the edge eA,B. The number of nodes in the Graph is
reduced by one, since one new node is added and tow nodes are removed.

Edges: The following two cases are distinguished:
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Figure 5.2: Example of contracting an edge to build a Slim Graph (ii) out of the
original graph (i) because of a simple edge between nodes A and B. The given rules
contract nodes A and B to a single node {A,B}, replace edges connected to one of
the nodes and merge edges that are connected to both nodes.
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(i) For all nodes i œ VG connected to exactly one of the nodes A or B:
Without loss of generality, let ei,A be the edge connecting node i with
node A (ei,B /œ EG). Then the edge ei,A is replaced by a new edge ei,AB

with c(ei,AB) = c(ei,A). This operation does not change the number of
edges.

(ii) For all nodes i œ VG connected to both of the nodes A and B with edges
ei,A and ei,B or eA,i and eB,i. The two edges are merged, resulting in a
new edge ei,AB or eAB,i with the capacity c(ei,AB) = c(ei,A) + c(ei,B) or
c(eAB,i) = c(eA,i) + c(eB,i). This operation reduces the number of edges
by one.

Figure 5.2 shows the construction of a Slim Graph. Assuming a simple edge eA,B,
the nodes A and B are merged to a single node {A,B}. Edges connected to ex-
actly one of the nodes are replaced by new edge. In the given example, these nodes
are 1, . . . i ≠ 1, j + 1, . . . N . The edges eA,1 . . . eA,i≠1, eB,j+1, . . . eB,N are replaced by
new edges eAB,1 . . . eAB,i≠1, eAB,j+1, . . . eAB,N without changing the capacities of these
edges. Nodes that are connected to both A and B in this example are i, . . . j. For
these nodes, the two edges eA,h and eB,h are merged to one edge eAB,h with capacity
c(eAB,h) = c(eA,h) + c(eB,h). The resulting Slim Graph has one node and j ≠ i edges
less than the original graph.

The following theorem shows the connection of the minimum cut of a graph and
its simplified Slim Graph.

Theorem 1 Let G = (VG, EG) be a graph, A,B œ VG, eA,B œ EG a simple edge
connecting nodes A and B and f the maximum flow in Graph G. Since eA,B is a
simple edge the Slim Graph ÂG = (

ÂVG, ÂEG) can be computed by contracting the edge
eA,B. The value of the maximum flow Âf of graph ÂG is equal to the value of the
maximum flow in the original graph

|f | = | Âf | . (5.3)

Simply spoken: By contracting a simple edge eA,B, the maximum flow is preserved!

Proof: Following lemma 1 one knows that eA,B /œ C, where C is a minimum cut
of G. This implies that the simple edge never becomes saturated. Therefore its
capacity can be set to infinity without a↵ecting the minimum cut or the maximum
flow. It follows that both nodes A and B are in the same partition of G\C. W.l.o.g.
let both nodes be in the partition connected to S. Hence the constructed node
AB œ ÂVG in the graph ÂG \ C is connected to S. To prove the theorem one needs to
show that:

(i) the minimum cut C of graph G implies a cut ÂC Õ in ÂG, with |C| = | ÂC Õ|.
(ii) the maximum flow f leads to a flow Âf Õ in ÂG, with the same value |f | = | Âf Õ|
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Figure 5.3: Example of simplifying a graph. (i) original graph with a minimum cut
value of 6; (ii) Nodes S and 1 and nodes T and 9 are connected with a simple edge
and merged respectively; (iii) Nodes S and 4, 2 and 3 and nodes T, 8 and 6 can be
merged due to simple edges in one node respectively; (iv) shows the final Slim Graph
for the example with a minimum cut value of 6. At each step of the construction
the value of the maximum flow remains the same and also the final segmentation
stays the same.
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The first condition provides an upper bound for the value of the minimum cut in ÂG.
On the other hand, the value of the flow | Âf Õ| in graph ÂG provides a lower bound for
the minimum cut. Since they are equal, the value of the maximum flow / minimum
cut does not change in the Slim Graph.
Proof of (i): Let i œ V be nodes with a path to terminal node T œ G \ C. Since
A and B are connected to S, all edges eA,i and eB,i are part of the minimum cut C.
Defining ÂC Õ as follows implies a cut in the Slim Graph ÂG:

ÂC Õ
={ei,j | ei,j œ ÂEG and ei,j œ C}

fi {ei,AB | ei,A or ei,B œ C} (5.4)

Due to the construction of the Slim Graph this definition leaves the value of the cut
unchanged. Hence it holds |C| = | ÂC Õ|.
Proof of (ii): Let i œ V be a node and p = (S, . . . , A,i, . . . , T ) a path from S to
T in G with flow f(p). Following the construction of the Slim Graph the flow f(p)

is preserved by the path Âp = (S, . . . , AB,i, . . . , T ) in ÂG. Hence the maximum flow
of G implies a lower bound for the maximum flow in ÂG. ⇤

Figure 5.3 shows how a Slim Graph can be constructed. By merging nodes that
are connected by a simple edge the original graph (i) is simplified to the Slim Graph
(iv). The value of the maximum flow and the minimum cut can be computed more
e�ciently on the new graph and remains identical. The labeling of the original graph
is implicitly included in the labeling of the Slim Graph.

5.1.2 Slim Graphs for Simplified User Interaction

This section shows how the visualization of a Slim Graph can be integrated into
the segmentation process to simplify user interactions and guide the user where to
place additional strokes. Analyzing the original graph and the process of computing
the Slim Graph shows, that simple edges exists most likely between pixel-nodes and
terminal-nodes. Every pixel i that has been marked by the user or fulfill

≠ log p(I(i) | Li = S) > “ · ÿ

jœNi

dist(i,j)

≠1 · [Li ”= Lj] · exp(≠—ÎI(i) ≠ I(j)Î2
) , (5.5)

where S is either foreground (FG) or background (BG), is connected to the corre-
sponding terminal node by a simple edge. Visualizing these pixels in a label map
results in a partial labeling with pixels labeled as foreground or background due to
user marks or regional properties and unlabeled pixel.

Figure 5.4 shows an example image with user strokes and the label map coming
from the Slim Graph. There are many pixels assigned to foreground or background
due to their regional properties. Based on the given user input the final segmentation
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Figure 5.4: Example of utilizing the Slim Graph to simplify user interaction. (a)
the original image with user scribbles; (b) resulting segmentation using graph cuts
and possible additional user strokes to refine the segmentation (green and red); (c)
the label map defined by the Slim Graph. White and black pixels denote fore- and
background, gray pixels are unlabeled and one additional user strokes (red); (d) final
segmentation result

will have two regions that are assigned a wrong label. To correct the segmentation
the user has to mark these two regions or even one of them as background. That
means the user has three options to a↵ect the segmentation, shown in Figure 5.4b.
In the label map coming from the Slim Graph there is exactly one region assigned
a wrong label. That implies that the user has to mark this region as background
to achieve a correct label map. In an optimal situation this user mark would also
correct the labeling of the other region, leading to a good segmentation result with
only one additional user mark. This situation is exemplarily shown in Figure 5.4c.
Marking the wrong labeled region in the label map, guide the user to the desired
segmentation 5.4d.
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initialization with prior information
(rough user scribbles)

build the underlying graph for minimization

search simple edges and visualize the Slim Graph

contract simple edges

compute segmentation result
(compute the max-flow of the Slim Graph)

Figure 5.5: General workflow of the proposed SlimCut segmentation framework.

Using the proposed label map as additional information hints the user to place
strokes in regions with high regional support. On the one hand this can lead to less
user interactions for the problem of image segmentation and on the other hand, the
label map can be computed very e�ciently. That means, that it is much faster to
start refining the label map of a high-resolution image than refining the segmentation
result itself. In the given example using the Slim Graph for user guidance, the user
interaction is reduced to one additional stroke. Furthermore, instead of computing
the maximum flow two times it is required only once. The workflow of the proposed
SlimCut segmentation framework is visualized in Figure 5.5.

5.1.3 Experiments

In this section, the proposed method is evaluated on small-scale images from the
database used by Blake et al. [BRB+04] as well as on large-scale images with up to
26 million pixels found on the web. The images, trimaps and ground truth data is
available online1,2. In the experiments the same energy function proposed by Blake
et al. [BRB+04] and the same set of parameters are used. Since the proposed graph
simplification was proven to not change the segmentation result segmentation results

1
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediti

ng/segmentation/grabcut.htm

2
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Figure 5.6: Small-scale images: Running time over 46 benchmark images [BRB+04]
with image sizes between 481◊321 and 640◊480 pixels. The average speedup of the
proposed method compared to BK-algorithm [BK04] on these small-scale problems
is 40%. The maximum and minimum speedup is 70% and 14% respectively. The
running time of the proposed method includes the reduction of the original graph.

are not shown and evaluated. Instead, the contribution is evaluated by comparing
the computational time of the BK-algorithm with and without using the proposed
Slim Graphs. All experiments were conducted on an Apple MacBook Pro with 2.4
GHz Intel Core i5 processor and 4GB Ram.

Experiments on small-scale images

Figure 5.6 shows the running times of Boykov’s algorithm on the original graph and
the Slim Graph and the running time of simplifying the graph. In the running time
on the original graph the time creating the graph and computing the maximum
flow is included. The times computing the capacities, histograms and learning the
statistical models are excluded. The running time on the Slim Graph further includes
the time for computing the Slim Graph. The experiments on the small scale images
show that using Slim Graphs never a↵ects the running time negatively and can
significantly speedup the segmentation process.

As mentioned earlier, most simple edges exists between pixel-nodes and terminal-
nodes. Since the weight of these edges is defined by the unary term, a second exper-
iment on small scale images, comparing the e↵ectiveness of the Slim Graph under
weak vs. strong unary terms, was performed. Therefore the maximum flow for one
image, three di↵erent trimaps (lasso, rectangle and user strokes) and varying param-
eter “ from 0 (strong unary term) to 100 (weak unary term), was computed. Figure
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Figure 5.7: Weak vs. Strong Unary Terms: Running time over the flower image
(a) with di↵erent trimaps and varying “; (b) Lasso trimap around the flowers; (c)
Rectangular trimap; (d) user strokes provided in (a). Using good initializations (b)
and (c) the proposed algorithm performed significantly faster. Nevertheless, even
with a poor initialization and a weak unary term we achieved a speedup.

5.7 shows the running times of this experiments. It turned out, that the speedup
using Slim Graphs is highest using strong unary terms and trimaps separating fore-
and background with small errors. Regardless, even with weak unary terms and poor
initializations (e.g. rectangular-trimap) the proposed algorithm using the proposed
Slim Graph performed faster and the running time was never a↵ected negatively.

Experiments on high-resolution images

To evaluate the speed up of the proposed method on large-scale problems, high-
resolution images with up to 26 MP were used. These images were down sampled
to several image-sizes. As shown in Figure 5.8, solving the maximum flow problem
on the Slim Graphs significantly speeds up the algorithm. This speed up is achieved
by a large decrease of variables/nodes due to many simple edges. As already shown
by Delong and Boykov [DB08] the problem of the BK-algorithm is that it becomes



84 5 Discrete Energy Minimization with Dempster’s Theory of Evidence

1.03 3.6 8.54 14.53 25.841 ms

1 s

1 min

1 h

image size in MP

tim
e 

(lo
ga

rit
hm

ic
 s

ca
le

)

 

 

simplification
proposed method
BK−algorithm

2.6 s

38 min

Figure 5.8: High-resolution images: Running time with one image and image sizes
up to 25.84 MP. Up to an image size of 8.54 MP, the proposed method was approxi-
mately two times faster. For larger images, the BK-algorithm exceeded the physical
memory so that the proposed method was approximately 877 times faster. On the
original image size of 25.84 MP the computation time of the BK-algorithm was 38
minutes. The proposed method required 2.6 seconds. This time already includes
the graph simplification step.

ine�cient and unusable, if the graph does not fit into the physical memory. This can
be observed in Figure 5.8 by the increasing running time at approximately 8.5 MP.
Due to this limitation the algorithm is greatly extended by the proposed method.
It has to be mentioned, that this problem is not fully solved by the Slim Graph but
it can reduce the size of the data drastically so that Slim Graphs of high resolution
images usually fit into the physical memory.

Experiments on resource-limited systems

The running time of the BK-algorithm was also measured on Apple’s iPhone 4 with
512MB Ram. Therefore, 7 di↵erent sized benchmark images from 0.15 MP up to 2.52
MP were used. The average speedup of using Slim Graphs was approximately 32%.
The limitations of the physical memory prohibited a comparison of larger images.
The results of the experiments are shown in Figure 5.9a. Using Slim Graphs it is
possible to segment images with up to 2.5 MP in 6 seconds on an iPhone 4, while
using the original graph it is only possible to compute segmentations for images with
up to 1.6 MP in approximately 8 seconds. The biggest speedup of approximately
45% was reached on an image with 1.61 MP, because the number of unlabeled nodes
could be reduced from 1.61 million to 446951.
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Figure 5.9: Resource-limited systems: (a): Running time in seconds over 7 di↵erent
sized images. The average speedup using Slim Graphs was approximately 36%.
Running the BK-algorithm without using Slim Graphs was not possible on images
bigger than 1.6 MP. The running time of the proposed method includes the graph
simplification. (b): Example segmentation using Apple’s iPhone 4 and a benchmark
image.

5.2 E�cient Pixel Grouping with Dempster’s
Theory of Evidence

The basic idea of the SlimCut algorithm, proposed in the previous chapter, is to
contract only simple edges so that the maximum flow and thus the segmentation
result stays the same. Besides the property of maintaining the maximum flow,
the e↵ectiveness depends on the number of existing simple edges and in the worst
case, no simple edges exist and the graph is not simplified at all. This e↵ect can
be observed in the experiments on small-scale images using di↵erent initializations.
Having a rectangular initialization, which means imprecise prior models, the speedup
is rather small.

In the following, another algorithm for image segmentation using graph cuts is
proposed that aims to e�ciently solve labeling problems on high resolution images
or image sequences. The basic idea of this algorithm is to group large homogeneous
regions to one single variable. Therefore, the appearance and the task specific simi-
larity is combined using Dempster’s theory of evidence to compute the basic belief
that two pixels or groups will have the same label in the minimum energy state.
In contrast to the SlimCut algorithm this grouping can lead to di↵erent segmenta-
tion results. Experiments on image and video segmentation show that the proposed
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Figure 5.10: Variable grouping for image segmentation. First row: original image;
variable grouping of [KNKY11] with a budget of 1%; proposed variable grouping
(compactedge) with a budget of 1%; Second row: corresponding segmentation re-
sults. Using the same budget the proposed grouping is semantically more meaningful
and leads to a smaller segmentation error.

grouping leads to a significant speedup and memory reduction of the labeling prob-
lem whereas the segmentation is comparable. Thus large-scale labeling problems
can be solved in an e�cient manner with a small approximation loss.

Contribution

The number of variables of the energy function is reduced by an algorithm that
merges variables to small sets of non overlapping groups, so that each group can
be represented by one single variable. The merging follows the idea of [FH04]
and [KNKY11]. In [FH04], Felzenszwalb and Huttenlocher proposed a very well-
known superpixel algorithm, where the grouping is based on appearance. Kim et al.
[KNKY11] proposed to group pixels based on the terms of the energy function. In
contrast to the work of Kim et al. [KNKY11], the task-specific similarity and the
appearance of neighboring pixels / groups is combined using Dempster’s theory of
evidence. Using this theory allows to compute the basic belief that two neighboring
variables should be merged. Furthermore the size of a group is not directly penalized
by proposing new merging constraints (maxedge and compactedge), that follow
the idea to allow large groups of variables in homogeneous regions. Thus, the number
of variables can be reduced drastically. Instead of an accurate maximum a posteriori
solution (map), the goal of the proposed algorithm is to reduce the segmentation
error. Therefore Dempster’s theory of evidence, that is complementary to the terms
of the energy function, is used for the feature fusion. The proposed method is eval-
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uated on standard benchmark images to show that the grouping achieves a better
performance than the methods of [FH04] and [KNKY11]. Furthermore the algo-
rithm is quantified on video sequences and high-resolution images to show that the
segmentation, performed on top of the grouping, results in a similar segmentation
with a dramatic reduction in computational costs and memory requirements.

5.2.1 Variable Grouping based on Dempster’s Theory of
Evidence

This section describes the details of the proposed variable grouping and shows the
similarities and di↵erences to existing approaches. For the grouping of the variables,
the definitions given in [KNKY11] and the notation in [SSR12] is used. A variable
grouping of graph G is a graph GÕ

= (V Õ
G, E Õ

G) with energy function E Õ produced by
a surjective map mG : VG æ V Õ

G and the edge set E Õ
G = {(s,t) œ V Õ

G ◊ V Õ
G | ÷(i,j) œ

EG : mG(i) = s and mG(j) = t}. Thus, the energy function for a variable grouping
GÕ reads:

E Õ
(L) =

ÿ

iœV
·i(

ˆLmG(i)) +

ÿ

(i,j)œE
·i,j(

ˆLmG(i), ˆLmG(j)) , (5.6)

where ˆL is the labeling of the variable grouping. Solving this energy function on top
of the grouping can be seen to correspond to the existing practice of using superpixels
as a preprocessing step and defining the energy minimization problem on superpixels
instead of pixels. Since most superpixels are directly derived from image properties,
they perform poorly because the properties of the energy function, e.g. the unary
term, are ignored. Figure 5.11 shows an example of a variable grouping and the
corresponding graph based on the new energy function.

The idea of grouping nodes is as follows: A score function wij, measuring how
similar two connected nodes i and j are, is assumed. That function is chosen so that
small values indicate a strong similarity and large values dissimilarity.

(i) the first step is to sort all edges of the graph in ascending order so that edges
with a small weight come first,

(ii) for each edge in the list nodes that fulfill a given constraint are merged until
the problem is su�ciently reduced.

The e�cient graph-based segmentation method, proposed by Felzenszwalb and Hut-
tenlocher [FH04], is an example for such a grouping algorithm. To balance the size
of a group and its internal coherence, a global criterion is used to decide if two
nodes or groups of nodes can be merged. Algorithm 5.1 is identical to [FH04] and
[KNKY11] using a slightly di↵erent notation. The merging constraint used in [FH04]
and [KNKY11] is based on the so-called internal di↵erence

Int(C) = max

(i,j)œMST(C,E)
wij ,
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Figure 5.11: Example variable groupings. The nodes from the original graph (a)
are merged into three di↵erent groups of variables (b) and (c), respectively. The
weights of the new graph are changed according to the new energy function. A good
grouping (b) does not change the map solution of the original graph.

where MST(C,E) is the minimum-weight spanning tree within the group of nodes C
with a set of edges E . Int(C) is small if the nodes in group C are similar according to
the defined edge weights. To decide whether two groups are merged, the algorithm
compares the weight of the connecting edge between the two groups C1 and C2 and
compares it with the internal di↵erence Int(Ci) of both groups. For the goal of
grouping variables for energy minimization, this criterion makes sense since groups
of variables should be similar and agree about their labeling. For the decision,
[FH04, KNKY11] use the function MInt(C1,C2) defined as

MInt(C1,C2) = min{Int(C1) + ·(C1), Int(C2) + ·(C2)} ,

where ·(C) =

k
|C| penalizes the size of a group based on a free parameter k. Accord-
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Algorithm 5.1: Dempster-Shafer based Variable Grouping

1: (V Õ
G,m) = DempsterShaferGrouping(G,Ï, w)

2: Input:
3: G = (VG, EG) // an instance of the graph
4: Ïi, Ïi,j // node and edge energies
5: w : EG æ R // dissimilarity weights
6: Output:
7: VG

Õ // set of grouped variables
8: m // surjective map
9: Algorithm:
10: VG

Õ Ω VG, EG
Õ Ω EG

11: m Ω {(i,i) | i œ VG}
12: fi Ω sort(EG, w) // sort weights in ascending order
13: for e = 1, . . . , |fi| do
14: (i,j) Ω fie

15: if m(i) = m(j) then
16: continue // nodes already merged
17: end if
18: if wij fulfills given constraint then
19: merge Ci and Cj in m, VG

Õ

20: end if
21: end for

ing to Algorithm 5.1, when edge wij œ EG fulfills the equation

wij Æ MInt(Ci,Cj) (5.7)

Ci and Cj are merged. As mentioned in [FH04], this graph based method is very
e�cient and easy to implement in O(|EG| log |EG|) time and memory.

Merging Function

The grouping resulting from the algorithms in [FH04] and [KNKY11] can be de-
scribed as compact since the free parameter k in ·(C) penalizes the size of a group.
In [KNKY11] the goal was to produce compact groups of variables that will have the
same label according to the minimum energy state. Therefore the weight functions
are based on the unary or pairwise potentials of the energy function. In contrast,
the proposed algorithm should group as many variables as possible that are likely
to have the same label according to the minimum energy state and to the ground
truth labeling.
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To allow big groups of variables, e.g. in homogeneous regions, new merging con-
straints based on the maximum weight among outgoing edges are proposed. Instead
of using a global criterion, balancing the size and the internal coherence of a group
all nodes that are connected by a su�ciently small edge are merged. E.g. one could
use the function wij Æ W to merge all nodes connected by an edge smaller than
the parameter W . However, it is easy to see that such a simple constraint does not
produce groups of pixels that agree with either the minimum energy state or the
ground truth segmentation. To produce groups of homogeneous variables, two new
merging constraints based on the local edge weights of two nodes are proposed. The
first constraint takes into account the maximum value of any edge connected to one
of the two nodes. Therefore two components connected by the edge wij are grouped
if

wmax(i,j) := max {wik, wlj | (i,k),(l,j) œ EG} Æ W1 (maxedge). (5.8)

This means that two nodes are merged if the weights of all edges adjacent to the edge
(i,j), including the edge wij, are smaller than the parameter W1, which indicates
that these nodes are somewhat similar. The threshold W1 is computed according
to the distribution of the edge weights (e.g. so that 66% of the edge weights are
smaller than W1). Thus, the amount of reduction can be controlled implicitly by
the parameter W1. The idea of the proposed constraint is to have large groups of
variables in all images regions except the borders of the objects. If a node (pixel)
is near the border of an object there should be one edge with a high weight. With
(5.8) this edge guarantees that the node is not merged with any neighbor.

To allow somehow small compact groups of variables in regions that do not fulfill
the maxedge constrained, e.g. at the borders of an object or in noisy image regions,
a second merging constraint is proposed. This constraint combines the maxedge

property with the global constraint based the minimum-weight spanning tree and the
size dependent function · , to balance the size of a group and its internal coherence.
Thus, the decision is made according to

maxedge or wij Æ MInt(Ci,Cj) (compactedge), (5.9)

The di↵erences of the proposed merging functions are discussed in the experiment
section.

Weight Functions

Besides the merging constraint, the weight function wij, is the most important mea-
sure to decide which nodes are merged. Three classes of weight functions wij are
considered. The first two are well known weight functions that shall serve as com-
parison with the proposed one.
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Felzenszwalb and Huttenlocher: In [FH04] Felzenszwalb and Huttenlocher
take the pixel di↵erence as the grouping weight. If Ii and Ij are the feature vectors
of pixels i and j in the image, the weight is set to the norm of the di↵erence:

wF H
ij = ||Ii ≠ Ij|| . (5.10)

The experiments on image segmentation will show that this measure is not per-
forming comparably, since the properties from the energy minimization problem are
ignored.

Kim et al.: An approach very similar to [FH04] and the proposed one, was
proposed by Kim et al. in [KNKY11]. For comparison with the proposed method
the defined UNARYDIFF weight function is used. In the experiments on standard
benchmark images this weight function outperformed the others for the problem of
binary image segmentation. The UNARYDIFF weight is defined as

wud
ij = ||Ïi ≠ Ïj|| , (5.11)

using the unary terms of the defined energy function. The weight describes the
disagreement of the states between two variables and measures the task-specific
similarity of two neighboring nodes.

Dempster-Shafer weighting function: The proposed weight function includes
the unary potentials ·i and ·j and the pairwise potential ·ij of nodes i and j.
Thereby, the image information that is included in the pairwise potential and the
information included in the unary potential, typically derived from a discriminative
classifier is taken into account. Hence the proposed weight function can be seen as
a combination of the two earlier presented ones which combines the image features
with the task specific similarity. To combine both information Dempster’s theory
of evidence is used, which is also di↵erent from the aforementioned approaches.
Therefore weights based on the unary and pairwise potentials are defined as

wpairwise
ij = ·ij(xi, xj) and wunary

ij = ||·i ≠ ·j|| . (5.12)

Since the co-domains of the weights are di↵erent, they are normalized individually
to [0,1]. That means for two variables with a similar feature vector wpairwise

ij ¥ 1

and wpairwise
ij ¥ 0 if the feature vectors are di↵erent. For wunary

ij it means wunary
ij ¥ 0

if the negative log likelihood for two variables is similar for both states. Based on
these weight functions, two mass functions over the hypothesis set � = {�1,�2} are
defined. In this context, the hypothesis �1 means that the two variables are similar
and �2 that they are dissimilar:

m1(�1) = b1 · wpairwise
ij , m1(�2) = b1 · (1 ≠ wpairwise

ij ) ,

m1(ÿ) = 0 , m1(�) = b1 ,

m2(�1) = b2 · (1 ≠ wunary
ij ) , m2(�2) = b2 · wunary

ij ,

m2(ÿ) = 0 , m2(�) = b2 ,

(5.13)
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where bi describes the belief of the di↵erent information sources. In all the ex-
periments the believe is weighted equally with b1 = b2 = 0.5. Now the two mass
functions are combined with Dempster’s rule of combination (3.47) and define the
weights:

wDS
ij = 1 ≠ Bel(�1) = 1 ≠ m(�1) = 1 ≠ m1(�1) ¢ m2(�1)

= 1 ≠
A

m1(�1) · m2(�1) + m1(�1) · m2(�) + m1(�) · m2(�1)

1 ≠ (m1(�1) · m2(�2) + m1(�2) · m2(�1))

B
(5.14)

In contrast to [KNKY11], the proposed weight function allows for the combination
with other information sources, such as the user initialization, the optical flow in
video sequences, depth images or appearance information of an object.

5.2.2 Experiments

The proposed grouping allows to compute an approximate segmentation result.
Since the resulting graph used for the energy minimization process is much smaller,
the segmentation result di↵ers from the original map-solution. Since the goal of a
segmentation scheme is an accurate segmentation, that corresponds to a low segmen-
tation error, and not an accurate map-solution, the proposed grouping is quantified
using three performance measures:

(i) the segmentation quality with respect to the ground truth solution,

(ii) the minimum possible segmentation error of the grouping with respect to the
ground truth segmentation,

(iii) and the ratio of runtimes solving the map-problems (including the time for
the grouping).

Following, the three measures are described in detail:

Segmentation error: The segmentation error is defined analogously to [BRB+04]
as the ratio between the number of misclassified pixels and the number of pixels in
unclassified regions:

Rse(L) =

q
iœVG [Li ”= Lgt

i ]

no. pixels in unclassified regions
, (5.15)

where Lgt is the ground truth labeling. Thus, the segmentation error is low, if
most pixels are assigned the right label. The normalization using unclassified image
regions takes into account the prior information (user labels), that are assumed to
be correct. This is the so-called Hamming distance of the segmentation result and
the ground truth segmentation.

Minimum segmentation error: Another measure to quantify the quality of a
grouping is given by the minimum segmentation error, that counts the minimum
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Table 5.1: Comparison of the proposed algorithm and two similar methods proposed
in [FH04] and [KNKY11]. All values are averaged over 50 benchmark images using
stroke (lasso) initializations. As can be seen our proposed method compactedge

performed best in terms of quality with a smaller budget. The proposed maxedge

has the lowest minimum segmentation error with the drawback of a bigger bud-
get.The graph visualizes Rse(L) for one image and di↵erent budgets.

Method Avg. budget Avg. Rmse(L) Avg. Rse(L)
full MAP (reference) 100 (100) 0 (0) 0.075 (0.058)
FH-alg [FH04] 10.22 (10.22) 209.74 (209.74) 0.074 (0.063)
unarydiff [KNKY11] 10.72 (10.84) 255.1 (219.08) 0.073 (0.065)
MAXEDGE 47.72 (15.21) 58.42 (4.21) 0.069 (0.058)
COMPACTEDGE 6.25 (5.00) 321.5 (63.52) 0.061 (0.058) 0.1 %1 %10 %100 %
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number of misclassified pixels by an optimal segmentation.

Rmse(L) =

ÿ

iœV Õ
G

min

Q

cca
ÿ

jœm≠1
VG

(i)
[Lgt

j = FG],
ÿ

jœm≠1
VG

(i)
[Lgt

j = BG]

R

ddb . (5.16)

This measure looks for groups of pixels that contain foreground and background pix-
els. Normalized by the number of pixels in unclassified image regions, see Equation
(5.15), this is a lower bound for the segmentation error.

Ratio of runtimes: To compute the ratio of runtimes, the time to compute
the grouping and solve the reduced problem is compared with the time solving the
original sized problem.

The evaluation of the proposed method is divided in three di↵erent experiments.

(i) standard small-scale images,

(ii) high-resolution images and

(iii) video sequences.

To evaluate the grouping on small-scale images, the Microsoft segmentation bench-
mark proposed by Blake et al. [BRB+04]3,4 is used. Since there exist no segmen-
tation benchmark with large-scale problems, high-resolution images with up to 26
million pixels found on the web are used for the evaluation. For the problem of
binary video segmentation video sequences from the KTH action dataset [SLC04]5

and videos provided by Sand and Teller [ST06]6 are used. To compare the segmen-
tation results produced on top of the grouping with the segmentation results of the

3
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/gra
bcut.htm

4
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

5
http://www.nada.kth.se/cvap/actions/

6
http://rvsn.csail.mit.edu/pv/

http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/segmentation/grabcut.htm
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.nada.kth.se/cvap/actions/
http://rvsn.csail.mit.edu/pv/
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Figure 5.12: Example for the di↵erent approaches for variable grouping. Rows: (i)
original image; (ii) variable grouping using [KNKY11]; (ii) proposed method using
maxedge; (iv) proposed method using compactedge; In contrast to [KNKY11]
where the grouping produces superpixels that are comparable in size our proposed
methods group large homogeneous regions to single variables.
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Figure 5.13: Variable grouping for video segmentation. The first rows correspond
to the frames 20, 220 and 350 of the Boxing sequence from [SLC04]. The last
row visualizes the isosurface of the segmentation result and the ratio of runtime
for di↵erent budgets. Columns: (i) original frame; (ii) variable grouping with the
proposed algorithm; (iii) segmentation result solving the full map; (iv) segmentation
result solving the approximated map. The segmentation results are almost identical
even if the approximated solution used a budget of 10%. The ratio of runtime for
this example is ¥ 0.21.
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map-problem, the same energy function proposed by Blake et al. [BRB+04] and
the same set of parameters are used. The experiments were run on a MacBook Pro
(Mid 2010) with 2.4 GHz Intel Core i5 processor and 4GB Ram. For all experi-
ments the proposed algorithm is compared with the approaches of Felzenszwalb and
Huttenlocher [FH04] and Kim et al. [KNKY11].

Small-scale images: Table 5.1 shows the evaluation of the proposed algorithm
on the Microsoft segmentation benchmark in comparison to the works of Felzen-
szwalb and Huttenlocher and Kim et al.. Since independently the benefit of the
proposed weight wDS

ij and the merging constraints is rather small, only the combi-
nation that outperformed existing approaches is evaluated.

It is observable, that the combination of Dempster’s theory of evidence and the
proposed constraint has a smaller average segmentation error with an even smaller
budget. The small minimum segmentation error using the maxedge constraint
highlights that the idea to group large homogeneous regions to one single variable
makes sense and the proposed weights based on Dempster’s theory of evidence reli-
ably find those regions. In combination with small groups at the objects boundaries
the proposed compactedge constraint clearly outperforms the existing approaches.
Figure 5.12 presents a visual comparison of the di↵erent approaches.

High-resolution images: To evaluate the segmentation quality and the possible
speedup of the proposed method high-resolution images with more than 20 MP are
used and down sampled to several image sizes. Similar to the experiments on small-
scale images and video sequences the di↵erence in segmentation quality is small and
the reduction of runtime is dramatic for those high-resolution images. As already
shown by Delong and Boykov [DB08] the BK-algorithm is ine�cient and unusable
if the graph does not fit into the physical memory. For those large map inference
problems the ratio of runtime was approximately 0.08 using a budget of 5%. Due
to the limitations of the BK-algorithm the proposed method greatly extends its
applications.

Video sequences: The proposed algorithm can also be applied to group variables
for the problem of video segmentation using a three dimensional pixel neighborhood.
To evaluate the performance of the proposed method di↵erent video sequences are
segmented. It can be seen from Figures 5.13 and 5.14 that the proposed algorithm
achieves a similar segmentation like the full map solution with a much smaller budget
and a dramatic reduction of runtime. E.g. for the hand video in Figure 5.14 (200
frames) the number of variables is reduced from 69.1 million to 3.5 million. For a
visual comparison of the results, only the first 40 frames of the hand sequence are
used. This is due to the fact, that the full map solution was only computed for 40
frames since solving the full map problem for all 200 frames was not possible due
to memory reasons. The full map problem for the KTH-sequence shown in Figure
5.13 has seven million variables and the results shown use a budget of approximately
10% resulting in 0.7 million variables with a comparable segmentation result. In all
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Figure 5.14: Variable grouping for video segmentation. The columns correspond
to the frames 5, 15, 25 and 38 of the hand sequence [ST06]. Rows: (i) original
frame; (ii) variable grouping with the proposed algorithm; (iii) segmentation result
solving the full map; (iv) segmentation result solving the approximated map. The
segmentation results are almost identical even if the approximated solution used a
Budget of 5%. The ratio of runtime for this example is ¥ 0.1.

examples the segmentation algorithm is initialized using a few strokes in the first
frame7.

5.3 Discrete Energy Function including
Dempster’s Theory of Evidence

In the previous chapters, the focus was how to speed up discrete segmentation
methods using SlimCuts or variable grouping. This chapter now shows how to
integrate Dempster’s theory of evidence for the feature fusion into a discrete energy
minimizing framework.

7Parts of the video segmentation results are included in this thesis as a flip-book.
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Segmentation of foreground objects in video sequences is a fundamental step in
many computer vision applications and has been widely studied in the last years.
A popular application in movie post production is the integration of virtual objects
into a sequence [CSRO12]. Because of many aspects in real-world scenarios video
segmentation is a very challenging task. Illumination changes or background ap-
pearance changes, caused by people walking around, are typical problems that need
to be treated.

Time-of-Flight (ToF) cameras are perfect candidates to simplify the problem of
binary video segmentation. ToF cameras use active sensors to measure the time
taken by infrared light to travel to the object and back to the camera. The travel
time corresponds to a certain depth value. Thus, ToF cameras are able to deter-
mine the depth value for the pixels in an image, which can be seen as additional
information for each pixel. Typically, the depth information is less sensitive to en-
vironment changes. Combined with appearance, this yields a more robust segmen-
tation method. Motivated by the fact that a simple combination of two information
sources might not be the best solution, a novel scheme based on Dempster’s theory
of evidence is proposed. In contrast to existing methods, the use of Dempster’s
theory of evidence allows to model inaccuracy and uncertainty. The inaccuracy of
the information is influenced by an adaptive weight, that provides a measurement
of how reliable a certain information might be.

The proposed algorithm is related to many recent works on binary video seg-
mentation [HGW01, KCB+05, CCBK06, WZYZ10]. In [HGW01] and in [KCB+05],
stereo images where used to estimate the scene depth. They showed that the com-
bination of estimated depth and color improves the segmentation result. However,
the estimation of the scene depth is a non trivial problem that is prone to errors in
real-world scenarios.

The most related method is the so-called ToFCut method proposed by Wang et
al. [WZYZ10]. They combine depth and color cues in a discrete energy function
and weight the information adaptively.

Contribution

In contrast to ToFCut, a novel method to fuse color and depth information in a
discrete energy function is proposed. Therefore, Dempster’s theory of evidence is
integrated in the discrete energy function. Using the proposed feature fusion within
Dempster’s framework allows to explicitly model inaccuracy and uncertainty, see
Figure 5.15. This modeling provides an elegant way to incorporate the reliability of
a feature channel. The information about how reliable a feature channel might be,
can be either defined manually, based on prior information, or using our proposed
adaptive weighting function. The adaptive weighting uses the symmetric Kullback-
Leibler divergence as a measure of reliability. Therefore, distances of foreground
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Figure 5.15: Example segmentation result by fusing color and depth information
using Dempster’s theory of evidence. The explicit modeling of uncertainty forces
the algorithm to segment the person in the foreground even if the depth information
of the person in the background is similar. Input data taken from [WZYZ10].

and background histograms based on the segmentation result of the previous frame
are computed. In comparison with the adaptive weighting of ToFCut, the pro-
posed weighting is more stable. The experimental validation on the data set used
in [WZYZ10] shows that the proposed method outperforms ToFCut.

5.3.1 Feature Fusion using Dempster’s Theory of Evidence

This section shows how to integrate the feature fusion, based on Dempster’s theory
of evidence, in a discrete energy function.

In [WZYZ10], the discrete energy function, see Equation (3.26), is extended by
means of additional depth information. Therefore, the unary potential has the form:

·i(Li) = ≠“c · log pc(I(i) | Li = S) ≠ “d · log pd(D(i) | Li = S) , (5.17)

where D(i) is the depth of pixel i and S is either foreground or background. The
likelihood pc is a Gaussian Mixture Model learned using 3D histograms with 8

3

bins in the RGB color space and the likelihood for depth pd is modeled by two
Gaussian distributions. The parameters “c and “d are used to adaptively weight the
impact of both cues. They are based on the discriminative capabilities of the two
likelihoods. The color confidence is computed using the Kullback-Leibler divergence
(KL) between the gray-scale histograms of frames I t≠1 and I t (denoted by ”KL

lum) and
the KL divergence between foreground and background color histograms of frame
I t≠1 (”KL

rgb ) . This yields the confidence of the color term

Rc = exp

A

≠”KL
lum

÷lum

B

·
A

1 ≠ exp

A

≠”KL
rgb

÷rgb

BB

, (5.18)

with parameters ÷lum and ÷rgb. The depth confidence Rd is computed using the
distance between the average depth values for foreground and background in frame
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I t≠1 (�µ = |(µf
+ µÕf

) ≠ (µb
+ µÕb

)|/2). Here, µf , µÕf , µb and µÕb are the mean values
of the Gaussian distributions pd. This yields

Rd = 1 ≠ exp

A

≠�µ

÷d

B

, (5.19)

with the additional parameter ÷d. Finally, the adaptive weights are defined by
normalizing the confidences: “c = Rc/(Rc + Rd) and “d = Rd/(Rc + Rd). For more
details on the likelihood terms and the adaptive weighting the reader is referred to
[WZYZ10].

In contrast to the ToFCut approach, the symmetric Kullback-Leibler divergence
is used, since the symmetric distance does not depend on the order of the feature
channels. The symmetric KL divergence is also used to measure the distance between
foreground and background depth histograms in frame I t≠1, since the given definition
using �µ lacks in precision.

The symmetric Kullback-Leibler divergence for two normalized histograms H1 and
H2 is given by:

”sym.KL
(H1,H2) = ”KL

(H1,H2) + ”KL
(H2,H1) , (5.20)

where ”KL(H1,H2) is the standard Kullback-Leibler divergence defined by:

”KL
(H1,H2) =

ÿ

i

H1(i) log

A
H1(i)

H2(i)

B

. (5.21)

The unary potential used by ToFCut is defined as a weighted sum of negative log
likelihoods, see Equation (5.17), and can be reformulated as:

·i(Li) = ≠ log [pc(I(i)|Li = S)

“c · pd(D(i)|Li = S)

“d
] , (5.22)

which can be interpreted as follows: if the confidence for a channel is near zero,
the likelihood is near one, see Figure 5.16 That means, to ignore a channel the
corresponding likelihoods are pushed near one. This is a neither intuitive nor elegant
solution. Furthermore, this non-linear solution heavily depends on a good adaptive
weighting function.

In contrast to ToFCut, the proposed unary potential is defined using Dempster’s
basic probability assignment:

·DS
i (Li) = ≠ log m(Li = L) , (5.23)

where the mass function m = mc ¢ md fuses the information of color and depth
according to Dempster’s rule of combination. Thus the complete energy function
reads:

E(L) =

ÿ

iœV
·DS

i (Li) +

ÿ

(i,j)œE
·i,j(Li,Lj) , (5.24)
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Figure 5.16: Unary color potential of ToFCut with varying confidence. If the color
confidence “c decreases, the likelihood increases.

The proposed unary potential ·DS
i , elegantly models the uncertainty of a channel

by defining the corresponding mass functions appropriately. Since Dempster’s rule
of combination, that is associative, is used, additional information e.g. motion can
also be included straight forward.

Mass Functions

The most important di↵erence between the proposed method and ToFCut is the
feature fusion using Dempster’s theory of evidence instead of summing up weighted
negative log-likelihoods. Therefore the main contribution is the definition of appro-
priate mass functions, that model inaccuracy and uncertainty in an elegant way.
The mass functions modeling color and depth information are defined by:

mc(�) =

(1 ≠ “c)(1 ≠ (pc(I(i)|Li = FG) + pc(I(i)|Li = BG)))

K
,

mc(S) = (1 ≠ mc(�))

pc(I(i)|Li = S)

pc(I(i)|Li = FG) + pc(I(i)|Li = BG)

(5.25)

for the color term and

md(�) =

(1 ≠ “d)(1 ≠ (pd(D(i)|Li = FG) + pd(D(i)|Li = BG)))

K
,

md(S) = (1 ≠ md(�))

pd(D(i)|Li = S)

pd(D(i)|Li = FG) + pd(D(i)|Li = BG)

(5.26)

for the depth term, where S is either FG or BG. The uncertainties mc(�) and md(�)

of the models are defined by summing up the conditional probabilities. This means
that the uncertainty of a model is high, if foreground and background likelihoods
are small. The normalization factor K is chosen so that mc(�) + md(�) = 1, which
means that the sum of modeled uncertainty is one. This is exactly the definition
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Figure 5.17: Unary color potential of the proposed method with varying confidence.
If the color confidence decreases, the mass decreases as well.

used in the proposed variational segmentation scheme, see Chapter 4.1 and Equa-
tion (4.13). The parameters “c and “d are the adaptive weights coming from the
histogram analysis. They can be used to further increase or decrease the importance
of a feature channel. In contrast to the ToFCut model, the mass of a pixel decreases
if the corresponding weight decreases, see Figure 5.17 This weighting is much more
intuitive and easier to control.

Color and Depth Likelihoods

Additionally, an improved color model is used, since the one proposed in [WZYZ10]
is sensitive to small bins and lacks in precision, leading to suboptimal segmentation
results. Similarly to [WZYZ10], two 3D histogram with H = 8

3 bins in the RGB
color space are used for foreground and background, respectively. For each bin a
3D-Gaussian, with mean µS

k , covariance matrix �

S
k and weight wS

k , for k œ 1 . . . H
and S œ {FG, BG}, is learned. The conditional probability is than given by:

pc(I(i) | Li = S) =

ÿ

rœN
wS

r G(I(i)|µS
r , �

S
r ) , (5.27)

where N is the index set of neighboring bins of I(i) in 3D. In contrast to ToFCut,
the normalization term is omitted to make the model more robust. Normalizing the
given sum with the sum of weights (see [WZYZ10]) makes the color model sensitive
to small bins.

To model the depth likelihoods, the conditional probability proposed by Wang
et al. [WZYZ10] are used. Therefore, pixels are classified as dark or bright based
on the threshold T1 = 60. Foreground and background likelihoods are than each
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Table 5.2: Comparison between the proposed method DS (highlighted in blue) and
ToFCut obtained on four video sequences. The mean percentage error, computed
across the whole sequence, is provided for equal weight fusion (EW) and adaptive
weight fusion (AW). The results obtained by ToFCut are taken from [WZYZ10].
Furthermore the results are compared to standard graph cut using only color (color)
and only depth information (depth).

Seq. ID WL MS MC CW
No. Frames 200 400 300 300

Alg. ToFCut DS ToFCut DS ToFCut DS ToFCut DS
Error (EW) 1.37 0.54 0.51 0.23 0.16 0.06 11.68 2.21
Error (AW) 1.35 0.51 0.51 0.23 0.15 0.06 0.38 0.26
Error (color) 9.91 6.88 0.59 1.83
Error (depth) 1.68 0.92 0.26 4.62

modeled by two Gaussian distributions using dark and bright pixels, respectively:

pd(D(i) | Li = FG) =

Y
__]

__[

G(D(i) | µF G
dark, ‡F G

dark) I(i) < T1 and D(i) > T2

G(D(i) | µF G
bright, ‡F G

bright) I(i) Ø T1 and D(i) > T2

0 D(i) Æ T2

,

pd(D(i) | Li = BG) =

Y
__]

__[

G(D(i) | µBG
dark, ‡BG

dark) I(i) < T1 and D(i) > T2

G(D(i) | µBG
bright, ‡BG

bright) I(i) Ø T1 and D(i) > T2

1 D(i) Æ T2

.

(5.28)

Furthermore, a threshold T2 on the depth map is defined, to exclude pixels from the
training of the Gaussians. This threshold forces pixels with a depth value smaller
than T2 to be segmented as background and improves the two models models. Thus,
the single parameter T2 is intuitive, easy to adjust and can be computed automati-
cally by a histogram analysis.

5.3.2 Experimental Results

In this Section, the evaluation of the proposed method is presented. For qualita-
tive and quantitative analysis the ToFCut data set with the corresponding ground
truth data8 is used. The data set consists of four video sequences, each with 200
- 400 frames. The sequences simulate di↵erent scenarios, e.g. changing lightning

8
http://vis.uky.edu/%7Egravity/Research/ToFMatting/ToFMatting.htm

http://vis.uky.edu/%7Egravity/Research/ToFMatting/ToFMatting.htm
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Sequence: WL MS MC CW

Figure 5.18: Example video segmentation results on four sample frames from each
of the video sequences.

conditions, changing depth and objects with similar depth. Table 5.2 presents the
obtained results and compare them to ToFCut and graph cut by means of mean
percentage error of misclassified pixels [BRB+04, KCB+05, WZYZ10], that is the
Hamming distance of the segmentation result and the ground truth segmentation,
see Equation (2.2). In the experiments an equal weight fusion of color and depth in-
formation is used by setting “c = “d = 0.5. Furthermore, an adaptive weight fusion
based on the proposed histogram analysis is evaluated. The quantitative results
show that for both systems, equal weight fusion and adaptive weight fusion, the
proposed fusion with Dempster’s theory outperforms ToFCut. Important to notice
is, that the proposed algorithm only needs to adjust two intuitive parameters:

• “, the weighting of neighboring discontinuities

• T2, the threshold of the depth map.
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Figure 5.19: Example interactive segmentation result. From left to right: Color
image with initialization (FG in blue/BG in red), depth image, segmentation result
using ToFCut with equal weights, proposed DS fusion with equal weights.

The parameters ÷lum,÷rgb and ÷d, controlling the adaptive weighting, remain constant
in all the experiments, while in [WZYZ10] they had to be adjusted for each sequence
manually. Furthermore, the results show that the proposed fusion works well on
many sequences without an adaptive weighting. Qualitative results for all sequences
using the adaptive weighting are presented in Figure 5.18. They show that the small
segmentation error corresponds to a high-quality segmentation. The corresponding
adaptive weights are visualized as functions over time in Figure 5.21. It can be seen,
that the weights automatically adapt to changes in the scene or environment. E.g.
for the sequence CW (Figure 5.21 lower right), the depth reliability decreases when
the second person enters the scene. This due to the fact, that this person has a very
similar depth when compared to the foreground person. When the second person is
partially occluded or leaves the scene, the corresponding depth reliability increases.

Besides video segmentation, interactive image segmentation is a challenging task.
Since there exists no benchmark including depth images, the same data set is used.
Qualitative results are presented in Figure 5.19. Since color and depth models are
learned from rough user strokes, the models are likely to be incomplete. By using the
proposed fusion based on Dempster’s theory of evidence, this is elegantly modeled
by the proposed mass functions and the segmentation clearly outperforms ToFCut.
In Figure 5.20, both methods are quantified using a fixed initialization and di↵erent
reliability weights “d. It can be seen, that the proposed method is less sensitive to
the weight and the results are more intuitive. Thus, it is much easier to manually
adjust the parameter or automatically measure it using histograms.

5.4 Discussion

In Chapter 5 three main contributions are proposed:

• SlimCut: An e�cient method for graph simplification of maximum a posteriori
problems.



106 5 Discrete Energy Minimization with Dempster’s Theory of Evidence

input data

segmentation results using ToF-Cut

segmentation results using DS-fusion

0 0.2 0.4 0.6 0.8 1
0

10

20

depth weight “d

se
g.

er
ro
r
in

% proposed
ToF-Cut

Figure 5.20: Dependence on the weight “d. For the given input data (color and
depth image and rough user initialization), the dependence of the segmentation
result on the reliability weight is visualized. For the given example the ToF-Cut
method only produces reasonable results for very small weights (“d œ [0,0.2]). The
proposed method, using Dempster’s theory for feature fusion, is less sensitive to “d

and produces reasonable results for weights up to 0.5 (“d œ [0,0.5]).

• An e�cient algorithm to group variables using Dempster’s theory of evidence.

• A novel video segmentation scheme for RGB-D image sequences.

First, an e�cient method for graph simplification of maximum a posteriori prob-
lems, the so-called SlimCut, is presented. It constructs a Slim Graph by merging
nodes that are connected by simple edges. A proof that the maximum flow of the
constructed, much smaller graph remains identical is given. Hence it can be applied
to any maximum flow algorithm. The experiments demonstrated that the speedup is
between 14 and 70 percent on small-scale problems compared to the BK-algorithm.
On high-resolution images with up to 26 MP, the proposed method was up to 877
times faster. It is shown that the proposed method requires much less memory al-
lowing segmentation of images of reasonable sizes even on mobile devices. A further
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Figure 5.21: Adaptive Weights as functions over time for the four video sequences
based on the proposed symmetric Kullback-Leibler divergence. It can be seen that
the weights automatically adapt to the environment.
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reduction of computation time can be achieved by using parallel hardware architec-
ture. In addition the visualization of the Slim Graph can be utilized to guide the user
during the segmentation process resulting in less user interaction. In comparison to
other works, the proposed simplification does not use special hardware like multiple
processors or GPU. Thus the algorithm can be applied to resource-limited systems,
as demonstrated on Apple’s iPhone 4.

To overcome the dependence on the number of such simple edges, a second e�-
cient algorithm for graph simplification is proposed. It uses Dempster’s theory of
evidence and new constraints for the graph based grouping to group large homoge-
neous regions to one single variable of the problem. The experiments on segmenta-
tion demonstrated that the segmentation error using the proposed method is smaller
or comparable to the full map solution. Several experiments on large-scale problems
with millions of variables have demonstrated that the reduction in runtime is dra-
matic while the segmentation quality stays comparable. Both proposed algorithms
are widely applicable to map inference problems in computer vision.

Furthermore, a novel RGB-D video segmentation scheme is proposed. It uses
Dempster’s theory of evidence to fuse color and depth information. With Demp-
ster’s theory of evidence it is possible to define the uncertainty of a feature in an
elegant way using prior information or an adaptive weight. The adaptive weight
is computed using the symmetric Kullback-Leibler divergence to make it more ro-
bust. Additionally, adjusted color and depth models are presented to improve the
segmentation results. The quantitative evaluation shows that the proposed method
outperforms the reference ToFCut method. In comparison, the proposed method
has less parameters that are more intuitive and easy to adjust. Since Dempster’s
theory of evidence naturally models the uncertainty, the proposed method is also ap-
plicable for interactive segmentation. An additional property of the proposed fusion
scheme is the naturally given possibility to include further information like motion
or user priors.
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6.1 Summary

This dissertation addresses the problem of interactive binary segmentation using
energy minimizing frameworks, namely level sets and graph cuts. In the last few
decades, interactive binary segmentation frameworks have been widely studied and
used in Computer Vision. This is due to the fact, that the problem of binary image
segmentation is one of the fundamental problems in low level Computer Vision.
This thesis addresses two problems raised in the last years. First, new sensors and
features have become popular and the need for a fusion framework became necessary.
Second, due to the scale of current Computer Vision problems, computationally more
e�cient algorithms are essential.

The first part of this dissertation targets the problem of an elegant and intuitive
framework for feature fusion. Dempster’s theory of evidence, as a generalization
of Bayes’ theory, is used to fuse information arising from di↵erent sensors. It is
included in the energy functions (variational or discrete ones) and extends current
state-of-the-art segmentation frameworks. The results show, that the use of Demp-
ster’s theory of evidence, instead of Bayes’ theory, for feature fusion improves the
segmentation in terms of segmentation quality. Utilizing Dempster’s theory of evi-
dence, it is possible to extend the well known level set approach by means of user
interaction. In a small user study it was shown that the proposed interactive frame-
work is able to compete with other interactive segmentation frameworks. By using
a novel confidence measure, estimating the accuracy of a feature, and Dempster’s
theory of evidence for feature fusion, a RGB-D video segmentation scheme based on
graph cuts is introduced that outperforms other methods.

The problem of computationally more e�cient algorithms solving large scale Com-
puter Vision problems is addressed in the second part of this dissertation. Two al-
gorithms, reducing the size/scale of the problem, are presented. The first one, called
SlimCuts, reduces the underlying graph of a discrete energy minimization problem
while maintaining the maximum flow property. A proof is given, that building the
Slim Graph does not change the maximum flow. Thus the graph and the problem
is reduced without changing the solution. Obviously, this kind of graph reduction
is limited by the graph itself. Therefore, a second algorithm for grouping similar
variables of the energy function is proposed. The terms of the energy functions,
interpreted as information of similarity, are fused within the framework of Demp-
ster’s theory of evidence to define the joint similarity. Using this similarity and an
extended graph based grouping algorithm, the problem size is reduced. The ex-
periments have shown, that the proposed algorithms drastically reduce the graph.
In case of the variable grouping, the experiments also show that the change in the
segmentation result is negligible.
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6.2 Contributions

Listed below are the major contributions discussed in this dissertation.

Integration of Dempster’s theory of evidence: Appropriate mass functions,
modeling the likelihoods within Dempster’s theory of evidence, are proposed for
the problem of energy minimizing image segmentation. A novel continuous energy
function is proposed that integrates Dempster’s theory of evidence and extends
the classical level set framework. Thus, the features arising from di↵erent sensors
are fused more intuitive and more elegantly. Several experiments demonstrate the
properties of the proposed feature fusion, that is able to directly model inaccuracy
and uncertainty and is therefore able to resolve conflicts.

Interactive level sets: The proposed continuous energy function including Demp-
ster’s theory of evidence for feature fusion is furthermore extended by means of user
interaction. Since user information can be sparse, modeling inaccuracy and uncer-
tainty is essential. The proposed energy function models these information using
a user-defined image model, that can be sparse, and a user-defined shape prior.
Thus, the user interactions have local influence (caused by the shape prior) and
global influence (caused by the image model). In comparison to other methods, the
proposed interactive level sets needs significantly less user interactions for adequate
segmentation results on real images.

SlimCuts: SlimCuts are proposed to simplify the underlying graph of a maximum
a posteriori problem. Simple edges are characterized and the graph is reduced by
contracting nodes connected by a simple edge. It is proven that those edges do
not contribute to the minimum cut. By contracting this edges, the minimum cut
and thus the segmentation result does not change. Hence it can be applied to
reduce the problem size of any maximum a posteriori problem that is solved with
maximum flow algorithms. The experiments on image segmentation demonstrate a
drastic reduction in runtime for large-scale problems. In contrast to other works,
the proposed method does not use any special hardware and can therefore be used
on resource-limited systems like mobile phones. Furthermore, the workflow of an
interactive segmentation framework can be optimized by visualizing the Slim Graph.

Variable grouping: Grouping variables of the MAP-problem based on their sim-
ilarity is another promising direction to reduce the problem size. The similarity in
the proposed method is defined by the terms of the energy function and this infor-
mation is fused using Dempster’s theory of evidence. This algorithm allows to group
large homogeneous regions to single variables of the problem. Thus, the problem
size is reduced drastically while the segmentation results stays comparable in terms
of segmentation quality.

Multi-sensor fusion for video segmentation: A novel video segmentation frame-
work based on graph cuts for RGB-D image pairs is proposed. Dempster’s theory of
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evidence is integrated in the discrete energy function to fuse color and depth infor-
mation and to model uncertainty. The uncertainty of a feature is measured using an
adaptive weight or defined by some prior information on the sequence. The adaptive
weight is computed by an extended function using the symmetric Kullback-Leibler
divergence. Experiments on benchmark sequences show that the proposed video seg-
mentation framework outperforms others in terms of quality with less parameters to
control. Due to the intuitive definition of mass functions used by Dempster’s theory
of evidence for feature fusion, the proposed method is also suited for the problem of
interactive image / video segmentation.

The contributions have been published at ACCV, EMMCVPR, CIARP, WACV,
SCIA, DAGM and ISVC.

6.3 Possible Directions for Future Work

This thesis is concluded with some ideas and directions for future research. It
was shown in this thesis how Dempster’s theory of evidence can be integrated into
energy minimizing frameworks for binary image segmentation. There is clear need
for extending these methods into multi-label segmentation systems. Some progress
in this field has been made by the work of Arndt et al. [ASR13]. Large regions
of an image are pre-segmented utilizing Gaussian mixture models and spherical
coordinates. The classical GrowCut algorithm [VK05] is extended by a novel weight
function and the pre-segmented image is used as initialization.

The impact of using Dempster’s theory of evidence for feature fusion in multi-label
frameworks can be huge. Since uncertainty, inaccuracy and conflicts are modeled
directly, this fusion should outperform the classical Bayesian feature fusion. But
an appropriate definition of mass functions for multi-label problems is still an open
problem. The proposed mass functions can be used, but the whole power of Demp-
ster’s theory is not exploited since the conflict and the mass of joint events for more
than two classes are not modeled until now.

Dempster’s theory of evidence is a generalization of the Bayesian theory, thus
the integration into other energy functions for problems like object reconstruction,
image restoration or disparity estimation can be advantageous. Besides Dempster’s
rule of combination, there exist many other fusion rules within the framework of
Dempster’s theory of evidence. For the problem of image segmentation, Dempster’s
rule of combination outperformes most of those alternatives. However, for other
problems other fusion rules might be advantageous.

Another promising direction of research is the combination of graph reduction
and variable grouping algorithms to further decrease the problem size of large-scale
problems. E.g. combining the results of the proposed SlimCut algorithm with the
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proposed variable grouping and the pre-segmentation proposed in [ASR13] can pos-
sibly lead to much smaller problem sizes.

Something that has not received much attention till now, is the use of additional
features for the pairwise term ·i,j, penalizing strong gradients. In the experiments
it was observed that, e.g. depth disparities are a strong indicator for object bound-
aries. Even though this information is spatially not that accurate, it should help to
find the correct boundary of an object. Because of its spatial inaccuracy, the infor-
mation can not be utilized similar to the color penalty used so far. In fact, a large
gradient in the depth image can be utilized as an indicator for all the pixels in some
defined neighborhood. Thus, aggregating the gradient information in a circular or
rectangular neighborhood and combine this information with the color gradient can
improve the model. For the combination of both information Dempster’s theory of
evidence can be used.

The thesis is concluded by the following observation: Many problems in Computer
Vision are solved using multiple sensors or features. Dempster’s theory of evidence
provides a general framework and generalizes Baye’s framework with the possibility
to directly model inaccuracy and uncertainty. It has been shown that integrating
or extending current frameworks by means of Dempster’s theory of evidence o↵ers
the possibility to improve the results and allows for a more intuitive understanding.
Thus, this theory is of high interest for other applications in the fields of Computer
Vision or Machine Learning as well.
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A.1 Building the Euler Lagrange Equation

Given the classical Chan-Vese energy function for image segmentation [CV01]:

E(µF G,µBG,Ï) = ⁄1

⁄

�
|I(x) ≠ µF G|2H(Ï) dx

+ ⁄2

⁄

�
|I(x) ≠ µBG|2(1 ≠ H(Ï)) dx

+ ‹1 ·
⁄

�
|ÒH(Ï)| dx + ‹2 ·

⁄

�
H(Ï) dx .

(A.1)

Minimizing the energy with respect to Ï while keeping µF G and µBG fixed can
be performed by solving the the corresponding Euler-Lagrange equation, that is a
necessary condition for a minimum. The energy function has the form:

E(Ï) =

⁄

�
L(Ï,ÒÏ) dx (A.2)

The corresponding Euler-Lagrange equation is given by:

dE

dÏ
=
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ˆÏ
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ˆx1
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≠ ˆ

ˆx2

ˆL
ˆÏx2

= 0 . (A.3)

Inserting the energy function from Equation (A.1) or building the derivatives of the
corresponding terms of the energy function, respectively, leads to:

ˆL
ˆÏ

= ⁄1|I(x) ≠ µF G|2”(Ï) ≠ ⁄2|I(x) ≠ µBG|2”(Ï) + ‹1”
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(Ï)|ÒÏ| + ‹2”(Ï) , (A.4)
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(A.5)
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Overall it leads to:

dE
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This partial di↵erential equation can be solved using standard numerical tech-
niques [SR09].

A.2 Application - N-View Human Silhouette
Segmentation in Cluttered, Partially
Changing Environments

This application will show how to fuse the proposed variational framework (see
Chapter 4) with a di↵erent segmentation scheme for a fully automatic segmenta-
tion of multi-view human silhouettes. The segmentation of foreground silhouettes
of humans in cameras is a fundamental step in many computer vision and pattern
recognition tasks. An approach is presented which, based on color distributions, au-
tomatically estimates the foreground by integrating data driven 3D scene knowledge
from multiple static views. These estimates are integrated into the variational level
set framework based on Dempster’s theory of evidence to provide a final segmenta-
tion. The advantage of this approach is that ambiguities on color information, used
by the level set approach, can be resolved in many cases utilizing 3D scene knowl-
edge and 2D boundary constraints. The application is directly based on a joined
publication with Feldmann et al. [FSRW10].
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Figure A.1: Segmentation loop utilizing probabilistic 3D fusion as data driven feed-
back mechanism to enhance the segmentation by automatically adapted color dis-
tributions.

Segmentation by Probabilistic 3D Fusion

The segmentation via probabilistic 3D fusion proposed by Feldmann et al. [FDW09]
is based on two ideas: First, a probabilistic 2D segmentation of fore- and background
in all camera images of a static, calibrated multi camera setup is performed based on
color distribution models. To make this segmentation more robust and adaptive, the
second part integrates 3D scene information reconstructed from all cameras. The 3D
information is used as a feedback mechanism to the segmentation task. Hereby the
color distributions are adapted automatically to achieve better segmentation results.
The basic assumption is that observed objects are surrounded by multiple cameras
to obtain complete 3D reconstructions of the foreground.

The steps of the approach are depicted in Fig. A.1. First, coarse fore- and back-
ground models are generated. They are used with the current camera images to
create a probabilistic 3D voxel reconstruction of the scene. Probabilistic in this
context means that each reconstructed voxel has a specific occupation probability
derived from the probabilities of the corresponding pixels in all views to be fore-
ground. The 3D reconstruction is projected into the camera images, thresholded
and in this way provides a masked area of foreground in the images. Image areas
which are not covered by this mask are used to update the background model. By
utilizing this updated model a segmentation is performed to precisely determine the
foreground silhouettes. The silhouettes are used to update the foreground model
accurately in a succeeding step. The fore- and background models are then used to
create a probabilistic 3D reconstruction of the foreground by using the next camera
frame and the loop restarts.

Fore- and Background Model

To model fore- and background, the random variable Lx œ {0,1} decides whether
a pixel x at a given time t is fore- or background (Lx = 1 respectively Lx = 0).
Based on a given feature vector Ix the color distribution p(Ix | Lx = 1) models
the foreground and is used to infer the conditional probability P (Lx = 1 | Ix).
The foreground model is generated based on the foreground segment for each frame
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separately and consists of two parts:

p(Ix | Lx = 1) = (1 ≠ PNF)

Kfgÿ

k=1
Êk÷(Ix,µk,�k

) + PNFU(Ix) . (A.7)

The first part models known foreground in terms of a Gaussian Mixture Model
(GMM) with the density function ÷(Ix,µ,�) where µk and �

k are mean and variance
of the kth of Kfg components of the mixture and Êk is the component’s weight.
B models a uniform color distribution which is necessary to integrate suddenly
arising new foreground. Both parts are coupled by the probability PNF =

1
2 of new

foreground. The model is generated continuously by utilizing k-means clustering of
the colors of the foreground silhouette during consecutive frames. The background
model consists of two parts as well:

p(Ix,t | Lx,t = 0) = (1 ≠ PS)

Kbgÿ

k=1
Êk

t ÷(Ix,t,µ
k
t ,�k

t ) + PS

Kbgÿ

k=1
Êk

t p(Ix,t | Sk
x,t = 1) . (A.8)

The first part models the color distribution of the background similar to the
model in Equation (A.7) with Kbg components. In contrast to Equation (A.7),
the model is updated over the whole observation time t. The second part models
the occurrence of shadows and highlights. Both parts are again coupled with an
additionally probability of shadows PS =

1
2 . The shadow and highlight model is

modeled in analogy to the background color model, i.e. the weights are reused. To
determine shaded areas or areas of highlights, the colors are examined in the YUV

color space. A luminance ratio ⁄ is calculated in the Y channel: ⁄ =

Yt

YB
=

I1
x,t

µk,1
t

. Two

thresholds are introduced to detect shadows, if ·S < 1, and highlights, if ·H > 1.
The resulting shadow model is:

p(Ix,t | Sk
x,t = 1) =

Y
_]

_[

1
(·H≠·S)µk,1

t

r

d=2,3
÷(Id

x,t,µ
Õk,d
t , �

k,d
t ) if ·S Æ ⁄k

t Æ ·H

0 else
. (A.9)

The scale factor 1
(·H≠·S)µk,1

t

is needed to achieve the density’s integration to result in

1. The background model in Equation (A.8) is updated continuously by integration
of all previous frames over time by utilizing an online Expectation Maximization
(EM) approach as presented in [FDW09].

Probabilistic 3D Fusion

To update fore- and background models, a method is needed to reliably identify
foreground regions in the images. In case of multi camera setups it is feasible to
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exploit the strong prior of geometric coherence of the scene observed from multiple
views by using the approach of a Bayesian probabilistic 3D reconstruction [FB05].
The volume seen by the cameras is discretized into voxels V œ {0,1}. For each voxel
the probability of being foreground is derived from the foreground probabilities of the
corresponding pixels in all cameras according to the model definition in [FDW09].
Four a-priori probabilities are introduced into the reconstruction model. First, the
probability of voxel occupation: P (V) =

1
2 . Additionally, three error probabilities

PDF, PFA and PO. PDF means a detection failure, i.e. a voxel should be occupied
but is not due to e.g. camera noise. PFA means a false alarm, i.e. a voxel should
not be occupied but erroneously is, e.g. due to shadows. Finally, PO means an
obstruction, i.e. a voxel should not be occupied but is on the same line of sight as
another voxel which is occupied and, hence, classified incorrectly. The conditional
probability of foreground of an unoccupied voxel is, thus, V : P (Ln = 1 | V =

0) = PO(1 ≠ PDF) + (1 ≠ PO)PFA. The conditional probability of background of an
unoccupied voxel is V : P (Ln = 0 | V = 0) = 1 ≠ [PO(1 ≠ PDF) + (1 ≠ PO)PFA].
Values of 5% for PDF, PFA and PO provide reasonable results. The joint probability
distribution defined in [FDW09] is used, and marginalize over the unknown variables
Ln by observing the features (colors) I1, . . . ,IN at the corresponding pixels in the
images of the cameras 1, . . . ,N by:

P (V = 1 | I1, . . . ,IN) =

Nr
n=1

q

fœ{0,1}
P (Ln = f | V = 1)p(In | Ln = f)

q

vœ{0,1}

Nr
n=1

q

lœ{0,1}
P (Ln = f | V = v)p(In | Ln = l)

. (A.10)

The resulting probabilistic 3D reconstruction is back-projected into the camera
images and then used to identify fore- and background segments.

Probabilistic Foreground Detection

By using the probability densities p(Ix | Lx = 1) and p(Ix | Lx = 0) the conditional
probability P (Lx = 1 | Ix) that a pixel belongs to the foreground based on an
observed color Ix can be calculated using Bayes’ rule

P (Lx = 1 | Ix) =

P (Lx = 1)p(Ix | Lx = 1)

p(Ix)

=

P (Lx = 1)p(Ix | Lx = 1)

q

lœ{0,1}
P (Lx = l)p(Ix | Lx = f)

(A.11)
which under assumption of no a-priori knowledge about the unconditional probabil-
ities P (Lx = f) and a resulting uniform distribution cancels out to:

P (Lx = 1 | Ix) =

p(Ix | Lx = 1)

q

lœ{0,1}
p(Ix | Lx = l)

. (A.12)
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Integrating Probabilistic 3D Fusion into Variational Segmentation

Given the probabilities P (Lx = 1 | Ix) for each feature vector Ix arising from the
probabilistic foreground detection, see Equation (A.12), the following mass function
is defined:

mfg(ÿ) = 0 , mfg(�) = 1 ≠ ‹2 ,

mfg(FG) = ‹2 · P (Lx = 1 | Ix), mfg(BG) = ‹2 · (1 ≠ P (Lx = 1 | Ix)) ,
(A.13)

with a weighting parameter ‹2 œ [0,1]. This parameter can be interpreted as the
belief in the probabilistic foreground detection. With a parameter ‹2 < 1 inaccuracy
of the foreground detection is integrated. As a consequence, the evolving boundary
is directly driven by the intensity information of the image and the result of the
probabilistic 3D fusion.

The mass function mfg is now integrated into the variational approach for image
segmentation , see Equation (4.8), using Dempster’s rule of combination:

mnew = m ¢ mfg = m1 ¢ m2 ¢ . . . ¢ mk ¢ mfg . (A.14)

The energy functional for segmentation fusing image features and probabilistic
foreground detection can be written as:

E(Ï) = ≠
⁄

�
H(Ï) log mnew(�1) d� ≠

⁄

�
(1 ≠ H(Ï)) log mnew(�2) d�

¸ ˚˙ ˝
fusion of image features and probabilistic foreground detection

+ ‹1

⁄

�
|ÒH(Ï)| d� .

(A.15)

Compared to the Bayesian approach the proposed framework is able to correct
wrong classifications coming from the probabilistic foreground detection and vice
versa, because channels with a strong support are favored.

Experimental Results

A qualitative and a quantitative analysis of the algorithm is presented based on the
images of the Dancer Sequence in [FDW09] and recordings of gymnasts with seven
Prosilica GE680C cameras in a circular setup.

In a qualitative analysis the results of the approach of [FDW09] are compared to
the results of a variational segmentation, with GrabCut [RKB04] and the results
of the proposed combined approach. The probabilistic segmentation of [FDW09] is
initialized with a-priori recorded background images. These images varied in lighting
and details which was automatically compensated by the presented approach. In
case of the variational segmentation and GrabCut, the result of the probabilistic
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Figure A.2: Frames 100, 300, 500 and 700 of camera 7. First row: Variational seg-
mentation only. Second row: Segmentation by probabilistic fusion only without post
processing. Third row: Combined approach with GrabCut segmentation. Fourth
row: Proposed combined approach with variational segmentation. Fifth row: Input
image and detected contour of combined approach. All single approaches have dif-
ficulties in areas with nearly identical color distributions of fore-/background. Only
the proposed combined approach is able to cope with these kinds of ambiguities.
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Figure A.3: Silhouette error percentage in steps of 100 frames in cameras 6 and 7 of
the gymnast sequence. The proposed approach generates the best results with the
fewest errors compared to the variational approach and the approach of [FDW09].

3D fusion is used to initialize the segmentation. In the combined approach the
information from the probabilistic 3D fusion is used as the initial boundary and
integrated into the variational segmentation framework as proposed in Equation
(A.15).

In Figure A.2 exemplary results are presented of all four approaches performed
on a di�cult scene with very similar color distributions of fore- and background.
It is clearly observable that neither the variational approach nor the segmentation
by probabilistic fusion are able to fully cope with that kinds of ambiguities. The
variational approach integrates large parts of the wooden background into the fore-
ground silhouette while the approach of [FDW09] leads to very low probabilities of
foreground in the ambiguous areas. Solely, the proposed approach leads to satisfy-
ing results in such di�cult scenarios. As an alternative to variational segmentation,
the results of the probabilistic segmentation could also be used as initialization for
GrabCut. But only the combination of initialization by probabilistic segmentation
and fusing this information utilizing the Dempster-Shafer approach can close erro-
neous holes and, thus, recover from false classifications in a meaningful manner (see
Figure A.5).

Due to the convincing results of Figure A.2 a quantitative analysis of the three
approaches is performed where the error compared to hand labeled data is measured.
Exemplary results of the cameras 6 and 7 are presented in Figure A.3. Camera 6 has
been chosen because this view contains background motion and this demonstrates
that the adaptivity of [FDW09] is not compromised by the presented approach. The
results of Camera 7 are selected to link the qualitative results in Figure A.2 with
quantitative results to clarify the benefits of the presented approach. In all cases
the proposed approach provides better results over the full sequence.

Finally, a qualitative analysis of the proposed approach on the dancer from [FDW09]
is performed. The qualitative results show, that again, the proposed approach gains
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Figure A.4: Column 1, top: Probabilistic segmentation of the second frame (after
first model update) of camera 6 of the dancer sequence; Bottom: Segmentation of
proposed approach. Column 2: Resulting 3d reconstruction of proposed approach.
Column 3, top: Probabilistic segmentation of frame 645; Bottom: Segmentation of
the proposed approach. Column 4: Resulting 3d reconstruction.

Figure A.5: Random images of situations where GrabCut (10 iterations) fails while
the proposed approach gains meaningful improvements. Left to right: Alternat-
ing the results of GrabCut and the Dempster-Shafer level set approach. GrabCut
misses to close holes in the silhouettes in di�cult situations due to similar color
distributions.

better segmentation results (see Figure A.4) than the probabilistic segmentation.
Additionally the experiments on the dancer sequence demonstrate that the proposed
approach is applicable in these kinds of di�cult scenarios with occluding noise and,
thus, unites the benefits of robust segmentation and robust dense 3D reconstruction
results.
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Multi-Sensor Fusion using Dempster’s Theory of Evidence for Video Seg-
mentation

Björn Scheuermann, Sotirios Gkoutelitsas and Bodo Rosenhahn
In: Proc. of the 18th Iberoamerican Congress on Pattern Recognition (CIARP),
November 2013, Havanna, Cuba (Accepted for oral presentation)

Cleaning Up Multiple Detections Caused by Sliding Window Based Ob-
ject Detectors

Arne Ehlers, Björn Scheuermann, Florian Baumann and Bodo Rosenhahn
In: Proc. of the 18th Iberoamerican Congress on Pattern Recognition (CIARP),
November 2013, Havanna, Cuba

Foreground Segmentation from Occlusions using Structure and Motion
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