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Abstract

Many-particle quantum systems are a fundamental research area in quantum physics.
For example, they provide the microscopic description of macroscopic solid-state systems,
like magnets or superconductors, and it is desired to derive macroscopically observable
phenomena like para- or ferromagnetism or superconductivity from the microscopic de-
scription. However, already computing the ground-state energy of such systems is com-
putationally hard in general, in some cases even for quantum computers. Therefore,
researchers largely rely on different approximation methods, one of the most common
being mean-field theory. Despite its extensive usage, general methods to estimate the
quality of this approximation do not exist.

In the first part of this thesis, we develop an algebraic theory for the first-order cor-
rections to the mean-field limit for a class of mean-field models introduced by Raggio
and Werner in 1989. We use a concept called fluctuations, which has been previously
used in translationally invariant systems in the sense of a non-commutative central limit
theorem and has been applied to mean-field models in a basic manner before. We show
that in the context of mean-field models they give rise to an algebra of canonical com-
mutation relations, which conveniently quantifies the first-order asymptotics and can
be understood as an asymptotic extension beyond variation over product states. We
present the detailed structure of the fluctuation algebra and identify the related normal
modes. Based on this, we develop an estimation method for the ground-state energy of
mean-field models up to first order in the inverse particle number. We refine the method
for Bosonic systems and obtain bounds for the first-order corrections in the Bosonic and
the full case. We apply the theory to the mean-field Ising and the Bose-Hubbard model
and relate it to the finite de Finetti problem. Furthermore, we compare the method
to the Holstein-Primakoff approximation and propose an extension to a larger class of
mean-field models. Finally, we study the time evolution of the fluctuations, propose a
conjecture for their dynamics and derive the related Hamiltonian dynamics around the
mean-field ground state.

Quantum walks (QWs) are a widely used model system for transport processes on lat-
tices. Initially introduced from a computer science perspective, the field has significantly
expanded and is now largely treated from a physics perspective. In fact, “quantum walk”
is now widely taken to be synonymous with “discrete time or discrete space quantum
dynamics” of a particle with internal degrees of freedom. Experimental implementations
of quantum walks with trapped ions showed their strengths in the high fidelity of the
results. However, these implementations had two major drawbacks. On the one hand,
the protocol for the shift operator allowed for a relatively small number of steps due to
its restriction to the Lamb-Dicke regime. On the other hand, the position states, being



implemented by coherent states of a harmonic oscillator, were not mutually orthogonal,
in contrast to established theoretical models.

In the second part of this thesis, we provide solutions for these drawbacks. On the
one hand, we propose a protocol for the shift operator, which is not bound to the Lamb-
Dicke regime and therefore allows for a significantly higher number of steps. We provide
an error estimation showing that the method allows for up to 100 steps of a QW with
state-of-the-art trapped-ion technology. On the other hand, we present a theoretical
model for quantum walks with non-orthogonal position states (nQW) and show that
these allow for a variety of interesting experiments. In particular, we show that the
nQW simulates an (orthogonal) QW with an extended initial state. Moreover, we show
that state-of-the-art technology allows for manipulating the spreading rate of the QW,
probing the corresponding dispersion relation, and implementing effects from solid-state
physics, such as Bloch oscillations.

Keywords: Mean field theory, Many-particle systems, Quantum physics
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Zusammenfassung

Vielteilchenquantensysteme bilden ein grundlegendes Forschungsgebiet der Quanten-
physik. So bieten diese zum Beispiel eine mikroskopische Beschreibung von makroskopi-
schen Festkorpern, wie zum Beispiel Magneten oder Supraleitern. Ein Ziel ist es, makro-
skopisch beobachtbare Phénomene, wie Para- oder Ferromagnetismus oder Supraleitung,
aus der mikroskopischen Beschreibung herzuleiten. Allerdings ist im Allgemeinen schon
die Berechnung der Grundzustandsenergie solcher Systeme in komplexitétstheoretischer
Hinsicht nicht moéglich, hdufig nichteinmal fiir Quantencomputer. Daher kommen in der
Forschung in groflem Mafle Ndherungsverfahren zur Anwendung, wobei eine der héufig-
sten die Meanfieldtheorie ist. Trotz der extensiven Nutzung dieser existiert allerdings
bis dato keine allgemeine Abschétzungsmethode zur Qualitdt dieser Naherung.

Im ersten Teil dieser Dissertation stellen wir eine algebraische Theorie der Korrekturen
erster Ordnung zum Meanfieldlimes von Meanfieldsystemen vor, welche von Raggio und
Werner 1989 eingefiihrt worden sind. Wir nutzen das Konzept sogenannter Fluktuatio-
nen, welche zuvor fiir translationsinvariante Systeme im Sinne eines nichtkommutativen
zentralen Grenzwertsatzes verwendet und auch fiir Meanfieldsysteme in einem rudimen-
tdren Mafle angewendet worden sind. Wir zeigen, dass diese im Kontext von Mean-
fieldsystemen eine Algebra mit kanonischen Vertauschungsrelationen erzeugen, welche
in einfacher Form die Asymptotik erster Ordnung quantifiziert und als asymptotis-
che Erweiterung iiber ein Variationsprinzip iiber Produktzustinde hinaus betrachtet
werden kann. Wir prisentieren eine detailierte Beschreibung der algebraischen Struk-
tur und identifizieren die jeweiligen Normalmoden. Darauf aufbauend entwickeln wir
eine Methode zur Abschitzung der Grundzustandsenergie von Meanfieldmodellen bis
zur ersten Ordnung in der inversen Teilchenzahl. Wir verfeinern die Methode zur
Anwendung auf Bosonische Systeme und erhalten Abschitzungen der Korrekturen er-
ster Ordnung fiir den Bosonischen und den allgemeinen Fall. Wir wenden die Theo-
rie auf das Meanfield-Ising und das Bose-Hubbardmodell an und stellen einen Bezug
zum endlichen de Finetti-Problem her. Weiterhin vergleichen wir die Methode mit der
Holstein-Primakoff-Ndherung und schlagen eine Erweiterung auf eine groflere Klasse von
Meanfieldmodellen vor. Abschlielend betrachten wir die Zeitentwicklung von Fluktua-
toren, stellen eine Vermutung zu deren Dynamik auf und leiten die entsprechende Hamil-
tonsche Dynamik um den Grundzustand des Meanfieldsystems her.

Quantenwalks (QWs) sind ein umfassend genutztes Modellsystem zur Beschreibung von
Transportprozessen auf Gittern. Aus der urspriinglichen Verwendung im computerwis-
senschaftlichen Kontext hat sich das Forschungsgebiet stark vergréflert und wird heute
weitestgehend im physikalischen Sinne behandelt. In der Tat wird der Begriff “Quan-
tenwalk” heute als Synonym fir “Dynamik in diskreter Zeit oder diskretem Raum”
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eines Teilchens mit internen Freiheitsgraden verstanden. Experimentelle Umsetzungen
von QWs mit gefangenen Ionen wiesen ihre Stdrke in der hohen Giite der Ergebnisse
auf. Allerdings hatten diese Implementationen zwei wesentliche Nachteile. Einerseits
erlaubte die verwendete Umsetzung des Shiftoperators aufgrund ihrer Beschrankung auf
das Lamb-Dicke Regime nur eine vergleichsweise geringe Anzahl an Schritten. Ander-
erseits waren die Positionszustdnde, da sie als kohédrente Zustdnde eines harmonischen
Oszillators umgesetzt wurden, nicht orthogonal zueinander, im Gegensatz zu den géngi-
gen theoretischen Modellen.

Im zweiten Teil dieser Dissertation présentieren wir Losungen zu diesen Problemen.
Einerseits schlagen wir eine experimentelle Umsetzung des Shiftoperators vor, welche
nicht an das Lamb-Dicke Regime gebunden ist und daher eine signifikant hohere Anzahl
an Schritten erlaubt. Mittels einer Fehleranalyse zeigen wir, dass mit dieser Methode
bis zu 100 Schritte eines QWs mit der aktuell verfiigharen Technologie bzgl. gefangener
Tonen moglich ist. Andererseits stellen wir ein theoretisches Modell fiir Quantenwalks
mit nichtorthogonalen Zusténden (nQW) vor und zeigen, dass diese eine Bandbreite
interessanter Experimente ermdoglichen. Insbesondere zeigen wir, dass ein nQW einen
(orthogonalen) QW simuliert, dessen Anfangszustand verbreitert ist. Dariiberhinaus
zeigen wir, dass es mittels aktuell verfiigbarer Technologie méglich ist, die Ausbreitungs-
geschwindigkeit dieses QWs zu manipulieren, die Dispersionsrelation des Walkoperators
zu messen, und Phanomene aus der Festkorperphysik, wie zum Beispiel Blochoszillatio-
nen, zu erzeugen.

Schlagworte: Meanfieldnidherung, Vielteilchensysteme, Quantenphysik
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Preface

This thesis consists of two parts. Part I is on the project of estimating first-order
corrections to the mean field limit, while Part II deals with quantum walks with non-
orthogonal position states. These two quite different projects are the result of two
research lines I pursued during my PhD studies.

Part I of this thesis, the mean field project, was developed out of the attempt to
obtain an improved description of the atomic-ensembles experiments by Eugene Polzik
[49]. The result is now a theoretical framework that describes the asymptotics towards
the mean field limit developed by Raggio, Duffield and Werner [89, 31]. At the time
I started my PhD studies in the group of Prof. Dr. Reinhard Werner, this project
had already been running. The PhD student Friederike Trimborn and Reinhard Werner
worked on estimating the first-order corrections to the ground state energy of mean field
models using mean field fluctuations, as a version of a non-commutative central limit
theorem [42]. Reinhard and I initially focussed on the time evolution of the mean field
fluctuations. We had to leave this project unfinished as we did not succeed in proving
the conservation of the fluctuation property for finite times, cf. Sect. 5.3. 1 decided
to finish the ground state estimation project, which was left unfinished by Friederike
after she obtained her PhD and left science. Finishing this project proved to be more
extensive than expected and provided a variety of interesting results. Most importantly,
the concept of scaled fluctuators allowed us to understand the structure of the limiting
fluctuation algebra in detail, which furthermore allowed us to refine the ground state
estimation to Bosonic particles and to obtain precise bounds for the ground state energy
of the related fluctuation Hamiltonian. As will be apparent in the related sections, the
results of this thesis allow for quite straightforward extensions and hopefully promising
projects. A publication of the results in a scientific journal is currently in preparation.

Part II of this thesis, on quantum walks, grew out of my Diplom' studies and was
pursued in parallel to the mean field project. For my physics Diplom, I worked on
experiments with trapped ions in the group of Prof. Dr. Tobias Schatz. During this
time, we successfully demonstrated the experimental implementation of a quantum walk
with trapped ions and published the results [101]. However, Tobias and I decided to
publish a longer paper as well, which contains a much more detailed description of the
experiment and its limitations, as well as a proposal for a better protocol (cf. Section
9) [72]. Furthermore, since the implementation used coherent states of a harmonic
oscillator, which are not mutually orthogonal, as the position states of the quantum
walk, it was a natural consequence to think of a theoretical model describing quantum
walks with non-orthogonal position states. Reinhard and I developed a basic concept

'The former german analogue of the master’s degree.



that would allow for an interpretation of my numerical observations. Later we decided
to work out this project in detail, together with the PhD students Andre Ahlbrecht,
Christopher Cedzich and Albert Werner from our group and with Martin Enderlein and
Tobias Schétz, supporting us with experimental expertise. The results were published
in [72] and [71].
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Statement of Contribution

Part I of this thesis shares some content with [111], due to the nature of the project.
Part 11, on the other hand, contains results that were partly obtained in collaboration.
Therefore I will point out my own results and my role in the projects below.

Part |

The project on first-order corrections to the mean field limit was partly carried out in
collaboration with Friederike Trimborn and Reinhard Werner. My personal contributions
are the following:

Chapter 3

Def. 3.2.2, the definition of tensor fluctuators.

Sect. 3.3, derivation of the transformation law between tensor and elementary
fluctuators.

The concept and properties of scaled fluctuators, i.e. Props. 3.4.2 and 3.5.3.

Lemma 3.5.4 on the expectation value of fluctuators with a filtered sequence of
states for finite n.

Sect. 3.6, on the structure of the fluctuation algebra and the identification of
normal modes.

Chapter 4

Lemma 4.2.1 on the product of the state and gradient.

Thm. 4.2.2 on the estimation of the ground state energy of a mean field model
up to order 1/n. The basic idea for the inequality was introduced by Trimborn
[111], but was true only for the case of the minimizer being in the interior of the
state space. The definition of the fluctuation Hamiltonian containing the scaled
fluctuator and the identification of its properties was carried out by me.

Sect. 4.3 on the ground state energy estimation for Bosonic systems.

Sect. 4.4 on the purification of mean field models, providing a mechanism to map
any mean field model to a Bosonic one.
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e Sect. 4.5, the application of the ground state energy estimation method to the mean
field Ising model. The model itself was studied before, since it is a widely considered
toy model. However, the application of our ground state energy estimation method
and the analytical expressions for the ground state energy are new.

e Sect. 4.6 on Bosonic systems and the ground state energy estimation for the Bose-
Hubbard model. Expressing a Bosonic Hamiltonian in Fock space as a symmetric
sequence has been done before [111] as well as the ground state energy estimation
for the Bose-Hubbard model in a different way: In [111], Bose symmetry was
enforced on the 2-particle level without justifying that this implies Bose symmetry
on the n-particle level as well. Effectively, there the full mean field method was
applied to an altered model, where, in contrast, in this thesis the Bosonic mean
field method is applied to the Bose-Hubbard model.

e Sect. 4.8 on the comparison of our method to the widely used Holstein-Primakoff
approximation.

e Sect. 4.9, the proposal of how to extend our method to a larger class of approxi-
mately symmetric Hamiltonians.

Chapter 5

e Sect. 5.2, the time evolution of differential forms, which can be considered as
a general differential-geometric concept. In our specific context, a rudimentary
description was given in [31]. The explicit description in coordinates and the
subsequent results were obtained by me.

e Sect. 5.3 on the time evolution of fluctuators.

e Sect. 5.4 on the time evolution of fluctuators for the mean field ground state case.

Part Il

The results presented in Chapters 8 and 9 were partly obtained in collaboration with
Martin Enderlein, Thomas Huber, Christian Schneider, Hector Schmitz, Jan Gliickert
and Tobias Schétz. The contributions, which were carried out by myself, are the inves-
tigation of the limits of the experimental protocol and the estimation of the feasibility
of the photon kicks protocol, with support by Juan Jose Garcia-Ripoll. The related
publication, [72], was largely written by me.

The project on quantum walks with non-orthogonal position states, Chapter 10, was
carried out in collaboration with Andre Ahlbrecht, Christopher Cedzich, Albert Werner,
Martin Enderlein, Michael Keyl, Tobias Schétz, and Reinhard Werner. In this project,
I was the lead investigator, in the sense of developing the idea and the project outline,
initiating the collaborations and largely writing the publication, [71]. The theoretical
model was developed in collaboration with Andre Ahlbrecht, Christopher Cedzich, Al-
bert Werner, Reinhard Werner.
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Part II of this thesis contains the publications [72] and [71], which were largely written
by me.
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mean-field limit






Notation

W’p) €Hp
A=B(H)

A, =B(HeK)

AhCA
AncA®n

Ap

Ao €C(S(A))

cov,(A, B)
C(s(A)
drf(p)

Fp

Fi
Fluct(Ag)

Flucte (Ag)

Contents
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One-particle operator algebra, Sect. 2.2.

Extended one-particle operator algebra, Def. 4.4.1.
Set of hermitian one-particle operators, Sect. 2.4.

The n-particle permutation invariant operator algebra,
Sect. 2.2.

Either element of A,, or sequence (A, )nen of elements of
A, depending on context, Sect. 2.2.

Limiting function of the approximately symmetric se-
quence A,, Eq. (2.13).

Elementary fluctuator around p, Def. 3.2.1.
Tensor fluctuator around p, Def. 3.2.2.
Limiting fluctuators around p, Def. 3.5.1.
Scaled fluctuator around p, Prop. 3.5.3.
Covariance of A,B € A in p, Eq. (3.11).

Set of continuous functions on S(A), Sect. 2.2.

The r-th derivative of f € C(S(A)) at p, Def. 2.4.1 and
2.4.2.
Fluctuation algebra around p, Lem. 3.5.2.

Flow on S(A) implementing T} «, Sect. 2.3.

Alternative notation for finite-n fluctuators around p,
Def. 3.2.2.

Alternative notation for limiting fluctuators around p,
Def. 3.5.1.

Generator of T} ,,, Sect. 2.3.

Generator of T} o, Sect. 2.3.
One-particle Hilbert space, Sect. 2.2.

One-particle Hilbert space of the extended mean-field
model, Def. 4.4.1.
Permutation invariant n-particle Hilbert space, Sect. 2.2.

Hilbert space of the fluctuation algebra around p, Def.
3.5.1.

Fluctuation Hamiltonian of a mean-field sequence H,
around a mean-field minimizer p € S(A), Eq. (4.6).
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1. Motivation for the project

Many-particle quantum systems are a fundamental research area in quantum physics.
For example, they provide the microscopic description of macroscopic solid-state sys-
tems, like magnets or superconductors. In order to understand their macroscopically
observable properties, like para- or ferromagnetism or superconductivity, beyond phe-
nomenology, it is desirable to derive them from the microscopic description.

Probably the most relevant observable of a many-particle quantum system is the
Hamiltonian, modeling the energy. On the one hand, it is the generator of the time evo-
lution of the system; on the other hand, it is the quantity determining macroscopic prop-
erties at thermal equilibrium in the thermodynamic limit. More precisely, the partition
function, from which most macroscopic observables, such as the free energy or entropy,
can be deduced in thermal equilibrium at temperature 7', amounts to Z(7") = Tr (e’H / T),
where H is the Hamiltonian [108].

In the past century, various models (i.e. Hamiltonians) providing a simplified descrip-
tion of realistic solid state systems, were introduced. Prominent examples are the Ising
or Heisenberg models, describing atomic lattices, where each atom is equipped with a
magnetic moment from a valence electron, for the study of magnetism, or the Hubbard
model, describing interacting electrons in an atomic lattice for the study of electric con-
ductivity. Other examples are models describing Bose gases [69], spin glasses [13], atomic
nuclei [107], etc..

Often, the low temperature behaviour of such models is of interest. At such temper-
atures, the lowest eigenvalue of H, modeling the ground-state energy of the system, is
dominant in the partition function. Therefore, it is in this case desirable to compute the
ground-state energy or even the corresponding ground state. Most straightforwardly,
this can be achieved by diagonalizing H. However, it was shown that this task is com-
putationally hard, in some cases even for quantum computers [62, 12, 59, 60, 115] and
therefore practically impossible in general for large particle numbers n.

There exist various methods allowing one to approximate the quantities of interest.
Prominent examples are density matrix renormalization methods [118, 102], quantum
monte carlo methods [38], low-order approximations in path integral formalisms [6] or
large-spin expansions in connetion with the Holstein-Primakoff or Schwinger-Boson rep-
resentation in the sense of spin wave theory [10].

One of the most common approximation methods in many-particle quantum physics
is mean-field theory. However, there exist various different concepts of what is called
mean-field theory, ranging from the Weiss model over variational methods to saddle
point approximations in path integral formalisms. In the following, we will describe a
few of these and bring our project into context.



1. Motivation for the project

Originally, mean field theory was introduced by P. Weiss in the study of paramagnetic
materials, Cf. [55]. His postulated (classical) model consisted of magnetic momenta,
which not only interact with an external magnetic field, but also an internal one, which
models the collective magnetization of the system and is therefore an average over the
bulk of the magnetic moments. Hence, the internal field is a prototype of a mean
field, and due to its dependence on the bulk the system energy is computed by solving
a nonlinear equation over one particle. E. Ising later refined the model by removing
the internal field and introducing an interaction term for neighbouring momenta'® [55].
By suitable replacement of operator products by single operators multiplied with an
expectation value, the Weiss model is obtained as an approximation.

Today, mean field theory is largely understood as a variational ansatz over prod-
uct states. In particular, this is often used for Bosonic systems, yielding the well-known
Gross-Pitaevski equation [47, 86], whereas for Fermionic systems the corresponding vari-
ational class is the set of Slater determinants, and the variational principle is commonly
known as Hartree-Fock theory [91]. Another instance of a mean field theory for Fermions
is the dynamical mean field theory, where e.g. the Hubbard model is mapped to an im-
purity model and the Green’s function is computed there [41]. Moreover, the variational
principle over matrix product states? of only bond dimension one is exactly a variation
over product states and therefore often called mean field theory [114]. On the other
hand, a common context for the application of mean field theories are systems at ther-
mal equilibrium at a finite temperature [10]. There, the mean field approximation is
often performed on the partition function in the path integral formalism. This type
of mean field method is also often called saddle point or stationary phase approxima-
tion, referring to the simplification of the action integral [10]. More generally, in terms of
Feynman diagrams, mean field theory is often considered as the one-loop approximation.
However, it is not clear whether these methods are related to the variational principle
over product states.

Despite the extensive usage of mean field theories, general methods to estimate the
quality of the approximation do not exist. It is general folklore that the mean field
approximation becomes better as the lattice dimension or, more generally, the connec-
tivity among the particles increases. Indeed, for infinite-dimensional lattices, the mean
field approximation in the sense of variation over product states becomes exact, and
such models are referred to as mean-field models. Infinite lattice dimension can also be
understood as long-range interaction, in the sense that all particles interact with each
other in the same manner and strength.

The exactness of the mean field approximation as a limit of infinitely many particles
on a fully connected lattice (the mean field limit) was proved by Duffield, Raggio and
Werner for general C*-algebras [89, 88, 90, 29, 30, 31, 28, 117]. Their theory, in par-

'This, as well is the Weiss model, is a classical one, where each magnetic moment can be in one of two
states. The quantum Ising model consists of spin—% quantum particles. In this thesis, we focus on
the quantum models.

It was shown, that the density matrix renormalization group is a variational principle over matrix
product states [80, 32].



ticular the papers [89, 31, 29|, are the basis of the project presented in this thesis. It
was shown that the mean field limit can be described by a classical system, namely a
commutative C*-algebra over the one-particle state space. That is, the quantumness of
the system is not observable in this limit.

In Part I of this thesis, we derive an algebraic description of the 1/n-asymptotics to-
wards the infinite-particle limit n — co. We use a concept called fluctuations, which
has been previously used in translationally invariant systems [42] in the sense of a non-
commutative central limit theorem and has been applied to mean-field models in a basic
manner before [52]. We show that in the context of mean-field models, where we call
them mean-field fluctuations, they give rise to an algebra of canonical commutation re-
lations (CCR), which is closely connected to the phase space of the mean-field limit and
conveniently describes the asymptotic behaviour. The purpose of the fluctuation algebra
is to quantify expectation values of observables in sequences of n-particle states that are
beyond product states. That is, the fluctuation algebra allows for the extension of the
variational class of states beyond the product states in an asymptotic sense. Further-
more, we will use the concept of mean-field fluctuations to estimate the ground-state
energy of mean-field models up to order 1/n and apply it to various examples.

In the following, we outline the rest of Part I of this thesis. In Chapter 2, we re-
view the basics of the mean field theory derived in [89, 31, 29]. We restrict the general
C*-algebraic theory to finite-dimensional matrix algebras, which are the systems of in-
terest in this thesis. In particular, we outline the proof of the convergence towards
the mean-field limit for observables. Furthermore, we describe the mean-field limit for
the time evolution as well, in particular for Hamiltonian dynamics, and describe the
differential-geometric structure of the limiting algebra. Finally, we provide an overview
of the properties of permutation invariant operators and states.

In Chapter 3, we introduce the concept of mean-field fluctuations and derive the
structure of the limiting fluctuation algebra. In particular, we introduce three classes
of fluctuators. These are elementary and tensor fluctuators, which are related by a
transformation rule, as well as scaled fluctuators, which are essentially one order higher
in 1/y/n. We show the relation between fluctuators and elements of the phase space
of the mean-field limiting algebra. Then we introduce sequences of states with root-n
fluctuations, which allow for taking the infinite-particle limit of the fluctuators, being
described by a CCR algebra. We provide a range of results concerning the structure of
the algebra. In particular, we identify the normal modes and scaled fluctuators.

In Chapter 4, we use the fluctuation method to estimate the ground-state energy®
up to order 1/n for a class of mean-field Hamiltonians. We derive a general inequality
yielding an upper bound for the ground-state energy, where the related 1/n-coefficient
is given by the ground-state energy of a quadratic Hamiltonian in the corresponding

3More precisely, throughout this thesis we will consider the energy per particle. That is, while the total
energy of a mean-field system is proportional to the particle number n, we will consider the energy
divided by n, such that the leading order of what we call the ground-state energy is constant and the
next order proportional to 1/n.



1. Motivation for the project

fluctuation algebra. We restrict the theory to Bosonic systems and derive bounds on
the ground-state energy of the fluctuation Hamiltonian. Using purification methods,
we extend these bounds to the general mean-field case, where no particle statistics are
assumed. We apply the ground-state energy estimation to the mean-field Ising model
as well as the Bose-Hubbard model, and for the latter, we show that the fluctuation
Hamiltonian is exactly the well-known Bogoliubov Hamiltonian [85]. Furthermore, we
show the relation between the mean-field ground-state problem and the finite de Finetti
problem [23] in the sense that an inner bound can be obtained by minimizing over a set
of fluctuation Hamiltonians. Finally, we describe the relation of the fluctuation method
to the Holstein-Primakoff approximation and show that the latter is a special case of the
former. We finish the chapter by proposing an extension of the fluctuation method to a
larger class of mean-field Hamiltonians.

In Chapter 5, we consider the time evolution of mean-field fluctuations. First, we
outline the time evolution of differential forms, i.e. elements of the phase space of the
mean-field limiting algebra. Then we cite a result on fluctuation dynamics for a slightly
different class of Hamiltonians [52] and provide arguments that suggest the same theorem
may be true for the class of Hamiltonians considered in this thesis. Since we were not able
to derive a rigorous proof, we leave it as a conjecture. Finally, we refine the conjecture
to the evolution of fluctuations around a ground state in the mean-field limit and show
that in this case the time evolution of fluctuators is generated exactly by the fluctuation
Hamiltonian that gives rise to the 1/n-corrections to the mean-field ground-state energy.

In Chapter 6, we summarize Part I of this thesis and provide an overview over open
questions and possible extensions of the mean-field and fluctuation project.



2. Generalized mean-field theory

2.1. Overview

In this chapter, we describe the generalized mean field theory, which was developed
in [89]. This theory is the basis for the subject of this thesis, the first-order correc-
tions to the corresponding mean-field limit. After initially proving the emergence of the
Gibbs-variational principle for mean-field systems [89], a series of papers was published,
describing dynamical properties and related topics [88, 31, 29, 30, 28, 90].

Throughout this thesis, we will consider systems consisting of finite-dimensional quan-
tum particles with Hamiltonian dynamics. Hence, we will restrict the description of mean
field theory to such systems, although it applies to general C*-algebras.

In Section 2.2, we define mean-field models as n-particle systems and derive the alge-
braic structure of the limit of infinitely many particles, i.e. the structure of the mean-field
limiting algebra, which is represented by a commutative algebra of continuous functions
on the one-particle state space S(A) [89]. In Section 2.3, we derive the mean-field limit
of Hamiltonian dynamics, which is implemented by a nonlinear Hamiltonian flow on
S(A) [31]. In Section 2.4, we derive the symplectic structure of the manifold S(A),
emphasizing the classicality of the mean-field limit. We will introduce the tangent and
cotangent spaces and define derivatives of functions. These will be of particular impor-
tance for the derivation of the 1/n-corrections to the mean-field ground-state energy.
Finally, in Section 2.5, we present a few aspects and results concerning permutation
invariant operators and states from a different perspective.

2.2. Mean-field models

In this section, we define mean-field models and describe their mathematical structure.
mean-field models are many-particle systems, for which the mean field approximation
becomes exact in the limit of infinitely many particles. Their defining property is invari-
ance of the observables under permutations of the particles!.

Let A = B(H) with dimH = d denote the C*-algebra of bounded operators acting on a
Hilbert space, describing the set of observables of a one-particle system. The norm of
an element A € A is given by the operator norm

4] = sup 1AW (21)

wyer IO

"However, this does not mean that we restrict to Bosonic or Fermionic particle statistics, cf. Sect. 2.5.




2. Generalized mean-field theory

We denote states of the one-particle system A by p € S(A), where S(A) c B*(H)
denotes the set of positive operators with unit trace?. Throughout this thesis, we will
exchangably treat states as density matrices and as functionals on A, in the operator-
algebraic sense, without distinguishing the notation. That is, the expectation value of

an observable A € A in p € S(A) will be denoted by
p(A) =Tr(p- A), (2.2)

where Tr(.) denotes the trace of the related matrix. Many-particle systems are modeled
by the composition of one-particle systems. That is, a system of n copies of a particle
A is modeled by the algebra A®" = A® A®...® A, the n-fold tensor product of A.

The n-particle algebra of a mean-field model, A,, ¢ A®", is spanned by operators that are
invariant under permutations of the tensor factors. The permutation invariance allows us
to embed k-particle operators into n-particle systems, for n > k, by the symmetrization
map sym,, : A®* - A,,, which is defined by

1
sym, (Ax) = — S r (A @ I®") VA, e A%, (2.3)

° TrGSn

where (X1 ®...® Xp,) = X;(1) ® ... ® Xy, is an automorphism permuting the tensor
factors, i.e. a representation of the element 7 € S, of the n-particle permutation group,
and the sum goes over all such permutations. In Section 2.5, we will provide a few
more details on representations of the permutation group, which are not required here.
The symmetrization map thus maps k-particle operators into permutation invariant n-
particle operators for all n > k. In fact, it is sufficient to consider only permutation
invariant k-particle operators Ag, due to the chaining property sym, = sym,, osym;
Vk < n. Therefore, throughout this thesis, for every A, = sym,, A, the operator Ay is
assumed to be invariant under permutations, if not stated differently. Using this map,
we construct two types of sequences.

Definition 2.2.1. A sequence of operators, A = (Ap)n, with Ay, € Ay, is called
o strictly symmetric, if Ay € Ay such that

Ay =sym, A, Vn>k (2.4)

o approzimately symmetric, if Ye > 03N, € N such that

|An —sym, Am| <€ VYn>m> N.. (2.5)

We denote the set of strictly or approzimately symmetric sequences by Y or Y, respec-
tively.

For finite dimensional Hilbert spaces, B(#) and B*(#) are isomorphic. However, we will keep the
formal distinction, which will be convenient in Section 2.4.

10



2.2. Mean-field models

The symmetrization map sym,, does not increase the norm, i.e.

Zﬂ' (Ak ® ]I®n)

™

1 1
[sym,, Ag|l = — <= 27 (A e 1) = | Ak] - (2.6)
n! nl <
Therefore, we identify the symmetric sequences with intensive observables, i.e. those for
which measurement outcomes do not depend on the particle number. The product of
two strictly symmetric sequences is approximately symmetric:

min(k,l)
sym, Ag-sym, B = Y cu(k,l,1) symn((Ak ® ][®(Z_T)) . (]I®(k_r) ® Bl)), (2.7)
r=0
where Ll ) N
enlh ) = o PR L 28)

rinl(k-r)(l-r)!(n-k-1+7)
which asymptotically amounts to

7}1_)1(1010 n"c,(k,l,r) = r!(k)(l). (2.9)

r/\Tr

Since, to leading order in 1/n, the product of two strictly symmetric sequences amounts
to

1
sym,, Axsym,, B; = sym,, (A, ® B;) + O (—) , (2.10)
n

the symmetrization map can be considered as an asymptotic homomorphism. Further-
more, the commutator between two symmetric sequences vanishes in the limit, i.e.

1
Ilsymm,, Av. sy, Bl =0 (). (2.11)

That is, in the limit of infinitely many particles, the operators are abelian and hence by
the Gelfand-Naimark theorem [18] elements of the C*-algebra of continuous functions
on a compact Hausdorff space. In the following, we make this limit construction and the
structure of the algebra precise.

For each A,, € A,,, define the function sym, A, € C(S(A)) by

symy, An(p):= p®"(A,) VpeS(A). (2.12)
Furthermore, for a sequence A,,, define the limiting function

Aco(p): = lim sym,, An(p)

2.13
lim p®"(An), (2.13)

which clearly exists for all strictly symmetric sequences. Indeed, for A, =sym, Ax, we
have p®"(sym,, Ay) = p®¥(A},) for all n > k. That is, strictly symmetric sequences are in
one-to-one correspondence to polynomials of finite degree on S(A). Due to (2.10), the
map (2.13) is a homomorphism.

11



2. Generalized mean-field theory

On Y, we define the seminorm

4] = lim A, (2.14)

Under this seminorm, ) is an abelian algebra of sequences with element-wise addition
and multiplication, i.e. (A+B), = A,+By, and (A-B),, = A,-Byp, and ) is a dense subset.
Hence, the map (2.13) exists on the whole Y, and the limiting functions A, € C(S(A))
can be considered as representatives of equivalence classes w.r.t. the equivalence relation

A~B:< lim |A,-B,|=0 VA Be). (2.15)
n—oo

Due to (2.7) and (2.6), the map (2.13) is an isometric *-homomorphism from Y to the
abelian C*-algebra C(S(.A)), with commutator-sequences ([ A, By ]), being in its kernel.
C(S(A)) is also called the Hausdorff completion of . We summarize the construction
by citing the following proposition.

Proposition 2.2.2 ([89, 31]).

1. For every A € Y, the seminorm |A| = lim, oo |An| exists. Y is the completion
of Y in this seminorm, in the sense that Ye > 03A € Y such that |A - A°| < e.
Moreover, Y is closed within the set of all sequences n — A, € A, in this seminorm.

2. Y is an algebra of sequences with element-wise addition (A+B), =4, + B, and
multiplication (AB)y, = ApnBy. Furthermore, it is commutative under the semi-
norm, t.e.

|AB - BA| = lim | AnBy, - BpAy| = 0. (2.16)

3. For all A€, Aw(p) = lim, oo sym, A, (p) exists uniformly for p e S(A).

4. The map _
Y->C(S(A): A~ A (2.17)

is an isometric *-homomorphism onto C(S(A)).

As an example, we consider the mean-field Ising model in a transverse magnetic field.
The corresponding Hamiltonian can be written as

n n
nH, =B Zag) + T > A 2 (2.18)

i=1 n-1,54
where JC(f) =18 D @o, @ T8 for a e {z,y,2}. In this model, all particles interact
with each other, since the second sum goes over all ¢ and j independently. The factor
1/(n - 1) can be seen as a normalization to compare systems with different particle
numbers n. Indeed, each particle has n — 1 interaction partners. Note that we defined
the Hamiltonian as nH,,, where H, itself is called Hamiltonian density or energy per
particle. Clearly, the Hamiltonian density can be written as H,, = sym,, Hy with

1
H2:§(O'z®11+]l®0'z)+g]0'x®0'$ (2.19)

12



2.3. The mean-field limit of Hamiltonian dynamics

and is therefore a strictly symmetric sequence. The mean-field limiting function, H, is
evaluated as Ho,(p) = p®2(Hy). The ground-state estimation of this model is performed
in Section 4.5. Sometimes in the literature a similar model is considered, where the
factor on the interaction term amounts to 1/n instead of 1/(n —1). Since 1/n = (1 -
1/n)/(n - 1), this model amounts to an approximately symmetric sequence, given by
H,, =sym, Hy - (1/n)sym, (Jo, ® 0;).

2.3. The mean-field limit of Hamiltonian dynamics

In this section, we consider the time evolution of mean-field models and see, under which
conditions a mean-field limit of the time-evolved system exists and what its structure
is. The mean-field limit of the time evolution was worked out in [31] for general C*-
algebras and later, in [29], made precise for Hamiltonian dynamics on finite dimensional
C*-algebras.

We start by stating the general conditions for the existence of the mean-field limit of
the time evolution and then give the details for finite dimensional Hamiltonian dynamics.

On A, the n-particle mean-field system, consider the quantum dynamical semigroup
Ty n: Ay = Ay, with ¢ >0, describing the time evolution of the system. Given a Hamilto-
nian nH,, the time evolution can be written as

TinAy = e"™Hn A, emitnHn, (2.20)

with unitary operators e*®™H» ¢ A,. The generator of the time evolution is given by
GnAy =i[nHy, Ay,

In the following, we consider (Tt,n =e 1> @8 a strongly continuous one-parameter
semigroup of identity-preserving contractions on A,. Furthermore, for every fixed ¢,
consider T}, as a sequence in n. Clearly, if the mean-field limit of the time-evolved
system is supposed to exist, the following condition is needed: If A,, is an approximately
symmetric sequence, then 7} ,A, has to be approximately symmetric as well®. The
following lemma ensures that the limit of the sequence T}, (for t fixed) is well defined.

th)

Lemma 2.3.1 ([31]). Let T,,: A, - A, be a uniformly bounded sequence of opera-
tors, which intertwine the symmetrization map sym,,. Then the following conditions are
equivalent:

1. Forall A, €Y: T,A, €.
2. For all A, €Y : i, o0 liMyoco H(symn T — 1Ty Symn)AmH =0.
3. For all A, € NE limy,>m— oo H(symn T — T symn)AmH =0.

If these conditions are satisfied, then Teo: Ao — (T_A_)oo s well-defined and the sequence
T, will be called approrimate symmetry preserving.

31n the following we will denote sequences (A, )n just by A,, whenever the contetxt is clear, or by A..

13



2. Generalized mean-field theory

Hence, for fixed t, if T; is approximate symmetry preserving, then the operator
Tt oot Ao = (Tt“A_)oo = T},00 Ao is well defined. However, it is desireable to find con-
ditions, under which the T} o, with ¢ being a parameter, define a strongly continuous
semigroup of contractions with generator Go,. Indeed, this is the case if the resolvents
of Gy,

Ra(s) = (s—Gpn)t = /Ooodt €T, (2.21)

for s € C with Re(s) > 0 are approximate symmetry preserving and map Y onto a dense
subset of ). Then the limiting operators Ro,(s) define the generator Go,. The following
theorem ensures the existence of the mean-field limit of a dynamical semigroup.

Theorem 2.3.2 ([31]). For eachn €N, let (Tt,n = etG")t>0 be a strongly continuous one-
parameter semigroup of contractions on A, with generator G, and let s € C, Re(s) > 0.
Then the following are equivalent:

1. T, is approzimate symmetry preserving, and strongly continuous in the sense that
for all A, e,
lim 7,04, ~ Au] = 0. (2.22)

n—00

2. For each t, Ty, is approximate symmetry preserving, and the set of sequences A,
with Ay, € Dom(G,,) and |GpAy| uniformly bounded, is dense in Y.

3. R,(s) is approzimate symmetry preserving, and {Ry,(s)An|A, € )7} is dense in
V.

4. There is a dense linear subspace D c Y such that {(Gn -8)A, | Ay € D} is dense

5. G 1s well-defined, closed, and generates a semigroup of contractions on C(S(A)).

If these conditions are satisfied, then Dom(G,,) = {Rn(s)An | Ay, € j)v} and T} oo = elGe s
the mean-field limit of Ty .

Here, Dom(G),) is the domain of the linear operator G, on the n-particle system A,
and Dom(G,,) is the domain of the sequence (G, )y, defined by

Dom(Gy) = {(An)n € Y| Ay € Dom(Gy) ¥, and (GnAy), € V). (2.23)

Therefore, the mean-field limit of 7} ,, is a strongly continuous semigroup of
*~homomorphisms T} « on C(S(A)). In [97] it was shown that the semigroup is imple-
mented by a continuous flow on S(A). More precisely, if X is a compact space, then
there is a correspondence between strongly continuous contraction semigroups (7%):0
on C(X), that are *-homomorphisms and preserve the identity function, linear operators
Z on C(X), that generate contraction semigroups on C(X) and are *-derivations, and
continuous flows (F})¢sp on X. The correspondence is given by

Tif=e?f=foF, VfeC(X). (2.24)

14



2.4. The symplectic structure of the mean-field algebra

In [31], two classes of time evolutions that have a mean-field limit, were presented.
The related generators were called bounded polynomial and approximately polynomial.
Consider G}, as a bounded operator on Ay for some k € N. In analogy to the sym-
metrization map (2.3), we define a symmetrization map to bounded operators on A,
for n > k, by
S G, = l s 1®@n-k -1
ym,, k—n'Zﬂ'(Gk®1d Jor ™, (2.25)
T
where id(A) = A for all A€ A. A bounded polynomial generator is a sequence (G,,), of
bounded operators G,, on A,, such that

n

G, =
k

Sym,, Gy, (2.26)
where Gy, is the generator of a norm-continuous semigroup of completely positive unital
maps on Ag. The notion “bounded” stems from the fact that |G| < 7 |G| for n > k.
In this thesis, we will consider almost entirely such generators defined by Hamiltonians.
Let H,, =sym,, Hj, be a strictly symmetric sequence of hermitian operators. Then

Gn(An) = in[Hy, Ap] (2.27)

is a bounded polynomial generator of degree k. We call nH, the Hamiltonian and
H,, the Hamiltonian density, describing the energy per particle. Clearly, G, A4, is an
approximately symmetric sequence for any approximately symmetric A,, due to the
product rule (2.7). Hence, G,, preserves approximate symmetry and has a limit Go.
Consider T}, as the dynamical semigroup generated by Gy. In [31] it was shown that
for any A, € Y, T} n Ay is approximately symmetric with a uniform convergence on the
intervall 0 < t < 7 with 7 = (2971 |G, [)~!. By iteration, it follows that T}, is approximate
symmetry preserving for all ¢ > 0. Moreover, it has a mean-field limit 7} », which is
generated by Go, [31].

In the next section, we make G, and T} o explicit using concepts of differential ge-
ometry.

2.4. The symplectic structure of the mean-field algebra

In this section, we investigate the structure of the state space S(.A) of the one-particle
algebra A = B(H) with dim#* = d. We consider S(A) as a manifold. At each point
p e S(A) we define a tangent space

T,S(A) = {pe A*

¢=0¢", (1) = 0}, (2.28)

where A* denotes the dual of A. The dual of T,S(A) it is the cotangent space T, S(A).
It is defined by the bilinear form

(., ): T,S(A) xTIS(A) > R, (2.29)

15



2. Generalized mean-field theory

which is the restriction of the bilinear form A* x A~ C onto the elements of T,S(.A).
Hence, the cotangent space amounts to

T,S(A) = An/RT, (2.30)

where Aj, denotes the set of hermitian elements in A. The following definition of a
derivative holds for general C*-algebras.

Definition 2.4.1 ([29]). A function f € C(S(A)) is called differentiable, if
1. for all p € S(A), there exists a hermitian element df(p) € A, such that for all
ogeS(A)
o1
(0= p, df(p)) = lim =(F((1 = w)p+ po) - £(p)) (2.31)
wNO p
exists as a weak-* continuous affine functional on o € S(A), and
2. the maps p— (o —p, df(p)) are weak-* continuous, uniformly for o € S(A).

By this definition, the gradient df(p) is an equivalence class in A not just in A**.
Hence, it suffices to require continuity in the weak-* topology instead of the weak topol-
ogy. We fix a representative for the gradient by the convention p(d f (p)) = 0. With this,
df(p) is a unique element of A and item (2) of the above definition can be rewritten, say-
ing that the map p — df(p) is weak—*~to—norm continuous. Moreover, an expectation
value of df(p) can then be written as

d
o(df(p)) = @f((1 —mp+po)| - (2.32)
Throughout this thesis, we will also use a notion of differentials for one-particle operators,
instead of functions. That is, we define

dX(p):=X-p(X)I VXeA, (2.33)

which is just a short form for considering the sequence X,, = sym,, X and then the related
differential d X« (p).

We define higher derivatives d, f(p) of f in the same fashion. That is for example, for
the second derivative of f at a point p, we demand the existence of

2

dpdv

f((l _M_V)P+MU+VW)‘5:8 = % (w—p, df(p+,u(o*—p))) ‘M=O Vo,weS(A).
(2.34)

Hence, we require now that the map o~ (o —p, df(p)) is not just weak-* continuous,
but even differentiable at p. A general way to define such a derivative, is to consider a
function of the type ®: S(A) — B, where B is a general C*-algebra. We fix a oy € S(B)
and consider the restricted function

50(®(.)): S(A) > R, (2.35)
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2.4. The symplectic structure of the mean-field algebra

for which we apply the above definition of the first derivative. Hence, the differential of
® at p e S(A) into the direction o € S(A), evaluated with og € S(B) amounts to

o8 ao(dd(p)) = %00( ((1—u)p+ua))|u=0. (2.36)

Thus, d®(p) € A®B. Therefore, we obtain the r-th derivative of the function f:S(A) - R
by iterating this construction, and see that it is given by the element d, f(p) € A®". In
fact, an expectation value of it can be computed by

r

i (=)o v )|

01®0'2®---®0'r(d7"f(p)): M1 yeeey e =0"

(2.37)

Since the value is independent of the order of derivatives, the operator d, f(p) is permu-
tation invariant, hence an element in A, c A%®". It is therefore sufficient for the definition,
to evaluate it with product states. Moreover, as the derivative of a real-valued function,
it must be hermitian.

Definition 2.4.2. A function f € C(S(A)) is called r times differentiable, if
1. for all p € S(A), there exists a hermitian element d,f(p) € Ay, such that for all
ceS(A)

T

((0=p)®", A, f(p)) = 4

exists as a weak-* continuous affine functional on o € S(A), and

F(A=mwp+po)| (2.38)

2. the maps p— ((o = p)®", d, f(p)) are weak-* continuous, uniformly for o € S(A).

Again, we consider d, f(p) € A, uniquely as the representative of the equivalence class
by choosing the convention

p®0or1(df(p))=0 Vor_1eS(A_1) (2.39)

and update the definition to saying that p — d, f(p) is weak-*~to—norm continuous.

The definition of derivatives allows us now to introduce the Taylor expansion of poly-
nomial functions [111]. Consider the strictly symmetric sequence H,, = sym,, H;. Then
Ho(p) = p®%(H,},) is a polynomial of degree k. We can perform a Taylor expansion on
such a function in the following way

Ho(0) = l,_ ((1=t)p+10)|,_,

o®"(sym, d;Hoo(p)) Vn > k.

e
Xk: " (drHoo(p)) (2.40)
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2. Generalized mean-field theory

Since this expansion holds for all o, p € S(A), we can identify the n-particle operators as

k
H, = Z_;} % sym,, (d,Heo (p)) VpeS(A). (2.41)

With the Taylor expansion, we can make the limit G of a bounded polynomial generator
Gn(.) =in[Hy, .], with H,, = sym,, Hy, explicit. Consider a strictly symmetric sequence
Ay, =sym,, A;. Then the sequence in[H,, A,] is approximately symmetric and, using
the product rule (2.7) and Taylor expansion (2.41), can be written as

GnApn =in[Hp, Ay
k1

11,
21 Zl ﬁ;m[symn drHoo(0), sym,, dsAee(a)]
r=1s= T

bk 1
= Z Z F;isymn[d’r‘Hoo(o_) o 181, 191 g dsAoo(O')] +0 (E)

r=1s=1

(2.42)

for all o € S(A). Hence, the limiting function G As is a polynomial of the leading
order terms of (2.42) and GeAc(p) is given by their evaluation with product states
p®", for n large enough. But since p ® o,_1(d.f(p)) = 0, we can perform the above
expansion (2.42) at p, the point at which the function is evaluated, such that all leading
order terms vanish, except the one with the first derivatives. That is,

GooAoo(p) = p(i[dHoo (p), dAce(p)])- (2.43)

This result also holds for approximately symmetric A, with a differentiable limiting
function and a broader class of Hamiltonian densities H,, [29]. On the level of functions
on S(A), we define the following bracket for differentiable f, g e C(S(A)),

{f, 9} (p) =n(df(p), dg(p)) = p(i[df(p), dg(p)]), (2.44)

where 7: Aj x Ay - R defines an antisymmetric bilinear form on 7,S(A). Hence,
Goo(.) = {Hoo, .} is a derivation, generating the mean-field time evolution T} ... The
corresponding flow Fip = p; is obtained by the cyclicity of the trace, that is

{Hoo, g}(p) = p(i[dHoo (p), dg(p)])
=Tr(p-i[dHo(p), dg(p)]) (2.45)
= Tr(~i[dHe (p), p]-dg(p))-

Hence, the flow is defined by the following differential equation, known as the Hartree
equation [29]
d

gftp = pt = —i[dHo(pt), pt]- (2.46)

Therefore, we obtain the identification T} e Aco(p) = Aoo (pt)-
It is important to note, that {.,.} is not a proper Poisson bracket, since it is degenerate.
In particular, if [p, df(p)] = 0, then {f, .}(p) = 0. However, there exists a foilation of
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2.5. Properties of permutation invariant operators and states

S(A), such that the restriction of the bracket to the leaves is indeed non-degenerate
and closed, meaning that the leaves are proper symplectic submanifolds [29]. In the
following, we outline the construction of the foilation by considering at each point p a
subspace N, ¢ T,S(A), on which the bracket is non-degenerate. Then we will show that
the NV, are tangent spaces of submanifolds of S(A).
Define
N, ={AeT;S(A)|n(B,A)=0YB e A}, (2.47)

which is non-empty. The set of tangent vectors ¢g € T,S(A) with (¢n, A) = n(H, A)
for some H € A is a proper subspace of the tangent space. This subspace is just the
orthogonal complement N of N, since for every g € Ny, n(H, A) = 0 for all AeN,.
By taking the quotient, 1 is non-degenerate on

T;S(A) (2.48)

Its dimension amounts to dim T;S(A)/Np =dimT;S(A) - dim N, = dim NV, and must
be even, due to the non-degeneracy of n on N, pl. It remains to be shown that the N pl are
tangent spaces of a submanifold §, through p. Since by construction all Hamiltonian
vector fields point along N ;7 the submanifold S, is identified by computing the flows for
all those vector fields starting from p. For any Hamiltonian function h, the related flow
Fi is generated by the related Hartree equation (2.46). By considering Hy = dh(p;) as
a time-dependent Hamiltonian, one can write down a differential equation for unitary
operators

%Ut = iUth, UO = ]I (249)
and obtain
(Fup)(A) = (UL AU7) VA€ A, (2.50)

where U; is by construction an element of the identity component Gg of the unitary
group in A.

Hence, the symplectic submanifold S,, which is a leaf of the foilation of S(A), is
spanned by the points UpU*, with U € Gy, or can just be considered as the homogeneous
space Go / G, where G, is the subgroup of Gy consisting of elements that fulfill UpU” = p.
If we consider A as the matrix algebra of d x d matrices, i.e. A = My, then the structure
of §, depends on the eigenvalues p; of p and their multiplicities d;. The unitaries that
leave p invariant, are elements of @; Myg,, corresponding to the multiplicities d;. Since
the tangent spaces of Go and G, are given by the hermitian elements of My and @; Mg,
respectively, we get dim Gy = d* and dim G, =% d?. Therefore, the dimension of the
leaf S, is d* — ¥; d?, which is even [29].

In Chapter 4, we will extensively use the symplectic submanifold of pure states,

Spure(A) € S(A).

2.5. Properties of permutation invariant operators and states

In this section, we present a few aspects and results concerning permutation invariant
operators and states from a different perspective. The purpose is to give the reader an

19



2. Generalized mean-field theory

intuition about the structure of these. The first part of this section essentially follows
[43].

We start with an introduction of the permutation group &,. Consider the set of n
natural numbers {1,2,...,n}. An element 7 € S, is a rule of rearranging the order of the
numbers and its action can be written as

m{1,2,...,n} = {n(1),7(2),...,m(n)}. (2.51)

The simplest instance is the group So, which consists of two elements, namely the identity
id{1,2} = {1,2} and the flip F{1,2} = {2,1}. Consider the Hilbert space H with dim H =
d and the n-fold tensor product H®". A representation of S, on H®" is given by the
unitary operators U, for m € S, with the rule

Ur [th1) ® [t2) ® ... ® [1hy,) = W)w(l)) ® ‘1/171—(2)> ®..0Q |¢ﬂ(n)> . (2.52)

This representation is reducible and there exists a block decomposition into irreducibles
with corresponding multiplicities as

Ur =@ Urr, ® I, (2.53)
Y

where the direct sum runs over all Young diagrams of n boxes arranged in d rows,
Hy is the related irreducible representation space and Ky quantifies the related mul-
tiplicity. This decomposition into irreducible representations implies a decomposition
of permutation invariant operators. Let A, € B(H®") be permutation invariant, i.e.
w(A,) =UrA U, = A, for all me S,,. Then

A, = @ ]I’Hy ® An,lea (2.54)

with a collection of matrices A, x, . This decomposition holds for permutation invariant
states p, € B(H®") as well*. Moreover, we can write

Ty,
= Pw e ® 2.55
Pn @ pn,Y dlmHY anCY7 ( )
where each tensor factor is a density matrix itself and the non-negative weights w,,, y € R
fulfill 3y w,, y = 1. Of special importance is the trivial representation of Uy, namely
the Young diagram Y7, for which Uﬂ,Hyl =1 for all m € S,,. The related multiplicity space
Ky, is exactly the Bosonic subspace of H®" i.e.

Ky, = Sym,, H®" = span{|y)) e H®", U, [¢)) = [¢) V7 € S, }. (2.56)

A permutation invariant state p, is called Bosonic, iff w,, y; = 1, i.e. has full weight on
the Bosonic subspace.

4This is the only section in this thesis, where we do not keep the formal distinction between B(H®™)
and its dual B*(H®").
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2.5. Properties of permutation invariant operators and states

The Schur-Weyl duality is a relation between the permutation group S,, and the general
linear group GL(d) of linear maps on a d-dimensional Hilbert space. In our context,
the duality relation concerns the reducible representation of GL(d) on H®", given by
GL(d)> A~ A®" e B(H®"). Clearly A®" is permutation invariant for every A € GL(d).
Therefore, the representation on H®" is decomposed into irreducibles via

= @ Ty, ® (A°") (2.57)

Y

where ( A®")’CY € B(Ky). It follows that every permutation invariant operator B,, must

be decomposable as a linear combination of operators A®™. Indeed, consider the set
of operators B(H) as a Hilbert space itself, with the Hilbert-Schmidt inner product
(A, B) = Tr(A*B). Then the polarization identity, Lem. 2.5.1, holds.

Lemma 2.5.1 (Polarization [43]). Consider a finite dimensional Hilbert space K. The
symmetric subspace Sym,, K®™ of IC®™ is spanned by the product vectors i)™ for 1)) € K
and the following identity holds

symy,([11) ®[12) ® ... @ [¢n)) = ,2(n 5 2 (H)(le +ealn) +oten i), (2.58)

ej=+1 \j=2
where sym,,(.) denotes the normalized sum over all permutations of the tensor factors.

Moreover, Lem. 2.5.1 says that the Bosonic vectors of H®" are spanned by product
vectors [)®"

It is important to note, that linear combinations are not convex combinations. The
latter is related to a result of Stgrmer, extending the original de Finetti theorem [25] to
infinite tensor products of C* algebras [109].

Proposition 2.5.2 (Stgrmer [109]). Consider the C*-algebra A* of infinite copies of
the C*-algebra A. For every permutation invariant state ® on A, there exists a unique
probability measure p on S(A), such that

S NICOT (2:59)

where ¢ denotes the infinite product state of ¢ € S(A), in the sense that every reduced
state ®™ on A™ has the form

o= [ Ly M) (2.60)

The set of states ® is a Choquet simplex, with the extremal points being identified with
the point measures on S(A).

In other words, Prop. 2.5.2 tells that a for an (infinite) sequence of permutation
invariant states p, € S(A,), with the reduced-state property pm, = Trp_m(pn) for all
n >m, there exists a unique probability measure p on S(A), such that

. Ao o®" V. 2.61
p fS(A)u(p)p n (2.61)
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2. Generalized mean-field theory

Moreover, if the states p,, are Bosonic, then the probability measure p is supported only
by the pure states of A. Furthermore, Prop. 2.5.2 can be derived as a corollary of the
mean-field theorem 2.2.2 [31].

Another important property of de Finetti states is that as convex combinations of
product states they are exactly the set of separable permutation invariant states on Ay
for any k € N. Hence, a permutation invariant state py is entangled, iff it is not of de-
Finetti type. In this sense, the mean-field limit H, of a strictly symmetric Hamiltonian
density H, = sym,, Hj corresponds to the evaluation of Hj with separable states of
S(Ag). In the spirit of finding the ground-state energy of H,, we wish to minimize

Hj, over reduced states pgﬂ) = Tr,_k pn of permutation invariant states p, € S(A,).

States pgﬁ) of this kind are called n-exchangable. By definition, the set of n-exchangable
states contains the de Finetti states as a subset. Furthermore, it contains the set of
m~exchangable states for every m < n. The finite de Finetti theorem, Thm. 2.5.3, gives

a bound on the distance to the de Finetti states

Theorem 2.5.3 (Finite de Finetti [23]). Consider a permutation invariant n-particle
state pn € S(Ap). There exists a probability measure p on S(A), such that for every

k<n,
(k)_[ dp)o®F
‘ " S(A)M( p)p 1

where d = dimH for A=B(H) and |.|, denotes the trace norm [78].

2
L (2.62)
n

In the spirit of finding the ground-state energy of H,, = sym,, Hy, we would need to
minimize Hj over the set of n-exchangable states. However, even for large n, there
does not exist a convenient parametrization of such states on A;. The approach used
in this thesis, namely the mean-field fluctuations, allows for a convenient asymptotic
parametrization, as we will show in the subsequent chapters. A different interesting
concept of extending the variational class beyond product states is given by the set of
almost product states [64, 63]. It is not obvious, how this concept relates to mean-field
fluctuations, in particular, since the set of almost product states is defined in the Schur-
Weyl picture, in the sense of Eq. (2.54) and does not use a reference state p € S(A), in
contrast to the definition of mean-field fluctuations, c¢f. Chapt. 3. However, there exists
a method for implementing the concept of mean-field fluctuations into the Schur-Weyl
decomposition in the spirit of Eq. (2.54) [56]. It would be interesting to see a general
connection between these concepts.
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3. The algebra of mean-field fluctuations

3.1. Overview

In this section, we introduce the concept of mean-field fluctuations, in the spirit of a non-
commutative central limit theorem. Fluctuations and non-commutative central limits
have been introduced before and studied by Verbeure et al. in the context of translation
invariant systems on quasi-local algebras [42, 113]. For mean-field models, fluctuations
were used for the first time by Hepp and Lieb in their seminal paper [52] and basics have
been worked out by Trimborn [111]. Furthermore, closely related concepts are used by
Schlein et al. for mean-field systems consisting of infinite-dimensional Bosons [100] and,
somewhat less related, by Guta et al. in terms of quantum local asymptotic normality
in the spirit of quantum state estimation [57].

While the mean-field limit of a strictly symmetric Hamiltonian corresponds to the
evaluation of the finite-n system with product states, cf. Eq. (2.13), the essential
idea of mean-field fluctuations is to implicitly define sequences of states p,, which are
beyond that. More precisely, we define a class of strictly symmetric operators, called
fluctuators, which diverge in norm by orders of \/n and have vanishing expectation in
states related to a reference p € S(A). The sequences p,, of interest are defined by leading
to converging expectation values of products of these fluctuators and are said to have
root-n fluctuations around (the reference) p. These sequences need not be of de-Finetti
type, i.e. separable. Indeed, for finite n, they can be anything, since the definition
concerns only the asymptotic behaviour. The latter is then described in terms of the
limiting fluctuation algebra.

In this chapter, we introduce the definitions of fluctuators, sequences with root-n
fluctuations and the limiting fluctuation algebra. We study their properties and algebraic
structure in detail. Furthermore, we identify the relation between mean-field fluctuations
around a reference p € S(A) and elements of the phase space T, S(A) in the mean-field
limit. Moreover, we identify the normal modes of the corresponding limiting fluctuation
algebra F,.

The rest of this chapter is ordered as follows. In Section 3.2, we provide the definition
of fluctuators as operators on the n-particle systems. In particular, we provide two
definitions, namely of elementary and tensor fluctuators, both of which will be relevant
in the subsequent chapters. In Section 3.3, we derive a recursive transformation rule
between elementary and tensor fluctuators for finite n and in the limit n - co. We will
use the transformation throughout Chapter 4. In Section 3.4, we compute the limits of
expectation values of fluctuators around p € S(A) with the product state sequence p®".
The given propositions will be the basis for most proofs in the subsequent sections. In
Section 3.5, we introduce the definition of the limiting fluctuation algebra ¥, along with
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3. The algebra of mean-field fluctuations

the definition of root-n fluctuations for sequences p,,. We show that the algebra satisfies
canonical commutation relations (CCR) and study its structure in detail. Moreover,
we introduce the concept of scaled fluctuators, which will be relevant in the subsequent
chapters as well. Finally, in Section 3.6, we fix a basis, in which the reference state
p € S(A) is diagonal, and identify the normal modes of the fluctuation algebra, the
central elements and the scaled fluctuators.

3.2. Definition of fluctuators

In this section, we define the concept of fluctuators, following previous results on non-
commutative central limits [52, 42, 111]. Let A = B(H) be the algebra of bounded
operators acting on the d-dimensional Hilbert space H, describing one particle. Consider
a state p € S(A) and define the projector

PA=p(A)I VAcA. (3.1)

In the following, we omit writing the identity, when its presence is clear from the context.

Definition 3.2.1. Let A€ A and PA=p(A)I. Then

A=/nsym,((id-P)A) (3.2)
is called an (elementary) fluctuator around p.
Moreover, the following generalized definition will be useful in Chapter 4.

Definition 3.2.2. Let Ay € Ay, then
Ax = n% sym,, ((id - P)®* A, ) (3.3)
is called a tensor fluctuator around p.

Notation—wise, if the expression under the tilde is too wide, we will alternatively use
Fluct(Ag):= Ag. Moreover, the notation carries implicitly the dependence on n and p,
where the latter is treated as a fixed parameter. An important class of fluctuators is

defined by derivatives dj f(p) of differentiable functions f € C(S(A)). By Def. 2.4.2
they fulfill the property

(id - P)®*(def(p)) = dif(p), (3.4)

hence the object dyf(p) = ns symn(dkf(p)) is a tensor fluctuator around p. In the
following lemma, we show that every fluctuator corresponds to the derivative of some
function.

Lemma 3.2.3. For every k-particle operator Ay, there exists a k-times differentiable
function f e C(S(A)) such that

dif(p) = Ay (3.5)
with any reference state p € S(A).
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Proof. Given Ay, define By, = %Ak and the sequence B,, = sym,, B;. Then the desired
function is Bs. Using the Taylor expansion (2.41), we can write

(id - P)®* Ay, = (id - P)®* k! By,
k

= (14 =P ) symy (4B () (3.6)

= (id = P)®"d}. Boo (p)

and therefore the statement of the lemma. The third line in the computation follows
from (id - P)1T = 0, that is (id — P)®* sym,(C;) = 0 for every C; € A% with I < k. O

3.3. Transforming tensor fluctuators into elementary
fluctuators and vice versa

In the limit n — oo, the elementary fluctuators are the convenient ones to work with.
But higher derivatives of functions, df(p), are tensor fluctuators. Therefore, we give
in the following a rule for decomposing tensor fluctuators into elementary ones and vice
versa. Consider a general permutation invariant operator Ay € Ai. Viewed as a vector
in the Hilbert-Schmidt space A®*, and using the polarization identity, Lem. 2.5.1, there
exist finitely many A; € A, such that

A = ZA?”“. (3.7)

)

By linearity, we can therefore decompose tensor fluctuators to A, = ¥, Af’k. In the

following, we derive a recursive formula for decomposing fluctuators of the type A&k
into polynomials of elementary fluctuators. We start by computing the product of two
such tensor fluctuators. To simplify notation, we write

A=(id-P)A=A-p(A. (3.8)

Using (2.7), the product between A®k and B® amounts to
o ral min(k,l)
A®k.Bol=p2 3 e, (k,lr) symn(é‘g’k# ® B® " g (A-E)m). (3.9)
r=0
The overlap terms can be reduced in the following way
A-B=(A-p(A)T)(B-p(B)1)
=AB + p(AB) - p(A)B = p(A)p(B) - Ap(B) £ p(A)p(B) + p(A)p(B)  (3.10)
= COVp(A7 B)]I + (A_B - p(A)E - p(B)A)7

where we introduced the covariance

covy(A, B) = p(AB) - p(A)p(B) = p(A- p()D)(B-p(B)D))  (3.11)
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3. The algebra of mean-field fluctuations

and AB = AB - p(AB)1. Hence,

(A-B)®" - 20(2) covy(A4, B -sym, (1% & (AB - p(A)B - p(B)A)").  (3.12)

Therefore, Eq. (3.9) can be further decomposed into

__ __ min(kl) r .
A®k.pel= %" % (T)n%cn(k,l,r) cov,(A,B)"°
r=0 s=0\S

x sym,, (A% © B! © (AB - p(4)B - p(B)A)™")

min(k,l)

r EN(I\(r k+l—2r
~ ! A, B)*
2 2 () covoca ™
x sym, (A% @ B ® (AB - p(A)B - p(B)A)™") (3.13)
mln(k,l) 7 k l r s
~ ! A B *n"%
2 2 r()() () eovota By
x Fluct(A*" @ B* " ® (AB - p(A)B - p(B)A)™")
min(k,l) k l 1
~ ! A, B) -Fluct( A%* 7@ B® ")+ 0 —
Tz:(:) r (r)(r) cov,(A, B)" - Fluc ( ® )+ (\/ﬁ)v

where in the second line we considered only the asymptotic behaviour of ¢, (k, [, r), given
by Eq. (2.9). In the third line, we wrote the symmetrized operators as fluctuators, using
the notation Fluct(Ay) = Ay, and in the fourth line we considered only the leading-
order fluctuators. Hence, the O (ﬁ) is meant as in expectation, in a sense specified in
Section 3.5, and not in operator norm, in which fluctuators diverge. A special case is
the following

-1, o
Fluct (A®k ®B) = (1 - E) (A‘X’k‘ ‘B —k-cov,(A,B)A®k-1 - %Fluet (A®k_1 ® (AB))
n n

- %(p(A)Fluct (4%5"1 ® B) + p(B)Fluct (4%"))).
(3.14)

Hence, we obtain a recursive rule for asymptotically decomposing tensor fluctuators into
elementary ones

Z@=Z@ﬁ-z-(k-1)varp(A).W+0(%), (3.15)

n

where we introduced the variance
var,(A) = cov,(A, A). (3.16)

Therefore, every tensor fluctuator can be decomposed into a finite polynomial of elemen-
tary fluctuators and vice versa.

26



3.4. Combinatorics for product states

3.4. Combinatorics for product states

In this section, we compute the expectation value of products of elementary fluctuators
around p in the product state sequence p®". The two following propositions will be the
basis for most proofs in the subsequent sections.

Proposition 3.4.1. Let p € S(A). Consider the elementary fluctuators Ay, ... Ay, around
p, defined by Aq,...,Ax € A, such that p- A; # 0 for all i. Then, using the notation
é = Az - p(AZ)]L

> P(éiléjl )P(Aigéjz)---ﬁ’(éiléjl) +0 (%) ) k even

s (3.17)
== Y (A Ay Ay )p(A A p(A, A) + O (n72), k odd,

2 (A Ay = {

where in the even case, the sum goes over all pairwise decompositions (i1 < j1), (i2 <
J2)y ey (g < J1) of the set {1,2,...,k} with | = k/2 and in the odd case over all decompo-
sitions (i1 < j1 < h1), (i2 < 32), ..., (i < Ji) of the set {1,2,....k} with | = (k—-1)/2, such
that no term appears twice.

Proof. On the one hand, due to the product rule (2.7),

symnA-symn(Blcg...By):(1—%)symn(A®Bl®...By) 3.18)
3.18
+Y sym, (A ® eyt -sym, (B ® ..By)).
n

Hence, we can write the product of fluctuators, Aj-...- Ay as a sum of strictly symmetric
sequences, scaled with n*2. Each symmetric sequence, that contains overlaps of the
operators A;, i.e. tensor factors of the form ... ® (4;-A4,-...) ® ..., stemming from the
second term on the r.h.s of (3.18), is multiplied with a factor n™*, where x is the number
of overlaps. Each symmetric sequence can be evaluated by

p®" (sym,,(B1 ® ... ® By)) = p(B1) - ... - p(By). (3.19)

Since p(4;) = p(A;)-p(A;) =0, every strictly symmetric sequence, that contains a tensor
factor ...® A, ® ..., vanishes in the expectation with p®". Hence, the non-vanishing terms
in (3.17) are those for which each tensor factor is either a product of several A;’s or the
identity. Due to the factor n*/2 from the fluctuators, the leading order terms are those
with z = k/2 or = = (k + 1)/2 overlaps, depending on whether & is even or odd. The
others vanish in the limit as O(1/n). If k is even, the leading-order terms are such that
every tensor factor is a product of two operators, i.e. A, -Aj, with ¢ and j such that
the non-commutativity of the A; is respected. If k is odd, then the leading-order terms
contain one tensor factor with three operators, 4;-A,- A, and vanish as 1 [/ O

Furthermore, consider X € A, such that pX = Xp = 0. Then any expectation value
containing X vanishes by the following proposition.
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3. The algebra of mean-field fluctuations

Proposition 3.4.2. Consider p € S(A) and the elementary fluctuators Ay, ..., Ay
around p, as in Prop. 8.4.2. Moreover, consider a fluctuator X with pX = Xp=0. Ifk
is even, then, using the notation A; = A; — p(A;) 1,

P, K Ky = % > (A XA, (A, Ay (A, 4;) + O (n73), (3:20)

where the sum goes over all pairwise decompositions (i1 < j1), (i2 < j2), ..., (i1 < Ji) of the
set {1,2,....,k} with | = k/2 and iy less then the position of X and ji greater than that.
If k is odd, then the expectation value amounts to

PP (e X T = 3 Ay Ay (A, KAL) (A Ay)
+p(A; XA, A )p(A, AL p(A A, (3.21)
+p(Ay Ay XAy (A, AL)-p(A,A5)) + 0 (n72)
where the sum goes over all decompositions (i1 < j1 < h1), (i2 < j2), ..., (i1 < ji) of the set

{1,2,....;k} with | = (k—1)/2 and with i1 less and j1 greater (resp. j1 and hy in the third
line) than the position of X .

Proof. The proof is the same as for Prop. 3.4.1, but with the difference that all terms
vanish, which contain the product Xp or pX, for example

p(XA;) = Tr(pXA,) = 0. (3.22)

Hence in the non-vanishing terms the operator X is in a tensor factor of the form
A XA @ or .. ®A,XA A, ®.., depending on k. O

3.5. Sequences with root-n fluctuations and the limiting
fluctuation algebra

In this section, we define sequences of states p,, for which the expectation values with
fluctuators converge. Moreover, we give an algebraic description of the corresponding
limits. The results are closely related to earlier works in this direction [52, 42], but the
permutation invariance allows for a more precise description. A part of the results was
already presented in [111].

Definition 3.5.1. A sequence of n-particle states p, € S(Ay) has root-n fluctuations
around p, if for any product of elementary fluctuators A1, Ao, ... around p, the limit

lim pn(Alevg...) = <Q, A\IA\QQ) (3.23)

exists. The values of the limits are written in terms of a Hilbert space H,, such that the
sequence py, 1s identified with the unit vector £ € H, and the fluctuators A; with limiting
fluctuators A;, being operators on H,. The scalar product on H, is defined by

where the elements A... A, Q span a dense subset of H,.
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3.5. Sequences with root-n fluctuations and the limiting fluctuation algebra

The definition can equivalently be written with tensor fluctuators, cf. Def. 3.2.2, due
to the decomposition rule (3.15). Since the definition asserts the existence of the limits
for all products of fluctuators, we can write them as expectation values themselves, using
the GNS representation [18]. The Hilbert space H, is then by definition the closure of
the span of all elements A;...A; Q. The positivity of the scalar product follows from the
positivity of the states p,. That is, if F is a polynomial of elementary fluctuators with
n-independent coefficients, then HFQHQ =lim,, pn(ﬁ*ﬁ) > 0.

By Prop. 3.4.1, the sequence p®" has root-n fluctuations around p. More generally,
we construct sequences with root-n fluctuations around p by what we call the filtering
construction: Consider a polynomial F of elementary fluctuators with n-independent
coefficients. Then the sequence pZ’, defined by

p®n(fﬁx—Xﬁ)

F(X) = - VX eA,, 3.25
P (X) on (BT € (3.25)

has root-n fluctuations around p. Moreover the limiting vector amounts to

FQ
F_ HFA_Q (3.26)

where € is the limiting vector for p®". Hence, by definition, the set of vectors QF is dense
in H,, such that by the filtering construction every element of H, can be approximated
arbitrarily well. The limiting fluctuators A around p, for A € A, generate an algebra of
operators, which we denote by F,.

Lemma 3.5.2. The fluctuation algebra F, is an algebra of canonical commutation re-
lations and the commutator of two fluctuators amounts to

[4, B] = p([A, B])L (3.27)

Proof. Consider the vectors, A;...A;Q and B;...B)Q, from H,, where ) is the limiting
vector of p®". Moreover, let k + [ be even, such that the following object is non-zero.
The matrix element of the commutator [A, B] with these two vectors amounts to

(. Br..B; [, B] A1 A 9)
lim p® (BB [ A, B] v )

e (3.28)
=lim 37 p([A, B])p(C;,C;)p(C;,Cy,)---p(C5,C5)

=p([A, B])(, B} ..B{ A;.. 4, Q)

where the sums go over all elements C; , chosen either from {B; }oor {AYE ] re-

specting their order in the first line. The terms containing factors p(C; . Ap(BC j 1) or
P(Qilﬁ)ﬁ)(égjl) cancel each other in the sum. Hence, only the terms with the factor

p([A, B]) remain, and by pulling this factor out of the sum the last line follows. Since
the vectors A; As,...Q2 span a dense subset, the statement can be extended to all of H, O
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3. The algebra of mean-field fluctuations

The limiting vector Q of the sequence p®" is a Gaussian state. Indeed, for all A € A,
the characteristic function amounts to

(Q, exp (z Z) Q) = 7}1_{{)10 p&" (exp (z Z))

~ lim p(exp(w))n
o v 3.29)
i(A-p(A)T) <A—p<A>1I>2)” S

Vn 2n
= exp (—%varp(A)) .

= lim p(][+

n—oo

This fact is also known as a non-commutative central limit theorem [42, 57, 111].

In the following, we introduce the concept of scaled fluctuators. Prop. 3.4.2 implies
that X = 0, whenever X p=pX =0, for X € A. Also, it implies that the rate, at which
a related finite-n expectation value vanishes, amounts to 1/\/n. Hence, we can consider
the limits of expectation values containing the operators \/nX, for Xp = pX =0, which
we call scaled fluctuators. These are a special instance of the class of so-called abnormal
fluctuators [113].

Proposition 3.5.3 (Definition and properties of scaled fluctuators). Consider X € A,
such that pX = Xp=0. Then there exists an operator X € Fo, such that

lim p® (A Ay /X By By) = (@, 4. A X BB ) (3.30)

n—oo

~ —

for all Ay, ..., Ay, By, ..., B,. Moreover, X =0 and ?is a quadratic operator with the
commutation relation _

[X, 4] =[X,A] VAeA (3.31)
Proof. The convergence of the expectation value (3.30) follows from Prop. 3.4.2 and de-
fines X on a dense subset of H,. Also, from Prop. 3.4.2 follows X = 0. The commutation

relation of ?follows from

[\/ﬁ)?, ;ﬂ =n/n- [symn X, symn(A - ,o(A)]I)]
=vnsym,[X, A] (3.32)

= [X7 A]7

where the second line follows from the product rule (2.7) and the fact that pX = Xp = 0.
In the third line, we wrote the operator as a fluctuator, which is possible because
p([X,A]) = 0. Since the fluctuation algebra is CCR and A as well as [X, A] are el-
ementary fluctuators and thus linear in the canonical variables, it follows from (3.31)

that X is quadratic in the canonical variables. O

Finally, filtered sequences have the following property for finite n.
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3.6. Normal modes and related structure

Lemma 3.5.4. Consider a filtered sequence pt around p defined by (3.25) with limiting
vector QF . Furthermore, consider a product of elementary fluctuators Ay, ..., Ay, such
that some of the related operators fulfill p- A; = A;-p =0, say for 1 <i<r. Then

i) (3.33)

pg(\/ﬁgl\/ﬁgrgr_,_l;(k) = ( F, Zl tat Zr : A\r%—l L Zk QF>+O(\/H

for alln > k.

Proof. Using (3.25), we can apply Prop. 3.4.1 and 3.4.2 to prove the statement. Note
that in general, F is a polynomial of elementary fluctuators. Hence, the terms F*-A4;-...-
A, - F are a sum of products of an even number of elementary fluctuators and products
of an odd number of elementary fluctuators. Therefore, the leading order is in general
O(1), independent of k, and the next order is in general O(1/y/n). O

3.6. Normal modes and related structure

In this section, we identify the normal modes of the fluctuation algebra F, as well as
central elements and scaled fluctuators. Let {|k), k =0,..,d—1} be an orthonormal basis
of the one-particle Hilbert space H, such that the reference state p of F, is diagonal.
We denote matrix elements by ey = |k) (I| € B(H). The related elementary, limiting and
scaled fluctuators will be denoted by €5, €5 and &5, respectively.

Proposition 3.6.1. Let H be a d-dimensional Hilbert space and p € S(B(H)) a state
with rank r. Let {|k‘)7 k=0,.,d- 1} be an orthonormal basis of H, such that p =
P0|0) (O] + ... + pr_1 |r = 1) (r = 1|, with po > p1 > ... > pr_1. Then the fluctuation algebra F,
with reference state p has the following structure:

e Fork<r and k<l<d-1, the ladder operators ay, aj; of the mode (k,l) amount

to
ap = —H
- )
VPE — Pl (3 34)
« €ik '

A1 = —F—>
VPk —Di
as long as py # p;. In the case py = p;, the related fluctuators ex; and € become
central elements of the algebra.

o Fork>r andl>r, €y =0 and the related scaled fluctuator amounts to
_r=l
G Y agaar. (3.35)
z=0

o The diagonal elements gy, for k <r are central, i.e. commute with the rest of the
algebra. Moreover, they fulfill the relation

r—1
> & =0, and (3.36)
k=0
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3. The algebra of mean-field fluctuations

d-1

Figure 3.1.: Illustration of the normal modes of the fluctuation algebra F,, for a reference

state p with rank r, in terms of the fluctuators ey for ex = |k) (l], where
{|k), k=0,..,d-1} is an orthonormal basis, such that p is diagonal, with the
non-zero eigenvalues arranged in the first » diagonal elements in decreasing
order. The matrix elements in the light blue area correspond to lowering
operators ay; (3.34) of F,. The ones in the dark blue area to the related
raising operators. The matrix elements in the grey area correspond to central
elements of F,. These are the first  diagonal elements, corresponding to the
non-zero eigenvalues of p, and, if some eigenvalues of p are degenerate, the
elements in the surrounding boxes as well. The matrix elements in the green
area correspond to scaled fluctuators &y, which are quadratic operators in
ap and aj; (3.35).

r—1 d-1 _
(Z ekk) == Ze’;’c}. (337)
k=0 k=r

The statement of this proposition is visualized in Fig. 3.1.

Proof. We start with the diagonal terms €. These are central elements, since

[er, A] = p([exr, AI)L="Tr([p, exs]- A)L=0 (3.38)

for any A € B(H). Moreover, for k > r the related fluctuators vanish, i.e. ég; = 0 by
Prop. 3.5.3, since e - p = p-exr, = 0. By the decomposition of the identity,
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3.6. Normal modes and related structure

it follows that also the following sum vanishes,

r—1
> & =0. (3.40)
k=0

However, the single terms é; are non-zero for k < 7, as we show in the following. Let
Q € H, be the limiting vector of the sequence p®", cf. Def 3.5.1. Then H,, is spanned by
the vectors ¥ = A;... A4, Q for any monomial of fluctuators A;. Since ég, is central, it is
sufficient to evaluate the following matrix elements, which by Prop. 3.4.1 amount to

(U, & Q) = (Q, 414, &5 Q)

= Z p(Al(ekk—pk]I))p(A“Ajl)+O(l)

1,21,J1,22...

(3.41)

Here, we assume p(A;) =0 for all . Each term in the leading order of (3.41) contains a
factor

p(A; - (exk — 1)) = pi((k| 4; |k) - p(A;)), (3.42)

which is non-zero in general. Next, we consider the fluctuators of non-diagonal matrix
elements. The commutator of two of these amounts to

[exi, &3] = p([ens, eij])1

(3.43)
= (pk — p1)0udjn 1L

Therefore, provided that pi —p; # 0, we can identify the lowering operators of the fluc-
tuation algebra by

€kl
ag] = ——, ke O,..,r—l ,k<l€ ].,.-,d_l 3.44
Pk — D1 ¢ ) { } ( :

and the raising operators as their conjugates. If pr = p;, then the related fluctuators
€r; and e become central elements of the algebra (3.43). Moreover, since p(A - ex) =
pr (k| A|l), these elements are non-zero (3.41).

Finally, we describe the scaled fluctuators of the algebra and their decomposition into
ladder operators. The scaled fluctuators are given by &x; for k, 1 > r, since ej-p = p-eg = 0,
cf. Prop 3.4.2. Furthermore, this implies that

r—1 d-1 _
( > ekk) == ks (3.45)
k=0 k=r

such that the sum of the diagonal matrix elements egy, k = 0,...,7 — 1 defines a scaled
fluctuator as well. Note, that in this case the condition of Prop. 3.4.2 is not fulfilled,

that is
r—1

p- > epp=p-L#0. (3.46)
k=0
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3. The algebra of mean-field fluctuations
However, considering Eq. (3.17), we see that
r—1
(4 5w~ )] = o) - 1) . (3.47)
k=0

Hence, the leading order in Eq. (3.17) vanishes. However, the operators & themselves
are not defined for k < r. For k,l > r, the commutator of €5 with a fluctuator amounts
to

&, &57] = [ents eij]

s "~ (3.48)
= €x;01; — €0kj,
by Prop. 3.5.3. Moreover,
<\I/, é’\k;Q) = lim p®”(z...z . \/ﬁé}’l)
n— 00
(3.49)

= Zn_%p() S p( . \/ﬁekl) =0,

since ey - p = 0. Eq. (3.49) outrules a part proportional to T in . Therefore, using the
definition of the ladder operators, we can write

. r—1 1
€kl = p—e’@ €xl
=0 Fx
o (3.50)
=) ayp0q
z=0
The probabilities p, cancel out, because pi = p; = 0. O

Remark 3.6.2. For k >r, the basis of the subspace span{|k)} is not uniquely defined by
p. Hence, one can choose an arbitrary orthonormal basis {|k")} for that subspace, and
always get the above structure of the fluctuation algebra for the related matriz elements.

Remark 3.6.3. The total number of modes, M(p), amounts to

M(p):r(d—rgl)—A, (3.51)

where d = dimH, r = rank(p) and A amounts to the number of modes that are eliminated
due to degeneracy of the eigenvalues of p.

Remark 3.6.4. If p is not pure, then the related fluctuation state |Q2) is not the vacuum
state. For example, the particle number in the 01-mode amounts to

1
po —pl
_ p1
Po—P1

(€2, agram Q) = p(11){0]-10) (1)

(3.52)
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4. First-order corrections to the mean-field
ground-state energy

4.1. Overview

In this chapter, we describe a method for obtaining 1/n-corrections to the ground-state
energy of a strictly symmetric Hamiltonian density H,, = sym,, Hy, using the concept of
mean-field fluctuations. In section 4.2, we introduce the essential idea, which is to find
the mean-field ground state pg, minimizing Ho,, and to consider the fluctuation algebra
Fp, around it. We introduce an expansion of H,, into fluctuators in F,;. While the mean-
field minimum amounts to the evaluation p§™(H,,), the expansion into fluctuators allows
us to minimize H, over sequences p, with root-n fluctuations around pg, i.e. beyond
product states. We obtain an asymptotic expansion of the expectation value p,(Hy),
where the zeroth (constant) order is given by the mean-field ground-state energy and the
first order in 1/n by the expectation value of a suitable fluctuation Hamiltonian H in the
limiting vector € € H,, of the sequence p,. Hence, in order to estimate the ground-state
energy of H,, up to order 1/n from above, it suffices to find the ground-state energy of
the related fluctuation Hamiltonian H. We state the ground-state energy estimation as
an inequality, because we cannot show that the true 1/n corrections can be attained in
this way in general. That is, in other words, we cannot show that the sequence of true
ground states of H,, satisfies the root-n fluctuation property. A preliminary result of
this method was already presented in [111], namely the expansion of H,, into fluctuators,
and an estimation was given for the special case of py being in the interior of the state
space, i.e. of full rank.

In Section 4.3, we reduce the method to systems that contain Bose symmetry, i.e.
allowing only states p,, that are supported only on the Bose sector, cf. Eq. (2.55).
We show that, in order to do so, it suffices to restrict the minimization of H to the
submanifold of pure states, hence finding the pure state with lowest Ho-value. In
particular, it is not necessary for this state to be a minimizer on the full state space.
We obtain upper and lower bounds on the ground-state energy of H, which directly
correspond to the second derivatives of H., on the pure submanifold at the minimizer.

In Section 4.4, we lift these bounds to full mean-field models, i.e. those allowing
all permutation invariant states, by showing that such models can be embedded into
Bosonic mean-field models using purification techniques.

In sections 4.5, 4.6 and 4.7, we apply the mean-field ground-state estimation method
to three cases. Firstly, we consider the mean-field Ising model, cf. Eq. (2.18) and obtain
analytical expressions for the 1/n-corrections to the ground-state energy. Secondly, we
consider the Bose-Hubbard model and show for the one-dimensional case that the fluctu-
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4. First-order corrections to the mean-field ground-state energy

ation Hamiltonian is exactly the well-known Bogoliubov Hamiltonian. We outline some
aspects of the physics of the Bose-Hubbard model and discuss the difference between
the mean-field limit and the thermodynamic limit. Thirdly, we apply the ground-state
estimation to the finite de Finetti theorem, cf. Thm. 2.5.3, and show that our method
provides an inner version of a finite de Finetti bound.

In Section 4.8, we relate the fluctuation method to the widely used Holstein-Primakoff
approximation, showing that the latter is a special case of the former.

Finally, in Section 4.9, we propose an extension of the ground-state estimation method
to a class of approximately symmetric Hamiltonian densities, which contains a wide
range of physically interesting models, such as the Lipkin-Meshkov-Glick model or the
Bose-Hubbard model without the artifical mean-field scaling, cf. Section 4.6.

4.2. The ground-state energy estimation method

Throughout this chapter, and as in most of the previous chapters, let A = B(H) be the
operator algebra for one quantum particle with dim(#) = d, and A,, € A®™ the algebra of
permutation invariant n-particle operators. We consider a mean-field quantum system
with a strictly symmetric Hamiltonian density, H,, = sym,, H;. The mean-field function
H, of that Hamiltonian density is therefore a polynomial of degree k. In the following,
we utilize the method of mean-field fluctuations to estimate the ground-state energy of
H,, up to order 1/n. Due to the Taylor expansion (2.41), we can write H,, as

k
H, = ;0 % sym, (d,He(p)) VpeS(A). (4.1)

Since the derivatives have the property p ® a®’"‘1(drHoo(p)) =0 by Def. 2.4.2, we can
write the Hamiltonian density in terms of the fluctuators d, Hoeo(p) = n"/2d, He (p), i.e.

r!

k
H,=3% —n"2d,Hw(p) VYpeS(A). (4.2)
r=0
Hence, the expectation value with an arbitrary n-particle state p, amounts to

pulH) = Hos () + = pu( T (9)) + 5 pu( G () 4. VpeS(A). (43)

7

Note that for general sequences p,, the terms pn(mm)) may diverge in the limit
n — oo. However, if the sequence p, has root-n fluctuations around p, then Eq. (4.3)
gives rise to an asymptotic expansion, in the sense that pn(m(P)) only contributes
to the orders n~"/? and lower in (4.3). Our Ansatz is to minimize p,(H,) over sequences
with root-n fluctuations. For this, we choose the reference state to be p = pg, a minimizer
of Hs, hence minimizing the leading-order term in (4.3). Then we consider p, as a
sequence with root-n fluctuations around pg, such that we write (4.3) as an asymptotic

series, where we are only interested in the terms up to order 1/n. Since pg is a minimizer,
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4.2. The ground-state energy estimation method

there are two possibilities for the gradient and the Hessian of H,. If pg is in the interior
of S(A), i.e. has full rank, then dHs(po) =0 and d2He(po) > 0. If pg is located on the
boundary of S(.A), then the gradient need not vanish, but must to be positive in each
allowed direction, hence dHo(po) > 0. Moreover, po - dHe(po) = dHso(po) - po = 0 by
Lem. 4.2.1. The Hessian can in this case have positive and negative eigenvalues.

Lemma 4.2.1. Let p € S(A) be a minimizer of the differentiable function f € C(S(A)).
Then p-df(p) =df(p)-p=0.

Proof. As a density matrix, p is positive, i.e. p > 0. Since p is a minimizer, df(p) > 0,
too. Define A and B by p=A*A and df(p) = B*B. By Def. 2.4.1,

p(df(p)) = Tr(p-df (p)) = Te(A"AB*B) = Tr((BA")* - BA) 0. (4.4)

Define C'= BA*. Then C*C is positive, and since Tr(C*C) = 0 by (4.4), C = 0. That is,
BA* = AB* =0 and thus p-df(p) =df(p)-p=0. O

The following theorem is the general statement of the ground-state estimation of H,
up to order 1/n.

Theorem 4.2.2. Let A = B(H) with dim’H = d, and H, € A, a strictly symmetric
sequence. Then its ground-state energy min Hy, is, up to order 1/n, upper bounded by

mianSHoo(po)+linfﬁ+0(n_%), (4.5)
n

where po is a minimizer of Hoo and inf H is the ground-state energy of the fluctuation
Hamiltonian

- = 1 ——
H:dHoo(po)+§d2Hoo(po) E]rpo (46)
around pg. Moreover, Hisa quadratic Hamiltonian with inf H finite and non-positive.

Proof. Consider a sequence p,, with root-n fluctuations around some p. Then the expec-
tation value p,, (Hy) can be written in terms of the fluctuator expansion (4.3). Minimiz-
ing the reference state p with respect to Ho, minimizes the zeroth order of the expansion.
Minimizing over all sequences p, with root-n fluctuations around a H.,—minimizer pg
then minimizes the next order. Note that pg-dHe(po) = dHeo(p0):po = 0 by Lem. 4.2.1,
hence dHo(po) gives rise to a scaled fluctuator. We consider sequences pZ’, that are
constructed by the filtering construction (3.25) with some polynomial F of fluctuators
around the minimizer pg. By Lem. 3.5.4, we obtain the following expansion for such
sequences:

P (H) = Hew(p0) + (VAT (p0) + 58 (p0) + O (72

L ’ (4.7)
= Hoo(po) + {2, HQT)+ 0 (n72).
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4. First-order corrections to the mean-field ground-state energy

Since the set of filtered limiting states QF is dense in H o, it suffices to find the ground-
state energy of H in order to obtain (4.5). H is quadratic by definition and its ground-
state energy, inf H, must be non-positive, because there exists a vector {2 with (Q, H Q) =

0, namely the limiting vector of the sequence p§™. The finiteness of inf H is shown by
applying the purification, Prop. 4.4.7, which maps the problem to a Bosonic one (See
section 4.3) and then applying Thm. 4.3.3. O

Remark 4.2.3. The minimizer py of Hoo need not be unique. In that case (4.5) holds
for all minimizers and the best bound can be obtained by optimizing over all minimiz-
ers. In Example 4.2.5, a Hamiltonian density with different 1/n-corrections for different
minimizers is presented.

Remark 4.2.4. Fq. (4.5) can only serve as an upper bound, because the set of sequences
pn With Toot-n fluctuations around a mean-field minimizer pg are not directly related to
the true ground states of H, for finite n. That is, for any fized n, consider the set of
states py, that minimize H,. We call these the true ground states'. The question is,
does there exist a sequence (in n) of true ground states p,, that has root-n fluctuations
around a minimizer of He? If yes, then the inequality (4.5) can be updated to an
equality. However, a proof of this statement seems to require techniques not considered
in this thesis. In Cor. 4.4.8 below, we state that this problem can be reduced to a Bosonic
one.

Example 4.2.5. In the following, we construct an example of a system with a degenerate
mean-field minimizer, where each minimizer leads to different 1/n-corrections. Consider
the 4-qubit Hamiltonian

Hy=(0,®0,+0,Q0,)®0,Q0, (4.8)

and the related strictly symmetric sequence H, = sym, Hy. Parametrizing 1-particle
states p € S(A) by the Pauli-expectation values (x,y,z) = (p(oz), p(oy), p(02)), we can
write the mean-field limiting function as

Ho(x,y,2) = (x2 + yz) 22 (4.9)

This function has a wide range of minimizers, all leading to inf He = 0. We consider a
subset of the minimizers, parametrized by p, = (0,0, 2) with z > 0. For these states, the
gradient vanishes, i.e. dHoo(p,) =0, and Hessian amounts to

doHoo(p.) =227 (04 ® 04 + 0y ® 7)), (4.10)

since p,(0z) = p2(oy) = 0. Hence, only the Hessian contributes to the fluctuator expan-
sion (4.3). Using (3.15),

Ox ®7x=a'§—]1n+o(%), (4.11)

LOf course, for a given n-particle Hamiltonian density H,, there need not be a unique minimizer p,.
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4.3. Ground-state-energy corrections restricted to Bosons

we obtain o, @ 0, = 3326— I, and oy ® 0y = EZ —1. Moreover, by the commutator [Ex, Ey] =
2iz1, c¢f. Eq. (3.27), we can identify the position and momentum operators by Q =
0./\V2z and P = Gy/\/2z, for z > 0. Hence, the fluctuation Hamiltonian at p, can be
written as

— 1 ——
H, = §d2Hoo(pz) =22°(Q* + P?) - 22°1, (4.12)
and its ground-state energy amounts to
inf dyHoo(p.) = -2(1 - 2)2°. (4.13)

Being this the 1/n-coefficient for the estimation of the ground-state energy of the Hamil-
tonian density Hy, cf. Eq. (4.5), we see the dependence on the choice of the mean-field
minimaizer.

In the subsequent sections, we will show that inf H is always finite and below zero.
In Section 4.3, we will restrict the problem to Bosonic particles and obtain bounds for
inf H. In Section 4.4, we will consider the full case and show that it can be mapped into
a Bosonic problem by purification, such that the related bounds for inf H hold in this
case as well.

4.3. Ground-state-energy corrections restricted to Bosons

A research field in which mean-field methods are frequently used, is Bose-Einstein con-
densation [69, 85]. In fact, due to the indistinguishability of the particles, Bosonic
systems contain the permutation invariance by definition. Hence, it seems straightfor-
ward to apply the mean-field and fluctuations method to such systems?. In this section,
we show that the ground-state energy and the related 1/n-corrections of Bosonic systems
can be obtained with the mean-field and fluctuations method by simply restricting to
pure states on the one-particle state space.

The definition of a Bose-symmetric n-particle state p, € S(A®") is that it is not
just invariant under permutations, i.e. commutes with unitaries U, that implement
permutations, [Ur, p,] = 0, but even invariant under multiplication of those, i.e. Uzp =p
for all m € S,,. In other words, the density matrix p, is only supported by symmetric
vectors [1,,) € H®", which fulfill Uy |1),,) = ¢, ) for all € S,,, cf. Section 2.5.

In the mean-field limit, it means that we consider Bose-symmetric states ® on the
inductive limit algebra® A* = U, A,. By Stgrmer’s de Finetti theorem [109], for every
permutation invariant state ® on A, there exists a probability measure p on S(A),
such that p, = [ dpp®" for all n, cf. Prop. 2.5.2. Bose symmetry is given, if and only if
1 is only supported on the pure states of the one-particle state space, by Lem. 4.3.1. In
other words, we consider Bose symmetry in the mean-field limit exactly by considering
only the submanifold of pure states, Spure(A) c S(A).

2However, this does not mean, that every Bosonic Hamiltonian is automatically strictly symmetric, cf.
Section 4.6.2.

3The correspondence between permutation invariant states on A% and states on the mean-field algebra
was shown in [31].

39



4. First-order corrections to the mean-field ground-state energy

Lemma 4.3.1 ([54]). Let A be a finite dimensional matriz algebra. The n-particle state
p®" € S(A)®™ is Bosonic if and only if p is pure.

If we consider sequences with root-n fluctuations around a pure reference o = [¢h) (¢] €
Spure(A), the question arises, how to restrict these to Bosonic states. The answer is
relatively simple: Since we consider only the corresponding limiting vectors 2 € ‘H, for
the ground-state energy estimation, cf. Eq. (4.5), we need to minimize the fluctuation
Hamiltonian H only over those vectors in M, that are limiting vectors of Bosonic se-
quences p,, with root-n fluctuations around o. By Lem. 4.3.2, the sequences o that are
obtained by the filtering construction, cf. Eq. (3.25), are Bosonic sequences. By Def.
3.5.1, the related limiting vectors Qf are dense in H,. That is, if the reference state
o € §(A) is pure, then there exists a dense subset of the fluctuation Hilbert space H,,
that corresponds to Bosonic sequences with root-n fluctuations around o.

Lemma 4.3.2. Let A be a finite dimensional matriz algebra. The permutation invariant
n-particle state pf; defined by

p®" (F*XF .

with F being an arbitrary polynomial of fluctuators around p, ts Bosonic if and only if
p 1S pure.

Proof. We can equivalently define the density matrix

Foen s
Tr (Ep®nF~)
In the Schur-Weyl decomposition, cf. Eq. (2.55), the state p®" amounts to
%" = Pw ®ny-]IH—Y®(p®”) , (4.16)
Y e dim %Y Hy

where the sum goes over all Young diagrams Y of the n-particle permutation group
S, and Hy is the corresponding irreducible representation space of the group and Ky
the related multiplicity space. p®" is Bosonic by definition, iff the weight Wpen y 18
one for the Bosonic subspace, cf. Eq. (2.56), and zero for all others. By Lem. 4.3.1,
this is the case if and only if p is pure. The polynomials F are permutation invariant
n-particle operators as well and therefore allow for the same kind of Schur-Weyl block
diagonalization, cf. Eq. (2.54). Hence, multiplication of p®" with these does not change
the weights w,en y. Therefore, pE has the same weights as p®" and thus is Bosonic if
and only if p is pure. O

Therefore, in order to restrict the ground-state energy estimation method to Bosonic
states, it suffices to merely restrict the mean-field limit to pure one-particle states o €
Spure(A). The ground-state energy of the corresponding fluctuation Hamiltonian A then
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4.3. Ground-state-energy corrections restricted to Bosons

automatically satisfies the Bose symmetry in the sense that there exist Bose-symmetric
sequences p, that approximate the ground-state energy of H arbitrarily well.

In the following subsections, we restrict the ground-state estimation method to the
submanifold of pure states, Spure(A). The main difference to the full method, which was
introduced in the previous section, is that the gradient dHo, (o) need not be positive
semi-definite at a pure minimum o € Spure(A), since the function Ho., may decrease
towards the interior of S(A). In Section 4.3.1, we derive a set of conditions for o to
be a minimum on Spyre(A). Furthermore, we show that dHo (o) actually contributes
to the fluctuation Hamiltonian in terms of a second-order effect along the submanifold
Spure(A) due to the curvature.

In Section 4.3.2, we derive the related fluctuation Hamiltonian H and show that it
admits 1/n-corrections. More precisely, in Thm. 4.3.3, we prove bounds on the ground-
state energy of H that are exactly derived from the condition of o € Spure(A) being a
minimum on the pure submanifold.

Finally, in Section 4.3.3, we consider the case of Spin—% particles, and obtain a partic-
ularly simple form for the fluctuation Hamiltonian and its ground-state energy.

4.3.1. Minimizing functions over pure states

The set of pure states Spure(A) ¢ S(A), which is a symplectic submanifold (cf. Section
2.4) can be parametrized by unitary evolutions

o = e AlgeiAt (4.17)

of some pure state o = [¢p) (¢], with t e R and A= A% € A.
Consider a twice differentiable function f € C(S(A)). The point o = |¢) (¢)| is a local
minimum of f on the pure submanifold, if for every A = A* € A, the two conditions

d .
/()| =0(df(e)=0  and (4.18)
2
CaHo0] | =5(07(0) + 6% (daf(9)) 20 (4.19)
hold, where
& =[¢) (¥l +1¥) (] and (4.20)
& =0) (] + ) (] + 2[¢) (] (4.21)

with W) =iA ) and ‘77[}) = —A%|3p). In the following, we write simply df and ds f instead
of df(c) and d2f(o). The conditions (4.18) and (4.19) lead to restrictions on them. On
the one hand, (4.18) can only be fulfilled for all ¢ 1 9, if

df [¢) =0. (4.22)

Note that (¢, df ) = 0 by Def. 2.39. However, df need not be a positive operator, since
f may decrease towards the interior of S(A). With (4.22), the condition for the second
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4. First-order corrections to the mean-field ground-state energy

derivative (4.19) amounts to

2 P . . . .
Caio0|_ = 9Re{d]daf [vs) + 2Re (] daf [pil) 2 (0] af[9) 20, (4.23)

where we simplified the notation by [xn) : =[x ® n) for all x,7 € H. Since d2 f is hermitian,
(@an}‘ dof |¢¢) e R. Of particular interest are the vectors x = ¢ L . Hence, we obtain
the inequality

(X df [x) + (x| daf [x) + Re (e (| daf [xx)) 20 Vx LopeH, peR.  (4.24)

The phase factor e'® follows from the fact that if xy L 1 is a valid derivative of 1, then
so is e for all ¢ € R, cf. Eq. (4.17).

4.3.2. Minimizing the fluctuation Hamiltonian

We consider now the fluctuations around the pure minimum o = [¢) (¢| € Spure(A) for
some twice differentiable function f € C(S(A)), which resembles the mean-field limiting
Hamiltonian function and f: d’]? + %dlg‘\f denotes the related fluctuation Hamiltonian. In
this section we derive bounds on the ground-state energy of f For this, we won’t need
a finite-n version H, € A,, hence it is not necessary to speak of a sequence (Hy ).
Consider an orthonormal basis {|0) , ...,|d — 1)} on the d-dimensional one-particle Hilbert

space H, such that [¢0) = |0). We denote matrix elements by ey = |k) (I| in this basis. By
Thm. 3.6.1, the fluctuation algebra at ¢ is spanned by the ladder operators

ap = o and (4.25)
ap=érp fork=1,.,d-1, (4.26)

whereas € = 0 and &g = aza; for all other ey. In the following, we will use the
decomposition rules for tensor fluctuators (3.15), i.e.

ekl ® Emn = €l * Emn — (0k001mOn0 — 0%00100m00no ) I

agan, ,k+#0,l=0,m+0,n=0

aan ,k+0,l=0,m=0,n=%0 (4.27)
=qaqay, =0 L k=0,l#0,m+0,n=0

ajany, ,k=0,l#0,m=0,n%0

0 , else

The third case can also be written as q;a;, — 6,1 = a,a;. The fluctuation Hamiltonian
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4.3. Ground-state-energy corrections restricted to Bosons

therefore amounts to

—_

1A
F=df+ 587

%))

- 1 _
Z ]Cldfll ekl + 5 Z (km|d2f |ln> ekl ® emn

=0 k,l,mmn=0

&k‘
,_.

d-1

> ((K|dfIl) + (k0|d2f|0l>)a;§az+% > ((00] o f |K1) agay + (ki d2.f[00) aja;)
k=1 k=1

d-1 d-1

1 %k
= Dklakal + — Z (Cklakal + Cklakal )
k,l=1 2 k,l=1

)
;¢ 0 a
e () -gmeon

where in the third line we used (0k|daf |I0) = (k0|d2f |0l) due to permutation invariance,
and in the fifth line a = (a1, ..., ax). In the last line, we used the canonical commutation
relations to bring the quadratic form into a standard one, Cf. [51]. Furthermore, we
introduced the matrices D and C' with

(4.28)

Dy = (k|df|1) + (k0| d2f [0]) and (4.29)
Cri = (00]da f |Kl), (4.30)

fulfilling D = D* and C = CT, resp. C = C*. Moreover, D can be identified with the

one-particle operator, which we in abuse of notation denote by D as well, by

d-1

D = Dyen
k,zz=o (4.31)

=df+ideo(dyf-TF),

where [F' = Zl(i,_lio er; ® ey is the flip operator. The following theorem ensures that ]?is
bounded from below and has a negative ground-state energy.

Theorem 4.3.3. Let A= B(H) with dimH =d. Let f € C(S(A)) be twice differentiable
at o =) (Y] € S(A) and o be a local minimum on the pure submanifold such that (4.18)

and (4.19) hold. Then the fluctuation Hamiltonian f= df+%d2f at o has a ground-state
energy Eq, that lies in the range

-5 T(df +1d@ o(daf - F)) < By <0. (4.32)
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4. First-order corrections to the mean-field ground-state energy

Proof. W.l.o.g., define an orthonormal basis {|0),...,|d - 1)} on the d-dimensional one-
particle Hilbert space H, such that |¢)) = [0). We use the notation given in the beginning
of this section, to write

—_

7= (2" a) (g gT) (;)—%T&"(D)]I. (4.33)

In particular, D =df +id® o(daf - ), cf. Eq. (4.31), such that in the statement of the
theorem the lower bound for the energy is given by —% Tr(D), which is just the shift in

f

1
2

First, we prove the left inequality of (4.32). This requires T to be a harmonic oscillator
with non-negative frequencies. This is exactly the case [51], if

(ZC) gT) > 0. (4.34)

Consider D and C as matrices on the Hilbert space C?, with the scalar product (z, y) =
Y Tryr- Then the positivity in (4.34) is equivalent to the positivity of all expectation
values with vectors |z) = |z) @ [7) € C??, where we used the complex conjugate of the
vector |y) for convenience. That is,

(e (2 o) )

(D |x) + (51 D" [7) + 2Re (7 C)
=(z| Dlz) + (y| D]y) + Re (V¢ |(zy + yz)) 20,

(4.35)

where zy = z ® y and (V¢ |zy) := (7] C|z) = (00|daf |zy). Obviously, H = C%, such that
we can consider the vectors x and y as elements of H. The positivity of (4.35) is fulfilled
if and only if (4.24) is fulfilled. We use (4.24) with two different phase factors ¢.

(x| DIx) +Re(¥c|xx) >0 and (4.36)
(YID]y) =Re(¥olyy) 20 Vx,v L. (4.37)

The sum of the two equations amounts to

X1 DIx) + (D) +Re (Ve [(xx — 7))

=(x|D|x) + (y| D]y) + Re (Ve |(zy +yz)) >0 Vx,v L, (4.38)

where in the second line we defined z = %(X +7) and y = %(X - ) and used the
polarization identity

20 A+tBeB)=(A+B)®(A+B)+(A-B)®(AF¥B) VA, BeH. (4.39)

Hence, the left inequality of (4.32) is proven.
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4.3. Ground-state-energy corrections restricted to Bosons

Next, we prove the right inequality of (4.32), i.e. that f cannot have a positive
ground-state energy. For this, it is convenient to switch to the position/momentum
representation, by defining

Qr = %(ak +ay) and (4.40)
Py=———(ax—-a}) Vk. (4.41)

V2

In this representation, the fluctuation Hamiltonian has the form

~Lnoya

(Q P)(_iD+DT+C+C* z'(D—DT+C—C*))(Q) !

(D-D"-Cc+C*) D+D"-C-C* J\P

@ I 28] o

(4.42)

where Q = (Q1,..,Qq4-1), P = (P1,...,P;-1) and Q’ and P’ accordingly. In the sec-
ond line we applied Prop. 4.3.5, to perform a symplectic diagonalization with w =
diag(wi,...,wq-1) and w; > 0. Clearly, the ground-state energy of f is the sum of the
frequencies minus the shift, that is

Fo = Tr(w) - %Tr(D). (4.43)

Since o _
1 ( D+DT+C+C i(D-DT+C-0C)
Tr »

1 (D-DT-C+C) D+DT-C-T ):TY(D)’ (4.44)

we have 2Tr(w) < Tr(D) by Lem. 4.3.6. Hence, Ey < 0, proving the right inequality of
(4.32). O

Remark 4.3.4. The upper bound for the ground-state energy of f, i.e. inf f <0 can
be alternatively proved much easier, if we consider finite particle numbers n. Indeed,
consider the n-particle fluctuation Hamiltonian

F=Vadi(o) + 557 (o). (1.45)

Then the trivial sequence o®™ fulfills 0®"(f) =0Vn. Hence, the related limiting vector
Q has the property (Q, fQ) =0, implying that inf f <O0.

Proposition 4.3.5 (Williamson [119]). Let A be a real and positive definite 2n x 2n-
matriz. Then there exists a symplectic matriz S € Sp(2n,R), such that

SAST :diag()\l,---7/\77,7)\17"'))‘71) (446)

with )\i >0Vs.
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4. First-order corrections to the mean-field ground-state energy

Lemma 4.3.6. Let ) = (13 X) be a 2nx2n-dimensional matriz with A = diag(A1, ..., A\n)

and \; > 0Vi. Then for every symplectic transformation S € Sp(2n,R),
Tr (SQST) > Tr(Q). (4.47)

Proof. By the Euler or Bloch-Messiah decomposition [14, 19], every symplectic matrix S
can be written using the orthogonal and symplectic matrices K and K’ and the matrix
D =diag(dy, ..,dy,) > 0, which is unique up to permutations of the eigenvalues as

S=K' (10) DO_I) K. (4.48)

Therefore, using the orthogonality of K" and the cyclicity of the trace,

Tr (SQST) = Tr ((132 DO_Q) KQKT) . (4.49)

Furthermore, every orthogonal symplectic matrix K has the form

X Y
K = (—Y X)’ (4.50)

where X +4Y is unitary [123]. We therefore obtain the equality

Tr(KQKT) =2Tr(XAX + YAY)
= Tr(Q) (4.51)
=2Tr(A),

where the second line follows again from the invariance of the trace under orthogonal
transformations. Therefore, the statement of the lemma is proven by

D* 0
Tr (SQST) :Tr(( 0 D_Q) KQKT)

_ i &+ %) ((XAX); + (YAY);)

=1 i

(4.52)

v

2- 3 ((XAX); + (YAY),)
=1

Tr(92),

where (XAX); and (YAY); are the diagonal elements of XAX and YAY, respectively.
O
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4.4. Ground-state-energy corrections for the full mean-field case

4.3.3. Spin-; case

In the following, we consider the case of Spin-2 particles, that is, d —2. In this case, the

2
matrices C' and D are just numbers, i.e.

D = (1]df|1) + (10| daf |01) (4.53)
and
C =(00|daf11). (4.54)
The frequency of the harmonic oscillator (4.28) amounts to w = \/D? - |C|?, where +w
are the eigenvalues of o
1 0\(D C
-1 °)(2 %) s

[51]. Hence, there exists a Bogoliubov transformation into ladder operators b and b*,
such that

-~ 1
f= 5(w(b*b +bb*) - D - 1). (4.56)
The ground-state energy therefore amounts to
1
I 2 _ 2 _
Eo = 2( D*-[CP - D). (4.57)

4.4. Ground-state-energy corrections for the full mean-field
case

In this section we consider again the mean-field ground-state problem on the whole of
S(A). That is, we allow the minimizer to be mixed and derive bounds for the ground-
state energy of the related fluctuation Hamiltonian. We do this by mapping the problem
again to a Bosonic one via purification, such that we can just apply Prop. 4.3.3.

We set up the notation as follows. As before, let A = B(H) be the one-particle operator
algebra, with dimH = d. The n-particle algebra of permutation invariant operators is
denoted by A, c A®". A permutation automorphism is given by A, - 7(A,) for €S,
and the symmetrization map amounts to

1 _
sym, (Ag) = — S m(Ay ® 1577F), (4.58)

We introduce now what we call the extended mean-field system. Define H, = H ® K
with K =2 H and Ay, = B(#,,) as the one-particle algebra of the extended system. For the
n-fold tensor product, we use the isomorphy

(HeK)®" 2 H®" @ K&, (4.59)

Throughout this section, we will represent vectors and operators of the extended system
using the r.h.s. of the above equation, if not stated differently. Hence, a permutation
automorphism on AZ" = B(H®" ® K®") can be written as A, , = 7@ m(Ap,) for Ay, €
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4. First-order corrections to the mean-field ground-state energy

A", where 7(.) is a representation of m € S, on B(A®"). Therefore, we can define a

symmetrization map on the extended system by

1
sy, (A ® B) = — S r(Ap ® I°"7F) @ m(By ® 18"7F). (4.60)

Definition 4.4.1. For A, € A,, the operator
Apn=4,01,¢cAp,, (4.61)
where 1, is the identity on K®", is called the extension of A,.

Lemma 4.4.2. Let (A,)y, be a strictly symmetric sequence. Then (Apy)n with Ay, =
A, @1, is strictly symmetric as well. Furthermore, if (An)n is approximately symmetric,
then so is (Apn)n-

Proof. We start with the strictly symmetric part. Let A, =sym,, A;. Then
App = (sym, A;) ® I, = Symp’n(Ak ® 1) = symp7n(Ap7k). (4.62)
On the other hand,
HAp,n - symp7n(Ap7m) H =||A, ® I, — (sym,, Ay,) @ T, | = |Ap — sym,, Ay, | - (4.63)
Hence, if (A;,), is approximately symmetric, then so is (A, )n by Def. 2.2.1. O

By Lem. 4.4.2, (4.61) maps mean-field models from A,, to A, ,. We now take a closer
look at the states on those systems. Clearly, they are related by partial traces, i.e.

Tr(ppn - (An ® 1)) = Tr(Tricen (pn) - An)  Vppn € S(Apn). (4.64)

Indeed, the map (4.61) is just the dual of the partial trace Trien(.), where the tensor
factors acting on K®" are traced out. This relation also carries over to the mean-field
limiting functions, that is

Apoo(pp) = AOO(TrIC(pp)) Vpp € S(Ap). (4.65)

Hence, we get the following equivalence of the ground-state problems

min p,(A,) = min n(Apn 4.66
,.in P (An) . ain e, (Apn) (4.66)
and
min As = min A, . 4.67
Jain (p) , fain Ay, (Pp) (4.67)

However, we are more interested in the correspondence between states p,, € S(A,,) and
pure states on Aj,, which are defined by Bose-symmetric vectors [¢,,) € H3". Indeed,
this correspondence is given by purification.
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4.4. Ground-state-energy corrections for the full mean-field case

Lemma 4.4.3 ([78]). Let p e S(A). Then there exists a vector |1,) € Hp, such that
p(A) = (Ul A®Tly,) VAeA (4.68)

Such a vector is given by [¢,) = (/p ® 1) [¢0), where [) = ¥, |e;) ® |f;) and {|e;)} and
{Ifi)} are orthonormal bases on H and K, respectively.

Lemma 4.4.4 ([23]). Let p, € S(A,) be a permutation invariant state. Then there
exists a Bose-symmetric vector [, ) € HJ", such that pn = Trien ([t ) (¥p,]). The
vector is given by

W) = (VPn ® 1) thn) (4.69)

where

)

) = [9)°" = (z ) e rm) (4.70)

and {le;)} and {|fi)} are orthonormal bases on H and KC, respectively.

Furthermore, if p, = p®", i.e. is a product state, then a purification of p, is given by
n ®n

[hpen) = [4,)°" = (Vo M), (4.71)

since \/p®" = \/ﬁm. Thus, we get the relations
pn(An) = <wpn|Ap,n |¢pn> Vpn € S(An)7 (4'72)
p®n(An) = <¢§m‘ Ap,n |'¢?n> Vpe S(-A) (4'73)

and

Ao (p) = Apoo ([thp) (tp])  VpeS(A). (4.74)

The ground-state problem for a mean-field model on A,, is therefore equivalent to the

Bosonic ground-state problem for the related extended model on A, ,,. That is, in order

to estimate the ground-state energy of a mean-field model on A, it suffices to perform

the Bosonic ground-state energy estimation on the extended mean-field model on A, ,,.
We take now a closer look at the derivatives of the limiting functions.

Lemma 4.4.5. If A is k times differentiable, then so is Ap o, and the kth derivative
amounts to

Ak Ap,oo(pp) = diAeo(Trxc(pp)) @ Ty, Vpp € S(Ay) (4.75)
Proof. By Def. 2.4.2
dk
7y (koo (pp)) = g Anee (L= 0oy + 10p) g
sl a0
= U®k(dkAoo (),
where p = Tric(pp) and o = Tric (o). O
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4. First-order corrections to the mean-field ground-state energy

Moreover, the correspondence holds for all purifications v, of p, i.e.
diAp o (1Pp) = dkAes(p) ® Iy VpeS(A). (4.77)

We consider now the fluctuations of the corresponding models and show the equality
of the obtained 1/n-corrections. For a fluctuator A € A,, around p € S(A), we define a
fluctuator A, € A, ,, around the purification [t),) € H,, by

A, =491,
= Vn(sym, (A - p(A)D)) ® T,
= nsympm(A ®I-p(A)Ie 1) (4.78)
=nsym,, (A® T- (| A® T|y,) 1o 1)
= (m)p'

Clearly, if a sequence p,, has root-n fluctuations around p € S(\A), then for the sequence
|1, ) of purifications, the expectation values

<¢pn|121:)§77'---|¢pn> :Pn(;fg---) (4.79)

converge as n — oo. However, this does not imply that the sequence [¢,,) has root-n
fluctuations around |, ), because there also exist fluctuators

(A® B), =nsym, ,(A® B - ()| A® Bli,) - 1o 1), (4.80)

for which the convergence in expectation with [t,, ) need not hold. To distinguish this,
we introduce the following definition

Definition 4.4.6. A sequence of states p,, € S(Ap ) is said to have restricted root-n
fluctuations around p, € S(Ap), if for all A,B,...e A

Hm ppp(A,Bp...) = (Q, AB...Q) (4.81)

exists, where )?; =Xol, for X=A,B,....

Proposition 4.4.7. Consider a mean-field Hamiltonian function Hs with minimizer p €
S(A), the related extended function Hp o, and the fluctuation Hamiltonians H around
p and Hy around a purification |1,) (¥, € S(Ap). Then

inf H = inf H,. (4.82)

Proof. On the one hand, assume the sequence p,, ,, has root-n fluctuations around |1,) (1|
with limy, oo pp’n(ﬁp) = (\I/p, ﬁp \Ilp). Then it also has restricted fluctuations, by Def.
4.4.6, and the sequence py, = Trxen (ppn) has root-n fluctuations around p with the same
limit, since

P (Hp) = ppn(H @ 1) = pp(H)  Vn. (4.83)
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4.4. Ground-state-energy corrections for the full mean-field case

On the other hand, assume some expectation value (\II, H ‘D) € R of H. Then, by
the filtering construction (3.25), there exists a polynomial F of fluctuators around P
with n-independent coefficients, such that the related filtered sequence approximates
the expectation values arbitrarily well. That is, for every € > 0, there exists a F', such
that on( =5
"(FHF* —~
1m Lﬁw) - <\I/, H\I/> <e. (484)
n—oo p®n(FF*)
The polynomial F defines a filtered sequence on Ay by purification, which implies the

same expectation value on H,. That is by Eq. (4.78),

PP (FHF*) (yen|(FeI),(He1),(F e 1)) |[v2")

P®n(FF*) ) (%ZJ;?”‘ (m)p(m); 7/’?”) (4.85)
- <¢flin| -FNIP WJZH Vn
and therefore
on(FHE -~
i ) H\D)‘
n—>oo ,0®n(FF*)
A i 4.86
|t (F] 7y Jf) - (v, )] (4.86)
=|(v), H,0)) - (v, HT)| <e.
O

Hence, it follows that the ground state of a fluctuation Hamiltonian H is always finite
and non-positive, since Thm. 4.3.3 applies to the fluctuation Hamiltonian ﬁp of the
extended model. We close this section with the following corollary on sequences of true
ground states of H,.

Corollary 4.4.8. Assume, a sequence of true ground states p, of H, has root-n fluctu-
ations around a mean-field minimizer p of He, cf- Rem. 4.2.4. Then every sequence of
purifications |1, ) (¥p,| of pn has restricted root-n fluctuations around the purification

|V) (Y| of p, by Eq. (4.79), and the limits

,%1_{20 (0., Hpp,) (4.87)
exist, where ﬁp is the fluctuation Hamiltonian of the extended mean-field model Hp,,
of Hy,, around some purification 1Y) (| of p, c¢f. Eq. (4.78). On the other hand, if a
sequence of true Bosonic ground states ppn of Hp , has root-n fluctuations around a pure
mean-field minimizer [) (Y| of Hp o, then the sequence of reduced states Tricen (ppn) s
a sequence of true ground states of H,,, by Eq. (4.64), and has root-n fluctuations around
its mean-field minimizer Tric(|) (¥|) by Eq. (4.83). Therefore, in order to answer the
question whether there exists a sequence of true ground states of H, that has root-n
fluctuations around a minimizer of Hs, cf. Rem. 4.2.4, it is sufficient to answer it in
general for Bosonic systems.
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4. First-order corrections to the mean-field ground-state energy

Figure 4.1.: Hamiltonian function H = Hu(z,2) of the mean-field Ising model (4.89),
where y =0, B =1 and J = -1. The minimizers in this parameter setting
are p* (4.90), indicated by the blue lines along the boundary of H.,. For

J > —%, the minimizer is pg, indicated by the red line along the boundary
of He.

4.5. Mean-field Ising model in transverse field

In this section, we perform the ground-state energy estimation for the mean-field Ising
model, given by the Hamiltonian density H,, = sym,, Hy with

Hy=Bo,®1+Jo, ®0y. (4.88)
The related mean-field limiting function amounts to
Hoo(p) = p®2(Hy) =B -z +J - 22, (4.89)

where « = p(0,) for a = z,y,z are the components of p in the Pauli basis. First, we
identify the minimizers of the function, cf. Fig. 4.1. For B > 0, the minimizers amount
to

v

£0o = (0)07 _1)7

pr e ((:i: Sin<]5,0,cos¢)), (4.90)

argmin Hs (p) = { I
p J

vty ol

IN

)

where ¢ = arccos (%)
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4.5. Mean-field Ising model in transverse field

min H_n min H_n
10 20 30 40 50 60 70"
12505}
101}
12510}
1.02¢ 12515}
Loal 12520}
12525}
1.04L

Figure 4.2.: Ground-state energy of H,,, for different values of n. Left: B =1, J =1 with
mean-field minimizer pg. Right: B =1, J = -1 with mean-field minimizer p*.
Red lines: Functions (4.98) (left) and (4.110) (right). Blue dots: ground-
state energy obtained by exact diagonalization.

Case J > —%

We begin with the case J > —%. We consider the computational basis {|0),[1)}, such
that pg = |1) (1]. The mean-field ground-state energy amounts to He(po) = —B and the
gradient and Hessian of H,, are given by

dHu(po) = B-dz=(po) + 2]z - da(po) = 2B10) (0],

daHoo(po) = 2 - dz(po) ® d(po). (4.91)

Since po - dHeo(po) = dHeo(p0) - po = 0, dHoo(po) = 0, and

—_—
fr—

dHeo(po) = 2B0) (0]
=2Ba*a (4.92)
= B(Q*+P?) - B1,

— —

where a =|1) (0] and a* = |0) (1] are the ladder operators of the fluctuation algebra and
(@ and P are the related canonical variables, defined by

1 %
Q= 72(@ +a”) and (4.93)
P= E(a—a*). (4.94)

With these, we also identify the fluctuators &, = v/2Q and Oy = —V/2P, which is in
accordance with the commutator [Ef},, Ey] = —2¢1l. The fluctuator of the Hessian therefore
amounts to

dQHoo(p()) =2J (Em -33; - ]I)

4.95
=4J-Q*-2J-1, (4.95)
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4. First-order corrections to the mean-field ground-state energy

where in the first line we used the fluctuator decomposition rule (3.15). Hence, the total
fluctuation Hamiltonian amounts to

() = THe(p0) + 50287 (o)
=(B+2J)Q*+BP*-(B+J)1 (4.96)
=\/B(B+2J) (Q”+P?)-(B+J)L

In the last line we performed a canonical transformation to Q' = a-@Q and P’ = P/« with
o= ((B+2J)/B)"*, to obtain a harmonic oscillator in the standard form. Hence, its
ground-state energy amounts to

inf H(po) =\/B(B+2J)-(B+.J) (4.97)

and the ground-state energy of the total system

miang—B—l(Bu— B(B+2J)). (4.98)
n

Case J < —%

In this case, the two mean-field minimizers amount to
p* = (xsing, 0, cos¢), (4.99)

with cos¢ = %. We will treat the fluctuations around both reference states in parallel
and see that they lead to the same 1/n corrections. The mean-field ground-state energy

amounts to He(p*) = J + f;;. It is convenient to rotate the minimizers into the o,-

direction. This can be achieved by the rotation matrix

cos® -sin®
- (sin@ cos © )’ (4.100)

with © = :Fg, defining

p'* = RpR" =10) (0]
! =RY0,R=cosp-0, Fsing-o, (4.101)
oL =+sin¢g-0, +cosp-o,.
We switch to this rotated basis and omit the apostrophes for notational convenience.
Hence, the reference state is p* = (0,0,1) in this new basis and the Hamiltonian function

reads
Hoo(p) = B-(cos¢-z+sing-z) +.J-(cos¢-z Fsing-z)>. (4.102)

The gradient and the Hessian in this basis amount to
dHo(p) = (B cosg F2Jsing- (cos¢-x Fsing- z))dz(p)

(4.103)
+ (j:B sin g + 2J cos ¢ - (cosqﬁ -x Fsing- z))d:c(p)
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4.5. Mean-field Ising model in transverse field

and
doHoo (p) = 2J(sin ¢)2dz(p)®% + 2J (cos ¢)*dz(p)®2

. (4.104)
F2Jsin¢cose- (dz(p) ®dz(p) +dz(p) ® dz(p)).

At the reference state p* = (0,0,1) the differentials amount to dz(0,0,1) = o, and
dz(0,0,1) =0, — T =-2|1) (1]. We therefore obtain

dHos(p*) = -4J|1) (1] and
2

doHeo(p*) = 8 (sin )2 - (1) (1])® +§—J o®? (4.105)

+ 2Bsin¢(a$ ® 1) (1] +[1) (1] ® va)?

where we Substltuted cos ¢ = —J and (sing)? =1 - 1 J2 Hence, using the normal modes

=[0) (1], a* = [1) (0| and the related canonical variables @ and P, we obtain
deoo *)=-4Ja*
(p*) =-4Ja’a (4.106)
=-2J(Q* + P?) +2J1,
and
o B2
= -2 @ 1)
22 e (4.107)
oot |
J 2J

using 7, = v/2Q, and the fact that the fluctuators of (|1) (1|)®2 and o, ® [1) (1], resp.
|1) (1] ® o, vanish, due to p* - |1) (1] = |1) (1] - p* = 0. Hence, the fluctuation Hamiltonian
amounts to

— — ] ——
H(p*)=dHe(p*) + 5d2Hoo(p*)

.82
:_QJ(Q2+P2) Q +(2J_B)]I (4.108)

B2
=V4J2-B2(Q"”+P"?) + (2J - 5) I,
where in the last line we performed a canonical transformation to Q" = 3-Q and P’ = P/f3
with 8= (1- € J)2 )1/4, to obtain a harmonic oscillator in the standard form. The ground-
state energy of the ﬂuctuatlon Hamiltonian therefore amounts to

2

—~ B
ian(pi):\/4J2—B2+2J—E7 (4.109)
and the ground-state energy of the total system,
B* 1 B2 B
minH, <J+-—+—|V4J2-B2+2J - — J<——. (4.110)
4J n 4J 2
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4. First-order corrections to the mean-field ground-state energy

Comparison with exact diagonalization

We perform an exact diagonalization of the mean-field Ising model in the Bosonic sector.
Using the angular momentum representation,

Laz gsymnaa, ae{x7y7z}7 (4111)
we can write the Hamiltonian density in the following form

H, =B-sym,o0,+J -sym, (o, ®0,)

2B n 2 1

- e (e ) (@.112)
2B 4

==L S o d

+ —
n ~ nn-1)"" n-1

The obtained ground-state energies for two sets of parameter values and the related
mean-field and fluctuation solutions (4.98), (4.110) are depicted in Fig. 4.2. We fit
the exact data to a power series in orders of 1/n and extract the coefficients for the
zeroth and first order. We find that they are in agreement with the theoretical values
to a certain extent. The closer the parameter values B and J are to B = -2J, the
less reliable convergence can be achieved. On the contrary, with parameter values far
away from B = —2J the results are in good agreement. For fitting the ground-state
energies from 60 to 160 particles (with an increment of 10 particles), the analytical and
fitted 1/n-coefficients are in agreement for (B,J) = (1,-1) up to the 6th significant
digit and for (B,J) = (1,1) up to the 8th. The change of the mean-field minimizer
at the point B = —=2J is a quantum phase transition, due to the non-analyticity of the
ground-state energy at this point [94]. It is understood, that at this point quantum
fluctuations diverge. This is manifested by the fact, that the higher-order coefficients
of the ground-state energy become very large, such that the 1/n correction (which is
analytically computable at the transition point and is the same for both types of reference
states, po and p*) cannot approximate the corrections to the mean-field ground-state
energy well for any finite n.

4.5.1. Bosonic Ising model in transverse field

Since the mean-field minimizers of the mean-field Ising model are pure, we can also
perform the fluctuations in the Bosonic formalism and obtain the same results. To show
this, we use the notation from Section 4.3.3, i.e. the equations D = (1|df|1)+(10|daf |01)
(4.53) and C = (00|daf|11) (4.54), in order to compute the frequency w = /D? - |C|?
and the ground-state energy

EO:%( D*-[CP - D). (4.113)
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4.6. Bosonic systems and Bose-Einstein condensates

Case J > —%

In this case, the minimizer is defined by py = |1) (1], hence we need to exchange the
definition of |0) and |1) in D and C. Then, by Eq. (4.91), we obtain D = 2(B + J)

and C = 2J, such that w = 2/B(B+2J) and Ey =+/B(B +2J) - (B +J), reproducing
(4.97).

Case J < —%

In this case, after transforming the minimizer to p* = |0) (0|, we obtain D = -4.J + ]25;; and
C= 123;;, such that w =2v4.J% - B2 and Ey =V4J2-B2+2J - %, reproducing (4.109).

4.6. Bosonic systems and Bose-Einstein condensates

In recent years, the field of Bose-Einstein condensation has been an attractive research
field [69, 85]. In particular, the experimental implementation [44] of the Bose-Hubbard
model (BHM), which was originally invented as a toy model for Helium [37], with atoms
confined in an optical lattice, has sparked renewed interest in the theoretical investi-
gation of such systems [66]. The BHM describes a hard-core Bosonic lattice gas, with
energy contributions for hopping among neighbouring sites (quantified by a parameter
—J with |J| > 0) and interaction (repulsion) of Bosons on each site (quantified by a pa-
rameter U > 0). Despite its simplicity, the BHM shows very interesting behaviour in the
thermodynamic limit at low temperatures, in particular the quantum phase transition
between Mott insulator and Bose-Einstein condensate (BEC).

The thermodynamic limit is defined by taking the particle number n and the volume
V' (or respectively the number of lattice sites d) to infinity, while leaving their ratio n/V
(or n/d), constant. The definition of a BEC is, that in the limit the one-particle reduced
density matrix of the ground state has one large eigenvalue, while all other eigenvalues
vanish as n — oo, i.e. that it is (approximately) pure [69]*. At zero temperature, the
ground state is a BEC, if in the Hamiltonian the hopping-term is favoured over the
on-site repulsion, i.e. J > U. If, on the other hand, the on-site repulsion dominates,
then BEC is supressed in the ground state and the Mott-insulator phase, defined by an
energy gap [69], occurs. Such a gap does not exist for BEC [69], hence the two phases
exclude each other.

In this section, we treat the BHM as a strictly symmetric sequence by imposing a
scaling on the on-site interaction term. We take the limit of infinitely many particles,
n — oo, while leaving the number of lattice sites, d, constant. This limit is known

“In the literature concerning the Bose-Hubbard model, it is often spoken of superfluidity instead of
BEC. Indeed, a BEC of mutually repulsive particles on a lattice will show superfluidity, in the sense
that the one-particle wave function is being spread out over the whole lattice and the non-existence
of a gap in the excitation spectrum, rendering the particles mobile w.r.t. the application of external
forces [85]. In general, the relation between BEC and superfluidity is subtle, and in particular it is
not known whether a universal definition of superfluidity exists [69]. In this section, we will treat the
two notions as synonymous.
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4. First-order corrections to the mean-field ground-state energy

as the large-filling or mean-field limit. It may be primarily relevant for experimental
implementations, e.g. in optical lattices, where the number of lattice sites is fixed. In
this limit, the ground state is always a BEC, in the sense that the mean-field minimizer
is by definition pure, cf. Section 4.3. We show that the fluctuation Hamiltonian around
the minimizer is exactly the Bogoliubov Hamiltonian. The consequence is that the
Bogoliubov method [15], which was originally invented as an approximation for the
thermodynamic limit and has been criticized for not predicting the Mott phase, should
be viewed as the first-order correction to the mean-field limit, which is a priori completely
unrelated to the thermodynamic limit. Similar results were published earlier for the
continuous case, i.e. Bose gases in a box with no lattice structure on it. It was shown for
this case, that the Bogoliubov method gives the exact 1/n-corrections to the ground-state
energy [104, 67], complementing our result for the lattice case.

Our method does not address the thermodynamic limit, since the number of lattice
sites is kept fixed. However, it would be interesting to see if our result can be extended
in the sense that the fluctuation Hamiltonian is extrapolated for d — oo. In general, we
do not assume that the limits n - oo and d - o exchange, but in the parameter regime,
in which BEC occurs, this may be the case. However, this step is beyond the scope of
this thesis.

Furthermore, in Section 4.9 we will propose an extension of the fluctuation method
to a class of approximately symmetric Hamiltonians. We will show that the BHM -
without the artificial mean-field scaling - is a member this class. Hence, in principle
it may be possible to obtain first-order corrections to the ground-state energy of that
BHM. The obtained limit will still be a mean-field or large-filling limit, but due to the
absence of the artificial scaling of the on-site interaction term the resulting properties
may be substantially different.

4.6.1. A generic Bosonic lattice model as a mean-field model

Consider a lattice with d sites. A quantum particle in this lattice can be described by the
Hilbert space H = C%. An orthonormal basis of this space is given by {|ex) ‘x =1,.., d},
where the vector |e;) corresponds to the particle being located at site . Operators on
the one-particle Hilbert space are spanned by the matrix elements e,y = |es) (ey].

A system of n Bosons in this lattice is described by the Hilbert space H,, = Sym,, H®",
the Bosonic subspace of H®". Usually, Bosonic systems are described in Fock space
§=CeHeHye... using the Bosonic creation and annihilation operators ¢}, c,, which
correspond to the creation/annihilation of a Boson at the lattice site z, for = € {1,...,d}.

A generic k-body Hamiltonian, which does not change particle number, can be written
as

H= Z Z R(Z1, ey Ty Y1 -5 Yk ) Cory Cyn ++Cony, Cae (4.114)

TlyesTh Y1y Yk

where the ordering of the creation/annihilation operators can be achieved using the
commutation relations [c,, c;] = 0y I. Considering only the n-particle subspace of the
Fock space §, it is possible to write the creation and annihilation operators in terms of
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4.6. Bosonic systems and Bose-Einstein condensates

angular momenta in the sense [111]

iy 1 Ha = Zl 1" @ |z) (y| ® 1%~ (4115)

=N Sym,, €.y.

Therefore, with the right scaling of h(x1, ..., 2k, y1, ..., yx) in n, the system amounts to a
mean-field model.

4.6.2. The Bose-Hubbard model on a one-dimensional lattice

In the following, we consider the BHM on a one-dimensional lattice with d lattice sites
and periodic boundary conditions (pp. 416, eq. 114.48 in [85]). By introducing the
factor 1/(n —1) on the on-site interaction term, we make it a strictly symmetric mean-
field model. We show that the related fluctuation Hamiltonian is exactly the well-known
Bogoliubov Hamiltonian. Hence, we show that the Bogoliubov theory gives the 1/n-
corrections to the mean-field ground-state energy of the scaled BHM. A related result
was derived before in [111], using assumptions not required by our method. Namely,
in [111] Bose symmetry was enforced on the 2-particle level without justifying that this
corresponds to Bose symmetry on the n-particle system as well. However, the mean-field
minimizer of this modified model over the full one-particle state space was pure, such
that Bose symmetry was automatically implemented, cf. Sect. 4.3. Furthermore, a com-
plementary result has been known for infinite dimensional Bosons with weak interaction
[104].
The Hamiltonian of the BHM in Fock space § is given by

d d d
H =Y hychee—J Y (hoca+ Chcaan) + g 3 ches(cye, - 1), (4.116)
=1 z=1 r=1

where ¢, and ¢}, are particle annihilation and creation operators on the lattice site x.
For convenience, we assume h, = 0 for all z and J > 0 and U > 0. This allows for a
simple computation of the mean-field minimizer.

We perform a Fourier transformation into momentum space, in which the mean-field
minimizer will be a basis state, instead of a uniform superposition over all basis states.
We introduce the momentum-annihilation operators

1 &
cp=—=y ePle,, (4.117)
P>
where
2.4,....,2(d-1)) -d d
p: E. (07 ) ) M ( )) M even (4118)
d 1(0,2,4,...2(d-1))-(d-1) ,d odd.
The Hamiltonian then amounts to
d U d
H =Y hpChcp+ == D OrisprgCrCaCpCqs (4.119)
p 2d T7S7p7q ’
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4. First-order corrections to the mean-field ground-state energy

where hy, = —2J cos(p). Since the Hamiltonian conserves the particle number, we can
restrict it to some fixed particle number n and obtain the following identity

cie) V Hp = S I8 g |p) (g| @ IO
(cpcq) ; Ip) {4l (4.120)
= n~symn(epq),

where e, = |p) (g| with |p) and |g) being basis vectors of the one-particle Hilbert space
‘H in the momentum basis. Thus,

H My =n- H™ =n-sym, H™, (4.121)
with
(n) <Ay g™ &
H2 = Z ?(epp elT+1I® epp) + % 2 5r+s,p+qerp ® esq- (4122)
p 7,8,0,q

Note that H,(Ln) is not a strictly or approximately symmetric sequence, because the
coefficient ¢(™:= U (n—1) scales with n. In order to circumvent this issue, we introduce
the mean-field scaling by replacing ¢(™ — g = g(Vo), HQ(n) ~ Hy = HQ(NO) and therefore
H,(Ln) = H, = HszO) for all n, with some fixed Ny. That is, H,, is the mean-field model
related to the Ny-particle system. In the following, we derive the mean-field limit and the
fluctuation Hamiltonian around the mean-field minimizer for this model. The mean-field
limiting function of H,, at a point p € S(H) amounts to

d d

g

Hoo(p) = Z hpppp + 2_d Z 6r+s,p+qprp ' Psqs (4123)
p T7s7p’q

with ppq = p(epq). The gradient and the Hessian are given by

d d
g
dHeo(p) = ) hpdepy(p) + y > Orisprqprp - desq(p) and (4.124)
p T7S7p7q
g d
dQHOO(p) =7 Z 5r+s,p+qderp(p) ® desq(p)v (4-125)
7,8,p,q

where depq(p) = €pg = ppq 1.

In the following, we show that the discrete time-dependent Gross-Pitaevskii equation
[85] is equivalent to the Hartree equation p = —i[p, dHw(p)] in this model. We switch
to the location-basis {|x), z = 1,...,d}, where the mean-field limiting function amounts

to
d

U
Ho(p) = Z (hx/)m + Epix - J(P:Hl,x + px,x+1))a (4.126)

x=1

with pgy = p(ezy). The gradient therefore amounts to

d
dHe (10) = Z ((h:r + Upmm)deww(,o) - J(d€x+1,m(p) + dex’ml(p))), (4127)

z=1
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4.6. Bosonic systems and Bose-Einstein condensates

with degy(p) = exy — puy 1. If we consider a pure state p = [¢0) (¢] with [¢) = 3¢ _, 4, |z),
then the Hartree equation, p = —i[p, dHw(p)], leads to

ity = (ha + Ulal?) o = J ($yirthe + Uytbun) Ve, (4.128)

which is just the discrete version of the time-dependent Gross-Pitaevski equation [85].

We switch back to the momentum basis {|p)} and continue with the ground-state
energy estimation. The state p = |p) (p| with p = 0 is a minimizer of He (4.123) on
the pure submanifold Spyre(#H). The value of H at this point, i.e. the mean-field
ground-state energy, amounts to

Hoo(10) (0]) = % ~2J. (4.129)

In the following, we omit the p-dependence on all differentials, i.e., we write df:=
df(|()) <0|) for all f. At this point, the gradient amounts to

dHe = Y hpdepp, (4.130)
P
since ;
> Orisprqprp-desg = depy = epp—L=0. (4.131)
7,5,0,q P P
The Hessian amounts to
g d
doHeo == ) Opisprgderp ® deg. (4.132)
d T787p7q

Clearly, the minimum conditions (4.22) and (4.24) are fulfilled: dHo |0) =0 and

(q0|d2H oo [0g) + (g dH oo |q) = [(qq| d2 Hoo [00) |
_9 _
=7 T he=ho (4.133)

U
:E(NO -1)+2J(1-cos(q)) >0 V]g) L]0), VJ,U >0.

Next, we construct the fluctuation Hamiltonian H. By Prop. 3.6.1, the normal modes
of the fluctuation algeE)Ea at p = |0) (0] are given by a, = &, and a, = &y, for p # 0.
Moreover, &,, = 0 and &, = a,a,, for p,q # 0. Especially, we have

— . ,p#0
il P (4.134)
- Zp’#O ap’ap' y D= 0

Finally, note that &,, = d/ezl by construction, cf. Eq. (2.33). Hence, the fluctuators of
the gradient and Hessian amount to

dHe = )" (hy— ho)ayay (4.135)
p+0
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and
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(4.136)

where in the last line we used (d-1)T = },.9[ap,a,]. Hence, the fluctuation Hamiltonian
amounts to

—

H

—_—

doH o

5

+

Il
o
0

g * 9 * %
hy = ho + E) apap + pa 2% (apap +aga”,) (4.137)

N

(ap(a;ap + aipa—p) + ,B(apa_p + “;aip))’

H
[en]

p

where oy = hy —ho + 9 and 3 = 9. Also, in the last line we used the fact that in the sum
for each value of p, the value —p is contained as well, and that o, = o, for all p.

The fluctuation Hamiltonian H is exactly the well-known Bogoliubov Hamiltonian
[85]. Therefore, the rather heuristic Bogoliubov approximation coincides with the 1/n-
corrections for the mean-field limit. It is important to note, that the ladder operators a,,
a, of the fluctuation algebra have nothing to do with the particle annihilation/creation
operators ¢p, ¢, of the original system. In particular, the fluctuation algebra contains
one mode less. This fact seems to be not contained or emphasized in the heuristic
Bogoliubov approach (Cf. pp. 226ff in [85]).

Furthermore, in Section 5.4, we show that the time evolution of the fluctuations around
the mean-field minimizer of the BHM is generated exactly by the Bogoliubov Hamilto-
nian, provided that Conj. 5.3.2 holds.

4.6.3. Note on higher-dimensional lattices

The fluctuation method can be performed on any lattice or interaction type. The gen-
eralization to higher-dimensional lattices is straightforward. However, in general it can
be difficult to define the fluctuation Hamiltonian. The obstacle is finding the mean-field
minimizer, i.e. the minimum of the mean-field Hamiltonian H,.,, which is a non-linear
function over d complex parameters.
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4.7. Inner bound for the finite de Finetti problem

Consider a permutation invariant state p, € A, with A = B(H) and dimH = d. Its
(k)

k-particle reduced state, p, ’, is called n-exchangable. The finite de Finetti theorem
[23, 63, 17] tells how close this state is to the set of de Finetti states. More precisely,
there exists a probability measure 1 on S(A) and a related de Finetti state

= dp) p®*, 4.138

Pk fS(A) p(dp) p ( )
such that )
2kd

Hp“k_p(k)H <= (4.139)

where |.|; denotes the trace norm [23], cf. Sect. 2.5. Since this bound holds for all
n-exchangable states, we can also express it with the supremum over them, that is

o) < 2hkd” (4.140)

sup 1nf Hpu,k -
In this sense, the finite de Finetti bound limits the maximal distance of the n-exchangable
states to the set of de Finetti states. In this section, we will derive an inner bound,
namely the minimal distance, that the farthest n-exchangable state is away from the set
of de Finetti states. To do so, we show that the left-hand side (4.140) can be expressed
as a mean-field ground-state problem. That is,

SupingPu,k_pn)H _SqufSUP(Pu,k(Hk) P (Hy))
Pn

—Supsupmf(pu k(Hy) = pi (Hy))

Hyp pn

—Sup(mfa® (Hy) - infpn(symn(Hk)))
Hk Pn

= sup(inf H, —inf Hn)
Hy,

(4.141)

In the first line, we just inserted the definition of the trace norm. It suffices to take the
supremum over hermitian Hy, with |Hg| < 1, since the density operators are hermitian
as well. Also, it is not necessary to consider an absolute value, since with Hj also
—Hj, is included in the supremum. The second line follows from an application of the
minmax theorem [53], while in the third line the supremum over p, and the infimum
over y relate to the two different terms independently. In the fourth line, we defined the
function He (p) = p®F(H},), which is the mean-field limit of the Hamiltonian density H,, =
sym,, Hy. The infima inf H,, and inf H,, denote the respective ground-state energies.
Hence, estimating the left-hand side of (4.141) is equivalent to estimating the 1/n-
corrections to the ground-state energy of H,. By Thm. 4.2.2 we therefore obtain the
inequality

szlnp iBf Hpmk - plk) H > _E %15 1{1)10f me(po)) (4.142)
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4. First-order corrections to the mean-field ground-state energy

for n large enough, where H(po) = dHw (po) + %dgH o (po) is the fluctuation Hamiltonian
of He at pg and inf H(pg) denotes its ground-state energy. The infima in Eq. (4.142)
go over all minimizers py of He, = sym, Hy and all hermitian Hy, with | Hy| < 1.

4.8. Relation to the Holstein-Primakoff transformation

The Holstein-Primakoff representation is a widely used tool in many-body physics [10].
Considering a Lie algebra generated by the spin operators S, for a € {x,y,z}, with a
total spin S, the representation amounts to

S.,=S-a"a,
S, =V2S-a*a-a and (4.143)
S_=a"-V2S-a*a,

where S, = S; +iS, and a and a* are Bosonic annihilation and creation operators.
When states with spin much lower than S are considered, then the square roots can be

approximated by
Sy = \/g(a+ a®) and

Sy:_i\/g(a_a*)v

simplifying computations significantly. One method, that uses the Holstein-Primakoff
approximation is spin-wave theory [10], which emerges when considering a system of
many spins and assuming that each spin is large, such that the approximation (4.144)
holds. The spin waves are then states of the system consisting of n Bosonic modes, which
is constructed by applying (4.143) to each spin. This method is however not related to
the mean-field theory presented in this thesis and will therefore not be considered further.

On the other hand, the Holstein-Primakoff approximation is also used for permutation
invariant (or long-range) models, for example the Lipkin-Meshkov-Glick model [70]. In
the following, we consider systems consisting of spin—% particles, to keep the notation
simple. A generalization to higher one-particle dimensions is nevertheless straightfor-
ward. We define angular momentum operators by

(4.144)

Se = gsymn O, a€{x,y,z}. (4.145)

In terms of the Schur-Weyl decomposition, cf. Eq. (2.54), these operators can be written
as

So =@ Ty, ® S, (4.146)
J
where the index j takes values in {0,1,..., 5} for n even and {%, %, ..., 5} for n odd. Each

value of j represents a Young diagram Y in the sense that the number of boxes in its
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second row amounts to j for n even and j — % for n odd. For each j, S&j )is a generator
of the Lie algebra with total angular momentum j and one can find a basis consisting of

ng)_eigenvectors |'¢J§rJL)>7 with the relation

SO i) = (G =m) [u). (4.147)

It is now straightforward to apply the Holstein-Primakoff transformation (4.143) to each
angular momentum operator Sé] ), However, independent of n, (4.146) contains some
spins Sg ) with a small J, such that the approximation (4.144) does not hold. But on the
other hand, the model is often restricted to Bosonic particles, i.e. symmetric vectors in
H®", such that only the ( J= %)fsector is considered. Clearly, in this sector the large-j
limit corresponds to the large-n limit, such that (4.144) holds if n is large enough.

We show the analogy between the fluctuation method and the Holstein-Primakoff
approximation for the mean-field Ising model. We applied the fluctuation method in
Section 4.5. The Hamiltonian density of the mean-field Ising model is given by

nHy, =-nBsym, 0, +nJsym, 0, ® 0
4 nJ (4.148)

= -2BS, + —— 5% - I,
n-1 n-1

where we choose the coupling to the magnetic field to be —B with B > 0. If 2J > - B, then
the mean-field minimizer amounts to pg = |0) (0] with po(c) = 1. It is therefore polarized
in the z-direction, such that we can apply the Holstein-Primakoff approximation (4.144)
to the spin operators and obtain

an:—n-B]I+2Ba*a+J(a+a*)2—J]I+O(l)
n
:—n-Bﬂ—B(Q2+P2—11)+2JQ2—J]1+0(1) (4.149)
n

:—n-B]I+m(Q’2+P'2)—(J+B)]I+O(%),

where, as in Section 4.5, we introduced the position and momentum operators ) and P,
cf. Eq. (4.93), and transformed them to @', P’, to obtain the standard form, cf. Eq.
(4.96). In the third line, the first term is just the mean-field ground-state energy and
the other non-vanishing terms are exactly the fluctuation Hamiltonian (4.96).

In [33], it was shown that the Holstein-Primakoff approximation does not give the
optimal 1/n-corrections to the ground-state energy of the Lipkin-Meshkov-Glick model.
However, this does not contradict our remark on the optimality of the fluctuations
method, cf. Rem. 4.2.4, because this model is approximately but not strictly symmetric
(cf. Section 4.9), while the fluctuation method presented in this thesis only applies to
the latter class of mean-field models.
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4. First-order corrections to the mean-field ground-state energy

4.9. Ground-state estimation for approximately symmetric
Hamiltonians

Above, we performed the ground-state estimation only for strictly symmetric Hamilto-
nian densities. However, there also exist physically interesting approximately symmetric
models. For example, for the Lipkin-Meshkov-Glick model [70, 33], the Hamiltonian
density can be written as

A i) _(j i) _(j h i
H, = _ﬁ; (09(: ) (7) +70§ )015])) - ;ag )
An-1
= _2_n sym,, (0, ® 0, + Y0y ® o) — hsym,, o, (4.150)
non

1
=sym,, Ay + - sym,, Ba,

where Ag = ~ho, @ 1T - % (0p® 0y +y0y®0y) and By = —% (02 ® 0y +y0, ® 0y). Clearly,
this is an approximately symmetric sequence.

In the following, we consider a subset of approximately symmetric Hamiltonian den-
sities, defined by

1
H, =sym, Ay + —sym, By, (4.151)
n€

with € > 0. Note that this class does not include all approximately symmetric sequences,
but it suffices to outline the difficulties that occur when trying to implement the fluctu-
ation method. The main problem is the choice of the reference state for the fluctuation
algebra. If some reference state p is chosen, then it is possible to implement the Taylor
expansion (2.41) in the following way

ko1 1 (& 1 ——
Hy=Y d,Ac(p) + — (Z 5 dsBoo(p)) : (4.152)
r=0

T
rinz ne \ {20 slnz

where Ao = sym, A and Bs = symg, B;. Note that since the mean-field limiting
function is just He = A, the Taylor expansion of H. would neglect the B—terms.
Furthermore, the B—terms lead to corrections to the mean-field limit of order n™¢, which
are more significant then n™! for € < 1. Hence, the naive implementation of the fluctuation
method to Hs would not give the right corrections to the mean-field ground-state energy.

A possible way to estimate the ground-state energy for finite n is to obtain the reference
state by minimizing H,, over product states, which is different from minimizing the mean-
field limiting function He, i.e.

p\™ = argmin p®"(H,,) # argmin Hoo (p). (4.153)
p p

Then we define the fluctuation algebra F H(m) around p(”) and estimate the asymptotic
behaviour of expectation values of (4.152) up to some order with sequences of states with
root-n fluctuations around p(™. If it is possible to obtain a convenient parametrization
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4.9. Ground-state estimation for approximately symmetric Hamiltonians

of the reference states p(™) and the related fluctuation Hamiltonians H(, then it may
be possible to obtain a suitable asymptotic expansion of (4.152) with suitable sequences
prn and to minimize over such sequences accordingly.

Finally, we show that it is possible to consider the Bose-Hubbard model as an ap-
proximately symmetric sequence, without relying on the artificial mean-field scaling, cf.
Sect. 4.6.2. Considering Eq. (4.122), since the total energy scales with n? in leading
order, we may just define the Hamiltonian as

H } Hpi=n’K, (4.154)

with the approximately symmetric sequence

1
K, =sym, As + —sym,, Bs, (4.155)
n
where
U
Az= = D7 Oresprgerp®esq and (4.156)
2d T787p7q
hyp U
By = Z _(epp elI+1I® epp) T 57 Z 51”+s,p+q€rp ® €sq- (4157)
p 2 2d 7,5,0,4
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5. Time evolution of mean-field fluctuations

5.1. Overview

In this chapter, we consider the dynamical aspects of mean-field fluctuators. In their
seminal paper, Hepp and Lieb proved that the fluctuation property is preserved for a
class of Hamiltonian dynamics [52]. That is, if a sequence p, has root-n fluctuations
around p, then the time-evolved sequence p;,, = py, 0 T}, has root-n fluctuations around
pt = Fip, where Ty, is the Heisenberg time evolution and F; is the related mean-field
limiting flow, cf. Section 2.3.

The theorem was stated for the case of the Hamiltonian density being of the form H,, =
F(sym,, HW, sym,, H® sym,, H®)), where F is a polynomial with n-independent
coefficients and H) e A for all i. We were not able to lift the proof to general strictly
symmetric Hamiltonian densities H,, = sym,, Hy, but we show that the time derivative
for finite particle number n supports this conjecture.

In Section 5.2, we derive the time evolution of differential forms and show that it
is implemented by the Jacobian J(p) of the mean-field limiting Hamiltonian flow F;.
Moreover, we introduce coordinates for the manifold S(A), which enables us to derive
the differential equations for the Jacobian Ji(p) and the differential form d(f o F;)(p)
for differentiable f € C(S(A)).

In Section 5.3, we state the theorem of Hepp and Lieb [52] and propose a related
time evolution for fluctuators of mean-field systems with strictly symmetric Hamiltonian
densities H,, = sym, Hi. We compute the time derivative of fluctuators for finite n,
supporting our conjecture. We show that the derivative amounts to the generator of the
Jacobian time evolution plus a term of order 1/y/n. In this project, we were not able to
bound the O(1/y/n)-terms sufficiently, such that the time derivative could be integrated
to finite times in the limit, which is why we have to leave the statement of the time
evolution of fluctuators with strictly symmetric Hamiltonian densities as a conjecture.

Finally, in Section 5.4, we consider the case in which the reference state p of the
fluctuation algebra is a minimizer of the mean-field limiting Hamiltonian H.,. We show
that in this case the time evolution of fluctuators is implemented by a Hamiltonian and
that, provided the above conjecture holds, this Hamiltonian is exactly the fluctuation
Hamiltonian H(p), which we introduced in Chapter 4 to obtain the 1/n-corrections to
the mean-field ground-state energy.

A similar result has been found for mean-field systems consisting of infinite-dimensional
Bosons [9]. In this case, the tools from differential geometry could not be applied. How-
ever, it was shown there, that the variance of the limiting Gaussian distribution is
determined by a time-dependent Bogoliubov transformation describing the dynamics of
initial coherent states in a Fock-space representation of the system. Furthermore, it was
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5. Time evolution of mean-field fluctuations

shown that the time evolution of fluctuations around Hartree states is generated by a
corresponding Bogoliubov Hamiltonian [68], thus complementing our results for the case
of infinite-dimensional Bosons.

5.2. Time evolution of differential forms

In this section, we consider the time evolution of differential forms df;(p), where f; =
foF for f € C(S(A)) and F; being a Hamiltonian flow on S(A), defined by a twice
differentiable function He, € C(S(A)), cf. Sect. 2.3. We will introduce the Jacobian

Ji(p): T,,S(A) - T,;S(A) (5.1)
of the flow F;, which implements the time evolution of differential forms by

dfi(p) = J(p)(df(pr)), (5.2)

where p; = Fip. The basic structure of J;(p) was presented in [31] for general mean-
field dynamical semigroups. Here, we make the structure precise for the mean-field
limit of dynamics generated by nH,, € A,, with a strictly symmetric Hamiltonian density
H,, = sym,, Hi. In Section 5.2.1, we introduce coordinates for the manifold S(.A), which
we use in Section 5.2.2 to define the Jacobian and derive its structure.

5.2.1. Coordinate description

In this section, we introduce coordinates for the manifold S(A) and the tangent and
co-tangent spaces. This will simplify the computation of Jacobian dynamics.

Consider the one-particle operator algebra A = B(H) with dimH = d as a Hilbert
space with the Hilbert-Schmidt scalar product (A, B) = Tr(A*B). Define an orthogonal
basis of hermitian operators {ei, i=0,..,d* - 1} in A, where € = T and all others are
traceless. The e’ are commonly known as the generalized Gell-Mann or generalized Pauli
matrices [11]. The dual basis in A* is given by the set {ei, i=0,..,d> - 1}, defined by
(ei, ej) =Tr(efel) = 55 , such that the e; are hermitian and traceless as well®.

Let s = d? - 1. A density operator p € S(A) can be parametrized by

p= 1(]I+ixiei), (5.3)
d 1=1

where {z!, ..., 2"} e R*. It is important to note that not every vector {z',..., 2"} defines
a density matrix this way. Indeed, positivity and unit-trace of p must be ensured.
Nevertheless, it is clear that the set of vectors defining the state space S(.A) is a convex
subset of R®. Hence, the tangent and cotangent spaces are isomorphic to the vector
space R" at each pe S(A).

! As before, despite the isomorphy A = A*, we keep the formal distinction between A and A*, since it
enables us to distinguish between the tangent and cotangent spaces T,S(A) and T, S(A), which is
relevant due to the choice of representatives of the latter in A.
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For the tangent space T,S(A) = R" at p € S(A), we define the basis

0
ozt

The dual basis, of the cotangent space T, S(A), will be denoted by {dxi(p); i=1,.., Ii}.
We fix the choice of representatives on A again by p(dz’(p)) = 0, such that we can
identify

i= 1,...,/1}. (5.4)

p

dz'(p) = €' - p(e) L e A. (5.5)
It follows that due to the bilinear form between A* and A (given by the Hilbert-Schmidt
scalar product), we can identify 821' =e; € A", independent of p. In other words, the
bilinear map between 7,S5(A) and T;S(A) can be written as
0 j . . i
| [da?(p)) = (ei, €') = Tr(e; €)= 67. (5.6)
ox'lp

Note that e; = ¢} and that the choice of representative of dz’(p) is irrelevant, because
Tr(e;-T) =0 for all 1 <7 < k.
5.2.2. Time evolution of differential forms

In this section, we derive the time evolution of differential forms df:(p) € T;S(A). Let
Ho € C(S(A)) be a twice differentiable function and consider the related generator L of
the nonlinear flow F;, given by

Lp =-i[dHe(p), p]- (5.7)

In the following, we write p; = Fip for the time evolved state. On the function f €
C(S(A)), the mean-field time evolution is given by

ft(p) =Tt f(p) = f(pt) = f o Fe(p). (5.8)

The time evolution of the related differential form, d f;(p), is determined by the Jacobian
Ji(p) of the flow F; by

Ji(p)(df (pr)) = A(f o F2)(p)- (5.9)
In coordinates, this equation amounts to
of ; dF! | of ;
T(p) (2 | da <pt>) % 5], 7l 4410 (510)

Hence, Ji(p): T,,S(A) > T,S(A) is a linear map with the coefficients

Jt(p)f = 8_]:;2 :

: 5.11
92 |, (5.11)
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In the following, we introduce a bra-ket notation, derived from (5.6), to consider J;(p)
as a linear map. That is, we write

Ji(p) = Z Ji(p)]

(5.12)

dx@(p)) ( 21

Then, considering a € Tj S(A) as a vector, i.e. a =Y} ak |d:ck(pt)), the application of
Ji(p) amounts to

K@ = 5 H(oo )55, [0
= 2. Jip)]a; \dwi(p)) (5.13)
2V}

= 3 Ji(p)la; dz' (p).

1,]

In the following, we derive the time derivative of df;(p). By the product rule, we get

S = F(A10) = 3) (5500 ). (5.14)

We start with computing %df(pt), ie.

d d (0 i
adf(/)t) ZZ e (—fi|pt -dz (Pt))

dF, o
"X . ' Swiowily,

ij 14
0% f
OxI 0zl py
Z 8x28x1| Lpy)* (a k dflfj(pt))-dxi(pt) —(Lpy, df (p)) T
=Tr2((]I ® Lpt) -daf(pt)) = Tr(Lpe - df (pe) )1
=Tr2((1[ ®pr) - i[1® dHe(p1), d2f(Pt)]) - Tf(/?t “i[dHoo (p1), df(ﬂt)])]l
=id @ p(i[T® dHeo(pr), daf (p1)]) = {Heo, [} (pe) L.

d. i
'adﬂﬁ (pt)

. 0
“(pt) + Z 8;

Pt

:Z(Lpt)j- Lp)'T

| B
dai(p) - L 57| ¢

(5.15)

In the second line of (5.15), we applied the chain rule of derivatives. In the third line,
= (Lpt)’ and
p

. . dF?
we identified -

da'(pe) = (6 —(pt)' M) = =(Lpy)' 1. (5.16)
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In the fourth line of (5.15) we included the Kronecker symbol (52 and used Eq.(5.6), and
in the fifth line we introduced the Hessian of f, which can be written as

daf () = 3 | da () @ da? (o). (5.17)

83:18 J

Finally, we used the definition of Lp; (5.7) and our notation p(.) for expectation values
with p € S(A), and id(A) = A for A e A.

If considering a general p-dependent state p,, with 1 € R, then (5.15) can be generalized
to

%df(pu) = Tro((1® p;,) - daf (pu)) = Tr(p}, - df (pu) )T, (5.18)

where pj, = %Pu-
Next, we compute J;(p). The time derivative of the (j,7)-th component amounts to
. doF
Ji(p)) = — =L
t(p)l dt 9zt lp
0 8.7-";57

’ (Lft) |

8 7
(8Hoo
8:5’ Oxk

(ilda* (po), | da? (p1))
P

where in the last line we used the fact that the jth component of p; = LFp (cf. Eq.
(5.7)) can be written as

(LFp) = (~ildHus(p0), pi)| do (o) (5:20)

and then used the basis-decomposition of dHs(p;) and p;. The derivative in the last
line of (5.19) amounts to

0 (OH N OF" 0%He | OHw| OF,
ox' ( ok 1p, (pt) )‘p _; ozt lp dxmdzklp, (pe) + oxk lp, Oxilp (5.21)
m l .
=3 ( )7 d2Hoo (pr)m i~ (p)' + (Ji(p)), - dHoo(p1)1)-
We therefore obtain for all a € T, S(A)
Ji(p)(a@) = Ju(p)(id® pu(i[doHoe (1), T®a]) +i[dHuo(pr), 0)]).  (5.22)
Moreover, we can write the differential equation for Jy(p) as
Ji(p) = Ji(p)dL(py), (5.23)
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where dL(p;): T, S(A) —» T, S(A) is the derivative of the generator of F;. Hence, the
time derivative of the differential of a function f; = f o F; amounts to

%dft(P) = Jt(P)(id ® pt(i[dzﬂoo(pt), Ie df(Pt)] + i[]I ® dHoo(pt), d2f(ﬂt)]))

+T(p)(i[dHes (p2), df (p1)] = {Hoo, £} (p)T).
(5.24)

Since we can write %d fi(p) = %d ft+e(p)|e=o by the chain rule of derivatives, we can also
write

%dft(p) = 1d® p(i[deHe(p), T® dfi(p)] +i[I® dHw(p), dafi(p)])
+i[dHe(p), dfi(p)] = {Hoos fi} ()1,

since Jo(p) = id. Furthermore, it is possible to show that the time derivative can be
written as

(5.25)

%dft(ﬂ) = d{He, fi}(p), (5.26)

i.e. as the gradient of the Poisson bracket {Hs, f;} at p. Indeed, if we compute
o(d{He, g}(p)) for some o € S(A) and g € C(S(A)), then using Def. 2.4.1 and Eq.
(5.18) with p,, = p+ p(o — p), we obtain

(Ao 10)) = 3o )0,

= % Te(pyu - ildHoo (pp), dg(pu)])|u:0
= Tr(pf, il dHeo (0, dg(p)])|

+Tr(p-i([Tra(T@ 0+ ds Heo(p)), dg(p)] + [AHeo(p), Tra(T® 0 - dag(p))]))
= o(i[dHe (p), dg(p)] - p(i[dHw (p), dg(p)])T)

+Tr((p® o) -i([d2Hoo (p), dg(p) ® 1] + [dHeo(p) ® T, dag(p)]) )

= o(id® p(i[d2Heo (p), T & dg(p)] +i[1® dHes (p), d2g(p)))

+i[dHw (p), dg(p)] - {Hoo,g}(p)ll)
(5.27)

Hence, by setting g = f;, we obtain Eq. (5.25).

5.3. General fluctuation dynamics

In this section, we restate the theorem for fluctuation dynamics from [52] and provide
a translation to our notation and setting. Most importantly, the class of Hamiltonian
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densities considered in [52] is given by H, = F(sym, H® sym, H® .. sym,6 H®),
where F is a polynomial with n-independent coefficients and H € A for all i. Clearly,
Hamiltonian densities of this type are approximately symmetric sequences and the re-
lated limiting functions are polynomials of finite degree, hence span the same dense
subset of C(S(A)) as the strictly symmetric sequences H,, = sym,, H, with Hy € Aj.
However, for finite n, they differ from strictly symmetric sequences by additional terms
with factors of orders of 1/n.

Furthermore, in [52] a (fixed) state w on the inductive-limit algebra A% =, A®" is
considered. There, w is called pure classical, if there exists a p € S(.A), such that every
n-particle reduced state of w amounts to p®". In other words, by Stgrmer’s de Finetti
theorem [109], the pure classical states are the permutation invariant states on A*, that
correspond to point measures on the manifold S(A).

Moreover, in [52] w is said to have normal fluctuations, if for all products of fluctuators

A; = /n(sym,, A; — p(A)1,), (5.28)
with A; € A and p € S(A) defining the reduced states of w, the limits
lm w(Ap - Ay) = (o, A7 - A Q) (5.29)

n—oo
exist. Clearly, their definition of fluctuations is equivalent to the one used in this thesis,
cf. Def. 3.5.1, exept? for the fact that it is stated for the state w on the inductive-limit
space A%. Hence, ), is a vector on the fluctuation Hilbert space H,. Furthermore, a
differential equation for the mean-field time evolution p — p; = Fyp is given in [52], which
is equal to the Hartree equation used in this thesis, cf. Eq. (2.46).
In [52], the time evolution of fluctuators was stated as follows.

Theorem 5.3.1 ([52]). Consider a Hamiltonian density of the form
H, = F(sym, HY sym, H® .. sym, H®), (5.30)

where F is a polynomial with n-independent coefficients and H® e A for alli. Consider
the related Heisenberg time-evolution Ty, for finite n and Ti o for the mean-field limit,
cf. Sect. 2.3. Furthermore, consider a pure classical state w on A*°, which has normal
fluctuations and its reduced states being defined by p € S(A). Then, for every product of
time-evolved fluctuators

Ai(t):=/n(Tynsym, A; — p(Th,004:) 1), (5.31)
with A; € A, the limits
Tim w(AL (1) .- Ax()) = (O, Ar (@) - .. A (1) ) (5.32)

exist, where the A;(t) are solutions of the linear variational equation around the Hartree
equation in [52] with the related initial condition p.

2Furthermore, their precise definition of fluctuators amounts to A; = Vvn(sym, A; - v, 1), with some
suitable ~; € C. But the relation v; = p(A;) is evident.
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In the following, we translate the theorem to our notation and state that the fluctua-
tion evolution is given by the Jacobian time evolution of differentials. It is important to
note that Thm. 5.3.1 applies to Hamiltonian densities of the type (5.30). Although the
proof in [52] allows for the impression that it can be easily lifted to strictly symmetric
Hamiltonian densities H,, = sym,, H; with Hj € Ay, we were not able to prove it with
different methods. We will comment on it more precisely at the end of this section. A
straightforward translation of Thm. 5.3.1 can be phrased as follows

Conjecture 5.3.2. Consider p € S(A) and H, = sym, Hy with Hy € Ay for some
k e N. Note, that the sequence p®" has root-n fluctuations around p. Then the sequence
pim = p®" o Ty has root-n fluctuations around py = Fyp for all t > 0, where Ty, is
the Heisenberg time evolution gemerated by H, and F; the related mean-field limiting
flow on S(A), cf. Sect. 2.3. Moreover, the limiting expectation value of fluctuators

df(pt),dg(pt)..., for f,g € C(S(A)) amounts to

Tim i (df(pr) - dglpo) - ) = (4, dF(pr) - dg(pr) - . )

. _ (5.33)
= lim p®"(df,(p) - dgi(p) - ) = (2, dFi(p) - dgep) - -2,

where df;(p) = Je(p)df(pt), and Q€ H, and Q; € H,, are the limiting vectors for p®"
and ptn, respectively.

In the following, we compute the time derivative of fluctuators for finite n and show
that it supports the conjecture. Indeed, the time derivative of an expectation value with
fluctuators amounts to

(T A9000) ) = pen o G T (o) - Ago0) )
(S (07000 - AgTo) )
= pra( (il A0 + S 07000 - dg o).

00 (AFG0) - (i, dglo)] + L 0g) ) + -
(5.34)

where G, (.) = i[nH,,.] is the generator of the time evolution 77 ,,.

Lemma 5.3.3. Using the notation of this section, the time derivative of a fluctuator in
(5.34) amounts to

it TG0+ 700 = Pt 1Y) < 0( =) 639

where the vanishing order, O (1/\/5), is understood in expectation in sequences p, with
root-n fluctuations around p;.
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5.3. General fluctuation dynamics

Proof. We start with the commutator i[nH,, df(p;)]. Using the Taylor expansion (2.41)
and the product rule (2.7), it amounts to

— 1

i[ana df(pt)] = Z

1!

in\/ﬁ[symn dyHeo(pt), sym,, df(Pt)]
(5.36)

\/ﬁsymn(i[drﬂw(pt)v ]I®(T_1) ® df(pt)])

r=1 (’I”— 1)'

The time derivative of d f(p;), on the other hand, is given by Eq. (5.15) and amounts to

o) = varsym, (10 p (i1 © AHeo ), dof (p0]) - (Huo, FY(p)T). (5:37)

Hence,

i, dFGo0)] + < 7o)

=v/isym, (id @ pu(i[1® dHeo(pr), daf (p0)]) +ildHoo (), dF ()] = {Hoo, £} (o)1)

B

+ #Symn(i[drHOO (pt)a ]I®(T_1) ® df(pt)])
(5.38)

What remains to be shown, is that the terms in the sum can be written as fluctuators,
and that only the (r = 2) - term remains in the limit and provides the remaining term
for the definition of Fluct(d{Hoo, f}(pt)) Indeed, by expanding id = id + P, with the
projector P(A) = p(A)1, VA € A, we obtain

(r\{ﬁl)! sym,, (i[d, Heo (pr), 1201 @ df(p1)])
= (T\{ﬁly Symn((id -P+ ’P)®T(i[drHoo(pt), ][®(7"*1) ® df(pt)]))
i \/ﬁl sy, ((id = P)*" (il Heo (pr), 120D @ df(1)]))
v (5.39)
' dﬁm sym, ((id=P)*0 D @ P(ild- Heo (p1), 150D @ df (p)]))
RCEY] -1n(7“*1)/2 Fluct(i[d- Heo (1), 107D @ df(p1)])

1
TGO

Fluet(i[d, Hoo (1), 12071 @ df (p1)]).

In the third line, only the terms (id - P)®" and (id - P)®("1 @ P of (id + P)®" remain,
while all other vanish due to the convention (2.39) for the choice of representatives
of derivatives d,g(p) € A. Therefore, the remaining terms can be written as tensor
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5. Time evolution of mean-field fluctuations

fluctuators of degree r, resp. (r—1), which leads to the scaling n~(""1/2_ resp. n~("=2)/2
in the last line. That is, in the fluctuator expectation (5.34), the only non-vanishing
term is the fluctuator of degree (r—1) for r = 2, i.e.

\/ﬁsymn(id@’Pt(i[dzHoo(Pt), ]I®df(0t)]))- (5.40)

Hence we can write (5.38) as

i[nHy,, df (pr)] + %W) = Fluct(d{Heo, f}(p1)) + O( ) : (5.41)

proving the statement. O

Sl-

In order to prove conjecture 5.3.2, the O(1/\/n)-terms in (5.35) must be sufficiently
bounded, such that the integration of (5.34) to finite time intervals can be performed in
the limit n - oo. Although the O(1/\/n)-terms vanish in (5.34), as n tends to infinity,
the number of those terms becomes larger and larger for each iterative step of the time
evolution. In this project, we did not find a sufficient bound for those terms allowing for
the integration to finite time intervals in the infinite-particle limit.

5.4. Time evolution of fluctuators around a mean-field
minimizer

In this section, we make the time evolution of fluctuators precise for the case of the
reference state p being stationary under the mean-field limiting flow F;. In this case, the
fluctuation algebra does not change in time, such that the time evolution of fluctuators
is implemented by a Hamiltonian. In particular, we show that if p is a minimizer of
H,., then this Hamiltonian is exactly the fluctuation Hamiltonian H, which we used to
estimate the 1/n-corrections of the ground-state energy, cf. Chapter 4.

We assume that the reference state p is stationary under the mean-field time evolution,
ie.

p=—-i[dHx(p), p] = 0. (5.42)

In this case, the time-evolution equation in the fluctuation algebra, Eq. 5.33, reduces to

P

(Qn W) ~dg(pt) - .. Qt) = (Qta W ~dg(p) - ... Qt)
:(97(%-@'...9),

since df(pe) = df(p) for all t. Hence, Q; € H,. By employing Eq. (5.42), the time
derivative of a limiting fluctuator, given by Eq. (5.25), reduces to

(5.43)

%Fluetm(dft(p)) =Flucte, (%dft(p))
=Fluctoo(id®p(i[d2Hoo(p), ]I®dft(,0)])) (5.44)

+ Fluctoo(i[dHoo(p), dft(p)]).
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5.4. Time evolution of fluctuators around a mean-field minimizer

If p is additionally a mean-field minimizer of Ho,, then dHo(p) = 0 and dHo(p) exists,
and the second term in the last line of (5.44) can be written as

Flucte (i[dHuo (p), dfi(p)]) = i[dHes (), Fi(p)]: (5.45)
by Prop. 3.5.3. For the first term in the last line of (5.44), consider the decomposition

doHoo(p) = Y Ca ® Ca, (5.46)

using the polarization identity, c¢f. Lem. 2.5.1. Then we get

[©Hw(p), dfi(p)] = X[
[

Ca ® Ca, dfi(p)]

G Car Afi(p)]

= ;c’; (@ dfi(p)] + @, dfi(p)] -
=2% & p([ca, dfi(p)])

[0}

(5.47)

=2. Fluctoo(Tﬁrg(]I ®p-[Yca®cq, I® dft(p)]))
=2 Fluctes (id ® p ([daHeo (), T® dfi(p)])),

where in the second line we used the fluctuator decomposition (3.15) and in the fourth
line the commutator rule (3.27). Therefore, we see that (5.44) can be written as

d — T =
S dFip) =i [H, dF(p)]. (5.48)
with the fluctuation Hamiltonian
- = ] ——
H=dHs(p) + EdQHoo (p). (5.49)

That is, the time evolution of fluctuators is implemented by the fluctuation Hamiltonian

—

H, if p is a mean-field ground state.
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6. Summary and Outlook

In Part I of this thesis, we introduced the concept of mean field fluctuations and derived
their corresponding algebraic structure. In Chapter 3, we showed that the fluctuation
method is a powerful tool for estimating 1/n-corrections to the mean field limit of mean
field models in the sense that it allows for a convenient algebraic description in terms of a
CCR algebra. Moreover, in Chapter 4 we showed that the 1/n-corrections to the ground
state energy of such models can be obtained by computing the ground state energy of
a quadratic Hamiltonian of this CCR algebra. We refined the method to Bosonic mean
field models and derived general bounds for the ground state energy of the corresponding
fluctuation Hamiltonian. By applying purification techniques we lifted these bounds to
general mean field models and, more importantly, showed that every mean field model
can be mapped onto a Bosonic one. We applied the theory to two examples from statisti-
cal physics, namely the mean field Ising and the Bose-Hubbard model, and to a problem
from quantum information theory, namely the finite de Finetti problem. Furthermore,
we showed that the Holstein-Primakoff approximation is a special case of the fluctuation
method and proposed an extension of the ground state estimation method to a class of
approximately symmetric Hamiltonian densities. Finally, in Chapter 5, we provided a
conjecture for the time evolution of mean field fluctuations and showed that, under this
conjecture, the dynamics of the fluctuations around a mean field minimizer are generated
by the corresponding fluctuation Hamiltonian, complementing existing results for mean
field models consisting of infinite-dimensional Bosons.

However, there are various open questions remaining. Most importantly, it is not
clear whether the fluctuation method gives the optimal 1/n-corrections to the mean field
ground state energy, that is, whether there exists a sequence of true ground states that
has root-n fluctuations around a mean field minimizer, c¢f. Rem. 4.2.4. It was shown
before, that this is true under certain conditions for the case of classical mean field
models, i.e. where each particle is described by an abelian operator algebra [111]. In
order to prove this for quantum mean field models, it is sufficient to obtain a proof for
the Bosonic case, cf. Corr. 4.4.8. Furthermore, the bound we obtained for the finite de
Finetti problem, cf. Eq. (4.142), is implicit. It would be interesting to derive an explicit
bound, depending only on the one-particle dimension d, the particle number k£ and the
degree of exchangability n. If we knew that the 1/n-corrections are optimal, then this
finite de Finetti bound would be optimal, too'. On the other hand, if the obtained de
Finetti bound would equal the known bound [23] then this would be an indicator that
the fluctuation method yields the optimal 1/n-corrections.

Finally, the concept of mean field fluctuations is not exploited yet and allows for a

IThe existing bound [23] was shown to be optimal only in the scaling in d, k, and n, but not in the
constants.
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6. Summary and Outlook

variety of further applications. For example, it may be possible to estimate first-order
corrections of correlation functions. Indeed, given two one-particle observables A and
B, then the related correlation function between the particles (i.e. tensor factors) i and
j in a permutation invariant state p, an be written as

Cor,, (A, B) = pp (A(i)B(j)) ~ pn (A(i))pn (B(j))

(6.1)
= pn (sym, (A ® B)) = pn (sym,, A) pn (sym,, B),

where we assumed 7 # j. Hence, if we consider p, as a sequence with root-n fluctuations
around a reference state p € S(A), then we may expand the above strictly symmetric
sequences into fluctuators around p and obtain

Conp (4.5) =51 o (T3 0) - TB=(0) + TB= ) -T2 (0)
= 2p5 (4w (p)) pn (ABeo(p)) (6.2)

~(p(AB + BA) - 2p(A)p(B))) +0 (”_%) ’

where we defined the functions As = sym, A and Bs = sym, B. Furthermore, by
considering the limiting fluctuation algebra F, with the limiting vector Q € H, of the
sequence p,, we obtain

Conp (4, =1 {91 (T3=(9) - TB=(9) + W) W) )
~2(0, T=(p) 0} 2, ABx(0) ) (63

~(p(AB + BA) - 2p(A)p(B))) +O(n72).

Two applications can be considered. On the one hand, it may be possible to estimate
correlation functions of the ground state of the related mean field model H,, € Y. If
the reference state p is a minimizer of He, then the 1/n-corrections to the ground state
energy are given by the ground state of the related fluctuation Hamiltonian H. If it is
possible to obtain a convenient expression of H , as in Sect. 4.5, then one can obtain an
expression for ) as well and compute the related fluctuation expectation values.

On the other hand, it may be possible to compute the time evolution of correlation
functions, for example starting from the uncorrelated initial sequence p®". By employing
the time-evolution equation (5.33), the first-order corrections of the correlation function
for the time-evolved state p;,, = p®" o T}, can be written as

1 R S R S
Cory, (A, B) :%((Q, (dA¢co(p) dBreo(p) + dBreo (p) - dAr,0 (p)) Q)

-2(Q, .00 (p) Q) (2, dBr.oo(p) Q) (6.4)

—(Pt(AB +BA) - 2Pt(A)Pt(B))) +0 (nig) ’
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where Q is the limiting vector of the initial state at ¢ = 0, dA(p) and dB;..(p) are
the time-evolved fluctuators, and p; is the mean field time-evolved reference state, cf.
Eq. (2.46). This may also provide the basis for a comparison of the time evolution
of fluctuators, Eq. (5.33), to other popular time-evolution approaches for Bosonic sys-
tems beyond mean field, namely the Hartree-Fock-Bogoliubov, -Popov, Griffin or related
methods [111], since these are usually implemented as differential equations for two-point
correlations, directly from the original Hamiltonian.

Another promising extension of the mean field and fluctuation theory is to relax the
permutation invariance. Clearly, many-particle models in condensed matter physics are
rarely fully connected but rather contain interactions over finite distances on a lattice.
However, it is reasonable to consider local observables, that are influenced only by a
small area of that lattice and depend only on a few particles in that area. Since it is
not known, which of these particles affect the related expectation value or measurement
outcome, it is reasonable to consider the average over all permutations of the observable
within the area of interest, i.e. rendering it locally permutation invariant?. It is possible
to consider a mean field limit in the sense that the area of interest remains constant, but
the lattice is made finer and finer, such that it converges to a continuum in the limit. In
this limit, it is expected that the set of local observables is described by a classical field
theory, i.e. an observable of the type C(X,S(A)), which models a mean field algebra at
every point x of the continuum X. The related fluctuation algebra is expected to be a
Bosonic quantum field theory?.

2A different interesting local mean field theory was developed in [27, 30], where n-particle operators
were considered that are permutation invariant over all particles except for a few.

3Currently, a related open-science project of this approach from a quantum field-theoretical perspective
can be found in https://github.com/tobiasosborne/Continuous-Limits-of-Quantum-Lattice-Systems.
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Part II.

Quantum walks with non-orthogonal
position states
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Notation

C(0,9)

Cp(N)
Cp=exp(im/40y)
Cyg=0,Cg

0=w,—wyr,

|Aa

AO

D (a(7))
F., F.

v
9(z)
9(p)
['= %, low) (ol
H =l5(Z) ® C2
H(r)

Hiy(T)

HPYA()

Ideal position state, element of a generally non-orthogonal
basis in ¢2(Z), Sect 8.1.
Vector of the dual basis of {|ay)}, Sect. 10.2.

Ideal coin states, Sect. 8.1.
Vector of an orthonormal basis in ¢2(Z), Sect. 8.1.

Ladder operators of the axial motional degree of freedom,

Sect. 8.2.3.
Ideal coin space, Sect. 8.1.

Coin transition in experiment, Eq. (8.6).
Characteristic function, Eq. (10.7).
Experimental coin operator Sect 8.1.
Hadamard coin operator, Sect 8.1.

Detuning of the optical dipole force from the harmonic
oscillator frequency, Sect. 8.2.3.
Step size, Sect 8.1.

Increment for momentum shift, Sect. 10.5.
Coherent-state displacement operator, Sect. 8.2.3.

Optical dipole forces on the related coin states, Sect.

8.2.3.
Damping factor in readout process, Sect. 8.2.4.

Overlap function, Sect 8.1.

Fourier transform of overlap function.
Gram matrix, Sect. 8.1.

Ideal Hilbert space, Sect 8.1.

Hamiltonian of the ion with the optical dipole force, Sect.

8.2.3.
Hamiltonian in the interaction picture, Sect. 8.2.3.

Hamiltonian in the interaction picture with the rotating
wave approximation, Sect. 8.2.3.
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HEPA ()
K

A
l>(Z)
n=Tr(pa*a)

n
Qp

Qpsin Qo1

Pn,+
Py(x)

P (q)
P.(1B)

qc¢ [_17 1]

po = |ao) (@l ® poo
poo = |c+) {c4|
po(p)

R(©) =exp(iOo,)
o =2/|Aq

S

t

Tp

U(r)

vk (p) = dwi(p)/dp
V(p) = Xk vr(p) Pe
wi(p)

88

Hamiltonian in the interaction picture with the Lamb-
Dicke approximation, Sect. 8.2.3.

Component of the wave vector of the optical dipole force
in the axial direction z, Sect. 8.2.3.

Wave length of optical dipole force, Sect. 8.2.3.

Ideal position space, Sect 8.1.

Mean occupation number of a state p in Fock basis, where
a* and a are the ladder operators.
Lamb-Dicke parameter, Sect. 8.2.3.

Coupling of the optical dipole force to the ion, Sect. 8.2.3.

Rabi frequency of the two-photon stimulated Raman
transition on the blue sideband, Sect. 8.2.3.

Probability for the basis state |n)|c,), Sect. 8.2.4.

Probability to find walker at position x after ¢ steps, Sect.
8.1.
Asymptotic probability distribution, Sect. 10.3.

Relative photon-scattering rate in the readout process,
Sect. 8.2.4.

Asymptotic scaled position variable w.r.t. z/t for t - oo,
Sect. 10.3.

Ideal initial state, Sect 8.1.

Coin part of the ideal initial state, Sect 8.1.
Fourier transform of inital state, Sect. 10.3.
Momentum shift operator, Sect. 10.4.
Parameter of overlap function, Sect 8.1.
Shift operator, Sect 8.1.

Duration of coin pulse, Sect. 8.2.2 .

Step number of the nQW, Sect 8.1.

Pulse duration for photon kick, Sect 9.

Time-evolution operator in the Lamb-Dicke approxima-
tion, Sect. 8.2.3.
The kth group velocity, Sect. 10.3.

Group-velocity operator, Sect. 10.3.

The kth eigenstate of W (p), i.e. dispersion relation in p,
Sect. 10.3.



Weoin
wr,

Wy
W=5(1IeC)
W(p)

20

Rabi frequency of RF driving coin operation.
Frequency of optical dipole force, Sect. 8.2.3.
Frequency of the axial harmonic oscillator, Sect. 8.2.3.
Ideal walk operator, Sect 8.1.

Walk operator in momentum-space, i.e. Fourier trans-
form of W, Sect. 10.3.

Width of axial ground-state wave function, Sect. 8.2.3.
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7. Introduction

Quantum walks (QWs) are a widely used model system for transport processes on lat-
tices. Initially introduced from a computer science perspective [1, 61, 48, 7, 105, 106],
the field has significantly expanded and is now largely treated from a physics perspec-
tive [34, 74, 87, 79, 2]. In fact, “quantum walk” is now widely taken to be synonymous
with “discrete-time or discrete-space quantum dynamics” of a particle with internal de-
grees of freedom. On a one-dimensional lattice, a QW can always be implemented by
a concatenation of coin operations and successive state-dependent shifts [77]. Already
these (single-particle) systems are capable of simulating various physical effects such as
Anderson localization [4] or the formation of molecules [2]. In particular, single-particle
QW:s are a basic building block in a bottom-up approach towards general-purpose multi-
particle simulation environments [46]. Therefore, one of the main interests in QWs is the
possibility to study features of quantum dynamics in a setting which can be controlled
experimentally with high precision.

QWs have been experimentally implemented in several different ways, for example
using nuclear magnetic resonance [93], atoms in optical lattices [58], trapped ions [101,
72, 125], or photonic systems® [16, 103, 20, 83, 84, 99, 81, 96].

In particular, the implementations with trapped ions showed their strengths in the
high fidelity of the results. However, these implementations had two major drawbacks.
On the one hand, the protocol for the shift operator allowed for a relatively small number
of steps, since it worked well only within the so-called Lamb-Dicke regime (LDR). On
the other hand, the position states, being implemented by coherent states of a harmonic
oscillator, were not mutually orthogonal. At the time of the experiments, this was
considered as a disadvantage? and, in fact, in the theoretical description it was almost
universal practice to model the different “positions” by mutually orthogonal subspaces
in Hilbert space.

In this part of the thesis, we provide solutions for these drawbacks. On the one
hand, we propose a protocol for the shift operator, which is not limited to the LDR and
thus allows for a significantly larger number of steps. On the other hand, we present
a theoretical model for quantum walks with non-orthogonal position states (nQW) and
show that these allow for a variety of interesting experiments. This chapter is organized
as follows: In Section 8 we first set up the theoretical framework for an ideal nQW
and then describe the experimental details of the implementation with a trapped ion

'In the experiments with photonic systems continuous QWs were implemented. In this thesis we do
not consider such QWs.

2In order to approximate orthogonality in the experiments, the step size was chosen sufficiently large
to make these states approximately orthogonal. This in turn further reduced the number of imple-
mentable steps.
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7. Introduction

[101, 72]. In particular, we describe the limitations of the protocol, which allowed for
only a few steps of an (orthogonal) QW. Based on this, we propose in Section 9 a new
protocol for the implementation of the shift operator of the QW, which is based on
photon kicks [39, 40] and not restricted to the LDR. We argue that the photon kicks
allow for an implementation of up to 100 steps of a QW with state-of-the-art trapped-
ion technology. In Section 10, we present a thorough theoretical treatment of nQWs.
By using asymptotic methods [8, 45, 5, 3], we show that the non-orthogonality, which
was avoided in the original experiments [101, 72, 125], can be exploited. In particular,
we show that the nQW simulates an (orthogonal) QW with an extended initial state.
Moreover, we show that state-of-the-art technology allows for manipulating the spreading
rate of the QW, probing the dispersion relation of the walk operator, and implementing
effects from solid-state physics, such as Bloch oscillations. The results presented in this
chapter were published in [72] and [71]. Here, the text closely follows these publications.
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8. Preliminaries

8.1. Definitions and theoretical model

In this section, we introduce the ideal model for the non-orthogonal quantum walk
(nQW). The notation will be used throughout the chapter. In Section 8.2, we will
describe the experimental details of the implementation [101, 72]. There, it is understood
that the ideal model is only approximated, although we will use the same notation.

We consider the Hilbert space H = f5(Z) ® C?, with ¢5(Z) being the position space
and C? the coin space. The (normalized but not mutually orthogonal) position states
|, ), with o € Z, form a basis of ¢2(Z). The coin states |c;) and |c_) are the eigenstates
of the Pauli matrix o,. We assume the initial state of the nQW to be localized at the
origin, i.e., po = |ao) (o] ® poo with poo = |c+) (c4]-

One step of the nQW is given by the application of the walk operator W = S- (I ® C),
which is composed of a unitary coin operator C' and a unitary shift operator S. The
latter acts as

Slog) ®les) = |ager) ®|es) . (8.1)

In fact, the position states |a,) are defined by the subsequent application of S on
log). It follows that their overlap (ag|ay) is translation invariant. In the spirit of the
trapped-ion system, the position states model coherent states of a continuous-variable
system, namely a motional degree of freedom of the ion. Hence, we define the overlap
function

9(@) = {aolag) = exp(-2?/0?), (8.2)

where o = /2/|Aa| determines the overlap between different position states and the
step-size |Aa/| is the distance of the related neighbouring coherent states in the phase
space of the continuous variable system, cf. Fig. 8.1.

The projector F, = |a) (| is used to model the probability to find the walker at
position |ay) after ¢ steps [101, 72]. That is,

Tr((Fy ® 1)- W' po W)

Py(z) = TI‘(G-p())

, (8.3)

where G =T'®@1 with [ = 3", F}, being the Gram matrix, yielding a normalized probability
distribution. Note that [ S, G] = 0, due to the unitarity of S, such that the normalization
is independent of the step number ¢.

For the coin operator, we consider two cases. On the one hand, we define the coin
operator Cg = exp (i7/4 0y). This one has been implemented experimentally with the
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Rea

Figure 8.1.: nQW implemented in the phase space of a harmonic oscillator. The position
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states |a;) are coherent motional states, illustrated in the figure by their
Husimi functions, P, () = [{a]ag)|?, for z = =2, ~1,...,2. The inlay illustrates
their orientation in phase space, implementing a nQW along a line. Since the
position states |a;) are coherent states, they are not mutually orthogonal.
The step size |Aa| (cf. Eq. (8.2)) of the nQW determines the overlap
between different position states. QWs of this type have been implemented
with trapped ions [101, 72, 125]. Figure and caption from [71].



8.2. Experimental implementation

initial state pg [101, 72, 125]. We will refer to it as the experimental walk!. The other coin
operator is the Hadamard matrix Cp = 0,- Cg. The position-probability distributions of
nQWs with the coin operators C'g and Cyy are illustrated in Fig. 8.2. The coin operators
Cg and Cp are similar, in the sense that the probability distributions are equal in the
orthogonal case (o = 0). In contrast, they show significantly different behaviour in the
case of large overlaps (o 2 1).

8.2. Experimental implementation

In this section, we outline the experimental implementation of the quantum walk (QW)
[101, 72]. Although the position states were implemented in the form of coherent states of
a harmonic oscillator, which are mutually non-orthogonal, the step size |Aa| was set large
enough to restore approximate orthogonality, which in turn severly reduced the number
of steps. In the following, we review the experimental details, closely following the
description in [72]. We focus on the limitations of the optical dipole force implementing
of the shift operator. In Section 9, we will propose a protocol for the shift-operator
implementation via photon kicks, which is not bound by these limitations and therefore
allows for a significantly higher number of steps.

8.2.1. The ion

The QW was implemented with a 2?Mg* ion, confined in a linear Paul trap [98]. Two
hyperfine states were defined to be the coin states, namely

le-) = ‘QSl/Z,F =2, mp = 2) and (8.4)
lc+) = *S1j2, F = 3,mp = 3). (8.5)

The hyperfine states were separated in energy by a Zeeman shift induced from a static
magnetic field. This allowed for selectively adressing each hyperfine state via a microwave
field, as will be described in the next subsection. The motional degree of freedom in the
axial direction, which admits a harmonic motion for low amplitudes, served as the space
in which the position states were implemented in the form of coherent motional states.

The experimental protocol for the QW, i.e. one experimental cycle, consists of several
steps: (1) initialization, (2) implementation of the QW and (3) state readout. The whole
experiment consisted of a few 1000 such cycles for each set of parameter values in order
to obtain the required statistical relevance. In the following, we describe the building
blocks for one cycle. A concise discussion of these tools in a generic context can be found
in [122] and [65].

At the beginning of each experimental cycle, the ion was initialized in the coin state
|c+ ) with a fidelity > 0.99 by optical pumping [75], while the motion of the ion was cooled
close to the ground state by Doppler cooling (with a mean occupation 7 » 10) [121] in
the eigenbasis of the harmonic oscillator in each direction. The axial motion was further
cooled by sideband cooling to 7 < 0.03 [75], i.e. effectively to the ground state.

Not implying that C, the other coin operator, cannot be implemented experimentally
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(a) 0.10-P150(x)
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Figure 8.2.: Position-probability distribution P;(z) (8.3) after ¢ = 150 steps of a nQW
with overlap function g(z) (8.2) and (a) the experimental coin Cr and
(b) the Hadamard coin Cy for o = {0,1.5,8} (green, blue, red). (For the
green curve, only points z with P(z) # 0 are connected.) In the orthogonal
case (green) the probability distributions of both types of walks are equal,
however for large overlaps they differ significantly (blue, red). In case (a), the
probability distribution approaches a Gaussian shape centered at the origin
of the walk, as o is increased. The spreading, which is still linear in the step
number ¢, is vastly reduced [72]. In the Hadamard case (b), the probability
distribution approaches a shape consisting of two Gaussian peaks centered
around +t/v/2. Thus, the (linear) spreading is increased, as the probabilities
between the peaks vanish. The initial state is pg = |ap) (0| ®|cs) (c4|. Figure
and caption from [71].
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8.2. Experimental implementation

8.2.2. The coin operator

Transitions between the coin states were achieved by applying a radio-frequency field
(RF) on resonance with the energy separation between |c;) and |c_), given by the fre-
qUency Wepin, for a duration 7. [122]. This implements the operator

cos (1/2) e'?sin (19/2)) (8.6)

6(197 P) = (—e’id’ sin (¥/2)  cos (9/2)

on the coin space with 9 = Q-7. and ) being the Rabi frequency of the transition. The
coin operator C; was implemented by setting ¥ = /2, since C = C(7/2,0). The phase
¢, which is uncontrolled for the first pulse, was set constant for all coin operations within
one experimental cycle, such that it does not influence the probability distribution. The
duration of a coin operation, or more generally the duration of one experimental cycle
was well within the coherence time of the RF field, such that dephasing of the coin
operation (w.r.t. ¢) was negligible. Spin-echo sequences [122], which were included in
the QW pulse sequence, further reduced this issue.

8.2.3. The shift operator

The shift operator S was implemented by a coin-state dependent optical dipole force. It
was the limiting factor for the number of steps of the QW, because at large amplitudes
a severe deviation from the ideal model occurred. In the following, we will describe this
issue more precisely.

The initial motional state after sideband cooling was close to the ground state |n = 0),
with a mean occupation 7 < 0.03. A coin-state dependent optical dipole force, acting into
the axial direction of the trap and oscillating with frequency wy, with a phase separation
of m between the coin states, was implemented by applying a two-photon stimulated
Raman transition between the coin states via the P55 orbital state manifold, using two
laser beams [122]. The frequency difference between the lasers was wy and the wave
vectors were such that the effective wave vector of the Raman transition was directed
into the axial direction of the Paul trap.

In a simplified picture, the two laser beams provide a walking standing wave of a coin-
state dependent AC-Stark shift. This creates the forces F, and F_ on the coin states
|c+) and |c_), proportional to the spatial gradient of the walking wave and oscillating
with frequency wy. The ratio of the forces acting on the coin states amounts to F_/F, »
-2/3. The polarizations and intensities of the laser beams are adjusted such that the
time-averaged AC-Stark shift, which would cause a dephasing of the coin operations, is
negligible for the relevant pulse durations [120]. The effective wavelength of the walking
wave amounts to A ~ 200 nm. With the width of the axial ground-state wave function
of zp ~ 10 nm, this results in a Lamb-Dicke parameter of n = zp- 2w /\ = 0.31 [122].

The Lamb-Dicke parameter determines, up to which motional amplitude the dynamics
resulting from the optical dipole force can be described by a displacement operator.
To obtain the latter, two approximations must hold for the dynamics: The rotating
wave approximation (RWA) and the Lamb-Dicke approximation (LDA). The area in the
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8. Preliminaries

motional phase space, in which the LDA holds, is called the Lamb-Dicke regime (LDR).
With the optical dipole force, it is only possible within the LDR to implement the step
operator S. In the following, we outline the application of these approximations to the
Hamiltonian and the related dynamics.

We consider the following time-dependent Hamiltonian describing the effective two-
level system (coin) coupled to the harmonic oscillator (axial motion) and interacting with
the optical dipole force, modeled by a classical light field with frequency wy,, wave-vector
component x in the axial direction z and coupling factor Qp [122],

H(T) :Hcoin + Hmation + Hinteraction(T)

1 1 Ry % 8.7
=§hwcomaz + hw, (a*a + 5) + 5 (el("(‘”a )WL) | h.c.) ®Qp, (8.7)

where weein is the frequency of the energy separation between |c;) and |c_), w, is the
frequency of the axial harmonic oscillator and Q, = Qp (|es) (c4| - % =) {c]). 0. denotes
the Pauli z-matrix and a,a” are the ladder operators of the harmonic oscillator in the
axial direction. In the interaction picture, with the free Hamiltonian being H.y;n +
H,otion, the interaction Hamiltonian can be written as

hOOOO

Hi(r)=5 3 3, |m)(m] ) |n) (n|
2 m=0n=0 (88)
" (ei((m—n)wz—wL)T+i¢0 + (_1)|m—n|ei((m—n)wz+wL)T—i¢0) ®QD'

If the dipole force is applied with a small detuning of § = w, — wy, such that the terms
corresponding to first-sideband transitions, |n) < |n + 1), rotate slowest and thus domi-
nate, then it is sufficient to consider only those, i.e. to apply the RWA. The interaction
Hamiltonian is then reduced to:

h o o
HIRWA(T) :5 Z ((n + 1’ em(aw ) n) ez(57+¢>0) . ]n + 1) (n\
n=0 (8.9)
= (] () 4 1) 7 HOTO0) ) (n 1] ) @ Q.

For states with n\/((a +a*)?) < 1, we can perform the Lamb-Dicke approximation
(LDA) [122], i.e.

(n+1] €M) )~ inv/n + 1. (8.10)

That is, the potential providing the dipole force changes linearly over the extension of
the wave function. We can then simplify the interaction Hamiltonian to

HEPA(7) = @ (a* /07490 _ im0y g 0 (8.11)

In the following, we set h = 1 and ¢y = 0, as ¢y represents the initial phase relation
between ion motion and dipole force, which does not influence the results of the QW.
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8.2. Experimental implementation

The time-evolution operator resulting from HEP4(7) has been solved analytically [22]

and can be written as
. 9 .
U(7) = |es) (es] ® D (a(r)) - 4 e Y (e_| @ D (-ga(f)) (3emn) (3.12)

where D (a(7)) is the coherent-state displacement operator and

B (a(r), 7) - Im(fons a*(s)doc‘lis) ) (8.13)

The factor 2/3 in (8.12) results from the difference of the state-dependent dipole force,
F_|F, = -2/3, which is just a property of the experimental setup used in [72]. The
complex parameter «(7) amounts to

T . .
a(r) = TZQTD- [0 ePTdr = —z‘ng—;- (e“ST -1) (8.14)
and corresponds to a circular trajectory in a co-rotating phase space. In Fig. 8.3, the
time evolution under the optical dipole force is illustrated. Clearly, at a certain motional
amplitude the LDA breaks down in the sense that it does not describe the correct
trajectory, which severely deviates from a circular one and causes motional squeezing
[73, 72].

The shift operator S was implemented by the application of the dipole force for a
duration that corresponds roughly to a semi-circular trajectory of the state within the
LDA, while the force ratio F,/F_ was compensated by a type of spin-echo sequence, as
illustrated in Fig. 8.4. The precise duration for the dipole-force pulses was optimized
experimentally to maximize the asymmetry of the position probabilities at x = 1 and
x = -1 after three steps.

Clearly, the optical dipole force was the limiting factor for both, the quality of the
implementation of the QW and the number of implementable steps. A similar imple-
mentation of a QW was reported in [125]. There, the number of steps was 23 instead
of three, which was partly possible due to a much lower Lamb-Dicke parameter in their
experimental setup.

8.2.4. State readout

The state readout was performed by driving the cycling transition
[n}|es) = In) ‘2P3/27F =4, mp = 4) (8.15)

for all n and detecting the scattered photons with a photomultiplier, yielding the prob-
ability of the coin state |c;). To readout the motional state, the following scheme was
implemented: First, the population on the state |n)|c_) was transfered to an isolated
state |n)|A) (for all n) by appropriate RF pulses. Then a two-photon stimulated Ra-
man transition |n)|c;) <> [n+1)|c-) (i.e. on the blue sideband), for all n, was performed
for a variable pulse-duration 75. The Rabi frequencies for these transitions amount to
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Im(a)

Figure 8.3.: Numerical simulation of the ion trajectory in co-rotating phase space (where

100

the free evolution is eliminated), driven by the dipole force in the full model
(with up to 3 sidebands) (8.8), RWA (8.9) and LDA (8.11). The initial
state is at the origin (Jag = 0)). The thin concentric lines represent contours
of its Wigner function W (at W, = 0.6 and W, = 0.3). The bold dotted
line represents the limit of the LDR, which lies approximately at the Fock
state g1 = 8. The thin circular trajectory with dots represents the result
of the simulation within the LDA. The dots on the trajectory depict the
positions after 7 =0,0.5,...10 ps. The final state, reached after Ts, =27/ =
10 ps, equals the initial one, up to a phase factor. The bold trajectory
represents the result within the RWA, taking nonlinearities of the dipole
force into account. The dots on the trajectory again depict the position
at the times 7 = 0,0.5,...10 ps. Starting from the origin, the trajectory is
identical to the one within the LDA. Close to the boundary of the LDR,
the trajectories start to deviate. The acceleration of the ion ceases at a
certain amplitude, the state gets squeezed and then returns to the origin
after a duration shorter than T5;. The spiraling trajectory, which follows
the one within the RWA, represents the results of the full model (with up
to 3 sidebands). Here, terms of higher frequencies in the Hamiltonian cause
the spiralling. The final Wigner function is almost identical to the one
in the RWA and therefore not shown. Parameters: Qp = 27 -1.2 MHgz,
wr, = 27 -2.03 MHz,w, = 27 -2.13 MHz, n = 0.31, t € [0,10] ps. Figure and
caption from [72].



8.2. Experimental implementation
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Figure 8.4.: Ideal implementation of the QW in the co-rotating phase space (where the
free evolution is eliminated). Starting from position |ag) and a superposition
of the coin states (from the first coin operation), the optical dipole force
transfers the motional state for each coin state to the left or right, clock-wise
along a semi-circular trajectory (dotted and solid line). Since the values of
the forces F; and F_ are different, the coin states are swapped after a semi-
circular evolution by an RF pulse, and the dipole force is applied a second
time for a semi-circular evolution to complete the shift to |a_1), resp. |a1).
The subsequent application of these pulses implements the QW within the
LDR. Figure from [72].

Qns1n ® Q10 ny/n within the LDR and therefore depend on the eigenstates |n) of the
harmonic oscillator. The measured probability therefore amounts to [122]

n=0

1 o0
P+(TB) = 5 (1 + Z pn,+'COS(Qn+1,n : 7—B)e’yq—B) > (816)

where p,, ;. is the probability for the basis state |n)|c;) after the QW. The damping
factor v accounts for decoherence effects [122]. A discrete Fourier transformation of
(8.16) allows to access the probabilities py ;. By exchanging the populations on |c,) and
|c—) via an appropriate RF pulse before the readout process, the probabilities p, - were
obtained.

Via a comparison with a numerical simulation and some further readout operations
(i.e. performing another shift operation on the final state), the idealized probabilities
P,(x), after t steps of the QW, (8.3) were obtained [72].

8.2.5. Limits of the implementation

In [101, 72| the feasibility of implementing a QW with a trapped ion was demonstrated.
In particular, the strength of the ion-system was revealed to be the high fidelity of the
results. While the quality of the coin operation allows for a significantly higher number
of steps, the limiting factor of the step number was the Lamb-Dicke parameter n = 0.31
of the optical dipole force. In a similar experiment [125], the step number was much
higher (23 instead of three), which was partly possible due to a much lower Lamb-Dicke
parameter. Reducing the Lamb-Dicke parameter further was argued not to be promising
[72].
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8. Preliminaries

Conclusively, the main limitations of the experiments [72, 125] are, on the one hand,
the implementation of the shift operator, being limited by the Lamb-Dicke regime, and
on the other hand, the desire of making the position states approximately orthogonal.

In the next sections, we propose two extensions of the experiments. On the one
hand, we propose a method for the implementation of the shift operator, that is not
limited to the Lamb-Dicke regime and therefore in principle allows for a vastly higher
number of steps. On the other hand, we investigate the influence of non-orthogonality of
the position states on the QW, which was partially observed in [72], but avoided in the
experiment. We show that the non-orthogonality can be exploited and allows for a variety
of interesting experiments, namely the simulation of QWs with extended initial states,
controlling the spreading rate of the QW, probing the walk operator experimentally
and simulating Bloch oscillations. These experiments can be readily implemented using
state-of-the-art technology and even allow for a much higher step number, since the step
size |Aa/| is much lower.
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9. Implementing the shift operator with
photon kicks

In this section, we describe the implementation of the shift operator with photon kicks
[39, 40], which we proposed in [72] and which is substantially less dependent on the
motional state and allows for the implementation of QWs with many steps. This section
closely follows the corresponding chapter in [72]. The principle of a photon kick is to
apply a m-pulse on the coin states with a sufficiently short duration, such that the free
harmonic motion of the ion during the pulse is negligible. It was shown that the change
of the momentum of the ion during such a pulse can be described by a displacement
operator, allowing us to propose its application as a building block for the shift operator
of a QW. In the original protocol [39], implemented in [21], however, the influence of the
motional state on the performance of the photon kicks has not been considered, since the
amplitudes of the motional states were assumed to remain small. For the implementation
of a QW with many steps, we have to consider (coherent) motional states with very large
amplitude and thus have to re-assess the validity of the above-mentioned approximation.
We find that, for a given fidelity, the upper bound for the pulse duration scales inversely
with the motional amplitude, and additionally, for coherent motional states, depends
on the phase of their harmonic oscillation at the moment when the pulse is applied. In
the following we derive an analytic bound for general states and present the results of
a numerical study for coherent motional states. With the latter, we show that QWs
with up to 100 steps for a step size of |Aa| = 2 should be possible with state-of-the-art
technology.

As above, we consider for our system a harmonic oscillator coupled to a 2-level system
and being under the influence of a classical light field. Referring to [39], we start our
analysis with the Hamiltonian

H:H0+H1

O, .
=3 (em(ah‘l) 0, + emin(a’+a) g 0'_) +w,ala® 1,

(9.1)

where () is the coupling parameter for the light field and o, = (o, + i0y)/2.

This Hamiltonian can be implemented in various ways, e.g. via direct dipole coupling,
two-photon stimulated Raman transitions or stimulated Raman adiabatic passage [39].
Each implementation imposes different constraints on pulse duration, laser intensities,
etc. In the following, we will focus on the implementation with a two-photon stimulated
Raman transition and consider the energy levels of 2*Mg*.

In this configuration, two laser beams (R,,R}p) resonantly drive two-photon transitions
between the coin states via a virtual state detuned from the P35 state manifold by Ag.
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9. Implementing the shift operator with photon kicks

Each laser beam drives only one of the two Raman branches, due to their different
polarizations. In a RWA, terms varying at optical frequencies are neglected. This is
valid in our case for pulse durations well above 1/1071° Hz = 1 fs. Finally, an adiabatic
elimination of the Py, states requires [2/Ag| < 1. The pulse duration T}, in our case
must therefore be sufficiently longer than 5 ps for A ~ 210! Hz and T,Q = 7 (see
below). The effective wave vector of the two-photon transition is k = kg — Kp.

Hamiltonian (9.1) implements the desired displacement operator for a pulse duration
of T, = /€, if we neglect the perturbation H;. The related unitary transformation
amounts to

Uo (Tp) =e 0Ty

T,
=CO0S (Tp) : ]Imotion ® I[COin

- isin(%) (D (in) ® o + D (—in) ® a_)
=—i(D(in) ® o4 + D (-in) ® 0_),

which is obtained by expanding the exponential function, splitting the series into odd and
even parts and using the properties of the Pauli matrices and displacement operators.

The shift operator itself, implementing the step size |Aa| = 2 for an orthogonal QW,
can be realized by the subsequent application of 2/n kicks in such a way that the dis-
placements D(in) of several m-pulses add up to D(iAa|). This can be achieved by
changing the direction of the effective wave vector by 180° for each photon kick. In
practice one can either switch between two Raman beam configurations with opposite
effective wave vectors, or implement every second m-pulse by a RF transition for which
the momentum transfer is negligible. Notably, with this protocol the step sizes for both
directions of the QW are equal, in contrast to the method of optical dipole forces used
in the trapped-ion experiment described above.

In the following, we derive a conservative estimate for the deviation from a coherent-
state displacement induced by H;. The total time-evolution operator amounts to

U(t) = e 7 = Uy(7)- V(1) (9.3)
with V(1) = e07e 17 Y/ (1) can be differentiated
V(T) _ —ieiHOTHle_iHOT~V(T), (9‘4)

leading to an equation, which is formally solved by the integral equation
T . .
V(r) = ]I—z'/ ds eHos [ emiHos. (), (9.5)
0

using V(0) = I. Consider the norm-distance e between the evolved state according to
the full Hamiltonian and the desired evolved state according to Hy:

€= |(U(r) - Up(r)) )]
- [(V(r) - D) (9.6)

= “ATdS eiHosﬂle_iHosV(s) |1/J)H
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Approximating the last expression by the largest term of the first-order Dyson series
and considering a motional state |¢)) = |a)|c-), we find the following error estimate for a
pulse with duration T}, [39]

€r

/OTP ds w.(I®a'a) ‘QMH = Tyw,laf. 0.7)

Thus, for an initial state |a)|c_) (the coin state can be chosen arbitrarily), the pulse

duration 7T, necessary to implement the displacement operator with an error smaller
than € must fulfill

T < L

P o af?

(9.8)

The scaling with |a|™2 is, however, a rather rough estimate. This is shown by a nu-
merical simulation of this process, in particular considering the application of pho-
ton kicks to gsuperpositions of) coherent motional states. We compute the fidelity
f = {al{c_|U(T)U(T,) |a) [c-)|* with the initial state |a)|c_), a pulse duration T),
and Q = 7/T),, where the time evolution is implemented using a Runge-Kutta method.
The results show that the fidelity strongly depends on the phase of the ion oscillation at
the moment of the photon kick.

Demanding a fidelity of f > 0.99 and for imaginary «, i.e. at the moment of the
photon kick the ion is in the center of the harmonic potential and thus fastest, for the
experimental parameters from [72], we find*

T1%.00(J]) = exp (~17.55 - 0.63In(Ja]) - 0.05 (In (|o]))?) . (9.9)

For |a| = 200, the amplitude reached after the 100th step of a QW with |A«a| = 2, the
pulse duration must be shorter than T}?0.99(200) =0.21 ns.

However, applying the photon kick at a time at which the ion is at its turning point,
i.e. when the ion is slowest and « is real, the scaling is less demanding. We find

TFS) go(la]) = exp (~17.03 = 0.021n([a) - 0.1 (In (|a]))?). (9.10)

Most importantly, the prefactor of the term linear in In(]a|) is much smaller than for an
imaginary «. For the 100th step, the pulse duration therefore only has to be shorter than
T }1“‘0_99(200) = 2.18 ns, which is within the specifications of a fast-switching electro-optic
modulator and the continuous-wave laser system used in [72]. Timing the application of
the photon kick to the (spatial) turning points of all the coherent oscillations occuring
during the QW is possible, because we start the QW in the motional ground state and
the position states are aligned along a line in the co-rotating phase space. Thus, coherent
states of different |Aa| reach their turning points simultaneously.

If the width of the ground-state wave function amounts to zg = 10 nm, then the coher-
ent motional state |ma. = 200) has a real-space amplitude of 4 nm. At such high mo-
tional amplitudes anharmonicities of the trapping potential must be considered. These

'"Equations (9.9) and (9.10) are the results of quadratic fits to double-logarithmic plots of pairs (T, o)
for a fidelity f = 0.99 and || < 10. Higher motional amplitudes were not considered due to sizable
additional numerical effort. For the following estimates, the scaling is considered to be preserved.
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9. Implementing the shift operator with photon kicks

depend on the design of the electrodes and could be eliminated, e.g. by designing the
Paul trap electrodes in a hyperbolic shape [82]. Additionally, micromotion [122] might
increase the deviation from the ideal walk, for example by reducing the overlap of the
additionally oscillating motional wave functions. However, it will remain negligible when
the QW is implemented in the axial degree of freedom of an ion in a linear Paul trap.

A major challenge, but also an interesting research topic on its own, is the considera-
tion of decoherence processes, in particular heating and dephasing of the motional state,
especially at the large motional amplitude occuring during the QW. Several studies,
theoretical [116] and experimental [26, 76], have been performed in the past. To esti-
mate the amount of decoherence, one can consider a Ramsey-interferometry experiment
incorporating a Schrodinger-cat state consisting of the two outermost states |aqgg) and
|a-100), and estimate the expected decay of the Ramsey fringes. This has experimentally
been found to scale as exp(—-d?At) [76], where d = |10 — @_100] is the distance between
the coherent states in phase space, T the time needed to create both states and A repre-
senting the scaling parameter incorporating heating and dephasing. Using a Paul trap
with hyperbolically shaped electrodes to ensure a harmonic confinement, implies a large
electrode-ion distance on the order of millimeters. This reduces heating by several orders
of magnitude compared e.g. to the setup used in reference [26], where the dependence
of heating to the electrode-ion distance has been investigated. Additionally, cooling the
electrodes to cryogenic temperatures, which further reduces the heating rate [26], is cur-
rently becoming state-of-the-art technology in trapped-ion experiments. Dephasing, on
the other hand, depends mainly on the stability of the trap frequency w, against fluctu-
ations. We believe that a lot of improvement is possible by extensive use of stabilization
electronics, which has not been brought to the edge of the technically possible, yet, since
large motional amplitudes have not been a major issue in most experiments. In fact, our
experiment of the three-step QW required an improved frequency stabilization which
was achieved to a sufficient amount by a simple electronic circuit. It remains to consider
the duration 7, which, using the photon-kick protocol, is about one order of magnitude
longer compared to [76]. However, the duration of the coin toss, being the constituent
of longest duration in the protocol, can be reduced to a pulse duration of less than a
microsecond, in analogy to [76].
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10. Quantum walks with non-orthogonal
position states

10.1. Overview

In the theoretical description of QWs, it is almost universal practice to model the different
“positions” by mutually orthogonal subspaces in Hilbert space. However, as we have seen
in the previous sections, orthogonality cannot be achieved in some proposals [110, 124, 95]
and the related experiments [101, 72, 125]. In order to fit these experiments to the
theoretical model, it was necessary to choose the step size |Aa| sufficiently large to make
these states approximately orthogonal.

In this section, which follows closely [71], we show that the lack of orthogonality can
be exploited. Firstly, we give a complete analysis of quantum walks with non-orthogonal
position states. In particular, we will introduce a transformation to the orthogonal case,
such that all known results for that case can be utilized. As a result, it is no longer
necessary to avoid the overlaps between different position states in experiments with
trapped ions. Hence, in the experimental setup described in the previous sections, one
can consider smaller step sizes and run the walk for more steps before the LDA (8.10)
breaks down.

Secondly, the transformation of the nQW into a QW with orthogonal position states
encodes the properties of the non-orthogonality into the initial state of the QW. Hence,
by utilizing the overlap, it is possible to simulate QWs with interesting initial states, in
particular those, which are extended over several positions, such as considered in [112].
In contrast to an experimental setup with orthogonal position states and a localized
initial state, this simulation does not need an elaborate preparation process, which would
require several additional operations, some of which must involve a breaking of the
translational symmetry. Such a preparation process would severely decrease the fidelity
of the experiment.

Furthermore, we show how the initial state can be shifted in momentum space by
including an additional operation into the walk operator. This allows for the control of
the scaling and the measurement of the dispersion relation, providing a benchmarking
tool for the quantum walk. Finally, we use this method of momentum shifts to implement
Bloch oscillations [35] as an example for the range of experiments with nQWs, which
can be readily implemented using state-of-the-art technology.

Throughout this section, we relate our theory to the trapped-ion setting (cf. Fig. 8.1).
However, it applies to arbitrary unitary nQWs in any dimension.
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10.2. Transformation into an orthogonal QW

In the following, we will show that the nQW with a localized initial state is equivalent
to an (orthogonal) QW, where the initial state is in a superposition of several position
states.

For the basis {|ay)}, there exists a dual basis {|al)}, defined by (0@|a;> = Ogy for
all z,y. A relation is given by the Gram matrix T' by {|a) = T"!|a,)} [24]. We can
therefore define an orthonormal basis by {|e;) = T""?|a,)} with I"!/? being hermitian.
Since [S,G] = 0, the action of the shift operator in the orthonormal basis is given by

Sler) ® |cy) = |exs1) ®cs) - (10.1)

Therefore, the walk operator W also defines a QW in the orthonormal basis. The
probability to find the walker in position |e;) is given by the projector -2 g, 12,
such that we can transform Eq. (8.3) to

Py(w) = Tr((lex) ez @ T)- W' 7 W), (10.2)

where the initial state amounts to
_ GpoG
- Tr(GpoG)

Po (10.3)

with po = |eo) (eo] ® poo. Due to the overlap function (8.2), py is extended over several
position states.

10.3. Fourier transformation and asymptotic behaviour

In this section, we investigate the properties of the nQW using Fourier methods and
asymptotic perturbation theory [8, 45, 5]. The Fourier transform of the position space
l5(Z) is the momentum space LQ([—ﬂ',ﬂ')). With the coin space tensored to it, we
consider the system in momentum space as L?([-m,7), C?) = L*([-r, 7)) ® C%. That is,
the Fourier transform of a vector

Y=>"les) ® 1)) € €2(Z) ® C? (10.4)

is a C2-valued function of p, given by
v(p) = 2P ) € C*. (10.5)

The walk operator W is translation invariant on ¢2(7Z) and thus acts as a multiplication
operator in momentum space, ie. (W)(p) = W(p)y(p), with W(p) = S(p)-C and

S(p) = exp(ipoz).
From the eigendecomposition

2
W(p) =Y P Py(p), (10.6)
k=1
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we obtain the dispersion relations wy(p) and the corresponding eigenvectors 1 (p), with
Py (p) denoting the projector on the subspace spanned by ¥ (p). The eigenvectors 1 (p)
define Bloch waves with distinct momentum p. The dispersion relations wg(p), i.e. the
band structure, encode the fundamental transport properties of that system. Hence,
it plays the same role as for a particle in a periodic potential, like an electron in a
solid-state system. Indeed, the group velocities vg(p) = dwi(p)/dp (cf. Fig. 10.1a)
determine the spreading behaviour of the (initial) state of the QW. The ballistic order
of the spreading, i.e. the one linear in ¢, can be captured by the asymptotic position-
probability distribution P (q), where g € [-1,1] denotes the asymptotic scaled (o< 1/t)
position variable. It was shown in [5] that P (q) is the inverse Fourier transform of the
characteristic function

Cr(N) = [[) dp T (o (p) - €N ®) (10.7)

where V (p) = ¥, vr(p) Py is the group-velocity operator and 5o(p) = |g(p)|*poo the initial
state with g(p) being the Fourier transform of the overlap function g(z). Therefore,
the influence of the group velocities vi(p) on the asymptotic probability distribution is
determined by |g(p)[?, for each momentum p.

As shown in Fig. 10.1a, the group velocities of the cases Cg and Cp are the same, but
shifted by p = 7/2. Hence, we are able to explain why the experimental and Hadamard
walk lead to the same probability distribution in the orthogonal case, but to different
ones in the non-orthogonal case, as shown in Fig. 8.2: In the orthogonal case, g(p) is
constant in p. Hence, all velocities vg(p) occur with equal weight, leading to non-zero
probabilities in the whole range x € [—t/ V2, t/\/ﬁ] (Fig. 8.2). The maximal velocities
vr(p) = £1/+/2 play a special role by the formation of caustics, leading to the well-known
peaks at z = +¢/\/2 [5]. In the non-orthogonal case however, g(p) is localized at p = 0,
such that only the group velocities around p = 0 influence the nQW (Fig. 10.1a). In
the Hadamard walk, vj,(0) = £1/v/2, i.e. the velocities that are also most pronounced in
the orthogonal case, whereas in the experimental case v;(0) = 0, such that the position
probability remains at the initial position.

Due to the small but finite width of g(p), also group velocities close to p = 0 influence
the nQW. Since in the case C'r they change strongly around p = 0, the width of the peak
in position space increases linearly in ¢ (See [72] for numerical results). Similarly, also
in the case C'y the widths of the two peaks in position space increase with ¢, but at a
much smaller rate (Fig. 10.1b).

10.4. Controlling the spreading rate

In this section, we describe a method to shift the dispersion relation in momentum space
and thus to change the spreading rate of the nQW. For a momentum shift of the amount
of ©, we apply after each step the operator T® R(O) = I®exp(i© o). This is equivalent
to a nQW with the effective walk operator

We(p) =S(p+0)-C, (10.8)
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110

and ||po||(p)/(27) of the initial states localized at p = 0 (blue) and p = 7/2
(red, corresponds to the experimental walk) with o = 4. (b): Asymptotic
position-probability distribution P (q) for each initial state (blue, red).
For each initial state, only the group velocities around their points of lo-
calization determine the position-probability distribution. That is, since
the blue initial state (a) is localized at p = 0, where vy, (0) ~ £1/v/2, Po(q)
consists of two peaks moving away from the origin with that velocity (b).
In contrast, the red initial state (a) is centered around v (7/2) ~ 0, which
leads to a localized asymptotic position-probability distribution Pa,(q).
The coin part of the initial states is pgo = |c+) (¢4|. Figure and caption from
[71].



10.5. Simulating Bloch oscillations with quantum walks

i.e. R(©)S(p) =S(p+O), since S(p) = exp(ipo,). The time evolution is then determined
by the group velocities vg(p + ©). Thus, using the experimental coin Cg, it is possible
to achieve the spreading of a Hadamard walk by including the operator R(-7/2) into
W. In fact, since Cy = 0,Cpg, the momentum shift with © = —7/2 compensates for the
o,-factor, up to a complex phase.

Experimentally, the momentum shift provides a method for determining the dispersion
relations wi(p) of a given walk operator W, if it is implemented in a non-orthogonal
setting: Namely by performing a momentum-shifted nQW Wg for several values of © €
[-m, 7] and determining the scaling of the position-probability distribution for each ©. In
particular, if an implementation of the walk operator W is influenced by experimental
imperfections and the dispersion relations are therefore not exactly known, this may
serve as an important probing or calibration tool.

10.5. Simulating Bloch oscillations with quantum walks

In semi-conductor superlattices, a static external electric field leads to a linear drift of the
electron momentum and due to the periodic band structure to an oscillatory behaviour
of the electrons, detectable by optical methods, which is called Bloch oscillations [36].

This effect can be simulated in QWs in the sense that the linear drift is implemented
by a momentum shift of A® in each step of the QW. This is achieved by applying the
operator R(t-A®©) (modulo 27) at the t-th step, for every t. The Bloch oscillations
are manifested as an oscillating behaviour of the position-probability distribution, due
to changing group velocities at each step of the walk (cf. Fig. 10.1a), in contrast to
a linear spreading with a constant group velocity (Fig. 10.2). Although this effect
does not require the non-orthogonality of the position states, the simple shape of the
position-probability distribution of a nQW (two distinct Gaussian peaks, cf. Fig. 8.2)
can reduce the effort for detection. A different method for the implementation of Bloch
oscillations was proposed in [92]. However, their method requires a position-dependent
coin operator, which may need a higher technical effort.

As mentioned earlier, trapped ions provide a convenient system for nQWs. We showed
that the demand for orthogonality can be relaxed and, indeed, for the implementation
of Bloch oscillations a small step size |Aa/| is favoured, which allows for a significantly
higher number of steps within the LDA (8.10). Moreover, the proposed protocol for
the shift operator via photon kicks, cf. Section 9, allows for an even higher number
of steps. In Fig. 10.2, the oscillating probability distribution is shown for a possible
choice of parameter values for a Lamb-Dicke parameter of 7 < 0.31, as in Ref. [72]. The
momentum-shift operator R(©) can be implemented by shifting the phase of the driving
light fields with respect to the relative phase of the coin states [50]. The positions of the
peaks can be determined using state-of-the-art blue-sideband protocols [122].
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Figure 10.2.: Probability density (greyscale with black: P;(x) = 1) of a Hadamard nQW
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(o = 14) with Bloch oscillations. The nQW starts with 20 steps without
momentum shift, such that two peaks separate from the origin with veloc-
ity 1/v/2 (cf. Fig. 8.2b). Then the Bloch oscillations are switched on with
A® =7/10, such that the positions of the peaks oscillate with a period of 20
steps and an amplitude of 5 positions. The Bloch oscillations are switched
off after 65 steps, a point where the group velocity is zero (cf. Fig. 10.1a),
such that the peaks remain at their position during the remaining nQW.
The expectation values of the harmonic-oscillator occupation-number op-
erator N range during the oscillations from (Nin) = 1.3 to (Npaz) = 2.7,
which is detectable with state-of-the-art trapped-ion technology [122]. Fig-
ure and caption from [71].



10.6. Summary

10.6. Summary

We obtained an intuitive description of nQWs in terms of dispersion relations by trans-
forming them into orthogonal QWs and applying asymptotic methods. Furthermore, we
introduced the momentum-shift method, which allows for changing the spreading be-
haviour, determining the dispersion relation, and, by the correspondence to solid-state
systems, for the implementation of the analog effect of Bloch oscillations. Hence, the
non-orthogonality can be exploited and does not need to be avoided. In experiments
with trapped ions, nQWs allow for a higher number of steps within the LDR, due to
smaller step sizes, and a new range of experiments with available technology.
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