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Abstract 
 

A novel optical detection method for partial discharge in HV/EHV cable terminations 

has been proposed. Optical sensor fibres integrated into the HV equipment provide high 

sensitivity as well as immunity to electromagnetic interference and enable therefore on-line 

monitoring in electromagnetically noisy environment. The availability of optically 

transparent silicone rubbers that meet strict dielectric and mechanical criteria is a crucial 

prerequisite for the implementation of this method. The optically transparent silicone rubbers 

can be applied for the fabrication of a modern rubber stress cone as well as for the 

development of a new optical sensing element sensitive to PD activities. In this thesis, AC 

dielectric strength behaviour and mechanical properties of three types of commercially 

available silicone rubbers were investigated. One of the characterized silicone rubbers was a 

translucent type whereas the two others were optically transparent types, however with 

different chemical curing reactions. 

 

The measurements of tensile strength and elongation at break were carried out 

according to the ISO 37 standard. For investigation of the dielectric strength �� behaviour of 

the virgin and modified silicone rubbers, a new methodology was developed. It is, at the same 

time, highly reliable and efficient, saves time and reduces material consumption in comparison 

to previously reported methodologies. The key component of this methodology is a specifically 

developed test facility. Furthermore, the methodology comprises determinations for easy 

preparation and handling of high-quality test specimens. This test method provides various 

advantages over other methods that have previously been used for measurement of the 

fundamental quantity �� value of silicone rubbers. Both technical and economic demands are 

satisfied. The new facility also enables cost-effective routine tests in material research 

laboratories. The high quality of the obtained test results was verified by statistical analysis 

based on the 2-parameter Weibull distribution function. 

 

The investigations revealed that the virgin translucent silicone rubber has a large 

elastic region with an acceptable plastic deformation and also provides an AC 50 Hz 

dielectric strength of approximately 24 kV/mm for 0.5 mm thickness. These values enable 

considering the tested translucent silicone as replacement material for an opaque elastomer 

that is currently used for a rubber stress cone of HV cable accessories. Unfortunately, its 

optical transmittance is poor compared to optically clear transparent silicone rubbers. On the 

other hand, the mechanical properties of virgin transparent silicone rubbers do not comply 

with those demanded from push-on stress cones. In particular, their elongation at break is 

considered too low for that application. However they provide the AC dielectric strength 

values in either 28 kV/mm or 29 kV/mm for 0.5 mm thickness, which are higher than those 

of the translucent type. Moreover, it was found that the post-curing process does not provide 
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a positive impact on the ultimate elongation of silicone rubbers. Hence, the elongation at 

break of virgin transparent silicone rubbers must be improved before they can be used as 

insulating material for a rubber stress cone. In addition, the influence of mechanical tensile 

stress on the dielectric strength of the virgin translucent silicone rubber was investigated. The 

results show that mechanical tensile stress does not negatively influence on dielectric strength 

of such silicone rubber, so it can be well-operated under combined electrical and mechanical 

stresses. 
 

Beside the improvement of optical PD detection performance in the translucent 

silicone insulation materials, the influence of fluorescent dye’s modification was investigated. 

The results indicate that the commercially available fluorescent dyes of 0.02 wt. % mixed 

into the translucent silicone polymer do not negatively influence on the �� value of such 

silicone material. So an optically compatible silicone rubber is perfectly suitable for the 

fabrication of novel fluorescent silicone optical fibres, which can be integrated into the 

modified transparent rubber stress cones of HV cable terminations. 

 

The final outcomes of this investigation are experimentally substantiated 

recommendations for future revision of IEC 60243-1, especially the chapter dealing with 

the determination of AC dielectric strength of silicone rubbers. Recommendations and 

suggestions for further investigations are addressed in the final chapter of this thesis.  
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Dielektrische Festigkeit und mechanische Eigenschaften trans-

parenter Isolierstoffe, tauglich für das optische Monitoring von 

Teilentladungen 

 
Schlagworte: Silikonelastomer, dielektrische Festigkeit, Reißdehnung, Weibull-Verteilung, 

Durchschlagtest,  IEC 60243-1, fluoreszierendes Silikonelastomer 

 
Kurzfassung 
 

Eine neue Methode zur optischen Detektion von Teilentladungen in Hoch- und 

Höchstspannungs-Kabelgarnituren wird vorgeschlagen. Optische Fasern, integriert in die 

Hochspannungseinrichtung, können hochempfindlich messen und sind gegenüber elektro-

magnetischen Feldern immun. Sie ermöglichen somit ein Online-Monitoring in Bereichen 

hoher elektromagnetischer Felder. Diese optische Detektionsmethode kann in transparenten 

Silikonelastomer-Isolierstoffen, die sowohl dielektrische als auch mechanische Anforde-

rungen erfüllen und für moderne Feldsteuerteile zum Einsatz kommen, zur Früherkennung 

von Teilentladungen genutzt werden.  

 

In dieser Arbeit werden das dielektrische Festigkeitsverhalten und die mechanischen 

Eigenschaften dreier kommerziell verfügbarer Silikonelastomere unter Wechselspannungs-

beanspruchung untersucht. Ein Silikonmaterial war transluzent, zwei andere waren 

transparent, jedoch mit unterschiedlichen Vernetzungsbedingungen.  

 

Die Messung der Reißdehnung bzw. Zugfestigkeit erfolgte gemäß Standard ISO 37. Zur 

Untersuchung der dielektrischen Festigkeit ��  der unmodifizierten und modifizierten 

Silikonelastomere wurde eine neue Untersuchungsmethodik entwickelt. Gegenüber bisherigen 

Methodiken erlaubt dieses Prüfverfahren Untersuchungen mit geringem Materialverbrauch bei 

minimalem Zeitaufwand und ist gleichermaßen zuverlässig und effizient. Kernstück dieses 

Untersuchungsverfahrens ist eine speziell entwickelte Prüfeinrichtung. Darüber hinaus 

ermöglicht diese Prüfmethode eine einfache Präparation und Handhabung hochwertiger 

Prüflinge. Diese sowohl technischen als auch ökonomischen Vorteile können bei der 

Bestimmung des für Silikonelastomere wichtigen Wertes der elektrischen Festigkeit �� 

ausgenutzt werden. Wegen der kostensparenden Prüfmethodik kann diese Prüfeinrichtung auch 

vorteilhaft für statistische Untersuchungen in Laboratorien eingesetzt werden. Die 

Untersuchungsergebnisse werden mittels Weibull-Verteilung statistisch analysiert und 

bewertet.  

 

Die Untersuchungen zeigten, dass das transluzente unmodifizierte Silikonelastomer 

einen großen Elastizitätsbereich mit akzeptabler plastischer Deformation besitzt; für 

Prüflinge mit einer Dicke von 0,5 mm wurde für 50 Hz Wechselspannung eine dielektrische 

Festigkeit von annähernd 24 kV/mm gemessen. Diese Festigkeitseigenschaften des 

transluzenten Silikonelastomers lässt die Schlussfolgerung zu, dass dieses Material die 

gegenwärtig für Feldsteuerteile in Hochspannungsgarnituren genutzten lichtundurchlässigen 

Elastomere ersetzen können. Die Lichtdurchlässigkeit des transluzenten Materials ist 

allerdings gering im Vergleich zu optisch klaren (transparenten) Silikonelastomeren. 

Andererseits erfüllen die mechanischen Eigenschaften der unmodifizierten transparenten 

Silikonelastomere nicht die Anforderungen, die an Aufschiebe-Feldsteuerteile gestellt 

werden; ihre Reißdehnung wird als zu gering eingeschätzt. Sie erreichen jedoch einen Wert 
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für die Wechselspannungsfestigkeit von 28 kV/mm bzw. 29 kV/mm (0,5 mm Probendicke), 

der höher ist, als der für den transluzenten Typ. Es wurde des Weiteren herausgefunden, dass 

ein Nachvernetzen der Silikonelastomere keinen positiven Einfluss auf ihre Reißdehnung hat. 

Aus diesem Grund muss die Reißdehnung unmodifizierter transparenter Silikonelastomere 

verbessert werden, bevor sie als Isoliermaterial in Feldsteuerteilen verwendet werden können.  

 

Zusätzlich wurde auch in der Arbeit der Einfluss der Dehnungsbeanspruchung auf die 

dielektrische Festigkeit unmodifizierter transluzenter Silikonelastomere untersucht. Es konnte 

gezeigt werden, dass eine Dehnungsbeanspruchung derartiger Silikonelastomere die 

dielektrische Festigkeit nicht negativ beeinflusst; diese Materialien können somit unter 

kombinierter mechanischer und elektrischer Beanspruchung eingesetzt werden. 
 

Neben der Verbesserung der optischen Teilentladungsdetektion in transluzenten 

Silikonelastomer-Isolierstoffen wurde auch der Einfluss ihrer Modifikation mit 

Fluoreszenzfarbstoffen untersucht. Die Ergebnisse zeigen, dass das Modifizieren translu-

zenter Silikonpolymere mit 0,02 Gew.-% kommerziell erhältlicher Fluoreszenzfarbstoffe die 

dielektrische Festigkeit dieser Werkstoffe nicht negativ beeinflusst. Somit eignet sich ein 

optisch kompatibles Silikonelastomer sehr gut für die Herstellung neuartiger fluoreszierender 

Silikonfasern, die dann in modifizierte transparente Silikonelastomer-Aufschiebekörper für 

Hochspannungskabel-Endverschlüsse zum Zwecke der Teilentladungsdetektion integriert 

werden können.  

 

Im Ergebnis der Untersuchungen können experimentell verifizierte Empfehlungen 

für die Revision des IEC-Standards 60243-1 gegeben werden, insbesondere für die 

Bestimmung der Wechselspannungsfestigkeit von Silikonelastomeren. Empfehlungen für 

weiterzuführende Untersuchungen werden im abschließenden Kapitel dieser Arbeit 

gegeben.  
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1  Introduction 

 
Today’s cable manufacturers are able to provide innovative and customized solutions 

for the modern state-of-the-art power transmission industry. Underground high-voltage (HV) 

and extra high-voltage (EHV) cables are equipped with new design features, such as real-time 

monitoring, which make them an effective and reliable alternative to overhead lines. The 

modern underground power cables are powering a changing world. This is due to their state-

of-the-art technology, reliable service performance, lower maintenance costs than overhead 

lines and least impact on the environment. In fact, power cable systems can fail over time for 

a number of reasons e.g. external interference or damage, overheating, moisture ingress, poor 

accessory insulation and incorrect installation, cable or accessory defects, interface problems 

between its insulation and semiconducting layer. All of them can lead to electrical failure or 

breakdown of the primary insulation [1-6]. Moreover, during normal operation the polymeric 

insulation of power cables and their accessories are not only subjected to electrical stresses, 

but also to other stresses that can cause degradation and ultimately lead to insulation failure 

[7-9]. Insulation failure caused by partial discharge (PD) is a major cause of cable accessories 

damage [10-12]. Failure of the insulation system of such components often leads to costly 

power interruptions to customer disturbances that could be prevented if the actual conditions 

of the insulation system are known. Due to the great impact of an insulation failure in the 

service life of HV power cable transmission systems, therefore, PD detection is an important 

condition monitoring tool for new power cable systems. This is consistent with the concept of 

CBM (Condition Based Maintenance) [9]. Partial discharges monitoring in power cable 

systems is the most effective method that is able to monitor long-term aging mechanism of 

electrical insulations caused by electrical and thermo-mechanical stresses under operating 

conditions. Therefore, new concepts for modern HV cable terminations and cable joints that 

contain integrated non-electrical sensors for on-line PD health monitoring are in the focus. 

They enable assessing insulation deterioration and finally to avoid insulation failures. The 

alternative methods i.e. optical PD detection with highly sensitive fibre-optic sensors, have a 

distinct advantage of being immune to electrical interference. It is possible to use them for 

PD on-line monitoring in such devices.  

 
1.1 Innovative research for PD on-line monitoring in HV cable termination 
 

The interconnecting points between overhead lines and underground cables in power 

transmission systems need a high-voltage cable termination. With regard to failure rate, cable 

terminations are the most critical part of power transmission interconnection lines. A defect 

in insulation system of high-voltage (HV) cable terminations is the major cause of its failure 

and led to electrical blackout in the past. For example, failures of the 220 kV and 380 kV 

interconnection lines in Berlin, in January 2008 and in December 2009 respectively, were 

caused by explosions of the HV outdoor terminations (source: 50Hertz Transmission GmbH). 

The interfaces of the XLPE cable insulation and the silicone rubber (SiR) stress-cone which 

is susceptible to long-term degradation when subjected to high electric-field stresses are 

potentially weak points of HV cable terminations. The breakdown of the HV cable 

terminations is preceded by electrical partial discharge (PD) activity generated in the 

interfaces. There are many factors that have an influence on interface reliability particularly 

thermal expansion coefficients of two different materials at the interfaces. Imperfection of 

interface can be caused by thermal change due to the variation of load current in power 

transmission system. Moreover, the interfaces in such components frequently run partly 

parallel to the electrical field. The tangential electric field along the interface increases 
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proportionately to the increased cable stress. The design of highest tangential electric field 

stresses in termination is in the range of < 1 kV/mm (typically from 0.4 kV/mm to 0.7 

kV/mm) depending on surface smoothness. But in case of imperfections at the interface, the 

tangential electric field may run from 1 kV/mm to 5 kV/mm, which then approximately 

equals the intrinsic strength of the interface [5, 13-14]. As a rule of thumb, the electrical 

strength at the interface of two insulating materials is usually weaker than that of each 

individual bulk insulator. This is the reason that problems arises at interfaces of such 

components. Obviously, the interfaces need to be handled with care and adverse influences 

must be suppressed adequately.  

 

 
a) Magnitude of electric field distribution (source: Südkabel GmbH) 

 

 

b) Position of highest electric field 

Figure 1.1: Electric field distribution in HV cable termination and the position of highest 

electric field 

 
Figure 1.1 a) shows the magnitude of electric field distributions and the area of the 

highest electric field in typical high-voltage cable terminations. Electrical trees as shown in 

Figure 1.1 b) are often found in the interface shortly before its failure. It is noteworthy that 

the electrical treeing can be started at the interfaces without any direct connection to any of 

the electrodes. Moreover, high electric fields caused by temporary and transient overvoltages 
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also excite the electrical treeing mechanism and increase the treeing channels. In fact, the 

marks of the electrical treeing at the interface in HV cable termination that take place during 

service in a matter of days or months rather than minutes, a breakdown ultimately follows the 

discharging activity at the interface [5]. This means, there is enough time to detect arising 

electrical treeing in such components and could be taken it out of service before breakdown. 

 

As mentioned above, insulation failure in HV cable termination is preceded by 

discharge activity between the interfaces. This also gives the possibility of pre-breakdown 

warnings. PD on-line monitoring program must be set up in order to enable timely 

replacement and prevent outages. In this application field for PD on-line monitoring of HV 

outdoor cable termination, two main ways are being investigated in the BAM division 8.6: 
 

(i) Detection of the light signals emitted from PD activity as a result of various 

ionization, excitation and recombination processes, which are caused by the 

discharges inside the HV cable termination [15-17]. They are detected in 

optically-clear insulating materials using fluorescent probes and fluorescent 

optical fibre sensors, which transmit the discharge light signals to the detector. 

These special signals can be used to switch off the corresponding circuit. 
 

(ii) Detection of occurring acoustic wave signals during growing of PD activity 

inside cable joints and terminations [15, 17-18]. They can be detected by 

acousto-optic sensors with interferometric optical method. Acousto-optic 

sensors have shown high sensitivity and good accuracy for measurement of 

physical parameters [17]. For the range of ultrasonic frequencies, the acoustic 

pressure on the fibre is axisymmetric and uniform along the fibre, and hence 

producing a uniform radial pressure on the fibre. The pressure sensitivity of 

fibres is governed by elasto-optic coefficients of the glass fibre and the elastic 

coefficients of the fibre coatings. 

 

Due to the complicated structure of cable accessories, the integration of fibre-optic 

sensors for PD on-line monitoring needs to be checked. This contribution is mainly focused 

on new ways and opportunities to enable the early PD detection. The research concept is 

shown in Figure 1.2. In all these activities, among the development of the appropriate sensor 

design and the application of the fibre sensing features, the specification of these sensors to 

be integrated in high-voltage equipment is an important scientific detail. 

 

Optical PD detection with a highly sensitive fibre-optic sensors has a distinct 

advantage in view of practical applications such as possibility of fabricating small and 

passive components, high reliability and low cost. The inside into the housing of HV cable 

termination enables a night vision under low light conditions caused by partial discharges 

activity. The whole measurement system is galvanically isolated. There is no electromagnetic 

influence so that the optical PD detection is nearly immune against environmental noise 

signals. Therefore, it is possible to use the optical sensors for PD on-line monitoring in HV 

cable termination because there are high noise level and high electromagnetic interference in 

HV sub-stations. The optical detection of PD activity requires optically clear insulating 

materials. One of the possible ways to be improvement of high efficient optical PD detection 

is the modification of the rubber stress-cone part with transparent silicone. The transparent 

insulation materials enable transmitting light emitted from electrical treeing between the 

critical interface areas. Therefore, modification of transparent or translucent silicone rubbers 

is needed. In order to expand the application to higher voltages, the dielectric performance of 

silicone rubbers, i.e. the electric strength or breakdown field strength �� and their technical 



4  BAM-Dissertationsreihe 
 

characteristics, should be investigated. Hence, the objective of this thesis is focused 

on the investigation of new elastomeric materials based on transparent and translucent 

types of commercially available silicone rubbers and their possible uses in HV cable 

accessories. 

 

 

 

 

 

 

  
 

Figure 1.2: The fibre-optic sensor application concept for PD monitoring in high-voltage 

cable termination 

 
1.2 The thesis work motivation 
 

The use of elastomeric insulating materials for high-voltage (HV) engineering has 

significantly increased over recent decades. Elastomeric materials, particularly silicone 

rubbers, are well suited to such applications as the material demonstrates excellent dielectric, 

thermal, chemical and mechanical resilience whilst remaining economically attractive. It has 

excellent inherent resistance to degradation when exposed to ultraviolet (UV) radiation. 

Silicone rubber (SiR) is not a unique material, but consists basically of a base polymer, 

inorganic fillers and across linking agent. Moreover, in the last years silicone rubber is 

increasingly used also in cable joints and terminations. The optical detection of PD activity 

requires optically clear insulating materials. Previous research in the literature [15] showed 

that silicone fibres offer great potential for PD detection when embedded into the stress cone 

part of HV cable termination. Electrical stress does not lead to a significant electrical ageing 

of a silicone rubber. There are two possible ways to improve the efficiency of optical PD 
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detection. The first method is the development of fluorescent silicone fibre (sensor probe) 

with high UV absorption and high coupling efficiency of light. The second technique is 

modification of rubber stress-cone part with the transparent silicone rubbers to make it 

optically clear and do not impede light emitted from PD sources and transmitted between the 

critical interface areas. This is the reason why the transparent or translucent types of silicone 

rubbers need to be modified. Both types of silicone rubbers are commercially available. 

Unfortunately, they are not designed as an insulating material for HV application. Therefore, 

electrical properties (i.e. dielectric strength value, volume resistivity, dielectric constant and 

dissipation factor) as well as mechanical properties (i.e. tensile strength and elongation at 

break) of the focused silicone rubbers must be investigated.  

 

The dielectric strength values Eb of transparent or translucent silicone rubbers have 

not yet been investigated with except of special types of silicone rubbers previously presented 

in literature [19], [20], [21] and [22]. These are the typical products for HV applications but 

unfortunately not optically clear. Different test set-ups and test methodologies were used, 

thus, the measured results of dielectric strength show quite different values. In fact, the 

measured dielectric strength value of elastomeric materials depends on a variety of 

parameters, e.g. material-related factors (molecular structure, purity, fillers etc.), the 

geometry of the electrodes, their surface quality and the stressed volume [23]. Therefore, the 

evaluation of dielectric strength behaviour of the commercially transparent or translucent 

silicone rubbers is of research interest because the true value for them is not really known. 

Furthermore, the comparison of Eb value of silicone rubbers before and after modification 

must be clarified by a standard test method. 

  

However, critical reading of the IEC standard 60243-1 [24] shows that it does not give 

recommendations for the measurement of dielectric strength value of silicone rubbers. Specific 

recommendations for moulded thermoset polymers and thermoplastic materials are only 

provided in sub-clause 4.1.6 of that standard. Due to a lack of specific recommendations for 

elastomeric materials, often the procedure according to sub-clause 4.1.6 is used for silicone 

rubbers [22, 25]. This situation strongly motivated the research described in this thesis. 

 

This thesis also deals with the development of a new methodology to measure 

dielectric strength of elastomeric materials especially silicone rubbers. Results achieved 

should be useful for the development of a standard test method to determine the dielectric 

strength property of silicone rubbers. Dielectric strength behaviour and mechanical properties 

of new elastomeric materials based on transparent and translucent types of commercially 

available silicone rubbers are described, and their possible uses in HV cable accessories are 

also presented. Results including evaluation are discussed as well as suggestions for transfer 

of the results into the cable industry are given. 
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2  State-of-the-art silicone rubbers for HV applications 

 
Silicone elastomers are widely used in industry and in the field of engineering and 

scientific applications, for examples: wires and cables (especially heat proof cables), 

transmission and distribution, electronic industries, automotive applications, food appliance, 

and mould making. Silicone elastomer differs from other elastomers in its unparalleled 

property range. Of particular interest are the characteristics resulting not from additives or 

surface treatment but from the polymer and filler structure. These are inherent properties of 

silicone polymer. Silicone rubber is generally non-reactive, resistant to extreme environments 

and while still maintaining its useful properties, high thermal stability, biocompatibility, 

hydrophobic nature and a good balance of electrical and release properties. When silicones 

are cross-linked to form a silicone rubber their characteristic properties are still prevalent. 

Siloxane polymer is normally transparent material and therefore, they can be used for optical 

applications, i.e. optical sensor and sensing element for HV applications. 

 

This chapter deals with the state-of-the-art in silicone rubbers for HV applications. 

The chemical structure of silicone and its desirable features regarding electrical engineering 

aspects are briefly addressed. 

 
2.1 Silicone rubber 
 

Silicone rubbers are often one- or two-part polymers which generally contain only 

three additional substances, i.e. crosslinker, fillers and additives. During manufacture, heat 

may be required to vulcanise (or cure) the silicone into its rubber-like form. This is normally 

carried out in a two stage process at the point of manufacture into the desired shape, and then 

in a prolonged post curing process. Silicone rubber can be processed in a variety of ways. The 

main processes include extrusion, compression moulding and injection moulding. The 

property of silicone rubber is mostly stable over a wide temperature range. Silicone rubber 

has relatively high bond dissociation energy; especially the high binding energy of the 

silicon-oxygen bond it the reason for its high chemical stability even at high temperatures. 

Currently due to its great features, silicone rubber is used for electrical insulating materials in 

medium- and high-voltage applications, wherever high operational safety and long service 

lives are required. Knowledge of dielectric properties from these materials thus becomes 

important for future equipment designs. 

 
2.1.1 History 
 

The first silicone elastomers were developed as better insulating materials for electric 

motors and generators. Resin-impregnated glass fibers were the state-of-the-art materials at 

this time. The glass was very heat resistant, but the phenolic resins would not withstand the 

higher temperatures that were being encountered in new smaller electric motors. Chemists at 

Corning Glass Works (Corning Incorporated) and General Electric were investigating heat-

resistant materials for use as resinous binders when they synthesized the first silicone 

polymers, demonstrated that they worked well and found a route to produce 

polydimethylsiloxane commercially. 

 

Corning Glass in a joint venture with Dow Chemical formed Dow Corning in 1943 to 

produce this new class of materials [26]. The first product was manufactured in 1944 [27]. As 

the unique properties of the new silicone products were studied in more detail, their potential 
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for broader usage was envisioned, and GE opened its own plant to produce silicones in 1947. 

Wacker Chemie [28] also started the production of silicones in Europe in 1947. The Japanese 

company Shin-Etsu Chemical [29] began mass production of silicone in 1953. The 

companies mentioned above are now still the silicone market. 

 
2.1.2 Products and processing technology for silicone elastomers  
 

The nomenclature classifies silicone elastomers by their curing mechanism and curing 

conditions. Silicone rubbers are essentially divided into two groups of materials, i.e. room 

temperature vulcanising (RTV) and high temperature vulcanising (HTV) silicones. RTV 

systems are able to cure at room temperature (RT) and HTV systems at temperatures above 

100 °C. A number in the name indicates the number of components that upon mixing will 

form a curable composition, e.g. RTV-2. HTV rubbers mainly have very high viscosity in the 

uncured state and appear as solids. This behaviour has also led to the creation of the term 

‘High Consistency Rubber (HCR)’. 

 

Approximately 37 years ago a new group of materials appeared that was intended for 

processing in injection moulding machines. Because of their low viscosity and paste-like 

behaviour they were named ‘liquid silicone rubbers (LSR)’ or simply liquid rubbers (LR). 

The abbreviation LSR or LR are commonly used instead of HTV. However, they can be 

cured at high temperatures same as in the case of solid silicone rubbers. 

 

Normally LSR materials consist of 2 components which cure after mixing and at 

elevated temperatures. In summary the silicone industry uses the terms RTV-1, RTV-2, LSR 

or LR, HTV or HCR. These refer to the material categories as follows: 

− RTV-1; Room temperature vulcanising with one component, 

− RTV-2; Room temperature vulcanising with two components, 

− HTV; High temperature vulcanising (both liquid or solid silicone rubber), 

− HCR; High consistency rubber, one component solid silicone rubber, and 

− LR or LSR; Liquid rubber, liquid silicone rubber (which is also cured at high 

temperatures). 

 

Among all silicone elastomers, LSR exhibits the highest growth rate and HTV solid 

silicone rubbers have the highest portion of the global market especially in the electrical 

power industry, i.e. HV insulators. 

 

In most cases RTV systems are cured by a condensation reaction. The curable 

composition is formed by two-component mixing, while in the case of one component 

systems (RTV-1) it will cure after its application out of the packaging. The major part of the 

curing system is a polydimethyl siloxane (PDMS) polymer with terminal hydroxyl groups 

and reinforcing filler. As additives it contains a crosslinker, usually a functional silane, and a 

catalyst, in many cases a tin complex [30]. 

 

The curing systems are classified by the chemical nature of the split products formed 

during the condensation process, when the functional silane is incorporated into the polymer 

network splitting off the condensation products. Such systems cure in the presence of air 

moisture. As they form split products during their cure, such materials exhibit shrinkage with 

increasing degree of curing. 
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The complex chemistry and versatile properties of silicones are built on sand, as 

shown in Figure 2.1. A schematic overview of the processing and product groups for silicone 

elastomers are shown in Figure 2.2. 

 

 

 

 

Figure 2.1:  Schematic of the production of silicone elastomers [30] 

 

 

 

 

Figure 2.2:  Products and processing technology for silicone elastomers [30] 
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2.1.3 Chemical structure 
 

In fact, silicone is an inorganic polymer, and the technically correct term for the 

various silicone rubbers is polysiloxanes or polydimethylsiloxanes. Silicones, by contrast, are 

“semiorganic materials”. Silicones have a similar structure to organically modified quartz. 

They consist of a backbone comprising alternating silicon (Si) and oxygen (O) atoms. The 

high binding energy of the silicon-oxygen backbone gives silicones a high chemical stability. 

 

The chemical structure of a polydimethylsiloxane (PDMS) is 
 

. 
 

If � is several thousand, highly viscous fluids of siloxane gum like consistency are obtained, 

which are suitable for making silicone rubbers. The chemical structure of a linear silicone 

polymer is shown in Figure 2.3 [28].  
 

 
 

Figure 2.3:  Chemical structure of a linear methy/vinyl siloxane polymer [28] 

 
Silicone polymer formulations consist essentially of an intimate mixture of a siloxane 

gum, fillers, crosslinkers and additives. Fillers are used to reinforce the elastic silicone 

network. A crosslinker is required to convert the raw rubber into an elastomeric material. 

Silicone rubber requires few additives because the essential properties are determined by the 

siloxane polymer used.  

 
2.1.4 Curing or cross-linking reaction 
 

To become an elastomeric material, raw silicone rubber has to be cured. This can be 

done either by peroxide or addition curing. They decompose to form highly reactive radicals 

which chemically crosslink the polymer chains as shown in Figure 2.4 [28]. The result is a 

highly elastic, three-dimensional network.  
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Figure 2.4: Curing or cross-linking reaction to form silicone rubbers [28] 

 
a) Heat-curing process 
 

When a methy/vinyl siloxane gum is heated with a curing agent (e.g. benzoyl 

peroxide), cross-linking occurs between siloxane polymer chains, principally by the 

formation of ethylene bridges [27]: 
 

. 
 

Peroxide curing is a time-tested and technically mature process. This curing technique 

involves the use of organic peroxides. Generally, the peroxide crosslinkers are offered in 

paste or powder form. At elevated temperatures, they decompose to form highly reactive 

radicals which chemically crosslink the polymer chains.  

 

 

Figure 2.5: Peroxide curing reaction [28] 
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Improved curing characteristics can be obtained if some of the methyl groups (−	CH�) are 

replaced by vinyl groups (−	CH = CH), which are more chemically reactive, and, when cured 

with peroxide catalyst, give vinyl-vinyl or vinyl-methyl linkages, as shown in Figure 2.5. The 

inclusion of vinyl groups reduces compression set of the cured silicone rubber, and enables thick 

sections to be cured without gaseous-void formation, since peroxide concentrations and hence 

volatile by-products can be reduced. 

 

Associated with these, the platinum-catalysed addition curing can be used. Unlike 

peroxide-curing, they have many advantages such as fast curing process and the curing speed 

can be controlled via temperature. During platinum-catalysed addition curing, the 

crosslinker's Si − H  groups react with the vinyl groups of the polymer to form a three-

dimensional network, as shown in Figure 2.6. It is important to note that Platinum-catalysed 

grades may start crosslinking even at room temperature; therefore it is important to avoid 

exceeding the shelf life.  
 

 

Figure 2.6: Platinum-catalysed addition curing reaction [28] 

 
b) Room temperature curing process 
 

This basic curing process is a condensation reaction between hydroxyl groups (−	OH) 

and alkoxy groups (−	RO) attached to silicon atoms of siloxane chains, under the influence of 

a catalyst such as an organometallic compound (e.g. Pt or Sn). The typical reaction is shown 

below [27]. 
 

 
 

Since this reaction takes place in a relatively short time (about 1 h), materials of this 

sort are normally made and supplied in two parts, which when stored separately are quite 

stable, but on mixing react to form elastomers. In some cases, this mixing process is 

inconvenient and therefore the single-component silicone rubbers have been developed [28-

29]. They are stable in the absence of air, but, on exposure to the atmosphere, react with 

moisture and set at room temperature to form elastomers. These are usually made by 

replacing the hydroxyl group with the acetoxy group (−	OCOCH�), which is stable in the 

presence of an organometallic catalyst already incorporated in the elastomer [27]. On 

exposure to atmospheric moisture, the acetoxy group is liberated, leaving a hydroxy group, 
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which then reacts by the normal cold-curing silicone-rubber mechanism described above. 

This type of chemical reaction is shown below [27]. 
 

 
 
c) UV-cure silicone rubber 
 

New UV-cure technology offers the possibility to produce parts and combinations that 

were previously difficult to manufacture, since heat curing processes limit the use of 

temperature sensitive ingredients. And, this technology can help save energy. UV-cure 

silicone rubber belongs to a new class of rubber that offers high cure speed at low 

temperatures. UV light initiates cross-linking through a photochemical reaction. The rubber 

can be processed via injection moulding with special moulds or via extrusion without 

additional heat cure.  

 
2.1.5 Fillers 
 

The high and reversible deformability of elastomers is of great industrial importance. 

Typically however, the initial modulus and durability of pure silicone are low, and an 

additional reinforcing phase is required for practical use. For commercially available silicone 

rubbers, similar amounts of fillers are used in general. All silicone elastomers typically 

contain filler content up to 40 %. The bulk of this is fumed silica with surface areas between 

150 m
2
/g and 300 m

2
/g. Fillers are normally responsible for better mechanical and flow 

properties [30]. 

 

The final properties of silicone rubbers are dependent on the type and amount of 

fillers compounded into the polymer. Various types of fillers in silicone rubber have been 

investigated for outdoor HV insulation applications [31-39]. The most common fillers used 

for improvement in mechanical and electrical properties are listed and discussed in [40]. The 

filler used in the first commercial compounds was titanium dioxide (TiO). These rubbers had 

fair physical and electrical properties but their electrical properties were adversely affected by 

moisture [41]. Silicon dioxide fillers were the next to receive attention because they are less 

affected by water. Silicone rubbers compounded with silica in the form of diatomaceous earth 

have been used in large quantities. These rubbers are characterized by excellent handling 

properties, fair physical and good electrical properties. In general, they can be extruded in 

conventional rubber extruders at rates comparable to those obtained with organic rubbers. 

 

Over the past 19 years, polymer nanocomposites revealed a great important idea of 

the polymer/nanofiller interface [42]. Polymer nanocomposites present a series of unique 

properties, such as electrics [43-45], mechanics [46-47] and optics [48], due to nanoparticles 

with a giant specific surface area, quantum size effect and the special interface between 

particles and polymer matrix. In contrast to conventional filled polymers, nanocomposites are 

composed of nanometer-sized fillers (nanofillers) which can be homogeneously dispersed 

within the polymer matrix. The extent of property improvement depends on filler 

concentration, filler morphology, such as particle size and structure, the degree of dispersion 

and orientation in the matrix, and also the degree of adhesion with the polymer chains. To 
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improve particle dispersion, several techniques other than mixing are listed and discussed in 

[49-50]. This includes the surface modification of the micro/nanoparticles (micro/nanofillers) 

by physical and chemical methods using surfactants. The chemical nature of the surface of 

nanofillers is important, and various chemical treatments have been developed, resulting in 

greatly improved properties of silicone rubbers [28-29].  

 

Some improvement in the mechanical properties is given by certain types of filler, 

including fumed silica, ground silica, silicon dioxide (SiO), titanium dioxide (TiO), carbon 

nanotubes, calcium carbonate (CaCO� ), and alumina tri-hydrate (Al(OH)� ) [27, 40, 51]. 

However, for commercially HTV and LSR silicone rubbers, reinforcing fillers are fumed silica. 

Ground silica has only slight reinforcing properties, but, if silica is prepared by a chemical 

process, such as burning silicon tetrachloride (SiCl�), which yields silica in the form of finely 

divided particles of very large surface area, much greater reinforcement is possible. Apart from 

that, the recent research reported by Dangke et al. [31] reveals that layered silicate (LS) 

nanotechnique provides good improvement in tensile strength and elongation at break in the 

RTV silicone rubber for outdoor insulators. These results are shown in Figure 2.7. 
 

   

Figure 2.7: Layered silicate (LS) nanofillers improve tensile strength and elongation at break 

in the RTV silicone rubber [31] 

 
Electrical properties may also be modified by the addition of fillers; for example, 

permittivity can be increased by the addition of several types of fillers, e.g. silicon carbide 

(SiC), titanium dioxide (TiO), zinc oxide (ZnO), barium titanate (BaTiO�) [40, 52-53]. This 

type of silicone rubbers is usually used as stress grading materials for cable terminations. 

Electrical conductivity can be enhanced by the addition of carbon-black particles or carbon 

nanotubes or graphite or zinc oxide filler as well as metallic powders [40]. Aluminiumoxide 

(AlO�), alumina tri-hydrate (ATH) and silica based fillers (i.e. silicon dioxide and fumed 

silica) are typically used for improvement in erosion and anti-tracking for outdoor HV 

insulators [32-34, 36-38, 40]. Dielectric strength Eb of silicone rubbers may be improved by 

the addition of alumina or silica fillers [50, 52].  

 

The improvement in physical properties can also be obtained by the addition of fillers; 

for example, aluminiumoxide and silicon dioxide fillers can improve thermal conductivity. 

Hydrophobicity and flame-retarding can get better by adding calcium carbonate fillers [40].   
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There are other fillers, so-called “inactive fillers”. Inactive fillers do not reinforce the 

elastic silicone network. They are widely used in order to improve certain chemical or 

thermal properties. Examples of such fillers are ground quartz, diatomaceous earth and chalk. 

Too high levels of such inactive fillers result in the loss of the excellent mechanical 

properties of most silicone elastomers. Of course, a high degree of filling results in very high 

densities and thus a high weight per part. Their specific properties related to desired features 

in electrical engineering aspects are briefly addressed as follows [27, 30, 40]. 

 
2.2 General properties of silicone rubbers 
 

Special features of silicone runners are originated from its unique molecular structure 

that they carry both inorganic and organic properties unlike other organic rubbers. The 

following is a summary of general properties of silicone rubbers. 

 
2.2.1 Physicochemical properties 
 

Silicones have a similar structure to organically modified quartz. They consist of the 

backbone comprising alternating silicon and oxygen atoms. The high binding energy of the 

siliconoxygen backbone (Si − O − Si − O) gives silicones a high inorganic stability. The 

physicochemical characteristics of bond length, bond strength and ionic character between Si − � bonds in silicones and C − � bonds are shown in Table 2.1. It shows that siloxane 

bond (Si − O) has greater capacity and stability. As a result, silicone rubber has better heat 

resistance and chemical stability than any other ordinary organic rubbers. Siloxane bond’s 

energetic stability is secured due to sharp difference in terms of electro-negativity between Si 
(1.9) and O (3.44) making Si − O to be closest to ionic bond. Hence, silicones are more stable 

than polymers with a carbon (C − C ) backbone, for example Ethylene-Propylene Diene 

Monomer (EPDM) rubber. 

 

Table 2.1: Physicochemical characteristics of bond length, bond strength and ionic character 

between Si - X bonds in silicones and C - X bonds [54-56] 

Element X 
Bond length in Å Bond strength in kJ/mol Ionic character in % Si − � C − � Si − � C − � Si − � C − � C 1.88 1.54 240-340 346 12 - H 1.47 1.07 318 411 2 4 O 1.63 1.42 452 358 50 22 Si 2.34 1.88 222 240-340 - 12 

 
The bond energy of C − C  is 346 kJ/mol, as opposed to 452 kJ/mol for Si − O . 

Shortwave sunlight (300 nm) has an energy content of about 6.2 × 10
-22

 kJ (app. 398 kJ/mol) 

and can therefore cleave C − C bonds, whereas the Si − O bond remains stable. Thus, silicone 

rubbers are not prone to chalking or cracking caused by UV radiation from sunlight. This is a 

desired feature for outdoor HV insulators in electrical power transmission systems. 

 

2.2.2 Hydrophobic recovery property 
 

Compared to other materials, silicones show very good water repellency, also known 

as hydrophobic surface. With its coil shaped spiral structure and low intermolecular force, 

silicone rubber has outstanding water repellency and contact resistance. As methyl groups CH� are located in the outside of coil spiral structure, they are free to rotate on its own. In the 



15 
Revision II : 7 May 2014 

case of PDMS the Pauling electronegativity index difference of 1.81 between silicon and 

oxygen atoms confers a 50 % polar or ionic character on the siloxane bond. Its consequent 

sensitivity to hydrolysis at extremes of pH is the most significant difference between 

silicones and organic polymers [57]. The reaction between water and siloxane is shown 

below. 
 

 
 

This is an equilibrium that results in a redistribution of siloxane linkages known as the 

equilibration of siloxanes. Normally, the water-insoluble nature of PDMS keeps this 

equilibrium well to the left by mass action effects. The hydrophobic recovery property may 

be attributed at least in part to the transfer of low molecular weight (LMW) from bulk to 

surface. A hydrophobic surface is a highly-desirable property for outdoor electrical 

insulations to protect the HV substation equipment from environmental effects such as water 

and to minimize the leakage current on insulator surface as well as to reduce energy loss. 

 
2.2.3 Heat and cool resistance 
 

Heat resistance of silicone rubber is one of the most excellent properties and provides 

the basis for its creation. Silicone rubber is far better than organic rubbers in terms of heat 

resistance. At 150 ºC, almost no alteration in properties take place that it may be used semi 

permanently. Furthermore, silicone rubber withstands use for over 10,000 consecutive hours 

even at 200 ºC and, if used for a shorter term, it may also be used at 300 ºC as well. Boasting 

this excellent heat resistance, silicone rubbers are widely used to manufacture rubber 

components and parts used in high-temperature places [28-30, 58]. 

 

Cold resistance of silicone rubber is the finest among organic rubbers. It provides a 

critical reason behind the creation of silicone rubbers. Natural and ordinary rubbers 

demonstrate significant changes in formation depending on temperatures. They become soft 

at high temperatures and hard at low temperatures so that they may not be used any more. 

While other organic rubbers may only be used up to -20 ºC or -30 ºC, silicone rubber 

maintains its elasticity between -55 ºC and -70 ºC. Some silicone products can even withstand 

temperatures as low as -100 ºC [28-30, 58]. 

 
2.2.4 Electrical properties 
 

One of the key properties of silicone polymers is good electrical properties. These are 

influenced to a large extent by the grade, purity and type of fillers. As with other insulating 

materials, dielectric strength Eb depends on several factors, including the thickness of the 

sample and shape of the test electrodes. Silicone rubber is extensively used for electrical 

insulation materials at high temperature with its superior insulation properties. It is 

particularly known for good properties over a wide range in temperature and volume 

resistance between 10��  Ω-cm and 10��  Ω-cm [28-30, 58]. Silicone rubber experiences 

lowest change in dielectric performance under wet condition.  

 

The dielectric constant ��  of commercial PDMS increases with the degree of 

polymerization (DP) of the siloxane backbone before quickly reaching a plateau value as 

shown in Figure 2.8 [59]. This effect is related to the siloxane-to-methyl-groups ratio, which 
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quickly increases, particularly in the shortest DP. At higher DP, adding one more unit has 

little impact on the permittivity of the media, which explains the plateau region. However, 

typical values of dielectric constant �� for a commercial silicone rubber are in the range of 2.6 

to 3.5 (at 25 °C and 50 Hz). This property can be increased up to 150 by the use of suitable 

fillers [60]. 

 

   

Figure 2.8: Variation of dielectric constant value of polydimethylsiloxanes as a function of 

degree of polymerization (DP), measured at 1000 Hz and 25 ºC [59] 

 
The dielectric loss factors (��  and tan !) of an electronic grade silicone elastomer 

have been investigated in the frequency range of 0.1 Hz to 1 MHz and the temperature range 

of -150 ºC to 100 ºC [61]. The measured results are illustrated in Figure 2.9. 

 

   
a) Dielectric constant �� b) Dielectric loss (tan δ) 

Figure 2.9: Dielectric loss factors (�� and tan !) of an electronics grade silicone elastomer as 

a function of frequency and temperature [61] 

 
Silicone rubbers exhibit extremely low electrical aging compared to other insulating 

materials. They can strongly resist against corona discharge compared to others, while being 

widely used for insulation purposes in HV environments. No elastomeric material is currently 

found to match the electric properties of silicone rubber over 200 ºC. By adding special 
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conductive fillers, e.g. silicon carbide ( SiC ), conductive silicone rubbers can also be 

manufactured. Such modified materials are utilized to avoid stress concentrations in HV/EHV 

applications such as HV/EHV cable accessories and end windings of HV rotating machines. 

Conductive silicone rubber is also being used for keyboard interfaces, anti-electrostatic parts, 

and shield materials for high voltage power cables. [28-29, 53, 58] 

 
2.2.5 Weatherability 
 

Silicone rubber has superb ozone resistance. Due to corona-discharged ozone, other 

organic rubbers become deterioration (weaken) at a higher rate, but silicone rubber is rarely 

affected. Furthermore, even long-term exposures to UV rays, winds, or rain its physical 

properties will not be changed substantially. 

 
2.2.6 Mechanical properties 
 

With its coil shaped spiral structure and low intermolecular force, silicone rubber is 

highly elastic and compressible. The excellent elastic properties of silicone rubbers provide 

the best fit for used as a rubber stress cone of HV/EHV cable terminations. A silicone 

polymer with low molecular weight will make a paste suitable for knife coating onto fabric or 

for caulking voids in electrical equipment. Silicone rubbers can provide excellent stress-strain 

characteristics as well as high tear strength. These are influenced to a large extent by the 

grade and type of fillers as well as the degree of cross-linking. Typical values for tensile 

strength are in the range of 5 N/mm
2
 to 12 N/mm

2
 and typical values for elongation at break 

are in the range of 110 % to 1,100 %. A high-elasticity silicone rubber facilitates installation 

and allows novel installation techniques, e.g. cold shrinking on cables. In contrast to other 

elastomers, silicone elastomers have a permanent elasticity when cross-linking process is 

stable. They maintain their elasticity down to -70 °C [28-29, 58].  

 

2.2.7 Optical properties 
 

The colour and appearance of silicone rubber is determined by the fillers used in the 

respective compound. In the visible spectral range (400 nm to 760 nm), thin layers of unfilled 

materials are almost 100 % transparency. They only become opaque in the UV range below 

200 nm. Their refractive index �" is between 1.41 and 1.44 [60]. 

 
2.2.8 Flame Retardancy  
 

Silicones in general have lower heat release rates, toxic gas emission and smoke 

output in comparison with most organic polymers [62-63]. Silicone rubber does not burn 

easily when it is in contact with a flame, but it would burn out consistently once ignited. 

However, by adding a small amount of flame retardant, it may become flame retardant and 

self-extinguisher. Flame retardant silicone rubbers presently in use would scarcely produce 

toxic gas during combustion since they do not contain organic halogen compounds 

discovered in organic polymers. Modern ceramifying silicone formulations are used to 

construct fire safety cables economically [64]. Flame retardant silicones and silicones for 

safety cables not only provide more safety to human in case of severe fire in a building but 

also help to slow down fire spreading. Furthermore they produce only small amounts of 

smoke and toxic fumes. All these products are also halogen free. 
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2.3 Silicone rubbers in medium- and high-voltage applications 
 

These applications cover the transmission and distribution of electric power. Special 

silicones are the best choice for medium- and high-voltage cable accessories and insulators 

for high-voltage transmission lines and substations. The key advantage of silicones are their 

high volume resistivity, good trip-off properties, resistance to environmental degradations 

and to long-term electrical aging as well as their hydrophobicity, which results in lower 

assembly and maintenance costs [28, 58, 65]. 

 

Historically, the transmission and distribution applications for silicones developed 

from normal porcelain insulators which were covered with silicone grease in order to achieve 

hydrophobicity. Later, silicone rubber dispersions were used to cover porcelain with a 

rubbery and hydrophobic layer. Today, after 30 years of development, insulators tend to 

consist entirely of special silicone rubbers. Most of them contain special fillers allowing for 

more enhanced electrical properties. The technology of silicone rubber pellets is also 

available for these special grades resulting in processing advantages. 

 

The most important properties are based on the electrical parameters of silicone 

rubbers, such as dielectric strength (around 18 kV/mm to 20 kV/mm), volume resistivity 

(10�# Ω-cm) and surface resistance (10�� Ω) [30]. These properties are the reason for the 

suitability of silicone rubbers for electrical applications. A further advantage of silicones is 

their hydrophobic behaviour which is of importance in many outdoor transmission and 

distribution electrical systems. As a result of their hydrophobic nature, silicone insulators 

show much smaller leakage currents than porcelain or EPDM offsets. Even in cases of bad 

environment with electrically conductive contaminated silicone insulators will remain 

hydrophobic along their surface. Silicone elastomers are capable of turning deposits from 

their environment hydrophobic, e.g. dust, sea salt, etc. This is due to the small amount of 

siloxanes bleeding out of the elastomer surface, covering the deposit and rendering it 

hydrophobic. Even after cleaning the insulators with detergents the hydrophobic behaviour 

will remain or return in due course. This is called hydrophobic transfer and regeneration [30]. 

Insulators in outdoor applications often are in contact with moisture. This is why tracking 

resistance is of utmost importance, special silicone grades [65] for outdoor HV applications 

provide a tracking resistance of up to 4.5 kV (typically ≈ 2.5 kV) according to IEC 60587 

[66]. Should flashovers take place special silicone elastomers also exhibit excellent resistance 

to electric arc. Needless to say that silicone elastomers have relatively low changes of 

properties over time and temperature they are very suitable for long-term applications and for 

varying conditions. UV and ozone resistance complement the spectrum of properties. These 

are the key properties of silicone rubbers for medium- and high-voltage applications. 

 

Recently, specially formulated silicones have been developed to smooth the electrical 

field distributions within the connection end and to ensure long-term performance. This is 

achieved in composite cable terminations either using some electrically-conductive silicone 

rubbers or, in more modern and smaller accessories, shaped deflectors made from silicone 

rubbers with medium electrical permittivity. 

 

For performance reasons silicones are increasingly used in these areas as ceramics and 

organic rubbers do not show the same degree of performance, particularly in medium- and 

high-voltage applications. Table 2.2 gives a list of key applications and the silicone elastomer 

type used.  
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Table 2.2: Silicone rubbers in medium- and high-voltage applications [30, 65] 

Applications 
Type of 

silicones 
Key properties Key benefits 

Long-rod insulators 

with a silicone 
elastomer sheath 

– HCR 

– RTV-2 

– LSR 

• Resistance to UV 

radiation 

• Hydrophobic nature 

• Tracking resistance 

o High pollution-flashover voltage 

o Low leakage current 

o Lightweight 

o Low maintenance costs 

o Long service life 

Hollow-core 

insulators 

with a silicone 
elastomer sheath 

– HCR 

– RTV-2 

– LSR 

• Resistance to UV 

radiation 

• Hydrophobic nature 

• Tracking resistance 

o High pollution-flashover voltage 

o Low leakage current 

o Lightweight 

o Low maintenance costs 

o Long service life 

Surge arresters – HCR 

– RTV-2 

– LSR 

• Reliability with respect 

to overloading and low 

flammability 

• UV and tracking 

resistance (housing) 

o Greater safety 

o Long service life 

Cable terminations – HCR 

– RTV-2 

– LSR 

• Permanent elasticity 

• High dielectric 

strength 

• Tracking resistance 

o Long service life 

o Less or no maintenance costs 

Cable joints – HCR 

– RTV-2 

– LSR 

• Stability of the 

important electrical 

and mechanical 

properties in the 

temperature range used 

in applications 

o Long service life 

o Less or no maintenance costs 

 

Long life, resistance to severe conditions and other properties make silicone 

elastomers suitable material for electric insulators in transmission and distribution 

applications. This is particularly of importance where electric energy must be distributed in 

desert or coastal areas, where the most severe conditions occur. 

 

For HV cable accessories, modern materials allow pre-assembly and thus avoid 

problems associated with the use of molten casting material or mistakes made during manual 

assembly on the construction site. Today cable accessories are completely built at the 

supplier. Typically they consist of rubber terminations made of different insulating silicone 

rubbers. Two types of design are [65]: 

− Push-on technique where a PE ring acts as a space holder until placement, and 

using silicone rubbers with hardness from 35 to 50 Shore A 

− Cold shrink technique using softer silicone rubbers with hardness from 25 to 35 

Shore A. 

 

Modern cable accessories are produced by rubber injection moulding using a silicone 

High Consistency Rubber (HCR) or by liquid injection moulding using a two-part liquid 

silicone rubber (LSR) [30]. The integration of sensitive sensor element for online health 

monitoring into such devices is possible, particularly for PD detection in the critical interface 

area, which are often occurs and lead to electrical failures.  
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2.4 Silicone rubbers as power cable insulation 
 

The first shipments of silicone rubber to power cable manufacturers were made in 

1945 [41]. Early in the development of silicone rubbers it was recognized that the polymer 

determined the inherent stability of the rubber, while fillers determined to a great extent the 

physical and electrical properties of the cured rubber. These properties can be modified to a 

certain extent by changes in the polymer. 

 

The properties of silicone rubbers are dependent on the type and amount of fillers 

compounded into the polymer. Recently, improvements in physical and electrical properties 

obtained with fumed silica nano-fillers stimulated further interest in silicone materials [36-37, 

40]. This silica material is the basis for a series of new silicone rubbers that are of special 

interest to the cable manufactures and their end users. Because of the physical nature of the 

fumed silica, tough, tear resistant silicone rubbers are obtained. By varying the amount of 

silica in the formulation, rubbers with varying degrees of hardness can be made. Besides, 

fumed silica filled silicone rubbers with very low dielectric losses can be produced. An 

outstanding property of silicone rubbers filled with fumed silica is the stability of electrical 

properties over a wide temperature range. Figure 2.10 displays the dielectric loss factor of 

silicone rubber filled with fumed silica as a function of temperature compared with several 

typical filled silicone rubbers [41]. Dielectric constant �� and dielectric loss tan ! at various 

frequencies for silicone rubbers filled with fumed silica are shown in Figure 2.11. 

 

 
Figure 2.10: Dielectric loss factor of silicone rubber filled with fumed silica as a function of 

temperature compared with several typical silicone rubbers [41] 

 
Dielectric constant �� and dielectric loss tan ! of silicone rubbers filled with fumed 

silica do not change appreciably with frequency between the ranges of power frequencies up 

to 1 MHz. However, at higher frequencies, the dielectric loss increases with frequency and 

peaks at a frequency greater than 100 MHz. This increase in dielectric loss tan ! at the higher 

frequencies is due to the polarity of the silicone-oxygen linkage in the silicone rubber 

polymer as mentioned before. It is characteristic of all silicone rubbers. 
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Figure 2.11: Dielectric constant ��  and dielectric loss (tan ! ) at various frequencies for 

typical silicone rubbers filled with fumed silica for cable insulation [41] 
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Figure 2.12: Current carrying capacity of silicone rubber insulated cable is compared with 

that of conventional thermoplastic insulated cable [41] 

 
The high thermal conductivity of many silicone rubbers is another property of special 

interest in power cable applications. In Figure 2.12 the copper core temperature rise of 

silicone rubber insulated cable is compared with that of conventional thermoplastic insulated 

cable at various load currents. The temperature of the copper was determined from its change 

in resistance. The copper temperature rise of the plastic insulated cable was about 40 % 

higher than that of the silicone rubber cable at a load current of 10 amperes and 33 % higher 

at 30 amperes. Not only can the silicone rubber cable operate at much higher temperatures 

than the plastic covered wire, but the silicone rubber cable will be significantly cooler at the 

same load. 
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The thermal stability of silicone rubber insulated cable is difficult to define since its 

lifetime at high temperatures will depend greatly upon the application. One test of thermal 

stability is to age lengths of cable at various temperatures and periodically measure the 

dielectric strength of the cable insulation. Evaluations of this type test and several years field 

experience indicate that silicone rubber insulated cables can be operated continuously at 

temperatures in the range 150 ºC to 200 ºC with a life expectancy equal to that of organic 

insulated cables at their respective operating temperatures [41]. 

 

However, the temperature is increased above 150 ºC, some decrease in flexibility of 

the cable will occur. If flexing is a requirement of the application at these higher 

temperatures, some decrease in life must be expected. But, unlike most organic insulating 

materials, silicone rubbers do not lose their insulating qualities after aging at high 

temperatures. When silicone rubbers are completely decomposed by burning, the remaining 

ash retains its insulating properties. This fact is used to advantage in military control cables 

that must remain operative after several hours in an open flame [41]. 

 

The specific requirements for silicone elastomers that are used in cables develop from the 

requirements of cable manufacturers and their end users. Today, high consistency rubber (HCR) 

stocks can be made from higher molecular weight polymers. These rubber stocks are suitable for 

injection moulding and extruding. Improvement in these polymers has resulted in stocks that can 

be handled by conventional wire covering techniques. HCR solid silicone rubbers are now easy to 

mill under temperature control. They can be extruded uniformly and cross-linked in continuous 

vulcanisation (CV) lines by heating. Heating is usually by means of pressurized steam. The line is 

usually fed with steam at a high pressure (4 bars to 20 bars). The vulcanisation time depends on 

the length of the zone, the temperature, and the wall thickness of the cable insulation. As a 

manufacturer of silicone rubber insulated cables, the silicone material must be easily extruded 

and qualitatively for mass production. Adhesion or release from the wire can be controlled by 

treating the wire. The use of primers for a good adhesion is also possible [28-30, 58, 65]. 

 

Besides, in case of low- and medium-voltage systems, the use of silicone rather than 

PVC or other thermoplastic and elastomeric materials, has been boosted by safety discussions 

after recent fire accidents in which most of the damage was unfavourably attributed to the 

contribution of the PVC sleevings to smoke toxicity and density as well as cable function. 

Silicone cables burn at a much slower speed and their combustion products have low toxicity. 

During combustion silicone degrades to silica, hence, most of the silicone forms an 

electrically insulating ash. This prevents short circuits and their consequences. The accidents 

referred to above gave rise to the rapid development of so-called “safety cables”. Such cables 

will maintain the integrity of the electric circuit over a certain period of time in the case of a 

fire. Today, silicone technology enables cable manufacturers to produce a safety cable which 

will maintain circuit integrity over 90 minutes at temperatures higher than 1,000 °C even if 

they are quenched with water. This technology is based on the fact that ceramics are electrical 

insulators. A further competitive advantage of these safety cable materials is the fact that they 

can be extruded at very high speeds (of up to 400 m/min) whereas more traditional safety 

cable technology allows only a few metres per minute (m/min). For example, mica tape 

safety cables have a production rate of 12 m/min [30, 64]. 
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2.5 Silicone rubbers for optical partial discharge (PD) detection 
 

Fibre-optic sensors for high-voltage facilities are already known because of their 

advantageous non-electrical functional principles. Their components can be made from 

dielectric material and do not need any electrical power supply. Such components are 

immune to high-voltage and electromagnetic interference. Their tiny size and compactness 

enable integration into high voltage equipment, for example: power transformers, generators, 

power circuit breaker, gas insulated switchgears and cable accessories. Some more properties 

make fibre sensors interesting: capability of taking measurement signals along the optical 

fibre over up to several kilometres, capability of recording highly accurate digital information 

with high signal bandwidth and dynamic range. Commonly, fibre-optic sensors can be easily 

installed and do not require extensive maintenance. 

 

Modern optical partial discharge (PD) detection based on fibre-optic sensors for PD 

on-line monitoring in high-voltage (HV) or extra high-voltage (EHV) cable systems 

necessarily requires optically transparent or translucent insulation materials. The optically 

compatible silicone rubbers are the key to facilitate such innovative technology. Percentage 

of optical transmission compared to the spectrum of PD light emission during electrical tree 

propagation in the commercially available transparent silicone rubber with a thickness of 10 

mm is illustrated in Figure 2.13. The transmission is about 90 % over a broad spectral range 

(approximately 350 nm up to 850 nm), being more or less similar for all transparent silicone 

rubbers. Thus, the detection of PD light emission during electrical tree propagation in 

transparent rubber stress cones is promising, assuming that the PD emits either directly in this 

optical range of such silicones or the optical wavelength range of the emission can be shifted 

towards it.  
 

  
Figure 2.13: Percentage of light transmission compared to the spectrum of PD light emission 

in the commercially available transparent silicone rubber with a thickness of 10 mm 

 

Besides the strong emission of Hydrogen at 656.28 nm, the broad continuum 

(approximately 350 nm till 700 nm) can be exploited for PD detection. The low optical 

transmission loss of transparent silicone insulation is ensured as the emission occurs in the 

optical range of the investigated silicone materials. 
 

300 400 500 600 700 800

0

20

40

60

80

100

 Percentage of light transmission

 PD light emission in transparent silicone

Wavelength λλλλ  in nm

P
e

rc
e

n
ta

g
e
 o

f 
li
g

h
t 

tr
a
n

s
m

is
s
io

n

0,0

0,2

0,4

0,6

0,8

1,0
R

e
la

ti
v
e
 P

D
 i
n

te
n

s
it

y
 i
n

 p
e
r 

u
n

it



24  BAM-Dissertationsreihe 
 

One of the possible ways to increase the sensitivity of optical PD detection in HV 

cable termination is the integration of an optical sensor element (i.e. optical fibres or optical 

probes) on/into the stress-cone rubber part. Figure 2.14 illustrates the stress-cone rubber part 

of HV cable accessories wrapped with the optical fibre sensor to detect PD activity at the 

critical interface area inside such a device. The results achieved by optical measurements 

were compared with that of electrical measurements. The measurement systems recorded and 

visualised optical and electrical pulses as phase resolved partial discharge (PRPD) pattern. 

The comparison of electrical and optical patterns for a small channel on a metallic tip showed 

a nearly identical visualisation as reported in [15-16] and [67-68]. Thus, the detection of 

optical PD in transparent silicone insulations by integrated optical fibres opens very efficient 

monitoring and diagnostic opportunities. 

 

        

Figure 2.14: The stress-cone rubber part of HV cable accessories wrapped with the optical 

fibre sensor to detect PD activity inside such device [16-68] 

 
2.5.1 The influence of embedded polymeric-optical sensor element into the rubber stress 

cone of HV cable accessories 
 

In order to establish this new optical detection technology fully available for 

commercial use, some properties of the optical sensor elements in the HV environment must 

be clarified. The influences of embedded optical sensor elements into the transparent silicone 

rubber under high electrical stress have been investigated. Figure 2.15 and Figure 2.16 show 

two different types of sample fibres, i.e. fabricated silicone fibres and PMMA optical fibres, 

being hit by PD activities and the associated microscope pictures of the fibres after being 

exposed to PD. In contrast to silicone fibre samples (Figure 2.15), PMMA fibres are 

destroyed by electrical treeing (Figure 2.16). The damage is clearly visible by the red laser 

light shining through the broken cladding in such PMMA optical fibres.  

 

Silicone fibres provide great potential for embedment into silicone insulation material 

because there are quite similar electrical properties. It does not seem to negatively influence 

the electric field distribution in the bulk dielectric system. It would be possible to embed 

silicone fibres as an optical sensor element in a region of moderate to high electrical stress 

near the critical interface area between the rubber stress cone of cable accessories and the 

Silicone rubber 
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power cable core. Unfortunately, silicone optical fibres are currently not commercially 

available. Hence, the use of silicone polymers as an ideal basis for the development of new 

optical sensor and sensing elements as well as new elastomeric insulating material for a 

modern rubber stress cone has to be considered. All of these may lead to technology changes 

for PD on-line health monitoring in HV/EHV cable accessories in the future. 

 

 

 

 
   a) Silicone fibres being hit by PD activities  
       in silicone cube specimen 

    b) Inspection of damages on test specimens  
        using microscope (200x) 

Figure 2.15: No influence of embedded silicone fibres into the transparent silicone rubber 

RTV 604 used as insulating material under high electrical stress [15] 

 

    
     a) PMMA fibres being hit by PD activities  
         in silicone cube specimen 

    b) Inspection of damages on test specimens  
        using microscope (200x) 

Figure 2.16: Surface tracking on the PMMA fibres caused by PD activities after the 

embedment of such fibres into the transparent silicone rubber RTV 604 [15] 

 
The dielectric behaviour of the transparent RTV-2 silicone rubber under the influence 

of embedded PMMA optical fibre has been investigated and published in [15]. Under highly 

non-uniform electric fields, it could be seen that no significant difference occurred either in 

PD inception voltage or in breakdown voltage between samples with or without embedded 

fibre. This demonstrates the ability of safe operation of optical fibres for PD detection. 

 

However there is currently no report regarding the effects of embedded silicone fibres. 

Thus, after successful development of new silicone optical fibres, the influence of their 

embedment on dielectric strength Eb behaviours of the bulk optically compatible silicone 

insulation system has to be investigated to avoid damage in HV/EHV equipment.  
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2.5.2 Fluorescent silicone optical fibre as sensor element 
 

The optical recognition of PDs is based on the detection of light emitted during 

excitation, ionization and recombination processes. Generally the optical PD intensity is much 

lower in solids than in gas insulation medium. In order to achieve optimal detection of PD, the 

optical sensor elements shall be satisfactory designed to match various aspects. Practically, the 

position of PD origin cannot be identified hence PD emission cannot be detected by the front 

surface of a single fibre. One alternative method is the coupling of light via the fibre surface 

which requires the avoidance of light absorption by the fibre coating and/or cladding. In this 

case, the effect of total reflection does not impede the light transfer into the fibre. Due to little 

differences in the refractive index of core and cladding (max. 0.1), the critical angle for light 

coupling into the fibre is very low. Thus, most parts of the light emission will pass the undoped 

optical fibre without being transported via total reflection. Fluorescent fibres improve the light 

coupling efficiency and the differences in the refractive index ∆�"  of core and cladding 

materials still remains important [69]. The fluorescent dye absorbs light independently of the 

angle of incidence and emits fluorescence into all directions in space. Consequently, a higher 

percentage of light fulfils the requirements relating to total reflection, and is guided to the 

detector. The coupling efficiency is improved with increasing amounts of fluorescent dye then 

the attenuation characteristic of the fibre is decreased. Therefore the fluorescent optical fibres 

are beneficial for effective coupling of light into the fibres. Unfortunately, commercially 

available fluorescent plastic optical fibres (FlPOFs) are not compatible when embedded into the 

silicone rubber insulation system as mentioned in the previous section. Silicone optical fibres 

seem to be suitable for this application. But, unluckily, the fluorescent silicone optical fibres 

(FlSiOFs) are not currently commercially available. Hence, a new fluorescent silicone optical 

fibre has to be developed and fabricated. 

 

For integration of fibre-optic PD sensors into the real rubber stress cones a high 

flexibility of the fibre-optic material is necessary because an expansion of at least 10 % of the 

rubber stress cone perpendicular to the fibre axis is performed during the installation in cable 

accessories. Again, commercially available fluorescent plastic optical fibres do not meet this 

demand. In contrast siloxane is a flexible polymer with good properties for the application as 

elastomeric optical fibre material. Siloxane materials are highly transparent, have low optical 

attenuation and good mechanical as well as electrical properties. Silicones are well known for 

their high gas permeability and outstanding UV stability. Moreover, their refractive index can 

be tuned within a relatively wide range (�" ≈ 1.38 to 1.58) by modifying the base polymers. 

Hence, transparent siloxanes would be appropriate for the development of a new FlSiOF [69].  

 

The major disadvantage of mixing a fluorescent dye into the polymer is the migration 

of the dyes to the adjacent insulation material. Colour bleeding is an unacceptable 

phenomenon for long-term operation of FlSiOF sensing elements embedded into insulation 

materials. Thus, covalent bonding is necessarily required to prevent the migration of the 

fluorescent dye. Transparent silicone rubber is normally formed by platinum-catalysed 

hydrosilylation of two liquid siloxane components (cross-coupling), one carrying vinyl 

groups and the other consisting of hydrido-functionalized siloxane. Therefore, the main idea 

is that the vinyl modified dyes can be covalently bound to the siloxane polymer matrices by 

hydrosilylation reaction with hydridro substance silicone. These can be taken advantage of 

the platinum-catalysed cross-coupling reaction during the curing process of the siloxane 

network, as shown in Figure 2.17. To reach this goal, novel fluorescent silicone rubbers are 

being developed at BAM division 8.6 [69]. 
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Figure 2.17: Scheme of the platinum-catalysed cross-coupling reaction of modified vinyl, 

hydridosiloxanes and respectively of a functionalized fluorescent dye (green sphere) with 

hydridosiloxanes 

 

Fluorescent dyes of the coumarin family are known to fulfil most of these 

requirements.  Several coumarin dyes were functionalized with unsaturated hydrocarbon 

groups. The optical properties of the dyes in the siloxane matrices and their photophysical 

properties were examined as illustrated in Figure 2.18 [69].  

 

  

Figure 2.18: Absorption and emission spectra of coumarin modified FlSiOF over the 

spectrum of PD light emission in transparent silicone rubber 

 
However, the influences of fluorescent modification on dielectric strength behaviour 

of silicone rubber need to be investigated. Because of such material will be operated under 

high electrical stress. It should not negatively influence the dielectric performance of the 

original rubber stress cone. 

 
2.5.3 Modification of siloxane insulation material 
 

For the establishment of the optical PD detection method in HV/EVH cable 

terminations it is necessary to use highly transparent rubber stress cones. However the current 

rubber stress cones used are translucent elastomers. Percentage of optical transmission in the 

translucent silicone rubbers is for sure poorer than that in the transparent types, as shown in 

Figure 2.19 a). This causes loss or distortion of the signals as well as a reduction of sensor 
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sensitivity. Unfortunately, the values of tensile strength and elongation at break of the 

transparent silicones are normally low. In order to improve such a poor mechanical strength, 

the addition of reinforcing fillers (mostly fumed silica) can be used but such fillers must not 

degrade optical properties of the rubber itself. To further enhance the transparency one 

possibility is to use hydrophobic nanoparticles as fillers. These fillers are much smaller than 

the wavelength of visible light and reduce the proportion of light being scattered at the 

interface of nanoparticles and matrix. The influence of nanofiller dispersion in silicone rubber 

matrix must be considered. A high concentration of surfactant in the matrix material can lead 

to reduced adsorption properties. Indeed silica nanoparticle filled siloxanes maintain highly 

transparent in the visible regime between 400 nm and 800 nm even at a weight load of 15 % 

as shown in Figure 2.19 b). Further investigations on the mechanical properties of 

nanoparticle filled silicone rubber at a lower filling grade will be elucidated by covalently 

linking nanoparticles to the silicone network. Therefore surface modification of commercial 

silica nanoparticles will be performed in the future.  

 

  
     a) Light transmission in transparent and 
         translucent silicone rubbers 

 b) Light transmission in transparent silicone  
     rubber with different wt% of silica nanofillers 

Figure 2.19: Light transmission in the optically compatible silicone rubbers (a) and influence 

of SiO nanofillers on percentage of light transmission in transparent silicone rubber (b) 

 
2.6 Conclusions 
 

Silicone rubbers and their specific properties related to desirable features in electrical 

engineering are reviewed. The final properties of silicone rubbers can be modified by 

addition of fillers. For their performance reasons silicone rubbers are increasing used as 

elastomeric insulation material for electrical engineering applications such as insulators, 

cable accessories, LV safety cables and silicone rubber insulated cables. Due to their 

molecular structure, silicone rubbers are also a promising solution for insulating applications 

in the transmission and distribution systems. Improvements in their useful properties for 

HV/EHV applications have been made in recent years. Transparent siloxane materials 

provide good performance for development of a new fluorescent silicone optical fibre used as 

optical sensing elements for optical PD detection technology in HV/EHV cable terminations 

are being developed at BAM. The preliminary results are presented in chapter 2.5. Indications 

are that new silicone rubber types for electrical and optical applications will continue to be 

developed. 
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3  Theoretical background 

 
As a response to an increasing demand for electrical energy, transmission voltage 

levels have increased considerably over the last decades. Designers are therefore forced to 

reduce the size and weight of high-voltage electrical equipment in order to remain 

competitive. The high-voltage insulation must work satisfactorily as part of a complex system 

in high-voltage electrical equipment. There is an increased need for insulation to perform 

satisfactorily after it has been subjected to high electric fields followed by a period of electro-

thermo-mechanical stresses in an aggressive environment. In designing the system’s 

insulation the two areas of specific importance are:  

i) determination of the voltage stresses which the insulation must withstand, and 

ii) determination of the response of the insulation when subjected to these voltage 

stresses.  

 

This, in turn, is possible only through a thorough understanding of the properties of 

insulating materials, and knowledge of electric fields and methods of controlling electric 

stress. 

 
3.1 Electrical field distribution and breakdown strength of insulating materials 
 

It is often assumed that a voltage %  between two electrodes may be adequately 

insulated by placing a homogeneous insulating material of breakdown field strength �& which 

is considered as a characteristic constant of the material, between these electrodes. The 

necessary separation ' may then simply be calculated as ' = % �&⁄ . Although the electrodes 

are usually well defined and limited in size, the experienced designer will be able to take care 

of the entire field distribution between the electrodes and will realize that in many cases only 

a small portion of the material is stressed to a particular maximum value �)*+.  

 

One may conclude that the condition �)*+ = �& would provide the optimal solution 

for the insulation problem, which thus could be solved merely by field analysis. This is only 

true when �& has a very specific value directly related to the actual field distribution, and can 

be calculated for very well-known insulating materials, such as gaseous dielectric. However, 

for most solid and liquid dielectrics such values are only approximately known. Hence a 

special approach is necessary to solve the insulation problem with fair accuracy. 

 

These statements will be elucidated and confirmed by considering the simple example 

of an insulation system shown in Figure 3.1, which represents a rod–plane electrode 

configuration insulated by atmospheric air at atmospheric pressure. Whereas the gap length and 

the air density are assumed to remain constant, the diameter ∅∅∅∅ of the hemispherical-shaped rod 

will change over a very wide range as indicated by the dashed lines ∅� < ∅ <  ∅�.  
 

Two field quantities may be defined for rods of any diameter: the maximum field 

strength �)*+ at the rod tip (hemispherical heads) and the mean value of the field strength �),*- = % '⁄ . With these two quantities an ‘electric field factor’ η is defined as Equation 

(3.1) originally proposed by Schwaiger [23]. 
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�./01230	43/.'	450162,			η		 = 		 �),*-�)*+ 		= 		 %'	�)*+ 																																											(3.1) 
 

This factor is clearly a pure quantity related to electrostatic field analysis only. In a 

more complex electrode arrangement, �)*+  may appear at any point on an electrode, not 

necessarily coinciding with the points providing the shortest gap distance '. Electric field 

factor η equals unity or 100 % for a uniform field and it approaches zero for an electrode 

with an edge of zero radius or needle-point electrode. 

 

 

Figure 3.1:  Rod-to-plane electrode configuration with different electric field factor η 

 
If the breakdown of the gap is only caused by �)*+ (�& = �)*+), then the breakdown 

voltage %& is obtained from Equation (3.1) as: 

 %& 	= 	�)*+ × ' × η		 = 	 	�& × ' × η	   (with �& = �)*+).                       (3.2) 

 

Equation (3.2) illustrates the concept of the electric field factor η. The electric field 

factor η can explain the electric field distribution between the electrode configurations [23]. 

As 0 < η ≤ 1 for any field distribution, it is obvious that field non-uniformities (η < 1) reduce 

the breakdown voltage of electrical insulation. 

 

It is necessary to check the validity of Equation (3.2) with experimental results [23]. 

In Figure 3.2 the DC breakdown voltage %& in atmospheric air is shown for the electrode 

arrangement of Figure 3.1 for gap length d = 10 cm as function of electric field factor η. The 

dashed straight line corresponds to Equation (3.2) with �&  = 26.6 kV/cm, a value which 

agrees well with measured breakdown field intensities in atmospheric air under normal 

conditions (temperature 20 °C; pressure 101.3 kPa; humidity 11 g/m
3
). The highest 

breakdown voltage of the gap can be calculated from %& = 26.6 × 10 = 266 kV for a uniform 

field (η = 1). This can also be found in the calibration tables for measuring sphere gaps 
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discussed in the standard IEC 60052 [70], for spheres of large diameters, i.e. ∅ ≥ 100 cm. 

With small gaps, the field distribution is uniform in the highly stressed regions. The measured 

breakdown voltages, obtained with positive and negative DC voltages, are also shown over 

wide ranges of η or diameter ∅. The differences are remarkable. The lowest measured %& 

values are polarity dependent due to the influence of space charges. Except when η = 100 %, 

the breakdown voltages are always higher than those predicted by Equation (3.2). For η > 0.3 

for negative and about 0.1 for positive polarity, the breakdown is not preceded by any 

noticeable pre-discharge phenomenon, i.e. corona, partial discharges. Thus it is obvious that �&  in Equation (3.2) is not a constant value for a given gap length. A calculation of 

breakdown field strength in atmospheric air using the streamer breakdown criterion and the 

relevant field distribution within the gap would confirm the dependence of the breakdown 

strength �&  upon rod or sphere diameter ∅ or – more accurately – upon the actual field 

distribution. In reality, the lowest breakdown voltage is not reached with the smallest values 

of electric field factor η. Below the minimum breakdown voltages, the sparkover of the gap 

is influenced by pre-discharges, which, for lower voltages, partially bridge the gap and thus 

produce charged particles, completely altering the field distribution due to space charges. 

Computation of the breakdown voltages in this region based upon physical parameters only is 

inaccurate due to a lack of precise knowledge of the physical data and complications 

introduced due to the moving space charge [23]. 

 

 

Figure 3.2:  Breakdown and corona inception voltage for the electrode arrangement of Figure 

3.1 in atmospheric air (normal conditions) with ' = 10 cm, for positive and negative DC 

voltage (η see Equation (3.1)) [23] 

 

This example, which is typical for most insulation media, demonstrates the 

complexity of the problems, i.e. the interaction between the static field distribution, field 

changes due to discharge development, and parameters related to the insulation materials. 

Diameter ∅, in mm 
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Further complications arise from differences in behaviour with direct, alternating and impulse 

voltages. For any other material, the results would be different even for the same electrode 

configuration. The proper design of insulation systems is therefore very difficult. 

Nevertheless, the maximum field intensity �)*+  within any insulation system may be 

considered as a significant quantity even though it only serves as a guide. 

 

In practice, data on the dielectric stresses in the insulation materials used in HV 

equipment obtained by field analysis must be validated by extensive tests in which the 

breakdown stresses are experimentally determined for similar insulation arrangements. 

Computations of the stresses are most advanced in gaseous dielectrics. Tests necessary for 

most of the other materials need not, however, to involve complete experimental models 

which precisely simulate the actual equipment. In general, breakdown stresses are dependent 

upon the field distribution within high field regions. Thus, models representing only those 

regions in which high stresses occur are, in general, sufficient; this offers definite advantages. 

Apart from saving time and costs by simplifying the experimental insulation assemblies, the 

required voltage levels may also often be reduced significantly, as the models can be reduced 

in size using electrode configurations in which the low field regions are absent. 

 
3.2 Fields in homogeneous, isotropic materials 
 

Many electrical insulation systems contain only one type of dielectric material. Most 

materials may be considered as isotropic, i.e., the electric field vector E and the displacement 

vector ;  are parallel. At least on the macroscopic scale many materials at uniform 

temperature may also be assumed to be homogeneous. The homogeneity is well-confirmed in 

insulating gases and purified liquids. Solid dielectrics are often composed of large molecular 

structures forming crystalline and amorphous regions so that the homogeneity of the 

electrical material properties may not be assured within microscopic structures. The materials 

will also be assumed to be linear; that means, the electric susceptibility is not a function of 

electric field strength. On a macroscopic basis, the permittivity � will then simply be a scalar 

quantity correlating ; and <, with ; = 	�< or ; =	�=��<. 

 

At this stage, it is assumed here that the influence of electrical conductivity > on the 

field distribution may be ignored; this is justified for most insulating materials when they are 

stressed by alternating voltages at frequencies above about 1 Hz. Thus, simple electrostatic 

field theory may be applied to most of the practical applications concerned with power 

frequency or impulse voltages. In case of direct or slowly alternating voltages the use of 

simple electrostatic field theory would be impeded by conduction phenomena. In the limiting 

case, the field is purely given by conduction and the correlation between field strength < and 

current density ? is ? = ><, where > is electrical conductivity (or the complex conductivity).  

 

The electrical conductivity > is dependent upon time due to relaxation phenomena, 

upon temperature and often also upon field intensity. This problem is only mentioned here to 

emphasize the difficulties encountered with DC voltage applications. The following examples 

for electrostatic field distributions are typical for HV power cables and the electrodes for 

dielectric strength testing. 
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3.2.1 Coaxial cylindrical fields 
 

Electrode configurations providing two-dimensional cylindrical shape is used in high-

voltage equipment, i.e. coaxial power cables, busbars for SF6-insulated switchgears (GIS), as 

well as in laboratories for fundamental research or field stress control. Cross-section of 

coaxial cylinders is sketched in Figure 3.3 a) with cylindrical conductors of the inner and 

outer radii 2� and 2, respectively. The electrical field distribution is symmetrical with respect 

to the cylinder axis. The lines of force are radial and the field strength � is only a function of 

the distance x from the centre. The cylinders are then uniformly charged over their surface 

with a charge per unit length @ .⁄ , when a voltage %  is applied to the electrode. Using 

Gauss’s law, the field strength �(A) at A is derived from the following: 
 

�(A) 	= 	 @ .⁄2C�=��
1A 		= 		 %A	ln	(DEDF)																																																				 (3.3) 

 

where �= = 8.854 × 10
-12

 F/m and �� is the relative permittivity or dielectric constant of the 

insulation. The electric field in a coaxial cable varies only in the radial direction as the field 

magnitude decreases with increasing distance from the conductor center (see Figure 3.3 b) 

and c)). Its value is maximum at x = 2� and minimum at x = 2. The capacitance G per unit 

length (in F/m) of such a cable is given as:  
 

G	 = 	2C�=��ln	(22�) 						F/m.																																																										(3.4) 

 

 
 

 

Figure 3.3:  Cross-sections of coaxial cylinders a), and an XLPE coaxial cable b); the electric 

field varies in the radial direction of the coaxial cable c) 

c) 

a) b) 



34  BAM-Dissertationsreihe 
 

 

The maximum stress �)*+ is usually near the inner conductor area at x = 2�, therefore, �)*+ is obtained from Equation (3.3) as shown in Equation (3.5).  
 

�)*+ 	= 	 %
2� ln L22�M	

																																																																	(3.5) 

 

High degree of electrical stress is behind many of the aging mechanisms in the 

insulation of electrical power cables. It has been widely known that the use of multiple 

insulation layers of differing permittivity can be used to reduce the levels of electrical stress 

at the centre of the cable. However this theory relies on the use of a discrete method of stress 

grading [23]. The insulation medium used in modern power cables is typically XLPE which 

has a high dielectric strength and is capable of withstanding large value of imposed electrical 

stress. However, when a cable end is terminated for testing and other purposes, the field at 

such an end region is no longer purely radial and a tangential component is also introduced. 

Such a tangential field component can cause partial and surface discharges which 

consequently can lead to breakdown of the cable insulation. Therefore HV cable terminations 

are needed. 

 
3.2.2 Sphere-to-plane electrode configuration 
 

In practice, the sphere-to-plane electrode configuration is widely used in many 

investigations of dielectrics at fields approaching the breakdown value. This geometry 

permits a single well-defined point of maximum field and gradual reduction of the field far 

from the point. The field lines are not accurately parallel to the axis of symmetry, but for a 

sufficiently large sphere radius and small gap, the approximation may be sufficiently accurate 

as a uniform field (η = 1) and the field intensity can be calculated like the case of parallel-

plane geometry E = V/d. A schematic representation of the sphere-to-plane electrode system 

is presented in Figure 3.4. 
 

 

Figure 3.4: The sphere-to-plane electrode system 

 

The electrostatic field, potential and capacitance of a sphere-to-plane electrode system 

have been analysed theoretically in several works [71-72]. The field distribution can 

analytically be calculated based upon the method of image charges [23]. The field pattern, 

and consequently, the potential distribution for the real electrodes system is equivalent to one 

generated by two point charges. The approximation for the maximum field strength �)*+ is 

derived from the image charge technique shown in Equation (3.6). 
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�)*+ 		≅ 		0.9 %' Q + 'Q 		,																																																												(3.6) 

 

where d is the shortest gap distance between the electrodes, R is the radius of sphere electrode 

and V is the applied voltage. 

 
3.3 Breakdown in solid dielectrics 
 

Solid insulation forms an integral part of high-voltage equipment. The solid materials 

provide the mechanical support for conducting parts, and at the same time, insulate the 

conductors from one another. Practical insulation structures frequently consist of 

combinations of solids with liquid and/or gaseous media. A good dielectric should have low 

dielectric loss, high mechanical strength, should be free of gaseous inclusions and moisture, 

and shall be resistant to thermal and chemical deterioration. Therefore the knowledge of 

failure mechanisms of solid dielectrics under electric stress is of great importance. In gases 

the transport of electricity is limited to positive and negative charge carriers, and the 

destruction of insulating properties involves a rapid growth of current by the formation of 

electron avalanches. The mechanism of electrical failure in gases is now understood 

reasonably clearly. This is, however, not the case for solid insulation. Although numerous 

investigators have studied the breakdown of solids for almost a century, and a number of 

detailed theories have been put forward which aim to explain quantitatively the breakdown 

processes in solids, the state of knowledge in this area is still very crude and inconclusive. 
 

Studies on electrical conduction studies in solids are obscured by the fact that the 

transport phenomena besides electronic and ionic carriers include also currents due to the 

slower polarisation processes such as slow moving dipoles (orientation polarisation) and 

interfacial polarisation [23]. Electrical methods are unable to distinguish between the 

conduction currents and the currents due to polarisation that have a longer time constant than 

the duration of a particular experiment. At low stresses and normal temperatures, conduction 

by free electrons and ions in solids is the exception. Examples in which the conduction is 

believed to be of the simple electrolytic type at room temperature and above are glasses. In 

this case the conduction–temperature relation is found to be of the form shown in equation 

(3.7), where A and u are empirical constants, and k is the Boltzmann’s constant. 
 >	 = T	/(U VWX)																																																																							(3.7)  
 

As the stress in solids increases and approaches the breakdown stress, the current is 

found to increase exponentially, but does not vary so markedly with time for steady voltage. 

This increased current at high stresses is generally believed to result from the injection of 

carriers from an electrode or from electron multiplication in the bulk material or both. In 

addition, if impurities or structural defects are present, they may cause local allowed energy 

levels (traps) in the forbidden band, and electrons may pass through the insulator by jumping 

from one trap to another (hopping effect).  
 

From the electrodes, the electrons are believed to be ejected by either the ‘Schottky’s 
emission effect’ or the ‘field emission effect’ (tunnelling) [23]. Once injected into the 

material, the electron multiplication is thought to be analogous to that in a gas discharge. 

Under certain strictly controlled experimental conditions, the breakdown of solids may 

therefore be accomplished by a process similar to gas breakdown. Under normal industrial 



36  BAM-Dissertationsreihe 
 

conditions, however, the same solid materials are found to exhibit a wide range of dielectric 

strength, depending upon the conditions of the environment and the method of testing. The 

measured breakdown voltage is influenced by a large number of external factors such as 

temperature, humidity, duration of test, whether AC, DC, or Impulse voltage is applied, 

whether pressure is applied to the electrodes, by discharges in the ambient or surrounding 

medium, by discharges in cavities and many other factors. The fundamental mechanisms of 

breakdown in solids are understood much less clearly than those in gases; nevertheless, 

several distinct mechanisms have been identified and treated theoretically [23, 73-76]. 

 

The mechanism of breakdown in solid dielectrics is a complex phenomenon. The 

breakdown of solid dielectrics does not only depend upon the magnitude of voltage applied 

but it is also a function of time for which the voltage is applied. The product of the 

breakdown voltage and the logarithm of the time required for breakdown is almost a constant. 

The dielectric strength of solid materials is affected by many factors, e.g. ambient 

temperature, humidity, duration of test, impurities or structural defects, whether AC, DC or 

Impulse voltages are being used, whether pressure is applied to test electrodes etc. The 

mechanism of breakdown in solids is again less understood. However, as said earlier, the 

time of application plays an important role in breakdown process. For discussion purposes, it 

is convenient to divide the time scale of voltage application into regions in which different 

mechanisms operate as shown in Figure 3.5.  
 

 

Figure 3.5: Mechanisms of failure and variation of breakdown strength in solids with time of 

stressing [23, 74] 

 

The various breakdown mechanisms can be classified as follows: 

a) intrinsic or ionic breakdown,  

b) electromechanical breakdown, 

c) failure due to treeing and tracking,  

d) thermal breakdown, 

e) electrochemical breakdown, and 

f) breakdown due to internal discharges. 
 

The mechanisms are briefly described in a qualitative manner. 
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3.3.1 Intrinsic breakdown 
 

If the dielectric material under test is pure and homogeneous, the temperature and 

environmental conditions are carefully controlled and the sample is so stressed that there are 

no external discharges. Under voltages applied for a short time of the order of 10
-8

 seconds, 

the electric strength increases rapidly up to an upper limit known as intrinsic electric 
strength. The intrinsic strength of the dielectric material depends mainly upon the material 

and temperature conditions. Experimentally, this highest dielectric strength can be obtained 

only under the best experimental conditions when all extraneous influences have been 

isolated. To achieve the highest strength, the sample has to be so designed that there is a high 

stress in the centre of the solid under test and very low stress at the edges which cause 

discharge in the medium as shown in Figure 3.6. 

 

 

Figure 3.6: Electrode arrangement used for measuring intrinsic breakdown in solids 

 

The stresses required for an intrinsic breakdown are quite over 10
6
 V/cm. The 

intrinsic strength is generally assumed to be reached when electrons in the insulator gain 

sufficient energy from the applied field to cross the forbidden energy gap from the valence to 

the conduction band. The criterion is formulated by solving an equation for the energy 

balance between the gain of energy by conduction electrons from the applied field and its loss 

to the lattice. Several models have been proposed in an attempt to predict the critical value of 

the field which causes intrinsic breakdown, but no completely satisfactory solution has been 

obtained yet [23, 74]. 

 

In pure homogeneous dielectric materials the conduction and the valence bands are 

separated by a large energy gap, and at room temperature the electrons cannot acquire 

sufficient thermal energy to make transitions from valence to conduction band. The 

conductivity in perfect dielectrics should therefore be zero. In practice, however, all crystals 

contain some imperfections in their structures due to missing atoms, and more frequently due 

to the presence of foreign atoms (impurities). The impurity atoms may act as traps for free 

electrons in energy levels that lie just below the conduction band, as illustrated schematically 

in Figure 3.7. At low temperatures the trap levels will be mostly filled with electrons caught 

there as the crystal was cooled down during its manufacture. At room temperature some of 

the trapped electrons will be excited thermally into the conduction band, because of the small 

energy gap between the trapping levels and the conduction level. An amorphous crystal will 

therefore have some free conduction electrons. 

 

When a field is applied to a crystal, the conduction electrons gain energy from it, and 

due to collisions between them the energy is shared by all electrons. For a stable condition 

this energy must be somehow dissipated. If there are relatively few electrons such as in pure 

crystals, most of the energy will be transferred to the lattice by electron-lattice interaction. In 

steady state conditions the electron temperature Z,  will be nearly equal to the lattice 

temperature Z[.  
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Figure 3.7: Schematic energy level diagram for an amorphous 

 

In amorphous dielectrics the electron interactions predominate, the field raises the 

energy of the electrons more rapidly than they can transfer it to the lattice, and the electron 

temperature Z,  will exceed the lattice temperature Z . The effect of the increased electron 

temperature will be a rise in the number of trapped electrons reaching the conduction band. 

This increases the material’s conduction and as the electron temperature continues to increase, 

a complete breakdown is eventually reached known as ‘high-temperature breakdown’ [23]. 

 

Neglecting for the moment the details of the mechanism of energy transfer and 

assuming electronic conduction in solids, for an applied field the rate of energy gained by 

electrons from the field will be a function of the field strength E and the lattice temperature T. 

The rate at which this energy is transferred to the lattice will depend only on T. In addition, 

both rates will depend on parameters describing the conduction electrons. If we denote these 

parameters collectively by 5 , then for steady-state conditions the energy equation for 

conduction electrons may be written as 
 

  T(�, Z, 5) 	= 	\(Z, 5) ,                                                     (3.8) 
 

where the left-hand side represents the rate of energy gain by electrons from the applied electric 

field, and the right-hand side is the rate of energy transfer from electrons to lattice. Equation 

(3.8) can be physically satisfied for values of electrical field E below a certain critical value �], 

and this value has been considered as the intrinsic critical field [23]. The value of �] can be 

found by identifying correctly the parameters 5 and then solving equation (3.8) for the critical 
field strength �] . The relationship between the parameters in equation (3.8) is illustrated in 

Figure 3.8, which shows the average rate of energy gain from the field for various field strengths 

and the rate of energy loss to the lattice. For the critical field criterion, equation (3.8) becomes 
 

  T(�], Z, 3) 	= 	\(Z, 3)                                                       (3.9) 
 

where 3 is the ionization energy corresponding to the transition of an electron from a valence 

band to a conduction band. From Figure 3.8 it is seen that for an electron to remain 

accelerated and thus lead to instability at any given field, it should find itself with an energy 

which brings it above the curve B so that it gains energy more rapidly than it loses. Equation 

(3.9) enables to determine the critical field strength �]  that is required to cause collision 

ionization from valence to conduction band. For field strength exceeding �] the electrons 

gain energy more rapidly from the field than they lose to the lattice and breakdown will 

result. The above mechanism applies to pure solids in which the equilibrium is controlled by 

collisions between electrons and the lattice vibrations. 
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Figure 3.8: The average rate of energy gain T(�, Z, ,̂) from an applied field for various 

field strengths and the average rate of energy loss to lattice \( [̂, Z) [23] 

 
Fröhlich and Paranjape [76] have extended this model to amorphous materials in 

which the concentration of conduction (or trapped) electrons is high enough to make 

electron–electron collisions the dominant factor. In this case it is necessary to calculate the 

electron temperature Z,  which will be higher than the lattice temperature Z . The energy 

balance equation (3.8) has then the form 
 

  T(�, Z,, Z) 	= 	\(	Z,, Z).                                                      (3.10) 
 

This relationship is plotted schematically in Figure 3.9 in which the family of curves 

plotted for various values of � represents the left-hand side of the equation and the single 

curve � = � represents the right-hand side. The intersections give possible solutions for the 

various electron temperatures. 
 

 
 

Figure 3.9: Rate of energy gain and loss for high temperature intrinsic breakdown model [23] 

 

To date, there has been no direct experimental proof to show whether an observed 

breakdown is intrinsic or not, except for plastic materials such as polyethylene, and so 

conceptually it remains an ideal mechanism identified as the highest value obtainable after all 

secondary effects have been eliminated [23]. 
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3.3.2 Streamer breakdown 
 

This is similar to breakdown in gases due to cumulative ionization. The concept is 

similar to the streamer theory developed by Raether (positive streamer theory), Meek and 

Loeb (negative streamer theory) for gases discussed earlier [23, 74]. Conduction electrons 

gain sufficient energy above a certain critical electric field and cause liberation of electrons 

from the lattice atoms by collisions. Under uniform field conditions, if the electrodes are 

embedded in the specimen, breakdown will occur when an electron avalanche bridges the 

electrode gap. An electron within the dielectric, starting from the cathode will drift towards 

the anode and during this motion gains energy from the field and loses it during collisions. 

Occasionally, the free path may be long enough for the energy gain to exceed the lattice 

ionization energy and an additional electron is produced on collision. 

 

We know that the strength of a chain is given by the strength of the weakest link in 

the chain. The covalent bond, typical of polymeric materials, is very sensitive to ionizing 

radiations. When the energy gained by an electron exceeds the lattice ionization potential, an 

additional electron will be liberated due to collision of the first electron. This process repeats 

itself resulting in the formation of an electron avalanche. Breakdown will occur, when the 

avalanche exceeds a certain critical size. In practice, breakdown does not occur by the 

formation of a single avalanche itself, but occurs as a result of many avalanches formed 

within the dielectric and is extending step by step through the entire thickness of the 

dielectric material as shown in Figure 3.10. This can be demonstrated in a laboratory by 

applying a high-frequency and high-voltage waveform between point-plane electrodes with a 

needle embedded in the transparent silicone rubbers. An obvious carbonization path is 

originated from the tree tip to the grounded electrode. 

 

 
 

Figure 3.10: Breakdown channels in transparent polymer between point-plane electrodes 

 
3.3.3 Electromechanical breakdown 
 

Substances which can deform without fracture may collapse when the electrostatic 

compression forces on the test specimen exceed its mechanical compressive strength. The 

compression forces arise from the electrostatic attraction between surface charges which 

appear when the voltage is applied. The pressure exerted when the field reaches about 1.0 

MV/cm may be several kN/m
2
. If the initial thickness of the specimen is '=  and is 
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compressed to a thickness '  under an applied voltage V, then the electrically developed 

compressive stress _̀  is in equilibrium with the mechanical compressive strength _) if 
 12 �=�� %

' 	= 		a ln b'=' c																		 
 

or 

% 	= 		 2a�=�� ' ln b'=' c	,																																															(3.11) 

 

where �= and �� are the permittivity of free space and the relative permittivity of the dielectric 

respectively, and a is the Young's modulus of the dielectric. Differentiating with respect to ', 

then we get 

 

2% d%d' 	= 		 2a�=�D e2' ln '=' − '. ''= . '='f 	= 		0 

 

or                                                      2' ln ghg 		= 		'    

or                                                           	ln ghg 	= 		0.5  . 

 

We find that expression (3.11) has a maximum when ' '=⁄  = exp[-1/2] = 0.6. 

Therefore, no real value of %  can produce a stable value of ' '=⁄  less than 0.6 (or the 

reduction in thickness of the specimen cannot be more than 40 %). If the intrinsic strength is 

not reached at this value, a further increase in %  makes the thickness unstable and the 

specimen collapses. The highest apparent strength is then given by 
 

�& 	= 		 %'= 	= 		0.6i a�=�� 			.																																																(3.12) 

 

This treatment ignores the possibility of instabilities occurring in the lower average 

field because of stress concentrations at irregularities, furthermore the dependence of a on 

time and stress. Also when the material is subjected to high mechanical stresses, the theory of 

elasticity cannot be used to estimate plastic deformation that have to be considered here. 

 
3.3.4 Edge breakdown and treeing 
 

In practical insulation systems, which use solid material, it is stressed together with 

other surrounding materials, e.g. oil, air or gas. If one of the materials is, for example, a gas 

or a liquid, then the measured breakdown voltage will be influenced more by the weak 

medium than by the solid. A cross-section of a simplified example is shown in Figure 3.11 

which represents testing of a dielectric sheet between sphere-plane electrodes. Ignoring the 

field distribution, i.e. assuming a homogeneous field, if we consider an elementary cylindrical 

volume with the area dA spanning the electrodes at distance x as shown in Figure 3.11, then 

on applying the voltage V between the electrodes, a fraction %� of the voltage appears 

 

%� 	= 		 %'�'� + L���M '
			.																																																														(3.13) 
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'� and ' represent the thickness of the media 1 and 2 in Figure 3.11, and �� and � are their 

respective permittivities.  

 

 

Figure 3.11: Breakdown of solid specimen due to ambient discharge-edge effect 

 
For the simple case that a gaseous dielectric is in series with a solid dielectric stressed 

between two parallel plate electrodes, the stress in the gaseous part will exceed that of the 

solid by the ratio of permittivities �j = � ��⁄  or �� = �j�. For the case shown in Figure 

3.11, the stress in the gaseous part increases further as x decreases, and reaches very high 

values as '� becomes very small (point B in Figure 3.11). Consequently, the surrounding 

medium breaks down at a relatively low applied voltage. The charge at the tip of the 

discharge will further disturb the applied local field and transform the arrangement to a 

highly non-uniform system. The charge concentration at the tip of a discharge channel has 

been estimated to be sufficient to give a local field of the order of 10 MV/cm, which is higher 

than the intrinsic breakdown field. A local breakdown at the tips of the discharge is likely, 

and as a the result of many such breakdown channels formed in the solid and extending step 

by step through the whole thickness, a complete breakdown occurs. 

 

The breakdown event in solids in general is not accomplished by the formation of a 

single discharge channel, but assumes a tree-like structure as shown in Figure 3.12. This can 

readily be demonstrated in a laboratory by applying an impulse voltage between point-plane 

electrodes with the point embedded in a transparent solid, e.g., plexiglass, transparent silicone 

rubbers. The tree pattern shown in Figure 3.12 was recorded by Cooper with a waveshape of 

1/30 µs impulse voltage at the same amplitude [23]. After application of each impulse the 

channels were observed with a microscope, and new channels were recorded. Not every 

impulse will produce a channel. The time required for this type of breakdown under 

alternating voltage will vary from a few seconds to a few minutes. The tree-like pattern 

discharge is not specifically limited to the edge effect but may be observed in other dielectric 

failure mechanisms in which nonuniform field stresses predominate. 
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Figure 3.12: Breakdown channels in plexiglas between point-plane electrodes. Radius of point = 

0.01 in; thickness 0.19 in. Total number of impulses = 190. Number of channels produced = 16; 

(n) point indicates end of nth
 channel. Radii of circles increase in units of 10

-2
 in [23] 

 

3.3.5 Thermal breakdown 
 

When an insulating material is subjected to an electric field <, the material gets 

heated up because of conduction currents and dielectric losses due to polarisation. Heat is 

continuously generated within the dielectric. In general, the conductivity > increases with 

temperature and the conditions of instability are reached when the rate of heating exceeds the 

rate of cooling and the specimen may undergo thermal breakdown. The situation is illustrated 

in Figure 3.13.  
 

 
 

Figure 3.13: Thermal stability or instability under different applied fields [23] 
 



44  BAM-Dissertationsreihe 
 

The cooling of a specimen is represented by the straight line and the heating at 

various field strengths by curves of increasing slope. The test specimen is at thermal 

equilibrium corresponding to field �� at temperature Z� as beyond that heat generated is less 

than heat lost. Unstable equilibrium exists for field � at Z , and for field ��  the state of 

equilibrium is never reached and hence the specimen breaks down thermally. 

 

In order to obtain the basic equation for studying thermal breakdown, a small cube of 

face area T (m
2
) with side ∆A within the dielectrics is considered. Assuming that the heat 

flow in the x-direction is shown in Figure 3.14, then the 

   heat flow across face (1) = kT glgm  , 

   heat flow across face (2) = kT glgm + kT ggm LglgmM∆A ,  

where k is thermal conductivity. 

 

 
 

Figure 3.14: Cubical specimen – Heat flow 

 
The second term represents the heat input into the differential element. The heat flow 

per volume absorbed by the differential cube volume, 

 k ggm LglgmM 	= 		div	(k	grad	Z). 

 

The heat generated by the electric field is >�  and supposes that the rise in 

temperature of the dielectric block is ∆Z, in time '1. The conservation of energy requires that 

heat input into the element must be equal to the heat conducted away, plus the heat used to 

raise the temperature Z of the block or 

 

     heat generated  =  heat absorbed  +  heat lost to surroundings, 

 

that is; 

>� =	Gq 'Z'1 + div	(k	grad	Z)																																													(3.14) 

 

where Gq is the thermal capacity of the dielectric, > is the electrical conductivity, and in the 

case of alternating voltage the heat is generated primarily as a result of dipole relaxation, and 

the conductivity is replaced by r�=��ss where �= represents permittivity of free space and ��ss is 

the imaginary component of the complex relative permittivity of the material [23]. 
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To consider the critical thermal situation, equation (3.14) provides a solution. To 

solve it, one assumes that a critical condition arises and the insulation properties are lost, 

when at some points in the dielectric the temperature exceeds a critical temperature Z]. The 

solution gives the time required to reach Z] for a given field and boundary condition. The 

equation cannot be solved analytically for the general case since Gq , k  and >  may be all 

functions of temperature Z and > may also depend upon the applied field �. We consider two 

extreme cases for the solution of equation (3.14) [23]. 

 

Case I. This assumes a rapid build-up of heat so that heat lost to surroundings can be 

neglected and all heat generated is used in raising the temperature of the solid dielectric. We 

obtain an expression for ‘impulse thermal breakdown’ and equation (3.14) reduces to 

 

>� 	= 		 Gq 'Z'1 . 
 

The objective now is to obtain the critical field strength �]  which will generate 

sufficient heat very fast so that requirement above is met. Assuming that a ramp function 

field, that is � = LtuvuM 1, where 1] is the critical time is applied, then is valid 

 

>� 	= 		 Gq 'Z'� '�'1 . 
 

For the conductivity, can be assumed 
 >	 = 	>=/LU VWXM

 , 
 

where >= is the conductivity at ambient temperature Z= and k is the Boltzmann’s constant. 

Substituting for > and rearranging, we get 
 

x 1]�]
>=Gq �tu

= '�		 = 			x exp |− }kZ~ 'Zlu
l�

. 
 

For the case when } ≫ kZ and Z] ≫ Z= (Z] is critical temperature), the solution of the 

equation above is 
 

x 1]�]
>=Gq �tu

= '�		 = 			x exp |− }kZ~ 'Zlu
l�

 

 13 1] �=Gq �] 		= 			 Z= k} exp e }kZ=f 
 

Therefore   

�] 	= 		 �3GqkZ=>=}1] �=.# exp b }2kZ=c 

 

From the expression above follows that the critical condition requires a combination 

of critical time 1] and critical field. However, the critical field �] is independent of the critical 

temperature Z] due to the fast rise in temperature. 
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Case II. It concerns minimum thermal voltage, i.e., the lowest voltage for thermal 

breakdown. For this case, a thick dielectric slab is assumed that is constrained to ambient 

temperature at its surfaces by using sufficiently large electrodes as shown in Figure 3.15 [23]. 
 

 

Figure 3.15: Arrangement for testing a dielectric for minimum thermal breakdown voltage 

 

Applying a voltage, a temperature distribution within the dielectric will be established 

after some time with the highest temperature at the centre Z�, whereas the surface remains at 

ambient temperature. Increasing the voltage further, an equilibrium will be established at a 

higher central temperature Z. If the process is continued, a thermal runaway will eventually 

result as shown in Figure 3.16. 

 

In order to calculate the minimum thermal voltage, a point inside the dielectric with a 

distance x from the centre is considered. The voltage and temperature at that point is %+ and Z+ respectively. For this case can be assumed that all the heat generated in the dielectric will 

be carried away to its surroundings through the electrodes. Neglecting the term Gq('Z '1⁄ ), 

eqn (3.14) becomes 
 >� 	= 		 ggm Lk glgmM  . 

 

Using the relations >� = �  and � = 	−�% �A⁄  (where �  is current density), and 

inserting them into the equation above, we obtain 

 

−� �%�A 	= 		 ''A bk 'Z'Ac	. 
 

Integrating it to an arbitrary point x in the dielectric 

 

−� x '%��
= 		= 		x ''A bk 'Z'Ac 'Am

= 	 
 

−�%+ 		= 		k 'Z'A 

or 

%+> '%'A 		= 		k 'Z'A	. 
 

Substituting it for > = 	>= exp�−} kZ⁄ �, and integrating it from the centre of the 

dielectric to the electrode, we get 
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x %+'%	 = 		 k>=
�u ⁄

= x exp | }kZ~ 'Zlu
lh

 

 

%] 		= 		8 k>= x exp | }kZ~ 'Z.lu
lh

																																				(3.15) 

 

Equation (3.15) gives the critical thermal breakdown voltage %] , where Z]  is the 

critical temperature at which the material decomposes and the calculation assumes that Z] 

corresponds to the centre of the slab. The voltage %] is independent of the thickness of the 

specimen, but for thin specimens the thermal breakdown voltage becomes thickness 

dependent and is proportional to the square root of the thickness tending asymptotically to a 

constant value for thick specimens.  
 

V 2
> V

1

 
Figure 3.16: Temperature–time relationship for slow thermal stressing under various applied 

voltages [23] 

 

Under alternating fields the losses (>� + %rG tan !) are much greater than under 

direct fields. Consequently, the thermal breakdown strength is generally lower for alternating 

fields, and it decreases with increasing frequency of the supply voltage. These results 

correspond to a thick slab of material.  

 

The thermal breakdown is a well-established mechanism; therefore the magnitude of 

the product � tan ! which represents the loss is a very essential parameter for the application 

of insulation material. 

 
3.3.6 Erosion and electrochemical breakdown 
 

Practical insulation systems often contain cavities or voids within the dielectric 

materials or on boundaries between the solid dielectric and the electrodes. These cavities are 

usually filled with a medium (gas or liquid) of lower breakdown strength than the solid 

dielectric. Moreover, the permittivity of the filling medium is frequently lower than that of 

the solid insulation, which causes that the field intensity in the cavity is higher than in the 

dielectric. Accordingly, under normal working stress of the insulation system the voltage 

across the cavity may exceed the breakdown value and may initiate breakdown in the void. 
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Figure 3.17 shows a cross-section of a dielectric of thickness d containing a cavity in 

the form of a disc of thickness t, together with an analogue circuit. In the analogue circuit the 

capacitance G] corresponds to the cavity, G& corresponds to the capacitance of the dielectric 

which is in series with G], and G* is the capacitance of the rest of the dielectric. For 1 ≪ ', 

which is usually the case, and assuming that the cavity is filled with gas, the field strength 

across G] is given by the expression 

 �] 	= 		 ���*   , 

 

where �� is the relative permittivity of the dielectric. 

 

 

Figure 3.17: Electrical discharge in cavity and its equivalent circuit [23] 

 
For the simple case of a disc-shaped dielectric in solid insulation shown in Fig. 3.17, 

the discharge inception voltage applied across the dielectric can be expressed in terms of the 

cavity breakdown stress. Assuming that the gas-filled cavity breakdown stress is �]&, then 

treating the cavity as series capacitance with the healthy part of the dielectric can be written 

as 

G& 	= 		 �=��T' − 1  

and 

G] 	= 		 �=T1 			. 
 

The voltage across the cavity is 

 

%] 	= 		 G&G] + G& %* 	= 		 %*
1 + 1�� L'1 − 1M	. 

 

Therefore the voltage across the dielectric which will initiate discharge %*� in the cavity is 

given by 
 

%*� 	= 		�]&1 �1 + 1�� b'1 − 1c�	.																																																					(3.16) 

 

In practice a cavity in a material is often nearly spherical, and for such a case the internal 

field strength for �� ≫ ��] is  
 

�] 	= 		 3�����] + 2�� 	= 		 3�2 		,																																																												(3.17) 
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where � is the average stress in the dielectric under an applied voltage %*. When %] reaches 

breakdown value %�  of the gap 1 , the cavity may break down then. The sequence of 

breakdowns under sinusoidal alternating voltage is illustrated in Figure 3.18. The dotted 

curve shows qualitatively the voltage that would appear across the cavity if it did not break 

down. As %] reaches the value %�, a discharge takes place, the voltage %] collapses and the 

gap extinguishes. The voltage across the cavity then starts increasing again until it 

reaches	%�, when a new discharge occurs. Thus several discharges may take place during the 

rising part of the applied voltage %*. Similarly, on the negative half-cycle of AC applied 

voltage, the cavity discharges as the voltage across it reaches %U. In this way, groups of 

discharges originate from a single cavity and give rise to positive and negative current pulses 

when increasing and decreasing the voltage, respectively. 
 

 

Figure 3.18: Sequence of cavity breakdown under alternating voltages [23] 

 

When the gas in the cavity breaks down, the surfaces of the specimen provide 

instantaneous anode and cathode. Some of the electrons dashing against the anode with 

sufficient energy shall break the chemical bonds of the insulation surface. Similarly, positive 

ions bombarding against the cathode may increase the surface temperature and produce local 

thermal instability. Also channels and pits are formed which elongate through the insulation 

by the ‘edge mechanism’. Additional chemical degradation may result from the active 

discharge products, e.g. O3 or NO2, formed in air which may cause deterioration. The net 

effect of all these processes is a slow erosion of the material and a consequent reduction in 

the thickness of the specimen. 
 

In case of outdoor environment insulation, physically, when the discharges occur on 

the insulation surface, the erosion takes place initially over a comparatively large area. The 

erosion roughens the surface and slowly penetrates into the insulation, and at some stage will 

again give rise to channel propagation and ‘tree-like’ growth through the insulation. 
 

Normally for practical application it is important that the dielectric strength of a 

system does not deteriorate significantly over a long period of time (years). In practice, 

however, because of imperfect manufacture and sometimes poor design, the dielectric 

strength (e.g. in cables and their accessories) decreases with the life time and in many cases 

the decrease in dielectric strength �& with time 1 follows the empirical relationship 
 1�&� 	= 		06��15�1	,																																																								(3.18) 
 

where the exponent ‘�’ depends upon the dielectric material, the ambient conditions, and the 

quality of manufacture.  
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Figure 3.19 illustrates the case for several medium-voltage polyethylene cables 

produced by different manufacturers [23]. The breakdown strength has been plotted against 

time on a log–log scale. This is the main reason why high AC voltage testing is not 

recommended for on-site testing of cables. In fact, these days very low frequency (VLF) 

testing is being suggested (0.1 Hz) which simulates the effects of both AC 50 Hz and DC 

voltages and the dielectric strength of the specimen is not yet much affected by VLF voltage 

application. 

 

5

10

20

40

E
b
in
 k
V
/m
m

10-1 100 102 104

Time, t in hours

1y 10y 100y

n = 20

n = 12

n = 8

 
 

Figure 3.19: Lifetime (t) versus stress relationship of polyethylene medium-voltage cables 

determined by different manufacturers [23] 

 
3.3.7 Tracking 
 

Tracking is the formation of a permanent conducting path, usually carbon, across a 

surface of insulation and in most cases the conduction path results from degradation of the 

insulation. In an outdoor environment, the insulation becomes covered with industrial or 

coastal contaminant over time. If tracking occurs, inside the insulation organic substances are 

developed. The contamination layer gives rise to leakage current in the presence of moisture, 

which heats the surface and causes interruption in the moisture film; small sparks are drawn 

between the separating moisture films. This process acts effectively as an extension to the 

electrodes. The heat resulting from the small sparks causes carbonization and volatilization of 

the insulation and leads to formation of permanent ‘carbon track’ on the surface. The 

phenomenon of tracking severely limits the use of organic insulation in the outdoor 

environment. The rate of tracking depends upon the structure of the polymers and it can be 

drastically slowed down by adding appropriate fillers to the polymer which inhibit 

carbonization. 

 

Moisture is not essential to initiate tracking. The conducting path may arise from 

metallic dust; for example, in oil-immersed equipment with moving parts which gradually 

wear and deposit on the surface. 
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3.4 Mechanism of electrical degradation and breakdown in polymers 
 

Polymeric materials, such as polyethylene (PE) and polypropylene (PP), are widely 

used as insulating materials in the field of high-voltage engineering. For this reason, a 

considerable amount of attention has been paid in recent years to the problem of polymer 

aging in the electric field (deterioration of the electrical strength properties) and elucidation 

of the mechanisms responsible for a breakdown in polymers. However, these issues are not 

yet completely understood. This is partly due to special properties of polymers as molecular 

solids. Polymers are characterized by a weak intermolecular interaction (macromolecules 

with saturated bonds preserve their individuality in the condensed phase). Calculations of the 

electron spectrum of polymers – or molecular crystals – yielded band widths of ∼ 0.01 eV. In 

such narrow bands charge transport is hindered. At the same time, the notions of the band 

structure of the electron spectrum are applicable to an individual (isolated) macromolecule, 

which is a many-atom many-electron system similar to a one-dimensional crystal. The 

bandwidths in macromolecules are estimated at several electronvolts [77]. 

 

It is important to emphasize that, as experimental evidence indicates, the electrical 

breakdown of the polymer is not a critical event occurring at a certain electric field intensity 

characteristic of this polymer sample. The electrical breakdown of polymers is a kinetic 

process that develops over the time. It is characterized by the damage accumulation rate and 

the inverse value, i.e. the lifetime of a polymer sample in the electric field. The breakdown 

itself – formation of a conducting channel – is a final stage of polymer degradation in the 

electric field which is prepared by the damage accumulation process whose rate depends on 

the electric field intensity. The dependence of the electrical lifetime on the electric field 

intensity can be assumed to be nearly exponential [77]. 

 

Mechanisms of electrical breakdown in polymers can be helpful to explain how 

degradation processes influence the dielectric strength of polymeric insulation materials. It 

can be represented by the following models [78]: 

i) Low-level degradation models, in which the insulating system’s 

characteristics are deleteriously affected by the electric field, possibly in 

conjunction with other agents. 

ii) Deterministic models, in which the ultimate breakdown event is the direct 

effect of some earlier causal events or conditions produced by exceeding a 

critical electric field value. 

iii) Stochastic models in which either local physical conditions are considered to 

be continuously changing, or there are local electric field variations caused 

by inhomogeneities so that there is a finite probability at any time that 

breakdown may occur. 
 

In this section, low-level degradation models, electrical treeing, electroluminescence 

under electric field conditions and deterministic breakdown models are discussed. 

 
3.4.1 Low level degradation in polymers 
 

Mechanisms of low-level degradation in polymers are categorized by Dissado and 

Fothergill [78] as physical aging, chemical aging or electrical aging. Physical and chemical 

aging are considered to be important as they can influence the probability of breakdown and 

they may also be accompanied with electrical degradation when driven by an electrical field 
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during service. Although introduced separately, all three models may be responsible for 

polymer degradation in practice. 

 

1) Physical aging 
 

Physical aging is caused by decreasing segmental motions of polymer chains in 

amorphous regions. A physical description of the aging is usually given in terms of reduction 

of free volume. All polymers contain amorphous structure, and free volume is the unoccupied 

part of volume of the amorphous phase. The length of the free path depends on the size of the 

unoccupied part in the amorphous phase. 

 

Arbauer [79] has developed a free volume breakdown model in which electrons 

(either intrinsic or injected) gain kinetic energy by field acceleration in long free volume 

regions where the distance between scattering events is large. In a given applied electric field 

the electrons surmount the barriers to their motion in the polymer when the free volume is 

large enough to give a rapid increase in current density, and an increase in temperature 

sufficient to damage the polymer and cause instant failure. 

 

According to the breakdown criterion [79], the probability that all electrons will be 

accelerated sufficiently on the free path to gain the energy necessary to overcome the barrier 

and start the breakdown will be attained when the voltage drop A�& attains the value 
 

A�& 	= 		�� 	= 		 �̂/ 	,																																																													(3.19) 

 

where ��  is an intrinsic property of the polymer dielectric, which depends only on its 

structure; �̂ is the barrier energy; �& is the breakdown electric field; and A is the longest free 

path which depends on the sample size, temperature and crystallinity. Generally, A is not a 

constant.  

 

Distribution of the characteristic largest value A- in a sample of size n is: 
 �(A) 	= 		 exp �−/ULmUm�� M��-��	,																																									(3.20) 

 

where � is a factor which describes the sample size increase; and � is a scale parameter.  
 

Both the longest free path and the breakdown field are dependent on temperature. 

When the frequency f of thermal movements of molecules equals zero (only at zero absolute 

temperature), A has its lowest value A= and consequently the breakdown field has the highest 

value _=, which only depends on the structure of the dielectric. At temperatures satisfying      

f = f (T) > 0, A increases but the breakdown strength decreases with temperature and time, 

during which the polymer has been stressed by the applied field. 

 
2) Chemical aging 
 

Chemical aging usually proceeds via the formation of polymer free radicals Q∗ 

following an initiation step �, i.e.:  

 �	 +	Q(*�&) 			→ 			Q*∗ +	Q&∗ 		. 
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Free radicals are chemically very active and lead to propagating chain scission or 

cross-linking network formation via chain reactions [78]. Two types of chain scission may 

occur. Either the bond breaking is random in space with free radical transfer between chains 

or it unzips a chain by the ejection of volatile monomers or side group products. The former 

case produces degradation products containing large molecular weight fragments and is 

favoured by polyethylene, whereas the latter case is typical of poly (∞ – methylstyrene) 

where it results in a large monomer fraction and poly (vinyl chloride) which 

dehydrochlorinates producing hydrogen chloride. The initiating mechanism may be thermal, 

oxidation, caused by UV absorption or ionizing radiation, or mechanical. 

 
3) Electrical aging 
 

Electric fields, especially DC, lead to dissociation and transport of ionized and 

ionizable by-products that could cause a deterioration of the insulation’s performance due to 

increased losses and local stress enhancements [78]. 

 

According to Kao’s theoretical model [80] of electrical discharge and breakdown in 

condensed insulating materials, charge carrier injection and recombination play a decisive 

role in breaking of polymer chains and the creation of free radicals, macromolecules, and 

traps. The mechanism of the dissociation of macromolecules, the central point of which is the 

assumption of the formation of hot electrons capable of initiating a rupture of chemical bonds 

was suggested. Thus, Kao [80] considered a multistage process involving electron injection 

from the cathode into the polymer, the capture of injected electrons by traps accompanied by 

the release of the energy approximately equal to the trap depth at every event, and the transfer 

of this energy to another electron. In other words, the appearance of hot electrons, their 

interaction with macromolecules, the dissociation of macromolecules into free radicals, the 

trapping of the electrons that have lost energy (cold electrons), etc. are described. The last 

stages were illustrated by the following scheme: 

 T\ + /(���) 	g ��¡¢ £v ¡�¤¥¥¥¥¥¥¥¥¦		T§ + \§ + /(]��¨) 	 																	¤¥¥¥¥¦		T§ + \§ + /(��*©©,¨) + /�/2ª«	2/./5�/ , 

 

where T\ denotes the macromolecule, T§ and \§  indicate free macro-radicals, and e represents 

the electron. It was assumed that the energy released at the trapping of a cold electron is 

transferred to another injected electron, etc. Thus, the process has a chain character. 

 

Unfortunately, no quantitative data on the rates of the separate stages of the chain 

reaction (and on the rate of the process as a whole) were given in Kao’s model [80] to 

confirm the considerations. Kao also did not consider the probability with which the entire 

energy released during electron trapping is transferred to another electron, did not estimate 

the probability that this energy can be dissipated through molecular vibrations without being 

transferred to an electron, did not discuss the mechanisms responsible for energy transfer to 

an electron and how the probability of energy transfer depends on the trap-electron distance, 

and did not consider the probability of bond rupture when they are excited by relatively low-

energy electrons. Note that the thermal depth of traps in polyethylene (PE) is evidently not 

more than 2 eV, and the energy for rupture of the C − C bonds can be higher than 3 eV [77]. 

Finally, one more fact should be pointed out. Kao [80] considered the chain reaction due to 

successive energy release during electron trapping. However, it could not yet find examples 

of chain energy reactions in polymers. Typically, the chain reactions of the transformation of 

chemical bonds in polymers proceed by the free-radical mechanism, i.e. with the participation 



54  BAM-Dissertationsreihe 
 

of chemically active particles. This is the mechanism for the reactions of the thermal 

destruction of polymers, oxidation of polymers, etc. 

 

The above discussion relates to the situation when the negative electrode in the 

needle-plane system is the needle and electrons are injected into a polymer. The analysis of 

Kao’s attempts to treat the dissociation of macromolecules as resulting from the injection of 

holes from the positive needle raises even more questions. Typically only mono-polar 

injection from the needle is taken into account in the needle-plane system. Nevertheless, it is 

supposed that hot electrons capable of initiating the dissociation of macro- molecules are 

formed (due to a complicated six-stage process) in the case of the positive needle as well. The 

probability of the realization of such a multistage process was not estimated. All these facts 

indicate that the scheme discussed by Kao’s model cannot be thought of as a realistic model 

of the dissociation of macromolecules in the electric field. 

 

The model described in [81], in which the dissociation of macromolecules is regarded 

as a consequence of the charge recombination in a polymer seems more realistic. 

Recombination of charges (a free electron and a positive macro-ion hole) gives rise to the 

release of energy ∆� =	 ¬ − ® − |%=| , where ¬  is the energy for ionization of a 

macromolecule in the gaseous phase, and P is the energy for polarisation of the polymer by a 

unit charge. If we take ¬ = 8 eV, ® = 1.5 eV, and |%=| = 0.5 eV [77], we obtain ∆� ≈ 6 eV. 

This energy is higher that the energy of rupture of covalent chemical bonds. Therefore, the 

reaction of the dissociation of macromolecules can proceed according to the scheme 

 T\� + /	 													¤¥¥¦	(T\)∗ 	 														¤¥¥¥¦	T§ + \§ , 
 

where AB+
 indicates the macro-ion, and (AB)

*
 represents the excited macromolecule. The 

rupture of chemical bonds in polymers (dissociation of macromolecules) initiated by the 

electric field was described in [82] and [83]. 

 

Liufu and coworkers [82], who believe that electrical aging is due to this gradual 

degradation process, carried out a series of experiments which indicated that electrical aging 

phenomena in polypropylene can be well interpreted on the basis of Kao’s model [80]. They 

also discovered that the degree of electrical aging can be determined by the rate of increase in 

the concentration of stress-created traps. It has been proved that polyolefin degradation in the 

electric field under discharge conditions is due to the formation of free radicals, especially 

initiated by accelerated electrons with energy higher than 3.8 eV [84]. 

 
3.4.2 Electrical treeing 
 

In dry environment the degradation gives rise to electrical treeing which has two 

distinct time periods. The first is the initiation or the incubation phase during which partial 

discharge (PD) do not occur, and the second is the propagation period during which PD occur 

and the tree grows. Once an electrical tree starts, its growth cannot be stopped. Treeing could 

be slowed down or retarded, but sooner or later it will lead to the breakdown of the 

insulation. For insulation operating in a wet environment, especially in underground power 

distribution cables, the degradation of the insulation gives rise to water treeing, but even 

when a water tree bridges the entire insulation between the conductors breakdown does not 

occur immediately. However, prior to breakdown an electrical tree, which could be initiated 

by transient voltages and other factors, grows from the water treed region, and it is the 

electrical tree that causes the breakdown. Hence, in both wet and dry environment it is always 
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the electrical tree that is responsible for the insulation breakdown. Lee [85] has shown in a 

recent paper that large stress enhancement factors can be induced in small asperities or 

defects at the semicon/dielectric interface of an extruded cable. Therefore electrical treeing is 

usually considered as a principal form of electrical degradation distinct from the low-level 

degradation mechanisms discussed in the former section. It is well established that electrical 

tree shapes can be roughly characterized as branch and/or bush-shaped structures.  

 

Electrical trees found in polymeric insulation grow in regions of high electrical stress, 

such as metallic asperities, conducting contaminant and structural irregularities [78]. 

Electrical treeing occurs in all high voltage polymeric insulation and is the principal aging 

process that leads directly to breakdown failure. 

 

According to the model for electrical tree initiation developed by Wu and Dissado 

[86], the generation of new charge traps by the recombination of injected charges of opposite 

polarity from a divergent field stress point, is sufficient to continuously drive the system to 

the initiation of an electrical tree. They also showed that this is achieved by the increase of 

trap density to the point where shallow traps can connect together in the form of a percolation 

cluster under the application of an electric field. Bamji et al. [87] discovered that certain type 

or polarity of charge is required to initiate electrical treeing in LDPE (low density 

polyethylene). For example, it is impossible for the unipolar injected charge to gain sufficient 

energy to cause impact ionization or break bonds of the polymer chain. 

 

Propagation of electrical trees was described as 3-stage tree growth model which was 

based on partial discharge measurements [88]. Stage 1 is considered to be the tree inception 

which is detectable only by very sensitive measurements. Stage 2 is considered to be the 

growth of the first small branches to the opposite electrode. It starts at tree inception and it 

ends when the first branch has reached the opposite electrode without causing specimen 

breakdown. The branches are characterised by a size L < 10 µm in the trunk and L < 1 µm in 

the tip. Stage 3 is considered to be the stage where the small branches will be widened up to a 

pipe-shaped structure. It starts when the first branch has reached the opposite electrode and it 

ends with the final breakdown. The channels are characterised by a size of L > 10 µm having 

typical values between 60 µm and 150 µm. Propagation states of electrical treeing until 

breakdown is shown in Figure 3.20. 
 

 

Figure 3.20: Propagation states of electrical treeing until breakdown [88] 
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Two alternative theoretical approaches to electrical tree propagation exist. Stochastic 

models [89-90] attribute tree structures to random probabilistic factors. On the other hand, in 

the discharge-valance model [91-92], field fluctuation due to non-uniformly distributed 

regions of trapped space charge is responsible. 

 

A kinetic [93] electrical tree growth rate formula was developed. This formula is 

based on a quantitative physical model [87] in which the propagation is considered to arise 

from the formation of electrodamage that precedes and surrounds the tree tip during the tree 

propagation process. 

 �	 = 		 (°/°&)g± 																																																																																		(3.21) 

 d°d1 	= 		 kZ°&g±
h'³ °(�Ug±) exp ´C�µ)�¶= − �=kZ ·	,																													(3.22) 

 

where �  is the number of submicroscopic trees that have formed the electrical tree; °  is 

electrical tree length; °& is unit increment in electrical tree length due to the jointing of a 

secondary tree and is approximately equal to the average length of the secondary tree; '³ is 

the fractal dimension of the electrical tree; k  and h  are the Boltzmann’s and Planck’s 

constants, respectively; Z is the absolute temperature; ¶= is the size of the submicroscopic 

void; �=  is the activation energy of the breakdown process in physics; �  is the dielectric 

permittivity. � is electric field strength and µ) is a property of the material, which represents 

the activation area in the direction of the applied electric field. 

 
3.4.3 Electroluminescence under electric field 
 

It has been established [94-103] that electroluminescence (EL), the emission of light 

in dielectrics subjected to high electric stress, occurs in most polymers, such as PE, PP, PVC 

and epoxy, under AC, DC and Impulse voltages. EL is emitted prior to electrical tree 

inception and even before the first partial discharge occurs in the polymeric insulation. 

Unlike the light of partial discharges, EL occurs continuously above a certain threshold field 

and has been attributed to the injection of electric charge from the electrodes. The injected 

charge accumulates in the insulating material to form a space charge, which plays a major 

role in DC voltage applications [102]. Although, the role of space charges is less significant 

under AC field, it cannot be completely ignored. Space charges can cause field distortions 

and give rise to dissipative energetic processes which can affect the onset of electrical aging, 

decrease the withstand voltage and lead to insulation failure. Hence, the determination of 

space charge injection and distribution in the polymer is not only helpful for developing 

better insulating materials but also for improving the existing designs of high voltage 

apparatus. 

 

Authors of [103] suppose that, under the action of this radiation, the dissociation of 

macromolecules and the formation of low-density regions take place in the AC field. It is 

known that EL in the DC field is not observed or its intensity is low [94-95]. It is likely that 

the recombination mechanism of the dissociation of macromolecules should be taken into 

consideration only in the case of the AC field. 

 

EL spectrum is short-wave (ultraviolet: UV) radiation. The UV light of EL can 

enhance chemical reactions and lead to degradation of the polymeric insulation. Saturated 
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polyolefins (PO), in the pure form, do not absorb light of wavelength > 190 nm. However, 

photodegradation of polymers is known to occur with light in the UV range due to the 

presence of chromophores which are accidently introduced into the polymer during the 

processing and synthesis of the material. The UV light causes photodegradation due to 

photochemical reactions, creates free radicals, and breaks bonds leading to the formation of a 

microcavity and subsequently an electrical tree. The combination of these modes will finally 

lead to ultimate failure of the polymeric insulation. The physical ageing model of polymeric 

insulating materials is shown in Figure 3.21. 

 

 
 

Figure 3.21: Physical ageing model of polymeric insulating materials. Zone 1: optical 

detection can be applied, Zone 2: electrical, optical and acoustical detection can be used. 

Carrier detection (i.e. electrical charge distributions) can be measured only in the laboratory 

experiment but cannot be measured in the field test 

 

A possible mechanism as to how and why light emission occurs when AC high 

voltage is applied to the polymer is shown in Figure 3.22 [102]. A polymeric insulation can 

be represented by the band-gap model where E]�- stands for the conduction band and Eq*� 
stands for the valence band. An insulator such as XLPE has a wide band gap > 8 eV [104]. 

Due to imperfections, crystalline amorphous boundaries, additives etc., there are many states 

in the band gap. Antioxidants and the complex products that are formed by reactions with 

oxygen during processing of the polymer provide non-volatile species which also act as 

trapping centers [105]. The various trapping states can be represented as shallow and deep 

traps below the conduction band for electrons and shallow and deep traps above the valence 

band for holes. In polyethylene the shallow traps are due to physical defects such as 

molecular weight distribution and conformational defects in the amorphous phase. The deep 

traps are associated with defects such as chain branching, chain ends, chemical irregularities, 

additives and crosslinking by-products [102]. 
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Figure 3.22: Mechanism of EL during each cycle of the AC voltage [102] 

 

When AC voltage is applied to the specimen, during the negative half cycle, at a 

certain threshold voltage level denoted by A in Figure 3.22, electrons are injected into the 

polymer. These electrons get trapped in the shallow and deep traps of the polymer. Some of 

these electrons recombine with the holes, which were injected into the polymer during the 

previous positive half cycle and which could not de-trap when the polarity is reversed. Holes 

are produced by removal of electrons that form neutral states involved in the covalent 

bonding of the polymer. The recombination of the electrons and the holes gives rise to light 

emission [105]. During the portion B to C of the negative half cycle the electrons in the 

shallow traps de-trap but those in the deep traps remain trapped. 

 

When the polarity reverses, above a certain threshold voltage level denoted by D, 

holes are injected into the polymer and are trapped in the shallow and deep traps of the 

polymer. Some of these holes will recombine with the electrons in the deep electron traps of 

the polymer and light is again emitted. When the voltage decreases from E to F the holes in 

the shallow traps will de-trap but those in the deep traps cannot do so they remain in the 

insulation. Some of these trapped holes will recombine with the electrons emitted during the 

next negative half-cycle to give rise to EL. This process is repeated every cycle of the AC 

voltage and since the light is caused by the application of a high electric field, this 

phenomenon of light emission is called electroluminescence. 

 

It has been argued that EL emission can be caused by hot electrons. Hot electron 

emission was proposed [106] for fields greater than 60 % of the breakdown value of the 

polymer. Other than this opinion, it is important to note that, light emission can be caused by 

other sources such as partial discharges, surface plasmons, thermoluminescence etc. [102]. 

 
3.4.4 Deterministic models of breakdown in polymeric materials 
 

Breakdown in polymeric insulations is always ‘catastrophic’ in the sense that it is 

irreversible and destructive resulting in a narrow breakdown channel between the electrodes 

[78]. All catastrophic breakdowns in polymeric insulations are electrically power driven and 

ultimately thermal in the sense that the discharge track involves at least the melting and 

probably carbonization or vaporization of the dielectric. Deterministic models of breakdown 

can therefore be categorized according to the processes leading up to its final breakdown 
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stage, which is subdivided into: electric, thermal, electromechanical (introduced in section 

3.3.3), and partial discharge breakdowns. 

 
1) Electric breakdown in polymeric materials 
 

The main classical models of electron-driven breakdown in polymeric materials 

include [78]: 

a) Avalanche breakdown due to field-induced impact ionization. A high energy 

electron collides with a bound electron and thereby produces a pair of free 

electrons which can acquire sufficient energy in the presence of high field to 

produce two more pairs of free electrons. The density of free electrons rapidly 

increases in this process and the avalanche can lead to a very high local energy 

dissipation causing local lattice disruption after a sufficient number of generations. 

Two parts of avalanche breakdown are described: firstly, the number of 

generations of ionizing collisions required to cause damage must be estimated, and 

secondly, the corresponding field must be evaluated.  

b) Intrinsic breakdown due to the transfer of the energy of free electrons to the lattice 

so as to increase the lattice temperature to a critical value. A recent paper [107] 

presents a percolation model for intrinsic breakdown in insulating polymers. The 

model starts with the premise that charges are present in the polymers in traps with 

a variable range of trap depth. It is shown that the trap barrier can decrease to zero 

for a set of sites forming a 3-D percolation cluster when the field becomes high 

enough. This will result in an abrupt increase in charge mobility and electron mean 

free path, and an irreversible breakdown via current multiplication and impact 

ionization is possible. 

c) Zener breakdown associating with the direct excitation from valence to conduction 

band. It is nondestructive breakdown in semiconductor, occurring when the electric 

field across the barrier region becomes high enough to produce a form of field 

emission that suddenly increases the number of carriers in this region. 

 

2) Thermal breakdown in polymeric materials 
 

In thermal breakdown models [23, 78], electrical power dissipation causes heating up 

of at least a part of the polymeric insulation to temperatures above a critical temperature, 

which results directly or indirectly in catastrophic failure. The general power balance 

equation governing thermal breakdown is: 
 'Z'1 	= 		 1

ρ	G� (>� + k∇Z)	,																																																		(3.23) 

 

where G� is the specific heat of the polymer dielectric; º is the density of dielectric; > is the 

electrical conductivity; � is the electric field; and k is the thermal conductivity.  

 

Assuming that there is a solution such that 'Z = '1 = 0 ; below the critical 

temperature, thermal breakdown will not take place. This general equation can be transferred 

to different forms for different thermal conditions. If thermal equilibrium is assumed 

('Z = '1 = 0), the general equation simplifies to 
 >(Z, �)� + k∇Z		 = 			0		.																																																			(3.24) 
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This is called steady-state breakdown, which is a limiting case where the heat 

generated by the applied electrical stress is in balance with the thermal dissipation. In case of 

temperature rise is so slow that the thermal capacity term can be ignored. 
 

The opposite extreme is impulse breakdown, in which the temperature rise can be 

considered to be so fast that thermal conductivity may be ignored. This simplifies the analysis 

as the temperature of the whole slab can always be considered uniform. In this case the 

insulator is considered to break down at the end of the impulse, i.e. the time to breakdown is 

the length of the impulse. The general equation therefore becomes: 
 

ρ	Gq 'Z'1 		= 			>(Z, �)�	,																																																					(3.25) 

 

where Gq is the thermal capacity of the polymeric dielectric material at constant volume. 
 

Breakdown does not usually occur on a broad front across the insulation area but at 

weak points. The temperature of a weak spot reaches the critical temperature before the rest 

of the insulation. Such behaviour is difficult to analyse in a general manner as different 

assumptions give rise to a wide variety of boundary conditions. Filamentary thermal 

breakdown can be applied in this case, which is illustrated with reference to specific 

experimental results. Two experimental methods have been used to investigate filamentary 

breakdown: pre-breakdown current measurement and direct observation of the spatial and 

temporal evolution of specimen temperature. Based on result for the pre-breakdown current 

on several small-area specimens, the general equation above is rearranged to 
 1>= x exp L »kZM¼

l 		= 			 �
ρ	Gq x '1v½

v 																																																					(3.26) 

 

where >= and » are experimentally determined values which are found to be constant over a 

given range of temperature; º  is the density; 1&  is the time of breakdown; and k  is the 

Boltzmann’s constant. 
 

Various attempts have been made to monitor the spatial and temporal evolution of the 

temperature of thin polymer films after the application to an electric field. Although existence 

of hot spots has been proved [78], it has not yet conclusively demonstrated that the initiating 

breakdown mechanism is thermal. 

 
3) Partial discharge breakdown 
 

In partial discharge (PD) breakdown [78], sparks occur within voids in the insulation 

causing degradation of the void walls and progressive deterioration of the dielectric. It is 

difficult to eliminate voids in polymeric materials [105, 108]. They may result simply from 

non-uniform contraction produced in the slow chemical reactions of thermosetting occurring 

after the main manufacturing process. 
 

The influencing parameters in the initiation and the propagation of PD are numerous. 

For example, the temperature gradient changes the volume conductivity of the insulating 

material and affects the discharge location. It is stated in [109] that inception discharge 

voltage decreases with gas pressure in the cavity if its depth is larger than 6 µm, which 

corresponds to the Paschen minimum [23, 74]. For smaller cavities, the decrease of pressure 

arises in a very short time and it can consider that the inception discharge voltage increases 
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rapidly and the repetition rate may decrease. The nature of the material plays a role on the 

equilibrium process following the increase of pressure, since the diffusion of gaseous 

products into the bulk polymer leads to a decrease of pressure within the cavity. The partial 

discharges break the bonds of the polymer to give rise to hydrogen and carbon and the 

evolution of hydrogen gas and carbon dioxide [109]. The chemical reactions caused by the 

interaction between PD and solid dielectric are complicated processes. The evolution of the 

chemical by-products (i.e. gaseous, liquid and solid by-products) from the start of PD activity 

is accelerated insulation aging and leads to ultimate failure.  

 
3.5 Partial discharges 
 

Partial discharge (PD) is defined as localised discharge process, in which the distance 

between conductors is only partially bridged, i.e. the insulation between the electrodes is 

partially punctured. Partial discharges may originate directly at one of the electrodes or occur 

in a cavity in the dielectric. In general, PDs are restricted to a part of the dielectric materials 

used, and thus only partially bridging the electrodes between which the voltage is applied. 

Various types of partial discharge phenomena are shown in Figure 3.23.  
 

 
Figure 3.23: Various partial discharge phenomena 

 

The term “partial discharge” includes a wide group of discharge phenomena:  

i) Corona or gas discharge; this occurs due to a non-uniform field on sharp edges of 

the conductor subjected to high voltage especially when the insulation provided is 

air or gas as shown in Fig. 3.23 (a);  

ii) Surface discharges and discharges in laminated materials on the interfaces of 

different dielectric material such as gas/solid interface as gas; they get overstressed �� times the stress on the solid material (where �� is the relative permittivity of solid 

material) and ionization of gas results as shown in Fig. 3.23 (b) and (c);  

iii) Cavity discharges (Fig. 3.23 (d)), when cavities are formed in solid or liquid 

insulating materials; the gas in the cavity is overstressed and discharges are formed;  
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iv) Treeing Channels; high intensity fields are produced in an insulating material at its 

sharp edges and this deteriorates the insulating material. The continuous partial 

discharges so produced are known as Treeing Channels in Fig. 3.23 (e). 
 

The importance of partial discharges for the life of insulation has long been 

recognized. Every discharge event causes a deterioration of the material by the energy impact 

of high energy electrons or accelerated ions, causing chemical transformations of many types. 

It is also obvious that the actual deterioration is dependent upon the material used. Corona 

discharges in air will have no influence on the life expectancy of an overhead line; but PDs 

within a polymeric dielectric (e.g. PE, silicone rubbers) may cause breakdown within a few 

days. It is still the aim of many investigations to relate partial discharge to the lifetime of 

specified materials. Such a quantitatively defined relationship is, however, difficult to ensure. 

PD measurements have nevertheless gained great importance during the last five decades and 

a large number of publications are concerned with either the measuring techniques involved 

or the deterioration effects of the insulation. 
 

The detection and measurement of discharges is based on the exchange of energy 

taking place during the discharges. These exchanges are manifested as [110-114]: 

i) electrical pulse currents (with some exceptions, i.e. some types of glow 

discharges); 

ii) dielectric losses; 

iii) electromagnetic (EM) radiation (i.e. light emitted); 

iv) sounds (i.e. noise, acoustic wave); 

v) increased gas pressure; chemical reactions.  
 

Therefore discharge detection and measuring techniques may be based on the 

observation of any of the above phenomena. The oldest and simplest method relies on 

listening to the acoustic noise from the discharge, the ‘hissing test’ [23]. The sensitivity is, 

however, often low and difficulties arise in distinguishing between discharges and extraneous 

noise sources, particularly when tests are carried out on factory premises. The use of optical 

techniques is limited to discharges within transparent media and thus not applicable in most 

cases [115]. Only modern acoustical detection methods utilizing ultrasonic transducers can 

successfully be used to localize the discharges [116-119]. Summaries of older methods can be 

found in the book of Kreuger [120]. More recent developments may be found in [15-18, 68]. 
 

However, the light caused by partial discharges (PDs) is different from the light of 

electroluminescence (EL), which occurs prior to tree inception [102]. EL emission occurs 

continuously above a certain threshold voltage and will only stop when the voltage is reduced 

below that level. On the other hand, PD can occur inside a micro-cavity or a tree channel and 

can be intermittent depending on the gas pressure in the cavity or the tree channel. Also, the 

intensity of EL is at least two orders of magnitude smaller than the intensity of the light 

generated by very small (<1 pC) partial discharges. The phase relationship of the light of EL 

and PD is also different with respect to the applied voltage. These criteria should be used to 

differentiate between the light of PD and that due to EL. 
 

The most frequently used and established detection methods (conventional methods) 

are the electrical ones, to which the new IEC Standard is also related [110]. These methods 

aim to separate the impulse currents linked with partial discharges from any other 

phenomena. The adequate application of different PD detectors which became now quite well 
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defined and standardized, pre-supposes a fundamental knowledge about the electrical 

phenomena within the test samples and the test circuits. However, non-conventional methods 

for PD measurement can be found in the report [121] and these techniques will be 

standardized in the near future by IEC 62478. Different non-conventional PD detection 

methods and their specific features are summarized in Table 3.1. Even though the 

conventional and non-conventional method measure different physical quantities, there has 

been some research regarding comparison and correlation of their measurement results. 

Those studies include the PD pattern, linearity of measuring quantity [122-123]. However so 

far, finding solid correlation between the two methods seems to be very difficult due to the 

fact that the results from both methods largely depend on the condition, sensor type, sensor 

location, manufacturer of test object, test engineer and so on. Some questions have arisen 

regarding the correlation between the two different methods and interpretation of results 

[121]. The general comparison is shown below in Table 3.2. 

 
Table 3.1: The specific features of non-conventional PD detection methods 

 Electrical Acoustical Optical Chemical 

Advantage 

• Applicable for 

all kinds of HV 

equipment 

• Intensity, source, 

type, location of 

PD is assessable 

• Most suitable for 

continuous on-

line PD 

monitoring 

• High sensitivity 

• Immunity 

against electrical 

noise 

• Very efficient for 

localization of 

PD 

• Relatively low 

cost 

• Immunity against 

electrical noise 

• High sensitivity 

• Location of PD 

is assessable (in 

some case) 

• Test is possible 

for impulse 

voltage condition 

• Immunity 

against electrical 

noise 

• Easy to measure 

• Provide critical 

information for 

Go/No Go 

decision 

Disadvantage 

• High 

electromagnetic 

interference 

• Relative 

expensive  

• Low signal 

intensity 

• Not good for 

continuous PD 

measurement 

• No information 

about magnitude 

of PD 

• Night vision 

needed 

• No information 

about location, 

source, intensity, 

and type of PD 

Possible 

Sensors 

• Capacitive 

• Inductive 

• Piezo-electric 

transducers 

• Condenser 

microphones 

• Acousto-optic 

sensors based on 

interferometric 

methods 

• Optical fibre 

• Fluorescent fibre 

• Fluorescent 

probe 

• UV detector 

• Photomultiplier 

tube 

• DGA
1)

 Sensors 

• SF6 Sensors 

Main 

applicative area 

• All HV 

equipment 

• Transformer 

• GIS 

• Cable 

accessories 

• Cables and their 

accessories,  

• GIS 

• Transformer 

• Transformer 

• GIS 

• Cables 

 

Note:   

           
1)

 DGA – Dissolved Gas Analysis method, it is a technology for essential on-line monitoring of 

transformer oil. 
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Table 3.2: Comparison of conventional and non-conventional methods 

 Conventional Non-conventional 

Main Standard IEC 60270 IEC 62478  
(will be standardized in the near 

future) 

Sensor type • Measuring impedance 

(the sensor for conventional method 

can be capacitive, inductive-HFCT 

or Rogowski coil) 

• Electric sensors 

• Acoustic sensors 

• Optical Sensors 

• Chemical Sensors 

Frequency band • Wide band (30 kHz to 500 kHz) or  

∆f = 100 kHz to 400 kHz 

• Narrow band (50 kHz to 1MHz) or 

∆f = 9 kHz to 30 kHz 

• HF (3 MHz to 30 MHz)
a
 

• VHF (30 MHz to 300 MHz)
b
 

• UHF (300 MHz to 3 GHz)
c
 

• AE (20 kHz to 250 kHz, and 100 

Hz to 3 kHz) 

Calibration • Must be calibrated • Sensitivity check 

• Performance check 

Measuring unit • Usually pC, µV • Amps, mV, V/mm or dB 

Measuring quantity • Apparent charge  • Transient earth voltage or current 

pulse ( Electromagnetic wave)  

• Acoustic, Chemical by products, 

Optical spectrum  

Measuring system • Coupling device, transmission 

system, measuring instrument  

• Sensing components, transmission 

path, data acquisition unit  

Noise Level • Relatively high  • Relatively low  

Application type • Mostly Off-line (Laboratory, On-

site)  

• On-line (Transformer)  

• Off-line and on-line  

• On-line (Electrical, Chemical)  

 

Note: 

a:  Typical narrow band width for HF/VHF is 2 MHz 

b:  Typical wide band range is 50 MHz or higher 

c:  Zero span mode for individual frequencies or for specific frequency range between 4 MHz and   

6 MHz or higher 
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3.6 Dielectric polarisation and permittivity 
 

The primary role of electrical insulation is to maintain a continuous and specified 

value of dielectric permittivity over a specified electromagnetic field, in order to resist current 

flow between conductors. Due to the presence of insulating medium, the capacitance is 

increased by a factor of the dielectric permittivity ε. The increase in capacitance is attributed 

with polarisation of the dielectrics where charge distribution is distorted by the applied 

electrical field. 

 
3.6.1 Polarisation mechanisms 
 

Due to the various kinds of charge carriers existing within dielectric materials which 

are able to be displaced and polarized by an electric field, there are several types of 

polarisation mechanisms that tend to dominate certain frequency ranges. When an external 

electric field is applied, the charge distribution realign in materials. This phenomenon is 

called dielectric polarisation or polarisation. Polarisation arises due to the existence of atomic 

and molecular forces, and appears whenever charges in a material are somewhat displaced 

with respect to one another under the influence of an electric field. The number of charges 

per unit of volume multiplied by the average displacement is the polarizability of the 

dielectric. The magnitude of polarizability of a material is reflected by the dielectric constant. 

Four basic kinds of polarisation mechanisms are illustrated in Figure 3.24. 

 

 

Figure 3.24: Mechanisms of dielectric polarisation 

 

From Figure 3.24, four basic kinds of polarisation mechanisms are: 

i) Atomic (electronic) polarisation results from shift of the electron clouds 

within each atom due to application of an electric field. This type of 

polarisation is quite small compared with the polarisation due to the valence 
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electrons in the covalent bonds within the solid dielectrics. This polarisation 

is evident in most materials. 

ii) Ionic polarisation occurs in ionic crystals, which have distinctly identified 

ions located at well-defined lattice sites. Each pair of oppositely charged 

neighboring ions has a dipole moment in the presence of an electrical field. 

iii) Dipolar (orientational) polarisation is a phenomenon involving rotation of 

permanent dipoles under an applied field. Dipolar polarisation is more 

common in polymers, which permit re-orientation by virtue of their atomic 

structure. This mechanism of permanent dipoles is different from that of 

induced dipoles of ionic polarisation. This polarisation loses the response to 

electric fields at the lowest frequency in polarisations because the rotation is 

not instantaneous. 

iv) Interfacial (space charge or diffusional) polarisation occurs whenever there 

is an accumulation of charge at an interface between two different materials 

or between regions within a material. A typical interfacial polarisation is the 

trapping of electrons or holes at defects at a crystal surface, at the interface of 

crystal and the electrode. Dipoles between the trapped charges can increase 

the polarisation vector. Interfaces also arise in heterogeneous dielectric 

materials, such as semi-crystalline polymers. 

 

Polarisation is responsible for the refractive index and dielectric constant of materials. 

If there is no polarisation, the refractive index and dielectric constant are unity. This occurs 

only with a vacuum. The magnitude of each type of polarisation depends primarily on the 

density of the participating species and the resistance against motion presented by the 

medium in the case of ionic-interfacial and dipolar types. In general, a dielectric medium 

exhibits more than one polarisation mechanism. Thus, the average induced dipole moment 

per molecule will be the sum of all polarisation contributions depending on which that 

determines the dielectric permittivity of the material. 
 

Atomic-ionic polarisation is the predominant form of polarisation in inorganic 

crystals, glasses and ceramics. It is the principle contributing mechanism to their dielectric 

constant at a uniform level up to infrared frequencies [124]. A special form of this 

polarisation, namely “ferroelectric” (where polarisation occurs collectively in domains), 

results in very high effective dielectric constants, in analogy to ferromagnetic polarisation. 

The high dielectric constant titanate ceramics are examples of this. Dipolar polarisation 

occurs from DC up to microwave frequencies, depending on the presence of dipolar 

molecules and the resistance to molecular rotation presented by the material’s internal 

structure. Interfacial polarisation, involving a longer range ion movement, is observed usually 

only at lower frequencies [124]. 

 
3.6.2 Dielectric permittivity 
 

In the presence of an electric field <  originally equal by distributed positive and 

negative charges (±q) in dielectrics are displaced from their equilibrium positions to form 

local electric dipoles; the dielectric is said to be polarized. According to the principle of 

superposition, this distorted charge distribution is equivalent to the original distribution plus a 

dipole moment ¾ is 
 ¾	 = 		¿À	,																																																																											(3.27) 
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where d is the distance vector from charge -q to +q of the dipole. The total dipole moment ¾� 
of a material is obtained by summation the dipole moments of all the orientational 

polarisation dipoles, each of which is represented by Equation (3.27). For a volume ∆v where 

there are �¨ electric dipoles per unit of volume, or a total of N∆v electric dipoles, we can 

write that 
 

¾� 		= 		 Á '¾ 
�Â∆Ã
 Ä�

	.																																																																	(3.28) 

 

The electric polarisation vector Å can then be defined as the dipole moment per unit 
of volume and is given by  
 

Å		 = 	 lim∆Ã→= e 1∆Æ ¾vf 	= 	 lim∆Ã→= Ç 1∆Æ	Á '¾ 
�∆Ã
 Ä�

È								b Cmc.																												(3.29) 

 

When all dipoles are aligned in the same direction, the electric polarisation vector 

can be written, as 
 Å	 = 		�¨¾*q		,																																																																				(3.30) 
 

where ¾*q  is the average electric dipole moment per polarized entity (e.g. molecule, ion, 

etc.), with �¨ of those per unit of volume. 
 

Whereas the applied electric field <  maintains its value, the electric flux density 

inside the dielectric material differs from what would exist were the dielectric material 

replaced by free-space. In the free-space part of the parallel capacitive electrodes where the 

electric field is applied, the electric flux density ;= is given by 
 ;= 	= 	 �=<	,																																																																										(3.31) 
 

where �= is the permittivity of free-space. In the dielectric portion, the electric flux density ; 

is related to that in free space D0 by 
 ;	 = 	 �=<	 + Å	.																																																																(3.32) 

 

The electric flux density ; can also be related to the applied electric field intensity < 

by the static permittivity ε of the dielectric materials. In this thesis, however, ε is considered 

as a scalar. So that, 
 ;	 = 	�<		.																																																																											(3.33) 
 

It is apparent that Å can be related to < by another parameter, χ, which is called 

“electric susceptibility” (dimensionless quantity). The dielectric susceptibility (χ) of a 

material measures the extent of polarisation Å within the dielectric in response to an external 

electric field <. This relationship is represented in vector form as follows: 

 Å	 = 	 �=χ<																																																																										(3.34) 
 

Finally, from equations (3.32), (3.33) and (3.34) we can write that 

 



68  BAM-Dissertationsreihe 
 

;	 = 	 �=<	 + �=χ<		 = 		 �=(1 + χ)<		 = 	�<		.																																					(3.35) 
 

The relative value of � and �� is given by 

 �� 	= 		 ��= 	= 		1 + 	χ			,																																																																															(3.36) 

 

where �� is the relative permittivity of dielectric materials.  

 

Traditionally, it is also called the dielectric constant, because in the linear regime it 

is independent of the field strength. However, it can be a function of many other variables. 

For example, for time variable fields it is dependent on the frequency of the applied electric 

field, sample temperature, sample density (or pressure applied to the sample), sample 

chemical composition. In free- space, the susceptibility is zero (χ = 0) so that �� = 1 and the 

permittivity is that of free-space ε	 = �= . The relative permittivity is a parameter that 

indicates the relative charge storage (energy storage) capability of dielectric materials 

compared with those in free-space. The larger its value, the greater its ability to store charge 

(energy). 

 
3.6.3 Complex permittivity and dielectric loss (ÉÊËÌ) 
 

The static permittivity is an effect of polarisation under DC conditions. However, if a 

sinusoidal electrical field is applied, the polarisation of the medium under these AC 

conditions differs from that of the static case. Polarisation of a dielectric always fails to 

respond instantaneously to variations of an applied field due to thermal agitations which 

randomizes the dipole orientations and rotation of molecules in a viscous medium by virtue 

of their interactions with neighbours. This response of dielectric materials to external fields 

depends on the frequency of the field, which can be represented by a phase difference. 

Consequently, dielectric permittivity is often treated as a complex function of the frequency 

of the applied field: 
 Í=/UÎÏv 	= 		 �̂(r)�=/UÎÏv	,																																																																		(3.37) 
 

where Í= and �= are the amplitudes of the displacement and electrical field, ω is the angular 

frequency of the electromagnetic field, 1 is time and j is the imaginary unit, respectively. By 

convention, we always write the relative complex permittivity of the materials as 
 �� 	= 		 ��= 		= 		 ��s − Ñ��ss		,																																																												(3.38) 

 

where ��s is the real part of dielectric constant (or the common relative permittivity) of the 

material and ��ss is imaginary part of dielectric constant. The real part of dielectric constant 

represents the capacitive behaviour or polarizability of the dielectric material, while the 

imaginary part represents the energy losses due to polarisation and conduction. 
 

For linear dielectric response, the relation between the real and imaginary parts of the 

relative complex permittivity is expressed by the Kramers-Kronig relations [125], 

 

��s(r) 		= 		1 + 2C x rs��ss(rs)(rs) − r
¼

= 'rs				and																															(3.39a) 
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��ss(r) 		= 		 2rC x 1 − ��s(rs)(rs) − r
¼

= 'rs			.																																											(3.39b) 

 

The general features of the frequency dependence of the real and imaginary parts of 

permittivity for the four polarisation mechanisms are illustrated in Figure 3.25. Although it 

shows distinctive peaks in ��ss and transition features in ��s, in real materials these peaks and 

various features are often broader. For polycrystalline materials, glasses, plastics and some 

crystals (e.g. with cubic crystallographic structure) all diagonal elements become identical 

and the complex permittivity becomes a scalar quantity [126]. 

 

 
 

Figure 3.25: Dielectric permittivity spectrum over a wide range of frequencies; ε′ and ε″ 

denote the real and the imaginary part of the permittivity. Various polarisation mechanisms 

are labelled on the image 

 
When an alternating electric field is applied, a polarisation is produced. That 

polarisation can be measured in terms of capacitance. Measuring the dielectric constant, a 

basic understanding of capacitance theory is beneficial. Capacitance G  is defined as the 

ability of two electrodes to store a charge @ when a potential % is applied across them. If the 

region between the two parallel electrodes is a vacuum at parallel plate capacitor, then the 

capacitance G= is  
 

G= 	= 		@% 		= 		 �= T' 		,																																																															(3.40) 

 

where �= is the permittivity of free space, T is the area of the electrodes and ' is the distance 

between the two electrodes. 

 

If a material with a permittivity of � is inserted between the plates, the capacitance is 

given by: 
 

G	 = 		� T' 		= 			 G= ��= 		= 		 G=��		.																																								(3.41) 

 

Frequency in Hz 
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The �� of the material that is a real part of the relative complex permittivity (�� = ��s) 
and is defined as the ratio of the permittivity of the material to the permittivity of free-space 

and dimensionless [127]. 

 

If there is some energy dissipation mechanism inherent in a capacitor, there will be a 

loss current ¬� that lags the charging current ¬] and is separated from the charging current by a 

loss angle δ. Dissipation factor (Í_) or dielectric loss (tan δ) factor can be expressed by the 

ratio of loss current to charging current as shown in Equation (3.42). 
 

Í_	 = 	 tan ! 	= 		 ¬�¬] 	= 		 ��ss��s 	= 		 1rQ©G© 																																				(3.42) 

 

where ω = 2πf, Q© is resistance (in Ω) and  G© is capacitance (in F) in the equivalent parallel 

circuit as shown in Figure 3.26, which is defined by IEC 60250 standard [127]. The parallel 

representation of an insulating material having a dielectric loss is usually the more proper 

representation (Figure 3.26 a)), while it is always possible and occasionally desirable to 

represent a capacitor at a single frequency by a capacitance Gj in series with a resistance Qj 

(Figure 3.26 b)). 

 

Therefore the imaginary part of the complex permittivity can be written as 

 

��ss 	= 	 ��s tan ! 	= 		 ��srQ©G© 	.																																																							(3.43) 

 

By measuring the real and imaginary parts of the dielectric constant for frequency, the 

dielectric behaviour of a material could give information on the characteristics of the 

material.  

 

 

 

 

 

tan ! = 	 1rG©Q© =	 �ÓrG© tan ! = 	rGjQj 

a) Equivalent parallel circuit b) Equivalent series circuit 

Figure 3.26: A capacitor with losses can be represented at any given frequency either by 

capacitance Gj  and resistance Qj  in series, or by capacitance G©  and resistance Q©  (or 

conductance �©) in parallel 

 
The dielectric loss (tan δ) of any material describes quantitatively dissipation of the 

electric energy due to different physical processes such as electrical conduction, dielectric 

relaxation or polarisation, dielectric resonance and loss from nonlinear processes (such as 

hysteresis) [126]. When we measure the loss of a dielectric at a single frequency we cannot, 

in general, distinguish between them. Phenomenologically, they all give rise to just one 
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measurable quantity, namely, the total measured loss tangent. As only a few materials, such 

as fused silica, polystyrene, or polyethylene, have �� and tan δ practically constant over the 

wide frequency range through which dielectric materials are used for technical purposes, it is 

necessary to measure the dielectric loss factor and the permittivity at those frequencies at 

which the dielectric material will be used [127]. 

 
3.6.4 Factors influencing dielectric properties 
 

 Frequency f: Changes in permittivity and in dielectric loss factor are produced by the 

dielectric polarisation and conductivity. The most important changes are caused by diploe 

polarization due to polar molecular and interfacial polarization caused by inhomogeneities in 

the material. 

 

 Temperature T: The loss index may show a maximum at a frequency which depends 

upon the temperature of the dielectric material. The temperature coefficients of dielectric loss 

factor and permittivity can be positive or negative depending on the position of the loss index 

maximum with respect to the measuring temperature. 

 

 Field strength E: When interfacial polarization exists, the number of free ions 

increases with the field strength, and the magnitude and the position of the loss index 

maximum is altered (only in the low frequency range). 

 

 Moisture: The degree of polarization is increased by absorption of water or by the 

formation of a water film on the surface of the dielectric material, thus raising the 

permittivity, the dielectric loss factor and the DC conductivity. Conditioning of test 

specimens is, therefore, of decisive importance and control of the moisture content, both 

before and during testing, is imperative if test results are to be interpreted correctly. 

Therefore, the moisture content in the test chamber must be kept constant for all experiments. 
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4  Development of the breakdown test facility for silicone rubbers 

 
Silicone rubbers have been extensively used as electrical insulation in power cable 

accessories (i.e. joints and terminations) and silicone insulators for power lines because of 

their excellent electrical and mechanical capabilities, chemical stability over a wide range of 

temperatures, hydrophobic nature, flexibility, easy handling and easy application. These 

advantages can result in lower assembly and maintenance costs whilst being economically 

attractive. Silicones make good elastomers because the backbone chain is very flexible. The 

bonds between a silicon atom and the two oxygen atoms attached to it are very flexible. The 

inorganic siloxane backbone is the most available flexible polymer backbone. The increasing 

ease of engineering polymers with selected additives makes silicone polymers an ideal basis 

for the development of novel dielectric materials with specific properties for application in 

high-voltage engineering. One of the most common concerns in industry is the reliability of 

materials. The breakdown field strength or dielectric strength �& value of dielectric materials 

is a key of interest for the current state of dielectric application where an electric field stress 

is present. In most cases, the dielectric strength of an insulation material is the determining 

factor when characterizing it for use in high-voltage facilities. Thus, in order to expand the 

application to higher voltages, the study of breakdown of silicone dielectrics is extremely 

important in industrial applications as well as in material research laboratories. The 

increasing demands for the modification of silicone polymers for high-voltage insulation 

require the investigation of the dielectric strength value of the modified material. These 

investigations require a large number of breakdown tests. The use of a complicated testing 

methodology causes widely scattered breakdown data points that affect the accuracy of the 

measured results. The lack of accurate data on dielectric strength could lead to design 

shortcomings: excessive insulation could lead to more expensive equipment, while 

inadequate insulation could lead to premature failure. Therefore the appropriate testing 

method should be considered in order to match technical and economic demands. This 

chapter deals with the development of a new methodology to measure dielectric strength of 

silicone rubbers.  

 
4.1 State-of-the-art review of dielectric breakdown testing methods for 

silicone rubbers 
 

It is well known that the breakdown voltage of solid material is not a definite value 

because it is a statistical probability whether the material will fail at a given voltage or 

electric field stress. When a dielectric strength value is given, it is usually the mean 

breakdown value of a large number of samples. The dielectric breakdown value of silicone 

elastomers depends on various parameters such as electrode configuration, preparation 

processes of the test specimen, impurities or structural defects, type of voltage stress (AC, 

DC or impulses), voltage rate-of-rise, the stressed volume or thickness of specimens and 

surrounding medium. Therefore the absolute dielectric strength value is meaningless. 

Practically, the dielectric breakdown value is measured under the best experimental 

conditions when all external influences are isolated. A good statistical evaluation of the 

dielectric breakdown values is obtained when a suitable electrode and a proper specimen are 

selected for the breakdown test. Likewise, the unknown factors, which are caused by the 

preparation processes of the test specimen, should be reduced to the minimum. 
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There is a universal methodology for the measurement of electrical strength of general 

solid insulating materials at commercial power frequencies. Test procedures for that are 

described in the IEC 60243-1 standard [24] and ASTM D149 [128]. Because IEC standards 

are more popular for research and industry in high-voltage engineering, the IEC standard 

60243-1 was critically checked. Unfortunately, it does not give recommendations for the 

measurement of the dielectric strength value of elastomeric materials, i.e. silicone rubbers. 

Specific recommendations for cast and moulded materials, e.g. fiberglass, thermosets and 

thermoplastics, are provided in sub-clause 4.1.6 of this standard. Because of missing 

recommendations for silicone rubbers, often the procedure according to sub-clause 4.6.1 of 

IEC 60243-1 is used and the sheet specimen with thickness of 1.0 mm ± 0.1 mm is usually 

selected. Electrode arrangements with unequal- or equal-diameter opposing-cylinders can be 

applied for dielectric breakdown test. The test arrangements are shown in Figure 4.1 a) and 

b). The advantage of these test arrangements is their use with a silicone sheet specimen, 

which can easily be prepared and its quality can be controlled. The setup is typically 

immersed in a liquid surrounding medium, e.g. silicone oil or insulating oils, to prevent 

surface discharges around the electrode edges.  

 

 

 
a) Unequal-diameter opposing cylinders (unit: in mm) 

 

 
b) Equal-diameter opposing cylinders (unit: in mm) 

Figure 4.1:  Electrode arrangements for tests on silicone sheet perpendicularly to the surface 
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For these experiments, it is allowed to use embedded electrodes or cast-in electrodes 

to avoid discharges around the electrode edges, which may occur before breakdown and 

cause unwanted stress of the specimen. The metal electrodes shall be maintained smooth, 

clean and free from defects at all times. The electric field can be considered to be uniform 

and the breakdown field strength �&  can be calculated from �& =	%& '⁄ , where %&  the 

electrical breakdown voltage under the prescribed conditions and ' the thickness of silicone 

sheet specimen are.  

 

Measurements of the breakdown voltage of the silicone elastomers under AC 

conditions are usually done under increasing voltage control. The mode of voltage increase 

shall be selected for the elastomeric material under test, which is recommended in clause 9 of 

IEC 60243-1 [24]. For short-term breakdown test, the continuously rising voltage with the 

raise rate of 1 kV/s and the 60 s step-by-step test procedures are typically selected for the 

determination of dielectric strength of silicone rubbers. 

 

The equal-diameter electrode configuration has the decisive advantage over the 

unequal-diameter arrangement, of providing a lower stress intensification factor at the edges. 

The field intensification factor at the edge depends on the radius of curvature at the electrode 

edges. Therefore for preliminary study, this electrode arrangement was tested to examine the 

appropriate methodology for the breakdown test of transparent silicone rubbers. The brass 

electrodes with 25 mm in diameter and 25 mm thick with edges rounded to 3 mm according 

to the standard IEC 60243-1 were used. The electrodes were embedded into a silicone rubber 

cube by using a special mould made from brass. The dimensions of test sample were 80 (L) × 

80 (W) × 80 (H) mm
3
. The distance between the electrodes was adjusted to 1.0 mm. Example 

of the test sample is shown Figure 4.2. 

 

  
a) Electrodes after casting the mixed silicone b) Completed test specimen 

Figure 4.2:  Test sample embedded with the equal-diameter opposing cylinder electrodes 

 
The sample embedded with the equal-diameter opposing cylinder electrodes can be 

used for the breakdown voltage test of silicone elastomers. It is easy to fix the electrodes in 

the mould and to cast the liquid silicone rubber. The curing process typically takes about one 

hour. It was found that the specific breakdown strength values of silicone rubbers are in the 

range from 20 kV/mm to 40 kV/mm and depend on variable factors such as sample 

parameters (e.g. type of silicone rubber under test, molecular structure, degree of cross-

linking, micro-voids), electrical stress parameters (e.g. mode of increasing voltage) and 

electrode parameters (e.g. surface roughness of the electrodes). The test results are consistent 

with those of other investigations, e.g. [22] and [129]. Unfortunately, this method is not 
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suitable for routine tests especially for the material research laboratories when a large number 

of breakdown tests are needed for a good statistical evaluation. It doesn’t match the economic 

reality because the test sample requires a big volume of materials. Moreover, the impact of 

other parameters usually affecting the breakdown field strength of polymers is also a 

technical problem. It is difficult to 

a) adjust an exact distance between the embedded electrodes, 

b) control the quality of the test samples; only one of the test sample can be used 

for one breakdown test. A good statistical evaluation of the result requires a 

certain number of samples. The lack of quality control of each sample resulted 

in a large dispersion of the values because for every test a new sample was 

needed. In such cases, the use of a simple Weibull statistics does not deliver 

reliable results because some data points lie outside the upper and lower bounds 

of 90 % confidence intervals. It is clear that these are due to a breakdown event 

at an external defect. 

c) control the electrode parameters during the test; electrode parameters, i.e. the 

surface roughness of the electrodes and the removal of sharp edges, influence 

the breakdown voltage of the material under test and reduce the reliability of 

the measured results. Non-smooth areas in the electrode surface initiate a 

location of concentrated electric stress with high and divergent electric field. 

This electric stress concentration is a result of the redistribution of electric 

potential field at a sharp protrusion point on the interface between a surface of 

embedded electrode and silicone specimen. Because of a higher local field 

gradient, the electric stress at the peaks of the electrode surface profile 

increases from a base level. Thus, the dielectric breakdown voltage is reduced. 

On the other hand, a poor removal of sharp edges lead to an increase of the 

stress intensification factor at the edges, and eventually causes breakdown 

outside the electrode active surface (see Figure 4.3 a) and b)). After several 

breakdown tests, the visual examination of the electrodes denotes a local 

surface deterioration as shown in Figure 4.3 b). In practice, the electrodes 

require a good polishing process, e.g. electro-polishing technology or 

sputtering technique, after breakdowns to maintain their surface smooth, clean 

and free from defects, hence, this is an expensive experiment. 

 

 

  
a) Breakdown channel outside the active area b) Electrode damage at breakdown 

Figure 4.3: Problems with electrodes in dielectric breakdown tests of silicone rubbers 
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In such cases mentioned above, all the information on the dielectric material itself is 

lost and a simple Weibull distribution cannot describe the results. Uncontrolled samples or 

electrode parameters may result in a complete loss of the information for the population being 

investigated. The information is not generally known, and the analysis is more difficult by the 

limited number of data points in the low probability regions. 

 

Danikas [19, 21], Österheld [20] and Winter [22] have proposed technical methods to 

measure dielectric strength of RTV-2 silicones. The AC 50 Hz dielectric strength value of a 

special grade silicone rubber for electrical insulation has been investigated under different 

test methodologies and electrical stress conditions. The test methods and results are 

summarized in Table 4.1. A sketch of the test cells, which were used by them, is illustrated in 

Figure 4.4.  

 

Table 4.1: Review of �& measurement techniques for silicone rubbers 

 
Generally 

[24, 128-129] 

Winter [22] Österheld [20] Danikas 

[19, 21] 

Electrode 

arrangement 

IEC 60243-1 

(sub-clause 4.1.6) 

Hemispherical 

shaped rod-to-plate 

(R = 10 mm) 

Sphere-to-plate 

(R = 7 mm) 
Rogowski 

Test-specimen 

Sheet-specimen 

under surrounding 

medium 

Sheet-specimen  

embedded 

 

Sheet-specimen  

embedded 

 

Electrodes 

embedded 

 

Test thickness d 

in mm 
1.0 1.0 0.5 5, 10 and 20 

Cast-in electrode  No 

Yes  

(with 4 electrodes 

per test cell) 

Yes  

(with 4 electrodes 

per test cell) 

Yes 

Mode of voltage 

increase 

IEC 60243-1 

(clause 9) 
1 kV/s 2 kV/s 5 kV / 6 min 

Type of silicone 

rubber 

Typical 

elastomeric 

materials 

RTV-2 
RTV-2 

(PowerSil 600) 
RTV-2 

Approx. <Ô 

in kV/mm 
20 – 40 >  100 >  100 

12.8 – 29.3 
(depending on the 

thickness) 

 
Considering the test results and the test cell characteristics that are illustrated in Table 

4.1 and Figure 4.4, we cannot compare the results because there are quite different test 

conditions. For example, considering the same material, the test cells embedded with 

electrode curvature and very thin thickness show very high breakdown results. On the other 

hand, test cells embedded with Rogowski’s electrodes and higher thickness show very low 

breakdown results. This is due to the size effect of specimen and the different electric stress 

conditions.  

 

The test cell with embedded test electrode seems to be usable for measurement of 

dielectric strength of elastomeric materials because this configuration is similar to the real 

insulation. Unfortunately, it is very complex in structure. The complicated method for 

specimen preparation makes, however, a good quality control difficult.  
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R
= 10

R
= 10

R
= 10

R
 =
 1
0

 

 

a) Test cell after Winter et al. [22] 

 
b) Test cell after Österheld [20] c) Test cell after Danikas et al. [19, 21] 

Figure 4.4: Various types of the test cells used for the measurement of dielectric strength in 

silicone rubbers 

 
The test cell embedded with multi-electrodes requires a big volume of the embedding 

material as electrical insulation to separate the electrodes during the breakdown test. That is 

an expensive work. It does not match the economic reality because it is waste of materials, 

particularly when a large number of breakdown tests are needed for a good statistical 

evaluation. There are time-consuming steps at every stage of the process. Moreover, this 

technique is not applicable for highly viscous silicone rubbers because it requires more 

complex pre-treatment to get rid of all defects inside, e.g. micro-voids or air bubbles 

occurring during the cross-linking process. Therefore the preparation process may affect the 

accuracy of dielectric breakdown measurements. Due to all these reasons, an appropriate and 

cost-efficient test cell as well as a methodology for breakdown test of silicone rubbers need to 

be developed to cover issues related to both the technical and economic demands. 

 

From a practical point of view, Rogowski’s electrodes provide a uniform electric field 

in the active region under test but the manufacturing of the Rogowski profile electrodes is 

difficult and very expensive. While the electrode curvature (e.g. sphere-to-plate and 

hemispherical shaped rod-to-plate configurations) permits a single well-defined point of 

maximum field at the centre, away from it, the field intensity is gradually reduced. For 

sufficiently large sphere radius and small gap the approximation of the field lines can be 

considered as a uniform electric field (see chapter 3.2) and the magnitude of the electric field 

strength is defined in terms of E = V/d. The electrode has more advantage than the opposing 

cylinders arrangement (Fig. 4.1) for the dielectric breakdown test of elastomeric materials, 

because it is easy to maintain their surface smooth, clean and free from defects. These can 

reduce the influence of electrode parameters on the breakdown data. Moreover, it does not 

require an extensive polishing process so that the maintenance costs can be held low. 
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4.2 Steps in test cell construction for dielectric breakdown test of silicone 

rubbers 
 

Because the IEC standard 60243-1 [24] does not define the specific test method for 

the determination of the short-time dielectric strength value of elastomeric materials, and 

current approaches do not provide the solution to meet the current challenge, especially, 

when a large number of breakdown tests are needed, different types of the test cells based on 

sphere-to-plate electrode configuration have been constructed and investigated. Going this 

way, the appropriate approach for the AC dielectric strength measurement of silicone 

elastomers could be found. Important steps on this way are briefly described below. 

 
4.2.1 The test cell configuration with five embedded sphere electrodes  
 

This test cell configuration follows those proposed by Winter et al. [22]. But the size of 

the test cell has been reduced to a reasonable size (about half of its original size) in order to 

minimize the amount of silicone material. Sphere electrodes were used instead of the 

hemispherical shaped rod electrodes to reduce the pressure contact caused by the electrode 

weight. The main concept of this test cell is the reduction of time taken per unit by embedding 

five electrodes in each preparation process. Well-polished stainless steel balls of 20 mm in 

diameter were used as sphere electrodes. The electrode arm was made from brass for the high-

voltage connection. The specimen (silicone sheet) with a thickness of 0.5 mm (± 0.02 mm) was 

placed at the bottom of the test cell. The electrodes were mounted in a special insulating holder 

onto the silicone sheet specimen. The whole configuration was embedded by using a moulded 

type RTV-2 silicone polymer as shown in Figure 4.5. The breakdown tests were carried out one 

by one. Five breakdown test results could be obtained from one test cell.  

 

 

Figure 4.5: The test cell configuration using five embedded sphere electrodes (unit: in mm) 

 

Unfortunately, this method is a bit complicated in practice. It is difficult to control the 

quality of the whole test cell during the preparation process that influences the breakdown test of 

each specimen in the same test cell. Beside these, there were side effects caused by unwanted 

electrical stress (capacitive coupling) when high voltage is applied to the electrode under test. In 

this case, other virgin specimens in the same test cell were damaged. Therefore the sample 

condition has changed. In such a case, all the information on the dielectric material itself is lost. 
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4.2.2 The test cell configuration with single embedded sphere electrode  
 

A big test cell has been resized in order to minimize again the volume of embedding 

material and to reduce the weight of the test cell. The test cell with embedded single sphere 

electrode has been designed as shown in Figure 4.6. A stainless steel ball was used as sphere 

electrode and connected to the electrode arm made from brass. The dimension of the test 

electrode is shown in Figure 4.7. It is essential to get an optimum size of the test cell for high-

voltage testing as well as to keep the material used to a minimum. Therefore the test cell 

configuration and its dimensions were reasonable designed. The test cell was modelled and 

the electric field distribution in the focused area was simulated using the special software 

(ANSOFT_Maxwell - 2D student version). The simulation result is shown in Figure 4.8. It 

could be confirmed that the designed dimensions provide a uniform electric field in the active 

region under test.  

 

 

r = 10

  
a) Dimensions of the test cell b) Examples of the test cell 

Figure 4.6: The test cell configuration with embedded single sphere electrode (unit: in mm) 

 

 

  
a) Dimensions of the sphere electrode b) Real electrode 

Figure 4.7: Sphere electrode and accessories (unit: in mm) 
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Figure 4.8: Voltage distribution (equi-potential lines) between test electrodes (R-Z plane) 

 
This test cell provides conditions similar to real application environment in HV 

equipment. It is possible to use this test cell for the specific measurement of dielectric 

strength of silicone elastomers, i.e. intrinsic breakdown measurements. But the preparation 

process of each test cell is quite complicated and time consuming. In some cases problems 

can arise, if, for example, the degree of cross-linking of silicone sheet specimen needs to be 

controlled, and the RTV silicone is used as the embedding material, and if a longer period of 

curing time is needed to be sure that the curing process of embedding silicone at room 

temperature is completed and stable without any impact on the specimen under test. 
 

The curing time of silicone rubbers depends on volume and/or size of the test cell. 

Curing process can be accelerated by heating but it may influences the characteristic changes 

of specimen parameters. The difference of each sample's quality results in scattering 

breakdown voltage values that lead to inaccuracies in measuring the dielectric strength of the 

investigated material. 
 

Last but not least, a preliminary investigation revealed that uncured liquid silicone 

polymer, which is used as embedding material, could flow between the electrode and 

specimen (silicone rubber sheet). This results in a higher breakdown voltage level and a 

longer time to breakdown (in case of constant stress tests). It is surprising that this issue has 

never been considered in the previously published papers.  

 
4.2.3 Summary 
 

All the problems mentioned above, reveal disadvantages when using both types of the 

test cell. It is not reasonable to use them when performing extensive test series in material 

research laboratories. The preparation process of each test cell has become very time 

consuming. The lack of quality control of a sample parameter may result in a loss of the 

information from the silicone rubbers being investigated. This leads to misinterpretation of 

the dielectric strength behaviour of modified silicone polymers or all information on the 

modified silicone itself can be lost. 
 

Electric field distribution (zoom in) at  

a defined point when voltage is applied. 
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4.3 Development of a new efficient methodology to measure dielectric 

strength of silicone rubbers 
 

Knowing that the dielectric strength of an insulating material can only be determined 

with a certain probability, the mean breakdown value of a number of samples is measured. 

The dielectric strength of silicone rubbers (SiRs) varies depending on three parameters: 

− Sample parameters: e.g. material type, molecular structure, degree of cross-

linking, impurities or micro-voids, 

− Electrode parameters: e.g. electrode configuration, surface roughness of the 

electrodes, and 

− Electrical stress parameters: e.g. mode of increasing voltage. 

 

A good statistical evaluation of the dielectric breakdown values requires a suitable 

electrode and a proper specimen. Likewise, inaccuracies in measuring by imponderability in 

the specimen preparation must be reduced to a minimum. 

 

In order to meet both technical and economic demands, an efficient methodology for 

basic investigations of the dielectric strength behaviour of silicone rubbers has been designed 

and developed. The core element of this methodology - the new test facility - allows easy 

preparing and handling of a silicone-sheet specimen. The technique is optimized for liquid 

silicone rubbers with very high viscosity as used in high-power cables accessories. Moreover, 

the new test facility can optimally be used for dielectric breakdown tests in some other cases, 

such as testing with embedded electrode. The developed technique is also reasonable for routine 

tests in materials research laboratories. The electrode arrangement is shown in Figure 4.9. 

 

  

 

 

 

Notations show in Figure:  

  ����  Main electrode to apply 

the high voltage; 

  ���� Electrode clamping 

(insulating material) to 

adjust and fix the test 

electrode; 

  ���� Standing ring (insulating 

material) to fix the test 

electrode (to avoid tilt) 

and to limit the surface 

pressure acting from the 

electrode to the specimen; 

  ����  Test electrode made by 

the standard stainless-

steel ball-bearing. 

 

a) 3-dimentional body b) Cross-sectional view  

Figure 4.9: The efficient electrode arrangement to measure the dielectric strength of SiRs 
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The electrode arrangement (Figure 4.9) provides basic information about 

characteristic changes in the dielectric strength behaviour resulting from modification (e.g. 

fluorescent modification and nano-fillers addition) of transparent or translucent silicone 

rubbers with regard to optical compatibility. The high advantage of the developed 

methodology is the use of only one silicone-sheet specimen, which is enough for breakdown 

tests under the same condition. Thus, a large number of breakdown data points can be 

recorded. This minimises the expense to produce test specimens and reduces the amount of 

embedding material. The effect of unknown parameters from the process of highly viscous 

liquid silicone rubber specimen preparation can be limited. It is also very useful for testing 

HTV (high temperature vulcanisation) types of silicone rubbers when the degree of cross-

linking needs to be controlled. The new test arrangement with silicone sheet specimen is 

shown in Figure 4.10 [25]. 

 

Permanent magnet

Silicone-sheet 
specimen

Ground electrode

R = 10 mm

Standing ring
Electrode clamping

Liquid insulating surrounding medium

 

Figure 4.10: Test arrangement with silicone sheet specimen 

 
The sphere-to-plane geometry permits a single well-defined point of maximum field 

and gradual reduction of the field away from the point. For a sufficiently large sphere radius 

and a small thickness of silicone sheet specimen, the electric field can be considered as 

uniform (or homogenous). A standard ball-bearing, made from well-polished stainless steel 

with a diameter of 20 mm and 32.6 g weight, are used as the sphere electrode to minimise 

electrode damage at breakdown and to reduce the manufacturing costs as well as maintenance 

costs. The sphere electrode is connected to the main electrode (number � in Figure 4.9) by 

using magnetic force. The main electrode has been designed with sufficient dimension to 

avoid surface discharges (or corona discharges) that could have environmental impacts 

during the test. The advantage of this design is the removal or the rotation of the metal ball to 

new positions when the previous position was damaged at breakdown. Using this technique, a 

smooth, clean and defects-free surface of the sphere electrode can be maintained. Only a 

basic polishing process is required for cleaning of electrode surface before each test. One 

metal ball can be used at least for six breakdown tests before it has to be exchanged. This 

technique reduces the influence of electrode parameters (shape deformation) on the 

breakdown test as well as the expensive electrode. 

 

The standing ring made from insulating material is used to limit the contact pressure 

between the test electrode and the surface of the silicone sheet specimen (Figure 4.10). Thus, the 

sphere electrode only touches the specimen surface. The position of the touching point shall be 

calibrated before every test. The real electrode and the standing ring are shown in Figure 4.11. 
 

���� 
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a) Test electrode and its installation b) Adjustment of electrode position before test 

Figure 4.11: The new accessories for breakdown test of elastomeric materials 

 
Practically, the basic requirements for silicone rubbers used as an insulating material 

for HV power cable accessories are their electrical and mechanical properties. Mechanical 

elongation usually occurs in cable accessories when a rubber is loaded (stressed) in tension. 

Thus, the dielectric strength behaviour of silicone elastomers under the condition of loaded in 

tension should be investigated. The concept of this test is shown in Figure 4.12. Therefore, 

the tool was specially designed for such test (see Figure 4.13). 

 

 

Figure 4.12: Schematic test diagram for investigation of the dielectric strength behaviour of 

silicone elastomers when loaded in tension 

 

  
a) Specimen holding and taking tension force b) Example of the test setup 

Figure 4.13: Special tool for loading silicone rubber sheets in tension 

 

Standing ring 

Silicone sheet specimen 
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Furthermore, the new test accessories can easily be used for the measurements of 

dielectric strength in some other cases, such as testing with embedded sphere electrode or 

with cast-in electrode. Such tests can be complemented by the new test facility when the 

measurement of dielectric strength of silicone rubbers requires better test conditions, e.g. 

intrinsic breakdown test and thermal accelerated aging test [130]. The test cell with 

embedded sphere electrode gives a high stress in the centre area of the specimen and low 

stress at the edges, that all external influences are then controlled. Another new test cell with 

sufficient dimensions was developed (see Figure 4.14). It is suitable for such an application. 

The volume of embedding material is about 5.5 cm
3
 and the weight of the test cell is only 

38.0 g. It avoids the waste of material and provides a reasonable structure. 

 

 

  

a) Cross-sectional views of the test cell b) Real test cells 
 

  

c) Installation of the test cell d) Adjustment of electrode position before test 

Figure 4.14: A small test cell with embedded sphere electrode for the specific breakdown test 

 
In all dielectric strength measurements of silicone rubbers, thus, partial discharges and 

thermal effects during the test period must be avoided. The whole setup shall be immersed in 

surrounding liquid insulating medium, e.g. silicone oil or castor oil. The test chamber was 

designed to maximise the testing capabilities for high-voltage breakdown test. The developed 

apparatus is reliable in its mechanical structure and can be used for the dielectric breakdown 

test of silicone rubbers under AC, DC as well as impulse voltages. The complete test system 

is shown in Figure 4.15. 

 

 

 

 

Unit: in mm 
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Figure 4.15: New apparatus for the dielectric breakdown test of silicone rubbers 

 

4.4 Conclusions 
 

Because the IEC standard 60243-1 [24] does not define the specific test method for 

the determination of the short-time dielectric strength value of elastomeric materials, 

particularly silicone rubbers, an efficient methodology for a basic investigation of the dielectric 

strength behaviour of silicone rubbers has been developed. It is optimised to satisfy the 

technical and economic demands. The core element of this methodology - the new test facility 

- has the following advantages [25]: 

− Only one sheet specimen is needed for breakdown test, a large number of 

breakdown data points can be recorded, with this only sheet; the effect of 

unknown parameters can be limited. 

− This method enables the investigation of highly viscous silicone rubber, which 

was not yet possible by traditional approaches. 

− The breakdown test facility can be used for a high-temperature curing (HTV) type 

of silicone rubbers when the degree of cross-linking needs to be controlled. 

− The quality of the test specimen and the electrode parameter can be controlled; 

this possibility can enhance the statistical significance of the test results, so that a 

valid estimation of the needed variables of such silicone elastomers is now 

possible. 

− The material input is minimised and the process of specimen preparation is less 

then time-consuming; this low-cost experimental method provides dielectric 

strength values for silicone rubbers with low uncertainty. 

− This technique is also reasonable for routine tests in materials research laboratories. 

 

Oil drain point 
For ground 

connection 
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The developed methodology is used to evaluate the dielectric strength of silicone 

rubbers where especially thin silicone sheet specimens are in the focus. The dielectric 

strength behaviour of the virgin and modified silicone elastomers for optical compatibility 

was investigated. Experimental work, results and conclusion will be shown in the following 

chapters of this thesis. 
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5  Experimental details 

 
This chapter deals with the details of the materials, the preparation of test specimen, 

experimental setup and the statistical methodology used for analysis of the results. The 

process of specimen preparation is of utmost importance because it has the power to be the 

most rigid type of research. The best approach is to control as many interacting variables as 

possible to eliminate or reduce errors in the measurement of dielectric strength of silicone 

rubbers. They will be discussed below in the order of effectiveness. 

 
5.1 Description of the materials used 
 

The optical PD detection requires optically-transparent insulating materials [15, 17-

18]. Thus, the modification of transparent or translucent types of silicone rubber (SiR) for 

highly efficient optical PD detection is needed. In order to expand their application to higher 

voltages, the dielectric strength of such silicone rubbers before and after modifications should 

be evaluated. These investigations require a large number of breakdown tests in the high-

voltage laboratory.  

 

 Silicone polymers are extensively used as an insulating part of high-voltage cable 

accessories. Hence, silicone polymers are ideal for modification or the development of novel 

specific-dielectric material for high-voltage insulation. For the reason mentioned above, the 

main purpose of this work is to give an overview on the dielectric strength behaviour of the 

optically compatible types of silicone rubbers. Four types of two-component liquid silicone 

rubber were selected for investigation of the strength behaviour: 

• Two transparent types with different mixing ratio, 

• One translucent type, and 

• Electrical grade silicone rubber (RTV-2). 

 
Transparent and translucent types to be used as basic silicone polymers have similar 

properties compared with currently used polymeric insulation materials in high-voltage 

engineering. Transparent polymers have excellent optical but worse mechanical properties. 

Translucent materials should be avoided when optical detection methods should be used but 

has excellent mechanical properties. To make use of the optical properties of the transparent 

materials, the mechanical properties must be improved by modification. On the other hand, 

the optical properties of translucent materials should be improved to take advantages from the 

excellent mechanical properties. When these materials are modified, their electrical properties 

must be investigated and approved for their use in high-voltage engineering. 

 

It is worth noting that the materials investigated were bought from commercially 

available sources. The electrical grade silicone rubber (RTV-2) was also investigated in this 

work and is here considered as the reference rubber material to which all important properties 

of the others are compared. The selected silicone rubbers and values of some physical 

properties are shown in Table 5.1. 
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Table 5.1: The values of some physical properties of the selected silicone rubbers 

Silicone  

Name 

Type of 

silicone 

Mixing 

ratio A:B 
(by weight) 

Conditions for 

cross-linking 

process 

Viscosity 

(mPa.s) 

Density 

(g/cm
3
) 

Appearance 

ESA 7250 LSR - 2 10:1 at room temperature 

or accelerated by 

heating 

4,000 1.02 Transparent 

LSR 7665 LSR - 2 1:1 at room temperature 

or   accelerated by 

heating 

20,000 1.01 Transparent 

LSR 3003/30 LSR - 2 1:1 by heating 213,000 1.1 Translucent 

PowerSil 600 LSR - 2 9:1 at room temperature 15,000 1.13 Light grey 

  Note:   1) LSR - 2 is two-component liquid silicone rubber 

 
ESA 7250 is a two component, optically clear and low-viscous silicone elastomer 

with good pourability. The mixing ratio is 10:1 by weight. Therefore, this is more flexible 

and suitable to add nanoparticles or fillers. This silicone elastomer cures by a polyaddition 

reaction and the elastomer can be removed from the curing form after 24 to 48 hours at room 

temperature. Curing can also be accelerated by heating; the curing temperatures 

recommended by producer are 4 hours at 60 °C, or 2 hours at 100 °C, or 1 hour at 150 °C. 

This grade is suitable for casting or mould filling process. 

 

LSR 7665 is a highly transparent two-component liquid silicone rubber. This grade is 

possible for modification, i.e. fluorescent modification and nano-fillers addition. It can be 

cured at room temperature or accelerated by heating. This silicone elastomer has excellent 

optical properties. When heat stabilizers (post curing) are added, the products can be used 

within a temperature range of -55 °C to +230 °C, for a short time up to +300 °C. It is also 

suitable for casting or mould filling process. 

 

LSR 3003/30 is a very highly viscous (paste-like) silicone polymer. This grade is a 

translucent type; fluorescent pigments can easily be mixed into the two component 

compound. Short curing times can be achieved by heating. It has excellent mechanical and 

electrical properties which are appropriate for cable accessories and insulators. When heat 

stabilizer (post curing) is added, the product can be used within a temperature range from -55 

°C to +230 °C, and for a short time up to +300 °C. These grades are suitable for an 

economical manufacturing of large series of injection moulding processes. Therefore the 

cable industry is interested to know electrical properties of this silicone rubber. 

 

PoerSil 600 is a special grade for electrical insulation. It has a light grey colour; it is a 

pourable, addition-curing, two-component silicone rubber that cures at room temperature 

(RT) to form soft products with high mechanical strength. The platinum catalyst is in 

component B. It has excellent hydrophobic properties, outstanding dielectric properties (high 

resistivity and low loss factor), high tracking and arc resistance. Presently, the PowerSil 600 

silicone rubber is mostly used for electrical insulation in power systems equipment 

particularly in power cable joints and accessories.  
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The values of some mechanical and electrical properties are shown in Table 5.2 and 

Table 5.3, and are found in the technical data sheets of the silicone producers [131-134]. It is 

important to note that these data are only intended as the guidance and should not be used in 

preparing specifications. 

 

 

Table 5.2: Mechanical properties of the selected silicone rubbers, which are guided by the 

silicone producers 

Silicone  

Name 

Processing 

(for industrial process) 

Hardness 

Shore A 

Tear 

strength 

(N/mm) 

Tensile 

strength 

(N/mm
2
) 

Elongation  

at break  

(%) 

ESA 7250 Casting, mould filling 52 4 6.2 115 

LSR 7665 Casting, mould filling 54 8.3 7.5 180 

LSR 3003/30 Injection moulding 31 23 7.5 610 

PowerSil 600 Casting, mould filling 30 25 6.5 500 

 

 

 

Table 5.3: Electrical properties of the selected silicone rubbers, which are guided by the 

silicone producers 

Silicone 

Name 

Volume 

resistivity 

(ΩΩΩΩ cm) 

Dielectric 

constant (ɛr)  

at 50 Hz 

Dielectric  

strength
 

(kV/mm) 

Dissipation 

factor (tan δδδδ) 

at 50 Hz 

ESA 7250 1 x 10
15

 2.7 ∼ 20 
1)

 1 x 10
-3

 

LSR 7665 4 x 10
15

 2.8 27 
2) 

2 x 10
-4

 

LSR 3003/30 5 x 10
15

 2.8 23 
2)

 20 x 10
-4

 

PowerSil 600 ∼ 10
15

 2.9 > 23 
1)

 3 x 10
-4

 

  Note:   

1)
 Dielectric strength values were determined in accordance with IEC60243-1 [24] 

 
2)

 Dielectric strength values were determined in accordance with IEC60243-2 [135] 
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5.2 Preparation of the test specimen 
 

The developed test facility as described in chapter 4 was used for dielectric 

breakdown tests of silicone rubbers. Two types of test specimens, i.e. a silicone sheet 

specimen for the basic breakdown test and a small test cell with sphere electrode embedded 

for the specific breakdown test were used in the same facility. The main objective of this 

research effort is the analysis of the characteristic changes in the dielectric strength behaviour 

of the virgin and the modified silicone rubbers. The dielectric breakdown test with a silicone 

sheet specimen can provide basic information about such characteristic changes in silicone 

materials. Therefore breakdown test on a silicone sheet is in the focus of the research work. 

 
5.2.1 A silicone sheet specimen 
 

When carrying out dielectric breakdown measurements, the insulating materials must 

not have obvious defects or discontinuities in the material. The test specimen shall be large 

enough to permit making as many individual tests as required for the particular material. The 

silicone sheets shall be of sufficient size to prevent flashover under conditions. The surfaces 

of the silicone sheet specimens, which will be in contact with the electrodes, shall be parallel 

planes as smooth as possible. A thin sheet is often convenient for the use as the specimen 

because it can reduce the breakdown voltage as well as the size of HV testing transformer. 

 

After mixing A and B parts, it was preferable to degas the product to eliminate the air 

bubbles that would be visible in the finished part. Silicone sheet specimens with a minimum 

size of 8 cm (width) × 11 cm (length) and a thickness of 0.5 mm ± 0.02 mm were carefully 

prepared. The special casting form made from the heat resistant glass plate has been 

developed for the production of a silicone sheet. For the transparent and translucent types of 

the investigated silicones, the cross-linking (curing) process was carried out by heating under 

vacuum using a vacuum bag to remove air bubbles (micro-voids). Such micro-voids could 

reduce the mechanical and dielectric properties. The cross-linking process of the RTV-2 

silicone was conducted at room temperature under low-pressure condition (approximately 20 

mbars) that was placed inside the vacuum chamber. Examples of the transparent silicone 

sheet specimens are shown in Figure 5.1, while the translucent and the RTV-2 silicone sheet 

specimens are show in Figure 5.2, respectively. 

 
 

  
a) ESA 7250 silicone sheet specimen b) LSR 7665 silicone sheet specimen 

Figure 5.1: Examples of the transparent silicone sheet specimens 
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a) LSR 3003/30 silicone sheet specimen b) PowerSil 600 silicone sheet specimen 

Figure 5.2: Examples of the translucent and the RTV-2 silicone sheet specimens 

 

5.2.2 A small test cell with embedded sphere electrode  
 

In some other cases, e.g. intrinsic breakdown test and thermally accelerated ageing 

test, the measurement of dielectric strength of silicone rubber requires better test conditions. 

These can be obtained from a small test cell with embedded sphere electrode. All external 

influences are then controlled. The preparation of such test cells is very easy by using the 

casting mould as shown in Figure 5.3 a). The circular shaped specimen with a diameter of 

about 36 mm and a thickness d of 0.5 mm (± 0.02 mm) was cut from a silicone sheet that was 

prepared in accordance to the process mentioned in section 5.2.1. The specimen was placed 

onto the bottom part of the mould (segment � in Fig. 5.3 a)) and then fixed by screw-down 

the plastic hollow cylinder (segment �). After that, a well-polished stainless-steel ball 

electrode was mounted on the centre area of the specimen. The whole arrangement was 

embedded using a castable RTV-2 silicone elastomer and then cured at room temperature. 

The sphere electrode was fixed at the centre using the plastic cap holder (segment�). After 

vacuum-casting and curing of the embedded silicone rubber, the test cell was carefully 

demoulded and finally a satisfying test sample as shown in Figure 5.4 could be achieved. Ten 

sets of the casting mould were applied to reduce the time used for the preparation of test cells.  

 

  
a) Casting mould made from PVC b) Cell with sphere electrode embedded 

Figure 5.3: Cross-sectional views of the casting mould and the small test cell with embedded 

sphere electrode (unit: in mm) 
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a) ESA 7250 test specimens b) LSR 7665 test specimens 

Figure 5.4: Test cells with embedded sphere electrodes for specific breakdown test 

 
The test cell was designed with sufficient dimension. The volume of the embedded 

silicone is about 5.5 cm
3
 and the weight of the whole test cell is only 38.0 g. These test cells 

will be used to measure the specific breakdown field strength of virgin silicone rubbers. 

Several of these new applications will be discussed in the next chapter. 

 
5.3 Experimental setup 
 

A short-term dielectric breakdown test of the focused silicone rubbers was conducted 

with AC voltage and the 60 s step-by-step test procedure according to IEC 60243-1 [24]. The 

whole setup was immersed in liquid surrounding medium in order to minimise the effects of 

surface discharges prior to breakdown. Castor oil (C�ÕH��O�) [136] with high permittivity (�� 
≈ 4.5) is a suitable surrounding medium for the test with a silicone-sheet specimen. However, 

for the test with the embedded electrode, the high grade silicone oil (�� = 2.9) can be used. 

Figure 5.5 shows schematically the experimental setup; its use in the high-voltage laboratory 

is shown in Figure 5.6. 
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Figure 5.5: Experimental setup 
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Figure 5.6: Experimental setup in the high-voltage laboratory (CESI-IPH Berlin); Notations:  

���� HV testing transformer; 220 V / 50 kV, 3 kVA, 50 Hz 

���� Current limiting resistor (HV resistor) 

���� HV coupling capacitor, 1 nF / 100 kV 

���� LV part of the measuring system (MPD and MI system by OMICRON 

electronics GmbH) 

���� Test object (test chamber) 

���� USB box and the computer software to record the voltage and partial 

discharge activity (PD) during the test. 

 
Electric breakdown is accompanied by an increase of current flowing in the circuit 

and by a decrease of voltage across the specimen. The increased current may trip a circuit-

breaker or blow a protection fuse. However, tripping of a circuit-breaker may sometimes be 

influenced by flashover, specimen charging current, leakage or partial discharge currents, 

equipment magnetizing current or malfunctioning. It is therefore essential that the circuit-

breaker is well co-ordinated with the characteristics of the test equipment and the material 

under test; otherwise the circuit-breaker may operate without breakdown of the specimen, or 

fail to operate when breakdown has occurred and thus not provide a positive criterion of 

breakdown. Even under the best conditions, premature breakdowns in the ambient medium 

may occur, and observations shall be made to detect them during tests. 

 

 

 

 

 

���� 

���� 
���� 

���� 

���� 

���� 
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5.3.1 Calibration of partial discharge measuring system 
 

In order to investigate the electrical breakdown mechanism only, any partial 

discharges and thermal effects during the test period must be avoided. For that purpose, a 

short-term breakdown test procedure and a homogeneous structure of the stressed material is 

required. A level of partial discharge (PD) activity occurring during the test period shall be 

recorded. Before starting the experiments, calibration of the PD measuring system by a 

reference impulse charge generator (Figure 5.7) is necessary to ensure accurate measurement 

results.  

 

  
a) PD calibration at 100 pC b) Real-time measuring software display 

Figure 5.7: Calibration of PD measuring system before every test 

 
5.3.2 Method of voltage application 
 

AC voltage was applied to the test specimen and increased stepwise until breakdown. The 

60 s step-by-step test procedure was carried out according to sub-clause 9.4 in IEC standard 

[24]. The increases of voltage shall be made as quickly as possible and without any transient 

overvoltage, and the time spent in raising the voltage shall be included in the period of 60 s at 

the higher voltage level. In some cases it would be necessary to run one or two preliminary tests 

in order to determine the expected breakdown voltage of the silicone specimen being 

investigated; such data is then referred as the test guideline criteria. The electric strength is based 

on the highest nominal voltage, which withstood for 60 s without breakdown. The highest 

nominal voltage is to be used to calculate dielectric breakdown strength of the material under 

test. An example of voltage profile is shown in Figure 5.8. 
 

                        

Figure 5.8: Voltage profile of the 60 s step-by-step test procedure 
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5.4 Methodology for statistical analysis of dielectric breakdown results 
 

When assessing the breakdown test results for polymeric materials or polymeric 

insulations, the use of a statistical method is often required. A number of statistical functions 

have been applied to describe general properties of a data population. It is often of interest to 

find out what is “typical” for the population or to predict a probable outcome of the behaviour 

of the population being investigated. Generally, the failure data set of an electrical insulation 

may be represented in the normal distribution from numbers of specimens failed in 

consecutive periods. The mean value and standard deviation of the data set are easily 

calculated using a scientific calculator. Unfortunately, it is not usually appropriate to 

electrical breakdown data of polymeric insulation because the specimen will not break at its 

average strength but at its weakest point, which is dependent on its polymeric structure. 

Therefore, an important step in analysing breakdown data of silicone rubbers is the selection 

of an appropriate distribution. 

 

In fact, the breakdown field strength in elastomeric materials shows much larger 

dispersion than in liquids and gasses. It is a type of extreme value distribution, in which the 

material fails when the weakest structural element fails. The failure of solid insulation can 

mostly be described by extreme-value statistics, such as the Weibull, Gumbel and lognormal 

distributions, but the most commonly used is the Weibull statistics [137]. The extreme values 

are linked to phenomena that have small probability of occurrence and as such they have no or 

very limited effect on the average behaviour of the whole population. In this method the 

properties of the weakest extremes are controlling the behaviour of the whole material. The 

nature of various phenomena to a breakdown in an electrical insulation is characterized by 

extreme values. The guide for the Weibull distribution includes methods for determining 

whether the data is a well fit to the distribution, graphical and computer-based techniques for 

estimating the most likely parameters of the Weibull function, computer-based techniques for 

estimating statistical confidence intervals, and techniques for comparing data sets as well as 

some case studies, are addressed in the IEC 62539 standard [138] or IEEE standard 930 [139]. 

 

The Weibull distributions may be described in terms of two parameters. To give more 

generality, however, a third parameter may be included which corresponds to a lower voltage 

level (or a shorter time), for which the specimen will not break down. In some cases two or 

more mechanisms may be acting; this may need the combination of two or more distributions 

functions. The effect of the specimen size (i.e. thickness, area, volume) on life or breakdown 

voltage can be modelled using extreme value distributions. The lognormal distribution may 

be useful where specimens breakdown due to unrelated causes or mechanisms. The 

lognormal distribution may be closely approximated by the Weibull distribution. 

 
5.4.1 The Weibull distribution for dielectric breakdown data 
 

Waloddi Weibull (18 June 1887 – 12 October 1979) was a Swedish engineer, 

scientist, and mathematician well-known for his work on strength of materials and fatigue 

analysis. The Weibull distribution [137], also known as the Extreme Value Type III 

distribution, first appeared in his papers in 1939. It is flexible and adaptable to a wide range 

of data. The Weibull statistic is used to model data regardless of whether the failure rate is 

increasing, decreasing or constant. The breakdown voltage, time to failure, cycles to failure, 

mileage to failure, mechanical stress or similar continuous parameters need to be recorded for 

all items. The Weibull distribution has wide applicability, especially in representing failure 

data, and its use is by no means confined to electrical breakdown [140-151]. The expression 
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for the cumulative density function for the two-parameter Weibull distribution is shown in 

equation (5.1). 
 

   _(A; µ, ×) = 	1 − /AØ �−LmÙMÚ�  ,                                            (5.1) 

 

where A is the measured variable, usually the breakdown voltage or time to 

breakdown, _(A) is the cumulative probability of failure at a voltage or time less than or equal 

to A. For tests with large numbers of specimens, this is approximately the 

proportion of specimens broken down by voltage or time, A, µ is the scale parameter and is positive, and × is the shape (or slope) parameter and is positive. 

 

The cumulative probability of failure _(A) equal to zero at A = 0, is _(0) = 0. The 

probability of failure rises continuously as A increases. As the voltage or time increases, the 

probability of failure approaches certainty is _(∞) = 1.  
 

The scale parameter µ represents characteristic voltage (or time to breakdown) for 

which the failure probability is 0.632. In this case is the expected variable A = µ , and 

therefore  

 

                               _(µ) = 	1 − /AØ �−LÙÙMÚ� = 1 − �Ü 	= 	0.632			62		63.2	%  . 

 

The scale parameter µ is analogous to the mean value of the normal distribution. The 

units of µ are the same as A, that is, voltage, electric stress, time, number of cycles to failure 

etc. [138-139]. 
 

The shape parameter × is a measure of the range of the failure times or voltages. The 

larger × is, the smaller is the range of breakdown voltages or times. It is analogous to the 

inverse of the standard deviation (SD) of the normal distribution (×	 ∝ 	 �ß"). 

 

The Weibull distribution is also used to represent breakdown voltages in tests, in 

which the test voltage is “raised up” at a constant rate until breakdown occurs, i.e. 

progressive stress tests. In this case, much higher values of × are expected. A very high value 

of × would indicate a very narrow distribution of breakdown voltages, i.e. all systems suffer 

breakdown at about the same voltage [152]. 
 

The two-parameter Weibull distribution of Equation (5.1) is a special case of the 

three-parameter Weibull distribution that has the cumulative distribution function as shown 

in equation (5.2): 
 

    _(A) 	= 	 à		1 − /AØ �−LmUáÙ MÚ�			 ; 		A	 ≥ 	ã
	0																																						; 		A	 < 	ã                                  (5.2) 

 

The additional term ã  is called the location parameter. _(A) = 0  for A = ã  is the 

probability of failure for  A < ã is zero. 
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If the ã-parameter is set to zero, the expression “two-parameter” Weibull distribution 

is then used. The frequency distribution function 4(A)  is obtained from 
gå(m)gm . Therefore 

equation (5.1) can be written as 

 

4(A) 	= 		 '_(A)'A 		= 			 ×µ LAµMÚU� /LmÙMæ 		.																																														(5.3) 

 

Typical examples of the Weibull distribution function with different values for the µ- 

and × -parameters are shown in Figure 5.9 a) and b), representing the cumulative and 

frequency distribution functions, respectively. For clarity, in the following text “the Weibull 

distribution” or “the Weibull function”, refers always to the cumulative distribution function 

unless stated otherwise. 

 

  
a) Cumulative distribution function F(x) b) Frequency distribution function f(x) 

Figure 5.9: Examples of the two-parameter Weibull distribution functions with α = 650 and 

β = 1, 2.5, 5 and 30. Note that β =1 equals to exponential distribution function [153] 

 

 

5.4.2 Plotting of the Weibull function 
 

Data distributed according to the two-parameter Weibull function should form a 

reasonably straight line when plotted in a Weibull probability diagram. The measured data is 

plotted on the horizontal axis, which is scaled logarithmically ln A . The cumulative 

probability of breakdown is plotted on the vertical axis, which is also highly non-linear « = 	 lnç− lnç1 − _(A)èè . The reason for this change of variables is the cumulative 

distribution function and can be linearized. From equation (5.1) follows  
 

                                                          _(A) 	= 	1 − /U(m Ù⁄ )æ   
 

                                                   1 − _(A) 	= 	 /U(m Ù⁄ )æ   
 

                                         − lnç1 − _(A)è 	= 	 LmÙMÚ
  

 

                                  lnç− lnç1 − _(A)èè 	= 	× ln A − 	× ln µ  
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                   or                      ln	 ln | �	�Uå(m)~ 	= 	× ln A − 	× ln µ  ,                                   (5.4) 

 

which can be seen to be in the standard form of a straight line (« = mA + C). Therefore, if the 

data came from a Weibull distribution, a straight line is then expected in the Weibull plot. 

 

As the left side of the equation (5.4) is inconvenient for the reader, a help scale giving 

the label of _(A) is normally used. In Weibull chart the vertical axis is scaled in term of _(A). When the logarithmic scale for the x-axis is used, the different ×-parameter values are 

easily visualised as different slopes. The values for the µ- and ×-parameters are obtained by 

using the maximum likelihood estimation technique as described in [138-139]. 

 
5.4.3 Plotting the experimental data into the Weibull probability diagram 
 

Endurance and strength of insulation systems and materials subjected to electrical 

stress may be tested using constant stress tests, in which times to breakdown are measured for 

a number of test specimens, and progressive stress tests, in which breakdown voltages may be 

measured. In either case it will be found that a different result is obtained for each specimen 

and that, for given test conditions, the data obtained can be represented by a statistical 

distribution.  

 

When plotting the experimental data, the first step is to sort the data in increasing 

order from smallest to largest and assign them a rank from 3 = 1 to 3 = �, where � is the total  

number of data. Therefore, appropriate approximation for plotting positions is needed.  

 

The linear regression using least squares would be expected to give similar results to a 

best fit plotted by eye in a Weibull plot. Linear regression is the simplest of the techniques to 

implement. The technique requires pairs of coordinates. For a large number of specimens 

(� ≥ 50), the cumulative probability of failure coordinate for each data point A , is close to 

the proportion of specimens failed [152]. For the calculation of the 3 -th cumulative 

probability (® ) corresponding to the 3-th failure event, the most accurate technique is the 

incomplete beta function [154-155]. A good median rank approximation, the Bernard 

estimator, is given by 

 

®  		= 			 3 − 0.3� + 0.4		.																																																																					(5.5) 

 

The Bernard rank estimator is the most popular approximation for plotted positions in 

a Weibull graph. It is suitable for a large sample size (� ≥ 50). But, unfortunately, it has been 

found that this technique gives unreliable results in some cases, especially when a small 

sample size and a complete (uncensored test) data set are used for the analysis of electrical 

insulation breakdown [152, 156-157]. 

 

The appropriate approximation for the most likely probability of failure data for a 

small sample size is found in Ross [146, 158]. In case of a complete test (uncensored data) 

and a small size of the samples ( � < 20 ), a superior approximation recommended by the 

IEC 62539 standard [138] for the calculation of the 3 -th cumulative probability ( ®  ) 

corresponding to the 3-th failure event is provided as 
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®  		= 			 3 − 0.44� + 0.25		,																																																																					(5.6) 

 

where � the size of the specimens and 3 the rank of the measured data (3 = 1	to	�) are. These 

can be used for Weibull probability plots of the experimental data in the research.  

 
5.4.4 Parameter estimation for the Weibull distributed data 
 

When the data follows a straight line, it can be assumed that they are distributed 

according to the two-parameter Weibull function. For given breakdown data, the values of µ 

and × need to be found, which correspond to the distribution most likely to represent them. 

Constructing the “best straight line” through data points in a Weibull plot or using statistical 

techniques to find the most appropriate values of µ and ×, it is not a trivial procedure. The 

estimation of the Weibull function parameters for the Weibull distributed measurement data 

can be performed in many different techniques [146, 152, 155-159]. The most commonly 

used estimation techniques are simple linear regression using the least squares technique, or 

“by eyes” fitting in a Weibull plot, or the maximum likelihood estimation, which is 

computationally simple and has been widely used. The most convenient techniques, 

depending upon the number of specimens available in each sample and the values of shape 

and scale parameters, are recommended in standard methods [138-139]. With modern 

computing the Weibull papers as such are not used any longer but a least square fit or more 

accurate linear regression can be applied for the parameter estimation. However, the above 

methods require the use of an approximate rank function, as seen in the previous chapter. The 

maximum likelihood (ML) method has been found to give biased estimates of the parameters, 

especially for small data sets [152, 156-157], then it should be avoided. 

 

Graphical and computational techniques are available for estimating the Weibull 

parameters. Universally, for large data sets, typically with more than 20 breakdowns, the 

least-squares linear regression technique is adequate. But, for small data sets, typically with 

less than 15-20 breakdowns, it can be inaccurate to use the standard least-squares regression 

technique since different points plotted in the Weibull plot need to be allocated different 

weightings, and these are recommended in standard methods [138-139]. For very small data 

sets, typically with less than 5 breakdowns, it can give rise to erroneous parameter estimates 

and the best approach, wherever possible, is to obtain more data. Only if more data cannot be 

obtained, such an analysis, using the White method [160] should be carried out with very 

small data sets [157]. 

 

The number of data points required depends upon the number of parameters that 

describes the distribution and the confidence demanded in the experimental results. In this 

research work, the breakdown data on at least ten specimens is obtained and all test 

specimens broke down so the data is “complete data”. The breakdown field strength (�&) of 

each specimen could be calculated using the relationship between breakdown voltage (%&) 

and thickness (') of specimen. To check for the appropriateness of a set of breakdown data, 

they are placed in the order from the smallest to the largest and assign them a breakdown 

probability (® ) using equation (5.6) as described in section 5.4.3. For each breakdown field 

strength data, �&, , assign a value 

 a  	= 	 ln(�&, )		,																																																																								(5.7) 
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where lnç�&, è is the natural logarithm or log,ê�&, ë. For each probability of failure, ®   , 

expressed as a percentage, assign a value 

 

�  	= 	 ln b− ln b1 − ® 100cc		.																																																(5.8) 

 

Using the least squares regression technique the correlation coefficient is found [138-

139]. For complete test (uncensored data) and ten specimens broke down (� = 2 = 10), it is 

found that the value of correlation coefficient, which is recommended by IEC 62539 [138] 

for well fit to the two-parameter Weibull, is must be greater than 0.92.  

 

 Looking up the weightings for each data point, ì , given in standards [138] and [139], 

the weighted averages of �  and a  as shown in Equation (5.9) and Equation (5.10) can be 

calculated: 

 

�í 	= 		∑ �ì � �� Ä�∑ �ì �� Ä� 																																																																			(5.9) 

 

aí 	= 		∑ �ì a �� Ä�∑ �ì �� Ä� 		.																																																														(5.10) 

 

Using Equation (5.11) and Equation (5.12), the shape parameter ×  and the scale 

parameter µ can be estimated: 

 

×ï 	= 		 ∑ �ì (�  − �í)�� Ä�∑ ì (�  − �í)(a  − aí)� Ä� 																																							(5.11) 

 

µð 	= 	 exp ñaí − �í×ïò			.																																																											(5.12) 

 

It is important to note that, the µ - and × -parameters are normally available on 

commercial spreadsheet programs, e.g. ReliaSoft Weibull++8, Weibull Analysis module of 

AvSim+ by Isograph, ReliaSoft Weibull++ MT 6.0. 

 

Estimation of Weibull percentiles is often useful to estimate the breakdown field 

strength, for which there is a given probability of failure (Ø	%); this is known as the Ø-th 

percentile. The breakdown Ø-th percentile (�&,Ó	%) may be estimated by using Equation (5.13): 

 

�ó&,Ó	% 	= 		 µð |− ln L1 − Ø100M~� Úôõ 	,																																											(5.13) 

 

where Ø is expressed as a percentage. 
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5.4.5 Estimation of confidence intervals for the Weibull function 
 

If the same experimental tests with many specimens are performed several times, the 

values of the parameters and percentile estimated from each experiment differ. The variation in 

estimates results from different methods applicable by different authors, e.g. by Dissado et al. 
[141], Chauvet et al. [142] and Cacciari et al. [143]. Therefore any parameter estimated differs 

from the true parameter value that is obtained from an experiment involving an infinitely large 

number of specimens. Hence, it is common to give with each parameter estimate a confidence 

interval that encloses the true parameter value with high probability. In general, the more 

specimens are tested, the narrower the confidence interval is. 

 

There are various methods of estimating confidence intervals for Weibull parameters 

[161]. Many computer programs are available although some of these may not be accurate if 

used with small sample sizes. The exact values of the statistical confidence intervals depend 

on the method used to estimate the parameters. The graphical procedure for estimating the 

bilateral 90 % confidence intervals for sample sizes from � = 4 to � = 100 can be found in the 

standard guide method [138-139]. The technique is applicable to complete and singly-

censored data. The lower and upper factors for calculation of the 90 % confidence intervals 

for the Weibull function are represented by the curves. They assume that 

a) the data adequately fits the two-parameter Weibull distribution using the simple 

test described in sub-clause 5.4 in such standard [138], and 

b)  the least squares regression has been used for larger data sets with � > 20 and the 

White method has been used for smaller data sets with � ≤ 20. 

 

The standard curves have been calculated using a Monte-Carlo method and are 

estimated to be accurate in the range of 1 % for 4 ≤ � ≤ 20 and 4 % for 20 < � ≤ 100.  

 

 In this thesis, the determination of the 90 % confidence intervals for the Weibull 

parameters (µ and ×) is carried out according to sub-clause 9.1 of IEC 62539 [138]. Ten 

samples (�  = 10) are used for every test series in order to get a sufficient statistical 

confidence level. 

 
5.4.6 Tests with increasing voltage 
 

Practically, the voltage is increased linearly (ramp with a uniform rate of rise) or by 

small steps until breakdown occurs. As the same thickness and the same test conditions were 

given, each test provides a value of the breakdown gradient which constitutes the random 

variable �&. The Weibull distribution for the breakdown gradients can be written as 

 

®(�) 	= 		1 − exp �− b�µcÚ�		,																																															(5.14) 

 

where µ is the breakdown gradient with 63.2 % probability.  

 

Electric strength (ES) tests and progressive stress tests belong to this test type. For 

different rise rates, different breakdown strength values are obtained. If the voltage rise rate is 

rather high, the breakdown occurs typically in a few tens of seconds. Otherwise, breakdown 

could take longer.  
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For the ES tests, Equation (5.14) becomes 

 

®(�¶) 	= 		1 − exp �−b�¶�¶scÚö÷�		,																																							(5.15) 

 

where �¶s is the breakdown field strength at 63.2 % probability. The shape parameter ×`ß is 

usually rather large, e.g. 10 or more. This corresponds to a scatter of the breakdown gradients 

of a few per cents. 

 

It is well-known that Equation (5.15) is used to derive the ratio between the 

breakdown gradients of specimens having different size, because the scale parameter of the 

Weibull distribution is proportional to the dimensional coefficient, �. This ratio is given by 

 �¶��¶ 		= 		�� Úö÷⁄ 			,																																																																		(5.16) 

 

where �¶ is the electric strength of specimens � times larger than the smaller specimens 

having electric strength equal to �¶�. If � > 1 then the ratio �¶� �¶⁄  is > 1, becoming 1 for ×`ß tending to ∞. Thus, the larger ×`ß is the smaller the scatter of the breakdown data, the 

lower is the ratio of �¶� to �¶. 
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6  Experimental results and discussions 

 
Two major criteria in selecting the silicone rubbers for a rubber stress cone of the HV 

cable accessories are their electrical and mechanical performances. Dielectric strength �& and 

mechanical properties (i.e. tensile strength and elongation at break) are the key important 

factors for HV cable accessories. The specific elastic properties of a rubber stress cone are 

important for its functional capability of stabilizing interfaces. In this chapter, electrical and 

mechanical properties of commercially available silicone rubbers are presented. The 

dielectric strength value as well as tensile strength and elongation at break of three types of 

the optically compatible silicone rubbers are evaluated. The obtained test results were 

verified by statistical analysis based on the 2-parameter Weibull distribution function. 

Suggestions for transfer of the results into the cable industry are discussed as well.  

 
6.1 Mechanical properties of the optically compatible silicone rubbers 
 

The transparent and translucent types of commercially available silicone rubbers were 

selected for investigation of their properties which are related to the capability for optical and 

high-voltage applications. Three types of a two-component liquid silicone rubber, i.e. ESA 

7250, LSR 7665, and LSR 3003/30, are in the focus based on the requirements of the power 

cable industry to investigate their basic properties. Unfortunately, from a critical reading in 

the recommended datasheets [131-133], there are several curing processes that can be applied 

to produce a silicone rubber, as listed in Table 6.1 below. 

 
Table 6.1: Recommended curing conditions for the silicone rubber samples 

Silicone 

Samples 
Appearance 

Mixing 

ratio A:B 
(by weight) 

Curing conditions of silicone rubbers 

Normal curing (NC) Post curing (PC) 

ESA 7250 Transparent 10:1  1) 72 hours at RT 

 2) 4 hours at 60 °C or 

 3) 2 hours at 100 °C or 

 4) 1 hour at 150 °C 

 + 2 hours at 200 °C 

LSR 7665 Transparent 1:1       1 hour at 80 °C  + 2 hours at 200 °C 

LSR 3003/30 Translucent 1:1       2 hours at 80 °C  + 4 hours at 200 °C 

  Note:   a) Normal curing of the ESA 7250 can be performed in different temperatures as recommended in [131] 

 b) Post curing (PC) process is carried out after normal curing (NC) process 

 

The mechanical and electrical properties of silicone rubbers depend on their chemical 

structure, particularly on the degree of cross-linking in polymer matrices. The degree of 

cross-linking in elastomers is related to their curing processes. Therefore, in the beginning, 

the appropriate curing method of each silicone should be defined. Following curing process 

of each silicone will be used for all cases of investigation in this research such as dielectric 

strength measurements and consequently use as the curing procedure for the modification of 

silicone rubbers (i.e. fluorescent modification and nano fillers addition) in the future research. 

A simple method to determine the appropriate curing process is the measurement of their 

mechanical properties, so, tensile strength and elongation at break were measured. The 

normal curing (NC) and the additional post curing (PC) conditions are the main focus of this 

review. The test procedure will be briefly described below. 
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The measurements of tensile strength and elongation at break of the silicone rubbers 

were carried out according to the ISO 37:2011 standard [162]. The dumb-bells test pieces 

(Type 2) with the dimensions shown in Figure 6.1 were used as a test specimen. The thickness 

of the test pieces is 2.0 mm ± 0.2 mm and the test length is 20 mm ± 0.5 mm. A cutting 

machine was used to cut the dumb-bells test pieces from a bigger silicone sheet perpendicularly 

to the grain of materials. Ten specimens were cut from three different silicone sheets, which 

were prepared in the same process to have a truly random sample from the target population. 

The test pieces were marked with two reference marks to define the test length as specified in 

Figure 6.1. A tensile testing machine produced by Zwick Roell AG was used. The speed of 

load application was set to 250 mm/min with the initial load of 0.1 N. Examples of test pieces 

and the experimental setup are shown in Figure 6.2 and Figure 6.3. 

 

 

Figure 6.1: Dimensions of a dumb-bell test pieces Type 2 according to ISO 37:2011 [162] 

 

  
a) Specimen cured at 60 °C for 4 hours b) Specimen cured with post curing condition 

Figure 6.2: Examples of the transparent silicone test pieces 

 

  
a) Installation of the test piece b) TestXpert II testing software by Zwick 

Figure 6.3: Examples of the experimental setup in the testing laboratory of CESI-IPH Berlin 

 

specimen 
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6.1.1 Mechanical properties of ESA 7250 silicone rubber 
 

The commercially available liquid silicone rubber (2-component) – ESA 7250 

silicone can be cured in several conditions, i.e. at room temperature (RT) or accelerated by 

heating, which are recommended by the silicone producer. The influences of curing processes 

on the mechanical properties of ESA 7250 were investigated to define the appropriate curing 

method for further investigations. The silicone sheet specimens were cured under five curing 

procedures: (a) RT for 72 hours, (b) 60 °C for 4 hours, (c) 100 °C for 2 hours, (d) 100 °C for 

2 hours + 200 °C for 2 hours; so-called “post curing”, and (e) 150 °C for 1 hour. The 2-

parameter Weibull distribution function was fitted to the experimental data and it was used 

for a statistical evaluation of the results. The results for tensile strength at break TS& of the 

ESA 7250 under different curing processes are shown in Figure 6.4; the estimated Weibull 

parameters µ and × as well as the correlation coefficient 2 are illustrated in Table 6.2. 

 

 

Figure 6.4: Tensile strength TS& test results for ESA 7250 silicone rubber under different 

curing processes 

 
Table 6.2: Estimates of the 90 % confidence intervals of the Weibull parameters for tensile 

strength at break results of ESA 7250 from Figure 6.4 

Curing conditions 

90 % confidence intervals of Weibull parameters Correlation 

coefficient ø 

Scale ù, in N/mm
2
 Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

 Room temperature 

 for 72 hours 
0.70 0.73 0.75 9.38 9.73 23.55 0.895 

 60 °C for 4 hours 6.20 6.30 6.40 22.58 37.19 56.68 0.989 

 100 °C for 2 hours (NC) 6.61 6.69 6.77 30.63 48.71 76.89 0.985 

 100 °C for 2 hours 

 + 200 °C for 2 hours (PC) 
6.38 6.49 6.59 22.19 30.42 55.70 0.943 

 150 °C for 1 hour 7.26 7.32 7.38 42.38 75.32 106.40 0.995 
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The results for tensile strength at break TS& as shown in Figure 6.4 and Table 6.2 

reveal that a high-temperature curing provides better mechanical strength. The value of TS& 

is increasing when the curing temperature is increased. But there is no significant difference 

in the value of tensile strength when they cured at high temperatures above 60 °C. This 

means that the ESA 7250 silicone rubber should be cured at high temperature to achieve good 

cross-linking reaction between the polymer chains, and thus good tensile strength. The 

additional post-curing process, however, does not improve tensile strength of the rubber 

whereas it tends to decrease as shown by the scale parameter µ in Table 6.2.  

 

Likewise, the elongation at break (in %) of ESA 7250 obtained under different curing 

processes are shown in Figure 6.5 and the estimated Weibull parameters µ and × as well as 

the correlation coefficient 2 are illustrated in Table 6.3. 

 

 

Figure 6.5: Elongation at break of ESA 7250 under different curing conditions; the error bars 

( ) represent the 90 % confidence intervals of data for the i-th Weibull percentiles 
 

Table 6.3: Estimates of the 90 % confidence intervals of the Weibull parameters for the 

elongation at break results of ESA 7250 from Figure 6.5 

Curing conditions 

90 % confidence intervals of Weibull parameters Correlation 

coefficient ø 

Scale ù, in % Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

 Room temperature 

 for 72 hours 
219.71 225.52 230.10 16.10 19.51 40.43 0.931 

 60 °C for 4 hours 175.10 177.84 180.45 24.70 40.89 62.02 0.955 

 100 °C for 2 hours (NC) 189.43 192.15 194.17 30.11 36.46 75.58 0.932 

 100 °C for 2 hours 

 + 200 °C for 2 hours (PC) 
154.58 158.36 161.69 16.55 23.87 41.54 0.951 

 150 °C for 1 hour 162.36 164.67 166.42 31.14 36.96 75.66 0.942 

 

The results for elongation at break of ESA 7250 show that they are significantly 

different in their elastic properties because there is no essential overlap between the 90 % 

confidence intervals of each data set. The ESA 7250 silicone rubber cures by a polyaddition 
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reaction at room temperature (RT) and the elastomer can be handled after 72 hours, but it is a 

soft elastomer. It has relatively low tensile strength but high elasticity as shown in the results. 

The high temperature curing reduces the time consuming process and increases the degree of 

cross-linking in the elastomer matrix; thus, it has higher hardness and stronger molecular 

bonds, and consequently reduced elongation ability as shown in the experimental results.  

 

Considering Figure 6.5, it was found that the elasticity (elongation) of this silicone 

rubber is limited when the curing temperature was increased up to 100 °C. This condition 

was defined as a reference condition. The scale parameter µ  decreased by -14.3 % when 

curing at 150 °C for 1 hour was applied and, likewise, it decreased by -17.6 % when the 

additional post-curing process was applied. These results are compared to the reference 

condition. Therefore, the additional post-curing (PC) procedure does not give a positive 

impact on their mechanical properties. 

 

For reasons mentioned above, curing at 100 °C for 2 hours is suitable for ESA 7250. 

This condition was used for normal-curing preparation of silicone sheet specimens in further 

investigations which are presented in the next section. 

 
6.1.2 Mechanical properties of LSR 7665 silicone rubber 
 

 The normal curing (NC) and the additional post-curing (PC) procedures can be 

applied for the 2-component liquid silicone rubber LSR 7665 as recommended by the silicone 

producer. Specimens cured with and without the additional post-curing process were tested to 

investigate the impact of post-curing condition. The tensile strengths at break TS& for LSR 

7665 with and without the post-curing process are shown in Figure 6.6 and Table 6.4. The 

error bars ( ) shown in the graphs represent the 90 % confidence intervals of data for the 

i-th Weibull percentiles. 

 

 

Figure 6.6: Tensile strength TS& test results for LSR 7665 silicone rubber in case of normal- 

and post-curing conditions 
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Table 6.4: Estimates of the 90 % confidence intervals of the Weibull parameters for tensile 

strengths at break results of LSR 7665 from Figure 6.6 

Curing conditions 

90 % confidence intervals of Weibull parameters Correlation 

coefficient 

(ø) 

Scale ù, in N/mm
2
 Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

 Normal curing (NC)  

 at 80 °C for 1 hour 
5.67 5.79 5.91 17.89 24.89 44.92 0.961 

 Post curing (PC) 

 + 200 °C for 2 hours 
7.59 7.66 7.73 39.14 58.34 98.25 0.978 

 
Likewise, the results for elongation at break of LSR 7665 specimens with and without 

post-curing are shown in Figure 6.7 and the estimated Weibull parameters µ and × as well as 

the correlation coefficient 2 are illustrated in Table 6.5. The error bars ( ) shown in the 

graphs represent the 90 % confidence intervals of data for the i-th Weibull percentiles. 

 

 

Figure 6.7: Elongation at break of LSR 7665 in case of normal- and post-curing conditions 

 
Table 6.5: Estimates of the 90 % confidence intervals of the Weibull parameters for the 

elongation at break results of LSR 7665 from Figure 6.7 

Curing conditions 

90 % confidence intervals of Weibull parameters Correlation 

coefficient ø 

Scale ù, in % Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

 Normal curing (NC)  

 at 80 °C for 1 hour 
260.80 267.70 273.81 15.28 21.76 38.37 0.968 

 Post curing (PC) 

 + 200 °C for 2 hours 
145.68 150.09 153.92 13.53 19.38 33.97 0.946 

 
The results show that the curing processes can influence the mechanical properties of 

LSR 7665 silicone rubber. The additional post-curing process can enhance the degree of 

cross-linking in the rubber materials and then makes stronger molecular bonds. Thus, a 
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significantly higher tensile strength than for normal curing can be achieved. But 

unfortunately, the elongation behaviour is in contrast to these results. 

 

The experimental results show that when the post-curing procedure was applied, the 

tensile strength value of LSR 7665 silicone rubber increases by about +32 %, whereas the 

elongation at break decreased by approximately -44 %, compared with the normal-curing 

case. This is particularly advantageous since the elongation at break property of the elastomer 

is also able to withstand strong tensile force. 

 

In practice, a rubber stress-cone component of the high-voltage cable accessories 

requires the elastic property of elastomeric materials rather than the tensile strength property. 

The experimental results for normally cured specimens show sufficient high tensile strength 

that can be exploited for cable accessories. The additional post-curing procedure does not 

provide a positive impact on their elongation abilities. Therefore, the normal-curing process 

is suitable for LSR 7665. This process was used for the preparation of silicone sheet 

specimens in further investigations which are presented in the next section. 

 
6.1.3 Mechanical properties of LSR 3003/30 silicone rubber 
 

It is important to note that the 2-component liquid silicone rubber LSR 3003/30 in the 

uncured state is a very highly viscous (approx. 213,000 mPa.s) with translucent appearance. One 

limitation of this silicone is the difficulty in obtaining qualitative test specimens. Normally, for 

the cross-linking process, the normal curing (NC) and the additional post curing (PC) can be 

applied. Specimens cured with and without post-curing process were tested to investigate the 

effect of post-curing procedure. The results for tensile strength of LSR 3003/30 silicone rubber 

are shown in Figure 6.8 and Table 6.6. Again, the results for elongation at break of such 

silicone rubber with and without post-curing process are shown in Figure 6.9 and Table 6.7. 

 

 

Figure 6.8: Tensile strength TS&  test results for LSR 3003/30 silicone rubber in case of 

normal- and post-curing conditions 
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Table 6.6: Estimates of the 90 % confidence intervals of Weibull parameters for tensile 

strength at break results of LSR 3003/30 from Figure 6.8 

Curing conditions 

90 % confidence intervals of Weibull parameters Correlation 

coefficient ø 

Scale ù, in N/mm
2
 Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

 Normal curing (NC)  

 at 80 °C for 2 hours 
6.35 6.45 6.54 25.03 36.45 62.83 0.961 

 Post curing (PC) 

 + 200 °C for 4 hours 
6.85 6.94 7.04 27.92 49.01 70.10 0.982 

 

 

Figure 6.9: Elongation at break of LSR 3003/30 in case of normal- and post-curing 

conditions 

 
Table 6.7: Estimates of the 90 % confidence intervals of Weibull parameters for the 

elongation at break results of LSR 3003/30 from Figure 6.9 

Curing conditions 

90 % confidence intervals of Weibull parameters Correlation 

coefficient ø 

Scale ù, in % Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

 Normal curing (NC)  

 at 80 °C for 2 hours 
586.91 592.47 596.24 47.18 57.35 118.44 0.900 

 Post curing (PC) 

 + 200 °C for 4 hours 
580.76 584.95 589.13 52.02 86.24 130.60 0.983 

 

The results show that the stress-strain characteristic (in tension) for LSR 3003/30 

silicone rubber is excellent. It has high tensile strength property and good elasticity. The 

additional post-curing procedure does not have significant impact on its tensile strength. 

Further improvement of the elongation ability for this silicone rubber may not be necessary.  

 

The tensile strength value of the LSR 3003/30 was increased by about +8 % when the 

additional post-curing procedure was applied. But in case of the elongation at break, the 90 % 

confidence intervals of two data sets are overlapping along the edges of both graphs as shown 
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in Figure 6.9. Thus, the additional post-curing process does not improve on its elasticity. 

Therefore, only the normal-curing procedure is reasonable to use for preparation of the LSR 

3003/30 silicone sheet specimen for further investigations. 

 
6.1.4 Discussion and conclusion 
 

This section states briefly the mechanical behaviour of the optically compatible 

silicone rubber materials to provide a context for the appropriate curing conditions for each 

silicone type as well as shows further possibilities of modification.  
 

As a result, the reasonable curing process parameters for each type of the silicone 

samples are as follows: 

− ESA 7250 should be cured at 100 °C for 2 hours, 

− LSR 7665 should be cured at 80 °C for 1 hour, 

− LSR 3003/30 should be cured at 80 °C for 2 hours. 

 

By the way, the mechanical properties of the electrical grade RTV 2 – PowerSil 600 – 

silicone rubber was investigated in order to compare the results with those optically 

compatible silicone rubbers under the appropriate curing conditions as mentioned above. The 

comparison of their tensile properties is shown in Figure 6.10. 
 

 
Figure 6.10: Comparison of tensile strength properties of the optically compatible silicone rubbers 

(ESA 7250, LSR 7665 and LSR 3003/30) and the electrical grade silicone rubber (PowerSil 600) 

 

From the experimental results as shown in Figure 6.10, the transparent ESA 7250 

provides the highest value of tensile strength. On the other hand, the transparent LSR 7665 

provides the lowest value. The tensile strength properties of LSR 3003/30, ESA 7250 and 

PowerSil 600 are quite similar, because their 90 % confidence intervals do overlap. 

 

The comparison of elongation at break is shown in Figure 6.11. The experimental results 

show that the transparent types of silicone rubbers have a very low percent elongation at break, 

and ESA 7250 has the lowest. A combined evaluation of all experimental results from this study 
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shows that the tensile strength properties and the percentage of elongation at break of the 

translucent LSR 3003/30 are quite the same as the properties of the electrical grade silicone 

rubber. Therefore, from an engineering point of view, the LSR 3003/30 silicone rubber has good 

mechanical properties, i.e. high tensile strength and high percent elongation at break, which are 

sufficiently good for use as a rubber stress cone of the high-voltage cable accessories. 

 

 

Figure 6.11: Comparison of elongation at break of the transparent types (ESA 7250 and LSR 

7665), the translucent type (LSR 3003/30) and the electrical grade (PowerSil 600) silicone rubbers 

 

The experimental evaluations of tensile strength and elongation at break for silicone 

rubbers, i.e. ESA 7250, LSR 7665, LSR 3003/30 and PowerSil 600 are shown in Figure 6.12 and 

Figure 6.13. They are compared to reference values which can be found in the data sheets given 

by silicone producers [131-134]. The tensile strength values of the optically compatible silicone 

rubbers are in the range from 5.7 N/mm² to 6.7 N/mm², which is sufficient for cable accessories.  

 

 

Figure 6.12: Experimental evaluation of tensile strength at break for silicone rubbers 

compared to reference values from silicone producers 
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Figure 6.13: Experimental evaluation of elongation at break for silicone rubbers compared to 

reference values from silicone producers 

 
However, results show that the elongation at break (in %) for transparent silicone 

rubbers are higher than the expected level but not sufficiently high for power cable 

accessories. The transparent silicone rubbers are compatible with optical sensors for optical 

PD detection but they have very low elongation ability. Thus further improvement of their 

elasticity is necessary if used as a rubber stress cone of HV cable accessories. 

 

The relationship between tensile stress and strain (stress-strain curves) of all silicone 

samples sketched in the same scale are shown in Figure 6.14.  

 

 

Figure 6.14: Stress-strain characteristics of the investigated silicone rubbers 

 
The stress-strain characteristics of the transparent silicone rubbers are different: ESA 

7250 shows a J-shaped curve, but the LSR 7665 shows an S-shaped curve with 2 yield points. 

The elastic region of the LSR 7665 elastomer is limited to small strain. In the context of 

material behaviour, during loading/unloading, their deformation is irreversible. Therefore it is 

difficult to improve the elongation ability of the LSR 7665 silicone rubber while maintaining 

its transparency. On the other hand, in case of the ESA 7250, there has little change in shape 
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for a small load, until a certain force is applied. It may be possible to improve their 

elongation ability by modification of its polymer matrix using nano-fillers addition or 

chemical bonding enhancement.  

 

From Figure 6.14, the translucent silicone rubber (LSR 3003/30) and the electrical 

grade silicone rubber (PowerSil 600) have a large elastic region with an acceptable plastic 

deformation. The translucent silicone rubber has good mechanical properties, which are 

sufficiently enough for use as a rubber stress cone of HV cable accessories. Unfortunately, 

the translucent silicone rubber does not have such an excellent transparency like the 

transparent silicone rubbers. 

 
6.2 Dielectric strength of silicone rubbers 
 

Dielectric strength �&  is the most important property for high-voltage electrical 

insulations. In order to modify the characteristics of the optically compatible silicone rubbers 

and to improve some of their properties regarding the optical and mechanical characteristics, 

the effects of modification on the dielectric strength behaviour of such materials must be 

investigated to ensure that they meet minimum requirement specifications for high-voltage 

insulation of cable accessories. Therefore, the dielectric strength value of virgin silicone 

rubbers before its modification must be correctly evaluated, since it will serve as a reference 

for the further investigations. 

 

In this section, the evaluation of dielectric strength values of the optically compatible 

silicone rubbers as well as the electrical grade silicone rubber is presented. As the same 

objectives, four types of silicone rubbers that is, ESA 7250, LSR 7665, LSR 3003/30 and 

PowerSil 600, are in the focus.  

 
6.2.1 The reliability of measurements 
 

Generally, in any dielectric breakdown measurements, one of the principal 

characteristics of an outcome measure is its reliability. Reliability refers to the reproducibility 

of measurements when repeated at random in the same subject or the same material sample. 

Reliability is often confused with validity but reliability of the measurements does not imply 

validity. However, a reliable experiment may provide useful valid or dependable results, 

while an experiment that is not reliable cannot possibly be valid. The reliability of dielectric 

breakdown measurements is an important consideration in the choice of the primary outcome 

measures for the evaluation of dielectric strength value of elastomeric materials. Therefore, 

the reliability of measurements for the developed methodology to measure dielectric strength 

of silicone rubbers was checked.  

 

The most common form of reliability is retest reliability, which refers to the 

reproducibility of values of a variable when the same subject is measured twice or more. It is 

not only a good statistical evaluation which can give reliable results. In practice, testing 

measures are never perfectly consistent. Hence, five LSR 7665 silicone sheet specimens with 

the thickness of 0.5 mm (± 0.02 mm) were tested to compare their breakdown results from 

one specimen to another. All silicone sheets were cured under the same curing procedure as 

defined in chapter 6.1.4. The high-voltage AC breakdown tests at 50 Hz frequency were 

carried out under identical conditions. The 60 s step-by-step test procedure was applied. Ten 

breakdown data points were measured in series for each silicone rubber sheet. The 2-
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parameter Weibull distribution function was fitted to the experimental data and it was used 

for a statistical evaluation of dielectric strength value of all samples. The evaluation of AC 

dielectric strength �& value for each silicone sheets is shown in Figure 6.15. The estimated 

Weibull parameters µ and × as well as the correlation coefficient 2 are illustrated in Table 6.8.  

 

 

Figure 6.15: Comparison of the AC 50 Hz dielectric strength values measured from five 

different silicone sheets made from the same type of silicone rubber 

 
Table 6.8: Estimates of the 90 % confidence intervals of the Weibull parameters for AC 

dielectric strength measurements from five silicone sheets as shown in Figure 6.15 

LSR 7665 

silicone rubber 

Sample size 

n  

90 % confidence intervals of the Weibull parameters Correlation 

coefficient ø 

Scale ù, in kV/mm Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

Silicone sheet #1 10 27.91 28.46 28.94 20.58 29.57 51.66 0.966 

Silicone sheet #2 10 27.80 28.14 28.48 30.67 49.16 76.99 0.989 

Silicone sheet #3 10 27.89 28.40 28.92 20.40 32.41 51.20 0.994 

Silicone sheet #4 10 27.66 28.03 28.37 29.51 44.00 74.09 0.979 

Silicone sheet #5 10 27.85 28.20 28.57 29.29 50.77 73.54 0.980 

 
A slight downward curvature of the experimental data points can be observed from 

Figure 6.15. This plot resembles qualitatively the results reported in [20] and [22] under the 

designation of 2-parameter Weibull population distribution characteristic “type 1” as 

described in [149]. But in this case, all data points lie inside the tolerance bounds. The 

correlation coefficient 2 values of all data sets (Table 6.8) are greater than the critical value 

recommended by IEC 62539 [138] for a small sample size (� = 10) and a complete data set. 

Therefore, the data is a good fit to the 2-parameter Weibull distribution. The 2-parameter 

Weibull function proves that the samples can be considered as belonging to the same 

population at a significance level of the 30
th

 percentiles.  
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The values for shape parameter × shown in Table 6.8 from each 2-parameter Weibull 

fit were noted as a general indication of result reliability. It is generally considered that × 

values greater than 10 are acceptable [143, 145, 163]. 

 

Notice that the breakdown tests of only one silicone sheet reduce the complexity of 

the specimen preparation processes. The unknown factors, which are caused by the 

preparation processes, could be reduced to the minimum. Therefore, a good statistical 

evaluation of the test results can be achieved. Comparing the �& values for the breakdown 

tests performed from different sheets of the same silicone material, the obtained values show 

a good consistency. The �& value obtained from the breakdown tests with five silicone sheets 

is in the range of about 27 kV/mm to 29 kV/mm. Since the 90 % confidence intervals overlap 

each other, especially at the 63.2 percentile of the Weibull cumulative probability as shown in 

Figure 6.15. It is accepted that there is no significant difference for the scale parameter µ 

between their experimental; this is due to the fact that the variability of the individual 

measurements was minimized. Therefore, this testing methodology provides the necessary 

degree of reproducibility of measurements. 

 

 Additionally, a larger silicone sheet of LSR 7665 of similar thickness was prepared 

following the same curing procedure as mentioned before. The 60 electrical breakdown data 

points were measured from such specimen under the same test conditions to compare the 

results with the cases of smaller sample sizes. The 2-parameter Weibull distribution function 

was fitted to the experimental data. The statistical evaluation of AC dielectric strength value 

for larger sample size (� = 60) is illustrated in Figure 6.16.  

 

 

Figure 6.16: The results of statistical evaluation of the AC 50 Hz dielectric strength value of 

LSR 7665 silicone rubber sheet when tested with larger sample size (� = 60) 

 
It is obvious from Figure 6.16 that the Weibull plots of the AC dielectric breakdown 

data points for larger sample size are very well approximated by a straight line as confirmed 

by the very good fit with a 2-parameter Weibull distribution, as shown in Table 6.9. 
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Moreover, the Weibull scale parameter µ is likely similar to that for a smaller sample size 

(� = 10), as shown in Figure 6.15.  

 
Table 6.9: Estimates of the 90 % confidence intervals of the Weibull parameters for 

experimental results with larger sample size (� = 60) as shown in Figure 6.16 

LSR 7665 rubber sheet 

with large sample size 

90 % confidence intervals of the Weibull parameters Correlation 

coefficient ø 

Scale ù, in kV/mm Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

n = 60 28.00 28.19 28.32 36.11 41.60 56.56 0.992 

 
The results from larger sample size confirm that the newly developed test 

methodology for dielectric breakdown measurements of silicone rubbers can give reliable 

results for a small sample size. They provide a similar result for the same material under the 

same test conditions. A measurement method is considered to have a high reliability when it 

produces similar results under consistent conditions. Therefore ten breakdown data points are 

adequate for every test series in order to obtain a sufficient statistical evaluation for �& value 

of elastomeric materials. However, when experiments are being made for purposes other than 

routine test, larger numbers of breakdown tests will be necessary depending on the variability 

of the polymeric materials and the statistical analysis to be applied.  

 
6.2.2 The dielectric strength values of optically compatible silicone rubbers 
 

This section deals with the evaluation of AC 50 Hz dielectric strength value for the 

virgin optically compatible types of silicone rubber (SiR) which are used as a basic material 

for development of the novel silicone optical fibre and the optical sensor elements for optical 

PD detection in HV cable terminations [15, 18]. The �& values of two transparent types and 

one translucent type of silicone samples (i.e. ESA 7250, LSR 7665 and LSR 3003/30) were 

investigated and evaluated using the newly developed methodology for breakdown test of 

elastomeric materials. The results are compared with the �&  value of the electrical grade 

RTV-2 silicone rubber (PowerSil 600), which was also examined under the same test 

conditions. The silicone-sheet specimens with a thickness of 0.5 mm (±0.02 mm) were tested. 

Ten breakdown data points were measured in series from each test specimen. The Weibull 

plots of AC 50 Hz dielectric breakdown strength for the selected silicone polymers compared 

to the RTV-2 are shown in Figure 6.17. The estimated Weibull parameters µ and × as well as 

the correlation coefficient 2 for each type of silicone rubbers are illustrated in Table 6.10. 

 

In Figure 6.17, the solid lines are the regression line of the experimental data points. 

The error bars ( ) represent the 90 % confidence intervals of data for the i-th Weibull 

percentiles. The results show that the 2-parameter Weibull distribution function fits the 

experimental data very well. There is no data point lies outside the 90 % confidence bounds. 

The �& values of the virgin transparent silicone rubbers (28.11 kV/mm and 29.27 kV/mm) are 

higher than that of the virgin translucent type (24.53 kV/mm), whereas, they are lower than, 

of course, the electrical grade RTV-2 silicone rubber (33.56 kV/mm). The translucent 

silicone type has great mechanical properties but it provides low dielectric breakdown 

strength. The translucent silicone rubbers generally contain a filler to enhance their 

mechanical characteristics; however, it may influence the dielectric strength property of the 

silicone polymer itself. 
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Figure 6.17: AC 50 Hz dielectric strength values of the optically compatible silicone rubbers 

compared to the �& value of the electrical grade RTV-2 silicone rubber 

 
Table 6.10: Estimates of the 90 % confidence intervals of the Weibull parameters for AC 

dielectric strength values of the investigated silicone sheets as shown in Figure 6.17 

Silicone rubbers 
Sample size 

n  

90 % confidence intervals of the Weibull parameters Correlation 

coefficient ø 

Scale ù, in kV/mm Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

LSR 3003/30 10 24.00 24.53 25.02 17.88 26.73 44.89 0.982 

LSR 7665 10 27.86 28.11 28.28 50.30 61.15 126.28 0.925 

ESA 7250 10 28.91 29.27 29.58 32.50 47.23 81.60 0.926 

PowerSil 600 10 33.22 33.56 33.90 36.69 52.89 92.11 0.923 

 
The two-component transparent silicone rubbers have good optical properties in terms 

of low light absorption and low scattering. It is the products from the different companies. 

They have a different mixing ratio, i.e. 10:1 and 1:1 for A:B component by weight  (see 

chapter 5). But, however the results reveal that it is no significant difference between the �& 

values of them. A statistical difference between the both distribution functions cannot be 

detected. Their �& values are sufficient for cable accessories but, unfortunately, they provide 

low elongation at break, particularly for the ESA 7250 silicone rubber as mentioned in 

section 6.1.4.  

 

Electrical grade RTV-2 silicone rubber provides the highest �& value when compared 

to the transparent and translucent types. Moreover, its dielectric strength value is higher than 

that the value declared by the silicone producer [134]. 

 

It is worth noting that the evaluation results are different from the breakdown strength 

values given in the industry manuals which are declared by the manufacturers [131-134], as is 

shown in Figure 6.18. The �& values evaluated by new test methodology are greater than that 
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the �& value given in such manuals, which is usually based on relatively standardized tests for 

solid insulating materials with a specimen of 1.0 mm thickness, for examples: IEC 60243-1 

[24], ASTM D149 [128]. Therefore, the breakdown strength of silicone rubbers from the 

present investigation may give an indication as to the suitability of the insulating material (i.e. 

high or low breakdown strength) but not necessarily information about its dielectric strength 

behaviours in a complicated system in real insulation cases.  

 

  

Figure 6.18: Comparison of the dielectric strength values of silicone rubbers evaluated from 

experimental data and the values given in the data-sheets from silicone producers 

 
An inspection of a breakdown point on the silicone rubber specimens revealed mostly 

a carbonized channel containing at that point. Since, pure silicone rubbers usually have poor 

thermal conductivity [164-166]. Thus, it seems that the breakdown process depends on the 

energy localised in a breakdown initiation point and on the morphological properties of the 

silicone polymer in the neighbourhood of the deterioration source, confirming the 

investigations of Danikas [21]. Such a property naturally depends on the elastomer 

formulation such as the type of chemical reactions for the cross-linking process, the nature of 

fillers incorporated and the possible presence of impurities or micro-cavities.  

 

 The measured values of the breakdown voltage %&  of solid dielectrics are greatly 

influenced by the experimental conditions. Several factors affect the breakdown strength of 

silicone rubbers. The dielectric strength values of silicone rubbers found in the literatures 

[19], [20], [21] and [22], which were reviewed in chapter 4, show that they are varying with 

different experimental parameters. The influence of different parameters is not clearly 

identified when compared to another one. Therefore, in the present study, the influence of 

basic parameters on dielectric breakdown measurements of silicone rubbers was investigated. 

The focus is on two important parameters: the thickness of test specimen and the voltage 

increase rate, which have not been done before. The results are discussed in the next section. 
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6.2.3 The influence of specimen thickness on dielectric breakdown measurements 
 

Several studies have already reported the relationships between the high electric field 

conduction and the breakdown processes in polymers [78, 167-170]. Theories on the 

breakdown mechanisms are usually divided into three categories: electronic (or intrinsic), 

thermal and mechanical processes [78, 169-170]. However, the measured dielectric 

breakdown strength could sometimes be influenced by secondary effects such as field 

distortion due to space charge, temperature increase due to local heating and thickness 

deformation due to Maxwell stress [168-169]. The impact of other parameters usually 

affecting the breakdown field of polymeric materials such as geometrical parameters (i.e. 

thickness and area) has been investigated [171-173]. The study of their influence is of 

primary importance since this allows predicting the dielectric breakdown strength for wide 

range of geometries. Thus the technical standard ASTM D149 gives a significant remark that 

the dielectric strength of solid electrical insulating materials is greatly dependent upon a 

thickness of test specimens: for solid and semi-solid materials, the dielectric strength varies 

inversely as a fractional power of the sample thickness [128]. In case of silicone rubbers, 

Danikas et al. [19, 21] have reported the variation of breakdown strength with the gap 

spacing (i.e. 5.0 mm, 10.0 mm and 20.0 mm) for the electrical grade RTV-2 silicone rubber. 

They reported that the breakdown strength of RTV silicone rubber decreases exponentially 

with increasing gap spacing. Unfortunately, there is no report regarding the influences of a 

small thickness (less that 1.0 mm) of test specimens and the different types of silicone 

elastomers in particular the optically compatible silicone rubbers. So, in this section, the 

influence of smaller specimen thicknesses on dielectric breakdown measurements for the 

optically compatible silicone rubber is presented. 

 

 

Figure 6.19: Effect of specimen thickness on AC 50 Hz dielectric breakdown measurements of 

silicone rubber sheets 

 
AC 50 Hz dielectric strength of the translucent silicone rubber was measured. Four 

rubber sheets with different thicknesses ', i.e. 0.4 mm, 0.5 mm, 0.6 mm, and 0.7 mm, were 

tested. The variation of thickness was within ± 0.02 mm. The 60 s step-by-step test procedure 
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was applied. Ten breakdown data points were recorded in series for each silicone rubber 

sheet. The 2-parameter Weibull plots for each data set are shown in Figure 6.19. The 

estimated Weibull parameters µ  and ×  as well as the correlation coefficient 2  for the 

distribution functions in Figure 6.19 are illustrated in Table 6.11. 

 
Table 6.11: Estimates of the 90 % confidence intervals of the Weibull parameters for the 

distribution functions of the results in Figure 6.19 

Thickness of test 

specimen d  

in mm 

Sample size 

n  

90 % confidence intervals of the Weibull parameters 
Correlation 

coefficient ø 

Scale ù, in kV/mm Shape ú 

µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

0.7 (± 0.02) 10 21.27 21.65 22.00 22.01 31.73 55.24 0.983 

0.6 (± 0.02) 10 22.93 23.18 23.41 36.32 53.91 91.18 0.976 

0.5 (± 0.02) 10 24.00 24.53 25.02 17.88 26.73 44.89 0.982 

0.4 (± 0.02) 10 25.59 26.07 26.56 20.02 33.06 50.27 0.990 

 
The results indicate that the measured �&  value of silicone rubber varies with 

thickness '  of test specimens as shown in Figure 6.19 and Table 6.11. The observed 

downward trend of the breakdown strength with increasing thickness of silicone rubbers 

cautions us for the use of dielectric strength values directly from the technical data sheets 

[131-134]. Such tests refer mostly to experiments done in laboratory conditions under the 

technical standard recommendations for solid insulating materials, e.g. IEC 60243, ASTM 

D149. They do not take into account the variation of the breakdown strength with sample 

thicknesses. It simply shows that in order to draw realistic conclusions one should bear in 

mind the insulating system under consideration and not the ideal laboratory test. Since the 

dielectric strength is so dependent upon thickness it is meaningless to report dielectric 

strength data for a material without stating the thickness of the test specimens used. 

 

 

Figure 6.20: Variation of the AC 50 Hz dielectric strength of silicone rubber as a function of the 

thickness of test specimens in the range of small thickness (less than 1.0 mm) 
 

0,3 0,4 0,5 0,6 0,7 0,8

10

15

20

25

30

26,07

24,53

23,16

21,65

E
b
 W

e
ib

u
ll
 s

c
a

le
 p

a
ra

m
e

te
r 

αα αα
  
- 

in
 k

V
/m

m

Thickness of silicone rubber specimens d - in mm



122  BAM-Dissertationsreihe 
 

Figure 6.20 shows the variation of the AC 50 Hz dielectric strength behaviours of the 

translucent silicone rubber as a function of the thickness of test specimens. The results reveal 

that dielectric strength of this silicone material also decreases with the increasing of specimen 

thickness. This experimental result is consistent with those of RTV silicone rubber and larger 

thicknesses that have reported by Danikas et al. [19, 21]. But the difference for smaller scale 

of thicknesses (0.4 mm to 0.7 mm) is it tends to decrease slightly as a linear function of 

increasing thicknesses (see Figure 6.20). These results agree with the known “size effect” or 

“volume effect”. It must be taken into account in designing insulation systems with silicone 

rubber as insulating material for HV equipment.  

 

Electrical breakdown of silicone rubbers may involve thermal, electrical and 

mechanical mechanisms. From the electrical point of view, irrespective of whether one 

subscribes to the theory that the electrical breakdown is initiated by collision ionization of 

conduction electrons or field emission from the cathode. It is important to note here that, for 

relatively homogeneous polymeric materials and non-electrical defects inside; a critical 

number of ionizations by collision are required to produce breakdown mechanisms. The 

number of ionizations by collision decreased with decreasing the thickness of materials. 

Hence, in case of smaller thicknesses, the number of ionizations could be increased by higher 

electric field. Thus, the dielectric strength increases with decreasing thickness of test 

specimen. The dielectric strength of RTV silicone varies approximately as the reciprocal of 

the square root of the thickness is confirmed by the results reported in [21] for the range of 

larger thicknesses, i.e. 5 mm, 10 mm and 20 mm. 

 

In the range of smaller thicknesses, based on the experimental results, there is a 

significant difference. The dielectric strength of silicone rubber does not change very much, 

as is shown by the results in Figure 6.20. Therefore it should be noted that, for a small scale 

of thicknesses (' < 1.0 mm) and applied by 60 s step-by-step test procedure under liquid 

insulating surrounding medium, the AC dielectric breakdown strength of silicone rubber 

could be mainly influenced by secondary effects due to thermal instability. This may be 

caused by temperature increase due to localised heating in regions of the highest electrical 

stress. However, for the improvement of theoretical breakdown mechanisms in silicone 

rubbers, more investigations under better experimental conditions are required, and it is 

beyond the scope of this research work to cover such matter. 

 
6.2.4 The influence of voltage increase rate on breakdown test results of silicone rubber 
 

Because no specific standard test method is available for the determination of the 

short-term electric strength of elastomeric insulation materials, i.e. silicone rubbers. 

Typically, the test procedures that are described in the presently available standard test 

methods for the determination of electric strength of solid insulating materials are often 

applied [24,128]. For the traditional approaches, the step-by-step test procedure [19, 21] and 

the short-time (rapid-rise) test procedure [20, 22] are commonly used for the dielectric 

breakdown test of silicone rubbers. In the mode of rapid-rise test, the applied voltage is raised 

from zero at a uniform rate (e.g. 200 V/s, 500 V/s, 1 kV/s, 2 kV/s) until breakdown occurs. 

But, in fact, the modes of increase of voltage can affect the breakdown voltage %& of the 

material under test. The breakdown voltage will tend to increase with increasing rate of 

voltage application. Unfortunately, there are inconsistencies in the traditional methods 

regarding the time limitation of breakdown mechanisms and the rate of voltage rise for some 

thicknesses of silicone rubbers that lead to differences in the experimental results. The 

tolerance range of results according to those standards should define to meet precision 
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otherwise accuracy of the test results could lead to dispute between the silicone suppliers and 

the users. Therefore future study and a critical review of the standard test methods for �& 

measurements of elastomeric materials seem to be inevitable in order to propose correct and 

reliable data for many electrical insulation applications particularly for HV/EHV cable 

accessories. For this purpose, in this thesis, the influence of voltage increase rate on 

breakdown test results of silicone rubber is presented. 

 

A translucent silicone rubber sheet with a thickness of 0.4 mm (± 0.02 mm) was 

selected as a test specimen for this experiment in order to investigate the effect of various 

rates of voltage rise on AC 50 Hz electric strength behaviours of silicone rubbers. The 60 s 

step-by-step and the rapid rise of voltage, i.e. 200 V/s and 1 kV/s, test procedures were 

carried out to examine the �& behaviours of such elastomeric material. Ten breakdown data 

points were recorded for each test procedure. The 2-parameter Weibull plots for each data set 

show in Figure 6.21. The estimated Weibull parameters µ  and ×  as well as the correlation 

coefficient 2 for the distribution functions in Figure 6.21 are illustrated in Table 6.12. 

 

  

Figure 6.21: The influence of voltage increase rate on dielectric strength measurements of 

silicone rubber 

 
Table 6.12: Estimates of the 90 % confidence intervals of the Weibull parameters for the 

distribution functions of the results in Figure 6.21 

Modes of increase 

voltage 

Sample size 

n  

90 % confidence intervals of the Weibull parameters Correlation 

coefficient ø 

Scale ù, in kV/mm Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

60 s step-by-step 10 25.59 26.07 26.56 20.02 33.06 50.27 0.990 

200 V/s 10 31.22 31.80 32.40 19.98 33.95 50.15 0.985 

1 kV/s 10 33.49 34.01 34.50 25.20 38.44 63.27 0.971 

 
It is indicated that the modes of increasing voltage influence the measured results of 

dielectric breakdown measurements for silicone rubbers, as is shown by the experimental 
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data in Figure 6.21 and Table 6.12 above. As mentioned in chapter 3.4, there are mechanisms 

related to the short-term breakdown of polymeric materials. The relative importance of these 

mechanisms is dependent on the modes of voltage increase used in the dielectric breakdown 

strength measurements. The 60 s step-by-step test procedure results in lower breakdown 

strength compared to the rapid rise test methods. This is due to long-time existence of the 

applied electric field. The material under test was broken down at higher voltage level when 

the rapid rise of voltage was applied, and therefore the greater breakdown strength value is 

obtained. However, the �& test result obtained by the 60 s step-by-step test procedure is more 

reasonable than the others for safety margin in designing of a complex insulation system. The 

60 s step-by-step test seems to be the efficient method for the determination of dielectric 

strength performance of the solid insulating materials [24, 128]. Thus, the results from this 

test method are widely accepted. 

 

In a case of rapid-rise test method, it is demonstrated clearly that a faster rate of 

voltage rise results in greater measured breakdown voltage %& as confirmed by experimental 

results shown in Figure 6.22 and Table 6.13 below. The �& value obtained from the slow 

rate-of-rise test (i.e. 200 V/s) increased by approximately +22 % compared to the results from 

60 s step-by-step test procedure. However, the electrical breakdown strength of silicone 

rubber didn’t change too much when the 5 times faster rate-of-rise test (i.e. 1 kV/s) was 

applied; the measured �& value increased again by about +7 % compared to the results from 

200 V/s test procedure. This difference is a result of the fact that the breakdown voltage and 

the applied time to breakdown are mutually dependent on each other. The occurrence of 

breakdown in shorter time duration requires applying of higher voltage level. That is, when 

increasing the rate of voltage rise, the occurrence of breakdown will occur after a few 

seconds with high %& level; on the other hand, when applying a voltage with a slow rate-of-

rise, a longer period of time for the occurrence of breakdown is needed, and lower %& level is 

obtained. Thus, time to breakdown occurrence from each the rapid-rise test procedures is 

totally different. Moreover, the measured breakdown voltages are also different, as is 

illustrated by the experimental data in Table 6.13. 

 

 

Figure 6.22: The influences of modes of increasing voltage on AC 50 Hz dielectric strength 

measurements of the silicone rubber 
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Table 6.13: AC 50 Hz dielectric strength and time to breakdown for the translucent silicone 

rubber measured with different test procedures  

Silicone 

rubbers 

Test 

procedures 

Thickness of 

specimens 

in mm 

Experimental results ýÔ(1) 

in kV 
<Ô(2) 

in kV/mm 

App. time to breakdown 

in seconds (s) 

Avg. SD 1)�- 1*q 1)*+ 

Translucent 

type 

60 s  

step-by-step 
0.4 ± 0.02 10.51 0.46 26.07 600.00 654.00 720.00 

200 V/s 0.4 ± 0.02 12.70 0.68 31.80 58.35 63.5 67.90 

1 kV/s 0.4 ± 0.02 13.85 0.58 34.01 13.10 13.85 14.70 

Note:  
(1)

  the average value from the group of ten breakdown data points 

 
(2)

  the scale parameter µ from 2-parameter Weibull distribution fit to the experimental data points  

 
In addition, when considering only the rapid-rise test method, the results show that an 

electrical breakdown process in silicone rubbers is likely limited when they are subjected to 

high electrical stress by rapidly rise rate of the applied voltage, i.e. 31.8 kV/mm for 200 V/s test 

and 34.01 kV/mm for 1 kV/s test. This result corresponds with the assumption that the possible 

breakdown processes in silicone rubber specimens may depend on the energy localised in a 

breakdown initiation point in the neighbourhood of the deterioration source as discussed in the 

previous section. Generally, under steady-state applied field stress, the electro-thermal 

breakdown mechanisms in polymers are usually time-dependent [169-170]. But, since pure 

silicone rubbers typically have poor thermal conductivity in between 0.165 W/m K and 0.2 

W/m K [164-166]. Therefore, under high and sufficient electrical stress, the latter mechanisms 

may cause rapid failure by producing critically high localised heating in regions of the highest 

electrical stress. This  phenomena lead to the idea that it would be possible to define the 

criterion for time limitation of breakdown mechanism and the rate of voltage rise for some 

thicknesses (a thin thickness) of silicone rubbers. In order to avoid a problem due to a large 

tolerance range as well as the accuracy of the test results, the acceptance criteria for time 

limitation of breakdown occurrence in test samples should be defined. It is probably essential 

for future developments of specific standard test methods for silicone rubbers. Furthermore, an 

inter-laboratory study to determine the precision of a test method as well as the minimum 

permitted �& value for silicone insulating materials would be necessary in the future. 

 

In accordance with clause 9.1 of IEC 60243-1 [24] for the rapid-rise test of solid 

insulating materials, the occurrence of breakdown in test specimens shall be within the time 

range of 10 s to 20 s. Regarding to this criterion, it seems that the result obtained by 1 kV/s 

test procedure is able to satisfy the commitments of breakdown time criterion as shown in 

Table 6.13. Therefore, in this case, the �& value of 34.01 kV/mm could be accepted for the 

rapid-rise test result. So in order to get consistent results for the comparison of electrical 

breakdown performance of silicone rubbers using the rapid-rise test procedure, a rate of 

voltage rise shall be selected for the material under test to achieve the occurrence of 

breakdown in test specimens within the time range of 10 s to 20 s. This criterion would also 

be appropriate for the determination of dielectric strength of elastomeric materials.  

 

So, it should be pointed out again that the new test methodology enables the large 

number of individual tests, which are necessary to precisely measure the dielectric strength 

value of silicone rubbers. This low-cost and time-saving experimental method provides a 

reasonable result with low uncertainty. Various advantages could be achieved. 
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6.3 Dielectric strength behaviour of silicone rubber under mechanical 

tensile stress 
 

Basic requirements for rubber materials used as an electrical insulation for HV cable 

accessories are their electrical and mechanical performances. The specific elastic properties 

of a rubber stress cone are important for its functional capability of stabilizing interfaces. 

When a rubber stress cone is mounted to a slightly oversized XLPE insulated cable core, the 

resulting radial stress ensures a tight fitting to the cable insulation. This is due to avoid the 

interface problems between two solid insulators, which can influence the whole capability of 

HV cable terminations and joints. Practically, the maximum elongation of a rubber stress 

cone after installation is up to 30 % [20]. Therefore, such devices normally operate under 

combined electrical and mechanical stresses for long-term service. Then, the rubber material 

with good stress-stain characteristics and excellent dielectric strength is required. 
 

In this section, a preliminary study of the influence of mechanical tensile stress on 

dielectric strength behaviour of the optically compatible silicone rubber is presented. The 

applied tensile stress is represented as a percentage of elongation of silicone rubber sheet. For 

this special investigation, a mechanical tool was specially designed as described in chapter 

4.3. The virgin translucent silicone rubber was selected as a test sample because it has 

excellent stress-strain characteristics, i.e. high tensile strength at break with good elastic 

properties. A silicone sheet specimen with a thickness of 0.7 mm (± 0.02 mm) was carefully 

prepared. The normal curing procedure at 80 °C for 2 hours was applied for the preparation 

of a good silicone rubber sheet. The AC 50 Hz dielectric breakdown measurements were 

carried out using the 60 s step-by-step test method. Two conditions of mechanical tensile 

stress, i.e. 15 % elongation and 30 % elongation, were applied to the specimen during the 

dielectric breakdown measurements. Ten breakdown data points were recorded in series for 

each elongation condition. The 2-parameter Weibull plots for each breakdown data set show 

in Figure 6.23. The estimated Weibull parameters µ  and ×  as well as the correlation 

coefficient 2 for the distribution functions in Figure 6.23 are illustrated in Table 6.14. 
 

 

Figure 6.23: AC 50 Hz dielectric strength behaviour of silicone rubber under the influence of 

mechanical tensile stresses  
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Table 6.14: Estimates of the 90 % confidence intervals of the Weibull parameters for the 

distribution functions of the results in Figure 6.23 

Applied elongation 

on specimens  

[%] 

Sample size 

n  

90 % confidence intervals of the Weibull parameters Correlation 

coefficient ø 

Scale ù, in kV/mm Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

0 10 21.27 21.65 22.00 22.01 31.73 55.24 0.983 

15 10 22.17 22.67 23.17 16.89 27.30 42.39 0,978 

30 10 22,53 23.12 23,71 14.60 25.50 36.65 0.983 

 
Figure 6.24 shows the variation of the dielectric strength values and the thicknesses of 

silicone rubber sheet under the influence of mechanical tensile stress. The results illustrate that 

the dielectric strength values of silicone rubber tend to increase slightly with increasing the 

percentage of elongation applied to the specimen under test. This is due to the reduction of 

thickness of silicone rubber sheet caused by the elongation strain in one direction. 

 

As mentioned in the previous section, the reduction of insulation thickness can 

enhance dielectric strength of insulating material. However, there is no significant difference 

between the �& results of 15 % and 30 % elongations. The 90 % confidence intervals of two 

such data sets are obviously overlapping along the edges of both �& distribution graphs as 

shown in Figure 6.23. Hence, pointing out that the mechanical tensile stress does not influence 

on the dielectric strength behaviour of silicone rubber. This conclusion is confirmed by similar 

results for RTV-2 silicone rubber which reported by Österheld [20]. 

 

 

 

Figure 6.24: Variation of the dielectric strength values and the thicknesses of silicone rubber 

sheet under the influence of elongation strains 
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6.4 Dielectric strength behaviour of fluorescent silicone rubbers 
 

A novel optical sensor and sensing elements for PD on-line monitoring in HV cable 

terminations are being developed as an innovation project at the Federal Institute for 

Materials Research and Testing (BAM) in Berlin [15, 18]. A fluorescent polymer optical 

fibre used as sensing elements for early detection of PD activities is the main focus. The 

siloxane ( R�Si − �O − SiR�� − O − SiR ) material is a flexible polymer with good 

properties for the application as elastomeric optical-fibre sensor and as transparent elastomer 

insulation. Siloxane polymers are highly transparent, have low optical attenuation, good 

mechanical properties and the refractive index can be tuned within a relatively wide range 

[69]. The fluorescent silicone rubbers (FlSiRs) are beneficial for effective coupling of light 

into the sensing elements. The fluorescent dyes absorb optical light independently of the 

angle of incidence, and the fluorescent light is emitted in all directions. Consequently, a 

higher percentage of light fulfils the requirements relating to total reflection, and is guided to 

the detector. The FlSiR used as a sensing element has a key advantage that it can be 

integrated into a rubber stress cone of HV cable accessories, which is made from the optically 

compatible silicone rubbers. As the embedment into the transparent elastomer insulation 

plays an important role, the sensor element must not weaken the dielectric strength 

performance of the main insulation structure. Furthermore, it must not be the cause of PD 

initiation in HV equipment. Therefore dielectric strength behaviour of the fluorescent silicone 

rubber was investigated. 

 

The 2-component liquid silicone polymer was mixed with different commercially 

available fluorescent dyes by 0.02 wt. %. The mixing process was carried out using a triple 

roller mill machine to disperse fluorescent particles in silicone polymer. This is due to their 

small size and high surface area-to-volume ratio, high shear force mixing is an effective 

method to achieve good dispersion of such particles. After that, both silicone components 

were mixed together at a ratio of 1:1 by weight and degas it applying vacuum. The normal 

curing procedure at 80 °C for 2 hours was used for curing the rubber matrix. The fluorescent 

silicone rubber (FlSiR) sheets with a thickness of 0.6 mm (± 0.02 mm) were prepared under 

identical conditions. Examples of the FlSiR sheets are shown in Figure 6.25. 

 

 

   
a) FlSiR red b) FlSiR yellow c) FlSiR pink, yellow and blue 

Figure 6.25: Examples of the fluorescent silicone rubber (FlSiR) sheets with different 

commercially available dyes by 0.02 wt. % 

 
The uniformity of fluorescent particles in silicone rubber sheets was inspected using 

digital microscope (1000x) to ensure that it is homogeneous. Some inspected results show in 

Figure 6.26.  
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a) Virgin silicone rubber, translucent type b) Fluorescent red silicone rubber 

Figure 6.26: Examples of the inspected results to see uniformity of fluorescent particles in 

silicone rubber sheet using 2D digital microscope (1000x); there were no perceivable 

inhomogeneities 

 
AC 50 Hz dielectric strength measurements for the florescent silicone sheet specimens 

were performed using the 60 s step-by-step test method. Ten breakdown data points were 

recorded in series for each specimen. The 2-parameter Weibull distribution function was 

fitted to the experimental results as shown in Figure 6.27. The estimated Weibull parameters µ and × as well as the correlation coefficient 2 for the distribution functions in Figure 6.27 

are illustrated in Table 6.15. Translucent silicone polymer mixed with different commercially 

available dyes by 0.02 wt. % shows the same breakdown strength as the undoped virgin 

polymer within the statistical 90 % confidence intervals (Figure 6.27). The �& values within 

90 % confidence intervals for all the different fluorescent dyes compared to that of the virgin 

silicone rubber are obviously overlapping as shown in Figure 6.28.  

 

  

Figure 6.27: AC 50 Hz dielectric strength behaviour of the fluorescent silicone rubbers with 

different commercially available dyes by 0.02 wt. % 
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Table 6.15: Estimates of the 90 % confidence intervals of the Weibull parameters for the 

distribution functions of the results in Figure 6.27 

Type of silicone 

rubbers 

Breakdown 

data points  

90 % confidence intervals of the Weibull parameters Correlation 

coefficient ø 

Scale ù, in kV/mm Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

Virgin silicone 10 22.93 23.18 23.41 36.32 53.91 91.18 0.976 

Fluorescent yellow 10 22.76 23.05 23.32 30.43 44.53 76.40 0.979 

Fluorescent red 10 22.40 22.71 22.93 28.87 40.39 72.47 0.973 

Fluorescent pink 10 22.70 23.07 23.35 26.02 33.15 65.31 0.927 

Fluorescent blue 10 22.67 22.93 23.20 32.47 50.93 81.52 0.983 

 

 

Figure 6.28: Influence of fluorescent dye on dielectric strength behaviour of the optically 

compatible silicone rubber 

 
Based on the results, hence, it can be concluded that the fluorescent dyes do not seem 

to negatively influence the dielectric strength of the optically compatible silicone rubber. It is 

possible to apply such modified materials in a region of moderate to high electric field stress 

near the critical interface area of HV cable accessories, where PDs most likely occur. 

 

It is important to note here that the fluorescent dyes in silicone polymer by using a 

triple roller mill machine is not suitable because they are not chemical bonds. The fluorescent 

particles in silicone polymer are not stable, particularly at elevated temperature. Colour 

bleeding is an unacceptable phenomenon for the optical element that has to have the expected 

long lifetime (25 years or more). To prevent dye migration, our new strategy is to covalently 

link the dye to the siloxane network by taking advantage of the cross-coupling reaction 

during the curing process of the siloxane network, as described in chapter 2.5.2.  

 

So the optically compatible silicone rubbers are perfectly suitable for the fabrication 

of Fluorescent Silicone Optical Fibre (FSiOF). Recently, the new FlSiOF models based on 

0

2

4

6

22

24

26

23,18 23,05
22,71

23,07 22,93

BluePinkRedYellow

D
ie

le
c

tr
ic

 S
tr

e
n

g
th

 E
b
 i

n
 k

V
/m

m

Types of fluorescent silicone rubber

Virgin

- AC 50 Hz

- thickness = 0.6 mm (+/- 0.02 mm)

- 60 s step-by-step test procedure

- fluorescent dye, 0.02 wt. %



131 
Revision II : 7 May 2014 

silicone polymer modification have been proposed. Several coumarin dyes were 

functionalized with unsaturated hydrocarbon groups. The optical properties of the dyes in the 

siloxane polymer matrices were reported in the literature [69]. An additional way to further 

improve the level of optical PD detection is the replacement of an opaque elastomer that is 

currently used for a rubber stress cone of HV cable accessories with a new transparent 

silicone rubber. To further enhance the transparency, one possibility is to use hydrophobic 

nanoparticles as fillers. These fillers are much smaller than the wavelength of visible light 

and reduce the proportion of light being scattered at the interfaces of the nanoparticles and 

the siloxane polymer matrices. The ongoing development of novel functionalized silicone 

rubbers at BAM involves a growing number of different modifications that have to be tested 

for their dielectric strength. Therefore, the research work presented here is essential for 

reliable, economic and high-throughput dielectric strength testing and will certainly boost 

future research and facilitate new discoveries. 

 
6.5 Dielectric strength behaviour of silicone rubber with embedded sphere 

electrode  
 

The dielectric strength �&  values of the optically compatible silicone rubber as 

presented in chapter 6.2.2 were evaluated from the experimental data obtained by the electric 

breakdown tests using a silicone rubber sheet under liquid insulating medium. Those results 

provide the necessary �& information to indicate the suitability of an insulating material but 

not the information about its �& behaviours in complete insulation. However, in some cases 

such as for the economic design of cable insulation thickness, the information of �& 

behaviour of dielectric materials in complete insulation is needed. In such a case, the 

dielectric strength test requires better test conditions. This can be obtained using a test setup 

with an embedded sphere electrode and all extraneous influences are then controlled [25]. 

Therefore, in this section, the �& behaviour of the silicone samples tested with embedded 

sphere electrode is presented. The �&  test results will be compared with those results of 

testing performed using a silicone rubber sheet. 

 

The new type of test specimen with embedded ball electrode was developed, as 

described in chapter 4.3. It is fully suitable for dielectric breakdown test of silicone rubbers 

[25, 130]. The embedded sphere to plane electrode arrangement gives a high electric stress in 

the centre area of the specimen and low stress at the edges. The specimen dimension was 

minimised in order to enable economic use of sample materials. The test specimen can be 

mounted on the main electrode of the same test facility, which was used for a silicone rubber 

sheet specimen (see Figure 4.14 in chapter 4). The standard ball-bearing, made from 

stainless-steel with a diameter of 20.0 mm and 32.6 g weight, was used as the sphere 

electrodes to minimise electrode damage at breakdown and to reduce the manufacturing 

costs. The ball electrode was mirror surface finish polished by a mechanical/chemical 

polishing process before embedded into the silicone samples. The thickness of test specimens 

was controlled as 0.5 mm (± 0.02 mm). The normal curing procedure was applied to obtain 

the complete specimens.  

 

The whole setup was immersed in the electrical grade silicone oil (�� = 2.9) in order to 

avoid surface discharges prior to breakdown. The AC 50 Hz dielectric breakdown tests for 

the �& evaluation of the virgin silicone samples, i.e. ESA 7250, LSR 7665 and LSR 3003/30, 

were performed using the 60 s step-by-step test procedure. Ten specimens were tested for 

each type of the silicone samples. The 2-parameter Weibull distribution function was fitted to 
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the experimental data sets and the �& values were estimated. Figure 6.29 shows the Weibull 

plots of the breakdown test results for virgin LSR 7665 silicone rubber, comparing the case of 

an embedded ball electrode with the case of a ball electrode in contact to a silicone sheet 

specimen. The results indicate that the 2-parameter Weibull distribution fits the new group of 

breakdown data points for the embedded ball electrode very well. The comparison of 

estimated �& results for each type of the silicone samples is shown in Figure 6.30. 

 

   

Figure 6.29: Statistical evaluations for AC 50 Hz dielectric strength of the virgin LSR 7665 

silicone rubber tested with and without embedded sphere electrode 

 

 

Figure 6.30: AC 50 Hz dielectric strength behaviour of the ESA 7250, LSR 7665 and LSR 

3003/30 silicone samples tested with and without embedded sphere electrode (specimen 

thickness ' = 0.5 mm and 60 s step-by-step test) 
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The experimental results reveal that the dielectric strength value of LSR 7665 silicone 

sample is approximately increased by 26 % compared to those results obtained from the 

breakdown test with a silicone rubber sheet (see Figure 6.17) under the same thickness 0.5 

mm (± 0.02 mm). Likewise, the dielectric strength values of ESA 7250 and LSR 3003/30 

silicone samples are also increased as shown in Figure 6.30. The dielectric strength value is 

increased by about 31 % for ESA 7250 and by about 69 % for LSR 3003/30. The estimated 

Weibull parameters for the distribution functions of the �&  results for each type of the 

silicone samples tested with and without embedded sphere electrode are shown in Table 6.16. 

Statistical analysis of experimental data shows a good fit with Weibull distribution. The 

correlation coefficient 2 of all data sets was greater than 0.92 [138]. 

 
Table 6.16: The estimated Weibull parameters for the �& test results of the silicone samples 

with and without embedded sphere electrode 

Type of 

silicone 

rubbers 

Type of test 

specimens 

Sample size 

n 

90 % confidence intervals of the Weibull 

parameters Correlation 

coefficient ø 
Scale ù, in kV/mm Shape ú µ��û,� ù µü©©,� ×��û,� ú ×ü©©,� 

ESA 7250 
Silicone sheet 10 28.91 29.27 29.58 32.50 47.23 81.60 0.926 

Embedded 10 37.27 38.30 39.31 13.93 22.14 34.97 0.977 

LSR 7665 
Silicone sheet 10 27.86 28.11 28.28 50.30 61.15 126.28 0.925 

Embedded 10 34.89 35.30 35.68 33.09 50.17 83.08 0.967 

LSR 3003/30 
Silicone sheet 10 24.00 24.53 25.02 17.88 26.73 44.89 0.982 

Embedded 10 40.46 41.52 42.49 15.25 23.14 38.28 0.966 

 
The apparent discrepancy between the two different testing methods is due to the fact 

that the specimens with embedded ball electrode have more completed insulation between the 

testing electrode and the grounding electrode, which is completed by the embedding silicone 

material.  There is no material interface at the junction so that losses due to interface states 

can be avoided, resulting in higher breakdown voltage. This means that the silicone 

specimens can be able to withstand higher electric stress under the same thickness condition. 

However, the critical �&  values obtained by, both, different testing methods for the same 

silicone material do not differ by more than 100 % or by many times. The lower �& value 

obtained from testing with using silicone rubber sheet gives sufficient information for safety 

margin in designing of complex insulations. Therefore, this investigation confirmed that the �& measurements using a silicone rubber sheet provide the fundamental quantity �& results 

with economic experiments. Such method is appropriate for efficient routine tests in material 

research laboratories.  

 

In addition, presently, manufacturers of polymer-based electrical insulation materials 

are increasingly asked for assurance of product lifetime, which cannot be easily inspected. 

The use of silicone rubber in long-term or critical applications requires a far better 

understanding of the failure mechanisms and the use of accelerated ageing conditions in order 

to enable reliable lifetime predictions. Thermal degradation refers to the chemical and 

physical processes in silicone polymers that occur at elevated temperatures. The induction 

period of the degradation process can normally be regarded as the serviceable lifetime of the 

polymer. Hence, dielectric strength behaviour of silicone rubbers after thermo-cycling aging 

should additionally be investigated in further research. The embedded ball electrode 
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specimen is a greatly appropriate test cell to simulate the effect of a thermally-accelerated 

aging in silicone rubber which is not yet investigated in this work. 

 

Finally, this research work will be useful for future revision of a standard test method 

for the determination of AC dielectric strength of elastomeric materials.  
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7  Conclusions 

 
Modern rubber stress cones of HV cable accessories use transparent silicone 

insulating materials. To monitor such accessories with an integrated optical PD detection 

system, it is necessary to examine the important properties of such materials. Unfortunately, 

IEC standard 60243-1 does not define a specific method for short-term dielectric breakdown 

tests of silicone rubbers, and current approaches do not provide the solution to meet the 

challenges of those requirements as described in chapter 4. Therefore an efficient 

methodology to investigate dielectric strength of elastomeric materials was developed. 

Following, the important outcomes of this research work are summarised.  

 
7.1 A novel methodology for dielectric breakdown test of silicone rubbers 
 

The main contribution of the developed novel methodology is the efficient test facility 

that allows easily preparing and handling a silicone-sheet specimen. It is greatly satisfactory 

to meet both technical and economic demands. With this test methodology, various 

advantages could be achieved: 

− This method enables investigations of a high-viscosity liquid silicone rubber, 

which was not yet possible by traditional approaches. 

− Only one silicone sheet specimen is needed for one breakdown test series; large 

number of breakdown data points can be recorded as well as the effect of 

unknown parameters or defects resulting from the specimen preparation process 

can be limited. 

− This low-cost and time-saving experimental method provides �&  values for 

silicone polymers with low uncertainty. 

− This methodology can be applied for high-temperature cured (HTV) silicone 

rubbers; the degree of cross-linking can be controlled. 

− The quality of test specimens and electrode parameters can be optimised; 

statistical significance of the test results can be enhanced; a reasonable 

reproducibility of measurements could be achieved. 

− The test method allows estimating the influence of any modifications of such 

silicone elastomers onto their �& behaviour. 

− This facility enables efficient routine tests in materials research laboratories.  

 
The reliability of measurements was examined by using different sample sizes. Sixty 

breakdown data points (� = 60) and ten breakdown data points (� = 10) were applied. The 

experimental results were very well fitted on the basis of 2-parameter Weibull distribution 

function. The results confirmed that the developed methodology provides a reliable result for 

a small sample size. Ten breakdown data points are adequate for every test series in order to 

obtain a sufficient statistic result. However, when experiments are made for purposes other 

than routine test, larger numbers of breakdown tests will be necessary depending on the 

variability of the polymeric materials and the statistical analysis to be applied. 

 

Based on the experimental results, some recommendations could be made below for 

the improvement of a standard test method in the future. 
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• The dielectric strength of silicone rubbers is dependent upon the thickness of 

test specimens even in the range of small thickness (less than 1.0 mm). It is 

meaningless to report dielectric strength data for an elastomeric material 

without stating the thickness of the test specimen used. These results agree 

with the known “size effect” and it must be taken into account in designing a 

real insulation system. 

 

• For AC 50 Hz, the modes of increase of voltage have an effect to the 

breakdown voltage of the specimen under test. The �& result obtained from 60 

s step-by-step test procedure was lower than that from the rapid-rise test 

methods. Such breakdown value could be considered for safety margin in 

designing of a complex insulation system. Hence, the 60 s step-by-step test 

would be a reasonable method for determination of �& performance of silicone 

rubbers. 

 

• In case of rapid-rise test procedures, the result obtained from this method may 

give an indication as to the suitability of the insulating material. To compare 

such a performance of different types of elastomeric material, the criterion for 

time limitation of breakdown mechanism must be defined in order to avoid a 

problem due to a large tolerance range and a less accuracy of the test results. It 

was found that the time range of 10 s to 20 s is also suitable as a limitation of 

breakdown criterion in silicone rubbers. So in order to get consistent results, a 

rate of voltage rise (e.g. 500 V/s, 1 kV/s, 2 kV/s) shall be selected for the 

sample material under test to achieve the occurrence of breakdown in test 

specimens within the time range of 10 s to 20 s. 

 

The results will be useful for future revision of IEC standard 60243-1, especially the 

chapter dealing with the determination of AC dielectric strength of silicone rubbers. 

 
7.2 Mechanical properties and dielectric strength behaviour of optically 

compatible silicone rubbers 

 
7.2.1 Mechanical properties 
 

 Based on the experimental results and discussions described in chapter 6.1, the virgin 

translucent LSR 3003/30 silicone rubber provides an excellent stress-strain characteristic 

close to those for the electrical grade PowerSil 600 silicone. They have a large elastic region 

with an acceptable plastic deformation (Figure 7.1). Therefore, from an engineering point of 

view, the translucent silicone rubber has good mechanical properties, which are sufficiently 

good for use as a rubber stress cone of HV/EHV cable accessories. Unfortunately, its optical 

transmittance is poor compared to optically clear transparent silicone rubbers. 

 

Nevertheless the transparent silicone rubbers are different: the transparent LSR 7665 

shows an S-shaped curve with 2 yield points while the transparent ESA 7250 shows a J-

shaped curve. The mechanical properties of virgin transparent silicone rubbers do not comply 

with those demanded from push-on stress cones. In particular, their elongation at break is 

considered too low for that application. Hence, the elongation at break of virgin transparent 

silicone rubbers must be improved before they can be used as insulating material for a rubber 

stress cone of power cable accessories. However, the elastic region of the virgin LSR 7665 is 
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limited to small strain (Figure 7.1). In the context of material behaviour, during 

loading/unloading, their deformation is irreversible. Therefore it is difficult to improve the 

elongation at break value of such silicone rubber while maintaining its transparency. On the 

other hand, in case of the virgin ESA 7250, there has little change in shape for a small load, 

until a certain force is applied. Hence it will be possible to improve the elongation at break 

value of this silicone rubber by modification of its polymer matrices using silica-based 

nanofillers surface treatment in conjunction with a covalent bonding technique as mentioned 

in chapter 2. 
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Figure 7.1: Definition of breaking point in stress-strain characteristics of the optically 

compatible silicone rubbers compared to the electrical grade silicone rubber, according to results 

shown in Figure 6.14 

 
When optically compatible silicone rubbers are to be modified and used as optical 

sensor element and as elastomeric insulation material, it is important to define the appropriate 

curing condition for each silicone type. Mechanical investigations revealed that the post-

curing procedure does not provide a positive impact on their elongation ability. Therefore, the 

reasonable curing condition for each elastomer should be based on their normal curing 

condition as discussed in chapter 6.1.4. Manufacturers of a modern rubber stress cone of 

HV/EHV cable accessories should take that into account when using such silicone rubbers as 

a basic material for the fabrication of a fluorescent silicone optical fibre as well as a new 

transparency dielectric elastomer. 

 
7.2.2 AC 50 Hz dielectric strength behaviour 
 

Based on the experimental results and discussions described in chapter 6.2, it is worth 

noting that all measured �& values are slightly higher than the values given in the technical 

data sheets. The translucent silicone rubber was provided the lowest breakdown strength 

compared to the others. On the other hand, the transparent types that have a poor elongation 

at break value offered the better dielectric strength value. However, all of them have a 

sufficient �& performance that can be used as insulating material for a rubber stress cone of 

HV cable accessories.  

 

The effect of applied mechanical tensile stress on the �&  behaviour of the virgin 

translucent silicone rubber has been investigated. The results illustrated that �& values of such 
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silicone rubber tend to increase slightly with increasing applied extension. This is due to the 

reduction of the thickness of the silicone rubber sheet caused by applied tensile stress. It 

could clearly be seen that mechanical tensile stress does not negatively influence on the 

dielectric strength of silicone rubber. Silicone rubber can be well operated under combined 

electrical and mechanical stresses. 

 

An inspection of a breakdown point on the silicone rubber sheets revealed mostly a 

carbonized channel uniting at that point. It seems that the breakdown process depends on the 

energy localized in a breakdown initiation point and on the morphological properties of the 

silicone polymer in the neighbourhood of the deterioration source. Such a property naturally 

depends on the elastomer formulation such as the type of chemical reactions for the cross-

linking process, the nature of fillers incorporated and the possible presence of catalysts. 

Therefore, such an investigated silicone rubbers provide a different dielectric breakdown 

performance. 

 

Dielectric strength behaviour of the fluorescent silicone rubbers has been examined. 

The translucent silicone polymer modified with different commercially available dyes by 

0.02 wt. % (200 ppm) shows the same breakdown strength as the undoped virgin polymer 

within the statistical 90 % confidence intervals (Figure 6.27 and Figure 6.28). Hence 

fluorescent dyes do not seem to negatively influence the dielectric strength of silicone rubber. 

It is possible to apply such a modified silicone polymer in a region of moderate to high 

electric field stress near the critical interface area of HV cable accessories. So the optically 

compatible silicone rubber is perfectly suitable for the fabrication of a novel fluorescent 

silicone optical fibre. Such a new fibre is compatible for integration into a rubber stress cone 

of HV cable accessories.  

 
7.3  Observations 
 

From the fabrication of a new fluorescent silicone rubber, it was experienced that the 

fluorescent dyes in silicone polymer are not stable, particularly at elevated temperatures. 

Colour bleeding is an unacceptable phenomenon for the optical sensing element that has to 

have the expected long lifetime (25 years or more). To prevent dye migration, our new 

strategy is to covalently link the dye to the siloxane network by taking advantage of the cross-

coupling reaction during the curing process of the siloxane network. Therefore fluorescent 

dyes need to be synthesized carrying reactive groups to functionalize the siloxane polymer 

matrix. 
 

An additional way to improve the level of PD light detection further is improvement 

of the transparency of a rubber stress cone of HV/EHV cable accessories. To enhance the 

transparency further, one possibility is to use hydrophobic nanoparticles as fillers. These 

fillers must be smaller than the wavelength of the visible light and reduce the proportion of 

the light being scattered at the interface of particle and polymer matrix. Thus, dielectric 

strength behaviour of the modified silicone polymers needs to be investigated.  
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