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Zusammenfassung

Zeit und Frequenz sind die am genauesten messbaren physikalischen Größen. Na-
hezu alle höchst präzisen Messverfahren in der Grundlagenforschung und Technik
beruhen auf dem Messen und Vergleichen von Frequenzen. Die zugehörige SI Ein-
heit Sekunde wird in Cäsium-Fontänenuhren mit einer relativen Unsicherheit im
10−16 Bereich realisiert. Stabilere Frequenzen mit deutlich kleineren systematischen
Unsicherheiten lassen sich mit sogenannten optischen Uhren erzeugen, bei denen die
Frequenz hoch stabiler Laser auf verbotene optische Übergänge von lasergekühlten,
gespeicherten Atomen abgestimmt wird.

Die vorliegende Arbeit diskutiert die Realisierung einer optischen Uhr, die den ex-
trem schmalen 2S1/2(F = 0)→ 2F7/2(F = 3) Oktupol-Übergang eines einzelnen, in
einer Paul Falle gespeicherten 171Yb+ Ions als Referenz nutzt. Über die bekannten
Vorteile des Systems hinaus, wie die große Masse und eine natürliche Linienbrei-
te im nHz Bereich, ergaben die hier vorgestellten experimentellen Untersuchungen
ein überraschend kleines Quadrupol Moment des angeregten Zustands Θ(F, 7/2) =
−0.041(5) ea2

0. Desweiteren wurden genaue Sensitivitäten der Übergangsfrequenz
für elektrische und magnetische Felder bestimmt, die durch Spektroskopie des zwei-
ten Uhrenübergangs von 171Yb+, dem 2S1/2(F = 0) → 2D3/2(F = 2) Quadrupol-
Übergang, charakterisiert werden können.

Ein hochstabiler Laser ermöglicht die erstmalige experimentelle Untersuchung des
sogenannten “hyper-Ramsey” Anregungsverfahren, durch das die dominierende
Frequenzverschiebung, die Lichtverschiebung durch den Abfragelaser, um viele
Größenordnungen reduziert wird. Abwechselndes Abfragen mit dem neuen Ver-
fahren und mit einzelnen Rabi Pulsen erlaubt eine Steuerung der “hyper-Ramsey”
Parameter und garantiert eine dauerhafte Unterdrückung der Lichtverschiebung,
sodass diese nur noch einen unwesentlichen Beitrag zur systematischen Unsicher-
heit des Normals liefert.

Die Frequenzverschiebung durch thermische Strahlung wurde mit Hilfe nahinfraro-
ter Laserstrahlung untersucht und die differentiellen Polarisierbarkeiten für beide
Uhrenübergänge bei verschiedenen Wellenlängen bestimmt. Diese Daten können
für Tests theoretischer Untersuchungen dienen und ermöglichen derzeit eine Kor-
rektur der Verschiebung für den Oktupol-Übergang mit einer relativen Unsicherheit
von 2.6 × 10−18 und einen Bestimmung der differentielle statische skalare Polari-
sierbarkeit ∆αdcs = 0.893(30)× 10−40Jm2V−2.

Die Frequenzen beider Uhrenübergänge wurden bestimmt, wobei die erzielte Un-
sicherheit im wesentlichen durch die der Fontänenuhren limitiert war. Durch den
Vergleich mit einer optischen Gitteruhr ergab sich die Instabilität des Oktupol-
Frequenznormals zu σy(τ) = 5.3×10−15/

√
τ(s). Eine Abschätzung aller relevanter

frequenzverschiebender Effekte ergibt gegenwärtig eine relative systematische Un-
sicherheit von 3.9 × 10−18, was vermutlich die derzeit kleinste aller Atomuhren
darstellt.

Stichworte: Optisches Frequenznormal, stabile Laser, Präzisionsspektroskopie.





Abstract

Time and frequency are the most precisely measurable physical quantities. Nearly
all of the high precision measurement techniques in basic research and engineering
are based on the measurement and comparison of frequencies. The associated SI
unit second is realized by caesium fountain clocks with a relative uncertainty in
the 10−16 range. More stable frequencies with considerably smaller systematic
uncertainties can be generated by so-called optical clocks, in which the frequency
of highly stable lasers is referenced to forbidden optical transitions of laser-cooled
trapped atoms.

This thesis discusses the realization of an optical clock based on the extremely
narrow 2S1/2(F = 0) → 2F7/2(F = 3) octupole transition of a single 171Yb+ ion
confined in a Paul trap as the reference. Beyond the known advantages of the sys-
tem, like the large mass and a natural linewidth in the nHz range, the experimental
investigations presented here reveal a surprisingly small quadrupole moment of the
excited state Θ(F, 7/2) = −0.041(5) ea2

0. Furthermore, precise sensitivities of the
transition frequency to electric and magnetic fields have been determined. These
fields can be characterized by spectroscopy on the second clock transition of 171Yb+,
the 2S1/2(F = 0)→ 2D3/2(F = 2) quadrupole transition.

A highly stable laser permits the first experimental investigation of the so-called
“hyper-Ramsey” excitation scheme that reduces the dominating frequency shift,
the light shift induced by the probe laser, by several orders of magnitude. Al-
ternating interrogation with the new method and with single Rabi pulses enables
control the “hyper-Ramsey” parameters and guarantees a constant suppression of
the light shift, so that its contribution to the systematic uncertainty of the standard
is negligible.

The frequency shift induced by thermal radiation was studied via the effect of near-
infrared laser radiation and the differential polarizabilities have been determined
for both clock transitions at various wavelengths. These data can be used for tests
of theoretical predictions and currently permit a shift correction for the octupole
transition with a relative uncertainty of 2.6×10−18 and to infer the static differential
scalar polarizability ∆αdcs = 0.893(30)× 10−40Jm2V−2.

The frequencies of both clock transitions have been measured with an uncertainty
essentially limited by that of the caesium fountain clocks. The comparison with an
optical lattice clock yields the instability of the octupole frequency standard to be:
σy(τ) = 5.3 × 10−15/

√
τ(s). An evaluation of all relevant frequency shift effects

leads at present to a relative systematic uncertainty of 3.9 × 10−18, which appers
to be the smallest among all atomic clocks.

Keywords: optical frequency standard, stable lasers, precision spectroscopy.
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1 Introduction

Time has ever been a mystery for mankind, something that is not easy to describe,
and that is perceived in very different ways. One way of experiencing time is
the observation of periodic phenomena. This leads to Einstein’s idea: It might
appear possible to overcome all the difficulties attending the definition of “time”
by substituting “the position of the small hand of my watch” for “time” [1]. In
this respect, time can be measured by counting the number of passing cycles of a
stable periodic process. Such a phenomenon is provided by the rotation of celestial
bodies and served as a reference for the second by the definition as 1/86 400 of the
mean solar day until 1956. However, measurements with quartz oscillators showing
irregularities in the rotation of the earth made this an unsatisfactory definition [2,3].
But also the frequency provided by quartz oscillators is neither absolutely stable
nor reproducible, but critically depends on temperature.

The most stable frequencies known so far are those of radiation corresponding
to transitions between two states of unperturbed atoms. Furthermore, according
to the equivalence principle, these frequencies should be independent on place and
time. We also believe that they are specific and highly reproducible, since atoms
of the same species are identical. As a consequence, atomic transitions seem to
provide ideal frequency references.

The most common way to realize an atomic frequency standard is the following:
Atoms are prepared in a well defined state and are interrogated on a narrow atomic
transition by radiation generated from a stable oscillator. A discriminator signal
can be generated by observing changes in the transition probability, while stepping
the frequency of the radiation. The generated signal is used in a feedback loop to
control the frequency of the oscillator and ensures that the oscillator’s frequency
corresponds to the atomic resonance. Imperfections in the measurement process
and perturbations of the atomic states by residual fields, however, cause a frequency
offset between the unperturbed transition frequency ν0 and that of the oscillator.
The relative uncertainty δν/ν0 of the applied correction determines the accuracy
of the realized frequency standard. This uncertainty estimate can be tested in
comparisons with other standards, providing confidence in the evaluated correction
and the realization of the unperturbed frequency or guiding toward undiscovered
effects.

The first realization of such an atomic clock was achived in 1955 at the National
Physical Laboratory (UK) referencing the hyperfine transition of the ground state
of caesium atoms [4, 5]. Since this type of clock showed advantages over systems
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2 1 Introduction

based on other atomic transitions within the following years, in 1967/68 the 13th

Conférence Générale des Poids et Mesures decided to define the SI second based
on the most precise measurement of the Cs-clock frequency in terms of ephemeris
time [6], as:

The second is the duration of 9 192 631 770 periods of the radiation corresponding
to the transition between the two hyperfine levels of the ground state of the caesium
133 atom.

These atomic clocks made use of Ramsey’s method of separated oscillatory fields
which permitted the recording of a resonance line shape with a width that is
essentially limited by the Fourier-transform of the total interaction time, without
shifts and broadening through inhomogeneous excitation [7]. The interaction time
is in turn limited by the velocity of the thermal atoms traveling along the Ramsey
cavity. In laboratory systems of typical length ≈1 m, interrogation periods of
≈10 ms are achieved corresponding to a resonance width of 50 Hz.

The advent of laser cooling enabled the realization of the atomic fountain clock
[8, 9], where a laser-cooled cloud of atoms is launched against gravity using laser
light. On their way up, the atoms pass a microwave cavity. After reaching a height
of typically 1 m, they fall down, passing the cavity a second time. In this way,
the spatially separated oscillatory fields of the beam clocks are replaced by two
temporally separated interactions with the microwave field [10]. The separation of
the two interaction periods of about 0.5 s allows for observation of the resonance
signal with a width of 1 Hz. With the 50 times reduced linewidth, and the compa-
rably smaller velocity of the Cs atoms, the SI second can nowadays be realized in
caesium fountain clocks with fractional frequency uncertainties slightly larger than
10−16 [11, 12].

1.1 Characterization of frequency standards

Atomic frequency standards are typically characterized by their accuracy and insta-
bility. As mentioned before, the accuracy is related to the systematic uncertainty
in effects that alter the standard’s frequency from that of the unperturbed atomic
resonance. The other main property of a frequency standard is its instability that
specifies how the observed frequency fluctuates and drifts over time. Thus a ref-
erence needs to be generated by another clock to detect the fluctuations, in other
words, frequency instability is the result of a relative frequency measurement. Most
commonly, the instability is quantified by the Allan deviation [13]

σy(τ) =

√√√√ 1

2(M − 1)

M−1∑
i=1

(yi+1 − yi)2, (1.1)
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where yi is a set of M frequency measurements that consists of individual measure-
ments equally spaced in segments of duration τ . If the comparison comprises at
least three uncorrelated standards, the individual instabilities can be inferred [14].
Compared to the standard deviation, the Allan deviation has the advantage that
it does converge for flicker frequency noise. If the Allan deviation is also calculated
for larger measurement intervals obtained by averaging over periods of single fre-
quency measurements, types of oscillator and measurement system noise can easily
be identified in a double logarithmic plot of the Allan variance versus the averaging
time as shown in Fig. 1.1. With the information on the noise type, the averaging
time required to reduce the statistical uncertainty of a frequency comparison to a
certain level can be inferred. Note that the Allan deviation does not distinguish
between white phase noise and flicker phase noise.

lo
g
 s

(t
)

y

Noise type :
White
phase

Flicker
phase

White
freq.

Flicker
freq.

Random
walk

Freq.
drift

-1

log t 

1

-1/2
0

1/2

-1

Figure 1.1: Allan deviation σy(τ) versus the averaging time τ for 5 different noise
types and a constant frequency drift. The numbers are the slope of
σy(τ) in a double logarithmic plot.

As a consequence of the quantum nature of the atomic resonance [15], the insta-
bility at an averaging time τ of an ideal atomic frequency standard, as introduced
above, can be described by

σy(τ) =
∆ν

ν0

1

K
√
N

√
Tc
τ
, (1.2)

where N is equal to the number of interrogated atoms, assuming an uncorrelated
atomic state, K is on the order of unity and depends on the shape of the resonance
signal observed around the transition frequency ν0, and the ∆ν describes the width
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of the observed resonance feature. The latter is inversely proportional to the in-
terrogation time Ti, which is a part of the total duration of an interrogation cycle
Tc.

From Eq. 1.2 it is clearly visible that a large number of atoms, narrow linewidths
obtained by long coherent interactions, and in particular high transition frequencies
are desirable. It should be noted that the necessary measurement time to achieve a
given statistical uncertainty is reduced with ν2

0 for otherwise unchanged parameters.

1.2 Optical frequency standards

Pursuing the idea of atomic clocks based on transitions with higher frequencies lead
to constraints set by the availability of controllable local oscillators and instruments
to compare and count the realized frequencies. Both such tools have recently
become available for frequencies in the optical spectrum: lasers whose frequencies
are stabilized to optical resonators [16,17] provide short-term instabilities presently
approaching the 10−17 range [18] and optical frequency comb generators provide
a convenient tool to phase-coherently compare frequencies in the optical and the
microwave regime with uncertainties in the 10−19 range [19,20].

Equally important milestones for frequency standards based on narrow optical
transitions have been passed by trapping and cooling thousands of neutral atoms in
optical lattices [21, 22] or single ions in radio frequency traps [23–25]. The precise
control of the motion of the trapped particles prevents large Doppler shifts and
allows for recoil-free spectroscopy with interaction times limited by the short-term
instability of the probe laser system.

Since the beginning of this century, optical frequency standards employing vari-
ous atomic species and reference transitions are investigated in many laboratories
worldwide. Profiting from their ≈105 times larger transition frequency, so-called
optical clocks achieve significantly smaller uncertainties and instabilities than their
microwave counterparts [26–34]. While clocks based on neutral atoms confined
in an optical lattice have demonstrated superior instabilities resulting from the
large number of atoms [35], single-ion clocks were known for their significantly
smaller systematic uncertainties [27], due to the smaller sensitivities of their ref-
erence transition frequencies to external fields, in particular to that of thermal
radiation. Recently, high-accuracy measurements of this sensitivity [34, 36–38] in
combination with precise characterization of the radiation field at the position of
the atoms [32,39] or application of cryogenic environments for the atoms [40] have
permitted comparable uncertainties for optical lattice clocks [32, 34]. Ultimately,
the accuracy of lattice clocks might be limited by residual interaction effects of the
atoms.

The outstanding precision of optical clocks makes them of interest as sensitive
probes in areas such as relativistic geodesy [41], where the gravitational redshift
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of distant clocks is evaluated to determine the difference of the gravity potential
between the positions of the clocks. On the contrary, these clocks can be used to test
the fundamental assumption for relativistic geodesy, the local position invariance,
e.g. by comparing the redshift observed with clocks based on different transitions
[42,43]. Since the local position invariance also refers to position in time, temporal
variations of fundamental constants are investigated by repeated comparisons of
transition frequencies with different sensitivities on the constants [26, 44–47]. The
octupole transition of 171Yb+ is known for its particularly high sensitivity on the
finestructure constant α [63].

1.3 Optical frequency standards with a single
171Yb+ ion

At the Physikalisch-Technische Bundesanstalt (PTB) we investigate optical fre-
quency standards based on the narrow transitions provided by a single 171Yb+ ion
confined in a radio frequency Paul trap [23]. 171Yb+ provides several advantages,
some of which are obvious from the term diagram depicted in Figure 1.2. The in-
dicated transitions for laser-cooling, repumping and the so-called clock transitions
are at convenient wavelengths and thus can all be driven by external-cavity diode
laser systems, which reduces the technical efforts and improves the reliability of
the system. The ion shows extremely long storage times, probably related with
the fact that the 370 nm laser light used for cooling should also be capable to
photo dissociate the YbH+ molecule [49]. This might explain, why Yb+ is used in
various experiments with traped ions [50–55]. The relatively large mass of the ion
and a convenient linewidth of the cooling transition lead to a small residual motion
after Doppler cooling. The corresponding small Doppler shifts are advantagous for
the realization of an optical frequency standard. Furthermore, due to the nuclear
spin of 1/2, the clock transitions can be excited between mF = 0 components of
the hyperfine manifold, so that the transition frequencies are insensitive to small
magnetic fields.

Aside from these technical advantages, 171Yb+ is of particular interest since it
offers two optical reference transitions with high quality factor which have rather
different physical characteristics. An optical frequency standard based on the elec-
tric quadrupole (E2) transition connecting the 2S1/2(F = 0) ground state with the
2D3/2(F = 2) state that has a natural lifetime of 53 ms [56], has been pioneered
at PTB [57] and has been established as one of the secondary representations of
the SI second [58]. The electric octupole (E3) transition between the ground state
and the 2F7/2(F = 3) state was first studied at the National Physical Laboratory
(UK) [59]. The extraordinary features of this transition result from the long nat-
ural lifetime of the 2F7/2 state in the range of several years [59, 60] and from its
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Figure 1.2: Partial level scheme of 171Yb+. The solid green arrows indicate the
reference transitions: The octupole (E3) transition at 467 nm and
the quadrupole (E2) transition at 436 nm. The cooling transition is
shown blue dashed and red arrows represent repumping transitions.
Relevant spontaneous decay paths are indicated by dotted lines.

electronic configuration (4f 136s2) consisting of a hole in the 4f shell surrounded
by a spherically symmetric 6s shell. Since the octupole transition can be resolved
with a linewidth that is virtually unaffected by spontaneous decay and determined
only by the available laser stability, a quantum projection noise limited single-ion
frequency standard with very low instability can be realized.

To understand the very specific electronic structure of singly-ionized 171Yb, it
is helpful to separate the low lying states into two groups. An alkali-like configu-
ration: comprising a completely filled 4f shell and a single valence electron, and
a two-valence-electron configuration with a hole in the 4f shell. The 2S1/2 ground
state, the upper level of the cooling transition (2P1/2) and the excited state of
the quadrupole transition discussed here, the 2D3/2 state, belong to the alkali-like
group. The 2F7/2 state and the excited states of the repump transitions belong to
the other. It seems to be intuitive that LS coupling is appropriate for the 2F7/2

state, since it is well characterized as a single hole state. For most of the others
low-lying excited states of the same part of the term scheme, however, another
coupling scheme is appropriate, to which some refer as JK and others as J1L2

coupling [61]. Here, the total angular momentum of parent-level J1, describing the
inner part of the electronic system, couples to the orbital angular momentum of
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the valence electrons L2 obtaining the quantum number K. The spin of the valence
electrons S2 is then coupled with K to obtain the total angular momentum J of
the level with the term symbol 2S2+1[K]J .

As a consequence of the complicated electronic structure, strong limitations are
expected in a monovalent theoretical description, but a treatment of all 15 va-
lence electrons makes the calculation very difficult, so that currently no precise
theoretical predictions for the atomic parameters are available [62].

These difficulties were also limiting ab initio calculations of the dependence of
the electronic structure on variations of the fine structure constant α. Here, sig-
nificantly larger relative uncertainties are acceptable, as the very large relativistic
contributions to the 2F7/2 state energy [∆(E(2F5/2) − E(2F7/2))/h ≈ 300 THz]
lead to a particularly strong sensitivity of the octupole transition frequency on
α [48, 63]. It has also been found that the corresponding transition frequency
shift of the quadrupole transition is ≈6 times smaller, but has the opposite sign.
Therefore, measurements of the frequency ratio of the quadrupole and the octupole
transition in one trapped 171Yb+ ion are a convenient way to test the constancy of
α.

The octupole transition has been known to be an attractive reference transi-
tion [64], but because of the extremely small oscillator strength of the octupole
transition, which is about 8 orders of magnitude smaller than that of most other
transitions used in optical clocks, its excitation requires particularly high spec-
tral power density. To achieve π-pulse excitation by a 30 ms long rectangular
pulse, an intensity of 10 W/mm2 is required. This large intensity leads to nonreso-
nant couplings to higher-lying levels and thereby introduces a significant light shift
(≈500 Hz) of the transition frequency. This strong light shift and the difficulty to
efficiently excite the octupole transition have impeded the realization of an optical
frequency standard and detailed investigations of systematic shifts, which are both
presented in this thesis.

1.4 Outline of the Thesis

This thesis describes the realization of an optical frequency standard based on the
octupole transition of a single 171Yb+ ion and reports on the present status of a
frequency standard based on the quadrupole transition.

The main concepts and components of the experimental setup are introduced in
chapter 2. A short discussion of the principles of trapping and cooling single ions is
given and a new repump transition that can efficiently depopulate the long living
2F7/2 state is reported. High resolution spectroscopy on the octupole transition is
achieved with a new probe laser system.
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In chapter 3 shift effects of the 2S1/2(F = 1) → 2D3/2(F = 2) transition and the
2S1/2(F = 1) → 2F7/2(F = 3) transition due to external fields are evaluated by
measuring the relevant atomic parameters, for instance the quadrupole moment
Θ(F, 7/2), differential electric polarizabilities and sensitivities to the second-order
Zeeman shift. Finally, present estimates for all known relevant systematic fre-
quency shifts and the corresponding uncertainties of the 171Yb+ standards are
given.

In chapter 4 the recently proposed “hyper-Ramsey” spectroscopy is experimentally
investigated and its application in an optical frequency standard is demonstrated.

In chapter 5 comparisons of the two optical frequency standards of 171Yb+ with
caesium fountain clocks are presented. These results might be used for tighter
constraints on temporal variations of fundamental constants.

1.5 Publications

Parts of the work presented here, have been previously published as listed below.

The realization of an optical frequency standard based on the octupole transition
using a real-time extrapolation technique to cancel the light shift, a measurement
of the transition frequency versus a fountain clock, first measurements of the static
scalar differential polarizability of the octupole transition and the quadrupole mo-
ment of the 2F7/2 state:

� N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, Chr. Tamm, and
E. Peik, Phys. Rev. Lett. 108, 090801 (2012).

The first experimental demonstration of the so-called “hyper-Ramsey” spectroscopy
method without its application in a frequency standard:

� N. Huntemann, B. Lipphardt, M. Okhapkin, Chr. Tamm, E. Peik, A. V.
Taichenachev, and V. I. Yudin, Phys. Rev. Lett. 109, 213002 (2012).

The first measurement of an optical transition frequency with a caesium foun-
tain clock using an optically stabilized microwave oscillator demonstrated on the
quadrupole transition of 171Yb+:

� Chr. Tamm, N. Huntemann, B. Lipphardt, V. Gerginov, N. Nemitz, M. Kazda,
S. Weyers, and E. Peik, Phys. Rev. A 89, 023820 (2014).

The measurement of the octupole transition frequency versus two fountain clocks
has been used to infer the 5s2 1S0 → 5s5p 3P0 transition frequency of 87Sr based on
the frequency ratio of the two optical frequency standards:
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� S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov,
N. Huntemann, C. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr,
and C. Lisdat, New J. Phys. 16, 073023 (2014).

Parts of the calculations of electric polarizabilities were given in

� V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, Chr. Tamm,
E. Peik, N. Huntemann, T. E. Mehlstäubler, and F. Riehle, Phys. Rev. Lett.
107, 030801 (2011).



2 Experimental Setup

This chapter will introduce the main concepts and components of the experimental
setup. It starts with a short discussion of the principles of trapping and cooling
single ions, followed by a report on a new repump transition that more rapidly de-
populates the long living 2F7/2 state. Furthermore, the basic interrogation sequence
and its elements will be described. Finally, the last part of this chapter deals with a
new probe laser system to excite the octupole transition offering several advantages
over a previously used one [65].

2.1 Trapping and Cooling of a Single Yb+ Ion

The basic idea to investigate properties of the unperturbed atomic structure via
precision spectroscopy of trapped ions was introduced in 1956 by Hans Dehmelt
[66]. He proposed to trap ions in a small volume for a time that is significantly
longer than it would be achievable for example in double resonance experiments in
vapor cells. A convenient experimental instrument to realize trapping, ideally for
an infinite amount of time, is the three dimensional quadrupole ion trap invented
by Wolfgang Paul [23]. As seen from the Laplace equation an attractive potential
to confine the ion cannot be realized by static electric fields, however, dynamical
trapping can be achieved by the use of time dependent electric fields. The electrodes
of our Paul trap (see Fig. 2.1) are machined according to number 4 in Ref. [67]
scaled to match z0 = 1 mm. The time dependent electric potential inside the trap
with a characteristic size r0 is

φ(r, t) = (U0 + V0 cos(Ωt))
(1 + ε)x2 + (1− ε)y2 − 2z2

κr2
0

. (2.1)

The voltage applied to the central ring electrode is comprised of a static com-
ponent U0 and a dynamical contribution of amplitude V0 oscillating at an angular
frequency of Ω. The shape of the electrodes determines the coefficient κ, where
κ = 2 corresponds to electrodes that perfectly match a hyperbolic equipotential
surface and should equal 2.16 for our trap geometry [67]. Deviations from a cylin-
drical symmetry of the trap potential are described by ε. The motion of the single
ion with a mass m and the charge Q in this potential can be described by a set of
Mathieu equations

d2ri
dτ 2

+ (ai − 2qi cos 2τ) = 0 (2.2)

10
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with the dimensionless parameters

ai =
8γiQU0

mΩ2κr2
0

, qi =
4γiQV0

mΩ2κr2
0

, τ =
Ω

2
t, γi =


1 + ε i = x

1− ε i = y

−2 i = z.

(2.3)

In the case of |ai|, qi � 1 and U0 < V0 stable solutions of Eq. 2.2 can be written
as

ri(τ) = ri cos
2ωiτ

Ω︸ ︷︷ ︸
secular motion

+

(
ri cos

2ωiτ

Ω

)
qi
2

cos 2τ︸ ︷︷ ︸
micromotion

, i = x, y, z. (2.4)

Here one can clearly see two separable parts of the motion and their correlation.
The second part describes the oscillation of the ion with the frequency of the radio
frequency voltage that creates the trap field. For averaging times larger than 1/ω,
the mean kinetic energy of the micromotion forms a pseudo-potential

Φ(ri) =
m

4Q
ω2
i r

2
i . (2.5)

So that the first part of Eq. 2.4 can be interpreted as the harmonic motion in this
pseudo-potential. According to [68] the frequency of the secular motion is

ωi =
Ω

2

√
ai −

(ai − 1)qi2

2(ai − 1)2 − qi2
− (5ai + 7)qi2

32(ai − 1)3(ai − 4)
(2.6)

which simplifies for the approximation |ai|, qi � 1 to

ωi =
Ω

2

√
ai +

1

2
qi2. (2.7)

Residual stray electric fields or effective phase differences of the potentials on the
electrodes can shift the equilibrium position of the ion from the trap center. In this
case the ion will not be located in the field free trap center but will be affected by
so-called excess micromotion. The additional mean squared field and the induced
motion of the ion can cause significant shifts of the observed transition frequencies
of the trapped particle via the quadratic Stark and the quadratic Doppler effect,
respectively. Different methods were investigated to detect micromotion [69]. A
cancellation of the residual field can be achieved by applying a compensating elec-
tric field. Figure 2.1 is a picture of the trap used in the experiments. Due to their
proximity, voltages on the electron gun, the Yb oven and between the endcap elec-
trodes can be used to null the electric field at trap center. The compensation field
is adjusted by minimizing residual changes of the mean position of the ion that
are associated with lowering the trap potential close to the boundary of the stable
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region [70]. The position is visible on a monitor screen that shows a magnified
image of the ion in the trap detected on an intensified CCD camera. By choosing a
positive or a negative offset voltage on the ring electrode, the trap becomes shallow
either along the trap axis or in the radial plane. Due to the large magnification and
the orientation of the trap relative to the detector, changes of the mean position of
the ion related with the electric field induced by the compensation voltages are dis-
tinguishable and clearly visible. The quality of the compensation can be assumed
to be similar for the three orientations. In particular, the voltage adjustment be-
tween the endcaps serves as a test case. From repeated compensation procedures
with very different initial voltages, the reproducibility of the compensation voltage
is found to be better than 3 mV, which is assumed as the uncertainty for this
compensation voltage. With a finite element calculation, the electric field Ez along
the trap axis resulting from a dc voltage U between the two endcap electrodes at
a distance of 2z0 was calculated to be

Ez = k
U

2z0

, k = 0.80. (2.8)

The design goal of 2z0 was 0.987 mm, which should be realized with an uncertainty
of a few percent. This leads to a comparable uncertainty of the electric field, since
the imperfections of the numerical calculation are expected to be much smaller.
With Eq. 2.8 a residual electric field of less than ±2.4 V/m along the trap axis can
be calculated from the uncertainty of the voltage used to compensate stray electric
fields. This residual field can shift the ion from the minimum of the trap potential
along the trap axis. For the two orthogonal orientations similar residual fields are
expected.

Ions are created inside the trap potential for example by photoionization or
electron impact ionization and can be expected to possess initial kinetic energy
on the order of 1 eV. The motional energy of the trapped particles needs to be
reduced to a regime where the associated Doppler broadening will not dominate
the observed resonance spectra linewidth, but the ion is localized significantly
better than the wavelength of the interrogating laser light field. As it can be seen
from Eq. 2.4, a reduction of secular motion will also reduce the corresponding
part of the micromotion. In 1975 Wineland and Dehmelt as well as Hänsch and
Schawlow proposed the idea of laser cooling for electromagnetically trapped ions
and a gas of neutral atom. Near resonant laser light can be employed to achieve
optical pumping into low lying motional states. In 1978 cooling of ions using a
red detuned laser was first demonstrated by Wineland, Drullinger and Walls [71]
on Mg+ ions in a Penning trap, and independently by Neuhauser et al. [24] on
Ba+ ions in a Paul trap. The same technique that was applied to cool Ba+ ions,
is used in the experiments described here, to reduce the kinetic energy of a single
trapped Yb+ ion by scattering photons on the strong 2S1/2(F = 1)→ 2P1/2(F = 0)
transition at 370 nm.
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Figure 2.1: Picture of the ion trap in its quartz glass vacuum chamber. The
Yb+ oven is visible on the left and the electron source on the right.
The picture has been taken through the window used for fluorescence
detection. Attached to the central glass cube, the four orthogonal
tubes for the cooling, probe and repump laser beams can be seen on
the outer part.

A review of the basic concepts of laser cooling is given in [72] and in more
detail laser cooling of ions is described in [73–75]. In our experiments the cooling
transition is excited by a frequency doubled external cavity diode laser providing
10 µW of power that is focused to a beam waist of ≈50 µm at the position of the
ion in the trap [76]. A few milliwatts of light from another external-cavity diode
laser at 935 nm are focused to a similar beam waist in order to avoid population
trapping in the 2D3/2 metastable level. The so-called repump laser excites the
ion to the short living 3[3/2]1/2 manifold, which in turn decays predominantly to
the ground state [77]. A microwave sideband at 14.7 GHz on the cooling laser
depopulates the lower lying hyperfine level (F = 0) of the ground state and by
that closes the cooling cycle. A strong magnetic field under an angle to the laser
polarization leads to an appropriate splitting of the Zeeman manifold, and ensures
that population trapping in Zeeman sublevels of the 2S1/2(F = 1) state does not
prevent efficient laser cooling [78]. The absolute value of the magnetic field and
the polarization of the cooling laser light are adjusted to maximize the fluorescence
rate, whereas the cooling light intensity is reduced to prevent saturation. Under
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these conditions, the frequency of the cooling light is detuned by about half of the
natural linewidth of 19.6 MHz [79] and leads to ≈104 detected photons per second.

A more detailed discussion of the cooling process as well as its limitations in the
case of a single 171Yb+ ion can be found in chapter 3 of Ref. [80] and in Ref. [78].
For the experiments discussed here, it should be sufficient to summarize some of
their results and discuss related limitations. The process of cooling the ion is
carried out under the assumption of a weak binding (ωi � Γ) of the ion in the
trapping potential. Since the spontaneous decay rate on the cooling transition is
much bigger than the angular frequencies of the secular motion. According to [15],
where the trap potential is approximated to be a pure one-dimensional harmonic
well and low intensities as well as low velocities are assumed, the final steady-state
energy after Doppler cooling can be expressed as

ED = (1 + α)
~(Γ2 + 4∆2)

−16∆
=

1

2
kBTD. (2.9)

Here kB denotes the Boltzmann constant, α describes the angular distribution of
the fluorescence, and is assumed to be equal to 1/3, and ∆ is the detuning from
the resonance of the cooling transition. The energy is minimal under the condition
∆ = −Γ/2 and the temperature TD of the ion at Doppler cooling limit is TD =
2~Γ/3kB = 0.63 mK. The minimum temperature that can be achieved is essentially
limited by the natural linewidth of the cooling transition. On general grounds, one
expects such a limit for processes in a two-level atom because ~Γ represents the
smallest energy scale in the system. In the case of both clock transitions, the ion is
in a regime of strong binding (ωi � Γ) and the motional sidebands are well resolved.
For low intensities and modulation indices, the amplitude of the observed sidebands
at the secular frequency ωi in comparison with the amplitude of the carrier at the
transition frequency ν0 can be used to calculate the temperature of the ion Ti.
According to Refs. [69,81]:

Ti =
2mc2

kB

(
ωi

2πν0

)2 ∑
l=1,2,3

Rl,i, (2.10)

where m is the mass of the ion and c the speed of light. Rl,i is the sideband-to-
carrier intensity ratio for the laser beam propagation direction l and the secular
motion along the principal axis i. In our trap only one beam propagation direction
is used, so that it is assumed that the observed energy kB

∑
i Ti for one direction

is equal to 1/3 of the total kinetic energy of the ion. Following this idea, Fig. 2.2
shows a measurement performed on the quadrupole transition of the ratio of the
two radial secular sidebands and the carrier intensity as a function of a waiting
period after Doppler cooling. The pulse area is adjusted to be smaller than π/2
and short excitation pulses of 0.5 ms avoid variations of the excitation probability
induced by frequency drifts of the probe laser. The excitation probability was
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determined from 700 interrogations. In this way, the temperature after Doppler
cooling has been measured to be T = 1.1 mK which is less than a factor of 2
more than the calculated temperature at the Doppler limit which can be expected
since the cooling scheme is not a perfect two level system (see Ref. [78]). The
increase of thermal energy with time leads for the quadrupole and the octupole
spectroscopy to mean temperatures during the probe pulses of 1.4 mK and 2.0 mK
with an interrogation time of 30 ms and 250 ms, respectively. Furthermore, a mean
heating rate d〈n〉/dt = 190(60) s−1 has been deduced, where 〈n〉 equals the mean
number of motional quanta in one radial harmonic well.
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Figure 2.2: Measurements of the sideband-to-carrier intensity ratio with various
delays after Doppler cooling for the two sidebands, resulting from
radial secular motion of the ion. The intensities are determined as the
excitation probability obtained with 700 interrogations using 0.5 ms
long pulses. The ratio can be used to calculate the temperature of
the ion (see text). The radial sideband frequencies differ by less than
1% and the difference in the observed ratio results presumably from
a different orientation of the motion with respect to the cooling laser.

It is possible to further reduce the initial temperature of the ion by scattering
photons on the red-detuned secular sidebands of the forbidden quadrupole transi-
tion. In this way it would be possible to transfer the ion to the motional ground
state of the trap potential, as it was first demonstrated in an experiment with a
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single Hg+ ion [82]. For the experiments described in the following, only Doppler
cooling on the 370 nm transition was used.

As a result of the residual secular motion, the ion is affected by the electric
field that constitutes the trap potential. Furthermore, uncompensated electric
stray fields EDC can displace the ion’s mean position r′, so that it does no longer
coincide with the minimum of the trap potential. According to Ref. [69] the time
averaged square of the electric radio frequency field at the position r′ is

〈E2
i (r′)〉i =

mΩ2kBTi
2Q2

a2
i + 2q2

i

2ai + q2
i

+ 8

(
qiEDC,i
2ai + q2

i

)2

. (2.11)

The first part results from the secular motion and is equal to 2.0 × 103 V2/m2

for an effective temperature Ti = 1.1 mK after Doppler cooling for the normal
trap parameters ai = 0 and qz = 0.22. For the spectroscopy on the octupole
transition with a long interrogation time of ≈250 ms and an increased kinetic
temperature, this contribution grows to 2.9 × 103 V2/m2. The second part of
Eq. 2.11 results from the displacement due to uncompensated electric fields EDC,i.
Assuming EDC < 2.4 V/m for the z-axis as discussed above, the second term
is expected to be smaller than 1.0 × 103 V2/m2. Therefore, the mean kinetic
temperature of the ion causes the larger contribution to the time averaged electric
field that induces shifts of the atomic levels via the quadratic Stark effect and thus
changes the reference transition frequencies. This shift effect is discussed in detail
in section 3.2.

In our experiments the single ion is created inside the trapping field by electron
impact ionization of atoms from an 171Yb oven. The trap setup utilized in the
experiments offers also the possibility to trap 172Yb+ ions created from a second
oven, however, this opportunity was not used. Alternatively, ytterbium ions could
be produced by photo-ionization [83, 84]. In this case, neutral Yb is resonantly
excited by laser radiation at 399 nm from the 1S0 ground state to the 1P1 level from
which light of the cooling laser at 370 nm (two-color) or a second photon at 399 nm
(one-color) finalizes ionization by promoting an electron to the continuum. This
technique is utilized in a second 171Yb+ ion trap system at PTB. In contrast to the
electron impact ionization, photo-ionization offers a significantly higher efficiency
and therefore it reduces the amount of evaporated atoms per loading. The main
advantage is that the electron source does not need to be utilized, and the related
changes of the stray electric fields due to patch charges after the loading process [85]
can be avoided.

In the trap used for the experiments described here, changes of the stray field
after loading an ion subside within days and become undetectable a few months
after the loading process as shown in Fig. 2.3. The ion is typically stored for several
months and in most cases lost accidentally during the stray field compensation,
where the trapping potential is strongly reduced. The extremely long storage
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times of single ions are related to the fact that we increase the residual gas pressure
whenever no experiments involving laser cooling are performed and that the 370 nm
laser light used for cooling should also be capable to photo dissociate YbH+ [49].
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Figure 2.3: Temporal variation of the electric field compensating voltages after
loading an ion to the trap. The different colors represent the three
voltages (Ux, Uy, Uz). The circles show the data taken in a first mea-
surement, squares data from a second period. The lines are fits to
the data and yield a time constant between 6 and 13 days.

2.2 The Basic Interrogation Sequence

All experiments on the quadrupole and on the octupole transition were carried
out by use of the so-called electron shelving technique, where the excitation to the
metastable level is detected by absence of fluorescence while probing on the cooling
transition [86]. The ion is Doppler cooled and subsequently interrogated on the
forbidden transition. Successful excitation to the long-living state is indicated by
absence of fluorescence at the beginning of the following cooling period. After state
detection, the metastable level is depleted via excitation by light from a so-called
repump laser to a short-living level, from which the ion decays back to the cooling
cycle and the sequence is repeated. Figure 2.4 illustrates the basic experimental
sequence for the spectroscopy of the quadrupole and octupole transition of 171Yb+.
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Figure 2.4: The basic experimental sequence for the spectroscopy of the clock
transitions. During the state detection period τd and the Doppler
cooling τc a microwave sideband of the cooling laser ensures efficient
cooling. During τsp the sideband is switched off to prepare the ion
in the F=0 hyperfine sublevel of the ground state. A waiting period
τw ensures the decay of the large magnetic field to obtain a small
and constant magnetic flux density during the probe period τp. The
subsequent state detection, where the intensity of the repump lasers
is strongly reduced, constitutes the beginning of the next cycle.

The interrogation with the cooling laser is separated in 3 parts: During the first
6 ms the state is detected by the electron shelving technique. During this and the
subsequent part, a microwave sideband at 14.7 GHz depletes the F = 0 hyperfine
component of the ground state and Doppler cooling is performed for 9 ms. By
turning off the sideband and continuously driving the cooling transition as well as
the 935 nm repump transition, the ion is trapped in the F = 0 ground state via
branching from the excited state with high probability within 20 ms and resulting
in a vanishing fluorescence signal. Successful preparation in the ground state is
decided upon the voltage of the low-pass filtered output signal of the discriminator
amplifier of the photomultiplier at the end of this period. The time constant of the
low-pass filter is ≈2 ms. The strong magnetic field of ≈460 µT during the cooling
period is switched off. A waiting time of 30 ms is required to ensure a sufficient
decrease of the magnetic flux density has happened. During the interrogation a
stable and weak magnetic field with a flux density of 3.58 µT is created with
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an orthogonal set of coils and mechanical shutters block the cooling and repump
light. The final state of the ion is detected at the beginning of the next cycle by
counting the number of detected photons within 6 ms. In case of spectroscopy on
the 2S1/2(F = 0)→ 2D3/2(F = 2) quadrupole transition, the same laser that closes
the cooling cycle by depleting the 2D3/2(F = 1) state, can serve as a repump laser
via non-resonant excitation of the 2D3/2(F = 2) → 3[3/2]1/2(F = 1) transition
if the light intensity is significantly increased. To avoid unwanted depletion of
the 2D3/2(F = 2) state by the 935 nm laser light during the detection period,
its intensity is strongly reduced by switching the drive power of an acousto-optic
modulator, so that only the 2D3/2(F = 1) state is depleted. Methods to efficiently
repump the ion from the long living 2F7/2 state that is either populated by collisions
or during spectroscopy on the octupole transition, will be discussed in the next
section.

2.3 Repumping from the 2F7/2 State

2.3.1 The 2F7/2 → 1[5/2]5/2 Repump Transition

The first experiments on driving the highly forbidden octupole transition at PTB
with a diode laser system [65] indicated inefficient repumping by long dwell times
of a few seconds in the long living 2F7/2 state. At that time its two hyperfine
sublevels were depopulated after excitation and state detection by light from one
external-cavity diode laser system at 639 nm [87] as indicated in Fig. 2.5. The
laser frequency was swept over two ≈200 MHz intervals separated by ≈3.6 GHz
to permit excitation from all Zeeman sublevels for both hyperfine states. After
successful excitation of the ion to the 1[5/2]5/2 state, the ion decays to either the
2D3/2 state and will be brought back to the cooling cycle by the 935 nm repump
laser, or it decays to the 2D5/2 state. In the latter case, the ion most likely returns
back to the 2F7/2 state or to the ground state. The branching ratio for the decay
to the 2F7/2 state has been measured to be 83(3)% and a lifetime of 7.2(3) ms
has been determined for the 2D5/2 state with 172Yb+ [88]. The described cycling
between metastable levels explains, why the ion remained dark for very long times.
This effect is amplified if the ion was not returned within the first cooling period,
since the switching of the strong magnetic field can result in the population of
other Zeeman sublevels of the 2F7/2(F = 3, 4) states, from where excitation to the
1[5/2]5/2 state is unlikely. The resulting dead times of the interrogation sequence
prevented an efficient laser stabilization to the octupole transition.

In a first step, two sidebands with maximum relative intensity were created on the
639 nm light by a resonant electro-optic modulator at 1.81 GHz that corresponds
to half of the hyperfine splitting of the 2F7/2 state [89]. In this way, simultaneous
excitation from both hyperfine sublevels to the 1[5/2]5/2 state is achieved. An
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Figure 2.5: The partial level scheme of 171Yb+ compares the two repump transi-
tions from the 2F7/2 state at 639 nm and 760 nm. Repumping of the
F = 4 hyperfine sublevel to F = 3 is achieved via a magnetic dipole
transition driven by a mircrowave field. The dotted lines indicate
spontaneous decay channels.

additional frequency dither on the repump laser ensures excitation from different
Zeeman components. This technique showed a clear improvement, however, in
many cases the ion did not show fluorescence within the cooling cycle after state
detection or even several cooling periods later.

To investigate the efficiency of the repump process, the frequency of the probe
laser system was tuned to be resonant with the octupole transition, the pulse area
was adjusted to excite the ion with a probability of ≈80% to the 2F7/2(F = 3) state
and the fluorescence signal was continuously recorded. In this way, an effective
lifetime of 250(25) ms was deduced for the 2F7/2. Since the repump laser is only
on during the cooling periods, this corresponds to 10 interrogation cycles.

In Ref. [88] a similar experiment was performed with 172Yb+, which does not
possess hyperfine structure. Here, the ion was simultaneously irradiated by the
cooling laser light at 370 nm, the repump laser light at 935 nm and resonantly
excited on the 2S1/2 → 2D5/2 transition at 411 nm. The 2F7/2 state was populated
by branching from the 2D5/2 state and the rate and the duration of dark events in
the detected fluorescence were compared for two different repump lasers, the one
at 639 nm and another one that excites the 2F7/2 → 3[5/2]3/2 transition at 864 nm.
The experiment clearly indicated superior efficiency for the 639 nm transition.
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Since the transition at 411 nm was resonantly excited while the dark periods were
measured, cycling between the metastable levels as described before might have
been reduced by stimulated decay, but a comparable mean dwell time of 172 ms
has been reported.

An intuitive way to understand the difference in the excitation probability on
the two repump transitions can be found if the inner electronic configuration of
4f13 that does not change for the two transitions, is neglected, and only the outer
part is taken into account. The two 6s2 valence electrons of the 2F7/2 state can be
seen as the helium-like 1S ground state. Excitation to the 1[5/2]5/2 state that has
an outer electronic configuration of 5d6s(1D) corresponds to a transition within the
singlet configuration, whereas the excitation to the 3[5/2]3/2 state with an outer
electronic configuration of 5d6s(3D) corresponds to a singlet-triplet transition and
thus a lower excitation probability.

2.3.2 The 2F7/2 → 1[3/2]3/2 Repump Transition

It should be noted that due to the fact that the ground state and the 2F7/2 state
are connected via an electric octupole transition, repumping can not be achieved
by dipole excitation and subsequent dipole decay but demands e.g. an electric
quadrupole excitation and subsequent dipole decay. Together with the informa-
tion described above, strict requirements for an efficient repump scheme can be
concluded. The intermediate state should be a level that has a singlet like con-
figuration, offers direct dipole decay to the ground state and can be excited via
an electronic-quadrupole transition. Furthermore, it is convenient if the transition
can be driven with a diode laser setup. All these requirements are fulfilled if the
1[3/2]3/2 state with an outer electronic configuration of 5d6s(1D) is chosen. In
our experiment the required laser light intensity is provided by an external-cavity
diode laser system at 760 nm and its frequency is long-term stabilized to the length
of a 2 cm thick glass etalon. A fast frequency dither enables excitation from all
Zeeman sublevels and a discriminator signal for stabilization purposes is generated
by lock-in detection of light reflected from the etalon.

The first experiments with the new repumping scheme indicated a significantly
improved repumping compared to the use of the 639 nm laser. 3 mW of laser
radiation at 760 nm are focused to ≈50 µm at trap center and can be switched by
an acousto-optic modulator and a mechanical shutter. With this laser, the resonant
frequency of the 2F7/2(F = 3) → 1[3/2]3/2(F = 1) transition was determined to
be 394.4250(3) THz and 394.4338(3) THz for the 2F7/2(F = 3) → 1[3/2]3/2(F =
2) transition. The uncertainty in the frequency measurements results from the
accuracy of the employed wavemeter. The corresponding hyperfine splitting of
8.8(4) GHz of the 1[3/2]3/2 state is significantly larger than that of other levels
with the same electronic configuration at a similar energy.
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Since the F = 4 hyperfine level of the 2F7/2 state is only populated approximately
once per hour by collisions, no fast repumping process is required to deplete the
state. After detection of dark periods longer than 10 s that indicate population of
the F = 4 state, microwave radiation at 3.6 GHz drives the hyperfine transition
to the F = 3 state from where the ion is returned to the cooling cycle. In this
way, no direct repumping from the F = 4 component with light from the 760 nm
laser system is required. The polarization and frequency of the repump light, as
well as the spatial overlap with the ion in the trap are optimized by minimizing
the length of dark periods, when the octupole transition is driven with a high Rabi
frequency. Under such conditions, the repump efficiency was tested and Fig. 2.6
shows a histogram of the duration of the dark period after the beginning of the
cooling period. This clearly shows the significantly higher efficiency of the new
repumping scheme. From the data shown in Fig. 2.6 a residual lifetime in the 2F7/2

state of 1.6 ms can be inferred, since the lifetime of the 1[3/2]3/2 state of 28.6 ns [90]
is negligible.

2.4 Probe Laser System

The first laser system to excite the highly forbidden octupole transition at PTB
is described in detail in Ref. [65]. This system was used to realize the first pre-
cise transition frequency measurement at PTB (see section 5.1) and to measure
parts of the atomic parameters discussed in chapter 3. In this laser system the
frequency of a commercially available laser diode at 934 nm was stabilized to the
length of a 75 mm long reference cavity made of ultra low expansion glass us-
ing the Pound-Drever-Hall locking technique [16]. Phase modulation at 13.5 MHz
for the discriminator signal was created with an electro-optical modulator (EOM)
made of a high-resistivity potassium titanyl phosphate (KTP) crystal with facets
cut under Brewster’s angle. The use of KTP results in a low sensitivity to tem-
perature fluctuations, so that an active temperature stabilization to avoid phase
offset drifts is not required. The reference cavity was mounted horizontally inside
a vacuum chamber surrounded by a massive copper cylinder, which provided a
homogeneous temperature distribution. The temperature of this cylinder and the
vacuum chamber were actively temperature stabilized by a two-stage servo system.
The vacuum chamber, the mode matching optics, the EOM and an optical isolator
were installed on a commercially available passive vibration isolation platform. A
few 10 µW of laser radiation from the diode laser system were guided by a 5 m long
single-mode polarization-maintaining fiber to the platform. To avoid instabilities
due to the fiber, the polarization of the light was carefully aligned to the fiber using
a quarter and a half waveplate. In a frequency ratio measurement together with
the ultra-stable laser that is employed to drive the quadrupole transition [85], a
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Figure 2.6: Histogram of the fluorescence off times after the beginning of the first
cooling period subsequent to the probe pulse period. The time is
measured in units of the duration of the cooling period (DCP) that
is equal to 35 ms. The dotted red line indicates the time, when the
repump laser at 760 nm is switched on. Therefore, for events with
shorter duration, the 2F7/2 state was not successfully populated. The
number of events at 1 DCP is the summation of all events where the
fluorescence did not return within one cooling period. If repumping
was unsuccessful, stimulated decay during the subsequent probe pe-
riod is avoided by not applying probe pulses until the fluorescence
reoccurs.

fractional frequency instability of less than 2× 10−15 at 1 s of averaging time has
been observed, which is the combined instability of both lasers.

To achieve sufficient laser power for frequency doubling and exciting the highly
forbidden octupole transition, the output light of the stabilized master laser was
used to injection lock a 935 nm laser diode with a maximum output power of
300 mW. A small part of the slave laser output was brought to the frequency comb
generator. The main part was coupled to an enhancement cavity for frequency dou-
bling in a 6 mm long KNbO3 crystal cut for angle-tuned phase matching at room
temperature. The length of the cavity was stabilized by the Hänsch-Couillaud
method [91] with a two stage servo system acting on piezoelectric transducers
mounted under two mirrors of the enhancement cavity. The achieved bandwidth
of the frequency lock of about 50 kHz sufficiently suppressed acoustic perturbations,
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however, residual fast-frequency noise of the diode laser lead to relative fluctua-
tions of the optical power of the frequency doubled light of about 10% for Fourier
frequencies above 50 kHz. Under optimal conditions, 15 mW of 467 nm light were
available and sent as a free beam to the second laser table on which the ion trap
was installed. Using the old repump scheme, it was possible to excite the octupole
transition by 90 ms long pulses and record spectra of the octupole transition with a
maximum excitation probability of about 65% together with a minimum linewidth
of 13 Hz as the full width at half maximum of a fitted Lorentzian profile, which
corresponds to an essentially Fourier-limited resolution [65].

In a first step to improve the achievable resolution, an injection locked blue-
emitting laser diode was installed close to the ion trap, so that fast intensity
fluctuations are minimized. Significant path length fluctuations have been ob-
served between the optical table on which the probe laser system was installed
and the table on which the slave laser and the ion trap were mounted. To sup-
press such fluctuations, the free space link was replaced by a 5 m long single-mode
polarization-maintaining optical fiber. Most of the optical path between the slave
laser and the ion trap were enclosed with aluminum tubes to prevent air turbulence
that can cause significant pointing fluctuations. Due to the high maximum output
power of the slave laser of 20 mW, up to 12 mW were focused to a beam waist
diameter of ≈40 µm at trap center. In combination with the new repump laser
that prevents long dwell times in the 2F7/2 state, the setup allowed us to observe
the octupole transition with a Fourier-limited linewidth of 6.6 Hz by excitation
with 120 ms long rectangular pulses as presented in Fig. 2.7. The necessary power
to achieve a pulse area close to π was approximately 0.5 mW. The obtained quality
factor of the atomic resonance of 9.7×1013 was limited by the frequency instability
of the probe laser system, which was in turn limited by the thermal noise of the
employed reference cavity [92].

It should be noted that the observed resonance was frequency shifted due to
the light shift of the probe laser system by about 28 Hz. Due to the fact that
this shift effect scales linearly with the intensity but the pulse area scales with
the square-root of the intensity, longer probe pulse durations should reduce the
shift effect significantly. The effect and techniques to cancel it by extrapolation are
discussed in detail in subsection 3.2.3 and 3.2.4. Another advantage of extended
interrogation times are improved quality factors of the resonance and hence an
improved frequency instability of the optical frequency standard.

2.4.1 The new reference cavity

Different ideas to reduce the Brownian thermomechanical noise of the cavity mir-
rors and the spacer that limits the short-term frequency stability have been inves-
tigated. This includes an increase in the length of the cavity spacer, which results
in a bigger beam diameter on the cavity mirrors [17,93], the use of materials with
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Figure 2.7: Excitation spectrum of the 2S1/2(F = 0) → 2F7/2(F = 3) transition
obtained with a probe pulse duration of 120 ms. For each laser de-
tuning step, 20 measurement cycles were performed. The solid line
shows the theoretical line shape for a π-pulse excitation.

higher quality factor as mirror substrates [18,94] and as cavity spacers [18,95,96].
Another way to reduce this effect is to operate at cryogenic temperatures, how-
ever, significant acoustic perturbations might be produced by the cooling system.
Additionally, the experimental complexity increases significantly if cryogenic tem-
peratures are required.

We use a 100 mm long cavity spacer made of Asahi AZ glass that offers a
vanishing coefficient of thermal expansion (CTE) at about 22 ◦C in combination
with optically contacted mirrors with fused silica substrate that should reduce the
thermomechenical noise. The very different thermal expansion of fused silica and
the Asahi AZ glass spacer results in a significant decrease of the zero crossing of
the CTE. To compensate this effect, rings made of Corning’s ultra-low expansion
glass are optically contacted on the back of the mirrors [97]. With the help of
a finite element simulation T (CTE = 0) = 17 ◦C for our combination has been
predicted [98]. The cavity is mounted on 4 support rods, at positions that minimize
acceleration sensitivity [98, 99]. 2 support rods are installed on flexure mounts to
avoid an overdetermined system and thus improve the vibration insensitivity in the
corresponding optical plane [100]. A photograph of the mounted reference cavity
is presented in Fig. 2.8.

The fact that the reference cavity is operated at a temperature where the thermal
expansion coefficient is close to zero reduces the requirements on the temperature
control. The setup consists of an aluminum cylinder surrounding the cavity as a
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Figure 2.8: The new reference cavity of the octupole probe laser system installed
on a mount that reduces its sensitivity against vibrations.

passive heat shield in the vacuum and an aluminum box that contains the vacuum
chamber with the cavity. The temperature of the box is controlled with an inte-
grating servo system via 4 Peltier elements installed between the mounts of the
box and the optical breadboard of the vibration isolation platform. To improve
temperature isolation of the box from the environment, it is enclosed by few cen-
timeter thick extruded polystyrene foam. In this way, an averaged electric power
of only 50 mW is necessary to operate the chamber around 17 ◦C. A change of the
reference value of the temperature controller leads to a change of the frequency of
the probe laser that is stabilized to the length of the cavity with a time constant
of 13 h.

For the first tests of the new reference cavity, a few 100 µW of the laser light from
the old 934 nm probe laser system [65] were frequency shifted to match with one
of the fundamental cavity resonances. Similar to the first setup, a discriminator
signal is created with the Pound-Drever-Hall technique [16] and used to servo the
frequency offset with an accousto-optic modulator. The high frequency stability
of the probe laser facilitates optimizing mode matching of the laser beam to the
high-finesse cavity. A coupling efficiency of 81% has been measured, the finesse
was determined to be 500,000 and about 30% of the light in front of the cavity is
transmitted on resonance.

To determine the thermal expansion of the cavity as a function of its tempera-
ture, the temperature of the aluminum box was adjusted and the frequency of the
light stabilized to one TEM00 resonance was measured against a H-maser at our
frequency comb generator. From the thermally induced frequency variation, the
corresponding length variation ∆L was inferred. The result of this measurement is
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shown in Fig. 2.9. All values are corrected for the linear creep of the cavity length.
The observed dependence clearly follows the expected quadratic dependence with
a sensitivity of 1.0× 10−9 K2. From the results obtained while increasing the tem-
perature, a minimum at 16.96 ◦C was determined. Although the frequency and
the temperature can be measured with high precision, an uncertainty of 0.08 K
is expected from imperfection of the isothermal creep correction and a residual
variation temperature, since no temperature sensor is installed close to the cavity.
Thus a sufficient long waiting time was required to ensure that the cavity was in
thermal equilibrium with the housing. After adjusting the temperature controller
to the minimum of the quadratic fit to the obtained data, the frequency of the
probe laser was found to be slightly larger than expected. This might be related
with the fact that the minimum was reached by reducing temperature, whereas
T(CTE=0) has been determined while increasing. Repeated measurements gave
the same T (CTE = 0), but also a small frequency difference at the minimum tem-
perature depending on the process that was used to reach the point, which might
be understood as a small hysteresis effect of the material.
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Figure 2.9: Relative length of the new reference cavity as a function of its tem-
perature. The values are inferred from frequency measurements of
the laser system that uses the cavity as the reference. All values
are corrected for a linear drift of the cavity length. The black sym-
bols represent data obtained while increasing the temperature and
the solid line is a quadratic fit. The gray square was measured after
recooling the cavity to the temperature at the center of the fit.
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Another effect that can induce significant fluctuations of the probe laser fre-
quency results from a variation of the amount of light that circulates in the cavity
and heats the mirrors. A sensitivity of 50 Hz/µW of the probe laser frequency on
the light power sent to the cavity has been found. After stepping up the optical
power, the frequency changes within a few seconds, long term variation due to heat
transfer to the mirror substrate and the cavity spacer do not lead to significant
frequency changes, because of the minimized sensitivity against temperature varia-
tions. To avoid possible frequency instability due to power variations, we use only
10 µW of optical power and actively stabilize the amount of light in the cavity.
Therefore we servo the power of the AOM before the cavity to obtain a constant
signal from a photodetector that monitors the transmitted light. The bandwidth
of this loop system is ≈1 kHz, limited by the low-pass characteristic of the optical
cavity.

To test the sensitivity of the reference cavity to vibrations, the cavity setup on
the passive vibration isolation platform was set into oscillations with an ampli-
tude of ≈0.5 cm and a frequency close to the mechanical resonance of the system
of ≈0.5 Hz. The acceleration was measured with a micro-electro-mechanical sys-
tem based accelerometer whose output signal was low-pass filtered to optimize the
measurement contrast. The simultaneous output for 3 different axis of motion
is used to verify that an individual axis of motion is driven. The induced fre-
quency shift was measured against the stable probe laser system that excites the
quadrupole transition using the fiber-laser based frequency comb generator. From
the measurement depicted in Fig. 2.10, the fractional frequency sensitivity against
accelerations were determined to be 3.6(4)× 10−12m−1s2 perpendicular to the op-
tical path, 5.9(5)× 10−12m−1s2 along the optical path and 11.1(6)× 10−12m−1s2 if
the cavity is accelerated vertically. The uncertainty in the measurements results
from the limited resolution of the acceleration sensor and the residual accelera-
tion in other directions. The measured sensitivities are comparable to the results
obtained in Ref. [99] based on a similar design. Due to the low sensitivity in com-
bination with the low level of seismic noise in our laboratory and the suppression
by the vibration isolation platform [101], no related limitations of the short-term
frequency instability are expected.

In order to determine the short-term frequency instability of the new probe laser
system its frequency needs to be compared to other frequency references. For
short averaging intervals an infrared laser at 1.5 µm stabilized to a silicon single-
crystal optical cavity can serve as a reference. The thermal noise of the silicon
cavity leads to an estimated flicker floor of the fractional frequency instability
of σy = 7 × 10−17 [18]. In a comparison with other lasers, a fractional short-term
stability at 1 s of better than 2×10−16 has been demonstrated [18]. In a comparison
with the fiber-laser based frequency comb generator located in our building, the
instability of the laser referencing the silicon cavity is expected to be increased
due to residual noise from the 200 m fiber link between the buildings and the
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Figure 2.10: Measured frequency offset (black line) of the probe laser system
versus the probe laser for the quadrupole transition resulting from
accelerations of the reference cavity. The cavity is accelerated on
the vibration insensitive platform along the optical path (blue line)
and perpendicular to this direction (red line) as well as vertically
(green line). The acceleration was measured with a micro-electro-
mechanical system based accelerometer with a sensitivity of about
40 mV m−1s2.

length fluctuations of short pieces of unstabilized fibers in the comb setup. In
Fig. 2.11 the observed fractional instability of the frequency ratio of the new probe
laser system and the laser stabilized to the silicon cavity is shown. A significant
improvement over the fractional frequency instability of the old probe laser setup
of about 2× 10−15 at 1 s [65] resulting from the use of fused-silica mirrors and the
longer spacer is observed. The thermomechanical noise floor of the new reference
cavity has been calculated according to Ref. [92] to be 4.1× 10−16. The measured
combined fractional frequency instability of 5 × 10−16 shows that the achieved
stability of the new probe laser is very close to its fundamental limit.

Due to the improved short-term stability of the probe laser system, significantly
longer coherent interrogations are possible. Figure 2.12 shows a spectrum of the
octupole transition with a Fourier-limited linewidth of 2.4 Hz obtained by excita-
tion with 335 ms long rectangular probe pulses. The necessary power to achieve a
pulse area close to π was approximately 60 µW. The obtained quality factor of the
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Figure 2.11: The blue dots show the relative Allan deviation of the frequency
ratio of the octupole probe laser system referencing the new cavity
and a fiber laser at 1.5 µm locked to a silicon single-crystal cavity
[18]. The line connecting the points is a guide to the eye. The green
line shows the calculated thermal noise limit of the new cavity and
the red dashed line indicates the expected frequency instability of
the 1.5 µm laser at the frequency comb generator in our laboratory
(see text).

atomic resonance is 2.7 × 1014. The center of the resonance is shifted by ≈4 Hz
from the unperturbed transition frequency due to the light shift.

To investigate the frequency instability for longer averaging intervals, the fre-
quency of the stabilized laser is measured using the frequency comb generator
versus an H-maser. The H-maser has a very small long-term frequency drift and is
therefore an appropriate reference. In this way, the frequency drift of the new probe
laser system was measured for ≈10 h and the result is presented in Fig. 2.13. The
data was recorded in April 2011 and a predominately linear drift of the probe laser
frequency with a rate of 46 mHz/s has been observed. The non-linear residuals are
smaller than 4 mHz/s on a timescale of several hundreds of seconds resulting from
changes of the drift rate of less than 5× 10−6 Hz/s2. The magnitude of the linear
drift rate has constantly decreased, and reached a value of 22 mHz/s in Dec 2013.
Residual variations are most likely related with a residual temperature sensitivity
of the system, but should not degrade the systematic uncertainty of the optical
frequency standard.
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Figure 2.12: Excitation spectrum of the 2S1/2(F = 0)→ 2F7/2(F = 3) transition
obtained with a probe pulse duration of 335 ms. For each laser
detuning step, 20 measurement cycles were performed. The solid
line shows the theoretical line shape for a π-pulse excitation.

2.5 Laser Stabilization to forbidden transitions

In an optical frequency standard, the frequency of a probe laser with a sufficiently
low short-term instability is stabilized to a narrow optical transition. The most
widely used way to generate the required discriminator signal is to probe the atomic
transition with alternating frequency detunings (νL ± δm) that correspond to half
of the resonance width. With this information, the central frequency is steered to
equalize the excitation probability in the two cases. This is also the basic idea of the
algorithm used in the digital servo system realized in our experiment and described
in detail in Refs. [85, 102]. The closed-loop control corrects the frequency of the
probe laser system νL by changing the frequency of the RF signal of the AOM in
front of the high-finesse cavity. After 2z valid interrogations of the ion, a frequency
correction fc is calculated from the number of successful excitations with negative
n− and positive n+ frequency detuning δm as

fc = g · δm
n+ − n−

z
. (2.12)

The coefficient g defines the gain of the loop system and has been set close to 0.1.
Since a two level system realized with a single ion provides the frequency reference,
the probe laser has a sufficiently short-term stability and the interrogation time
mainly determines the cycle time, the so-called quantum-projection noise [15] is
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Figure 2.13: The red line shows the frequency of the probe laser system stabilized
to the new reference cavity as a function of time. A linear fit yields
a drift rate of 46 mHz/s and the residual nonlinear drift causes
variations smaller than ±5 Hz over 10 h related with changes of
the drift rate of less than 5 × 10−6 Hz s−2. The measurement was
performed in April 2011, a few months after mounting the cavity in
its vacuum chamber.

the dominant contribution to the instability of the frequency standard for long
averaging times. Short detection, cooling and state preparation periods result in
small dead times and by that ensure a negligible instability contribution due to the
so-called Dick effect [103]. An important feature of the laser frequency loop system
used in our experiment is the fact that it realizes a second-order integrating servo
i.e. an additional digital loop system generates an error signal similar to Eq. 2.12
on a timescale of 10 s and steers a frequency drift correction that cancels the
dominantly linear frequency drift caused by the relaxation of the optical reference
cavity. In this way, a significant frequency offset between the atomic resonance and
the constantly drifting probe laser frequency is avoided. A residual servo error is
expected only from the limited gain of the loop system to compensate frequency
drift rate changes of the probe laser system [28]. The corresponding uncertainty
is presently only a minor contribution to the total systematic uncertainty of the
quadrupole and octupole optical frequency standard.
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Since the loop-system that steers the frequency of the probe laser system is
realized in a fully digital fashion with computer control, it is possible to modify
the servo system, so that not only one control-loop stabilizes the laser frequency
to the atomic resonance, but two independent servo systems act alternately. In
combination with switching between two sets of parameters, the related frequency
difference can be measured without an external reference. The statistical uncer-
tainty of such a measurement results only from quantum projection noise and a
reduced systematic uncertainty of the measurement can be obtained, because most
interfering frequency shift effects appear equally for both configurations. To ensure
an efficient common mode rejection, the active servo system and the respective set
of parameters are alternated after 4 interrogations [85]. In this way it is possible
to measure small systematic frequency shifts as described in chapter 3. This tech-
nique is also an essential element of the light shift cancellation technique described
in subsection 3.2.4 and the controlled “hyper-Ramsey” scheme of section 4.3. To
ensure that the instability of the probe laser system is not degraded by switching
it’s frequency to the value of the active state, the probe laser frequency, as mea-
sured at the frequency comb, is adjusted only for one of the states. The frequency
offset that appears in the other mode, is balanced by controlling the frequency of
the acousto-optic modulator that is used to create the probe laser pulses.



3 Frequency Shift Effects of the
Yb+ Clock Transitions

In this chapter shift effects of the 2S1/2(F = 0)→ 2D3/2(F = 2) and the 2S1/2(F =
0) → 2F7/2(F = 3) transition of 171Yb+ due to external fields will be discussed.
Additionally this chapter treats effects that introduce offsets of the observed tran-
sition frequency without affecting the atomic structure.

Most of the shift effects discussed in this chapter have been experimentally inves-
tigated with an alternating servo system that has been introduced in section 2.5.
The first section of this chapter will discuss the Doppler shift, resulting from resid-
ual motion of the trapped ion and the next section deals with the quadratic Stark
effect and its appearance in very different frequency regimes. Afterwards, shift
effects due to the interaction of the quadrupole moment of the excited states with
electric field gradients are investigated. Zeeman shifts resulting from the interac-
tion with magnetic fields and shifts due to collisions with background gas molecules
are subsequently addressed, before shifts of the observed transition frequency are
investigated, that are not resulting from shifts of the atomic levels, but are induced
by imperfections of the measurement process. Finally, uncertainty budgets of the
optical frequency standards based on the quadrupole and the octupole transition
are compared.

3.1 Doppler Shift

The motion of the ion in the trap relative to the laboratory frame causes a difference
between the observed probe laser frequency in the rest frame of the ion ν′ and in
the laboratory frame ν:

ν′
ν

= γ
(

1−
v‖
c

)
, γ =

1√
1− v2/c2

. (3.1)

Here c denotes the speed of light, v the absolute value of the ion’s velocity with
respect to the laboratory frame and v‖ is the speed along the wave vector of the
probe laser beam. During the operation as a frequency standard, a digital servo
system ensures that the probe laser frequency in the rest frame of the ion ν′ equals

34
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the atomic transition frequency ν0, so that a shifted frequency is observed in the
laboratory frame. The so-called Doppler shift can be written as

δν

ν0

=
ν − ν0

ν0

=
(
γ
(

1−
v‖
c

))−1

− 1

=
〈v‖〉
c
− 〈v

2〉
2c2

+
〈v‖〉2

2c2
+O

(
v3

c3

)
. (3.2)

The angle-brackets denote the time average over the duration of the probe pulse,
that is usually several 10 ms long. The first term describes the first-order Doppler
shift. The time average of the fast oscillating micromotion and secular motion,
that results in observable sidebands of the spectrum and mainly determines v‖
does not lead to a net first-order Doppler shift (〈v‖〉/c). Here, only changes of the
ion’s mean position along the wave vector during the entire measurement process
or such changes of the position of the ion, that appear simultaneously with each
interrogation, are important. These shifts are in detail discussed in sections 3.6 and
3.8 of this chapter. The second term of (3.2) is a consequence of Einstein’s special
relativity theory [104], and is called the second-order Doppler shift or transversal
Doppler effect, since it is also observable for velocities perpendicular to the wave
vector. In 1938 Ives and Stilwell were able to verify an additional quadratic shift
as the mean shift of the frequencies of radiation from moving hydrogen atoms ob-
served at 0◦ and 180◦ relative to their velocity [105]. Using Mößbauer spectroscopy
the shift effect was measured for rotating systems [106, 107], but the first direct
observation of the frequency shift perpendicular to the direction of motion was
achieved in 1979 by Hasselkamp et al. [108].

The secular motion and the micromotion are both contributing to the second-
order Doppler shift, but show different dependence due to their individual character
of motion. As discussed in chapter 2, the secular motion is thermal motion that
results from the temperature of the ion in the trap potential and can be assumed
to be equal in all three directions, see Eq. 2.11, whereas the micromotion is driven
motion that results from acceleration through the radio frequency trap field. Ac-
cording to Ref. [69], the second-order Doppler shift due to secular motion is

δνSM
ν0

= −3
kBTD
2mc2

. (3.3)

Similar to the time averaged square of the electric radio-frequency field described
in Eq. 2.11, the second-order Doppler shift due to micromotion consists of two
parts and is equal to [69]

δνMM

ν0

≈ − 1

mc2

∑
i=x,y,z

kBTi(ai + q2
i )

2(2ai + q2
i )

+
4

m

(
QqiEDC,i

(2ai + q2
i )Ω

)2

. (3.4)
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The first part results from non-vanishing amplitude of the secular motion after
Doppler cooling. It is equal to the shift induced by the secular motion under normal
operation conditions, as expected from a conservation of energy argument [109].
The second part of Eq. 3.4 is a consequence of the excess micromotion that occurs if
the ion is displaced from the minimum of the trap potential e.g. by uncompensated
stray electric fields. As discussed above, for the z-axis a remaining field of less than
2.4 V/m is expected, which would cause a maximum fractional frequency shift of
−1.7× 10−19.

Combing the two contributions of thermally induced second-order Doppler shift
with that due to uncompensated stray fields for all three directions, one finds
−2.8(1.7) × 10−18 for spectroscopy of the quadrupole transition and −3.7(2.1) ×
10−18 for operation of the octupole frequency standard with an interrogation time
of 250 ms. The uncertainty results from the uncertainty of the ion temperature,
that is assumed to be 50%, and from the total possible shift due to uncompensated
stray electric fields.

It should be noted that a significant additional micromotion and thus an in-
creased second-order Doppler shift can be induced by a phase difference of non-
vanishing RF voltages on the two end caps of the trap in our experiment. Unfor-
tunately, the trap geometry does not allow for optical access from three mutually
orthogonal directions, which would be required to measure motion of the ion in
all directions, however, for the accessible direction the observed micromotion cor-
respond to the level expected from the observed secular motion i.e. the residual
temperature of the ion in the trap.

3.2 Quadratic Stark Shift

The quadratic Stark shift is a very basic phenomenon that results from the inter-
action of external electric fields with the induced dipole moment of the atom. This
shift effect appears with different names for the very different frequency ranges
of the disturbing electric field, but is based on the same effect: the shift can be
induced by quasi-constant electric fields or appear as light shift, which is the Stark
shift induced by the electric field of the light. This section starts with a short
introduction to the theory of the Stark shift and continues with a calculation of
polarizabilities and a comparison to experimental results. Afterwards, the dom-
inant frequency shift effect in the case of single-pulse excitation of the octupole
transition, the dynamic Stark shift induced by the probe laser light, is described.
This is followed by the related blackbody radiation shift, which is the dynamic
Stark shift induced by the thermal radiation. Connected with this, the differential
electric polarizability of the octupole transition is measured, and at the end of this
section the frequency shifts due to the thermal radiation and residual interaction
with the trap field are calculated.
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3.2.1 Calculation of the Differential Polarizability

The theory of the quadratic Stark shift in free atoms has been described in detail
by Angel and Sander in Ref. [110], a short introduction to the calculation can be
found in [111,112]. The Stark Hamiltonian

HS = −p · E (3.5)

where p is the electric dipole moment operator and E the electric field, is usually
only a very small contribution to the complete Hamiltonian of the atom, suggesting
a perturbative treatment. According to Ref. [110] the quadratic Stark shift using
second-order perturbation theory in the (IJ) coupling scheme of a state |γJFmF 〉
is calculated to be

∆WQS(γ, J, F,mF ,E) = − (2αS(γ, J) + g(F,mF , β)αT (γ, J, F ))
|E|2

4
(3.6)

g(F,mF , β) =
3m2

F − F (F + 1)

F (2F − 1)
(3 cos2 β − 1). (3.7)

The shift scales with the square of the absolute value of the electric field E and
with two parameters, the scalar αS and the tensor polarizability αT . The latter
results in an angular dependence of the shift on the angle β between the electric
field vector and the quantization axis defined by the orientation of the magnetic
field that induces the splitting of magnetic sublevels. The dependence of the tensor
polarizability αT (γ, J, F ) on the hyperfine quantum number F and the nuclear spin
I is:

αT (γ, J, F ) = (−1)I+J+F

[
F (2F − 1)(2F + 1)(2J + 3)(2J + 1)(J + 1)

(2F + 3)(F + 1)J(2J − 1)

]1/2

×
{
J F I
J F 2

}
αT (γ, J). (3.8)

The brackets denote the 6J symbol, that is defined as a sum over products of
four 3J symbols, which in turn are related with Clebsch-Gordon coefficients. Both
parts of the polarizability can be calculated from oscillator strengths fγ,J,γ′,J ′ and
the energy difference of the two related states (W (γ′, J ′)−W (γ, J)) [112].

αS(γ, J) =
4πε0e

2~2

me

∑
γ,′J ′ 6=γ,J

fγ,J,γ′,J ′

(W (γ′, J ′)−W (γ, J))2
, (3.9)

αT (γ, J) =
4πε0e

2~2

me

[
30J(2J − 1)(2J + 1)

(2J + 3)(J + 1)

]1/2

(3.10)

×
∑

γ,′J ′ 6=γ,J

(−1)J−J
′
{

1 1 2
J J J ′

}
fγ,J,γ′,J ′

(W (γ′, J ′)−W (γ, J))2
,
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where ε0 denotes the vacuum permittivity, e is the elementary charge, me labels
the mass of an electron and ~ is the reduced Planck constant.

The necessary set of oscillator strengths was for instance calculated in Ref. [60]
for the Yb+ ion. The resulting polarizabilities for the relevant energy levels are
presented in table 3.1. The frequency shift of the reference transitions results from
the differential shift ∆W = ∆We − ∆Wg related with the polarizabilities of the
excited state αe and the ground state αg. It is straight forward to use the differential
polarizability ∆α = αe − αg for shifts of the reference transitions. Using the
values for the individual polarizability, the differential static scalar polarizability
for the quadrupole transition is 5.29×10−40Jm2V−2 and for the octupole transition
1.86× 10−40Jm2V−2.

Table 3.1: Calculated static scalar αS and tensor αT electric polarizabilities for
the states relevant for the two clock transitions of 171Yb+. All values
are given in 10−40Jm2V−2.

f values from [60] corrected f values [112]

αS(2S1/2) 8.9 9.6

αS(2D3/2) 14.2 15.2

αT (2D3/2, F = 2) -11.5 -12.2

αS(2F7/2) 10.8 10.8

αT (2F7/2, F = 3) -0.15 -0.02

As proposed in Ref. [112] by S. Lea, the theoretical oscillator strengths fc from
Ref. [60] can be corrected using the ratio of experimentally determined lifetimes
τe and those resulting from the calculation τc according to fi = fc(τc/τe). The
calculated static polarizabilities based on the corrected oscillator strengths are
presented in table 3.1. In most of the cases relevant for the calculation of αS(2F7/2),
fi agrees well with fc. For the 2S1/2 and 2D3/2 state, however, the theoretical
lifetimes of the two most important states (2P3/2 and 2P1/2) in the calculation
of the static scalar polarizability of the 2S1/2 state are about 10% larger than
the experimental value. This might be related with the fact, that in the latter
case, transitions between states with a filled 4f shell and the opened 4f13 shell are
important. The scalar polarizability of the 2F7/2 state appears largely unaffected by
using oscillator strengths based on lifetime corrections, whereas the polarizability of
the 2S1/2 and 2D3/2 states increases by≈7%. Since the two values contribute equally
to the differential polarizability of the quadrupole transition, its value remains
constant, whereas a significant change is observable for the octupole transition.

The remarkable resemblance of the polarizabilities of the upper and lower state
of the octupole transition is surprising: by neglecting the 4f shell a significant
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difference in the polarizabilities of the 2F7/2 : 6s2 and the 2S1/2 : 6s state would be
expected, so that an important effect has to result from the 4f electrons. There-
fore, a significantly improved theoretical description of the differential polarizability
requires a treatment of all 15 valence electrons with high accuracy. Possible im-
provements might be expected from calculations similar to those performed for
isoelectric elements in Ref. [113].

3.2.2 Measurement of the Static Electric Polarizability

As discussed above, the calculated polarizabilities have significant uncertainties
resulting from limitations in the calculation of the oscillator strength between
states within the complex electronic structure of Yb+. Since the theoretical de-
scription can not provide the necessary accuracy, an experimental investigation
of the differential polarizability is required. In Ref. [70] a measurement of ∆αdc

s

of the quadrupole transition was performed by recording the induced frequency
shift while changing the mean position of the ion from the center of the trap field
along the trap axis. If the field is well characterized, the induced second-order
Doppler shift can be calculated and removed. The remaining frequency offset
results from the quadratic Stark shift induced by the quasi-static electric field.
By measuring the frequency shift for two different orientations of the magnetic
field, that defines the quantization axis, the static differential polarizabilities of
the 2S1/2(F = 0) −2 D3/2(F = 2,mF = 0) transition were experimentally deter-
mined to be ∆αdc

s = 6.9(1.4)×10−40 Jm2V−2 and αdc
T = 13.6(2.2)×10−40 Jm2V−2.

In the case of Rabi spectroscopy on the octupole transition, the displacement
within the intensity profile of the probe laser would cause an unacceptably large
change of the light shift and interfere with the effect of the quasi-static electric
field. To avoid this problem, a fraction of the ac trap drive voltage was applied
with a phase shift of π/2 to one of the end caps of the trap. The additional
field induces micromotion of the ion but does not lead to a constant displacement,
therefore the light shift should stay constant if the additional RF field is applied.
As discussed in chapter 2, the electric field along the trap axis at the position of
the ion resulting from a voltage applied to one endcap electrode can be calculated
as 0.80 · U/2z0, where 2z0 = 0.987 mm is the design goal of the distance between
the electrodes. From the measured frequency shift for different orientations of the
quantization axis, ∆αdcs = 1.3(6)×10−40 JV−2m2 was found and it turned out that
the tensor polarizability αdct is approximately one order of magnitude smaller than
αdcs . The significant uncertainty in αdcs results from the statistical uncertainty of
the measurements and the actual electric field strength acting on the ion which is
also used to correct for the quadratic Doppler effect.



40 3 Frequency Shift Effects of the Yb+ Clock Transitions

3.2.3 Dynamic Electric Polarizability – Light Shift

If the perturbing electric field is not static, but oscillates at an angular frequency ωl,
the denominators in Eq. 3.9 and 3.11 need to be changed to (W (γ′, J ′)−W (γ, J))2−
~2ω2

l . The resulting dynamic quadratic Stark effect is the so-called light shift and
increases significantly if the frequency of the perturbing light comes close to the
resonance of dipole transitions of the involved levels. To avoid shifts by the nearly
resonant light from the cooling laser and the repump lasers, mechanical shutters
block the laser beams during the probe pulse period. It should be noted that even
very small fractions of the intensity during the cooling period e.g. scattered light
can cause significant shifts of the reference transition. The matrix elements for the
reference transitions are several orders of magnitude smaller than those of dipole
transitions and do not contribute. The light shift induced by the probe laser light
is caused by off-resonant coupling. Due to the small intensity of the probe laser
light, the shift effect present during spectroscopy on the quadrupole transition
is very small (≈3 × 10−19) [80]. For the octupole transition, however, the huge
intensity required for excitation makes the light shift the dominant shift effect for
Rabi spectroscopy. But also the thermal radiation from the environment affects
the ion and leads to a frequency shift, which is discussed in detail in subsection
3.2.4.

3.2.4 Light Shift Cancellation via Extrapolation

As discussed above, the light shift of the probe laser field leads to a significant
frequency shift of the octupole transition. Generally, one expects that the light
shift contains both scalar and tensor contributions and that the shift ∆νLS caused
by a π-pulse with a Fourier-limited spectral width ∆f is proportional to (∆f)2.
This is a direct consequence of the fact that ∆f is proportional to the inverse
probe pulse duration, which is proportional to the Rabi frequency and in turn
to the required electric field under the assumption of a constant pulse area. By
recording excitation spectra of the octupole transition for various probe pulse areas
and durations ∆ν = 0.65(5) Hz−1(∆f)2 is found if the polarization and magnetic
field orientation are chosen to maximize the excitation probability.

In previous investigations [114] and in the first experiments with the octupole
transition at PTB, the absolute frequency of the octupole transition was deter-
mined by measuring the frequency of the center of spectra at different probe light
powers and then linearly extrapolating to zero power to correct for the light shift.
Figure 3.1 shows such a measurement and the uncertainty of the frequency mea-
surement is mostly determined by the uncertainty of the linear fit, which has in
turn a significant uncertainty due to drifts of the probe light power.

With the efficient repump scheme a stabilization of the probe light frequency to
the octupole transition became possible and with the interleaved servo technique
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Figure 3.1: Measurement of the unperturbed 2S1/2(F = 0) → 2F7/2(F = 3)
transition frequency ν0. The measurement data was deduced as the
center frequency of recorded spectra for various probe laser pow-
ers. The red line is a linear weighted fit to the data and yields
ν0 = 642 121 496 772 640(8) Hz.

the unperturbed frequency was obtained by real-time extrapolation. In this method
that is sketched in Fig. 3.2, the probe light power is switched between two settings,
so that the intensity of the probe light is alternated between a value IH and a lower
value IL. The use of an injection locked laser diode at 467 nm results in a high
short-term stability of the probe light power and the laser frequency is stabilized
to the corresponding light-shifted line center frequencies νH and νL = νH − νoffset

with an independent digital servo system. The unperturbed transition frequency
is calculated as ν0 = νH − νoffset(1 − IL/IH)−1 so that it depends not on the
absolute values of the probe pulse intensities but on their ratio, which is registered
together with νH and νoffset. For this purpose, the relative intensity of the probe
laser light incident on the ion is monitored with a highly linear photodetector
mounted behind the trap. A pinhole in front of the photodetector selects the
center of the magnified image of the laser beam waist at the position of the ion
so that intensity fluctuations due to both total power and pointing instabilities
are detected. The high linearity of the photodetector signal in the 10−5 range
enables the precise measurement of power ratios. Using the real-time extrapolation
technique, the frequency of the octupole transition was measured with a fiber-
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Figure 3.2: On the left: Light shift cancellation by real-time extrapolation. Two
alternating servo systems stabilize the laser frequency to the respec-
tive line centers νH and νL for high iH and low iL probe laser intensity.
The intensity is recorded together with respective frequencies and the
unperturbed frequency can be calculated in real-time. On the right:
histogram of the relative intensities in the low (blue) and high (blue)
mode of operation.

laser-based frequency comb generator [115] using the caesium fountain clock CSF1
[116, 117] in our laboratory as the reference. The results of this measurement are
discussed in section 5.2.1. Since the dominant shift of the octupole transition
frequency in this measurement is the light shift, it is essential to quantify the
uncertainty of the employed extrapolation scheme. No significant contribution to
the uncertainty is expected from the nonlinearity of the intensity measurement and
higher-order terms in the light shift, as discussed in the following subsection. It
furthermore is assumed that the registered average of IL/IH reliably represents the
intensity ratio at the position of the ion and that probe pulse intensity fluctuations
are not correlated with the execution of the measurement cycles. The observed
single-pulse intensities IL and IH show relative fluctuations of ≈1% with a slightly
asymmetric distribution presumably resulting from pointing instability. In Fig. 3.2
histograms of IH and IL are depicted. Under the assumptions made here, these
fluctuations will not lead to an error in the extrapolated frequency and would
result in a symmetric distribution of IL/IH . The IL/IH distributions observed
during the absolute frequency measurement, however, show a small asymmetry
which is used as a measure for the extrapolation uncertainty. The asymmetry
is quantified as the difference between the mean and the most probable value of
IL/IH . The corresponding deviations in the extrapolated frequencies are in the
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range −27 . . . 19 mHz, and the maximum absolute deviation is used as an estimate
for the extrapolation uncertainty.

The achieved uncertainty due to the light shift of 4.2 × 10−17 during the first
absolute frequency measurement of the octupole transition (see section 5.2.1) can
be reduced if the interrogation times are extended, which requires a more stable
probe laser. Although the new probe laser system with a lower frequency instability
allows us to extend the interrogation times by about a factor of 3 compared to the
old one, application of the extrapolation technique will ultimately be limited by
the fact that the intensity ratio can not be determined at the position of the ion.
The new “hyper-Ramsey” spectroscopy scheme overcomes these limitations and
permits significantly smaller uncertainties, as discussed in chapter 4.

3.2.5 Non-linearity of the Light Shift

For application of the light shift extrapolation technique, a high linearity of the
light shift versus the light intensity is assumed. Nonlinear contributions can occur
if ∆m 6= 0 transitions are not well suppressed especially if the light shift ∆νLS
becomes comparable with the Larmor frequency. To experimentally investigate a
possible nonlinear contribution of the light shift, the interleaved servo technique is
used to measure the difference of the transition frequency with the regular Larmor
frequency ∆νZ1(2F7/2, F = 3) ≈ 65 kHz and a smaller value. To maximize the ef-
fect, the experiment is performed with maximum intensity of the probe laser light
that induces ≈1 kHz light shift. As shown in Fig. 3.3, a frequency offset is measur-
able if the Larmor frequency is significantly reduced. In this case, the light shift
becomes comparable with the Lamor frequency and the light shift can no longer be
treated as a small perturbation. The observed frequency offset does neither show
1/(∆νZ1) nor 1/(∆νZ1)2 dependence, but an empirical fit of a/b∆νZ1(Hz) via a and b
is capable to approximate the measured frequency offset. Here, a = 2.7(2) Hz and
b = 42(2) were determine by nonlinear regression. The extrapolated fractional shift
for normal operation conditions is in the 10−20 range. This supports the assump-
tion of negligible non-linearity of the light shift, but a more profound investigation
would be necessary to predict reliably nonlinear contributions of the light shift.

Another way to determine the nonlinear light shift directly requires an extension
of the interleaved stabilization technique, so that three different sets of parameters
can be used. In this case, the induced frequency shifts should be directly mea-
surable and a nonlinear contribution would be easily observable. Since the shift
effect appears to be very small even under extreme conditions and does not lead
to uncertainties if the “hyper-Ramsey” spectroscopy technique is used, no further
investigations on this subject have yet been performed.
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Figure 3.3: Frequency offset of the octupole transition for spectroscopy with
≈1 kHz light shift and reduced magnetic field strength. All measure-
ments are performed using the alternating servo scheme versus opera-
tion with a Zeeman splitting frequency ∆νZ1(2F7/2, F = 3) ≈ 65 kHz.
The data does neither show 1/(∆νZ1) (dotted line) nor 1/(∆νZ1)2

(dashed line) dependence, thus an empirical fit of a/b∆νZ1(Hz) via a
and b is performed (solid line).

3.2.6 Blackbody Radiation Shift

The most important contribution to the systematic uncertainty of many optical fre-
quency standards results from the uncertainty in the Stark shift due to the thermal
radiation from the environment of the ion or atom. In our case, the temperature
rise of a copy of the trap with attached PT100 sensors was measured and the re-
sults verified by tests with an IR camera. With this information, a finite element
method based simulation was performed, and the effective temperature rise ∆T
under the approximation of isotropic radiation was calculated to be 2(1) K [118].
According to the Planck radiation law, the spectral energy density of radiation
with a wavelength λ from a blackbody at given temperature T is:

uλ(T ) =
8πhc

λ5

1

e
hc

λkBT − 1
, (3.11)
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where c is the speed of light, kB is Boltzmann’s constant and h denotes Planck’s
constant. By spectral integration of uλ(T ), the mean-squared electric field is:

ε0〈E2
BBR(T )〉 =

8π5(kBT )4

15c3h3
= ε0

(
831.95

V

m

)2(
T

300 K

)4

. (3.12)

The position of the maximum of uλ(T ) is described by Wien’s law and is close to
10 µm at room temperature. This wavelength can be compared to the wavelength
of transitions that lead to the differential scalar polarizability of the transition of
the ion. The tensor part is averaged to zero under the assumption of isotropic
radiation. The longest wavelength of a dipole transition considerably contributing
to the differential polarizability of the quadrupole transition is at 2.4 µm and for
the octupole transition at 377 nm. In the latter case, the matrix element of the
transition from the 2F7/2 to the 2D5/2 at 3.4 µm is so small that its contribution is
negligible [88,89]. Since the thermal radiation peaks at much longer wavelength, it
is convenient to express the induced shift with the static differential polarizability
as

∆νBBR(T ) = − 1

2h
∆αdc

s 〈E2
BBR(T )〉(1 + η(T )). (3.13)

Here, h is Planck’s constant and η(T ) describes the dynamic character of the
shift effect. Figure 3.4 shows the fractional blackbody shift for both transitions
calculated with the corrected matrix elements as in table 3.1 [60, 112]. For the
quadrupole transition a significant dynamic correction η(300 K) ≈ 0.13 has to
be considered. In the case of the octupole transition, η(300 K) is a very small
correction at room temperature and amounts to less than 0.002.

3.2.7 Measurement of the differential polarizability of the
Octupole Transition

As discussed before, all transitions that are relevant for the Stark shift due to
thermal radiation have transition wavelengths smaller than 400 nm. Figure 3.7
shows the dynamic differential scalar polarizability of the octupole transition versus
the wavelength of the radiation calculated with theoretical matrix elements. It
is clearly visible that radiation of near infrared lasers at a wavelength around
1 µm can be used to study the effect of thermal radiation centered at 10 µm.
Calculations based on corrected and uncorrected dipole matrix elements predict
(∆αS(1.5 µm)/∆αS(10 µm)− 1) < 10%.

Following this idea, a commercially available fiber laser at 1545 nm with a max-
imum output power of ≈110 mW, a Nd:YAG at 1064 nm (≈500 mW) and a laser
diode at 852 nm (≈300 mW) were used to induce light shifts at the position of the
ion. To improve the beam profile, the output modes of the Nd:YAG and the diode
laser were cleaned by a single-mode polarization-maintaining fiber, which reduced
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Figure 3.4: Fractional frequency shift of the quadrupole (E2) and octupole (E3)
transition of 171Yb+ as a function of the ambient temperature that
causes the perturbing thermal radiation. The solid line shows the shift
effect of the E2 transition calculated using the static scalar differential
polarizability ∆αdc

s and the dashed line is the correction to this value
due to the dynamical character of the shift. The shift effect on the E3
transition is depicted by the dotted line and its dynamical correction
(dash-dotted) is negligible small.

the available optical power by a factor of 2. In the measurement of the dynamic
differential polarizability, the intensity of the laser radiation, the frequency shift
and the angle between the electric field and the quantization axis need to be deter-
mined. The linear polarization of the laser beam is carefully aligned to minimize
losses of the windows of the vacuum enclosure that are mounted close to Brewster’s
angle. Using the high accuracy with which the orientation of the magnetic field can
be adjusted, the tensor part of the light shift can be inferred from two measure-
ments with different orientations of the magnetic field. By averaging the light shift
over three mutually orthogonal orientations of the magnetic field, the tensor part
is removed and the scalar differential polarization remains [111]. To measure the
induced frequency shift, the interleaved stabilization technique is applied. A me-
chanical shutter blocks the additional laser in all parts of the interrogation scheme,
except the corresponding probe pulse period.

Since it is experimentally difficult to determine the beam waist of the light
shifting laser at the position of the ion, the experimental setup was modified as
depicted in Fig. 3.5. A 3.1 mm thick glass plate was installed oriented to minimize
reflection in front of the magnetic shielding that surrounds the ion trap. By tilting
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the glass plate the beam is transversely shifted at the position of the ion. Doing
so, the laser beam profile can be moved over the ion. The reflection of a HeNe
laser beam from the glass plate is used as a pointer on a screen at a distance
of approximately 4 m. In this way, the light shift profile can be determined by
recording the light shift, the relative laser power and the position of the pointer
laser on the screen.

+Yb
trap
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eN

e-
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se
r
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LS-laser

 ~4 m

screen

optical fiber

Figure 3.5: Schematic of the setup used to determine the light shift profile. The
light shift is measured for various points without the dashed mirror,
which is installed after the measurement, and permits a calibration
of the displacement on the screen to the length at trap center.

After recording the light shift profile, a mirror was installed in front of the trap
to reflect the laser beam, so that the displacement of the laser beam induced by a
variation of the angle of the glass plate can be determined. The displacement was
measured with a knife edge mounted on a linear stage in front of a photodetector.
The position of the beam waist was determined for 8 positions of the pointer
beam on the screen in the horizontal and the vertical direction. This enables a
calibration of the displacement measured at the screen to the length at trap center
and therefore the measured light shift profile. The relative uncertainty of this
length calibration is about 1%. Since the glass plate is installed after the focusing
lens, variations of the glass plate angle can induce small variations of the position
of the focus along the optical axis. However, due to the small angle changes of less
than ±5◦, the relatively weak focusing (divergence Θ < 0.3◦) and the fact that the
ion is close to the beam waist, this effect can be neglected.

Since the reflectivity of the glass plate that induces the displacement slightly
varies under angle changes, the change of transmitted optical power was measured
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and the light shift profile corrected. This is only a very small correction of less than
1%. The optical power of the laser radiation was measured with a power meter
before and after recording the light shift profile. The optical power was assumed
to be the geometric mean value of the measurement in front and behind the trap,
which agreed within 1%. The power meter was calibrated at PTB’s radiometry
laboratory using 30 mW laser radiation at 1064 nm with an uncertainty of 0.5%.
During the recording of light shifts, the relative optical power at each measurement
point was monitored by the output power indication on the laser controller or by
the signal of a highly linear photodetector, measuring a small fraction of the total
output power. Since this relative optical power measurement was not continuously
performed, power fluctuations can not be entirely excluded, so that the uncertainty
of the optical power is assumed to be less than 3%. This offers potential to reduce
the uncertainty in further measurements.
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Figure 3.6: Light shift profile induced by the 1.5 µm laser. The black dots indicate
measurement points and the color surface is a smoothed linear fit
between the points.

Figure 3.6 shows the light shift profile induced by the 1.5 µm laser. It is impor-
tant to find a limited function that precisely describes the measured values and is
integrable. For the measurement at 1.5 µm and 1064 nm the measured distribution
is fitted by an intensity distribution similar to that of Hermite-Gaussian modes.
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An intensity profile with such symmetry is expected due to the glass plates at
Brewster’s angle in the beam path. To lowest order such functions are:

I0,0(x, y) = I00 e
−2(x−x0)

2

ω2x e
−2(y−y0)

2

ω2y (3.14)

I1,0(x, y) = I10
2(x− x0)2

(rωx)2
e
−2(x−x0)

2

(rωx)2 e
−2(y−yr)2

(r′ωy)2 (3.15)

I0,1(x, y) = I01
2(y − yr)2

(rωx)2
e
−2(x−x0)

2

(rωx)2 e
−2(y−yr)2

(r′ωy)2 . (3.16)

For each wavelength at least two measurements were performed. Fitting with
I0,0(x, y) gives a very good agreement. The residuals can be approximated by
I1,0(x, y) and I0,1(x, y). The remaining values do not show a clear structure and
χ2 is calculated to be close to one. The fitted functions are numerically integrated
and the uncertainty of the spatially integrated light shift is estimated from the
difference between the single measurements at each wavelength. Additionally, the
improvements over the fit with the basic distribution I0,0(x, y) are used to gain
confidence in the integrated value. For the measurement at 852 nm, the residuals
of a fit with I0,0(x, y) can be described by a second function I0,0(x, y) with a different
x0 and a smaller ωx and otherwise unchanged parameters. In contrast to the other
two lasers, the 852 nm light source was a free running laser diode, so that single
mode operation is not guaranteed, which might cause a different intensity profile.
Table 3.2 summarizes the differential polarizability measurements.

As shown in Fig. 3.7 the measured ∆αs do not agree with the calculations based
on the theoretical matrix elements. By using the lifetime correction as discussed
in subsection 3.2.1 the agreement becomes better, however, a significant difference
remains. In the range between 700 nm and 10 µm both theoretical differential
polarizabilities can be approximated as the result of a single transition at about
400 nm plus a constant value, the static differential polarizability:

∆αs(λ) = ∆αdc
s −

f

λ2 − λ2
0

. (3.17)

The same model is assumed for the experimental values. Due to the small
number of measured values and the degrees of freedom in the theoretical model,
the uncertainty of ∆αdc

s is estimated from fits for very different constant λ0 in
the range from 370 nm to 530 nm. In this way, ∆αdc

s was found to be equal to
0.893(30) × 10−40Jm2V−2, where the uncertainty results mainly from the uncer-
tainty due to the optical power measurement. As expected from the theoretical
description, the fit of the experimental data shows that ∆αs(1.545 µm) and ∆αdc

s

differ by about 10%. Furthermore, a very small dynamic correction is found since
∆αs(10 µm) = 0.891(30) × 10−40Jm2V−2 is very close to ∆αdc

s . This suggests to
express the blackbody radiation shift as

∆νBBR(T ) = 1/(2h)∆αs(10 µm)〈E2
BBR(T )〉. (3.18)



50 3 Frequency Shift Effects of the Yb+ Clock Transitions

1000 10000

wavelength (nm)

400

0

-0.5

-4
0

-2
2

D
a

 (
1
0

 J
V

m
)

S

0.5

1.5

1

2

10
2´10

Figure 3.7: Scalar differential polarizability ∆αs of the octupole transition as a
function of the wavelength. The solid gray line is calculated using
tabulated oscillator strengths [60], and for the dotted red line the data
were corrected according to experimental life times [112]. The circles
show the result using near-infrared laser radiation and the square
shows the result obtained with a quasi-static field. The dashed blue
line is a fit to the experimental values (see text).

In this way, with the measured value and the effective temperature T = 298(1) K
a shift of -45.4(1.6) mHz can be calculated, which corresponds to a fractional
frequency shift of −70.7(2.6) × 10−18. The uncertainty here results mostly from
the uncertainty of ∆αs(10 µm), the uncertainty of the effective temperature leads
to an uncertainty of only 1.0× 10−18.

The measurements of the light shifts were performed with the orientation of the
quantization axis at an angle of 90◦ and 45◦ to the electric field of the light shifting
laser radiation. This permits an additional comparison of the results obtained from
theoretical matrix elements to the experimental data via the tensor polarizability.
This part of the polarizability results only from a shift of the 2F7/2 level and the
dipole transitions contribute in a different way than in the case of the scalar shift
(see Eq. 3.9 and Eq. 3.11). The resulting polarizabilities are given in Tab. 3.2 and
shown in Fig. 3.8, together with the theoretical results. In contrast to the scalar
polarizability, the agreement of the theoretical result with the experimental data
is reduced due to the use of a correction based on the experimental lifetimes.
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Figure 3.8: Tensor polarizability ∆αT of the F = 3) hyperfine component of
the 2F7/2 state as a function of the wavelength of the perturbing
laser radiation. The solid green line is calculated using tabulated
oscillator strengths [60], and the red line uses a correction based on
experimental life times [112]. The circles show the result using near-
infrared laser radiation and the blue line is a fit to the experimental
values (see text).

After the measurement on the octupole transition, a measurement on the quadru-
pole transition was performed with each laser. The polarizability of the 2D3/2 state
for wavelengths larger than 1.4 µm is dominated by the contribution from the
transition to the 2P1/2 state at 2.4 µm. As a result, no precise information on
the response of the quadrupole transition to thermal radiation can directly be
obtained from the measurements with the near-infrared lasers. However, the mea-
sured dynamic differential polarizability can be used as a test case for theoretical
predictions. Furthermore, the combination of all measured scalar differential and
tensor polarizabilities of the quadrupole and octupole transition might lead to an
optimized set of dipole matrix elements and in turn improve the estimates on ∆αdcs .
For completeness, the results for the quadrupole transition are added to table 3.2.

3.2.8 Quadratic Stark shift induced by the trap field

Beside the electric field of the thermal radiation, the states of the ion are affected
by the residual trap field that appears due to uncompensated stray fields and the



52 3 Frequency Shift Effects of the Yb+ Clock Transitions

Table 3.2: Measured differential scalar electric polarizabilities ∆αS and tensor
polarizabilities αT for the two clock transitions of 171Yb+ induced by
laser radiation of various wavelengths. For the octupole (E3) transition
these measurements permit extrapolation to a static perturbing field
(dcLS). The last column shows results obtained with a quasi-static
electric field (dc). All values are given in 10−40Jm2V−2.

852 nm 1064 nm 1545 nm dcLS dc

∆αS(E3) 0.547(50) 0.705(34) 0.808(34) 0.893(30) 1.3(6)

αT (2F7/2, F = 3) -0.332(40) -0.262(15) -0.233(12) -0.218(12) ≈-0.13

∆αS(E2) -16.9(1.5) -12.2(6) -9.5(4) - 6.9(1.4) [70]

αT (2D3/2, F = 2) -0.79(9) 0.35(7) 8.6(5) - -13.6(2.2) [70]

kinetic temperature of the ion in the trap potential as discussed in section 2.1.
The mean squared electric field is quantified using Eq 2.11 for the two transitions
and the induced shift described with Eq. 3.7. Frequency shifts due to the tensor
polarizability average out if the frequency standard is alternately operated at one of
three mutually orthogonal directions of the quantization axis [111]. This is similar
to the cancellation of the electric quadrupole shift as discussed in the next chapter.
Due to the suppression of the tensor shift by at least a factor of 50 and its relatively
small magnitude, one can simplify Eq. 3.7 by neglecting its contribution. Hence, the
expected fractional frequency shift is ∆νQS/ν0 = −1/(2h)∆αDCS

∑
i=x,y,z〈E2

i 〉/ν0

and equals −1.2(0.6)×10−18 for the octupole transition. The larger relative shift of
−6.7(3.7)×10−18 for the quadrupole transition results from the significantly larger
differential scalar polarizability of 6.9(1.3)× 10−40Jm2V−2 [70]. The uncertainties
of the frequency shifts mainly result from the uncertainty of the electric field,
which contains the total uncertainty due to stray electric fields and assumes 50%
uncertainty in the temperature of the ion.

3.3 Electric Quadrupole Shift

After the discussion of frequency shifts due to interaction with the electric field,
this section treats the so-called electric quadrupole shift that results from the in-
teraction of the electric quadrupole moment of the state with the gradient of the
electric field. Under normal operation conditions, electric fields are well compen-
sated, however, a significant electric field gradient can be present at trap center.

A detailed discussion of the electric quadrupole shift and the derivation of the
relevant equations can be found in Ref. [111]. Since the electric quadrupole shift
for the 2S1/2 state is zero, for the octupole transition only the 2F7/2(F = 3) state is
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relevant. The shift due to an electric field gradient A can be calculated according
to Ref. [111] as

∆νQ =
5

7h
AΘ(F, 7/2)(3 cos2 β − 1), (3.19)

where h is the Planck constant and β is the angle between the symmetry axis of the
gradient and the quantization axis. As also pointed out in Ref. [111] the induced
frequency shift averages to zero if the frequency is measured for three mutually
orthogonal directions of the magnetic field that defines the quantization axis.

3.3.1 Measurement of the Quadrupole Moments

To determine the electric quadrupole moment Θ(F, 7/2), the frequency shift in-
duced by a known electric field gradient needs to be measured. For our trap with
small deviations from a cylindrical symmetry of the trap potential, the gradient
A = U0/(κr

2
0) is produced by applying a static voltage Udc to the ring electrode.

The geometrical factor 1/(κr2
0) = 7.9989(54)× 105 m−2 was determined by fitting

measurements of the secular frequencies obtained using the interleaved servo tech-
nique stabilizing at the carrier and the sideband frequency for different dc voltages
U0 to the theoretical dependence given in Eq. 2.6 and Eq. 2.3 (see Fig. 3.9). The
fitting is very similar to the determination of the applied electric field gradient in
other measurements of electric quadrupole moments of states used in single-ion
clocks, e.g. in Ref. [119]. The measurement of Θ(F, 7/2) was performed using the
interleaved servo technique with U0 alternating between zero and a preset value.
Since the selection rules of the octupole transition lead to a very small relative
excitation probability for the most sensitive direction β = 0◦, β = 90(1)◦ was cho-
sen. The induced frequency shifts are shown in Fig. 3.10, the slope of the fit yields
Θ(F, 7/2) = −0.041(5) ea2

0, where e is the elementary charge and a0 the Bohr ra-
dius. The uncertainty is dominated by the statistical uncertainty of the measured
frequency differences. This experimental value is significantly smaller than the
theoretical estimate of Θ(F, 7/2) = −0.22 ea2

0, obtained by a single-configuration
Hartree-Fock calculation [64]. The discrepancy is not surprising in view of the
complex electronic configuration of the 2F7/2 state. So far, it was not possible,
even with more sophisticated methods, to calculate Θ(F, 7/2) with a precision
comparable with the experimental uncertainty [62].

3.3.2 Stability and Cancellation of the Electric Quadrupole
Shift

As discussed in detail in Ref. [85], the variations of the stray field compensating
voltages can be used to indicate variations of the stray field gradient. After loading
an ion to the trap, these voltages show significant variations that decay within a
few weeks (see Fig. 2.3). All measurements reported here were conducted several
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Figure 3.9: Frequency of the first secular sideband νx versus the dc voltage U0 on
the ring electrode of the ion trap. The blue dots show the result of
a measurement using the interleaved servo technique (see text) with
uncertainties smaller than the size of symbol and the line is a fit of
the theoretical prediction (Eq. 2.6) to the measurement data.

weeks after loading and the stray field compensation remained stable within the
compensation uncertainty.

To estimate the residual electric quadrupole shift induced by electric stray field
gradients, measurements are performed with the quadrupole transition. Due to the
≈50 times larger electric quadrupole moment of the 2D3/2 state, even small gradi-
ents can be detected. For this purpose the interleaved stabilization is used and the
orientation of the quantization axis is switched between two settings. In this way,
the frequency shifts of the quadrupole transition for each orientation were inferred
from three pairs of field directions as 0.41(2) Hz, −0.47(2) Hz, and 0.06(2) Hz,
where the uncertainty is predominantly statistical. This investigation was carried
out during the measurement of the absolute frequency of the quadrupole transi-
tion discussed in section 5.3 and the shifts remained stable within their statistical
uncertainty during the measurement period. Since the orientation of the mag-
netic field used for operation of the frequency standard based on the octupole and
the quadrupole transition are different, β will not be the same. However, in no
measurement with the quadrupole transition for various β and even directly after
loading an ion to the trap, a shift |∆νQ| larger than 0.5 Hz had been observed. Due
to the significantly smaller quadrupole moment of the 2F7/2(F = 3) state, for the
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Figure 3.10: Quadrupole shift of the octupole transition frequency resulting from
an applied electric field gradient, measured using the interleaved
servo technique (see text). The solid line is a linear least-square fit
through the origin. The error bars denote statistical uncertainty.

octupole transition this maximum measured shift would result in a relative change
of the transition frequency by less than 2× 10−17.

As pointed out before, the quadrupole shift can be efficiently suppressed if the
observed transition frequency is averaged for three mutually orthogonal directions
of the quantization axis. On the other hand this fact can be used to test the accu-
racy with which a set of mutually orthogonal directions is realized. Therefore, an
electric field gradient was induced by setting the dc voltage on the ring electrode
U0 = 12.5 V and measuring the induced frequency shift on the quadrupole transi-
tion for three pairs of orientations. The determined shifts averaged to zero within
their statistical uncertainty and show a suppression of the shift effect through
averaging by more than a factor of 50. This result supports an uncertainty of
1◦ for the two angles that are used to describe the magnetic field orientation in
our trap. If this technique is used for the suppression of the quadrupole shift on
the octupole transition for normal operation conditions, the shift averages to zero
with an uncertainty of 3.1 × 10−19. For the quadrupole transition an uncertainty
of 1.6 × 10−17 results from the significantly larger electric quadrupole moment
Θ(D3/2) = 2.08(11) ea2

0.

3.4 Zeeman Shift Effects

In the presence of an external magnetic field the hyperfine states split into their
Zeeman components. In our experiment a weak magnetic field with a flux density
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of 3.58 µT creates a well defined quantization axis for the interaction of the ion
with laser radiation. The Hamilitonian that describes this effect has the following
form [111]:

HZ = gJµBJ ·B + g′IµBI ·B, (3.20)

where B = Bez is the magnetic flux density of the field, J is the electronic
angular momentum and I is the nuclear spin. The electronic g-factor gJ as well
as the nuclear g-factor g′I are expressed in units of the Bohr magneton µB. The
contribution of the nuclear part is small compared the electronic part, as g′I =
5.36 × 10−4 for 171Yb+ [120]. Thus its treatment is only required if the electronic
part of the quadratic Zeeman shift is known with comparable precision, as it is the
case for the quadrupole transition [121].

As long as the magnetic field induced shifts are weak compared to the hyperfine
splitting, HZ can be diagonalized in the same basis of states |γJFmF 〉 with the
quantum numbers I, J, F , and mF denoting the nuclear spin, the electronic angular
momentum, the total angular momentum, and its projection on the direction of
B. According to Ref. [122] the matrix elements of Jz are:

〈γJFmF |Jz| γJF ′mF 〉 = (−1)F−mF (γJF ||Jz||γJF ′)
(

F 1 F ′

−mF 0 mF

)
, (3.21)

with the reduced matrix element

(γJF ||Jz||γJF ′) = (−1)I+J+1+F
√
J(J + 1)(2J + 1)(2F + 1)(2F ′ + 1) ·{

J F I
F ′ J 1

}
.

(3.22)

The induced linear frequency shift for the 〈γJFmF | state is:

∆νZ1(γJFmF ) =
(−1)F−mµBgJB

h
(γJF ||Jz||γJF ′)

(
F 1 F ′

−mF 0 mF

)
(3.23)

=
µBgJB

h

F (F + 1) + J(J + 1)− I(I − 1)

2F (F + 1)
·mF , (3.24)

and the previously neglected contribution from the nuclear magnetic moment is:

∆νZ1(γJFmF ) = −µBg
′
IB

h

F (F + 1)− J(J + 1) + I(I − 1)

2F (F + 1)
·mF . (3.25)

The two clock transitions of Yb+ are between states with mF = 0, so that the
transition frequency is not affected by the magnetic field according to the linear
Zeeman effect, but they show the second-order Zeeman shift that can be calculated
in second-order perturbation theory to be:

∆νZ1,I(γJFmF ) =
µ2
Bg

2
JB

2

h

∑
F ′ 6=F

|〈γJFmF |Jz| γJF ′mF 〉|2

EF − EF ′
. (3.26)
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Here (EF −EF ′)/h = ∆νHF is the hyperfine splitting frequency, and the contribu-
tion of the nuclear magnetic moment is included if gJ is replaced by (gJ + g′I).

According to this model, the Zeeman shifts of the relevant levels can in principle
be calculated with very high precision. For the 2S1/2 and the 2D3/2 state accurate
information on the electronic g-factors became recently available [123]. They can
be used to calculate the linear Zeeman shift with high precision [121] and permit
together with the high-accuracy measurements of the hyperfine splittings frequen-
cies [121,124] similar accuracy for the quadratic Zeeman effect. For the 2F7/2 state
∆νHF = 3620.58(2) MHz was determined, but presently no precise information on
the g-factor is available. In the pioneering work of W. F. Meggers, an experimental
value g7/2 = 1.145 and the calculated g7/2 = 1.143 can be found [125]. For the two
other states, the calculated values show better agreement with the accurate values
from [123], so that the calculated value will be used for the 2F7/2 state and its
uncertainty is estimated as 3× 10−3.

The calculated shift coefficient due to the quadratic Zeeman effect on the oc-
tupole transition of−2.14(9) mHz/µT2 is approximately a factor of 25 times smaller
than that of the quadrupole transition. This is caused by the fact that in the case
of the octupole transition both levels are lowered by the magnetic field, whereas
in the quadrupole transition, the 2D3/2(F = 2,mF = 0) state is raised. This re-
sult for the octupole transition shows a clear discrepancy with a measurement of
1.72(3) mHz/µT2 presented in Ref. [126].

The fact that the flux density at the position of the ion can be inferred from
spectroscopy on the ∆m = 0 and ∆m = ±1 components of the quadrupole transi-
tion can be used to significantly improve the accuracy of the shift correction and
give additional information about the discrepancy with the published value. There-
fore, a stronger magnetic field is applied during the probe pulse period similar to
that during the cooling period that leads to a linear Zeeman shift of the ∆m = 1
component of the quadrupole transition of 4.60(2) MHz. Under this condition, the
quadratic Zeeman shift on the octupole transition is found to be 661(5) Hz using
an H-Maser as the reference. For the octupole transition, the effect of light shift is
canceled by linear extrapolation to zero intensity and the observed Zeeman split-
ting frequency of 4.60(2) MHz includes a correction for its quadratic contribution
of -14 kHz. The huge uncertainty in the linear Zeeman frequency results from the
instability of the magnetic field and could easily be reduced by a few orders of
magnitude.

It is convenient to express the sensitivity to the second-order Zeeman shift in
terms of the ∆mF = 1 component of the quadrupole transition: ∆νZ1(2D, 3/2, 2, 1),
as it is the directly observable measure for the magnetic flux density. Follow-
ing this idea, the measured sensitivity of the octupole transition is −28.8(3) pHz
∆ν−2

Z1 (2D, 3/2, 2, 1) and can be translated to -2.03(2) mHz/µT2. This result is in
good agreement with the value calculated with the measured hyperfine splitting
frequencies and does not agree with the last published value [126].
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In a similar measurement with a smaller instability of the magnetic field, the
quadratic Zeeman shift coefficient for the quadrupole transition was determined to
be 0.740(2) nHz/∆ν2

Z1(2D, 3/2, 2, 1). The result shows very good agreement with
0.7404(3) nHz/∆ν2

Z1(2D, 3/2, 2, 1) inferred from hyperfine splittings and the precise
g-factors [121].

For the operation as a frequency standard, the constancy of ∆νZ1(2D, 3/2, 2, 1) =
30 kHz is assumed to be better than 100 Hz over many days of operation, which was
verified by repeated measurements over such a period. This instability dominates
the uncertainty of the quadratic Zeeman shift on the quadrupole transition and is
a minor contribution for the octupole transition. With the measured sensitivity,
the relative shift of the octupole transition frequency due to the quadratic Zeeman
effect is −40.4(6)× 10−18.

Magnetic fields from the environment are well suppressed by the µ-metal shield-
ing. Quadratic Zeeman shifts could arise from RF currents of the trap drive.
However, the low drive power and the high symmetry of our trap and its supply
lines result in an expected RMS field that is well below the uncertainty of the
applied magnetic field.

3.5 Background gas collisions

As the ion trap is operated in a vacuum chamber of limited quality, collisions with
background gas molecules occur. It seems that so far no experimental investiga-
tion on frequency shifts induced by background gas collisions for optical frequency
standards with single ions has been performed. For frequency standards based on
transitions in the microwave range, however, this effect has been investigated for
many different systems showing different sensitivities of the transition frequency.
For the hyperfine transition of Ba+ and Hg+ very similar fractional frequency
shifts due to He background gas of 5× 10−11/Pa and 4.3× 10−11/Pa have been ob-
served [127,128]. For the hyperfine transition of the ground state of trapped 171Yb+

ions, the He background gas shift has been evaluated as 1.3×10−9/Pa [129], which
is very close to the result for neutral caesium 1.1× 10−11/Pa. A surprisingly large
shift of −3×10−6/Pa has been observed for Be+ [130]. The results for Yb+ and Be+

were not predicted by a theoretical approach given in Ref. [127]. It furthermore
seems to be very difficult to translate results obtained for microwave transitions to
that of optical transitions.

A different approach has been followed in Ref. [26], here the frequency shift is
estimated assuming sudden changes of the atomic phase during the interrogation.
It is assumed that each collision results in a phase change of π/2, which maximizes
the frequency shift. For Rabi interrogation a frequency shift of 0.15k, where k is
the collision rate in hertz, is obtained by numerical integration of the optical Bloch
equations and is independent of the interrogation time and the duty cycle [26].
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This result is valid for interrogation with Rabi pulses, but very similar for Ramsey
or “hyper-Ramsey” spectroscopy.

Following this approach requires an estimate on the collision rate k = n〈v〉σ,
where 〈v〉 is the mean speed of the background gas molecules, n is the number
density and σ = 2πd is the collision cross section. Here, d = 10 a0 = 0.53 nm
can be assumed from theoretical investigations of Yb and He that is the dominant
background gas constituent due to the glass vacuum chamber [131]. The number
density is calculated as p/(kBT ), where p is the pressure, kB is Boltzmann’s con-
stant and T is the temperature. In this way, a rate of about 3 mHz is determined
resulting in a shift of 0.4 mHz at a He pressure of 10−8 Pa at room temperature. At
approximately the deduced collision rate, short drops of the fluorescence rate are
observed. For operation as a frequency standard, these events can be selected and
excluded based on the level of fluorescence signal in the state detection and subse-
quent cooling period. Up to now, this method is not implemented, and therefore
an uncertainty of 0.4 mHz is assumed for both optical frequency standards.

3.6 Doppler shifts due to optical path length

fluctuations

In this and the next section shifts of the optical frequency standard are discussed
that do not result from variations of the atomic frequency reference directly, but are
related with the measurement process and the experimental setup. As pointed out
at the beginning of this chapter, variations of the distance between the ion and the
point at which the frequency is detected can result in significant first and second-
order Doppler shifts. The probe laser light is brought via single-mode polarization
maintaining optical fiber to the optical table on which the ion trap and the slave
laser are installed. To reduce variations of the optical path length from the probe
laser system to the ion trap and to the frequency comb, path length stabilizations
based on an integrating servo systems have been installed that use AOMs to steer
the optical frequencies [132]. The remaining unstabilized path length on the optical
table before the trap is about 2.5 m and the beam is guided in tubes to prevent air
turbulence. A measurement of the variation of the temperature and air pressure
in the laboratory indicated that no relative frequency uncertainties larger than
3× 10−19 can be expected.

Another first-order Doppler shift can result from a displacement of the ion in the
trap due to photo-induced patch fields, especially in case of spectroscopy on the
octupole transition with high probe laser intensities. Most of the effect is expected
to decay with a long time constant as observed in Ref. [133]. In our experiment,
however, no significant changes of the compensation voltages have been observed,
after probe pulses with high intensity were applied. Therefore no related frequency
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shifts are expected. On a short timescale, patch charges might be present during
the interrogation and lead to a Doppler shift of the frequency observed in the
reference frame of the ion at the beginning of the interrogation period. Under the
assumption that such fields build up and decay very rapidly, they appear in parts
of the interrogation where the frequency sensitivity is relatively small [134]. If the
“hyper-Ramsey” technique is applied, a possible frequency shift is well suppressed,
since it would occur in both Ramsey pulses with comparable magnitude.

3.7 Gravitational Red Shift

The comparison of clocks at different positions in the gravitational potential, re-
quires a correction ∆νG/ν0 = −(φ − φ0)/c2 if a frequency signal emitted at a
gravitational potential φ is used for the comparison at φ0 [135]. This is a direct
consequence of the equivalence principle and the predicted shift has been verified
to agree with the theoretical prediction within 7×10−5 [136]. For clocks not too far
apart from each other on the surface of the earth, the correction can be simplified
under the assumption of a small height difference ∆h = h − h0 using the local
acceleration of gravity g to be ∆νG/ν0 = −g∆h/c2. For comparisons of clocks at
large distances, the geoid is used as the reference surface, however, different models
for the geoid exist and the calculated gravitational potential causes an uncertainty
of the correction of ≈3 × 10−17 [137]. This can be a limiting factor if clocks with
even smaller systematic uncertainty should be compared internationally.

If the agreement between two clocks has been established, the gravitational red
shift can be used to probe the gravitational potential, but the precise detection of
differences in the gravitational potential requires a stable and accurate frequency
link between the two setups [138]. So far, only one experiment has demonstrated a
measurement of the difference of the gravitational potential between two clocks in
one building with an uncertainty comparable to that occurring due to established
techniques in intercontinental clock comparisons [139].

3.8 AOM Chirp

In the so far unstabilized optical path of the octupole probe laser light an acousto-
optic modulator (AOM) is installed for pulsing. Switching off the radio-frequency
drive signal can induce excursions of the optical phase that occur on different
time scales. At the very beginning and the end of a pulse, phase excursions for
much less than 1 µs have been observed [140]. In our case, the contribution of
these phase excursions is expected to be negligibly small due to the interrogation
with much longer Rabi pulses. For the octupole transition, the “hyper-Ramsey”
method suppresses this shift effect similar to the light shift as it appears with
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comparable magnitude in both Ramsey pulses (see chapter 4). Beside these fast
damping phase excursions, the temperature variation of the TeO2 crystal changes
its length and the optical density. To detect the frequency chirp, light after the
1.9 mm long crystal was analyzed by optical heterodyne detection, where a fraction
of the probe laser light that did not pass the AOM serves as the local oscillator.
By simultaneously detecting the beat frequency together with the temperature of
the AOM’s crystal, an agreement between the observed frequency chirp and the
expected frequency shift based on tabulated values for TeO2 and the measured
temperature rise (see Fig. 3.11) has been found. Due to the size of the frequency
shift, more precise evaluation is expected from the temperature measurement. The
fractional frequency shift induced by a temperature rise ∆T/τ is:

∆ν

ν0

= −
(

∆n

∆T
+ αL

)
∆T · l
τ · c

, (3.27)

where l is the length of the crystal, c denotes the speed of light and the thermal
expansion αL(TeO2) = 9× 10−6 and the thermal induced change of the refraction
index ∆n/(∆T ) = 9 ×10−5 [141]. The measurement shown in Fig. 3.11 performed
at maximum RF signal after a long dark period leads to a frequency shift of −8.0×
10−16 and a linear scaling of the induced frequency shift with the applied power
is expected. Since the shift also scales as (1-Ton/Ttotal) with the duty cycle of
the AOM Ton/Ttotal, the AOM drive power remains switched on for 95% of the
time. The drive power is only switched to create precisely defined pulse edges,
and a mechanical shutter blocks the probe laser light during most of the dark
periods. For the quadrupole transition the RF drive power is strongly reduced
by more than 20 dB. For the octupole transition, the drive power is reduced by
only 10 dB, but the shift effect is suppressed with the “hyper-Ramsey” method or
the light shift extrapolation scheme, where the light shift is canceled by real-time
extrapolation from two settings of the optical power to zero. Since the optical power
is adjusted by linearly changing drive power, which determines the temperature
rise, a significant suppression can be expected also for the AOM chirp. In the
“hyper-Ramsey” scheme all shift effects are suppressed that occur similarly in
both Ramsey pulses as discussed in section 4.1. The suppression is improved by the
controlled “hyper-Ramsey” scheme, where shifts are canceled that occur also during
interleaved Rabi spectroscopy (see section 4.3). In this way, spurious variations of
the optical phase induced by temperature changes of the AOM crystal simultaneous
with the probe cycle are well suppressed, and the corresponding relative uncertainty
for the octupole frequency standard is only 3× 10−19.
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Figure 3.11: Temperature of the TeO2 crystal of the acousto-optic modulator
used in the experiment to create defined edges of the probe laser
pulses. The measurement is performed by switching on the drive
voltage at 0 s after a long off-period, so that the crystal temperature
was close to room temperature. The applied RF drive power of 1 W
is reduced under normal operation conditions by at least 10 dB.

3.9 Servo Error

A frequency shift between the probe laser that serves as the local oscillator of
the frequency standard and the atomic resonance can occur due to insufficient
compensation of frequency drifts of the probe laser. As discussed in section 2.5,
the servo system corrects for the creep of the optical cavity by steering a linear
frequency drift to the acousto-optic modulator in front of the cavity. The frequency
drift is corrected every 10 s by the mean error signal since the last update times
a gain factor [102]. Ideally the second-order integrator should cancel a possible
servo error. A maximum servo error can be calculated using the gain factor, the
maximum drift variation of the probe laser system and the cycle time [28]. This
maximum deviation is in the 10−17 range for both optical frequency standards,
however, it would only be valid for a period of a constant maximum change of the
drift rate, which is certainly not the case. The expected uncertainty contribution
due to nonlinear frequency drifts of the probe laser system has thus to be evaluated
for each measurement taking into account the applied frequency corrections and the
relative interrogation time. For all measurements with averaging times of several
thousand seconds, the related uncertainty is not a significant contribution to the
total systematic uncertainty.
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3.10 Conclusion – Comparison of the E2 and E3

Frequency Shift Effects

The leading shift effects for each of the two optical frequency standards of 171Yb+

are listed in Tab. 3.3. For both realizations, the dominating uncertainty is con-
nected with the thermal radiation that affects the ion.

Effect
E2 transition E3 transition

δν/ν0(10−18) u/ν0(10−18) δν/ν0(10−18) u/ν0(10−18)

Blackbody radiation shift -524 102 −70.7 2.6

Second-order Doppler -3 2 −3.7 2.1

Light shift 0.0 1 0 1.5

Quadratic dc Stark -7 4 −1.2 0.6

Quadrupole shift 0 14 0 0.3

Quadratic Zeeman shift 968 7 −40.4 0.6

Collisional shift 0 1 0 0.6

Path length instabilities 0 0.3 0 0.3

AOM chirp 0 8 0 0.3

Servo error 0 36 0 0.5

Total 434 110 −116.0 3.9

Table 3.3: Leading fractional frequency shift δν/ν0 effects and the related relative
uncertainty u/ν0 for an optical frequency standard with a single Yb+

ion based on the quadruple (E2) and octupole (E3) transition. For the
E2 transition Rabi spectroscopy and for the E3 transition controlled
“hyper-Ramsey” spectroscopy is used.



4 “Hyper-Ramsey” Spectroscopy

This chapter discusses the so-called “hyper-Ramsey” spectroscopy (HRS), an ex-
citation scheme that enables light shift free spectroscopy of strongly forbidden
transitions and suppresses shift effects that appear synchronously with the interro-
gation pulses, e.g. the AOM chirp. At first a short introduction and a theoretical
description of the technique are given. In the second section, spectroscopic results
obtained on the octupole transition are presented and the last section discusses
the application of the method in an optical frequency standard, and a technique
to measure the compensated shifts and ensure an efficient cancellation.

4.1 Introduction and theoretical description

Intended as a technological advantage in the early magnetic-resonance experiments
with molecular beams, Ramsey’s method of separated oscillatory fields was cru-
cial for the progress in precision spectroscopy and the development of atomic
clocks [142], and is an important tool in quantum information processing [143].
His basic idea was to replace the single long region, in which the atoms are interro-
gated with an oscillating field (Rabi method), by two short ones at the beginning
and the end of the interaction zone. As a result, the two levels of the investi-
gated quantum system are brought into a coherent superposition with the first
interrogation followed by a free evolution period. After the second interrogation
the population in the levels is detected, which show the effect of the interference
of the second pulse with the time-evolved superposition states. In the original
experiments with atomic and molecular beams this permitted the recording of a
resonance lineshape with a width that is mainly determined by the total interaction
time, without shifts and broadening through inhomogeneous excitation conditions.
Ramsey’s method is employed mainly to excite states with a natural lifetime ex-
ceeding the interaction time, so that primarily transitions forbidden by electric
dipole selection rules are investigated. The advent of laser-cooled trapped ions and
atoms led to a tremendous increase in the temporal separation of the two Ramsey
interactions. For the microwave transition between the hyperfine components of
the ground state of trapped 171Yb+ ions, coherence times up to 10 minutes have
been observed [144]. On an optical transition, the longest observed coherence be-
tween two Al+ ions of a few seconds was essentially limited by the natural lifetime
of the excited states [145]. To overcome this limitation, states with longer lifetimes
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are of particular interest, e.g. the 2F7/2 state of Yb+. However, the high probe light
intensities required for excitation of these states will unavoidably lead to level shifts
through the dynamical Stark effect. Beside the octupole transition discussed here,
a wide range of precise frequency measurements presently suffer from significant
uncertainties due to light shift. Here, two-photon [146–149], and magnetic-field
induced transitions [150–153] are good examples.
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Figure 4.1: Pulse sequence (a) and resulting excitation spectrum (b) of the Ram-
sey (green) and the ”hyper-Ramsey” spectroscopy (HRS) excitation
scheme (blue). Here νL is the probe laser frequency and ν0 the unper-
turbed transition frequency. The laser step frequency ∆S is assumed
to be equal to the light shift ∆L and the intensity I0 is chosen to
obtain a pulse area π/2 for a pulse duration τ . A discriminator signal
can be generated by alternately stepping the phase of the first pulse
by ±π/2 as indicated by the dotted lines. The spectra are calculated
for the parameters T1 = 2τ , T2 = 0, ∆L = 4.1/τ with equal dark
period durations in both schemes.

This problem is approached in the HRS method proposed by Yudin et al., that
can be understood as a further development to the Ramsey technique [154]. The
spectrum obtained with Ramsey excitation usually shows indications of the pres-
ence of light shift: the position and shape of the envelope reflects the excitation
spectrum resulting from one of the pulses, whereas the Ramsey fringes result from
coherent excitation with both pulses and the intermediate dark period. The fringes
are less shifted than the envelope, because their shift is determined by the time av-
erage of the intensity. This results in a shifted and asymmetric Ramsey pattern [see
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Fig. 4.1(b)], as observed in early demonstrations of optical Ramsey spectroscopy
of a two-photon transition [155].

This intuitive picture suggests that the effect of the light shift ∆L on the spec-
trum can be compensated by introducing a frequency step of the probe light
∆S = ∆L during the interrogation pulses whereas the unshifted probe frequency
νL is tuned across the resonance with the unperturbed atomic frequency ν0, as
proposed in [156]. The scheme can be made additionally insensitive against small
changes of the laser intensity or errors in ∆S by inserting an additional pulse with
identical intensity and frequency and with a doubled duration between the Ramsey
pulses. This feature bears resemblance to “echo” techniques [157] which can be
used to suppress dephasing between the atomic oscillators during the free evolution.
Here, however, the additional pulse compensates the dephasing between the atomic
coherence and the probe laser field caused by the Ramsey pulses. The phase of the
additional pulse is shifted by π relative to the Ramsey pulses in order to improve
the robustness against variations of the pulse area. The frequency steps are applied
in a phase-coherent way so that they do not introduce additional phase changes
of the probe field. These are the essential elements of the HRS scheme [154]. The
corresponding probe pulse pattern is sketched in Fig. 4.1(a).

The resulting resonance signal is calculated by numerical integration of the op-
tical Bloch equations [158], describing the equation of motion of the pseudospin
vector ρ(u,w, z) in the rotating frame extended regarding the light shift ∆L:

u̇(t) = − (∆−∆Lz(t)) v(t)− Γ2 + Γ1

2
· u(t)

v̇(t) = (∆−∆Lz(t))u(t) +
√
z(t)Ω0w(t)− Γ2 + Γ1

2
· v(t)

ẇ(t) = −
√
z(t)Ω0v(t)− Γ1(w(t) + 1)

ż(t) =
d(I(t)/I0)

dt
, (4.1)

where ∆ = ω0−ωL is the difference between resonant and the probe laser frequency.
The intensity of the laser is described by z and the longitudinal decay rate Γ1

due to a limited lifetime of the excited state can be assumed to be equal to zero
for the octupole transition. The transversal decay rate that describes the loss of
coherence is denoted with Γ2. The excitation probability for a given time is equal
to (w(t) + 1)/2. The relative optical phase during each pulse in the representation
used in Eq. 4.1 is adjusted by the sign of the resonant Rabi frequency Ω0 for ±π
and the detuning δ during the dark period to achieve the relative phase of ±π/2.

As shown in Fig. 4.1(a) the total dark period T can be divided into two parts,
T = T1 + T2. The width of the central fringe is minimal for either T1 = 0 or
T2 = 0. Introducing two dark periods may be technically advantageous because in
this case both phase reversals can be carried out when the probe light is switched
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off, which excludes the possibility that the phase reversal leads to transient pulse
distortions [140]. For simplicity, the case T2 = 0 will be assumed in the following
and has been used in all experiments so far. The geometrical representation of
Eq. 4.1 for the HRS sequence is shown in Fig. 4.2.
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Figure 4.2: Geometrical representation for the interrogation with the HRS
method. Blue arrows indicate the result for a small light shift ∆L.
For the red arrows a light shift of 2∆L is assumed. The effect of the
light shift in the first probe pulse is partly compensated by the light
shift present in the second pulse.

Typical spectra calculated for the Ramsey and the HRS schemes are shown in
Fig. 4.1(b). The remarkable result of the theoretical analysis [154] is that the linear
dependence of the frequency corresponding to the central minimum of the HRS
resonance signal on an error in the compensation frequency ∆S can be eliminated
over a range proportional to Ω0. The immunity against an uncompensated light
shift ∆L − ∆S is illustrated in Fig. 4.3 by comparing the spectral dependence
of the excitation probability for the Ramsey and HRS pulse sequences. For this
comparison, a frequency step ∆S 6= 0 during the pulses was also used for the
Ramsey case as in Ref. [156]. Here the fringe pattern position depends linearly
on the residual light shift ∆L − ∆S with a slope of (1 + πT/4τ)−1. In contrast
to this, the HRS excitation shows a distinctly nonlinear dependence, so that the
frequency of the minimum excitation probability remains nearly constant in a wide
interval around the perfect compensation condition ∆S = ∆L. Beyond that range
the position of the HRS fringe pattern shifts with a slope that is larger than in
the case of Ramsey excitation. The spectral resolution obtained with the HRS
scheme is only slightly reduced compared to Ramsey or Rabi excitation with the
same total interrogation time (see Fig. 4.4)

In an atomic frequency standard the frequency of an oscillator is stabilized to the
line center of the atomic resonance signal. As discussed in section 2.5, this can be
achieved by alternately recording resonance signals with a fixed positive and neg-
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Figure 4.3: Calculated excitation probability as a function of the uncompensated
light shift ∆L − ∆S and of the laser detuning ∆ν0 from the unper-
turbed transition frequency for (a) Ramsey and (b) HRS excitation.
In accordance with typical parameters of the performed experiment,
the duration of the π/2-pulse is τ = 9 ms and that of the dark period
T = 36 ms. For this comparison, a frequency step ∆S 6= 0 during the
pulses was also used for the Ramsey case as in Ref. [156]

ative detuning around the line center. For the Ramsey excitation, a discriminator
signal can also be produced by alternately applying phase steps of φ = ±π/2 to one
of the excitation pulses while the excitation frequency is kept constant [159, 160].
If applied to the HRS excitation scheme as shown in Fig. 4.1(a), the latter tech-
nique is particularly advantageous because the immunity to light shift fluctuations
is further enhanced (see below).

4.2 Spectroscopy of the Yb+ Octupole Transition

using the HRS Method

For the experimental investigation, the HRS pulse sequence is shaped by the
acousto-optic modulator (AOM) in front of the ion trap. The drive frequency
of 76 MHz is generated by a direct digital synthesizer, which enables fast and pre-
cise control of the intensity, frequency, and phase of the probe light field. The laser
frequency was tracked with the fiber-laser based frequency comb generator using
the caesium fountain clock CSF1 as the reference. The light shift ∆L is determined
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Figure 4.4: Comparison of the central feature of resonance spectra of a two-level
system for a fixed interrogation time of 288 ms. The blue line shows
the excitation probability for Rabi excitation with a single 288 ms
long pulse, the result for Ramsey interaction with 1 ms long pulses
and 286 ms free evolution period is shown as the green dotted line,
and the result for the HRS method with τ = 36 ms, T1 = 144 ms, and
T2 = 0 ms is indicated by the solid red line. The linewidth (FWHM)
of the central HRS fringe is with 3.2 Hz slightly larger compared to
Rabi (2.8 Hz) and Ramsey (1.7 Hz) excitation.

by stabilizing the laser frequency to the resonance signal obtained with Rabi ex-
citation and comparing it to the unperturbed transition frequency, that has been
measured with the real-time extrapolation technique (see section 3.2.4).

Figure 4.5 shows experimental spectra obtained with the HRS scheme together
with the calculated fringe patterns for full light shift compensation (∆L = ∆S)
and for the case ∆L − ∆S = 10 Hz, with a light shift ∆L = 1090 Hz in both
cases. From a comparison of recorded spectra with calculated lineshapes, ∆L−∆S

was determined with an uncertainty of 1 Hz. The scattering of the measured
excitation probabilities is predominantly determined by quantum projection noise.
Comparing the two cases, large differences appear in the shape of the excitation
spectrum except for the position of the central minimum which is largely unaffected.

The predicted nonlinear dependence of the stabilized probe laser frequency on
the uncompensated light shift ∆L −∆S will be experimentally investigated in the
following. Therefore, the discriminator signal for stabilization to the atomic reso-
nance is generated by alternately stepping the phase of the first probe light pulse
by ±π/2 as described above. With the interleaved servo technique the probe light
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Figure 4.5: Excitation spectra of the octupole transition in 171Yb+ using the HRS
scheme with τ = 9 ms and T = 36 ms with fully (∆L = ∆S) and
partially (∆L 6= ∆S) compensated light shift for ∆L ≈ 1 kHz. The
laser detuning is relative to the unperturbed transition frequency and
the data points are the result of 20 interrogations at each frequency
step. The solid black lines show the calculated line shapes.

frequency is stabilized for different settings of ∆S. In this way, the frequency offset
resulting from a variation of ∆S relative to the case of complete light shift com-
pensation, ∆L = ∆S can be determined. The magnitude of the light shift ∆L is
inferred from the resonant frequency using Rabi excitation measured against the
ceasium fountain clock CSF1 and the known unperturbed transition frequency.
The result of these measurements is presented in Fig. 4.6. Here, the duration of
the probe pulse is reduced to the limit given by the maximal available probe light
intensity and the experimental results are in very good agreement with the calcu-
lated dependence which is predominantly cubic around ∆S = ∆L. Also shown in
Fig. 4.6 is the predicted dependence of the central minimum of the HRS spectrum
on the residual light shift. The comparison of the two calculated curves with the
experimental data confirms the superior light shift suppression that is obtained



4.2 Spectroscopy of the Yb+ Octupole Transition using the HRS Method 71

if the laser frequency is stabilized by a discriminator signal produced by phase
steps of φ = ±π/2 of the first excitation pulse [154]. Beside this theoretical ad-
vantage, it should be noted that a stabilization to the central minimum based on
frequency stepping leads to experimental difficulties and uncertainties due to the
strong asymmetry of the central fringe for ∆L 6= ∆S (see Fig. 4.5).
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Figure 4.6: Frequency offset of the probe laser stabilized at ∆L−∆S relative to the
fully compensated case ∆S = ∆L, for T = 36 ms, τ = 9 ms and ∆L =
1090 Hz. The solid red line indicates the predicted dependence if the
discriminator signal of the stabilization is generated by alternately
stepping the phase of the initial pulse by ±π/2. The dotted line
shows the position of the central minimum of the HRS spectrum and
the dashed line shows the dependence of the center frequency of a
single pulse Rabi pattern obtained at the same intensity if the probe
laser frequency is stepped by ∆S during the interrogation.

Since the light shift ∆L scales quadratically with the Rabi frequency Ω0, and
the range of efficient suppression is limited to |∆L −∆S| < Ω0, the relative range
|∆L −∆S| /∆L increases if Ω0 is reduced. Following this idea, Figure 4.7 shows
the frequency shift induced by uncompensated light shift when the probe pulse
duration is extended to near the coherence time of the probe laser. The results
are again in good agreement with the calculated dependence, but a residual linear
dependence on the uncompensated light shift might loom up. Such a residual
linear dependence can be induced by incoherence or a reduction of the pulse area
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in the second Ramsey and the “echo” pulse due to motional heating of the trapped
ion. Therefore, it can be advantageous to apply the “echo” pulse before the free
evolution period. In this way most of the additional linear dependence induced by
the pulse area variation can be avoided. Limitations of the HRS method related
with frequency noise of the probe laser or spontaneous decay are also addressed
in Ref. [161]. Unfortunately, this reference contains a mistake; in Fig. 7 the line
describing small incoherence is accidentally shifted [162]. To make it clear, in all
discussed cases no frequency offset remains if the light shift is fully compensated
by the step frequency (∆L = ∆S).
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Figure 4.7: Frequency offset of the probe laser stabilized at ∆L−∆S relative to the
fully compensated case ∆S = ∆L, for ∆L = 60.5 Hz, T = 144 ms and
τ = 36 ms, corresponding to a linewidth of the central HRS fringe of
3.2 Hz. The solid red line indicates the predicted dependence if the
discriminator signal of the stabilization is generated by alternately
stepping the phase of the initial pulse by ±π/2. The calculation
of the dotted line assumes the same technique, but also the limited
coherence time of our probe laser (Γ2 = 1.5 s−1). For the dashed line
additionally motional heating of the ion is considered that reduces
the pulse area during the last pulse by 10%. The inset is an enlarged
view showing the frequency offset in units of the frequency ν0 of the
Yb+ octupole transition.
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4.3 Application of the HRS Method in an

Optical Frequency Standard

The extraordinary advantage of the HRS method to suppress the light shift re-
quires a priori knowledge of its magnitude. Although this can be achieved by
light shift extrapolation, slow variations of ∆L during the operation as a frequency
standard can degrade the compensation. Furthermore, even if the mismatch is
comparably small, decoherence and residual thermal motion of the ion can reduce
the suppression efficiency. To avoid such limitations, the step frequency needs to
be adjusted to the light shift in real time. In order to steer the step frequency, a
stabilization using the HRS scheme is combined with a second servo system where
Rabi spectroscopy with the same probe light intensity is performed. In this way
the frequency offset νRabi − νHRS between the different excitation techniques is de-
termined using the interleaved servo technique that was discussed before. The
dependence on uncompensated light shift for both excitation schemes is sketched
in Fig. 4.6 and is significantly larger for Rabi spectroscopy. Therefore, νRabi−νHRS

is a sensitive measure for uncompensated light shift and can be used in a negative
feedback loop to control the step frequency ∆S.

The required gain of the feedback loop depends on the constancy of the light
shift. In our case, slow relative variations of the light shift of less than 1%/h are
typically observed. They predominantly result from pointing drifts and from a
residual dependence of the optical power of the probe laser radiation at 467 nm
on the ambient temperature. In a first test of this controlled HRS technique,
the interleaved stabilization switched between the excitation methods after every
fourth interrogation, so that 50% of the total measurement time are used for the
light shift measurement. Due to the construction of the software that controls
the experiment, the cycle time was equal in both modes. The frequency difference
between the two modes was recorded every 10 s and 5% of the value were subtracted
from ∆S. Figure 4.8 shows a recording of the controlled step frequency, which
approximates the light shift at the ion, and the frequency offset measured between
the two servo systems. Here, the parameters T = 122 ms and 2τ = 61 ms were
chosen and the orientation of the magnetic field was adjusted to permit similar
excitation probability of the octupole transition with a comparable light shift for
two mutually orthogonal directions.

To investigate the effect and the quality of the light shift control loop, the Allan
variance of the frequency offset, is plotted in Fig. 4.9. The frequency instability is
significantly below 1 Hz and decreases from a few 100 s on linearly with the inte-
gration time reaching the 26 mHz level after ≈104 seconds. This clearly shows the
operation of the servo system, so that the formerly purely systematic uncertainty
of the light shift becomes a mainly statistical uncertainty.
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Figure 4.8: Frequency step ∆S of the controlled HRS method versus the opera-
tion time of the frequency standard. The frequency step is controlled
to compensate the light shift in the HRS method and for Rabi spec-
troscopy using the frequency difference (νHRS − νRabi).

As discussed above, the frequency shift observed with the HRS method can have
a residual linear dependence on the uncompensated light shift if motional heating
and a limited coherence time of the probe laser frequency are taken into account.
For |∆L −∆S| � Ω0 this linear contribution dominates, but the frequency shift
for HRS is at least 15 times smaller than for the Rabi spectroscopy with the pa-
rameters of the present status of the experiment. Hence, the observed instability
of 26 mHz for an averaging time of about 104 s (see Fig. 4.9) leads to a fractional
frequency uncertainty of 2.7×10−18. This constitutes a shift suppression by nearly
five orders of magnitude and is, however, a rather conservative estimate, since the
step frequency control loop operates the entire measurement time, so that the ob-
served instability could be extrapolated to the total measurement time. Depending
on the expected total measurement time and the instability of the light shift, the
duty cycle of the operation with the HRS method can be increased. This reduces
the long-term frequency instability of the frequency standard, but increases the
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Figure 4.9: Allan deviation σy(τ) of the frequency difference (νHRS−νRabi) versus
the averaging time τ . The line is a guide to the eyes.

instability of the frequency offset. A too large instability of frequency offset can
certainly limit the light shift cancellation, but tests of operation with HRS duty cy-
cles of 66% and 75% did not show significant increase of the systematic uncertainty
if long continuous measurements are performed.

To summarize, the controlled HRS method permits efficient elimination of the
probe laser induced light shift and any transition frequency shift which appears
synchronously with the interaction with the probe light. Beside the AOM chirp,
a well-known example for this is the Zeeman shift in optical frequency standards
relying on magnetic-field induced transitions [150–153]. In contrast to extrapola-
tion techniques this scheme does neither require precise intensity measurements
nor information on the relation between intensity and shift.



5 Absolute Frequency
Measurements

In this chapter measurements of the 2S1/2(F = 0)→ 2D3/2(F = 2) and 2S1/2(F =
0) → 2F7/2(F = 3) transition frequency versus caesium fountain clocks will be
discussed. The first section describes the optical frequency comb generator that
was used to perform the measurements of the optical frequency with respect to a
microwave reference. In the second section, two measurements of the transition
frequency of the octupole transition will be discussed and the last section describes
a similar measurement of the quadrupole transition frequency.

5.1 Measurement and comparison of optical

frequencies

Optical frequency standards vastly benefit from the 4 to 5 orders of magnitude
higher transition frequencies when compared to microwave references. Even though
optical standards had been developed for many years, comparisons with other stan-
dards, especially the primary microwave reference, was very difficult. Such mea-
surements were mainly based on harmonic frequency chains to bridge the spectral
difference [163], and a phase-coherent measurement was particularly difficult, as it
required simultaneous operation of several phase-locked loops [164]. The advent
of the optical frequency comb generator at the beginning of the present century
has changed this situation significantly, as it allows for phase-coherent measure-
ments and comparisons of a wide range of optical frequencies with an accuracy
comparable to that obtained in the microwave regime [165].

As shown in Fig. 5.1, the output of a mode-locked laser with a repetition rate
frep of ultrashort pulses in the time domain can be interpreted as a comb in the
frequency domain. The width of the comb spectrum is given by the inverse of
the duration of a single pulse in the time domain. The frequency νn of the nth
mode of the comb can be calculated as an integer number n times frep plus a
constant frequency offset fCEO, which arises due to the fact that the group and
phase velocities inside the laser cavity are different and is related to the pulse-to-
pulse carrier envelope offset ∆φ in the time domain. While the repetition rate can
be measured easily with a fast photodetector, a convenient measurement of fCEO

76
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requires the comb to span a full octave, i.e. the spectrum contains νn and ν2n. In
this case, fCEO can be measured by heterodyne detection of ν2n = 2nfrep + fCEO

with the frequency doubled nth mode of the comb at 2νn = 2nfrep + 2fCEO. One
way to operate the frequency comb is to stabilize fCEO and frep to an accurate
microwave reference, which in turn determines the frequency of each mode of the
comb.

time domain
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Figure 5.1: Output of a mode-locked ultrashort pulse laser in the time and fre-
quency domain. In the time domain a pulse-to-pulse phase slip ∆φ
results from dispersion within the laser resonator and results in an
offset frequency fCEO = ∆φ/2π. If fCEO and frep are stabilized to a
well defined reference, the frequency comb can be used as a “ruler”.
Various optical frequencies νopt can be measured and compared in
a phase-coherent fashion, by simultaneous recording of the beat fre-
quency fx between a comb mode νn and the optical radiation under
investigation.

The stabilized frequency comb can be used to measure laser radiation by het-
erodyne detection. The measured beat frequency fx permits to calculate the laser
frequency as νL = mfrep + fCEO ± fx. The integer number m and the sign in
front of fx are deduced from a measurement of the optical wavelength e.g. with a
commercially available wavemeter.

Besides the very specific application to measure optical frequencies, frequency
combs have wide application in spectroscopy and metrology. The precise compari-
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son of two optical frequencies is another metrological application. If the comparison
is based on a measurement of the frequency difference, a fraction of the noise of
the microwave reference enters the measurement process. The fraction is equal to
the ratio of the frequency difference and the absolute frequency. The frequency
comb setup in our laboratory makes use of the transfer oscillator concept of Telle
et al. [166], which is based on measurements of frequency ratios rather than fre-
quency differences. The technique relies on fast radio frequency electronics to track
and process the detected signals fCEO, frep, and fx, with a transfer bandwidth in
the megahertz range. The technique is particularly advantageous, if the frequency
comb does not provide sufficient controlling elements to stabilize the frequency
comb with a high bandwidth to an optical reference e.g. a high finesse cavity. Be-
sides the measurement of frequency ratios of optical radiation, signal processing can
also be used to transfer the stability of an optical resonator to the microwave regime
by controlling the frequency of a dielectric resonator oscillator (DRO) [115, 121].
Due to the high spectral purity of the optically stabilized microwave oscillator, it
can replace the quartz-based local oscillator of a fountain clock and thus reduces
the clock instability related with the Dick effect to an insignificant level. Following
this idea, the reference cavity of the probe laser system was used as the reference for
the DRO that served as the local oscillator of the caesium fountain clock CSF2 in
the measurements discussed here [167]. A detailed description of the stabilization
of the DRO and the decreased instability of the fountain clock is given in detail in
Refs. [121,168].

5.2 Measurement of the 2S1/2 → 2F7/2 Transition

Frequency

5.2.1 Measurement in October 2010

In the first precise measurement of the 2S1/2(F = 0) → 2F7/2(F = 3) transition
frequency at PTB in October 2010 versus the caesium fountain clock CSF1 in our
laboratory [116,117], the real-time extrapolation scheme discussed in section 3.2.4
was used to cancel the effect of the light shift by the probe laser system. Figure 5.2
shows the result of eight measurements of the extrapolated transition frequency ob-
tained with different settings of the optical power resulting in a high intensity IH
and a low intensity IL at the position of the ion. All results agree within the statis-
tical uncertainty, which is determined by the frequency instability of CSF1 and the
measurement time and yield no evidence for systematic shifts related to the choice
of IH and IL. The observed fractional frequency instability of the measurement is
compared in Fig. 5.3 to that obtained in a previous measurement of the quadrupole
transition frequency with the same fountain [85]. The very good agreement of the
data results from the fact that the combined instability is dominated by the con-
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tribution of the fountain clock of ≈1.4 × 10−13/
√
τ(s) to the fractional frequency

instability, where τ is the measurement time. For the quadrupole transition, the
frequency standard can be operated with an instability of about 7× 10−15/

√
τ(s),

which is inferred from a measurement of the stability of the frequency difference
between two independently operating interleaved stabilizations with the same in-
terrogation period. The result was limited by the quantum projection noise and
an improved instability for extended interrogation times is not expected due to the
limited lifetime of the 2D3/2(F = 2) of 53 ms [85,102]. Here, it is assumed that the
observed instability of the frequency difference results from two oscillators with the
same instability and that the instability of the frequency standard will decrease by√

2, if it is operated without interleaved stabilization. For the frequency standard
based on the octupole transition, a similar instability is expected. In comparison
with the quadrupole standard, the instability is decreased due to the larger in-
terrogation times, but the operation with interleaved stabilization is required to
extrapolate the light shift.

Measurement
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Figure 5.2: Measurements of the octupole transition frequency ν0 for various com-
binations of probe pulse intensities and resulting time-averaged light
shift magnitudes ∆νH and ∆νL used in an interleaved servo extrap-
olation scheme (see text). The error bars represent the statistical
uncertainty, and the dashed gray line indicates the mean value that
determines ν0.

Table 5.1 summarizes the leading systematic frequency shifts and their uncer-
tainty present during the measurement. The magnetic field was kept constant for
all measurements, thus no suppression of a residual quadrupole shift or the tenso-
rial quadratic Stark shift can be expected. For the frequency shift evaluation as
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Figure 5.3: Comparison of the Allan deviation of the octupole transition fre-
quency measurement and a previously performed measurement of the
quadrupole transition frequency using the fountain clock CSF1 [85].
Both measurements show white frequency noise dependence and av-
erage as sigmay(τ) ≈ 1.4× 10−13/

√
τ(s)

published in Ref. [29], the second-order Zeeman shift was calculated according to
the sensitivity (1.72(3) mHz/µT) published in Ref. [126]. This value leads to an
underestimation of the shift as discussed in section 3.4, where a different sensitivity
of 2.03(2) mHz/µT has been determined.

The blackbody radiation shift during the measurement can now be calculated
with significantly smaller uncertainty, as discussed in section 3.2.7, since the previ-
ously assigned uncertainty was mainly caused by the uncertainty of the differential
static scalar polarizability. The fractional frequency shift of the octupole transition
during the first measurement was −111(50)× 10−18.

To correct for the gravitational red shift, that appears since the caesium atoms
are at an averaged height of 0.644(5) m above the Yb+ ion in the trap, the measured
frequency is increased by 70.3(6)× 10−18.

The mean value of the results presented in Fig. 5.2 obtained with a total mea-
surement time of 87 h determines the octupole transition frequency to be 642 121
496 772 645.13(51) Hz. Here, the total fractional uncertainty of 8.0 ×10−16 results
from the combination of the statistical contribution (2.5 × 10−16), the systematic
uncertainty of the caesium fountain clock (7.6 × 10−16) and the systematic uncer-
tainty due to the realization of the octupole transition frequency (0.5 × 10−16).
The achieved total uncertainty represented an improvement by more than a factor
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Effect δν/ν0 (10−18) u/ν0 (10−18)

Light shift extrapolation 0 42

Quadrupole shift 0 22

Second-order Doppler shift 0 16

Quadratic dc Stark shift 0 4

Servo error 0 3

Blackbody radiation shift −71 3

Second-order Zeeman shift −40 1

Total −111 50

Table 5.1: Leading fractional shifts δν/ν0 of the octupole transition frequency ν0

and uncertainty contributions u/ν0.

of 15 in comparison with the measurement presented in Fig. 3.1 and a factor of 20
with the previously published result [114].

5.2.2 Measurement in December 2012

The second precise measurement of the octupole transition frequency was per-
formed in December 2012. In contrast to the first measurement, the controlled
“hyper-Ramsey” spectroscopy was used to reduce the uncertainty due to the light
shift and the transition frequency was averaged for three mutually orthogonal ori-
entations of the magnetic field to cancel the quadrupole shift. Measurements of
the motional sidebands allowed for an improved estimate on the residual second-
order Doppler shift. Due to the limited resolution of the direct digital synthesis
generator of 32 bits used for generating the RF signal for the pulsing AOM, a
frequency correction of −34.8(1)× 10−18 was applied to obtain the expected offset
of 76 MHz. All other leading systematic frequency shifts and uncertainty contri-
butions present during the measurement of the octupole transition frequency are
shown in Table 3.3.

Another significant difference to the first measurement was, that additionally
PTB’s second fountain clock CSF2 was operating, with a smaller systematic un-
certainty. Furthermore, an optically stabilized microwave oscillator was used for
this clock, allowing for a smaller frequency instability. Beside the microwave refer-
ence, an optical lattice clock was operating during the measurement and could be
used for comparisons for about half of the entire measurement period [39,134].

Figure 5.4 compares the observed fractional instabilities of the transition fre-
quency measured with the two fountain clocks and the frequency ratio of the
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5s2 1S0 → 5s5p 3P0 transition of 87Sr and the octupole transition. The latter
can be used to estimate the frequency instability of the single ion clock to be
5.3×10−15/

√
τ(s), as the contribution of the optical lattice clock is expected to be

significant smaller, resulting from the superior signal-to-noise ratio and the smaller
short-term instability of their probe laser system [39]. It should be noted, that
in half of all interrogation cycles of the frequency standard based on the octupole
transition, Rabi spectroscopy was performed to control the step frequency of the
HRS method, which was used for the rest of time. If Rabi interrogations are only
performed for 1/4 of all measurement cycles, the instability should decrease by
about 18% which reduces the measurement time by 33% to reach the same statis-
tical uncertainty.
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Figure 5.4: Allan deviation of the octupole transition frequency measured against
CSF1 (triangles) and CSF2 (circles). The observed instability can
be described by white frequency noise, and an averaging as 1.5 ×
10−13/

√
τ(s) and 1.2× 10−13/

√
τ(s) is found by linear regression for

CSF1 and CSF2, respectively. The squares indicate the fractional
instability of the frequency ratio between the octupole transition fre-
quency and the 5s2 1S0 → 5s5p 3P0 transition of 87Sr, realized in a fre-
quency standard with about 1500 atoms trapped in an optical lattice.
Due to its superior frequency instability, the fitted 5.3×10−15/

√
τ(s)

dependence is attributed to the single ion clock.
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The measurement of the absolute octupole transition frequency with the two
fountain clocks was performed for about 350000 s between the 10th and 18th of
December 2012 leading to relative statistical uncertainties of 2.5×10−16 and 2.0 ×
10−16 for CSF1 and CSF2. The systematic uncertainties of the caesium fountains
are 7.3× 10−16 for CSF1 and 4.0× 10−16 for CSF2. The results of both frequency
measurements are corrected for the gravitational red shift. Averaging the two
values and combing it with the 3.9 × 10−18 uncertainty due to the realization of
the optical transition yields the frequency of the unperturbed octupole transition
as ν0(E3) = 642 121 496 772 645.34(25) Hz. The individual results of ν0(E3) −
0.17(50) Hz and ν0(E3)+0.06(29) Hz of CSF1 and CSF2 are in very good agreement
and this measurement constitutes one of the most precise measurements of optical
transition frequencies [30]. This result was also used together with the observed
frequency ratio to determine the frequency of 5s2 1S0 → 5s5p 3P0 transition realized
in the optical lattice clock [39].

In between the first and the second measurement of the octupole transition fre-
quency at PTB, its value was also determined using light-shift extrapolation at the
National Physical Laboratory (UK) in a similar single ion experiment [169]. The
published value of ν0(E3) = 642 121 496 772 646.22(67) Hz is in good agreement
with our result and the agreement can be improved, if the values are corrected ac-
cording to the difference between the caesium fountain as evaluated by the Bureau
International des Poids et Mesures (BIPM) relative to the international atomic
timescale (TAI) [170]. Following the first two measurements of the octupole tran-
sition frequency with an accuracy comparable with the best realization of the SI
second, the frequency has been endorsed to the list of secondary representations of
the SI second. The recommended value of the frequency is 642 121 496 772 645.6 Hz
with a fractional uncertainty of 1.3 × 10−15. Figure 5.5 summarizes the absolute
frequency measurements of the octupole transition.

5.3 Measurement of the 2S1/2 → 2D3/2 Transition

Frequency

The frequency ν0(E2) of the unperturbed quadrupole transition was determined
from data comprising a total measurement time of 64.5 h within a 5-day period
in August 2012 using CSF1 and CSF2 as the reference. The measurement is re-
ported in detail in Ref. [121], and the measurement with CSF2 has been the first
evaluation of an optical transition frequency, in which a fountain clock used the
optically stabilized microwave as the local oscillator. The frequency ν0(E2) was
simultaneously measured by the fountain CSF1. Here the frequency difference be-
tween the CSF1 quartz oscillator and a hydrogen maser was registered by a phase
comparator while the maser frequency was linked to the stabilized probe laser
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Figure 5.5: Results of absolute frequency measurements at PTB in 2010 [29], at
NPL (UK) in 2011 [169] and in 2012 at PTB. The last measurement
was performed versus two fountain clocks and the individual results of
this measurement are plotted at a shifted position in gray. Here, the
result of CSF1, which was also used in 2010, is indicated by a circle
and that of CSF2 is shown as a square. The error bars indicate the
total uncertainty, and the blue and green intervals illustrate the sys-
tematic uncertainty of the caesium fountain reference and the optical
frequency standard. The red line shows the recommended frequency
of the transition as a secondary representation of the SI second and
the light yellow region the associated uncertainty [58].

frequency by means of the frequency comb generator. A significant contribution
to the systematic uncertainty of a caesium fountain results from the collisional
shift [167]. It is determined through an adiabatic passage technique that reduces
the density of launched Cs clouds by exactly a factor of 2 [171, 172]. In all other
measurements with caesium fountains presented here, the collisional shift and its
uncertainty were evaluated in a separate measurement. During this measurement,
however, for CSF2 a complete evaluation of this shift effect was performed. As a
consequence, the frequency instability of the fountain clock was degraded and due
to the limited total measurement time, the uncertainty of the collisional shift be-
came the leading contribution to the systematic uncertainty of CSF2 and amounts
to 5.5× 10−16. The leading systematic shift effects and the associated uncertainty
contributions of the optical frequency standard are listed in Table 5.2.



5.3 Measurement of the 2S1/2 → 2D3/2 Transition Frequency 85

Effect δν/ν0 (10−18) u/ν0 (10−18)

Blackbody radiation shift −524 102

Quadrupole shift and tensor
0 14

second-order dc Stark shift

Scalar second-order dc Stark shift −13 7

Second-order Zeeman shift 968 7

Second-order Doppler shift −5 3

Servo error 0 36

Total 426 110

Table 5.2: Leading fractional shifts δν/ν0(E2) and associated uncertainty con-
tributions u/ν0 of the single-ion frequency standard based on the
quadrupole transition.

The systematic uncertainties of CSF1 and CSF2 during the measurement are
7.4 × 10−16 and 5.9 × 10−16 and the statistical uncertainties of the measurements
are 3.2 × 10−16 and 2.8 × 10−16. The fractional difference between the frequen-
cies measured by CSF1 and CSF2 is 2.6 × 10−16. The weighted mean yields the
absolute frequency of the 171Yb+ 2S1/2(F = 0) → 2D3/2(F = 2) transition as
ν0(E2) = 688 358 979 309 307.82(36) Hz. The total uncertainty of 0.36 Hz (relative
uncertainty 5.2×10−16) is dominated by the systematic uncertainty of the caesium
fountain references. Figure 5.6 shows that the present result is in good agreement
with those obtained in the last 7 years [85, 173, 174] with different experimental
configurations and systematic shift evaluation methods.
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6 Conclusion and Outlook

A frequency standard based on the octupole transition of a single 171Yb+ ion with
a small systematic uncertainty has been realized. A new repump scheme in com-
bination with a probe laser system with a low short-term instability permits the
cycling interrogation on the reference transition. The so-called “hyper-Ramsey”
spectroscopy with a real-time stabilization of its parameters reduces the previously
limiting light shift by 5 orders of magnitude. The other clock transition of 171Yb+,
the quadrupole transition at 436 nm, can either serve as the reference in a fre-
quency standard, or be employed to determine residual fields. In combination with
the measured small sensitivities of the octupole transition frequency, a shift evalu-
ation with very small uncertainties can be performed. From a measurement where
infrared radiation was studied by the effect of near infrared lasers, the frequency
shift induced by thermal radiation at room temperature can be corrected with high
precision. As a result, the frequency standard is presently evaluated with a relative
systematic uncertainty of 3.9× 10−18, which appears to be the smallest among all
atomic clocks.

Following the first two measurements of the octupole transition frequency with
an accuracy comparable with the best realization of the SI second at NPL and
PTB [29, 169], the octupole transition frequency has been endorsed to the list of
secondary representations of the SI second [58]. A later measurement versus the
two fountain clocks of PTB is in very good agreement with the first result.

A further reduction of the systematic uncertainty of the octupole frequency stan-
dard can be achieved by proceeding the investigations of the Stark shift induced by
infrared and near-infrared lasers. Here, a relative uncertainty below 1% seems to be
within reach. A comparably low uncertainty can be expected from the evaluation
of the effective temperature perturbing the ion, so that uncertainties related with
thermal radiation at room temperature of not larger than 1 × 10−18 are expected
within the next year. Finally, the thermal radiation shift might be canceled by cool-
ing to cryogenic temperatures. If the cooling is performed with liquid nitrogen, the
fractional shift at 77 K is only 3× 10−19.

Currently, the residual motion of the ion can only be evaluated precisely along
one direction. Addressing this limitation, a second ion trap with improved optical
access is presently under investigation. Of particular importance is a reduction
of the heating rate, since the motional heating of the ion during its interrogation
presently prevents significantly longer interaction times. A reduction of the heating
rate is particularly advantageous if two ion clocks based on the octupole transition

87
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are compared using the same probe laser as the local oscillator. In this case,
relative frequency differences of the two systems can be observed with interrogation
periods significantly larger than the coherence time of the probe laser system. This
cancellation of the common-mode noise has been demonstrated for single ions in
one trap [145] and is used for measurements between optical lattice clocks [34].
Due to the extraordinary long lifetime of the 2F7/2 state, this technique can be
employed to compare single-ion clocks with frequency instabilities that have so far
only been demonstrated with optical lattice clocks.

The very good agreement of the octupole transition frequency measurement at
PTB and NPL suggests to determine the frequency ratio of the two systems, which
is independent from the caesium reference. Such a direct comparison might be
performed based on satellite links, as it has recently been demonstrated between
optical clocks at NICT in Japan and PTB [175]. Unfortunately, aside from large
instabilities even for long averaging times, a significant contribution to the total
uncertainty resulted from systematics of the employed satellite link. The presently
most promising technique to link optical clocks on intracontinental scale are sta-
bilized optical fibers [176, 177]. But even if each clock can realize the transition
frequency with highest accuracy, and the link does not contribute, the agreement
of the two clocks is concealed by the daily local altitude fluctuations and hence
gravitational field variations at the 10−17 level [178]. On the other hand, this il-
lustrates that optical clocks can actually be used to perform so-called “relativistic
geodesy” [41].

The high accuracy of clock comparisons is also employed to test fundamental
physics; the measurements presented in chapter 5 yield strict limits for tempo-
ral variations of fundamental constants. Even tighter constraints on the temporal
variation of the fine structure constant α are expected from further comparisons
of the particularly sensitive octupole transition frequency with others transition
frequencies realized in optical clocks of high accuracy. This proposal is presently
perused and it should be noted that comparisons with the quadrupole transition
frequency can also yield small uncertainties for dα/dt, as its uncertainty mainly
results from the shift induced by thermal radiation which drops out if the fre-
quency comparisons are performed separated in time under otherwise unchanged
conditions.
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[4] L. Essen, Ann. franç. Chronom. 1, 343 (1955).

[5] L. Essen and J. V. L. Parry, Philosophical Transactions of the Royal Society
of London. Series A, Mathematical and Physical Sciences 250, 45 (1957).

[6] W. Markowitz, R. G. Hall, L. Essen, and J. V. L. Parry, Phys. Rev. Lett. 1,
105 (1958).

[7] N. F. Ramsey, Phys. Rev. 78, 695 (1950).

[8] M. A. Kasevich, E. Riis, S. Chu, and R. G. DeVoe, Phys. Rev. Lett. 63, 612
(1989).

[9] A. Clairon, P. Laurent, G. Santarelli, S. Ghezali, S. Lea, and M. Bahoura,
IEEE Trans. Instrum. Meas. 44, 128 (1995).

[10] R. Wynands and S. Weyers, Metrologia 42, 64 (2005).

[11] J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours,
G. Santarelli, P. Rosenbusch, M. Tobar, R. Li, K. Gibble, A. Clairon, and
S. Bize, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 59, 391 (2012).

[12] T. P. Heavner, E. A. Donley, F. Levi, G. Costanzo, T. E. Parker, J. H. Shirley,
N. Ashby, S. Barlow, and S. R. Jefferts, Metrologia 51, 174 (2014).

[13] D. Allan, Proceedings of the IEEE 54, 221 (1966).

[14] J. E. Gray and D. Allan, in 28th Annual Symposium on Frequency Control.
1974, 243 (1974).

[15] W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen,
F. L. Moore, M. G. Raizen, and D. J. Wineland, Phys. Rev. A 47, 3554
(1993).

89



90 BIBLIOGRAPHY

[16] R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward,
Applied Physics B 31, 97 (1983).

[17] B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, Phys. Rev. Lett.
82, 3799 (1999).

[18] T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J.
Martin, L. Chen, and J. Ye, Nat. Photon. 6, 687 (2012).

[19] T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D.
Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, Phys.
Rev. Lett. 86, 4996 (2001).

[20] J. Stenger, H. Schnatz, Chr. Tamm, and H. R. Telle, Phys. Rev. Lett. 88,
073601 (2002).

[21] T. Ido and H. Katori, Phys. Rev. Lett. 91, 053001 (2003).

[22] M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, Nature 435, 321 (2005).

[23] W. Paul and H. Steinwedel, Z. Naturforschung A 8, 448 (1953).

[24] W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt, Phys. Rev. Lett.
41, 233 (1978).

[25] J. C. Bergquist, R. G. Hulet, W. M. Itano, and D. J. Wineland, Phys. Rev.
Lett. 57, 1699 (1986).

[26] T. Rosenband, D. Hume, P. Schmidt, C. Chou, A. Brusch, L. Lorini, W. Os-
kay, R. Drullinger, T. Fortier, J. Stalnaker, S. Diddams, W. Swann, N. New-
bury, W. Itano, D. Wineland, and J. Bergquist, Science 319, 1808 (2008).

[27] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosen-
band, Phys. Rev. Lett. 104, 070802 (2010).

[28] S. Falke, H. Schnatz, J. S. R. Vellore Winfred, T. Middelmann, S. Vogt,
S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat,
Metrologia 48, 399 (2011).

[29] N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, Chr. Tamm, and
E. Peik, Phys. Rev. Lett. 108, 090801 (2012).

[30] R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall,
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[118] P. Balling, Doležal, and C. Sanner, To be published.

[119] G. P. Barwood, H. S. Margolis, G. Huang, P. Gill, and H. A. Klein, Phys.
Rev. Lett. 93, 133001 (2004).

[120] L. Olschewski, Zeitschrift für Physik 249, 205 (1972).

[121] Chr. Tamm, N. Huntemann, B. Lipphardt, V. Gerginov, N. Nemitz,
M. Kazda, S. Weyers, and E. Peik, Phys. Rev. A 89, 023820 (2014).

[122] I. I. Sobelman, Atomic Spectra and Radiative Transitions, Springer-Verlag,
Heidelberg, 2nd edition (1992).

[123] G. H. Gossel, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 88, 034501
(2013).

[124] P. Fisk, M. Sellars, and C. Lawn, M.A.and Coles, IEEE Trans. Ultrason.
Ferroelect. Freq. Contr. 44, 344 (1997).

[125] W. F. Meggers, Journal of Research of the National Bureau of Standards
71A, 396 (1967).

[126] K. Hosaka, S. A. Webster, P. J. Blythe, A. Stannard, D. Beaton, H. S.
Margolis, S. N. Lea, and P. Gill, IEEE Trans. Instrum. Meas. 54, 759 (2005).

[127] L. Cutler, R. Giffard, and M. McGuire, Applied Physics B 36, 137 (1985).

[128] J. Vetter, M. Stuke, and E. Weber, Zeitschrift für Physik A Atoms and Nuclei
273, 129 (1975).

[129] Chr. Tamm, D. Schnier, and A. Bauch, Applied Physics B 60, 19 (1995).

[130] J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, and D. J. Wineland,
IEEE Trans. Instrum. Meas. 40, 126 (1991).

[131] H. Hotop, M.-W. Ruf, A. J. Yencha, and B. Fricke, Annalen der Physik 502,
635 (1990).

[132] L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, Opt. Lett. 19, 1777 (1994).

[133] A. Härter, A. Krükow, A. Brunner, and J. Hecker Denschlag, Applied Physics
B 114, 275 (2014).

[134] S. Falke, M. Misera, U. Sterr, and C. Lisdat, Applied Physics B 107, 301
(2012).



BIBLIOGRAPHY 97

[135] D. Kleppner, R. Vessot, and N. Ramsey, Astrophysics and Space Science 6,
13 (1970).

[136] R. F. C. Vessot, M. W. Levine, E. M. Mattison, E. L. Blomberg, T. E.
Hoffman, G. U. Nystrom, B. F. Farrel, R. Decher, P. B. Eby, C. R. Baugher,
J. W. Watts, D. L. Teuber, and F. D. Wills, Phys. Rev. Lett. 45, 2081 (1980).

[137] N. K. Pavlis and M. A. Weiss, Metrologia 40, 66 (2003).

[138] A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li,
T. Ido, T. Takano, M. Takamoto, and H. Katori, Applied Physics Express 4,
082203 (2011).

[139] C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, Science 329,
1630 (2010).

[140] C. Degenhardt, T. Nazarova, C. Lisdat, H. Stoehr, U. Sterr, and F. Riehle,
IEEE Trans. Instrum. Meas. 54, 771 (2005).

[141] I. Stefanskii, S. Mikhalevich, Y. Burak, and V. Sapovskii, Journal of Applied
Spectroscopy 51, 790 (1989).

[142] N. F. Ramsey, Rev. Mod. Phys. 62, 541 (1990).
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ne die hervorragenden Arbeitsumgebungen, die sich über viele Jahre entwickelt
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