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Abstract 

The mammalian target of rapamycin complex 1 (mTORC1) on lysosomes and late endosomes 

(Ly/LEs) integrates intra- and extracellular nutrient signals and regulates metabolic pathways 

such as protein synthesis, lysosome biogenesis and autophagy. Many factors stimulate 

mTORC1 activity, including the production of phosphatidylinositol 3,4,5-trisphosphate 

[PI(3,4,5)P3] by class I phosphatidylinositol 3-kinases (PI3Ks) at the plasma membrane and 

phosphatidylinositol 3-phosphate [PI(3)P] by class III phosphatidylinositol 3-kinase at 

endosomes. In contrast, within the course of this thesis phosphatidylinositol 3,4-bisphosphate 

[PI(3,4)P2], synthesized by class II PI3K b was identified as a negative regulator of mTORC1. 

PI3KC2b is shown to repress mTORC1 activity locally on Ly/LEs, whereas loss of PI3KC2b 

hyperactivates mTORC1. Growth factor deprivation induces the association of PI3KC2b with 

the Raptor subunit of mTORC1 and local PI(3,4)P2 synthesis triggers repression of mTORC1 

activity through association of Raptor with inhibitory 14-3-3 proteins.  

We used SILAC (stable isotope labeling with amino acids in cell culture) based quantitative 

mass spectrometry to identify growth factor dependent interaction partners and post-

translational modifications of PI3KC2b. We could show that 14-3-3 protein binding to 

phosphorylated threonine 279 in the presence of growth factors competes with the 

recruitment of PI3KC2b to mTORC1 and to Ly/LEs. Furthermore, protein kinase N 2 (PKN2) was 

found to be the major kinase that phosphorylates PI3KC2b at T279, thereby triggering its 

complex formation and cytosolic sequestration with inhibitory 14-3-3 proteins to activate 

mTORC1. Conversely, loss of PKN2 or mutational inactivation of its target phosphorylation site 

in PI3KC2b repress nutrient signaling via mTORC1. Furthermore, mammalian target of 

Rapamycin Complex 2 (mTORC2) was shown to activate PKN2, while mTORC2 inhibition 

mimicked the effects of PKN2-loss upon PI3KC2b. 

Together, these results uncover a novel mechanism that couples mTORC2-dependent 

activation of PKN2 to the regulation of mTORC1-mediated nutrient signaling via PI3KC2b-

mediated PI(3,4)P2 synthesis. 
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Zusammenfassung  

Der mammalian target of Rapamycin Complex 1 (mTORC1) auf Lysosomen und späten 

Endosomen (Ly/LEs) registriert und integriert intra- und extrazelluläre Signale und reguliert  

zelluläre Stoffwechselwege wie die Proteinsynthese, Lysosomen Biogenese und Autophagie. 

mTORC1 Aktivität wird von vielen verschiedenen Faktoren stimuliert, vor allem über 

Produktion von Phosphatidylinositol 3,4,5-trisphosphat [PI(3,4,5)P3] durch Klasse I 

Phosphatidylinsoitol 3-Kinasen (PI3Ks) an der Zellmembran und die lokale Produktion von 

Phosphatidylinositol 3-Phosphat  [PI(3)P] durch die Klasse III PI3K.   Wie im Verlauf dieser 

Arbeit gezeigt, fungiert Phosphatidylinositol 3,4-Bisphosphat  [PI(3,4)P2],  welches von der 

Klasse II PI3K b produziert wird, als  negativer Regulator von mTORC1. PI3KC2b inhibiert 

mTORC1 Aktivität lokal auf Ly/LEs, während die Deletion von PI3KC2b mTORC1 hyperaktiviert.  

Entzug von Wachstumsfaktoren induziert Komplexbildung von PI3KC2b mit der Raptor 

Untereinheit von mTORC1 und die lokale Synthese von  PI(3,4)P2 reprimiert die Aktivität von 

mTORC1 durch Assoziation von inhibierenden 14-3-3 Proteinen mit Raptor. 

Durch SILAC basierte quantitative Massenspektrometrie zur Identifikation Wachstumsfaktor-

abhängiger Interaktionspartner und posttranslationaler Modifikationen von PI3KC2b  konnte 

gezeigt werden, dass 14-3-3 Proteine in Abhängigkeit von Wachstumsfaktorstimulation an 

phosphoryliertes  Threonin-279 von PI3KC2b binden, mit der Interaktion  von PI3KC2b mit 

mTORC1 konkurrieren und somit die Rekrutierung von PI3KC2b zu Ly/LEs  verhindern. Im 

Folgenden konnte die Proteinkinase N 2 (PKN2) als hauptverantwortliche Kinase für die 

Phosphorylierung von T279 in PI3KC2b identifiziert werden, womit PKN2 deren  

Komplexbildung und zytosolische Sequestrierung mit inhibitorischen 14-3-3 Proteinen 

induziert und somit mTORC1 aktiviert.  Im Gegenzug führt Deletion von PKN2 oder 

Inaktivierung der Phosphorylierungsstelle in PI3KC2b durch Mutagenese zu einer Repression 

der mTORC1 Aktivität.  Darüber hinaus konnte gezeigt werden, dass mammalian target of 

Rapamycin Complex 2 (mTORC2) für die Aktivierung von PKN2 verantwortlich ist. In der Tat 

hat mTORC2 Inhibierung ähnliche Effekte auf PI3KC2b wie die Deletion von PKN2. 

Zusammenfassend enthüllen die Ergebnisse dieser Arbeit, dass die mTORC2-abhängige 

Aktivierung der PKN2 mTORC1-vermittelte Stoffwechselwege über PI3KC2b katalysierte 

PI(3,4)P2-Synthese reguliert.



Introduction 

 4 

1 Introduction 

 

1.1 Phosphatidylinositol-phosphates 

Phosphoinositides are a minor class of comparably short-lived membrane phospholipids 

consisting of seven sub-species. These species are generated via phosphorylation or 

dephosphorylation of the inositol ring of phosphatidylinositol on its 3-, 4- and 5- OH group by 

phosphoinositide-kinases and phosphatases (Fig. 1).  

 
Figure 1.1 Interconversion of different PIs via PI-kinases and phosphatases. Taken from (Wallroth and Haucke, 2018) 

 

Phosphoinositides mediate crucial cellular and organismal functions including signaling, gating 

of ion channels, cytoskeleton regulation and motility, development as well as the regulation 

of intracellular membrane traffic (Balla, 2013; Di Paolo and De Camilli, 2006). Different PI 

species display distinct cell biological functions and distinct subcellular distributions. PI 4-

phosphates, like phosphatidylinositol 4-phosphate (PI(4)P) or phosphatidylinositol 4,5-

bisphosphate, are localized the plasma membrane and exocytic pathways, the Golgi complex 

and the trans-Golgi network (TGN) and act as key regulators of membrane traffic (Balla and 

Balla, 2006; Balla, 2013). In contrast, PI 3-phosphates are on one hand produced upon growth 

factor stimulation at the plasma membrane and initiating signaling cascades and on the other 

hand mainly found as prominent components within the endo-lysosomal system (Cantley, 

2002; Raiborg et al., 2013; Vanhaesebroeck et al., 2010a). PI 3-phosphates include 

phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 3,5-bisphosphate, 

dynamics similar to depletion of PI3KC2!. In contrast, plasma
membrane CCPs are lost upon PI(4,5)P2 depletion (16). Thus,
PI(4,5)P2 and PI(3,4)P2 exhibit distinct regulatory roles during
the early and late stages of CME (Fig. 2). How the formation and
turnover of these PIs is controlled in time and space remains
incompletely understood. Clathrin appears to play a dual role in
this process as it not only restricts PI(4,5)P2 production to early
stages but also is essential for the recruitment and activation of
PI3KC2! (15, 17). It is likely that additional factors, such as
plasma membrane PIs and/or small GTPases, control the nano-
scale localization and activity of PI3KC2!. Moreover, it is pos-
sible that the activity of PI3KC2! is physically and functionally
linked to hydrolysis of PI(4,5)P2 by PI 5-phosphatases, which
generate the PI3KC2! substrate PI(4)P. Dissecting these mech-
anisms in detail remains a fruitful area for future studies.

Recent computational modeling and super-resolution imag-
ing data show that local PI(3,4)P2 synthesis by PI3KC2! at
CCPs triggers the selective recruitment of the PX-BAR domain
protein sorting nexin 9 (SNX9; and its close homolog SNX18)
(18) to the invagination neck where its self-assembly regulates
membrane constriction (19). Interestingly, the membrane-de-
forming activity of SNX9 is controlled by an allosteric struc-
tural switch involving coincident detection of the clathrin
adaptor AP-2 and PI(3,4)P2 at endocytic sites (20). This mech-
anism thus allows the spatiotemporal coupling of SNX9/18-
mediated membrane constriction to the progression of the
endocytic pathway (21).

As SNX9 not only interacts with PIs but also with actin-
regulatory factors (18), it is conceivable that its action in CME
may couple membrane deformation to changes in actin dynam-

ics that– given the non-essential role of actin in CME in
mammals–likely are regulatory in nature (22, 23). Consistent
with this idea, it has been recently proposed based on in vitro
studies using liposomes that the concomitant presence of
PI(3)P and PI(4,5)P2 can facilitate F-actin assembly by SNX9
(24). According to this model, PI(3,4)P2 produced by PI3KC2!
is rapidly converted to PI(3)P by the 4-phosphatase INPP4A.
This PI(3)P pool serves to recruit SNX9 to late-stage CCPs.
Whether PI(3,4)P2 to PI(3)P conversion can occur at the plasma
membrane in vivo is uncertain. INPP4A has been localized to
endosomes (25) rather than CCPs. Moreover, a re-engineered
class III-like PI3KC2! mutant with wild-type PI(3)P-synthesiz-
ing activity in vivo (26), but unable to make PI(3,4)P2, fails to
rescue defective CME in the absence of the endogenous enzyme
(15). These data suggest that PI(3,4)P2 rather than PI(3)P is
required for CCP maturation and SNX9-mediated membrane
constriction. Future studies are needed to provide a better
understanding of the mechanisms that control PI(3,4)P2 hydro-
lysis by INPP4A/B and possibly other enzymes in time and
space within the early endocytic pathway.

PI(3)P defines endosomal membrane identity and is key
to endosome function

PI(3)P is a hallmark of the endosomal system and is of key
importance for endosome function. Within the endosomal sys-
tem, cargo may be recycled to the cell surface, trafficked retro-
gradely to the TGN, or sorted to multivesicular bodies (MVBs)/
late endosomes for lysosomal degradation. Although conversion
of plasma membrane-derived PI(3,4)P2 to PI(3)P by INPP4A/B
and possibly other PI phosphatases contributes to endosomal

Figure 1. Interconversion of PIs by kinases and phosphatases. Phosphatidylinositol can be phosphorylated by PI4K to yield PI(4)P), which can be further
phosphorylated by PIP5K to PI(4,5)P2, which serves as a substrate for class I PI 3-kinases (Class I PI3K) to produce PI(3,4,5)P3. Phosphorylation of PI at the 3-OH
position by class I PI 3-kinase (termed Vps34) (Class III PI3K) yields PI(3)P that can be further phosphorylated by PIKFYVE to produce PI(3,5)P2. PIKFYVE may also
synthesize PI(5)P from PI. Class II PI 3-kinases (Class II PI3K) synthesize PI(3,4)P2 from PI(4)P and PI(3)P from the PI. Myotubularins (MTMs) are 3-phosphatases that
hydrolyze PI(3)P and PI(3,5)P2. OCRL, synaptojanin 1/2, PIPP, SKIP, and INPP5E are PI(4,5)P2 5-phosphatases, Fig4 is a 5-phosphatase for PI(3,5)P2. PI(3,4,5)P3 can
be dephosphorylated by the 3-phosphatases PTEN and TPIP to PI(4,5)P2 or by the 5-phosphatases OCRL and SHIP1/2 to produce PI(3,4)P2. The 4-phosphatases
Sac1–3 and INPP4A/B dephosphorylate PI(4)P and PI(3,4)P2, respectively.

MINIREVIEW: Lipid conversion in the endolysosomal system

J. Biol. Chem. (2018) 293(5) 1526 –1535 1527
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phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, 

generated via phosphorylation of the 3- OH group of the inositol ring of phosphatidylinositol. 

Due to the rapidly reversible nature of phosphorylation and a very distinct subcellular 

localization of different PI 3-phosphate species, they serve as key regulators of signaling 

cascades as well as spatiotemporally controlled signposts of membrane identity (Fig. 2).  

 
Figure 1.2 Localization of different PI 3-phosphates including kinases and phosphatases being responsible for their 
interconversion. Plasma membrane: receptor tyrosine kinase (purple) activate results in class I PI3Ks producing PI(3,4,5)P3 . 
PI(3,4,5)P3 is a substrate for the PI 3-phosphatase PTEN and for the PI 5-phosphatases SHIP1/2 and OCRL. Furthermore class 
II PI3Ka PI(3,4)P2 necessary for clathrin-coated pit (CCP) maturation during endocytosis. Early endosomes: PI(3)P is generated 
primarily by the class III PI3K Vps34 complex II with a possible contribution of class II PI3Ks, either by direct PI(3)P synthesis 
or indirectly via PI(3,4)P2 hydrolysis by the PI 4-phosphatases INPP4A/B. Late endosomes/multivesicular bodies 
(MVBs)/Lysosomes: PI(3)P is converted into PI(3,5)P2 via the PI(3)P 5-kinase PIKfyve. Endosomes and lysosomes also harbour 
a poorly understood pool of PI(3,4)P2. In the liver, an endosomal PI(3,4)P2 pool is synthesized by class II PI3Kg. 
Autophagosomes: PI(3)P is produced by Vps34 complex I, and possibly by the class II PI3Ks (dashed line). PI(3,5)P2 turnover 
at MVBs and/or lysosomes is mediated by MTMs together with the PI(3,5)P2 5-phosphatase Fig4. Taken from (Marat and 
Haucke, 2016) 

 

PI(3,4,5)P3 and PI(3,4)P2 as a degradation product of PI(3,4,5)P3 are generated at the plasma 

membrane upon extracellular growth factor stimulation (Cantley, 2002; Vanhaesebroeck et 

and class III exclusively forms PI(3)P. A single orthologue of each

class can be found in C. elegans and D. melanogaster, while yeast

contain only a class III PI3K (Vanhaesebroeck et al, 2010a; Vadas

et al, 2011; Jean & Kiger, 2014).

Class I PI 3-kinases
Class I PI3Ks are tightly regulated enzymes that predominantly

produce PI(3,4,5)P3. They function as heterodimers, consisting of

one of four possible catalytic subunits (p110a, b, d or c) (Hiles et al,
1992) that associate with one of two classes of regulatory subunits,

the p85 class (p85a and its splice variants p55a or p50a, p85b and

p55c) and the p101/p87 class. The catalytic subunits are grouped

based on the regulatory subunit they associate with: class IA

subunits (p110a, b and d) associate with the p85 class, while the

class IB subunit (p110c) associates with p101 or p87 (Vadas et al,

2011; Jean & Kiger, 2014) (Fig 2). The assembled class I PI3Ks act

downstream of activated receptor tyrosine kinases (RTKs) and

heterotrimeric guanine nucleotide-binding protein (G protein)-

coupled receptors (GPCRs) to control signalling cascades involved

in multiple processes such as cell growth, metabolism, proliferation,

survival and repression of autophagy (Vanhaesebroeck et al, 2010a;

Jean & Kiger, 2014). The class IA catalytic subunits (p110a and d
in vivo) are activated following RTK stimulation, resulting in

the production of PI(3,4,5)P3 at the plasma membrane and the

PI(3,4,5)P3 PI(3,4)P2

PI(3,5)P2

PLASMA MEMBRANE

AUTOPHAGOSOME

ENDOSOME

CCP/
CCV

OCRL

PI3K-C2 γ

PI3K-C2 α

PTEN SHIP1/2

MTMs

MTMs

FIG4

INPP4A/B

CLASS I PI3K
p110 α, β, γ, δ

CLASS II PI3Ks

Vps34
COMPLEX I

PIKfyve

Phosphatase

Kinase

MVB

LYSOSOME

PI(3)P

MTMs

CLASS II PI3Ks

Vps34
COMPLEX II

Figure 1. Localization of 3-phosphoinositides in the cell, and their relevant kinases and phosphatases.
At the plasma membrane, receptor tyrosine kinase (purple) activation results in the production of PI(3,4,5)P3 via class I PI3Ks (with a, b, c, and d isoforms). PI(3,4,5)P3 is a
substrate for the PI 3-phosphatase PTEN and for the PI 5-phosphatases SHIP1/2 and OCRL. Class II PI3Ka generates a plasmamembrane pool of PI(3,4)P2 necessary for clathrin-
coated pit (CCP) maturation and formation of free clathrin-coated vesicles (CCV) during endocytosis. PI(3)P is a defining and essential feature of early endosomes and is
generated primarily by the class III PI3K Vps34 complex II with a possible contribution of class II PI3Ks (encircled by dashed line), either by direct PI(3)P synthesis or indirectly
via PI(3,4)P2 hydrolysis by the PI 4-phosphatases INPP4A/B. As endosomes mature into late endosomes/multivesicular bodies (MVBs), PI(3)P is converted into PI(3,5)P2 via the
PI(3)P 5-kinase PIKfyve. Endosomes and lysosomes also harbour a poorly understood pool of PI(3,4)P2. In the liver, this endosomal PI(3,4)P2 pool is synthesized by class II PI3Kc.
Autophagosomes contain PI(3)P produced by the autophagosome-specific Vps34 complex I, and possibly by the class II PI3Ks (dashed line). Endosomal recycling to the cell
surface requires PI(3)P hydrolysis by myotubularin phosphatases (MTMs) such as MTM1 and the concomitant generation of PI(4)P (not shown) to enable exocytosis. PI(3,5)P2
turnover at MVBs and/or lysosomes is mediated by MTMs together with the PI(3,5)P2 5-phosphatase Fig4.

The EMBO Journal Vol 35 | No 6 | 2016 ª 2016 The Authors
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al., 2010a) and PI(3,4)P2 has been described as an essential mediator of late stages of clathrin 

mediated endocytosis (Posor et al., 2013). PI(3)P is found as the predominant PI-species of 

early endosomes and playing an important role in autophagosome biogenesis. During the 

maturation of endosomes from early to late stages, PI(3)P is converted into PI(3,5)P2 , which 

is present on late endosomes/multivesicular bodies, lysosomal and autophagosomal 

compartments (Mayinger, 2012). Furthermore, an endosomal pool of PI(3,4)P2  has been 

described with its function has yet to be established (Watt et al., 2004). 

 

1.2 PI3-kinases 

Phosphatidylinositol 3-kinases ( PI3K) are phosphorylating the 3-OH group of the inositol ring. 

They act either on the plasma membrane, on endosomal or on autophagosomal membranes 

(Marat and Haucke, 2016). There are eight different PI3Ks grouped into three classes. The core 

of all PI3Ks, a so called ‘signature motif’ is fairly conserved through all PI3Ks, consisting of  a 

catalytic active kinase domain, a helical domain and a membrane binding C2-domain (Balla, 

2013; Vadas et al., 2011; Vanhaesebroeck et al., 2010a). The three different classes of PI3Ks 

are based on the conservation found outside of the kinase core, the appearance and type of 

regulatory domains as well as their preference of lipid-substrates. 

 

1.2.1 Class I PI3Ks 

Class I PI3Ks use PI(4,5)P2 as a substrate and produce PI(3,4,5)P3 . They are functioning as 

tightly regulated heterodimers, consisting of one of four possible  catalytic subunits 

(p110a,b,g,d) and one of two possible regulatory subunits, consisting of two classes, the p85 

class (splice variants: p85a, p55a, p50a, p85b, p55g) and the p101/87 class (Hiles et al., 1992). 

The catalytic subunits p110a,b and d (class IA subunits) interact with the regulatory p85 class 

while p110g (class IB subunit) associates with the regulatory p110/87 class (Jean and Kiger, 

2014; Vadas et al., 2011).  
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Figure 1.3 Domain structure of class I PI3Ks. ABD: Adaptor binding domain; RBD: Ras-binding domain; SH3: Src-homology 2 
domain; SH2: Src-homology 3 domain; BH: Bar cluster region homology domain; iSH2: Intervening coiled-coil domain. C2: C2-
domain. Adapted from (Marat and Haucke, 2016) 

 
All assembled class I PI3Ks act downstream of receptor tyrosine kinases (RTKs) and guanine 

nucleotide-binding protein (G-protein)- coupled receptors and are activated upon growth 

factor or mitogen binding to these receptors, further controlling downstream signaling 

cascades regulating cell survival, - growth and proliferation, metabolism and autophagy. 

p110a and p110d are mainly activated following RTK stimulation whereas p110b and p110g 

are activated downstream of GPCR activation (Stephens et al., 1994; Stoyanov et al., 1995). 

Furthermore, small GTPases like active Ras and its family members (e.g. Rab5) can bind to the 

Ras binding domain (RBD) of p110 and lead to activation of class I PI3Ks (Vanhaesebroeck et 

al., 1997). Following activation they produce PI(3,4,5)P3 mainly on the plasma membrane, but 

also on endosomes, leading to recruitment and activation of effectors binding PIP3 , most 

notably Akt (or  protein kinase B). Akt controls many downstream pathways such as the 

mammalian target of rapamycin complex-1 (mTORC1) pathway as well as FOXO transcription 

factors and the pro-apoptotic factor BAD (Dibble and Cantley, 2015; Vanhaesebroeck et al., 

2010a). Due to their crucial role in early steps of signaling cascades controlling cell growth and 

proliferation, on one hand activating mutations of class I PI3Ks are associated with cancer and 

on the other hand they represent import drug targets (Vanhaesebroeck et al., 2010b). 
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1.2.2 Class II PI3Ks 

Class II PI3Ks are the least studied class of PI3Ks with functions in signaling and membrane 

traffic. Class II PI3Ks are large monomeric enzymes lacking a regulatory subunit, but  

containing additional C-terminal PX and C2 domains compared to class I or class II PI3Ks. Three 

isoforms (PI3KC2a,b and g) are present in mammals, whose main difference lies in their 

unstructured N-terminal extensions, which differ in length and amino acid sequence. 

 
Figure 1.4 Domain structure of class II PI3Ks. RBD: Ras-binding domain; CB: clathrin binding region; PxxP: proline rich 
segment. PX: Phox homology domain. C2: C2-domain. Adapted from (Marat and Haucke, 2016) 

 

These N-terminal extensions likely play regulatory roles by mediating isoform specific protein-

protein interactions. For PI3KC2a and PI3KC2b clathrin has been shown to bind the N-

terminal region and likely playing a regulating or recruiting role for these two kinases. 

Together with the N-terminal region, the Ras-binding domain (RBD) of class II PI3Ks likely play 

an important role in recruiting the kinases to the membranes they should act on, as the RBD 

PI3KC2g has been shown to interact with Rab5 and PI3KC2g acts on early endosomes (Braccini 

et al., 2015; Jean and Kiger, 2014; Sasaki et al., 2009; Vanhaesebroeck et al., 2010a). Beside 

the N-terminal region and the RBD, the class II specific PX- and C2 domains likely play 

important roles in regulation kinase activity depending on the localization of the kinase. It has 

recently been shown for PI3KC2a that the PX- and C2-domain fold back onto the kinase 

domain and keeping PI3KC2a in an autoinhibitory conformation, which is released when the 

PX-C2 module binds to PI(4,5)P2 enriched membranes such as the plasma membrane, where 

PI3KC2a has previously shown to act (Wang et al., 2018). Similar mechanism with probably 

different PIP-specificities for the PX-C2-module are likely to be present in the regulation of the 

other two members of class II PI3Ks.  

The lipid products of class II PI3Ks are PI(3)P and PI(3,4)P2  and there is growing evidence that 

class II PI3Ks and their lipid products are coupling membrane traffic to cellular signaling 
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of CME, whereas for the g isoform has been demonstrated that it produces an endosomal pool 

of PI(3,4)P2 to sustain AKT2 activity upon insulin stimulation (Braccini et al., 2015; Posor et al., 

2013). Class II PI3K a and b also have been linked to growth factor dependent signaling events, 

although their precise function as well as their lipid products in these events remain to be 

determined. In addition to their direct function in PI(3,4)P2 synthesis, class II PI3K have also 

been implicated to regulate intracellular pools of PI(3)P important for endocytic traffic and 

autophagy, although it remains unclear whether these effects result from direct PI(3)P 

synthesis from class II PI3Ks or indirectly via further conversion of PI(3,4)P2 (Arcaro et al., 2002; 

Brown et al., 1999; Devereaux et al., 2013; Franco et al., 2014; Jean et al., 2012; Leibiger et al., 

2010; Yoshioka et al., 2012).   

 

1.2.3 Class III PI3Ks 

The class III of PI3Ks consists of only one kinase -Vps34- which was initially described in yeast 

as a gene regulating sorting from endosomes to lysosomes (Herman and Emr, 1990; Schu et 

al., 1993). Vps34 acts together with its regulatory subunit Vps15/p150, which its constitutively 

binds to. Vps15 is N-terminal myristoylated, targeting Vps34 to membranes. Vps34 occurs in 

two different complexes, which are present on different membranes and regulating different 

membrane trafficking events. Complex I consist of Vps15/p150, Beclin-1, ATG14L, and NRBF2 

and is responsible for Vps34 producing PI(3)P during autophagosome formation. Complex II 

consist of Vps15/p150, Beclin-1 and UVRAG and acts on early endosomes (Cao et al., 2014; 

Funderburk et al., 2010; Kihara et al., 2001; Lu et al., 2014; Rostislavleva et al., 2015). Complex 

II is recruited to endosomal membranes via Rab5, which interacts with the WD40 domain of 

Vps15. The generation of PI(3)P via Vps34-complex II on Rab5 positives endosomes leads to 

the recruitment of various PI(3)P effectors regulating endosomal fusion, tubulation, 

maturation or intraluminal vesicle formation, e.g. early endosome autoantigen 1 (EEA1) or the 

ESCRT complex subunit hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) 

(Jean and Kiger, 2014; Ktistakis et al., 2012; Raiborg et al., 2013).  
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Figure 1.5 Domain structure of class III PI3Ks. HEAT: HEAT repeat domain; C2: C2-domain. Adapted from (Marat and Haucke, 
2016) 

In contrast to the positive regulation of autophagy via Vps34 in complex I, Vps34 derived PI(3)P 

has also been implicated in the activation of mTORC1, a negative regulator of autophagy. It 

has been reported that PI(3)P recruits phospholipase D1 (PLD1), resulting in formation of 

phosphatidic acid, which in turn triggers dissociation of the inhibitory mTORC1-subunit 

DEPTOR, finally resulting in mTORC1 activation (Bridges et al., 2012; Yoon et al., 2011; Yoon 

et al., 2015). Recently it has been shown that Vps34 derived PI(3)P on lysosomes leads to 

repositioning of the lysosomes towards the cell periphery, a process which has previously 

been shown to depend on the nutrient status and availability within the cell, also leading to 

mTORC1 activation (Hong et al., 2017; Korolchuk et al., 2011). Furthermore, in fashion of a 

feed forward loop, mTORC1 activity specifically inhibits formation of Vps34-complex I, the 

complex implicated in promotion of autophagy, while activating complex II via 

phosphorylation on UVRAG (Munson et al., 2015). Altogether, both class III PI3K complexes 

not only have opposing effects within the cell, but also negatively regulate each other via 

complex cellular mechanisms.  

 

1.3 The mammalian Target Of Rapamycin (mTOR) 

The mammalian or mechanistic Target Of Rapamycin (mTOR) is a serine/threonine kinase 

belonging to the family of PI3K-related kinases (PIKK). This kinase was identified as the direct 

target of Rapamycin, which acts in a complex with FKBP12, shortly after its homolog  in yeast 

has been found using genetic screens for rapamycin resistance (Brown et al., 1994; Cafferkey 

et al., 1993; Heitman et al., 1991; Kunz et al., 1993; Sabatini et al., 1994). Rapamycin is 

antimicrobial compound first isolated from bacteria on the Easter Island, showing anti-fungal, 

anti-tumor and immunosuppressive properties (Eng et al., 1984; Martel et al., 1977; Vezina et 

al., 1975). In the cell it forms a complex with the protein FKBP12, which in turn directly inhibits 

kinase activity of mTOR via binding to its FRB-domain (Yang et al., 2013). mTOR kinase can 
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occur in two different complexes, mTORC1 and mTORC2, consisting of a slightly different 

subunit composition, have different localization, different downstream targets and 

differences in rapamycin-sensitivity. While FKBP12-rapamycin directly inhibits mTORC1, 

mTORC2 is insensitive to acute treatment (Jacinto et al., 2004; Sarbassov et al., 2004).  

 

1.3.1 mTORC1 

mTORC1 consists of three core-components: mTOR, mLST8 (mammalian lethal with Sec13 

protein 8) and Raptor (regulatory protein associated with mTOR). Raptor defines the 

subcellular localization of mTORC1, is essential for the recruitment to the lysosomal 

membrane (the location of its activation) and facilitates substrate recruitment via binding to 

a TOR signaling motif  (TOS) found in many mTORC1-substrates (Hara et al., 2002; Kim et al., 

2002; Nojima et al., 2003; Schalm and Blenis, 2002). mLST8 has been described to bind the 

kinase domain of mTOR and stabilizes its activation loop, but more detailed functions within 

the complex remain to be described (Yang et al., 2013). In addition to these three core-

subunits, mTORC1 contains the two inhibitory subunits PRAS40 (proline-rich Akt substrate of 

40kDa) and DEPTOR (DEP domain containing mTOR interacting protein) (Peterson et al., 2009; 

Sancak et al., 2007; Vander Haar et al., 2007). In structural studies is has been shown that 

mTORC1 occurs in dimers with the monomers contacting each other via Raptor and the HEAT-

repeats within mTOR (Aylett et al., 2016; Yip et al., 2010).  

 
Figure 1.6 mTORC1 subunits, binding sites and structure of the core of mTORC1. A 5.9Å cryo-EM structure of the core of 
mTORC1 including FKBP12-rapamycin. Subunits are color coded. Adapted from (Saxton and Sabatini, 2017) 

mTORC2 contains Rictor (rapamycin insensitive companion of
mTOR), an unrelated protein that likely serves an analogous func-
tion (Jacinto et al., 2004; Sarbassov et al., 2004). mTORC2 also
containsDEPTOR (Peterson et al., 2009), aswell as the regulatory
subunitsmSin1 (Frias et al., 2006; Jacinto et al., 2006; Yang et al.,
2006) and Protor1/2 (Pearce et al., 2007; Thedieck et al., 2007;
Woo et al., 2007). Although rapamycin-FKBP12 complexes do
not directly bind or inhibit mTORC2, prolonged rapamycin treat-
ment does abrogate mTORC2 signaling, likely due to the inability
of rapamycin-bound mTOR to incorporate into new mTORC2
complexes (Lamming et al., 2012; Sarbassov et al., 2006).

The mTOR Signaling Network
Downstream of mTORC1
In order to grow and divide, cells must increase production of
proteins, lipids, and nucleotides while also suppressing cata-
bolic pathways such as autophagy. mTORC1 plays a central
role in regulating all of these processes and therefore controls
the balance between anabolism and catabolism in response to
environmental conditions (Figures 2A and 2B). Here, we review
the critical substrates and cellular processes downstream of
mTORC1 and how they contribute to cell growth. Most of the
functions discussed here were identified and characterized in
the context of mammalian cell lines, while the physiological
context in which these processes are important will be dis-
cussed in greater detail below.
Protein Synthesis
mTORC1 promotes protein synthesis largely through the phos-
phorylation of two key effectors, p70S6 Kinase 1 (S6K1) and
eIF4E Binding Protein (4EBP) (Figure 2B). mTORC1 directly
phosphorylates S6K1 on its hydrophobic motif site, Thr389,
enabling its subsequent phosphorylation and activation by
PDK1. S6K1 phosphorylates and activates several substrates
that promote mRNA translation initiation, including eIF4B, a pos-
itive regulator of the 50cap binding eIF4F complex (Holz et al.,
2005). S6K1 also phosphorylates and promotes the degradation
of PDCD4, an inhibitor of eIF4B (Dorrello et al., 2006), and en-
hances the translation efficiency of spliced mRNAs via its inter-
action with SKAR, a component of exon-junction complexes
(Ma et al., 2008).
ThemTORC1 substrate 4EBP is unrelated to S6K1 and inhibits

translation by binding and sequestering eIF4E to prevent assem-
bly of the eIF4F complex. mTORC1 phosphorylates 4EBP at
multiple sites to trigger its dissociation from eIF4E (Brunn
et al., 1997; Gingras et al., 1999), allowing 50cap-dependent
mRNA translation to occur. Although it has long been appreci-
ated that mTORC1 signaling regulates mRNA translation,
whether and how it affects specific classes of mRNA transcripts
has been debated. Global ribosome footprinting analyses, how-
ever, revealed that, while acutemTOR inhibitionmoderately sup-
presses general mRNA translation, it most profoundly affects
mRNAs containing pyrimidine-rich 50 TOP or ‘‘TOP-like’’ motifs,
which includes most genes involved in protein synthesis (Hsieh
et al., 2012; Thoreen et al., 2012).
Lipid, Nucleotide, and Glucose Metabolism
Growing cells require sufficient lipids for new membrane forma-
tion and expansion. mTORC1 promotes de novo lipid synthesis
through the sterol responsive element binding protein (SREBP)

Figure 1. mTORC1 and mTORC2
(A) The mTORC1 and mTORC2 signaling pathways.
(B) mTORC1 subunits and respective binding sites on mTOR. The 5.9-Å cryo-
EM structure of mTORC1 in complex with the FKBP12-rapamycin complex
(without DEPTOR and PRAS40, PDB: 5FLC) is depicted as a space filling
model and colored by subunit.
(C) mTORC2 subunits and respective binding sites on mTOR.

Cell 168, March 9, 2017 961
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1.3.2 Regulation of mTORC1 

mTORC1 is functioning as a central regulator of cell growth, survival and proliferation. A 

plethora of signals such as growth factor stimulation, nutrient status of the cell, cellular stress 

and energy availability feed into the regulation of mTOR kinase within the mTORC1 complex, 

which are then translated by mTORC1 into downstream signals. As mentioned earlier, growth 

factors binding to RTKs stimulate class I PI3Ks at the plasma membrane, which in turn generate 

PIP3 . One of the major downstream effectors of PIP3  is Akt, which is recruited via PIP3 to the 

plasma membrane, where it gets fully activated by phosphorylation via mTORC2 and PDK1 

(Phosphoinositide-dependent kinase-1) (Vanhaesebroeck et al., 2010a). Akt then plays direct 

and indirect roles in the activation of mTORC1. Akt directly phosphorylates the inhibitory 

mTORC1 subunit PRAS40, leading to binding of 14-3-3 proteins and dissociation from mTORC1 

due to allosteric inhibition (Sancak et al., 2007). Furthermore, Akt acts as an indirect activator 

of mTORC1 via phosphorylation and inhibition of a key negative regulator of mTORC1, the 

Tuberous Sclerosis Complex (TSC). TSC is a heterotrimeric complex consisting of TSC1, TSC2 

and TBC1D7 and acts as a GTPase activating protein (GAP) for the small GTPase Rheb, which 

is directly binding and activating mTORC1 (Dibble et al., 2012). Multisite phosphorylation of 

the TSC-complex by Akt leads to its dissociation from the lysosome, where Rheb and mTORC1 

are localized (Dibble and Cantley, 2015; Inoki et al., 2003; Inoki et al., 2002; Manning et al., 

2002). Similarly, downstream signaling of Ras can also activate mTORC1. Erk and its effector 

p90RSK, which act downstream of Ras, also phosphorylate and inhibit the TSC-complex (Ma 

et al., 2005; Roux et al., 2004). Additionally, growth factor pathways regulating mTORC1 also 

include Wnt signaling, which can also activate mTORC1 via inhibiting TSC (Feng et al., 2007; 

Inoki et al., 2006). 

The regulation of mTORC1 activity upon cellular stresses like hypoxia or low ATP levels, e.g. 

due to glucose deprivation, mainly works via the central metabolic regulator AMP-activated 

protein kinase (AMPK), which is mainly sensing cellular ATP-levels and activated upon low 

cellular ATP-levels (Garcia and Shaw, 2017). AMPK inhibits mTORC1 directly and indirectly.  

AMPK directly phosphorylates Raptor, which leads to binding of 14-3-3 proteins to the 

phosphorylated motif of Raptor and inhibits substrate recruitment to mTORC1 (Gwinn et al., 

2008). In an indirect mechanism, AMPK phosphorylates TSC2 leading to TSC activation and 

subsequent Rheb inhibition and mTORC1 inhibition (Feng et al., 2007; Inoki et al., 2006).  
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As amino acids are not only essential building blocks for protein synthesis, but also act as 

energy sources in metabolic pathways, mTORC1 activity is also tightly coupled to changes in 

amino acid concentrations. To be activated, mTORC1 needs to be recruited to the lysosome, 

the place where it can be fully activated by Rheb. mTORC1 localization at the lysosomal 

surface is tightly connected to its regulation via amino acids. mTORC1 can sense cytosolic 

amino acids as well as intra-lysosomal amino acids via distinct mechanisms. Cytosolic amino 

acids stimulate heterodimeric Rag GTPases, which are tethered to the lysosomal membrane 

via the pentameric Ragulator complex consisting of MP1, p14, p18, HBXIP and C7ORF59 (Bar-

Peled et al., 2012; Kim et al., 2008; Sancak et al., 2010; Sancak et al., 2008). Amino acid 

stimulation converts the Rags  to their active GTP-bound state, allowing them to bind Raptor 

and recruit mTORC1 to the lysosome, where it then can be activated by Rheb, implicating a 

tight interplay between amino acid levels within the cell and growth factor stimulation 

 

 
Figure 1.7 Regulation of mTORC1 localization and activity via amino acids, growth factors and energy. mTORC1 recruitment 
to the lysosomal surface is regulated via amino acid sensing within the cytosol and the lysosome. V-ATPase plays a critical 
role, promoting the GEF-activity of Ragulator towards the Rag-GTPases, which in turn rectuit mTORC1. Growth factor 
stimulation activates mTORC1 via signaling cascades involving the Akt- and the MAPK-signaling cascade and Wnt signaling, 
with the TSC-complex with its Gap-activity towards Rheb being the central target of all pathways. Energy levels regulate 
mTORC1 activity mainly via the ATP/ADP sensing kinase AMPK, which directly phosphorylates mTORC1 as well as activates 
TSC. 
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upstream of mTORC1 activation. In contrast, intra-lysosomal amino acids alter the nucleotide 

status of Rag GTPases via an interplay between the lysosomal amino acid transporter SLC38A9 

and lysosomal v-ATPase. V-ATPase interacts with the Ragulator-Rag complex promoting the 

GEF (guanine-nucleotide exchange factor) of Ragulator towards RagA/Rag, leading to 

activation of RagA/B and subsequent recruitment of mTORC1 (Rebsamen et al., 2015; Wang 

et al., 2015; Zoncu et al., 2011).  

 
1.3.3 Downstream targets of mTORC1 

mTORC1 activity plays a critical role in balancing catabolic and anabolic processes within the 

cell in response to intra- and extracellular stimuli. Active mTORC1 promotes anabolic 

processes like lipid and protein synthesis and inhibits catabolic processes such as autophagy 

and lysosome biogenesis. The two key effectors of mTORC1 upregulating anabolic processes 

are elF4E binding protein (4EBP) and the ribosomal p70S6 Kinase (S6K). 4EBP binds elF4E and 

prevents formation of the elF4F-complex. Direct phosphorylation of 4EBP by mTORC1 leads 

to its dissociation from elF4E enabling 5’cap-dependent mRNA translation (Brunn et al., 1997; 

Gingras et al., 1999). Phosphorylation of the hydrophobic motif (Thr389) and probably the 

turn motif (S371) of S6K by mTORC1 allow phosphorylation by PDK1 and subsequent complete 

activation of S6K. Active S6K activates mRNA translation via phosphorylation and activation of 

various substrates, including the ribosomal S6 protein and elF4B (Dorrello et al., 2006; Holz 

and Blenis, 2005; Pearce et al., 2010). Furthermore, S6K activation via mTORC1 also promotes 

lipid synthesis through the S6K target SREBP1 (sterol responsive element binding protein 1) 

(Duvel et al., 2010).  

 
Figure 1.8 Major downstream pathways of mTORC1 signaling. The mTORC1 complex, acting as a dimer, directly 
phosphorylates S6K, 4EBP, ATG13, ULK1 as well as the transcription factor TFEB, leading to protein translation and lipid 
synthesis as well as inhibition of autophagy. 
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Key effectors in the downregulation of catabolic processes via mTORC1 are TFEB 

(Transcription Factor EB), ULK1 and UVRAG. TFEB is a transcription factor driving the 

expression of genes for lysosome biogenesis and the autophagy machinery. Phosphorylation 

of TFEB by mTORC1 leads to its binding to 14-3-3 proteins and subsequent inhibition of its 

translocation to the nucleus (Kim et al., 2011; Settembre et al., 2012). ULK1 is a kinase 

promoting autophagosome formation. Phosphorylation by mTORC1 prevents its activation by 

AMPK. The effects of phosphorylation of UVRAG by mTORC1 has been described previously 

(see 1.2.3).  

 
1.3.4 mTORC2 

Similar to mTORC1, mTORC2 consists of three core-components: mTOR, mLST8 (mammalian 

lethal with Sec13 protein 8) and Rictor (rapamycin insensitive companion of mTOR), which 

likely has analogous functions in mTORC2 as Raptor in mTORC1 (Jacinto et al., 2004; Sarbassov 

et al., 2004). In addition to these three core-subunits, mTORC2 contains the inhibitory subunit 

DEPTOR as well as the regulatory subunits mSin1 and Protor1/2 (Frias et al., 2006; Jacinto et 

al., 2006; Pearce et al., 2007; Peterson et al., 2009; Thedieck et al., 2007; Woo et al., 2007; 

Yang et al., 2006). In contrast to mTORC1, mTORC2 is insensitive to acute rapamycin 

treatment. 

 

 
Figure 1.9 mTORC2 domain structure, subunits and binding sites. Adapted from (Saxton and Sabatini, 2017) 

 

1.3.5 Regulation of mTORC2 

In contrast to mTORC1, mTORC2 has been described as an effector of PI3K signaling only, thus 

functioning downstream of growth factor stimulation. The mSin1-subunit of mTORC2 contains 

a phosphoinositide-binding Pleckstrin-homology-domain (PH-domain). This PH-domain 

inhibits the catalytic activity of mTORC2. Upon generation of PIP3 at the plasma membrane, 

mTORC2 contains Rictor (rapamycin insensitive companion of
mTOR), an unrelated protein that likely serves an analogous func-
tion (Jacinto et al., 2004; Sarbassov et al., 2004). mTORC2 also
containsDEPTOR (Peterson et al., 2009), aswell as the regulatory
subunitsmSin1 (Frias et al., 2006; Jacinto et al., 2006; Yang et al.,
2006) and Protor1/2 (Pearce et al., 2007; Thedieck et al., 2007;
Woo et al., 2007). Although rapamycin-FKBP12 complexes do
not directly bind or inhibit mTORC2, prolonged rapamycin treat-
ment does abrogate mTORC2 signaling, likely due to the inability
of rapamycin-bound mTOR to incorporate into new mTORC2
complexes (Lamming et al., 2012; Sarbassov et al., 2006).

The mTOR Signaling Network
Downstream of mTORC1
In order to grow and divide, cells must increase production of
proteins, lipids, and nucleotides while also suppressing cata-
bolic pathways such as autophagy. mTORC1 plays a central
role in regulating all of these processes and therefore controls
the balance between anabolism and catabolism in response to
environmental conditions (Figures 2A and 2B). Here, we review
the critical substrates and cellular processes downstream of
mTORC1 and how they contribute to cell growth. Most of the
functions discussed here were identified and characterized in
the context of mammalian cell lines, while the physiological
context in which these processes are important will be dis-
cussed in greater detail below.
Protein Synthesis
mTORC1 promotes protein synthesis largely through the phos-
phorylation of two key effectors, p70S6 Kinase 1 (S6K1) and
eIF4E Binding Protein (4EBP) (Figure 2B). mTORC1 directly
phosphorylates S6K1 on its hydrophobic motif site, Thr389,
enabling its subsequent phosphorylation and activation by
PDK1. S6K1 phosphorylates and activates several substrates
that promote mRNA translation initiation, including eIF4B, a pos-
itive regulator of the 50cap binding eIF4F complex (Holz et al.,
2005). S6K1 also phosphorylates and promotes the degradation
of PDCD4, an inhibitor of eIF4B (Dorrello et al., 2006), and en-
hances the translation efficiency of spliced mRNAs via its inter-
action with SKAR, a component of exon-junction complexes
(Ma et al., 2008).
ThemTORC1 substrate 4EBP is unrelated to S6K1 and inhibits

translation by binding and sequestering eIF4E to prevent assem-
bly of the eIF4F complex. mTORC1 phosphorylates 4EBP at
multiple sites to trigger its dissociation from eIF4E (Brunn
et al., 1997; Gingras et al., 1999), allowing 50cap-dependent
mRNA translation to occur. Although it has long been appreci-
ated that mTORC1 signaling regulates mRNA translation,
whether and how it affects specific classes of mRNA transcripts
has been debated. Global ribosome footprinting analyses, how-
ever, revealed that, while acutemTOR inhibitionmoderately sup-
presses general mRNA translation, it most profoundly affects
mRNAs containing pyrimidine-rich 50 TOP or ‘‘TOP-like’’ motifs,
which includes most genes involved in protein synthesis (Hsieh
et al., 2012; Thoreen et al., 2012).
Lipid, Nucleotide, and Glucose Metabolism
Growing cells require sufficient lipids for new membrane forma-
tion and expansion. mTORC1 promotes de novo lipid synthesis
through the sterol responsive element binding protein (SREBP)

Figure 1. mTORC1 and mTORC2
(A) The mTORC1 and mTORC2 signaling pathways.
(B) mTORC1 subunits and respective binding sites on mTOR. The 5.9-Å cryo-
EM structure of mTORC1 in complex with the FKBP12-rapamycin complex
(without DEPTOR and PRAS40, PDB: 5FLC) is depicted as a space filling
model and colored by subunit.
(C) mTORC2 subunits and respective binding sites on mTOR.

Cell 168, March 9, 2017 961
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the autoinhibitory conformation is relieved and mTORC2 is activated (Liu et al., 2015; Yang et 

al., 2015). Furthermore, mTORC2 is also regulated via mTORC1 in  negative feedback loops via 

Grb10, a negative regulator of insulin/IGF-1 signaling, and S6K, which phosphorylates IRS1 

leading to its degradation. IRS1 is needed for class I activation upstream of mTORC2 

(Harrington et al., 2004; Hsu et al., 2011; Shah et al., 2004; Yu et al., 2011).  

 
Figure 1.10 Regulation of mTORC2 activity. mTORC2 is activated downstream of growth factor stimulation. The mSin1 
subunit binds PIP3 causing a conformational change promoting mTORC2 activity. mTORC1 can act as a negative inhibitor of 
mTORC2 via S6K, which inhibits IRS-1, the activator of class I PI3Ks.  

 
1.3.6 Downstream targets of mTORC2 

Compared to mTORC1, which is regulates cell growth and metabolic pathways, mTORC2 

regulates cell proliferation, cell migration, cell survival and cytoskeleton rearrangement, 

mainly by phosphorylating and activating most members of the AGC-kinase family. mTORC2 

has been described to phosphorylate the turn-motif and hydrophobic motif within the C-

terminus of the kinase domain of AGC-kinases, phosphorylations that are required for full 

activation of these kinases. mTORC2 has first been described to activate PKCa, a regulator of 

the actin cytoskeleton (Jacinto et al., 2004; Sarbassov et al., 2004). Later, mTORC2 has also 

been shown to phosphorylate and activate several other PKC-family members, namely PKCg, 

PKCd, PKCe and PKCz , who all are involved in regulating cytoskeletal remodeling and cell 

migration (Gan et al., 2012; Ikenoue et al., 2008; Li and Gao, 2014; Thomanetz et al., 2013; 

Tobias et al., 2016). However, the most prominent target of mTORC2 is Akt, the key effector 

of class I PI3K signaling (Sarbassov et al., 2005). Akt, once activated by mTORC2 and PDK1, 
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promotes cell survival and cell proliferation, e.g. via phosphorylation of FOXO1, FOXO3a, BAD 

and the metabolic regulator GSK3b (Guertin et al., 2006; Jacinto et al., 2006). Furthermore Akt 

regulates cell growth via mTORC1, directly via phosphorylation of PRAS40 and indirectly via 

phosphorylation of TSC (Inoki et al., 2002; Sancak et al., 2007). Finally, mTORC2 has also been 

shown to phosphorylate SGK, which mediates ion transport as well as cell survival (Garcia-

Martinez and Alessi, 2008).  

 
Figure 1.11 Major downstream effectors of mTORC2. The main targets of mTORC2 (also acting as a dimer) are kinases of the 
AGC-kinase family, such as PKC, Akt and SGK. Activation of these kinases by mTORC2 activates signaling cascades which are 
negatively regulating Apoptosis, promoting cell growth, as well as regulating actin dynamics and ion transport. 

1.3.7 PI3Ks in mTOR-signaling 

The regulation of nutrient signaling, in particular mTORC1 and mTORC2 signaling, is closely 

connected to phosphoinositides generated by PI3Ks. mTORC2 is activated by PIP3 generated 

by class I PI3Ks at the plasma membrane (Liu et al., 2015; Yang et al., 2015). Full mTORC1 

activation depends on the activity of Akt, which is activated by class I PI3Ks. Hence, mTORC1 

activation is dependent on plasma membrane pools PIP3 and PI(3,4)P2, which is either 

generated as a degradation product of PIP3 or by class II PI3Ks (Vanhaesebroeck et al., 2010a; 

Braccini et al., 2015). Furthermore, PI3P generated by the class III PI3K VPS34  is implicated in 

mTORC1 activation indirectly via its effects on the positioning of lysosomes and the activation 

of PLD1 (Bridges et al., 2012; Yoon et al., 2011; Yoon et al., 2015; Hong et al., 2017; Korolchuk 

et al., 2011).  
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1.4 Aim of the study 

 
The mammalian target of rapamycin complex 1 is a central regulator of cell growth and 

metabolism and autophagy. Therefore its activity needs to be tightly regulated. mTORC1 

senses cellular energy, nutrient status and growth factor stimulation via various mechanisms. 

One of the major regulators of mTORC1 activity are PI3Ks and their lipid products. Class I PI3Ks, 

which produce PI(3,4,5)P3 as well as class III PI3K, which produces PI(3)P,  have been shown 

to play major roles in mTORC1 activation. Class II PI3Ks have also been suggested to play a role 

in growth factor signaling, but their specific function, potential implication in nutrient signaling 

via mTORC1 as well as their lipid products have not been fully understood yet.  

 

This thesis aims to provide insight into the function of class II PI3Ks in nutrient signaling. 

Furthermore, it aims to answer the following questions: Which lipid product is produced by 

class II PI3Ks and on which membrane(s) are class II PI3Ks, especially PI3KC2b located? 

Furthermore: What are the downstream effects of PI3KC2b with respect to nutrient signaling 

and how is its activity PI3KC2b regulated?
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2 Project I: mTORC1 activity repression by late endosomal 

phosphatidylinositol 3,4-bisphosphate 

 

2.1 Overview of the project 

Nutrient sensing and signaling by mTORC1 integrates internal and external signals to regulate 

cell metabolism, cell growth and autophagy while its dysfunction is implicated in diseases 

ranging from obesity and diabetes to cancer. mTORC1 activation is regulated by lipids, most 

notably by PIs, signaling lipids that localize to distinct compartments to execute a plethora of 

cell physiological functions. Mitogen-induced production of PI(3,4,5)P3 by class I PI3Ks at the 

plasma membrane stimulates mTORC1 signaling via activation of Akt, a kinase that is co-

activated by active mTORC2 (Dibble and Cantley, 2015; Vanhaesebroeck et al., 2010a). 

Furthermore, PI(3)P production on endosomal compartments by class III PI3K also plays a role 

in promoting mTORC1 activity, on one hand via inhibiting the inhibitory mTORC1 subunit 

DEPTOR and on the other hand via inducing the repositioning of lysosomes, the organelles 

where mTORC1 is activated, towards the cell periphery (Hong et al., 2017; Korolchuk et al., 

2011; Yoon et al., 2011; Yoon et al., 2015).  

 

To address a potential role of class II PI3Ks in nutrient signaling via mTORC1, we performed 

knockdown experiments of the two ubiquitously expressed class II PI3Ks -PI3KC2a and 

PI3KC2b- in HeLa cells. We did not study PI3KC2g, an isoform specifically expressed in liver 

(Braccini et al., 2015). As a readout we examined the phosphorylation of S6K at Threonine-

389 by mTORC1, the commonly used readout for mTORC1 activity. Surprisingly, only PI3KC2b 

had an effect on mTORC1 activity, and even more surprising, in contrast to any other PI3K 

investigated until that point, loss of PI3KC2b led to higher mTORC1 activity suggesting it to act 

as a negative regulator of mTORC1. We could confirm these results using CRISPR-Cas 

generated knockout-cell lines. Furthermore, loss of PI3KC2b led to an accumulation of p62, an 

increase in cell size and a more peripheral distribution of lysosomes, all indicators of higher 

mTORC1 activity. In an approach to detect the subcellular localization of PI3KC2b, we used 

CRISPR-Cas to endogenously tag PI3KC2b with an N-terminal eGFP. We also performed 

pulldown-assays using the unstructured N-terminus of PI3KC2b, the only region of this enzyme 

not conserved with PI3KC2a and thus likely to fulfill isoform specific functions. Via mass-
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spectrometry, we found mTOR and the mTORC1 specific subunit Raptor as interaction 

partners of the N-terminus of PI3KC2b. We could identify the region within the N-terminus of 

PI3KC2b that binds to Raptor, confirmed the interaction by immunoprecipitation experiments 

using endogenously eGFP-tagged PI3KC2b, and found that PI3KC2b is localized to late 

endosomes/lysosomes (Ly/LEs). Interestingly, the recruitment of PI3KC2b to Ly/LEs as well as 

the interaction with mTORC1 were found to depend on growth factor starvation.  

Moreover , we identified PI(4)P as the preferred substrate of PI3KC2b, suggesting that the 

main product of this class II PI3K is PI(3,4)P2. We could further show that upon growth factor 

starvation, PI3KC2b is recruited to LY/LEs and produces PI(3,4)P2. Analysis of potential 

effectors of PI(3,4)P2 that might inhibit mTORC1 activity on LyLEs, revealed 14-3-3 proteins. 

Specifically, we found that loss of PI3KC2b reduces the interaction of Raptor with 14-3-3g, an 

interaction that was previously shown to inhibit mTORC1 activity (Gwinn et al., 2008). Finally, 

we could establish 14-3-3g as an effector of PI(3,4)P2 via assays addressing direct binding and 

we saw that 14-3-3g recruitment to Ly/LEs and mTORC1 depends on lysosomal PI(3,4)P2.  

Taken together our study identified the class II PI3K b as a novel inhibitor of mTORC1 activity 

locally at lysosomes. Surprisingly, PI(3,4)P2, a phosphoinositide previously described to play 

an activating role for mTORC1 when produced at the plasma membrane (Vanhaesebroeck et 

al., 2010a), executes an opposing function, when produced locally on Ly/LEs under conditions 

of growth factor depletion. 
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2.2 Original publication 

 
Marat, A. L.*, Wallroth, A.*, Lo, W. T., Müller, R., Norata, G. D., Falasca, M., Schultz, C., 
Haucke, V.: mTORC1 activity repression by late endosomal phosphatidylinositol 3,4-
bisphosphate. Science 356, 968 –972, 2017     
 
https://doi.org/10.1126/science.aaf8310 

* these authors contributed equally to this work 

Personal contribution 

First, I generated cell lines carrying a knock-out of PI3KC2b via CRISPR-Cas in order to confirm 

the effect of PI3KC2b on the activity on mTORC1, previously observed using siRNA mediated 

knockdown. Using this cell line not only the effect on mTORC1 activity using the 

phosphorylation of S6K could be confirmed, but I could also measure an increase in cell size 

of HEK293T cells carrying a knock-out of PI3KC2b in comparison to wild type HEK293T cells. 

Furthermore, I could see a change of LC3 levels within cells upon loss of PI3KC2b, suggesting 

a defect in autophagy, another sign of high mTORC1 activity. Using HEK293T cells as a 

background and re-expressing either wild type PI3KC2b or kinase-inactive PI3KC2b, I could 

show that the inhibiting effect of PI3KC2b towards mTORC1 depends on the kinase activity of 

PI3KC2b and hence on its lipid product, PI(3,4)P2. 

I then generated HEK293T cell lines expressing PI3KC2b N-terminal eGFP tagged from the 

endogenous locus, again using CRISPR-Cas technology. Using these cells, I could see PI3KC2b 

localizing to Ly/Les upon growth factor starvation. Furthermore I could also observe the 

interaction of PI3KC2b with mTORC1, which I found being growth factor starvation dependent 

as well. Interestingly, this interaction did not occur upon long term amino acid starvation, 

conditions where mTORC1 falls off Ly/LEs, suggesting  that this interaction only occurs on 

Ly/LE-membranes.   

Knowing that the inhibitory effects of PI3KC2b towards mTORC1 depend on its lipid product, 

I looked at potential mechanisms of this inhibition in more detail. While investigating potential 

changes of the subunit composition of mTORC1 depending on PI3KC2b/PI(3,4)P2, I recognized 

a dramatic loss of interaction between Raptor and 14-3-3 upon loss of PI3KC2b, a previously 

described interaction that inhibits mTORC1 activity (Gwinn et al., 2008). I indeed was able to 

verify an interaction between 14-3-3g and PI(3,4)P2 and could  show that the recruitment of 

14-3-3g to Ly/LEs depends on PI3KC2b and its lipid product. These data suggest that 14-3-3g 
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is a direct effector of PI(3,4)P2  and may contribute to the inactivation of mTORC1 on the Ly/LEs 

under conditions of growth factor deprivation. 
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3 Project II: Protein kinase N controls a lysosomal lipid switch to 

facilitate nutrient signaling via mTORC1 

 

3.1 Overview of the project 

We previously identified PI3KC2b as a repressor of mTORC1 activity, which acts locally at the 

lysosome. PI3KC2b recruitment and activation at the lysosome depend on growth factor 

depletion (Marat et al., 2017), similar to what previously has been described for other 

regulators of mTORC1 activity, e.g. the TSC-complex (Manning et al., 2002; Menon et al., 

2014). The mechanism how growth factors regulate PI3KC2b localization as well as Ly/LEs 

PI(3,4)P2 production remained unknown (Marat et al., 2017). In our previous work we could 

rule out a direct interplay between PI3KC2b and Akt as well as between PI3KC2b and AMPK. 

Hence, PI3KC2b regulation by growth factors must involve different, possibly novel 

components. To identify these factors and to further investigate the effects of growth factors 

on PI3KC2b I designed a SILAC-based mass-spectrometry screen using HEK293T cells 

endogenously expressing eGFP-PI3KC2b. I immunoprecipitated endogenous eGFP-PI3KC2b 

and quantitatively analyzed interacting proteins and the regulation of these interactions by 

growth factor starvation. As growth factor regulation often functions via signaling cascades 

involving protein phosphorylation, I determined phosphorylation sites within PI3KC2b via 

mass-spectrometry. 14-3-3 proteins were found as a prominent interaction partners of 

PI3KC2b under conditions of growth factor abundance. 14-3-3 proteins allosterically regulate 

target proteins by binding to specific phosphorylated motifs and are known to regulate a 

plethora of signaling pathways including mTORC1 signaling, with prominent examples of 

target proteins auch as TSC, PRAS40, Raptor and TFEB (Gwinn et al., 2008; Morrison, 2009; 

Sancak et al., 2007; Settembre et al., 2012). A motif surrounding phosphorylated threonine 

279 (T279) of PI3KC2b was identified as the 14-3-3 binding motif. The 14-3-3 binding motif lies 

in the same region as the region that binds to Raptor, suggesting that the association of these 

proteins with PI3KC2b is mutually excluive. In agreement with that, 14-3-3 binding to PI3KC2b 

occurs in growth factor-rich conditions, i.e. conditions in which PI3KC2b does not interact with 

Raptor/mTORC1. Furthermore, 14-3-3 binding promoted the dimerization of PI3KC2b. In 

order to identify the kinase that phosphorylates PI3KC2b at T279 to promote 14-3-3 binding, 

I screened 245 serine/threonine kinases for their activity towards T279 of PI3KC2b. The only 
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kinase that could be confirmed to phosphorylate PI3KC2b at T279 in vitro and in HEK293T cells 

was PKN2. I could show that 14-3-3 binding to PI3KC2b depends on PKN2 and that recruitment 

of PI3KC2b to Ly/LEs and interaction with mTORC1 is inhibited by 14-3-3 and thus by PKN2. 

PI3KC2b recruitment to Ly/LEs was further shown to depend on Rab7, a small GTPase acting 

on late endosomes, and this recruitment only occurs with PI3KC2b that is not phosphorylated 

and 14-3-3 bound. These results suggest that PKN2 is a negative regulator of PI3KC2b and 

thereby might play a role in the activation of mTORC1. A loss of mTORC1 activity upon loss of 

PKN2 has been reported previously in a mouse model (Quétier et al., 2016). We could 

demonstrate that PKN2 loss indeed leads to reduced mTORC1 activity and increases the levels 

of PI(3,4)P2 on Ly/LE-membranes. Both were rescued by the additional loss of PI3KC2b, 

suggesting that PKN2 regulates mTORC1 activity via regulating the recruitment of PI3KC2b to 

Ly/LEs. Finally, we were interested to determine how PKN2 itself is regulated by growth factor 

stimulation. mTORC2 is known as a central regulator of AGC-kinases, the kinase family to 

which PKN2 belongs. We therefore investigated whether PKN2 is a substrate of mTORC2 and 

whether loss of mTORC2 affects PKN2-kinase activity and thereby PI3KC2b-14-3-3 complex 

formation. We could confirm that mTORC2 phosphorylates PKN2 within its turn-motif, a 

phosphorylation which has been shown to be necessary for kinase activity of PKN2 (Lim et al., 

2008). Furthermore, loss of mTORC2 led to loss of the interaction between PKN2 and PI3KC2b, 

loss of complex formation between PI3KC2b and 14-3-3 and loss of the phosphorylation of 

PI3KC2b.  

Taken together, these results suggest a novel pathway of growth factor dependent regulation 

of mTORC1 signaling via an mTORC2-PKN2- PI3KC2b-axis.  
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3.2 Original publication 

Wallroth, A., Koch, P.A., Marat, A.L., Krause, E., Haucke, V.: Protein kinase N controls a 

lysosomal lipid switch to facilitate nutrient signaling via mTORC1. Nature Cell Biology, 2019 

https://doi.org/10.1038/s41556-019-0377-3 
 

Personal Contribution 

Since the mechanism of how growth factors regulate PI(3,4)P2 production of Ly/LEs was a 

major question remaining open after finding PI3KC2b as a novel inhibitor of mTORC1 activity, 

I initially  designed screens to identify new interaction partners of PI3KC2b as well as potential 

post translational modifications. To be able to detect growth factor dependent quantitative 

differences concerning potential interaction partners of PI3KC2b as well as potential post-

translational modifications, I performed SILAC-based mass-spectrometry screens. With these 

screens I Identified T279 of PI3KC2b as a phosphorylated residue in growth factor rich 

conditions. I could show that phosphorylation of this site is required for complex formation 

between PI3KC2b and 14-3-3 proteins. Following that, I designed and performed screens and 

experiments establishing PKN as the kinase phosphorylating PI3KC2b at T279 as well as 

showing that this phosphorylation and 14-3-3 binding results in dimerization of PI3KC2b. I 

then generated HEK293T cell lines carrying PKN1/2 knock-out, which I used to show that PKN 

loss leads to a loss of PI3KC2b-14-3-3-interaction, promotes PI3KC2b-Raptor interaction and 

leads to loss of mTORC1 activity. Generating HeLa cells expressing endogenously eGFP-tagged 

PI3KC2b I could show that loss of PKN2 not only promotes PI3KC2b-mTORC1 interaction, but 

also promotes recruitment of PI3KC2b to Ly/LEs. In addition, loss of PKN2 promotes PI(3,4)P2 

production on Ly/LEs. Furthermore, I could rescue mTORC1 activity and Ly/LE-PI(3,4)P2 levels 

by additional depletion of PI3KC2b, suggesting that PKN2 promotes mTORC1 activity via 

inhibition of PI3KC2b. Furthermore, I could also rescue the mentioned effects appearing upon 

PKN2 loss by co-depletion of Rab7, a small GTPase which is necessary for Ly/LE-recruitment 

of PI3KC2b. Investigating, how PKN2 might be regulated by growth factor stimulation, I 

endogenously tagged PKN2 with mCherry in the HEK293T cells that already express 

endogenous eGFP-PI3KC2b. Trying to find a link between PKN2 and growth factor stimulation, 

I tested potential effects of mTORC2 manipulation on PKN2. Performing kinase assays I could 

show that mTORC2 can phosphorylate the turn motif of PKN2 at T958. With inhibition or 
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depletion of mTORC2 I could confirm these results in HEK293T cells. Furthermore, I could also 

show, that depletion of mTORC2 inhibits interaction between endogenous PKN2 and 

endogenous PI3KC2b, phosphorylation of T279 in PI3KC2b by PKN2 and finally leads to a loss 

of PI3KC2b-14-3-3 interaction. Collectively I could show that growth factor dependent 

regulation of PI(3,4)P2 production on Ly/LEs and mTORC1-inhibtion functions via an mTORC2-

PKN2-PI3KC2b axis.  
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4 Discussion 

 

4.1 PI3KC2b in nutrient signaling 

The class II of the PI3K-family has been the least studied class of these lipid kinases. Their role 

in cellular functions, their localization, their protein structure, even preferences for direct  lipid 

products have not been fully described yet (Marat and Haucke, 2016). In the course of this 

thesis I identified the class II PI3K b as a novel player in nutrient signaling, giving first insights 

of the impact of this class II PI3K on cellular functions. I could show that PI3KC2b -and its main 

lipid product PI(3,4)P2- act on late endosomal/lysosomal membranes and inactivate the 

central regulator of cell growth and cell metabolism, mTORC1. PI3KC2b and its lipid product 

are negatively regulated by growth factors via mTORC2 and PKN2 by sequestering the enzyme 

inactive in the cytosol preventing its recruitment and further activation. Upon growth factor 

depletion mTORC2 and following PKN2 are inactive. This leads to a release of the inactivating 

mechanism sequestering PI3KC2b and results in the recruitment to Ly/LEs and production of 

PI(3,4)P2. Lysosomal/late-endosomal PI(3,4)P2 then inhibits mTORC1 activity.  The results of 

this thesis show that production of PI(3,4)P2 has opposing effects on nutrient signaling to what 

has been seen before when produced on a different membrane (on Ly/LE-membranes instead 

on the plasma membrane). In addition to establishing PI3KC2b and late endosomal/lysosomal 

PI(3,4)P2 as novel negative regulators of mTORC1, a new functional link between mTORC2 and 

mTORC1 was discovered. It could be shown that mTORC2 is not only promoting mTORC1 

activity via activation of Akt, but also via activating PKN2 and thus inhibiting PI3KC2b and Ly/LE 

PI(3,4)P2 production. These discoveries put the class II PI3K b in a central position acting as a 

downstream effector of mTORC2 and an upstream regulator of mTORC1, negatively regulating 

protein translation and cell growth and promoting autophagy and possibly being responsible 

for some physiological effects that have been described for mTORC2. While the functional 

relationship between PI3KC2b and mTORC1 have been investigated in detail in the course of 

this thesis, it remained open whether there are additional effects of mTORC2 or PKN 

manipulation that depend on PI3KC2b. In addition to regulating mTORC1, e.g. PKN as well as 

mTORC2 have been implicated in cytoskeleton remodeling and cell migration. It would be 

interesting to investigate whether PI3KC2b functions as a downstream effector of PKN and 

mTORC2 in these processes as well. A potential impact of PI3KC2b on cell migration in addition 
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to the discovered effects on cell growth would make PI3KC2b and its lipid product an 

interesting protein to investigate for example looking at cancer progression, a process where 

the regulation of cell growth and cell migration are tightly connected.  

 

4.1.1 The lipid product of PI3KC2b 

Class II PI3Ks and their lipid products have been the least studied among all PI3Ks. In previous 

studies, it has been shown that PI3KC2b is able to produce PI(3)P and PI(3,4)P2 in vitro and in 

cell models such as hepatocyte-cultures (Alliouachene et al., 2015; Arcaro et al., 1998). In the 

course of this thesis, it was shown that recombinant expressed as well as immunoprecipitated 

human PI3KC2b had the highest affinity for PI(4)P as a substrate and very low affinities for 

other PI-species. In contrast to previous findings, immunofluorescence stainings using 

antibodies against PI(3,4)P2 as well as a recombinant expressed FYVE-domain of Hrs to stain 

PI(3)P showed that endosomal PI(3,4)P2 depends on the presence and activity of PI3KC2b 

whereas PI(3)P levels were completely unaffected upon PI3KC2b manipulation. The PI3KC2b  

dependent PI(3,4)P2 pool is on LY/LEs, where a pool of PI(3,4)P2 has not been described before. 

It was confirmed that PI3KC2b is only responsible for production of this pool of PI(3,4)P2 at 

Ly/LEs and not on the plasma membrane. Manipulation of PI3KC2b did neither influence 

PI(3,4)P2 at the plasma membrane nor phosphorylation of Akt, which is dependent on plasma 

membrane PI(3,4,5)P3 or PI(3,4)P2 (Ebner et al., 2017). Furthermore, we could not detect any 

effect of PI3KC2b on the late-endosomal/lysosomal pool of PI(3)P but only on PI(3,4)P2. In 

agreement with these findings, it has recently been shown that VPS34 and its lipid product 

PI(3)P have opposing effects on mTORC1 activity and lysosome positioning compared to 

PI3KC2b and PI(3,4)P2 production (Hong et al., 2017). However, an indirect implication of 

PI3KC2b in the regulation of late-endosomal/lysosomal PI(3)P levels under specific starvation, 

e.g. via PI-conversion of PI(3,4)P2 to PI(3)P by the PI(3,4)P2-4-phosphotases INPP4A/B 

(Hawkins and Stephens, 2016), might be possible. An involvement of PI3KC2b and PI(3,4)P2 in 

the recruitment or regulation of other lipid-kinases and -phosphatases such as PIKFYVE or 

myotubularins (MTMs) -regulating endosomal and lysosomal PI(3,5)P2 and PI(3)P levels- is also 

possible and an interesting point when addressing the role of PI3KC2b in PI-conversion on 

endosomal membranes. A functional relationship between MTMs and class II PI3K co-

regulating a pool pf PI(3)P has previously been proposed in drosophila (Velichkova et al., 
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2010). In an MTM1-deficient mouse model inhibition or depletion of PI3KC2b promoted 

rescue of myotubular myopathy symptoms (Sabha et al., 2016). 

 

4.1.2 The localization of PI3KC2b 

Class II PI3Ks have been the least studied class of PI3Ks and thus their subcellular localization 

and location of activity have been poorly understood. PI3KC2a has been implicated in 

signaling events downstream of the epidermal growth factor receptor (EGFR), in the 

maturation of clathrin coated pits in clathrin mediated endocytosis (CME) and in early 

endosomal trafficking and thus has been shown to act primarily at the plasma membrane and 

early endosomes (Arcaro et al., 2000; Campa et al., 2018; Franco et al., 2014; Posor et al., 

2013). PI3KC2g has been shown to be a Rab5 effector and regulates Akt2 signaling on early 

endosomes (Braccini et al., 2015). PI3KC2b has been the least studied kinase among the class 

II. PI3KC2b has been shown to interact with EGFR and Grb2 at the plasma membrane as well 

as clathrin in an undefined location. It also partly translocates to the cytoplasm and nucleus 

upon EGF stimulation (Arcaro et al., 2000; Banfic et al., 2009; Katso et al., 2006). 

In the course of this thesis, the subcellular localization and location of activity of PI3KC2b was 

analyzed based on tracking endogenously expressed enzyme within the cell using 

CRISPR/Cas9-technology. Protein-protein-interactions were studied based on known 

sequence information and homologies between the class II PI3Ks. PI3KC2a and PI3KC2b have 

a very high sequence homology except in their unstructured N-termini. Since PI3KC2b was 

found to regulate mTORC1 activity but PI3KC2a does not, proteins that mediate this specific 

function of PI3KC2b were likely to bind within the non-homologous N-terminal region. Indeed, 

a specific interaction between PI3KC2b and mTORC1, which resides at late-

endosomal/lysosomal membranes, could be described.  This interaction depends on growth 

factor starvation. The growth-factor dependency is caused by a competing interaction 

between PI3KC2b and 14-3-3 proteins within the same sequence, which is dependent on 

phosphorylation by PKN2. 14-3-3 proteins bind to specific phosphorylated motifs and regulate 

the accessibility of binding surfaces, conformational changes or enzymatic activities and as 

scaffold proteins in a plethora of signaling pathways (Yaffe et al., 1997). This mechanism of 

regulation via phosphorylation and 14-3-3 interaction is specific for the b isoform of class II 

PI3Ks, since neither PI3KC2a nor PI3KC2g contain 14-3-3 binding motifs within their N-termini. 

In agreement with this data, the endogenously GFP-tagged PI3KC2b in HEK293T and HeLa cells 
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showed a mainly cytosolic localization in conditions of high growth factors but the enzyme 

was recruited to Ly/LEs -the localization of mTORC1- upon growth factor depletion. Depletion 

of PKN2 had the same effect, suggesting that 14-3-3 proteins are keeping PI3KC2b cytosolic 

and prevent recruitment to Ly/LEs and mTORC1. Furthermore, Rab7, as small GTPase being 

active on LY/Les, was found as an additional factor in the mechanism of PI3KC2b recruitment 

to Ly/LEs. Whereas the phosphorylation and 14-3-3 binding to PI3KC2b generally inhibits the 

recruitment to Ly/LEs, once de-phosphorylated, Rab7 is needed to actively recruit the enzyme 

to its location of activity, probably via the RBD of PI3KC2b. A similar mechanism has been 

described for PI3KC2g, which is recruited to early endosomes by the small GTPase Rab5 

(Braccini et al., 2015). Since all three class II PI3Ks contain a RBD, recruitment of PI3KC2a to 

its location of activity via a small GTPase is also likely but has not been described yet. 

In addition to the unstructured N-terminus and the RBD, the C-terminal PX-C2-modul of class 

II PI3Ks is also likely to play a role in their regulation or localization. It has been described that 

the PX and C2 domains are keeping PI3KC2a in a catalytically inactive conformation, which is 

resolved upon binding to PI(4,5)P2, a lipid which is highly present at the plasma membrane 

(Wang et al., 2018). Similar mechanisms for PI3KC2b and PI3KC2g remain unknown so far, but 

it is likely that not only recruitment via a small GTPase but also the PIP-identity of a membrane 

define to which membranes these kinases are recruited and activated. 

 

4.1.3 Effects of lysosomal PI(3,4)P2 

It has been described that PI(3,4)P2 is recognized by the PH-domain of Akt and thus can 

promote recruitment and activation of Akt (Ebner et al., 2017). These processes have been 

described for PI(3,4)P2 which is either produced at the plasma membrane by class I PI3Ks or 

at early endosomes by PI3KC2g (Braccini et al., 2015; Vanhaesebroeck et al., 2010a). Except 

from Akt, the PI3KC2a effector SNX9 and TAPP1/TAPP2 , downstream effectors of this PI have 

yet to be identified (Posor et al., 2013; Wullschleger et al., 2011). In mass spectrometry 

screens for the identification of proteins binding to different phosphoinositide species, 14-3-

3g was found (Jungmichel et al., 2014). In the course of this thesis, it could be confirmed that 

14-3-3g is able to bind to PI(3,4)P2. However, a PIP-binding domain within the protein could 

not be identified. Functionally, manipulation of PI(3,4)P2 levels via knockdown of PI3KC2b or 

adding exogenous PI(3,4)P2-AM altered the recruitment of 14-3-3 to LY/LEs an the binding of 

14-3-3g to Raptor, a previously described interaction. Altogether, 14-3-3g was found as a 
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PI(3,4)P2 effector regulating mTORC1-activity. Interestingly, manipulation of PI(3,4)P2 on 

LY/LEs not only influences mTORC1-activity but also the positioning of lysosomes within the 

cell. Whereas 14-3-3g can work as a link coupling PI(3,4)P2-generation to inhibition of 

mTORC1-activity, a functional relationship between 14-3-3g recruitment to LY/LEs and 

changes of lysosome positioning could not be found, suggesting the presence of other 

effectors of lysosomal/late-endosomal PI(3,4)P2 that regulate lysosomal positioning and 

maybe other effects of PI3KC2b which have not been described yet. Some proteins which have 

been shown to regulate the positioning of lysosomes are the small GTPases Arl8 and Rab7, 

the Ragulator complex as well as protruidin and FYCO1 (Filipek et al., 2017; Hong et al., 2017; 

Pu et al., 2017; Rosa-Ferreira and Munro, 2011; Wunderlich et al., 2001). Whereas loss of 

Ragulator has been shown to phenocopy the loss of PI3KC2b and suggests Ragulator as a 

potential downstream target of PI3KC2b, loss of Arl8 and FYCO1/protruidin leads to a 

perinuclear clustering of lysosomes, suggesting that PI3KC2b PI(3,4)P2 production might 

activate GAPs of Arl8 or regulating factors of FYCO1/protruidin instead of these proteins 

directly. Furthermore, the positioning of lysosomes has been shown to be coupled to the pH 

gradient on the lysosomal membrane and thus might be coupled to v-ATPase activity (Johnson 

et al., 2016). Interestingly, lysosomal v-ATPase has already been suggested to be a direct 

effector of PI(3,5)P2, so it likely is able to also bind PI(3,4)P2, which might influence it activity 

as well (Li et al., 2014). Additionally, lysosomal PI(3,4)P2 has been shown to activate the 

cholesterol transporter ORP1L, which is removing cholesterol from late-endosomal/lysosomal 

membranes (Dong et al., 2019). Cholesterol can activate mTORC1 via SCL38A9 (Castellano et 

al., 2017). ORP1L depletion hyperactivated mTORC1 suggesting ORP1L as another effector of 

PI(3,4)P2 on Ly/LEs and link between PI3KC2b and mTORC1 (Dong et al., 2019).  

In general, proteins recognize different PI-species via their PI-binding domains. For binding 

PI(3,4)P2, PH-domains such as in Akt or TAPP1 as well as PX-BAR domains such as in SNX9 have 

been described. Unfortunately, 14-3-3g , which was found in the course of this thesis as a 

PI(3,4)P2 effector, lacks such a domain, similar to how v-ATPase has been described as a 

PI(3,5)P2 effector. This raises the question whether the observed downstream effects are 

exclusively direct or whether yet unidentified PH- or PX/BAR-domain containing proteins are 

involved in these processes as well. Thus, looking for further PI(3,4)P2 effectors on lysosomal 

membranes in future studies proteins containing PI-binding domains should be prioritized. 
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4.2 The regulation of PI3KC2b via PKN downstream of mTORC2 

One characteristic of the class II PI3K b described in the course of this thesis is the growth 

factor starvation dependent recruitment and activation of this lipid kinase, which is a novel 

mechanism which has not been described for any other PI3K. The starvation dependent 

recruitment of PI3KC2b depends directly on association with active Rab7, but the key 

regulation occurs via phosphorylation dependent 14-3-3 binding of PI3KC2b, which shields the 

binding surface of PI3KC2b to raptor and keeps the kinase in an inactive cytosolic 

conformation. Screening 245 serine/threonine-kinases, the only kinases that could be 

identified carrying out this key phosphorylation were PKN1 and PKN2 (Protein kinase N 1 and 

2).  Using HEK293T and HeLa cells, only PKN2 but not PKN1 induced phosphorylation of 

PI3KC2b, suggesting PI3KC2b as an isoform specific target for PKN2. PKNs are PKC-related 

kinases within the family of AGC-kinases. Similar to how previously described for many other 

AGC-kinases (Pearce et al., 2010; Saxton and Sabatini, 2017), within this study mTORC2 was 

identified as a key activator of PKN2. mTORC2, which is activated in response to growth factor 

stimulation, phosphorylates and activates PKN2 which in turn phosphorylates PI3KC2b 

keeping it inactive in the cytosol. Altogether, this mTORC2-PKN2-PI3KC2b axis gives detailed 

insight into how the class II PI3K b is recruited to Ly/LEs and activated in response to growth 

factor starvation. 

 

4.2.1 Regulation of mTORC1 by PKN 

It has been previously suggested, that mTORC1 activity is affected by PKN2 and thus a 

downstream target. Induced PKN2-KO MEFs showed a reduction of phosphorylation at T389 

of S6K, the mTORC1 target-site, whereas phosphorylation of Erk1/2 and Akt were unaffected 

(Quétier et al., 2016). These results could be confirmed depleting PKN2 via knock-out and 

knock-down in HEK293T cells in the course of this thesis. In addition, loss of PKN2 also 

decreased cell size, another indicator of lower mTORC1 activity. Interestingly, depletion of 

PKN1 did not affect mTORC1-activity, suggesting an isoform specific effect. The previously 

unknown mechanism of mTORC1 activation by PKN2 could be described as being indirect via 

PI3KC2b. PI3KC2b, a novel negative regulator of mTORC1 activity, is itself negatively regulated 

by PKN2, as described previously. Loss of PKN2 diminishes mTORC1 activity, which can be 

rescued by co-depletion of PI3KC2b. Interestingly, the co-loss of PI3KC2b did not completely 

rescue the PKN2 dependent loss of mTORC1 activity. This could suggest that other 
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unidentified targets of PKN2 also directly or indirectly affect mTORC1 activity and PI3KC2b is 

not the only effector of PKN2 influencing nutrient signaling via mTORC1. The results from this 

study indicate that in principle PKN1 and PKN2, two isoforms of PKN family sharing very high 

sequence homology (Mukai, 2003), are able to phosphorylate PI3KC2b and induce the 

inhibiting 14-3-3 interaction. However, in cell culture only PKN2 affected either mTORC1 

activity or PI3KC2b-14-3-3 complex formation whereas loss of PKN1 had no effect on both 

and also co-depletion of PKN1 and PKN2 did not increase any effects. This strongly suggests 

that PI3KC2b and mTORC1 activity are PKN2 isoform specific targets and effectors. Still, similar 

effects of PKN1 on PI3KC2b and mTORC1 activity might occur in other cell types. Furthermore, 

it was not tested whether PKN1 can compensate for long-term PKN2 loss and takes over PKN2 

functions. This is not unlikely since in vitro PKN1 and PKN2 phosphorylated PI3KC2b and forced 

14-3-3-interaction. 

 

4.2.2 The relationship between PKN and PI3KC2b 

In the course of this thesis it has been shown that PKN2 is a key negative regulator of PI3KC2b 

localization and recruitment and thus an upstream regulator of mTORC1 activity. 

Phosphorylation of PI3KC2b at T279 induces 14-3-3 binding and dimerization and prevents 

binding of Raptor and Rab7, which are necessary for PI3KC2b to Ly/LEs. A remaining open 

question is where PKN2 and PI3KC2b come together,where the phosphorylation is happening 

and where PKN2 is localized in general. To address this question, live tracking of the HEK293T 

cell line carrying endogenous mCherry-tagged PKN2 might be helpful. One possibility would 

be that upon growth factor stimulation, PKN2 binds to active PI3KC2b at the Ly/LE-membrane, 

phosphorylating it and inducing PI3KC2b falling off Ly/LEs.  

Furthermore, it would be interesting to obtain structural information, how dimers of PI3KC2b 

interact with dimers of 14-3-3 proteins and how this complex is preventing membrane 

recruitment of PI3KC2b. Both, 14-3-3 binding and dimerization of PI3KC2b have been shown 

to be dependent on growth factor starvation and phosphorylation at T279 of PI3KC2b. While 

it is clear that 14-3-3 binding directly prevents interaction with the mTORC1 complex because 

14-3-3 proteins and Raptor are competing for the same binding surface, it remains unclear 

how 14-3-3 proteins prevent the binding of Rab7, which is probably occurring via the RBD of 

PI3KC2b. The RBD of PI3KC2b starts after the unstructured N-terminus approximately at 
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amino acid 320, whereas the binding surface for 14-3-3 proteins is a motif around amino acid 

279, so the RBD is unlikely to be involved directly in PI3KC2b-14-3-3 complex formation.  

Surprisingly, although the phosphorylation of T279 of PI3KC2b is inhibiting its recruitment to 

LY/LEs and thus inactivates the kinase, long term depletion of PKN2 and loss of this 

phosphorylation destabilizes PI3KC2b and decreases protein levels of PI3KC2b. This effect 

became obvious after depletion of PKN2 for more than 48h via siRNA mediated knockdown 

and was even more prominent while the attempt of generating a cell line carrying a T279A 

mutation within PI3KC2b via CRISPR/Cas. Successful mutation could be confirmed via genomic 

sequencing, but in clones with a homozygote T279A mutation PI3KC2b protein expression was 

not detectable anymore. These results suggest, that on one hand PKN2 phosphorylation of 

PI3KC2b functions inhibitory, but on the other hand stabilizes the inactive kinase. This 

suggests that the relationship between PI3KC2b and PKN2 is not straight forward. Long term 

inhibition or depletion of PKN2 might not permanently activate PI3KC2b and inhibit mTORC1 

activity, but might phenocopy the loss of PI3KC2b and reverse the initially detectable cell 

biological phenotypes of PKN2 loss. If so, short term pharmacologic inhibition of PKN2 would 

inhibit cell growth via reducing mTORC1 activity, but long term the opposite might happen. 

Although data generated during this thesis and previous studies suggest that pharmacologic 

inhibition of PKN2 might be a novel way to inhibit mTORC1 activity and thus would be 

beneficial for treatment of diseases caused by mTORC1 miss- and upregulation, potential 

effects of long terms PKN2 inhibition on PI3KC2b as well as mTORC1 activity have to be 

investigated. Mechanistically, it remains elusive how PKN2 loss destabilizes PI3KC2b and this 

point would be interested to address in future studies. Since short term depletion of PKN2 

leads to recruitment of PI3KC2b to LY/LEs, it is likely that PI3KC2b in the unphosphorylated 

and active conformation is e.g.  prone to be degraded, maybe via Ubiquitination dependent 

pathways. Potential effects of degradative pathways on PI3KC2b stability, e.g. via proteasome 

inhibition, p62 depletion or inhibition of lysosomal degradation, should be addressed in future 

studies. 

 

4.2.3 mTORC2 in PKN regulation 

mTORC2 has been shown to be activated by growth factor stimulation via class I PI3Ks. The 

main mTORC2 downstream targets are kinases from the AGC-kinase family. It has been shown 

for many AGC kinases, that mTORC2 phosphorylates two sites within the C-terminus of the 
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kinase domain of AGC kinases, the turn motif and the hydrophobic motif with the most 

prominent kinases being phosphorylated by mTORC2 in both motifs being Akt and various PKC 

isoforms (Pearce et al., 2010; Saxton and Sabatini, 2017). These phosphorylations are 

necessary to allow further phosphorylation of the activation loop by PDK1. Thus, 

phosphorylation of the turn motif and the hydrophobic motif are necessary for substrate 

recognition and kinase activity of these kinases (Pearce et al., 2010). The turn motif of PKN1 

and PKN2 are conserved with other PKCs whereas the hydrophobic motif -although it is mostly 

conserved- does not contain a phosphorylatable residue but a phospho-mimicking aspartate 

instead. This suggests that PKN1 and PKN2 could only be phosphorylated within the turn motif 

at threonine 958 and thus are only regulated via the turn motif phosphorylation, whereas the 

hydrophobic is in a permanently phosphorylated and active conformation due to the phospho-

mimicking residue . It has been shown before that mutation of threonine 958 into alanine 

completely abolishes kinase activity of PKN2 (Lim et al., 2008). Furthermore T958 has been 

shown to be phosphorylated, although it has not been described before which kinase is 

phosphorylating this residue (Falk et al., 2014). Within this study, mTORC2 has been shown to 

be able to phosphorylate T958 of PKN2. Furthermore, mTOR inhibition and mTORC2 depletion 

diminished  phosphorylation at T958 of PKN2 in HEK293T cells as well as inhibiting PKN2- 

PI3KC2b interaction, suggesting that this phosphorylation is performed by mTORC2 and is not 

only necessary for kinase activity but also for substrate recognition of PKN2. Furthermore, 

mTORC2 depletion also resulted in a dramatic reduction of PI3KC2b-14-3-3 complex formation 

strongly suggesting a mTORC2-PKN2 cascade that regulates PI3KC2b. Finally, confirming the 

previously described abolishment of PKN2 kinase activity, only wild type PKN2 but not PKN2-

T958A could rescue PI3KC2b-14-3-3 complex formation in PKN1/PKN2 knockout-cells. 

Altogether, these results show a direct relationship between mTORC2 and PKN2 activity which 

in turn regulates localization and activity of PI3KC2b and finally mTORC1 activity. However, it 

is still possible, that mTORC2 is regulating PKN2 on additional ways, maybe even via direct 

phosphorylation at so far unidentified sites. Furthermore, Rho GTPases are implicated in PKN2 

activation (Lim et al., 2008; Quétier et al., 2016). Indeed, within the course of this thesis it 

could be confirmed that the inhibition of Rho leads to a similar decrease of PI3KC2b-14-3-3 

complex as depletion of mTORC2. Rho itself has also been suggested to be regulated by 

mTORC2, implicating that in addition to regulating PKN2 via direct phosphorylation, mTORC2 
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might also regulate PKN2 activity via Rho (Li and Gao, 2014). Open questions concerning the 

mTORC2-PKN2 relationship could be addressed in future studies. 
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4.3 Conclusion and outlook 

Within the course of this thesis, the class II PI3K b could be identified as a novel negative 

regulator of mTORC1 activity. Additionally, mTORC1 regulation via PI3KC2b was shown to 

depend on upstream regulation via PKN2 and mTORC2. These results unveil a novel signaling 

pathway regulating mTORC1 activity upon growth factor stimulation independent of Akt. 

Furthermore, the discovered mTORC2-PKN2-PI3KC2b-mTORC1 signaling axis suggests a novel 

interplay between mTORC1 and mTORC2 activity in the regulation of cell growth and cellular 

metabolism.  

These findings suggest that pharmacological targeting of PI3KC2b and PKN2 activity may open 

new possibilities for the treatment of diseases which are connected to deregulation of 

mTORC1 activity such as cancer, diabetes or obesity as well as X-linked myotubular myopathy. 

Going into that direction, it would be important to address the open question on how long 

term PKN2 loss destabilizes PI3KC2b.  

From the cell biological perspective, it would be interesting to identify further effectors of 

lysosomal PI(3,4)P2 to clarify the mechanism of how PI3KC2b regulates the positioning of 

lysosomes in addition to mTORC1 activity. In a bigger picture, PI3KC2b might the link in the 

relationship between mTORC1 activity and positioning of lysosomes. 

Finally, investigating potential implications of PI3KC2b in other mechanisms regulated by 

mTORC2 and PKN2 could open new fields of research. Apart from regulating cell growth via 

mTORC1, mTORC2 as well as PKN2 are implicated in the regulation of cell adhesion and cell 

migration. Furthermore, loss of the Ragulator complex has not only been shown to phenocopy 

loss of PI3KC2b and thus is a potential downstream target of PI(3,4)P2, but also implicated in 

focal adhesion dynamics and thus in cell adhesion and migration (Filipek et al., 2017; Pu et al., 

2017; Schiefermeier et al., 2014; Wunderlich et al., 2001). Altogether, these findings suggest 

a potential involvement of PI3KC2b and its cell biological effects such as the repositioning of 

lysosomes not only in cell growth but also in cell adhesion and migration. PI3KC2b as an 

enzyme that effects and links both cell growth and cell adhesion/migration might be a 

powerful target in cancer therapy, where inhibition of both of these cellular functions is 

beneficial to inhibit on one hand tumor growth and on the other hand metastasis. 
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