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Abstrakt 

 

Abstract (English) 

 

Objectives. To propose and evaluate a four-dimensional (4D) algorithm for joint motion elimination 

and spatiotemporal noise reduction in low-dose dynamic myocardial computed tomography perfusion 

(CTP).  

 

Methods. Thirty patients with suspected or confirmed coronary artery disease were prospectively 

included und underwent dynamic contrast-enhanced 320-row CTP. The presented deformable image 

registration method ASTRA4D identifies a low-dimensional linear model of contrast propagation (by 

principal component analysis, PCA) of the ex-ante temporally smoothed time-intensity curves (by local 

polynomial regression). Quantitative (standard deviation, signal-to-noise ratio (SNR), temporal 

variation, volumetric deformation) and qualitative (motion, contrast, contour sharpness; 1, poor; 5, 

excellent) measures of CTP quality were assessed for the original and motion-compensated volumes 

(without and with temporal filtering, PCA/ASTRA4D). Following visual myocardial perfusion deficit 

detection by two readers, diagnostic accuracy was evaluated using 1.5T magnetic resonance (MR) 

myocardial perfusion imaging as the reference standard in 15 patients. 

 

Results. Registration using ASTRA4D was successful in all 30 patients and resulted in comparison 

with the benchmark PCA in significantly (p<0.001) reduced noise over time (-83%, 178.5 vs 29.9) and 

spatially (-34%, 21.4 vs 14.1) as well as improved SNR (+47%, 3.6 vs 5.3) and subjective image 

quality (motion, contrast, contour sharpness: +1.0, +1.0, +0.5). ASTRA4D resulted in significantly 

improved per-segment sensitivity of 91% (58/64) and similar specificity of 96% (429/446) compared 

with PCA (52%, 33/64; 98%, 435/446; p=0.011) and the original sequence (45%, 29/64; 98%, 

438/446; p=0.003) in the visual detection of perfusion deficits. 

 

Conclusions. The proposed functional approach to temporal denoising and morphologic alignment 

was shown to improve quality metrics and sensitivity of 4D CTP in the detection of myocardial 

ischemia. 
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Abstrakt (Deutsch) 

 

Zielsetzung. Die Entwicklung und Bewertung einer Methode zur simultanen Rauschreduktion und 

Bewegungskorrektur für niedrig dosierte dynamische CT Myokardperfusion.  

 

Methoden. Dreißig prospektiv eingeschlossene Patienten mit vermuteter oder bestätigter koronarer 

Herzkrankheit wurden einer dynamischen CT Myokardperfusionsuntersuchung unterzogen.  

Die präsentierte Registrierungsmethode ASTRA4D ermittelt ein niedrigdimensionales Modell des 

Kontrastmittelflusses (mittels einer Hauptkomponentenanalyse, PCA) der vorab zeitlich geglätteten 

Intensitätskurven (mittels lokaler polynomialer Regression). Quantitative (Standardabweichung, 

Signal-Rausch-Verhältnis (SNR), zeitliche Schwankung, räumliche Verformung) und qualitative 

(Bewegung, Kontrast, Kantenschärfe; 1, schlecht; 5, ausgezeichnet) Kennzahlen der unbearbeiteten 

und bewegungskorrigierten Perfusionsdatensätze (ohne und mit zeitlicher Glättung PCA/ASTRA4D) 

wurden ermittelt. Nach visueller Beurteilung von myokardialen Perfusionsdefiziten durch zwei 

Radiologen wurde die diagnostische Genauigkeit im Verhältnis zu 1.5T Magnetresonanztomographie 

in 15 Patienten ermittelt. 

 

Resultate. Bewegungskorrektur mit ASTRA4D war in allen 30 Patienten erfolgreich und resultierte im 

Vergleich mit der PCA Methode in signifikant (p<0.001) verringerter zeitlicher Schwankung (-83%, 

178.5 gegenüber 29.9) und räumlichem Rauschen (-34%, 21.4 gegenüber 14.1) sowie verbesserter 

SNR (+47%, 3.6 gegenüber 5.3) und subjektiven Qualitätskriterien (Bewegung, Kontrast, 

Kantenschärfe: +1.0, +1.0, +0.5). ASTRA4D resultierte in signifikant verbesserter segmentweiser 

Sensitivität 91% (58/64) und ähnlicher Spezifizität 96% (429/446) verglichen mit der PCA Methode 

(52%, 33/64; 98%, 435/446; p=0.011) und dem unbearbeiteten Perfusionsdatensatz (45%, 29/64; 

98%, 438/446; p=0.003) in der visuellen Beurteilung von myokardialen Perfusionsdefiziten. 

 

Schlussfolgerungen. Der vorgeschlagene funktionale Ansatz zur simultanen Rauschreduktion und 

Bewegungskorrektur verbesserte Qualitätskriterien und Sensitivität von dynamischer CT Perfusion in 

der visuellen Erkennung von Myokardischämie. 
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Manteltext 

 

Introduction  

 

The pathophysiology of CAD and current diagnostic approach. Cardiovascular disease is the 

leading global cause of mortality [1], accounting for 31% of all deaths worldwide according to the 

World Health Organization. In coming decades it is expected to become more prevalent for 

demographic and lifestyle reasons (obesity and diabetes, aging population). Coronary artery disease 

(CAD) is mainly caused by cholesterol-containing deposits (plaques) building up in the wall of the 

major blood vessels of the heart, the coronary arteries, and inflammation. Over time these plaque can 

narrow the coronary arteries and slowly block blood flow. Coronary stenosis is the reduction of the 

diameter or lumen in one or more coronary arteries. Eventually, reduced blood flow may cause chest 

pain (angina), shortness of breath, or other CAD symptoms. A completely blocked artery or a sudden 

plaque rupture can cause a heart attack.  

Reducing risk factors, such as high blood pressure, high cholesterol, diabetes/insulin resistance, 

obesity, smoking, inactivity, unhealthy diet, can help prevent the plaque from forming. Patients with 

suspected CAD may receive an initial diagnostic test like electrocardiogram (ECG), echocardiogram or 

a stress test, followed by a cardiac catheterization or heart scan by computed tomography (CT), 

depending on the results and the pretest probability [2]. 

Invasive coronary angiography (ICA) is the gold standard to image the coronary vasculature and to 

assess the presence and severity of CAD. The advantage of this method is the combination of 

diagnostics and therapy. A significant coronary artery stenosis or occlusion can be detected and 

possibly stent-fed in one session. Most of the ICA performed, however, are not followed by an 

intervention. Coronary catheterization may cause major complication in 1.3% of cases and has 0.05% 

in lab-mortality rate. In addition, radiation exposure and the risk of contrast agent-induced nephropathy 

should be mentioned. 

Technical advances in cardiac CT such as wide detectors arrays, dual-source configuration, low-kV 

and high-pitch acquisition, current modulation, as well as iterative reconstruction techniques have 

allowed coronary CT angiography (CTA) to become established as a non-invasive, accurate and rapid 

imaging modality that provides high temporal and spatial resolution at low radiation exposure (<1mSv) 

for motion free cardiac imaging and detailed visualization cardiac morphology and coronary or 

myocardial pathology. Due to its high negative predictive value (>90%) for detecting coronary artery 

stenosis in the clinical setting it has become the first-line recommendation for patients with suspected 

CAD. Clinical decision-making for myocardial revascularization is linked to the presence of myocardial 

ischemia. Pure anatomical evaluation of stenosis severity by CTA does not inform about the 

hemodynamic significance of a given coronary stenosis [3, 4]. The additional use of physiologic 

information to detect hemodynamically significant CAD, see Figure 1,  has an incremental prognostic 

value over CTA alone and allows improved risk stratification of patients with CTA-detected stenosis [5-

7], as shown, for example, in the CORE320 study [8]. Second line non-invasive functional assessment 

of a detected coronary artery stenosis is therefore an attractive addition to CTA, but relies mostly on 

referral to other imaging modalities: non-invasively by cardiac magnetic resonance (MR) perfusion [9, 
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10], positron-emission tomography (PET) [11] or CT perfusion (CTP) [12]. Though, functional 

evaluation is not yet routinely applied in clinical practice due to missing standardization of acquisition 

protocols, valid reference values to discriminate between normal and reduced myocardial perfusion, 

low spatiotemporal resolution, cost and availability of imaging devices [13]. 

 

 

Figure 1. 72-year-old man with multiple cardiovascular risk factors who presented with chest pain suggestive of 

ischemic heart disease and was referred for coronary CT angiography and myocardial perfusion imaging. The left 

circumflex artery shows mixed plaque with intermediate-to-severe stenosis (A). At stress, the iodine distribution 

map (B) shows well-demarcated area of decreased myocardial iodine content in lateral wall of left ventricle, which 

is reversible on rest image (C). Findings are thus consistent with lateral wall ischemia [14]. 

 

Invasive coronary angiography (ICA) with catheter-based fractional flow reserve (FFR) using pressure 

wire and adenosine is the established reference standard for the functional assessment of CAD [15]. It 

allows accurate invasive assessment of flow limiting vascular perfusion deficits [4] and is important for 

ischemia-guided revascularization [12]. FFR quantifies the severity of coronary artery lesions by 

measuring the pressure loss across a stenosis determining hemodynamic significance but does not 

assess the functional impairment of the myocardium subtended by the stenotic vessel. Epicardial 

coronary stenosis is only one of the factors contributing to the pathophysiological process leading to 

myocardial ischemia. Inflammation, endothelial dysfunction, microvascular dysfunction, platelet 

dysfunction, thrombosis, and vasomotor dysfunction should also be considered [6]. The explanatory 

power of FFR is therefore limited for the measurement of myocardial perfusion. Microvascular 

dysfunction, for example, may be a primary pathology or may coexist with stenosis.  

To have a joint anatomical and functional evaluation of CAD available within the single non-invasive 

modality CT would improve risk stratification. CT can evaluate the functional significance of a coronary 

stenosis by static or dynamic myocardial perfusion imaging, and, as of recent, non-invasive CT-

derived fractional flow reserve CT-FFR, see Figure 2. CT-FFR is an index of epicardial stenosis-

related ischemia, a lesion-specific noninvasive FFR estimate derived from conventional coronary CTA 

using models from computational fluid dynamics (CFD) without the need for additional functional 

testing, thus providing anatomical and physiological assessment using a single CTA dataset. CTP, on 

the other hand, reflects the impact of both, epicardial coronary lesions and microvascular disease, on 

myocardial perfusion [6]. 
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Figure 2. 57-year-old man who underwent non-invasive CT-FFR measurements. The right coronary artery from 

standard CTA shows intermediate degree luminal stenosis (A). ICA confirms presence of stenosis (B). FFR was 

measured at 0.93 via invasive flow wire, indicating lack of hemodynamic significance of this lesion. FFR derivation 

from coronary CTA of lesion of interest (C) using CT-FFR (Siemens Healthineers) revealed value of 0.94, in good 

correlation with invasive measurement [14]. 

 

Contrast-enhanced computed tomography perfusion (CTP) assesses the distribution of intravenously 

administered iodinated contrast agent in the myocardium as an indicator for myocardial blood flow 

(MBF), mostly using pharmacological vasodilator stress. Iodinated contrast material attenuates x-rays 

proportional to iodine concentration, hypoattenuated areas in the myocardium are suggestive of 

reduced myocardial perfusion (ischemia) and/or reduced intravascular blood volume. 

Ischemic/infarcted myocardium shows both a slow wash-in and a slow washout of the contrast 

material, resulting in lower and delayed peak attenuation [16] whereas normal myocardium enhances 

homogeneously after  intravenous contrast material injection. CTP improves the diagnostic accuracy 

for the detection of functionally relevant coronary artery disease (CAD) [3] and has a similar diagnostic 

accuracy as other non-invasive modalities for the detection of myocardial perfusion defects 

attributable to flow-limiting stenosis [9] with ICA and FFR as the reference standard. In static CTP a 

single data frame, a snap shot, for optimal differentiation of ischemic and non-ischemic myocardium is 

acquired during arterial first pass, whereas dynamic CTP, which appears to have a higher sensitivity 

than static CTP [6], images the left-ventricular myocardium over time.   

Dynamic imaging allows to quantify absolute myocardial blood flow (MBF in ml/g/min) derived from 

hemodynamic modeling (e.g. by compartment models or deconvolution). Quantification is not yet 

routinely applied in clinical practice, it is relatively noise sensitive, there is a significant heterogeneity in 

normal perfusion vales, and dynamic CTP generally underestimates MBF compared to PET and 

cardiac MR. Currently there are no established reference cutoff values of MBF to discriminate with 

high diagnostic accuracy between normal and abnormal myocardial perfusion, which may be 

attributable to variability in the study design, image acquisition and post-processing techniques.  

Reduced myocardial perfusion, potentially caused by flow limiting stenosis in a coronary vessel, is 

either assessed visually or quantitatively. Myocardial CT perfusion deficit detection is complicated by 

cardiac motion, especially in stress imaging with higher heart rates, noise from low-voltage scatter 

radiation, beam hardening from highly attenuating tracer, and the relatively poor contrast resolution 

(attenuation difference between normal and hypoperfused myocardium in the range of 17-50 HU [17]). 

Considering its benefits over other modalities (attenuation directly proportional to contrast material, 
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high spatial resolution, low acquisition time, wide availability [16]), CT may be the adequate basis for 

joint anatomical and functional assessment of CAD at high diagnostic accuracy in a single modality. 

Though, wide employment of dynamic CTP protocols has also been hindered by the unavoidably 

higher radiation dose from repeated CT (5–13 mSv for dynamic CTP [18]), despite advances in low 

dose acquisition protocols and scanning technology. Further progress in image post-processing and 

clinical validation will be needed before routine clinical implementation of dynamic CTP. 

 

 

Figure 3. Representative axial slices and corresponding color-coded difference images underneath. Cardiac 

deformation between different phases of the original sequence can be visually detected by the presence of edges 

in the difference images for tissues of substantially different attenuation.  

 

Challenges of dynamic CTP motion elimination and current research landscape. Complex 

cardiac deformation and patient motion (Figure 3), scatter radiation form low-dose scanning, imperfect 

timing of prospective ECG gated acquisition and beam hardening artifacts from highly attenuating 

tracer make image quality improvement for dynamic cardiac CTP sequences mandatory for diagnostic 

evaluation.  

Motion correction for dynamic contrast enhanced sequences is challenged by rapid intensity changes 

compromising common intensity based registration algorithms. Low-dimensionally parameterized 

tracer-kinetic models have been proposed to distinguish motion from intensity changes due to contrast 

[19], however, are relatively noise-prone and require a high temporal resolution.  

Alternatively, physiologically meaningful behavior of anatomy and tracer flux can, though implicitly, be 

achieved by using temporal or spatial regularization during motion elimination. Deformations can be 

controlled by imposing penalty terms on the transformation model (such as, elastic potential or 

bending energy), or biomechanical constraints such as incompressibility of soft tissue to achieve a 

more realistic deformation behavior (during the cardiac cycle, myocardial volume varies by at most 

5%). Particularly appealing in the high dimensional dynamic setting is the functional treatment of 

contrast enhanced intensity curves using data reduction techniques. Several algorithms based on a 

principal component analysis (PCA) have been successfully used to separate physiological motion 
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and tracer-induced intensity contributions [20-24]. [20] performs a robust principal component analysis 

(RPCA) to separate motion components from contrast enhancement in a manifold-based registration 

framework. Also based on RPCA, [21] decomposes the time-series into a low rank and a sparse 

component, allowing to register the motion component (low rank) using the residual complexity 

similarity measure. [22] eliminates motion by enforcing sparseness in eigenvectors obtained from a 

PCA of the joint correlation matrix of the image sequence. [23] removes motion artefacts while 

preserving long-term contrast enhancement using a progressive principal component analysis 

(PPCR). [24] uses independent component analysis (ICA) and a time-frequency analysis to identify 

motion and separate it from the intensity change induced by contrast agent prior to registration. [25] 

reduces motion by finding the minimal Renyi entropy wavelet representation system of the contrast-

enhanced time-attenuation curves (TACs).  

Detection of myocardial perfusion deficits relies on the differentiation of healthy and ischemic or 

infarcted myocardium with reduced and delayed tracer uptake. For accurate semi-quantitative or 

visual assessment, perfusion defects should be well delineated from healthy myocardium and persist 

over time, therefore requiring an integrated four-dimensional spatiotemporal approach to image quality 

improvement of the entire CT perfusion sequence. 3D iterative reconstructions techniques greatly 

improve noise profile of the cardiac volumes independently, temporally well-behaved smooth contrast 

enhancement curves require a full 4D treatment, though. None of the aforementioned functional 

approaches do ensure temporal smoothness of the resulting TACs without explicit regularization. 

Post-hoc spatiotemporal filtering following motion compensation [26, 27] improves the noise profile 

(spatial noise and contrast-to-noise ratio) of the sequence but may also introduce artifacts in the 

filtering process itself. We therefore propose to reduce motion and improve image quality of the 4D 

CTP sequence at the same time. 

 

Goal of the dissertation. The goal of the dissertation is to assess and to improve image quality and 

diagnostic accuracy of the dynamic CT perfusion sequence obtained from the CT perfusion pilot study 

(n=30) for the visual detection of myocardial perfusion deficits with MR myocardial perfusion imaging 

as the reference standard. In a first step, the notion of temporal averaging of consecutive 3D CTP 

datasets, without prior motion correction, as a method of noise reduction was introduced [28, 29]. In a 

second step, we proposed a unified framework comprising both motion elimination and an ex-ante 

approach to temporal denoising [30] on the basis of exploratory principal component-based alignment 

[22]. We analysed the benefits and limitations from either stage for the purpose of myocardial 

perfusion deficit detection.  

 

Methods 
 

Patient cohort, acquisition, and post-processing. The basis of the analysis was the CT perfusion 

pilot study Cardiac 4D perfusion: Pilot study of dynamic myocardial perfusion using multi-detector 

computed tomography initiated and conducted by Prof. Dr. med. Marc Dewey at Charite University 

Hospital Berlin, 2012 (trial registration number EA1/251/11). After obtaining ethical approval and 

written informed consent, 30 patients with confirmed or suspected CAD and an indication for cardiac 

CT perfusion were examined. Half of the cohort (15 out of 30) also underwent cardiac first pass MR 
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imaging as the diagnostic reference standard, as clinically indicated, after excluding patients with 

contraindications to MR. Details on in- and exclusion criteria, patient preparation and patient 

characteristics can be found in [29]. Stress dynamic myocardial CTP after vasodilator administration 

was performed on a 320-row CT scanner covering the heart in a single gantry rotation. Iodinated 

contrast agent was injected at a relatively high flow rate of 7 ml/s, followed by a saline flush, to aid 

detectability of ischemia by visual assessment in the unregistered CTP sequence from increased peak 

myocardial enhancement due to higher iodine concentration. No special contrast administration 

system was employed, large intravenous access was sufficient. Dynamic scanning was realized 

according to the myocardial low dose acquisition protocol designed for the CTP pilot study, with one 

prospectively ECG-gated acquisition every heartbeat over a period of up to 20 heartbeats during early 

first-pass of the contrast, followed by three single late phases, resulting in an average effective dose of 

9 mSv [29]. All cardiac volumes were reconstructed using an iterative scheme (AIDR3D, Canon 

Medical Systems [31]) and downsampled to 1 mm³ isotropic resolution for motion elimination analysis. 

 

Preliminary analysis: Image quality assessment by temporal averaging. Cardiac volumes were 

averaged for different sample window widths of (1, 2, 3, 4, 6, 8) time points centered on the reference 

volume most suitable for visual assessment of perfusion defects. Objective image quality (noise, 

signal-to-noise ratio, contrast-to-nose ratio) was assessed in the left ventricle, the healthy and the 

ischemic myocardium, respectively. Subjective image quality was assessed on 5-point scale 

(1=nondiagnostic, 5=excellent), motion during the whole acquisition on a 4-point scale (0=no motion, 

3=severe motion) and the presence of myocardial perfusion deficits according to the 17 segment 

model of the myocardium by an experienced clinical reader. Diagnostic accuracy was evaluated with 

MR perfusion as the reference test. Additionally, contour sharpness (width and intensity slope at the 

contour) was assessed at four distinct edges of the left-ventricular myocardium in averaged volumes 

reconstructed by filtered backprojection (FBP), and also, in comparison, in volumes reconstructed by 

AIDR3D (no averaging).  

 

Preliminary analysis: Assessment of existing motion correction methods. Several preliminary 

motion correction experiments were conducted to study their applicability and limitations for 

myocardial CTP alignment. First, conventional intensity-based similarity measures (mutual 

information, sum of squared differences, normalized cross correlation) were applied in a pairwise 

approach, one-by-one, either sequentially or with regard to a chosen reference time point (phase of 

best deficit detectability). Second, aiming at physiologically desirable smooth attenuation curves, we 

implemented a groupwise metric that penalizes strongly varying, either due to noise or motion, time 

intensity curves (integrated squared curvature). Third, we investigated the dynamic image alignment 

based on a sparse representation in principal components of the intervolume correlation matrix [22] 

and variance of intensities of spatially corresponding voxels over time [32]. Fourth, we implemented a 

dynamic version of [33] in extended state space (morphology and bolus flux) with regularization based 

on the elastic potential of the deformations and the sparsity-promoting total variation transform on the 

intensity changes. Registration performance was visually evaluated (morphology, motion, artifacts, 

deformation field, time intensity curves). 



11 

 

Figure 4. Illustration of temporal regression. (A) Local polynomial regression (LPR) at the selected time point (red 

circle) with local cubic fit (red) to data points (blue) with Gaussian weights. (B) LPR fit of data points (red) for 

different bandwidths. (C) Twenty-six random perturbations of the original aortic TAC and their corresponding 

correlation spectrum (red). (D) Temporally smoothed TACs and their spectrum. As a result of smoothing, the joint 

evolution of TACs can be explained with few leading eigenvectors. 

 

The proposed method: Joint alignment and denoising. Grounded upon the preliminary analysis 

and image quality requirements for myocardial perfusion deficit assessment we developed a 

registration algorithm (ASTRA4D) that combines alignment and denoising [30]. The target metric 

quantifies misalignment in terms of the spectrum of the intervolume correlation matrix, obtained by a 

principal component analysis (PCA): Noise or motion are discernible from the high frequency 

components of the spectrum. For each realization of the deformation model, time-intensity curves of 

the deformed sequence are temporally smoothed by using local polynomial regression prior to 

misalignment quantification. The degree of smoothness is controlled by the bandwidth of the Gaussian 

smoothing kernel (Figure 4). The registration scheme numerically identifies deformations such that the 

correlation matrix of the resulting sequence admits a sparse spectral representation in smoothed 

space, thus simultaneously ensuring motion elimination and noise reduction. The result of the 

algorithm is the jointly aligned and temporally smoothed perfusion sequence. The multi-resolution 

registration scheme was implemented in the open-source registration package elastix, applying a 

stacked deformable multi-dimensional B-spline deformation model, and the adaptive stochastic 

gradient descent optimization. No further explicit regularization was employed, though implicitly by the 

choice of regression kernel bandwidth and spatial grid spacing of the deformation model. All thirty 

downsampled original perfusion sequences were registered for different combinations of kernel 

bandwidth (0, 1, 2, 3, 4) and spatial grid size (15, 30, 45, 60 mm) after an initial rigid registration step. 
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The benchmark method [22] can be recovered in the limiting case of zero bandwidth, i.e. no additional 

smoothing. 

 

Image quality and diagnostic assessment. Registration performance of the proposed method 

ASTRA4D was assessed quantitatively and qualitatively and compared with the original and motion 

compensated series using the benchmark method (PCA). The following quality measures were 

evaluated in four regions in the myocardium, always averaged over time: image noise (standard 

deviation), signal-to-noise ratio, temporal variation (mean squared second temporal derivative), 

volumetric deformation (Jacobian determinant of the transformation model), deviation with respect to 

the benchmark method PCA. Visual perfusion sequence quality (motion, contrast, contour sharpness) 

was subjectively graded on a 5-point scale (1=poor, 5=excellent) by two independent readers. The 

grades were averaged between readers for each measure and patient. Semi-quantitative visual 

assessment of myocardial perfusion (normal vs hypoperfusion) was performed by two readers for 

each sequence (CT and MR) in 15 of the 30 patients which underwent both examinations. Myocardial 

segments were identified using the 17-segment model (American Heart Association guidelines). 

Diagnostic performance was evaluated as sensitivity and specificity individually for each reader as well 

as combined on a per-patient, per-vessel and per-segment basis considering the MR consensus 

reading as the reference standard. Interobserver agreement was determined using the kappa statistic. 

Heterogeneity in the detection of myocardial perfusion deficits was assessed using Cochran’s Q test. 

 

Results 
 

Preliminary analysis: Image quality assessment by temporal averaging. Noise was monotonically 

decreasing, both signal-to-noise ratio and contrast-to-noise ratio were monotonically increasing with 

the number of averaging volumes, see Figure 5. Image quality peaked when using 3 combinations and 

motion classified as little motion [29]. Contour sharpness decreased monotonically with increasing 

number of averaging volumes reconstructed by filtered backprojection (FBP), while iterative 

reconstructions (AIDR3D) reduced contour sharpness compared to FBP [28]. Only the use of 3 

combinations improved diagnostic accuracy in the detection of perfusion defects relative the original 

sequence, resulting in a per-patient sensitivity of 82% (9/11) and specificity 100% (4/4), and on a per-

segment sensitivity of 31% (10/32) and specificity of 97% (216/223), considering MR perfusion as the 

reference standard [29]. 
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Figure 5. Basal cardiac short axis slice of a 63 year old male with typical angina pectoris and hyperlipidaemia. (a–

f) Temporally averaged volumes with increasing number (1,2,3,4,6,8) of 3D CTP datasets from consecutive heart 

beats. (g, h) Stress and rest MR MPI. The original sequence had no relevant motion artifacts. The subendocardial 

perfusion defect in the septal wall (arrows) is demarcated very well from (b–f), while it was read as false negative 

in the original dataset (a). The stress MR MPI as the reference standard confirmed the septal subendocardial 

perfusion defect (arrows in g), which was not visible on the rest images (h). 

 

Preliminary analysis: Assessment of existing motion correction methods. None of the pairwise 

approaches yielded subjectively satisfying results for the contrast enhanced sequences (any similarity 

measure). While sequential registration led to increasing registration errors over time (noise 

propagation), the pairwise method led to strong misregistrations for significant change of contrast 

patterns, as may be the case for longer intervals between acquisition time points (reference image 

bias). In any case, they did neither guarantee a smooth bolus transition nor maintain a temporally 

stable morphology. 

Groupwise registration approaches, on the other hand, explicitly allow to control temporal behavior of 

the result. Targeting voxelwise temporal smoothness alone, however, was not sufficient, and led to 

strong volumetric changes over time. Without a proper regularization of the deformation field, time 

intensity curves were forcibly kept smooth leading to unrealistic shrinkage or expansion of the entire 

heart. 

Jointly optimizing over motion and intensity changes during registration was computationally 

demanding (total variation penalty on the additive intensity correction) and ill-posed (underdetermined 

from state space extension) already in the dimension-reduced 2D+t (2D over time) tests and was thus 

judged not to be feasible for the clinical 3D+t CTP setting without significant computational 

advancements. Assessing similarity by voxelwise variance over temporal dimension [32] proved not to 

be applicable in the presence of contrast enhancement (strong distortions). The PCA method [22], 

finally, assessing the relative temporal changes by means of the joint correlation of the volumes, 

consistently coped well with the dual presence of tracer induced intensity changes and cardiac 

motion/deformation, see Figure 6. Thus the motivation for using the independently developed method 

PCA as the benchmark. 
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Figure 6. PCA reduced motion in the registered representative axial slices of Figure 3 as seen in the difference 

images underneath.  

 

The proposed method: ASTRA4D. Registration using the proposed method was successful in all 

CTP pilot study patients and proved to be superior in the triple performance assessment (subjective, 

objective, diagnostic) when compared to the unregistered sequence and the sequence obtained from 

the benchmark method PCA, see Figure 7. Objectively, the use of ASTRA4D significantly reduced 

spatial and temporal noise compared to the benchmark PCA. Subjectively, ASTRA4D significantly 

improved perfusion sequence image quality as evaluated by two independent readers compared to 

both the original and the benchmark sequence, resulting in increased image quality (+1,+1,+0.5) on a 

5-point scale for the quality measures (motion, contrast, contour sharpness). The use of ASTRA4D 

resulted in excellent diagnostic performance with MR perfusion as the reference test. Sensitivity and 

specificity, aggregated over 2 clinical readers, were 91% (58/64) and 96% (429/446) on a per-segment 

basis. Reading of the PCA-motion corrected series was significantly less sensitive with a sensitivity of 

52% (33/64), while the specificity was similar with 98% (435/446). Interreader agreement on the 

presence of myocardial hypoperfusion was excellent (CT and MR). Detailed results can be found in 

[30].  

The particular choice of parameters controlling the registration outcome (metric, deformation model, 

optimization method) proved to be universally applicable for all perfusion sequences analysed. A 

spatial grid spacing of 45 mm and a temporal kernel bandwidth of 2.0 balanced best between 

physiologically meaningful deformations and smooth contrast-enhanced time-attenuation curves. 

Perfusion registration was possible within the few minute range, thus applicable in the clinical setting. 
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Figure 7. In addition to motion correction using PCA (Figure 6), ASTRA4D reduced noise as seen in the 

difference images underneath. 

 

Discussion 
 

We addressed two drawbacks of low dose 4D CTP in the current dissertation: noise and motion 

artifacts. While each of these artifacts can be approached separately, denoising and motion 

correction, we propose and evaluate a single unified framework for the purpose of myocardial 

perfusion deficit detection. 

 

Denoising by spatiotemporal filtering. The use of an adaptive iterative reconstruction scheme 

(AIDR3D strong, Canon Medical Systems) as a method of integrated dose reduction allowed the 

cardiac CTP volumes to be acquired at a fraction of the dose compared to the conventional filtered 

backprojection (FBP) with quantum denoising software (QDS, Canon Medical Systems) while 

preserving diagnostic image quality [34]. The scheme AIDR3D reduces the extent of beam hardening 

artifact and spatial noise by repeated edge-preserving anisotropic diffusion filtering. Residual artifacts 

remain, especially in temporal domain (cardiac and patient motion). Considerable motion in the CTP 

dataset limits the image quality gain from pure filtering approaches that exploit data redundancy 

arising from the additional temporal dimension. Performance of plain temporal averaging (uniform box 

filter) was moderate for either evaluation measure [29]. While objective image quality (noise, signal-to-

noise and contrast-to-noise ratio) was improved, mainly due to the nature of the averaging filter, 

subjective image quality could be improved only when combining three cardiac phases with little 

cardiac motion. Without morphological alignment, moderate to severe motion led to blurring of edges 

and fine structures [28], spatially, and temporal averaging erased hypoperfused regions, which differ 

from healthy myocardial tissue only by 17-50 HU [17] and thus in the same range as noise (Figure 8). 

Myocardial ischemia was badly detected by using temporal averaging without motion correction, 

manifesting itself in a very low per-segment sensitivity of 31% (3 combinations). Its clinical value for 

the detection of myocardial ischemia is therefore limited.  
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Figure 8. Basal cardiac short axis slice of a 54 year old male with typical angina pectoris and hyperlipidaemia. (a–

f) Temporally averaged volumes with increasing number (1,2,3,4,6,8) of 3D CTP volumes from consecutive heart 

beats. (g, h) Stress and rest MR MPI. (e, f) demonstrate the typical decrease in edge sharpness using 6 and 8 

volumes for temporal averaging due to patient motion. (b–d), the subendocardial perfusion defect in the septal 

(arrows) and lateral (arrow heads) wall was well depicted while it was not seen by the reader in the native dataset 

(a) and for 6 and 8 combinations (e, f). The stress MR MPI (g) confirmed the septal (arrows) and lateral (arrow 

heads) wall perfusion deficit. Rest MR MPI (h) demonstrates the lateral wall perfusion deficit (arrow heads; fixed 

perfusion deficit), while the septal wall perfusion deficit is not visible on rest images (stress induced perfusion 

defect). 

 

As indicated by the low sensitivity, smoothing in temporal dimension based on a naive strategy (large 

averaging window, uniform weights) was too strong, different strategies are needed to improve image 

quality for low dose CTP. Potential candidates are the TIPS, PATEN, GB-TIPS and KMBG 

spatiotemporal filtering approaches. The 3D time-intensity profile similarity (TIPS) bilateral filter [35] 

reduces noise by averaging intensity values according to a spatial proximity weight and a temporal 

weight, measuring the similarity of close time intensity curves based on the averaged sum of squared 

differences. The partial temporal profile non-local means (PATEN) filter [36] spatiotemporally averages 

neighboring voxels according to their similarity in a partial time-intensity profile (a partial temporal 

patch window) if a temporal shift is considered. Noise reduction in excess of 50% was reported for low 

dose retrospectively gated cardiac CT and brain perfusion compared to filtered backprojection. The 

guided bilateral GB-TIPS filter [35] introduces an additional weighting factor in TIPS filtering for small 

structure preservations (weighted average of temporal averaging image and maximum intensity 

projection according to their temporal autocorrelation). The edge-preserving k-means guided bilateral 

filter (KMGB) [35] allows to control the transition between different functional structures by classifying 

voxels according to their TAC similarity using k-means clustering. The success of alternative 

averaging strategies, such as the above mentioned, relies on sufficient redundancy within the 4D 

dataset. Low dose TACs dominated by noise, poor contrast resolution and severe motion artifacts, 

however, as present in our 4D CTP dataset, will also limit their potential for myocardial deficit 

detection without prior motion correction.  
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Motion compensation. The high noise level in low dose CTP imaging makes adequate registration 

challenging. According to our preliminary analysis, assessing functional similarity based on voxelwise 

trajectories (squared intensity differences [32] or squared curvature along the time-intensity curves) 

was prone to noise and not a reliable indicator for functional similarity in perfusion sequences. PCA 

[22] robustly reduced motion based on relative changes between volumes by shifting the correlation 

spectrum to the dominant entries. Yet, even after motion correction, perfusion deficits were still partly 

masked by noise due to poor contrast resolution of low dose CTP, resulting in a relatively low per-

segment sensitivity of 52%.  

 

 

Figure 9. Myocardial ischemia in basal segments (inferoseptal, inferolateral, and anterolateral) is correctly 

identified (arrows) in CTP (PCA, ASTRA) and MR short-axis views. ASTRA illustrates precise differentiation of 

hypoperfused areas in this representative patient. MR was acquired in a more diastolic phase and CT in a more 

systolic phase 

 

The proposed method ASTRA4D [30] as an integrated approach to denoising and alignment pursues 

an ex-ante strategy to temporal filtering. Only after perfusion sequence smoothing by local temporal 

regression, the intervolume similarity is assessed during motion correction. The use of spatiotemporal 

redundancy leads to improved noise-profile in the myocardium, also reported elsewhere [26, 27] by 

using post-hoc spatiotemporal filtering following motion correction. Artifacts from the usage of plain 

temporal averaging without registration (blurring [29]) and PCA alone (fluctuating anatomy [30]) could 

be rectified (Figure 10). Image quality improvements clinically translate into higher temporal 

persistence and differentiation of the hypoperfused myocardium, resulting in a diagnostic accuracy of 

91%/96% (per-segment sensitivity/specificity) for the visual detection of myocardial perfusion deficits 

(Figure 9). In comparison, [9] reported a per-segment sensitivity/specificity of 78%/76% for the 

detection of perfusion defects as indicated by reduced myocardial bloodflow estimated from CT using 

a parametric deconvolution technique (threshold 88 ml/mg/min) related to visual assessment in 

dynamic rest/stress contrast-enhanced cardiac MR sequences. Deficits derived from quantitatively 

estimated myocardial blood flow may thus, yet, not be as reliable as visual assessment for the 

detection of myocardial perfusion defects. 
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Figure 10. Illustration of TAC-wise motion elimination using PCA and ASTRA4D compared to the original 

sequence ORG (region size 3×3×3 mm3, central TAC (solid red line) and its 26 adjacent TACs (dotted)). The left 

panel shows that motion can be successfully removed using PCA; in addition, ASTRA reduces noise. However, 

zigzag curves of the original sequence, on the right panel, cannot be resolved by PCA alone. Only the use of 

temporal regularization in conjunction with motion correction, as in ASTRA, allows the generation of persistent 

and well-delineated ischemic regions from the original sequence 

 

The dual presence of deformation and tracer flux is the core decision problem for the registration of 

contrast-enhanced perfusion sequences. Without additional information on cardiac anatomy or 

haemodynamic, this has been addressed, for example, by state space extension [33], sparseness 

assumptions [25], variations of PCA [20, 21, 23, 24], or explicit spatiotemporal regularization in order 

to separate motion components from contrast enhancement. The assumption underlying ASTRA4D 

and [22] is that intensity changes can be captured by a low dimensional linear acquisition model. 

Registration as such does not guarantee physiologically meaningful cardiac deformations (during the 

cardiac cycle, myocardial volume varies by only up to 5%) and evolution of tracer-enhanced TACs 

which is most often achieved by spatiotemporal regularization. Additional regularizing terms, such as 

the elastic potential or volumetric change of deformations spatially or integrated curvature along the 

time-intensity curves temporally, operate, however, on a different scale than the target registration 

metric aiming at functional similarity, and thus need to be carefully calibrated to each particular task. In 

contrast, ASTRA4D employs an implicit approach to regularization by means of the coarseness of the 

deformation grid underlying the deformable registration model and the kernel bandwidth for local 

temporal regression. Choosing a large bandwidth results in smoother curves, choosing a fine grid may 

result in better alignment, both at the expense of stronger local deformation. Only the natural scale of 

the problem is used, the magnitude of cardiac deformations and the perfusion acquisition time 

sequence, thus avoiding additional high dimensional regularization. 

 

Future research and questions. Only thirty patient were analyzed in this preliminary clinical 

evaluation of dynamic CTP. No formal assessment of registration accuracy with respect to a given 

ground truth, necessarily both deformation and intensity change, was done. The temporal filter used, 

local polynomial regression, had no spatial component; further noise reduction would be possible with 

a spatiotemporal kernel of a sufficiently narrow spatial bandwidth [35, 36]. Both components of 
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similarity assessment, PCA and temporal regression, are linear in nature; further gains in registration 

performance can be expected from the transition to nonlinear and higher dimensional techniques, 

such as manifold learning. Perfusion deficits may be detected using myocardial blood flow estimates 

derived from CTP, but quantification, e.g. using haemodynamic models or deconvolution techniques 

[9, 11], is still relatively prone to noise, lacks modelling consensus and valid reference values. Joint 

denoising and motion compensation may further stabilize quantification attempts, and replace time-

intensive visual assessment in the future. Dose from repeat scanning during dynamic CTP remains 

high (5–13 mSv CTP [18]). Exploiting anatomical redundancy across acquisition frames can facilitate 

the reconstruction from sparse angular and temporal projection data. Methods form compressed 

sensing or deep learning could be applied to reduce streaking artifacts produced by filtered 

backprojection using limited projections angles only [37, 38]. Reconstruction from highly 

undersampled projection data would only be possible in combination with a motion elimination 

algorithm, such as the proposed one, exploiting spatiotemporal redundancy, in particular, its ability to 

reconstruct volumes from missing and noisy data. Reduced projections during CTP imaging directly 

translate into radiation dose savings. Whole-heart CTP at sufficient image quality may become 

technically feasible at <3 mSv by combining low-current low-voltage spatiotemporally sparse 

acquisition [39, 40] with a method optimally exploiting data redundancy across frames. Time-resolved 

imaging is suitable for machine learning, since every intensity trajectory may be considered as a 

feature vector. A clustering method, such as K-SVD, could be used to build patient specific TACs 

which may be used as basic functions for sparsifying transforms or dictionary learning [35] with wide 

potential applicability. 

 

Conclusion. Motion correction and noise reduction have a high impact on myocardial perfusion deficit 

detectability. The proposed theoretically sound unified approach to denoising and registration was 

shown to improve quality metrics and diagnostic accuracy of cardiac 4D CTP. It may add value in 

post-processing for any dynamic contrast-enhanced examination and may foster the role of CT as an 

imaging tool for the comprehensive anatomical and functional evaluation of cardiac stenosis and 

ischemia and pathophysiological understanding of CAD and thus has high clinical relevance. 
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