
Marquette University Marquette University 

e-Publications@Marquette e-Publications@Marquette 

Electrical and Computer Engineering Faculty 
Research and Publications 

Electrical and Computer Engineering, 
Department of 

2017 

Detection theory for accurate and non-invasive skin cancer Detection theory for accurate and non-invasive skin cancer 

diagnosis using dynamic thermal imaging diagnosis using dynamic thermal imaging 

Sebastian E. Godoy 

Majeed M. Hayat 

David A. Ramirez 

Stephen A. Myers 

R. Steven Padilla 

See next page for additional authors 

Follow this and additional works at: https://epublications.marquette.edu/electric_fac 

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/268925263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric_fac?utm_source=epublications.marquette.edu%2Felectric_fac%2F555&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=epublications.marquette.edu%2Felectric_fac%2F555&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=epublications.marquette.edu%2Felectric_fac%2F555&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Sebastian E. Godoy, Majeed M. Hayat, David A. Ramirez, Stephen A. Myers, R. Steven Padilla, and Sanjay 
Krishna 



 

Marquette University 

e-Publications@Marquette 
 

Electrical and Computer Engineering Faculty Research and 
Publications/College of Engineering 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in the citation below. 

 

Biomedical Optics Express, Vol. 8, No. 4 (2017): 2301-2323. DOI. This article is © Optical Society of 
America and permission has been granted for this version to appear in e-Publications@Marquette. 
Optical Society of America does not grant permission for this article to be further copied/distributed or 
hosted elsewhere without the express permission from Optical Society of America.  

Detection theory for accurate and non-
invasive skin cancer diagnosis using dynamic 
thermal imaging 
 

Sebastián E. Godoy 
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 
Department of Electrical Engineering, University of Concepción, Concepción, Chile 
Majeed M. Hayat 
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 
David A. Ramirez 
Skinfrared, LLC, Albuquerque, NM 
Stephen A. Myers 
Skinfrared, LLC, Albuquerque, NM 
R. Steven Padilla 
UNM Cancer Center, University of New Mexico, Albuquerque, NM 
UNM Department of Dermatology, Albuquerque, NM 

https://doi.org/10.1364/BOE.8.002301
http://epublications.marquette.edu/


Sanjay Krishna 
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 
Skinfrared, LLC, Albuquerque, NM 
 

Abstract 
Skin cancer is the most common cancer in the United States with over 3.5M annual cases. Presently, visual 
inspection by a dermatologist has good sensitivity (> 90%) but poor specificity (< 10%), especially for melanoma, 
which leads to a high number of unnecessary biopsies. Here we use dynamic thermal imaging (DTI) to 
demonstrate a rapid, accurate and non-invasive imaging system for detection of skin cancer. In DTI, the lesion is 
cooled down and the thermal recovery is recorded using infrared imaging. The thermal recovery curves of the 
suspected lesions are then utilized in the context of continuous-time detection theory in order to define an 
optimal statistical decision rule such that the sensitivity of the algorithm is guaranteed to be at a maximum for 
every prescribed false-alarm probability. The proposed methodology was tested in a pilot study including 140 
human subjects demonstrating a sensitivity in excess of 99% for a prescribed specificity in excess of 99% for 
detection of skin cancer. To the best of our knowledge, this is the highest reported accuracy for any non-invasive 
skin cancer diagnosis method. 

1. Introduction 
There is a higher incidence of skin cancer than the combined occurrence of breast, prostate, lung and colon 
cancers [1]. Melanoma, which accounts for an estimated 4% of skin cancer cases, is responsible for 
approximately 75% of all deaths from skin cancer. The total deaths in the United States due to melanomas and 
other types of skin cancer are estimated to be more than 12,000 for 2014 [2]. Currently, the detection of 
melanoma relies on a subjective ABCDE (Asymmetry, Border, Color, Diameter and Evolution) test performed 
visually by dermatologists, general practitioners (GP) or primary care physicians (PCP) [3]. However, the ABCDE 
test provides a qualitative guideline and it requires a trained specialist to actually distinguish malignant lesions 
from benign nevi. Moreover, the ABCDE approach has a relatively high false-alarm probability (0.35–0.44, i.e., a 
specificity in the range 56% to 65%) and moderate detection probability (0.47–0.89) [3–5]. Since a false negative 
(i.e., a patient with malignant condition that is declared to have benign condition) could lead to metastasis 
(spreading to other parts of the body) and death, excisional biopsies are routinely performed even on lesions 
that are non-cancerous. It was estimated that the number of biopsies undertaken in nine geographical areas of 
the US between 1986 and 2001 was close to 60 for every melanoma detected [6]. One of the critical barriers in 
early skin-cancer detection is the lack of reliable non-invasive techniques [7] that can detect the cancer at an 
early stage with high detection probability (i.e., the probability of correctly detecting a malignant lesion) and low 
false-alarm probability (i.e., the probability of declaring a benign lesion as malignant). 

Non-invasive techniques for skin-cancer detection include multispectral (MS) imaging [8–10], digital 
dermatoscopy and videodermatoscopy (sequential digital dermatoscopy) [11, 12], reflectance-mode confocal 
microscopy [13], ultrasound [14, 15], laser Doppler perfusion imaging [16], and optical coherence tomography 
(OCT) [17, 18]. Each technology presents some restrictions and limitations to non-invasively detect skin cancer 
with high detection probability and low false-alarm probability. For example, on one hand MelaFind, which is a 
device approved by the Food and Drug Administration (FDA), presents a high-level of detection probability (> 
95%) [19], but high false-alarm probability (> 90%) [20]. On the other hand, Vivosight Multi – Beam System, 
another FDA-approved device, achieves a detection probability between 79–94% and a false-alarm probability 
between 4–15% for non-melanoma skin cancer lesions [21], but the challenge is that the suspicious lesion must 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r14
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r21


be probed several times before such an accuracy is achieved, which makes the acquisition time prohibitively 
high. 

Here we report a method for statistical inference, which uses the technique of dynamic thermal imaging (DTI) 
and it demonstrates a rapid, accurate and non-invasive imaging system for detection of skin cancer. DTI has 
already demonstrated to have high potential for the skin cancer diagnosis [22, 23] and it is a technique in which 
a thermal stimulus is applied to the suspected lesion and the thermal recovery is captured as function of time 
using an infrared (IR) camera [24]. Even though several groups have reported that the thermal recovery curves 
(TRCs) of a skin-cancer lesion and the surrounding healthy skin is different [25–30], these methods only partially 
extracted the information present in the temporal evolution of the recovery process. More specifically, the 
existing DTI techniques have neglected the temporal statistical features inherent in the thermal recovery 
process. To fully extract the vital information present in the recovery process, which will enable us to make a 
reliable inference on the malignancy of lesion, two problems must be solved. First, the recovery process must be 
viewed as a random function of time and its temporal statistical properties, such as its temporal correlations, 
must be mathematically characterized. Second, such complete statistical understanding of the thermal recovery 
process must, in turn, be utilized in a statistical-inference framework that yields the optimal decision rule for 
classifying a lesion as malignant or benign. Both of these problems are formulated and solved in the present 
work. The mathematical method reported here optimally extracts all the temporal information present in the 
DTI time series, and subjects the extracted vital information to optimal statistical decision theory. A pilot study is 
also undertaken on 140 human subjects at the University of New Mexico (UNM) Dermatology clinic to 
demonstrate the effectiveness of the method. We have demonstrated > 99% sensitivity and > 90% specificity 
while showing excellent robustness to statistical variation in algorithm-training and patient data collection. To 
the best of our knowledge, this is by far the highest reported accuracy and robustness for any non-invasive 
method for detection of skin cancer. 

This paper is organized as follows: In Section 2 we utilize the knowledge of the TRCs to postulate the 
classification of a lesion as benign or malignant as a continuous-time detection problem. We explain the 
parametric stochastic model for the TRCs and how we obtained an analytical form of the auto-covariance 
functions (ACF), which we use to solve the continuous-time detection problem. In Section 3 we study the 
inclusion of a reference signal to the detection problem, obtained locally from the very same patient under 
study. More precisely, for each hypothesis, we define a self-reference signal from the tissue that surrounds the 
suspicious lesions. In Section 4 we present the results over a sample of 140 patients and a robustness analysis of 
the methodology. In Section 5 we present the discussion and summarize our main conclusions. 

2. Postulation and solution of the detection problem 
2.1. Use of dynamic thermal imaging for skin cancer detection 
Skin cancers, like all solid malignant tumours, require a blood supply in order to grow larger than a few 
millimeters in diameter [31, 32]. Tumours induce the growth of new capillary blood vessels by producing specific 
angiogenesis-promoting growth factors. New blood-vessel growth continues through the progression from 
precancerous skin lesions to full-blown skin cancer as depicted in Fig. 1. The presence of new blood vessels and 
the increased blood supply somehow change the thermal response of the tumor cells when a stimulus is 
applied. 
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Fig. 1 Tumor angiogenesis in cancer at different stages: (a) The tumor release growth factors that activate the 
growing cells generating blood vessel sprouts. (b) The blood vessels feed the tumor that growths thanks to cell 
proliferation. (c) The tumor becomes vascularized and it starts to metastasize through the blood stream (from 
webpage [33]). 
 

Under this scenario, we assume that the patient condition is hidden within TRCs of suspicious lesions. Moreover, 
we assume that the malignancy of a lesion can be inferred only by monitoring the tissue of the mole. Later in 
Section 3, the proposed method is further generalized to include TRCs of the tissue that surrounds the 
suspicious lesion as a local reference. Such a local reference permits the compensation of any possible 
anomalous behaviour in the lesion thermal recovery, which, in turn, improves both the theoretical and empirical 
performance of the method. 

In the next section we propose a physics-based stochastic model for the skin thermal recovery, which is later 
utilized in the context of continuous-time detection theory in order to define an optimal decision rule for 
classifying a lesion as malignant or benign. To the best of our knowledge, the TRCs have never been modeled as 
continuous-time random processes, and, as such, there is no known relationship between the tumor 
morphology or blood vessel development and the statistical properties of the TRCs. As a consequence, the 
model we propose in the next section can pave the way to future research in such a relationship in order to 
further improve the performance of the proposed method. 

2.2. Physics-based stochastic model for the skin thermal recovery 
Let us assume that the lesion boundary is defined by visual inspection over the mole region in a visible image. In 
Section 4.2 we explain how this is achieved. Since the area that defines the mole may contain malignant and 
benign tissue we need to look at the aggregated effect of the lesion TRC. The most natural and simple way to do 
such an aggregation is by computing the average TRC over all the pixels within the region that defines the mole. 

In the transfer of heat in biological environments, Pennes bioheat equation [34] is generally considered as the 
most suitable method in all the bioheat models so far [35]. The Pennes bioheat equation is normally simplified 

as 𝑘𝑘𝛻𝛻2𝑠𝑠 + 𝑞𝑞𝑣𝑣 = 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, where k, C and ρ are the coefficient of heat conduction of the skin, the thermal capacity 
of the skin and the tissue density, respectively. Here, s is the distribution function of internal temperature 
(refered in this work as the TRC) and qv represents the internal heat source of the body. Even though this model 
is the most appropriated for the purpose of this work, we want the mathematical model of the TRCs to be 
simple enough to ensure a feasible solution with the available information. As such, we assume that the physics 
of the problem is simply governed by a heat equation, where an effective difussion constant, 𝒟𝒟, captures the 
cumulative effect of all the subcutaneous thermal processes originated by k, C, ρ and qv. We further assume that 
the model only will be affected by the variations on the depth of the lesion, x, due to the agregation of TRCs 
previously discussed. Therefore, the temperature of the skin sample is assumed to be modeled by the one-
dimensional heat equation, 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝒟𝒟 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑥𝑥2

,
𝑡𝑡 ∈ [0,𝑇𝑇]
𝑥𝑥 ∈ [0,𝐻𝐻], (1) 

where T represents the acquisition time and H the bottom of the spatial domain. (To clarify, x = 0 represents the 
skin surface.) Using the appropiated boundary conditions [27], we have found that the temperature at the skin 
surface is 

𝑠𝑠(0, 𝑡𝑡) = �
𝑇𝑇𝐵𝐵−

ℎ∞𝐻𝐻
𝑘𝑘 𝑇𝑇𝐴𝐴

1−ℎ∞𝑘𝑘 𝐻𝐻
� + � 𝜌𝜌𝑛𝑛exp(−𝒟𝒟𝜇𝜇𝑛𝑛2𝑡𝑡), 𝑡𝑡 ∈ [0,𝑇𝑇]∞

𝑛𝑛=1 . (2) 

Here, TB is the body core temperature, TA is the air temperature, h∞ is the convective heat coefficient between 
the tissue and the air. The coefficients {Cn} are determined by the generalized Fourier-series expansion of the 
initial (internal) temperature distribution and μn are the solutions of the trigonometric equation 
tan μnH = kμn/h∞. Clearly, none of these parameters are known in a deterministic fashion; nevertheless, Eq. (2) 
gives us a mathematical structure to model the TRCs as a function of time. We address the inherent 
uncertainties of the model by considering each parameter within the model as a random variable. Therefore, 
the stochastic-process model for the TRCs is given by the temporal structure prescribed by the solution of a heat 
equation in Eq. (2) parameterized by, in principle, an infinite set of random variables. We have proved different 
initial temperature distributions across the skin layers to determine that two coefficients seem to be sufficient in 
the model because the generalized Fourier coefficients {Cn} decay rapidly as we increase the number of 
exponential functions in Eq. (2). This situation is particularly true for the case of initial temperature distributions 
with cubic and exponential functions, which, based on Wilson and Spence’s work [36], present the most feasible 
functions as initial conditions. Thus, the TRCs are modeled by the parameterized stochastic process given by 

𝑆𝑆(𝑡𝑡;𝜣𝜣𝑗𝑗) = 𝜃𝜃𝑗𝑗,1 + 𝜃𝜃𝑗𝑗,2𝑒𝑒𝑥𝑥𝑒𝑒(−𝜃𝜃𝑗𝑗,3𝑡𝑡) + 𝜃𝜃𝑗𝑗,4𝑒𝑒𝑥𝑥𝑒𝑒(−𝜃𝜃𝑗𝑗,5𝑡𝑡) + 𝑁𝑁(𝑡𝑡),  (3) 

where j = 0, 1, representing the case when the TRC was measured from a benign and a malignant lesion, 
respectively, and N encapsules the noise inherent to the imaging process. In this work, we have assumed 
that N has zero-mean and it is statistically independent of the parameters Θj. 

From the available subject data we have used in this work, the realizations of the random 
variables θj,1, θj,2and θj,4, with j = 0, 1, follow a Gaussian distribution, which is an assumption we use later. The 
realizations of the random variables θj,3 and θj,5 also follow a Gaussian distribution, but their variances are at 
least two orders of magnitud lower than their mean value. In this work we have assumed that θj,3 and θj,5 area 
random variables, keeping in mind that their mean values are positive (0.01 and 0.12, respectively) and that 
their variances are very small (2.2 × 10−5, and 1.5 × 10−3, respectively). Comparing θj,3 and θj,5 variances with 
respect to the variances of the other three parameters, we notice that θj,1, θj,2 and θj,4 always dominate the 
behaviour of Eq. (3). An unexplored reasonable option is to also assume θj,3 and θj,5 as deterministic, which is 
one of the future lines of research we are exploring now. 

The binary hypothesis-testing problem (also termed detection problem) of determining whether a measured 
TRC, say Y (t), is either from benign tissue (null hypothesis, H0) or malignant tissue (alternative hypothesis, H1) 
can be now formulated by the continuous-time binary detection problem 

𝐻𝐻0:𝑌𝑌(𝑡𝑡)  =  𝑆𝑆(𝑡𝑡;  𝚯𝚯0),   𝑡𝑡 ∈  [0,  𝑇𝑇] (4a) 

𝐻𝐻1:𝑌𝑌(𝑡𝑡)  =  𝑆𝑆(𝑡𝑡;  𝚯𝚯1),   𝑡𝑡 ∈  [0,  𝑇𝑇] (4b) 
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where T represents the TRCs acquisition time, and S(t; Θj), with j = 0, 1 is given in Eq. (3). The alternative 
hypothesis is assumed to include all the conditions classified as non-benign, including malignant melanomas 
(MM), basal-cell carcinoma (BCC) and squamous-cell carcinoma (SCC) cases. 

The distributions and the correlations between the random vectors Θj = [θj,1…θj,5], j = 0, 1 must be determined, 
in principle, from patient data with known condition. It is possible, in principle, to utilize the vector of random 
parameters Θj to perform a statistical decision regarding the malignancy of the suspected lesions, but it will not 
be necessarily optimal. It can be optimal if exact extraction from the TRCs of these parameters is possible, but 
this is not the case here due to the noise inherent in infrared imaging. Thus, we solve the continuous-time 
detection problem in Eq. (4) by first constructing an analytical auto-covariance function of the TRC under each 
hypothesis (and hence account for the majority of the statistical correlation in the TRC), and then following 
Grenander’s approach [37] to perform the statistical decision. 

2.3. Analytical form of the auto-covariance function 
The auto-covariance function (ACF) of the stochastic processes S(t; Θj) is defined by Cj (t, u) = E [S(t; Θj)S(u; Θj)]−E 
[S(t; Θj)] E [S(u; Θj), where E [·] denotes the (ensemble) expectation operation. By expanding the first expression, 
the jth (j = 0, 1) ACF can be recast as 

C𝑗𝑗(𝑡𝑡,𝑢𝑢) = E[𝜃𝜃𝑗𝑗,1 2] + E[𝜃𝜃𝑗𝑗,1𝜃𝜃𝑗𝑗,2exp(−𝜃𝜃𝑗𝑗,3𝑢𝑢)] + E[𝜃𝜃𝑗𝑗,1𝜃𝜃𝑗𝑗,4exp(−𝜃𝜃𝑗𝑗,5𝑢𝑢)]
+E[𝜃𝜃𝑗𝑗,1𝜃𝜃𝑗𝑗,2exp(−𝜃𝜃𝑗𝑗,3𝑡𝑡)] + E[𝜃𝜃𝑗𝑗,2 2exp(−𝜃𝜃𝑗𝑗,3(𝑡𝑡 + 𝑢𝑢))]

+E[𝜃𝜃𝑗𝑗,2𝜃𝜃𝑗𝑗,4exp(−𝜃𝜃𝑗𝑗,3𝑡𝑡)exp(−𝜃𝜃𝑗𝑗,5𝑢𝑢)] + E[𝜃𝜃𝑗𝑗,1𝜃𝜃𝑗𝑗,4exp(−𝜃𝜃𝑗𝑗,5𝑡𝑡)]
+E[𝜃𝜃𝑗𝑗,2𝜃𝜃𝑗𝑗,4exp(−𝜃𝜃𝑗𝑗,5𝑡𝑡)exp(−𝜃𝜃𝑗𝑗,3𝑢𝑢)] + E[𝜃𝜃𝑗𝑗,4

2 exp(−𝜃𝜃𝑗𝑗,5(𝑡𝑡 + 𝑢𝑢))],
+E[𝑁𝑁2(𝑡𝑡)] − E[𝑆𝑆(𝑡𝑡;𝚯𝚯𝑗𝑗)]E[𝑆𝑆(𝑢𝑢;𝚯𝚯𝑗𝑗)]

 (5) 

for (t, u) ∈ [0, T]2. 

The first term in Eq. (5) is E[θj,12], which can be easily estimated from the patients with known diagnosis. 
Following Bohrnstedt and Goldberger ideas [38] we have found that the terms with three random variables can 
be expressed by 

E[𝜃𝜃𝑗𝑗,𝑛𝑛𝜃𝜃𝑗𝑗,𝑚𝑚exp(−𝜃𝜃𝑗𝑗,ℓ𝑡𝑡)] = E[𝜃𝜃𝑗𝑗,𝑛𝑛]E[𝜃𝜃𝑗𝑗,𝑚𝑚]E[exp(−𝜃𝜃𝑗𝑗,ℓ𝑡𝑡)]
+E[𝜃𝜃𝑗𝑗,𝑛𝑛]cov(𝜃𝜃𝑗𝑗,𝑚𝑚, exp(−𝜃𝜃𝑗𝑗,ℓ𝑡𝑡))
+E[𝜃𝜃𝑗𝑗,𝑚𝑚]cov(𝜃𝜃𝑗𝑗,𝑛𝑛, exp(−𝜃𝜃𝑗𝑗,ℓ𝑡𝑡))
+E[exp(−𝜃𝜃𝑗𝑗,ℓ𝑡𝑡)]cov(𝜃𝜃𝑗𝑗,𝑛𝑛,𝜃𝜃𝑗𝑗,𝑚𝑚).

 (6) 

As mentioned earlier, it was observed from the available subject data that these random parameters follow a 
joint Gaussian distribution, i.e. 𝜃𝜃𝑗𝑗,𝑛𝑛~𝒩𝒩(𝜇𝜇𝑗𝑗,𝑛𝑛,𝜎𝜎𝑗𝑗,𝑛𝑛

2 ), then E[θj,n] = μj,n, for j = 0, 1 and n = 1, 2, 3, 4, 5. Now, for a 
fixed t ∊ ℝ, E [exp (−θj,ℓt)] = exp (−𝑡𝑡𝜇𝜇𝑗𝑗,ℓ + 𝜎𝜎𝑗𝑗,ℓ

2 𝑡𝑡2/2) also for j = 0, 1 but for ℓ = 3, 5. Moreover, the random 
variables given by the products of the form θj,n exp (−θj,ℓt) can be approximated to as a random variable that 
follows a Normal–log-Normal distribution [39–41]. In particular, from Chen’s work we know that the covariance 
of these products can be approximated by [39] 

cov�𝜃𝜃𝑗𝑗,𝑛𝑛, exp�−𝜃𝜃𝑗𝑗,ℓ𝑡𝑡�� = 𝜌𝜌𝑛𝑛,ℓ𝜎𝜎𝑗𝑗,𝑛𝑛𝜎𝜎𝑗𝑗,ℓ𝑡𝑡exp�−𝑡𝑡𝜇𝜇𝑗𝑗,ℓ + 𝑡𝑡2
𝜎𝜎𝑗𝑗,ℓ
2

2 �, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#e03
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#e04
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#e06
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r39
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r41
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r39


where ρn,ℓ is the estimated correlation coefficient between θj,n and ln(θj,ℓ). An important observation must be 
made at this point. Due to the positive mean and the small variance of the realizations of the random 
parameters θj,ℓ for j = 0, 1 and ℓ = 3, 5, the parameter ρn,ℓ can be calculated ensuring that it always takes the log 
of a positive random variable. Moreover, given the small variance of the random parameters θj,ℓ for j = 0, 1 
and ℓ = 3, 5, they can be assumed to be deterministic (please refer to the previous section for more details), 
then the terms with three random variables are simplified to 

𝐸𝐸[θj, nθj, m𝑒𝑒𝑥𝑥𝑒𝑒(−θj, ℓt)]  =  (𝑐𝑐𝑐𝑐𝑐𝑐(θj, n,  θj, m)  +  𝐸𝐸[θj, n]𝐸𝐸[θj, m])𝑒𝑒𝑥𝑥𝑒𝑒(−θj, ℓt),   

which is a simplification we decided to not use in this work. A similar approach can be used to describe the 
expectation of four random variables under the observation that they follow a joint Gaussian distribution and a 
similar simplification can be done by assuming the parameters θj,ℓ for j = 0, 1 and ℓ= 3, 5 as deterministic; the 
details are not shown here. 

Assembling these results into Eq. (5) we observe that one can compute the ACF analytically by simply estimating 
pairwise moments of the random parameters of the TRCs. These moments are estimated from a collection of 
TRCs by assuming that each measured TRC is a realization of the random process of interest. The resulting ACF 
from the parameters of patients with known benign and malignant conditions are depicted in Fig. 2(a) and Fig. 
2(b), respectively. More information on the patient data is detailed later in Section 4. In both cases, the 
acquisition time for each TRC was 100 seconds. By looking the ACFs from the left plane, as shown in Fig. 
2(c) and Fig. 2(d), one can clearly note some of the differences between them. Thus, each ACF encapsules the 
different statistical correlations that describe the TRCs under each hypothesis and, therefore both can be used 
to statistically describe the detection problem under Grenander’s approach. 

 

 
Fig. 2 (a) Auto-covariance function for the null-hypothesis (H0) estimated from patient data with known benign 
condition. (b) Auto-covariance function for the alternative-hypothesis (H1) estimated from patient data with 
known malignant condition. In order to highlight their differences, (c) and (d) show the projection onto one of 
the left plane of the Auto-covariance function for the null-hypothesis and the alternative-hypothesis, 
respectively. 
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2.4. Mercer’s theorem and the Karhunen-Loève expansion of the thermal recovery 
curves 
According to Mercer’s theorem [42], the jth ACF (j = 0, 1) can then be expanded by the absolutely-convergent 
series 

C𝑗𝑗(𝑡𝑡,𝑢𝑢) = � 𝜆𝜆𝑗𝑗,𝑘𝑘𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡)𝜙𝜙𝑗𝑗,𝑘𝑘(𝑢𝑢), (𝑡𝑡,𝑢𝑢) ∈ [0,𝑇𝑇]2,
∞

𝑘𝑘=1
 (7) 

where {𝜆𝜆𝑗𝑗,𝑘𝑘}𝑘𝑘=1∞  and {𝜙𝜙𝑗𝑗,𝑘𝑘}𝑘𝑘=1∞  are the eigenvalues and the corresponding orthonormal eigenfunctions of the jth 
ACF, Cj (·,·). The eigenvalues and eigenfunctions are the solutions of the integral equation 

𝜆𝜆𝑗𝑗,𝑘𝑘𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡) = � C𝑗𝑗(𝑡𝑡,𝑢𝑢)
𝑇𝑇

0
𝜙𝜙𝑗𝑗,𝑘𝑘(𝑢𝑢)𝑑𝑑𝑢𝑢, 𝑡𝑡 ∈ [0,𝑇𝑇], (8) 

with � 𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡)𝜙𝜙𝑗𝑗,ℓ
𝑇𝑇

0
(𝑡𝑡) = 𝛿𝛿𝑘𝑘,ℓ, where δk,ℓ is the Kronecker delta. This equation is known as a Fredholm integral 

equation of the second kind. The expansion (7) is known as the Mercer’s theorem and it is the key enabling 
theorem to solve our problem. In this work we solve Eq. (8) numerically following a similar approach as the one 
presented by Chen et al. [43] in order to obtain two sets of eigenvalue-eigenfunction pairs (one for each 
hypothesis). 

The two sets of eigenfunctions, namely {𝜙𝜙0,𝑘𝑘}𝑘𝑘=1∞  and {𝜙𝜙1,𝑘𝑘}𝑘𝑘=1∞ , are two complete sets because the 
corresponding ACFs, C0 and C1, are symmetric and positive definite [42, 44]. The completeness of these two sets 
allow us to represent (in the mean-square sense) any process with either of these sets. We choose to represent 
each signal with its own set; namely, for the jth hypothesis 

𝑆𝑆(𝑡𝑡;𝚯𝚯𝑗𝑗) = � 𝑆𝑆𝑗𝑗,𝑘𝑘𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡),
∞

𝑘𝑘=1
𝑡𝑡 ∈ [(0,𝑇𝑇)], (9) 

where the expansion coefficients Sj,k are known as the Karhunen-Loève (KL) coefficients associated with the 
stochastic process S(t; Θj). The KL coefficients are computed as the projections of each process on its respective 
basis functions, namely 

𝑆𝑆𝑗𝑗,𝑘𝑘 = � 𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡)
𝑇𝑇

0
(𝑆𝑆(𝑡𝑡;𝚯𝚯𝑗𝑗) − E[𝑆𝑆(𝑡𝑡;𝚯𝚯𝑗𝑗)])𝑑𝑑𝑡𝑡, 𝑘𝑘 = 1,2, …

𝑗𝑗 = 0,1 , (10) 

where E S(t; Θj) represents the mean of the corresponding random process S(t; Θj). One of the main properties 
related with the KL expansion for random processes is that the expansion coefficients have zero mean and are 
uncorrelated [42]. The KL expansion enables us to conveniently decouple randomness (compactly contained in 
the KL coefficients, Sj,k) and time-variations (embodied in the sequence of eigenfunctions, ϕj,k (t)) for the TRCs 
under each hypothesis. As such, the KL expansion enables us to equivalently view the continuous-time TRC 
stochastic signals S(t; Θj) for j = 0, 1, as sequences of uncorrelated random variables, namely the KL 
coefficients Sj,k, for j = 0, 1 and k = 1, 2,…. These two sequences of KL coefficients in effect constitute the set of 
statistical features that fully describe the TRC for each patient under each hypothesis. With such statistical 
equivalence between a TRC and its KL sequences, Grenander’s theorem [42] states that the solution obtained by 
employing optimal-inference theory (i.e., by invoking the likelihood-ratio function) to the KL coefficients to 
announce the hypothesis yields the optimal solution to the corresponding continuous-time hypothesis testing 
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problem, which we casted originally in Eq. (4). Therefore, with this statistical equivalence we can recast the 
detection problem (4) as 

𝐻𝐻0: 𝑆𝑆0, 𝑘𝑘,   𝑘𝑘 =  1,  2,  … (11a) 

𝐻𝐻1: 𝑆𝑆1, 𝑘𝑘,   𝑘𝑘 =  1,  2,  … (11b) 

The main challenge in solving Eq. (11) by optimal-inference theory is the need to know the probability density 
function of the KL coefficients under each hypothesis and for each k = 1, 2, … (in order to be able to describe the 
probability density function of the likelihood-ratio function, to be introduced later); this is extremely difficult in 
general, if not impossible [42]. An important exception to this difficulty is when the random processes S(t; Θj) 
are Gaussian, which is an assumption we adopt here given the dominance of the Gaussian 
parameters θj,n with j = 0, 1 and n = 1, 2, 4. Under this assumption and since the KL coefficients are always 
uncorrelated, they are also independent random variables, with 𝑆𝑆𝑗𝑗,𝑘𝑘~𝒩𝒩(0, 𝜆𝜆𝑗𝑗,𝑘𝑘); thus, the original continuous-
time detection problem becomes the discrete (but infinite) detection problem between two Gaussian 
distributions with different (diagonal) covariance matrices. Hence, for the observation process Y(t), we have the 
discrete detection problem 

𝐻𝐻0:𝑌𝑌0, 𝑘𝑘~𝒩𝒩(0,  𝜆𝜆0, 𝑘𝑘),   𝑘𝑘 =  1,  2,  … (12a) 

𝐻𝐻1:𝑌𝑌1, 𝑘𝑘~𝒩𝒩(0,  𝜆𝜆1, 𝑘𝑘),   𝑘𝑘 =  1,  2,  … (12b) 

where the KL coefficients of the observation Y(t), namely Yj,k, j = 0, 1 are the KL expansion coefficients of Y(t) 

under the jth hypothesis, namely 𝑌𝑌𝑗𝑗,𝑘𝑘 = � 𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡)
𝑇𝑇

0
𝑌𝑌(𝑡𝑡) dt, j = 0, 1. 

The discrete-time detection problem cast in Eq. (12) has a likelihood-ratio function defined by 

𝐿𝐿(𝑌𝑌) ≜ 𝑝𝑝1(𝑌𝑌)
𝑝𝑝0(𝑌𝑌)

= � �𝜆𝜆0,𝑘𝑘
𝜆𝜆1,𝑘𝑘

�
1 2⁄

exp �1
2
� �𝑌𝑌0,𝑘𝑘

2

𝜆𝜆0,𝑘𝑘
− 𝑌𝑌1,𝑘𝑘

2

𝜆𝜆1,𝑘𝑘
�

∞

𝑘𝑘=1
� ,

∞

𝑘𝑘=1

 (13) 

where Y denotes {Yk}∞k=1, the vector that contains all the KL coefficients. The first restriction required to ensure 
the convergence of (13) is that λ1,k > λ0,k for k = 1, 2, …, and the convergence of the second term is ensured 

if Σ𝑘𝑘=1∞ �𝑌𝑌0,𝑘𝑘
2

𝜆𝜆0,𝑘𝑘
− 𝑌𝑌1,𝑘𝑘

2

𝜆𝜆1,𝑘𝑘
� < ∞ (because the logarithm function is monotonic). The convergence in mean-square of 

each term within the summation can be proven by following the same procedure as in Poor [42] (pp. 305-306) 
by letting 𝑋𝑋�𝑘𝑘2 = 𝑌𝑌𝑗𝑗,𝑘𝑘

2  and λk = λj,k, for j = 0, 1 in Equation (VI.D.20); the details will not be shown here. 

The test-statistic associated with (13) is obtained as usual by separating the terms that depend on the KL 
coefficients of the observation process and letting the remaining terms be absorbed by the threshold. After 
some algebra, we find that the test-statistic, Z is defined by 

𝑍𝑍 = � �
𝑌𝑌0,𝑘𝑘
2

𝜆𝜆0,𝑘𝑘
−

𝑌𝑌1,𝑘𝑘
2

𝜆𝜆1,𝑘𝑘
�

∞

𝑘𝑘=1

>
<
𝜂𝜂, (14) 

where the threshold η must be determined under an optimal prescribed decision rule (NP decision rule in our 
case) as we explain next. 
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It is worth mentioning that there is a practical limit in the number of eigenvalue-eigenfunction pairs one can 
reliably extract from the estimated ACFs. Nevertheless, the KL expansion offers the optimality-under-truncation 
property, i.e., the mean-square error resulting from a finite representation of the process is minimized [44]. 
Such a property allows us to still optimally represent our processes and our resulting test-statistic, when the 
most important eigenvalue-eigenfunction pairs are used. 

2.5. Neyman-Pearson decision rule 
In this section, we describe how to optimally define the threshold, η such that detection probability is 
maximized for a fixed, prescribed false-alarm probability. By detection probability we mean the probability of 
announcing H1 when H1 is true; in symbols PD = Pr(H1|H1) = Pr(L(Y) > η|H1). By false-alarm probability we mean 
the probability of announcing H1 when H0 is true; in symbols PF = Pr(H1|H0) = Pr(L(Y) > η|H0). It is clear that the 
definitions of PF and PD require us to know the distribution of either the likelihood ratio or the test-statistic, 
which is what we address next. 

The KL coefficients under H0 are Y0,k = Y1,k = S0,k, k = 1, 2, …. As such, the test-statistic under H0, denoted here 
by Z0, is given by 

𝑍𝑍0 = � �
𝑌𝑌0,𝑘𝑘
2

𝜆𝜆0,𝑘𝑘
− 𝑌𝑌1,𝑘𝑘

2

𝜆𝜆1,𝑘𝑘
� =

∞

𝑘𝑘=1
� �𝑆𝑆0,𝑘𝑘

2

𝜆𝜆0,𝑘𝑘
− 𝑆𝑆1,𝑘𝑘

2

𝜆𝜆1,𝑘𝑘
� =

∞

𝑘𝑘=1
� �1 − 𝜆𝜆0,𝑘𝑘

𝜆𝜆1,𝑘𝑘
� 𝑆𝑆0,𝑘𝑘

2

𝜆𝜆0,𝑘𝑘
.

∞

𝑘𝑘=1
 (15) 

Under the assumption of Gaussian random processes, the KL coefficients are also Gaussian, then the random 
variables 𝑆𝑆0,𝑘𝑘

2 𝜆𝜆0,𝑘𝑘⁄ , for k = 1, 2, … are χ2-distributed because the variance of the kth KL coefficient S0,k is 
precisely λ0,k. Moreover, since λ1,k > λ0,k, for k = 1, 2, …, the weights in the summation are positive. If we denote 
the χ2-distributed random variables by Xk, then (15) can be recast as 

𝑍𝑍0 = 1
2
∑ 𝑎𝑎𝑘𝑘𝑋𝑋𝑘𝑘 ,∞
𝑘𝑘−1  (16) 

where ak = 2(1 − λ0,k/λ1,k) > 0 are the coefficients of a linear combination of χ2-distributed random variables. (The 
pdf for this linear combination is discussed later.) Similarly, if H1 is true, the test-statistic is given by 

𝑍𝑍1 = � �
𝑆𝑆1,𝑘𝑘
2

𝜆𝜆0,𝑘𝑘
−

𝑆𝑆1,𝑘𝑘
2

𝜆𝜆1,𝑘𝑘
� = � �𝜆𝜆1,𝑘𝑘

𝜆𝜆0,𝑘𝑘
− 1�

∞

𝑘𝑘=1

𝑆𝑆1,𝑘𝑘
2

𝜆𝜆1,𝑘𝑘
= 1

2
∑ 𝑏𝑏𝑘𝑘𝑋𝑋𝑘𝑘,∞
𝑘𝑘=1

∞

𝑘𝑘=1

 (17) 

where bk = 2(λ1,k/λ0,k − 1) > 0 are the coefficients of another linear combination of χ2-distributed random 
variables. 

In summary, the test-statistic under each hypothesis is a linear combination of χ2-distributed random variables, 
with a different set of positive coefficients for each hypothesis. For a finite number of KL coefficients (16) 
and (17) are quadratic forms of the Gaussian random variables, S0,k and S1,k, k = 1, 2, …, K. The distribution of 
quadratic forms of independent and identically-distributed Gaussian random variables with positive coefficients 
was studied by Pachares [45]. Pachares’ main result was that the cumulative distribution function (CDF) of any 
finite linear combination of independent χ2-distributed random variables with one degree of freedom, Xk, with 
positive coefficients c = [c1 c2 ⋯ cK ], i.e., the CDF of 𝑍𝑍𝑗𝑗 = 1

2
(𝑐𝑐1𝑋𝑋1 + 𝑐𝑐2𝑋𝑋2 + ⋯+ 𝑐𝑐𝐾𝐾𝑋𝑋𝐾𝐾), is given by 

𝐺𝐺(𝜏𝜏; 𝒄𝒄) = Pr(𝑍𝑍𝑗𝑗 ≤ 𝜏𝜏) = � 𝜏𝜏𝐾𝐾

𝑐𝑐1𝑐𝑐2⋯𝑐𝑐𝐾𝐾
� (−𝜏𝜏)𝑘𝑘

𝑘𝑘!

∞

𝑘𝑘=0

E[𝑍𝑍𝑗𝑗
∗]

Γ(𝑀𝑀/2+𝑘𝑘+1)
, (18) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r44
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#e20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#e21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#e22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516826/#r45


where 𝑍𝑍𝑗𝑗∗ = Σ𝑖𝑖𝑐𝑐𝑖𝑖−1𝑋𝑋𝑖𝑖 and E[𝑍𝑍𝑗𝑗∗]𝑘𝑘 is the kth moment of 𝑍𝑍𝑗𝑗∗ that can be computed from its cumulants. Thus, we 
compute the false-alarm probability by 

𝑃𝑃𝐹𝐹 ≜  Pr(𝐿𝐿(𝑌𝑌) >  𝜏𝜏|𝐻𝐻0)  =  Pr(𝑍𝑍0 >  𝜂𝜂)  =  1 −  Pr(𝑍𝑍0 ≤  𝜂𝜂)  =  1 −  𝐺𝐺(𝜂𝜂;  𝒂𝒂),  (19) 
where a = [a1 a2 ⋯ aK ] with ak = 2(1 − λ0,k/λ1,k). Similarly, the detection probability is computed by 𝑃𝑃𝐷𝐷 ≜
Pr(𝐿𝐿(𝑌𝑌) > 𝜏𝜏|𝐻𝐻1) = 1 − 𝑃𝑃𝑃𝑃(𝑍𝑍1 ≤ 𝜂𝜂) = 1 − 𝐺𝐺(𝜂𝜂;𝒃𝒃), where b = [b1 b2 ⋯ bK], with bk = 2(λ1,k/λ0,k − 1). Now, for a 
prescribed level of false-alarm, say α, the NP lemma tell us that the optimal threshold, η0, will be given by 

𝜂𝜂0 =  𝐺𝐺 − 1(1 −  𝛼𝛼;  𝒂𝒂),  (20) 
 

where G−1 represent the inverse of the CDF function (18). When using this optimum threshold, the detection 
probability PD = 1 − G(η0; b) is maximum amongst all the other possible test one may design. The complexity of 
implementing (18) makes the implementation of its inverse function an almost impossible task. Therefore, we 
numerically solve the equivalence by parameterizing the false-alarm and detection probabilities by the 
threshold, η. Figure 3 depicts the how the false-alarm and detection probabilities are parameterized by η for 
different number of used eigenfunctions. 

 

 
Fig. 3 False-alarm and detection probabilities parameterized by the threshold value, η, for different number of 
eigenfunctions used in the construction of the test-statistic (14) 
 

Once the desired false-alarm probability is specified, say PF = α, the parameterized optimum threshold, η0can be 
obtained from Fig. 3 and Eq. (20). Such an optimum threshold is later used to classify patient data by comparing 
the test-statistic of a patient with unknown diagnosis: if the test-statistic exceeds the optimum threshold then is 
classified as malignant. More details are given in the following section. With the parameterized false-alarm and 
detection probabilities, one can construct the so-called receiver-operating characteristic (ROC) curve, a standard 
measure of the decision-rule performance that depicts the direct relationship between the theoretical false-
alarm probability and the corresponding (theoretical) detection probability. The ROC curve of a perfect classifier 
correspond to a line that achieves 100% detection (sensitivity) for any value of the false-alarm probability 
(i.e., PD = 1.0 for PF ∈ (0, 1)). We show the ROC curve corresponding to the parameterized probabilities in Fig. 4, 
where it can be noted that, as expected, as we include more eigenvalue-eigenfunction pairs, more features are 
extracted from the TRC and the theoretical performance is improved, plateauing at a level, around the twelfth 
pair. 
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Fig. 4 The theoretical receiver-operating characteristic (ROC) curve graphically shows the expected performance 
of the detector as we increase the number of eigenvalue-eigenfunction pairs. The larger the number of the pairs 
utilized to construct the test-statistic, the more statistical features utilized and the better the performance of 
the algorithm 
 

2.6. Eigenvalue-eigenfunction pairs selection 
Here we investigate the maximum number of reliable eigenvalue-eigenfunction pairs that can be extracted from 
estimated ACFs. In our study, we sorted the largest sixteen eigenvalues and examined the corresponding 
eigenfunctions for both hypotheses. It was observed that both eigenfunction sets are essentially the same under 
each hypothesis. However, as we require more eigenfunctions from the ACFs a slight phase difference begins to 
appear. Once the phase difference becomes notorious (e.g., for K > 10) the eigenfunctions lose their similarity, 
and as a consequence, the cross-orthogonality (among eigenfuctions corresponding to different hypothesis) is 
also lost. Our results indicated that after the twelfth eigenvalue, the eigenfunction start to become noisy. The 
source of this problem is estimation error in associated with the ACFs. It is expected that after having more 
patient data available with sufficient variability, higher Kvalue can be considered. 

To produce a systematic method for finding the highest reliable value for K, we first computed the Discrete 
Fourier transform (DFT) of each eigenfunction and for each hypothesis. It is observed that as the eigenvalue 
number is increased, the peak spectrum of each eigenfunction is slightly shifted and reduced in amplitude. The 
maximum K value can be determined by looking for abrupt changes in the peak of the spectrum of the set of 
eigenfunctions. In our example such abrupt drop occurs at K = 12. 

2.7. Summary of the procedure for detecting malignancy of a suspicious lesion 
To this end, we assume that the auto-covariance functions were correctly estimated from patient data with 
known condition (i.e., training patient data), and that the eigenvalues-eigenfunction pairs were also obtained 
and sorted based on the value of the corresponding eigenvalues. We denote the number of the stored (and 
sorted) pairs under each hypothesis by K. We also assume that the optimum threshold, η0 was already defined 
by means of the NP decision rule as described in the previous section. 

Let the aggregated TRC of the patient with unknown condition be denoted by Y (t). We first utilize the 

eigenfunctions to compute the KL coefficients under each hypothesis, i.e., 𝑌𝑌𝑗𝑗,𝑘𝑘= � 𝜙𝜙𝑗𝑗,𝑘𝑘(𝑡𝑡)
𝑇𝑇

0
𝑌𝑌(𝑡𝑡), for j = 0, 1 

and k = 1, 2, …, K. This computation is depicted graphically in Fig. 5 (left dashed block). We next utilize the KL 
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coefficients and the corresponding eigenvalues to construct the test-statistic as defined in Eq. (14). Such a 
calculation is depicted in Fig. 5 (middle dashed block). The test-statistic is later compared with the optimum 
threshold, η0. This last step is termed the decision stage and it is depicted in Fig. 5 (right dashed block). By the 
extraction of the KL coefficients and the thresholding of the test-statistic by the optimally defined threshold, the 
detection problem is guaranteed to ensure the maximum achievable detection probability, and, as such, it 
presents an upper bound in the expected performance of the detector. 
 

 
Fig. 5 Block diagram of the detection stage of the proposed algorithm. The KL coefficients are computed by using 
the eigenfunctions of each hypothesis. These coefficients and the eigenvalues are used to compute the patient’s 
test-statistic, which is later compared with the optimum threshold to declare the malignancy 
 

Next, we generalize the proposed approach to include a self-reference TRC of the very same patient under 
analysis. The idea is that the additional information introduced by this new TRC can compensate out anomalous 
behaviour of the lesion TRCs either improving the overall performance of the algorithm or achieving the same 
performance as with one TRC but requiring less eigenvalue-eigenfuncion pairs. 

3. Generalization to a self-referenced approach 
3.1. Theoretical rationale and generalized KL expansion for vector random processes 
In this section, we study the inclusion of a reference signal to the detection problem, obtained locally from the 
very same patient under study. More precisely, for each hypothesis, we define a self-reference signal from the 
tissue that surrounds the suspicious lesions. The hope is that the by self-referencing the patient’s TRC, abnormal 
features from the lesion TRCs can be compensated out and, as a consequence, a reduced number of KL 
coefficients is required to correctly detect the malignant lesions. 

For simplicity, we utilize one aggregated TRC of the lesion and one of the surrounding skin. As before, we define 
the lesion TRC as the average TRC over all the pixels within the lesion boundary. Similarly, we define the 
reference TRC as the average TRC over all the pixels outside the lesion boundary. The lesion boundary can be 
selected manually only by visual inspection by the practitioner that conducts the analysis or by a color-based 
image classifier. 

Let us define then the new random process that describe the jth hypothesis as the vectorial random process 
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𝑿𝑿(𝑡𝑡;𝚯𝚯𝑗𝑗) = �
𝑆𝑆(𝑡𝑡;𝚯𝚯𝑆𝑆,𝑗𝑗)
𝑇𝑇(𝑡𝑡;𝚯𝚯𝑇𝑇,𝑗𝑗)� , 𝑡𝑡 ∈ [0,𝑇𝑇], (21) 

where S(t; ΘS,j) is the same aggregated TRC of the lesion used in the previous section and T(t; ΘT,j) is the 
aggregated TRC of the lesions’ surrounding skin. Therefore, including the reference signal from the 
surrounding tissue into the detection problem can be stated by the following continuous-time 
hypothesis-testing problem: 

𝐻𝐻0:𝒀𝒀(𝑡𝑡) = 𝑿𝑿(𝑡𝑡;𝚯𝚯0), 𝑡𝑡 ∈ [0,𝑇𝑇], (22a) 

𝐻𝐻1:𝒀𝒀(𝑡𝑡) = 𝑿𝑿(𝑡𝑡;𝚯𝚯1), 𝑡𝑡 ∈ [0,𝑇𝑇]. (22b) 

The ACF associated with each hypothesis is a 2 × 2 matrix [44] given by 

𝑅𝑅𝑗𝑗(𝑡𝑡,𝑢𝑢) ≜ E[𝑿𝑿(𝑡𝑡;𝚯𝚯𝑗𝑗)𝑿𝑿𝑇𝑇(𝑢𝑢;𝚯𝚯𝑗𝑗)]

= [E
E

[𝑆𝑆(𝑡𝑡;𝚯𝚯𝑆𝑆,𝑗𝑗)𝑆𝑆(𝑡𝑡;𝚯𝚯𝑆𝑆,𝑗𝑗)] E[𝑆𝑆(𝑡𝑡;𝚯𝚯𝑆𝑆,𝑗𝑗)𝑇𝑇(𝑡𝑡;𝚯𝚯𝑇𝑇,𝑗𝑗)]
[𝑇𝑇(𝑡𝑡;𝚯𝚯𝑇𝑇,𝑗𝑗)𝑆𝑆(𝑡𝑡;𝚯𝚯𝑆𝑆,𝑗𝑗)] E[𝑇𝑇(𝑡𝑡;𝚯𝚯𝑇𝑇,𝑗𝑗)𝑇𝑇(𝑡𝑡;𝚯𝚯𝑇𝑇,𝑗𝑗)]].

 (23) 

In Fig. 6 we show the obtained estimations of the matrix ACFs for both hypotheses using the same patient 
dataset used in the previous section. 

 

 
Fig. 6 ACFs for the case of vectorial random processes: (a) Autocorrelation function for the null-hypothesis (H0) 
estimated from patient data with known benign condition. (b) Autocorrelation function for the alternative-
hypothesis (H1) estimated from patient data with known malignant condition. 
 

3.2. Karhunen-Loève expansion for vector processes 
Once again, we wish to represent this matrix ACF as a linear combination of eigenvalues and eigenvectors as we 
did for the single-signal approach. Van Tress [44] and Oya et al. [46] stated that the optimal way to address this 
problem is by defining vector eigenfunctions, since it was proved by Kelly and Root [47] that the vector 
eigenfunction with scalar eigenvalue representation is a generalization of the KL expansion, and, as such, is 
optimal. Hence, let us assume that we have a complete set of vector eigenfunctions {𝚽𝚽𝑗𝑗,𝑘𝑘}𝑘𝑘=1∞ , j= 0, 1 to 
represent the vector random processes of the jth hypothesis, where each vector eigenfunction is defined 
by 𝚽𝚽𝑗𝑗,𝑘𝑘(𝑡𝑡) = [𝜙𝜙𝑗𝑗,𝑘𝑘

(1)(𝑡𝑡)𝜙𝜙𝑗𝑗,𝑘𝑘
(2)(𝑡𝑡)]𝑇𝑇, and the corresponding vector random process of the jth hypothesis X(t; Θj) can 

be expanded over this vector eigenfunctions by 
 

𝑿𝑿(𝑡𝑡;𝚯𝚯𝑗𝑗) = � 𝑋𝑋𝑘𝑘𝚽𝚽𝑗𝑗,𝑘𝑘(𝑡𝑡)
∞

𝑘𝑘=1
. (24) 
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The corresponding expansion coefficients associated with this representation are given by 

𝑋𝑋𝑗𝑗,𝑘𝑘 ≜ � 𝚽𝚽𝑗𝑗,𝑘𝑘
𝑇𝑇 (𝑡𝑡)𝑿𝑿(𝑡𝑡;𝚯𝚯𝑗𝑗)

𝑇𝑇

0
𝑑𝑑𝑡𝑡 = � 𝑿𝑿𝑇𝑇(𝑡𝑡;𝚯𝚯𝑗𝑗)𝚽𝚽𝑗𝑗,𝑘𝑘(𝑡𝑡)

𝑇𝑇

0
𝑑𝑑𝑡𝑡. (25) 

We want the projection coefficients to be uncorrelated, i.e., E[Xj,kXj,ℓ] = λj,ℓδk,ℓ; this is achieved when 

� 𝑹𝑹𝑗𝑗(𝑡𝑡,𝑢𝑢)𝚽𝚽𝑗𝑗,ℓ(𝑢𝑢)
𝑇𝑇

0
𝑑𝑑𝑢𝑢 𝑑𝑑𝑢𝑢 = 𝜆𝜆𝑗𝑗,ℓ𝚽𝚽𝑗𝑗,ℓ(𝑡𝑡), (26) 

which is the equivalent of the eigenvalue-eigenfunction integral equation for vector-valued processes. According 
to Van Tress [44] and Oya et al. [46] this representation satisfies the conditions for Mercer’s theorem; as a 
consequence 

𝑹𝑹𝑗𝑗(𝑡𝑡,𝑢𝑢) = E[𝑿𝑿(𝑡𝑡;𝚯𝚯𝑗𝑗)𝑿𝑿𝑇𝑇(𝑢𝑢;𝚯𝚯𝑗𝑗)] = � 𝜆𝜆𝑗𝑗,𝑘𝑘𝚽𝚽𝑗𝑗,𝑘𝑘(𝑡𝑡)
∞

𝑘𝑘=1
𝚽𝚽𝑗𝑗,𝑘𝑘
𝑇𝑇 (𝑢𝑢). (27) 

A useful property of this expansion is that the expansion coefficients are scalar, which is a property we exploit in 
the following section. 

3.3. Solution of the dual-signal detection problem 

The resulting vector eigenfunctions allow us to represent the dual TRC under each hypothesis with scalar 
expansion coefficients by 

𝑿𝑿(𝑡𝑡;𝚯𝚯𝑗𝑗) = � 𝑋𝑋𝑗𝑗,𝑘𝑘𝚽𝚽𝑗𝑗,𝑘𝑘(𝑡𝑡)
∞

𝑘𝑘=1
, 𝑡𝑡 ∈ [0,𝑇𝑇], 𝑗𝑗 = 0,1. (28) 

Since this series representation for vector random processes can be considered as a generalization of the KL 
expansion [44, 46], then the scalar expansion coefficients contain all the statistical features of the dual TRC, in a 
similar way that the KL coefficients contained the statistical temporal features in the single TRC approach. As a 
consequence, we can also solve the dual TRC problem by solving the statistical equivalent problem of detecting 
the malignancy of the lesion based on the expansion coefficients. In symbols, the dual TRC detection problem 
can be recast as 

𝐻𝐻0:𝑋𝑋0,𝑘𝑘,𝑘𝑘 = 1,2, … (29a) 

𝐻𝐻1:𝑋𝑋1,𝑘𝑘,𝑘𝑘 = 1,2, …, (29b) 

where, as before, we assume that the expansion coefficients are Gaussian as a consequence of 
assuming that the TRCs are Gaussian random processes. It can be easily shown that, the expansion 
coefficients have zero mean and are uncorrelated; therefore, they are also independent. It is clear 
now, that under the series expansion utilized in this approach, we have transformed the original dual 
TRC problem onto a new problem of scalar and independent coefficients, that follow a Gaussian 
distribution with variance equal to the corresponding eigenvalues. This is exactly the same form of 
problem that we already solved for the single TRC approach, and therefore, the mathematical 
structure of the likelihood ratio and the distribution of the test-statistic are the same. Moreover, we 
utilize the same structure of the NP decision rule, because the resulting test-statistic is a linear 
combination of χ2-distributed random variables (just as in the single-TRC approach) but with different 
eigenvalues, and, as a consequence, different coefficients for the CDFs defined in Eq. (18). 
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In the following sections, we evaluate the performance for the single- and the dual-TRC approach. 

4. Results 
In this section we demonstrate the efficacy and delimit the scope and robustness of the skin cancer detection 
algorithm by measuring its empirical performance. The metrics we utilize to evaluate the empirical performance 
of the algorithm are the empirical false-alarm and detection probabilities. The empirical false-alarm 
probability, PF,e, is defined as the ratio between the true-negatives (patients with benign condition as dictated by 
the biopsy that are declared as benign by the algorithm) and the total number of benign patients. The empirical 
detection probability, PD,e, is defined as the ratio between the true-positives (patients with malignant condition 
as dictated by the biopsy that are declared as malignant by the algorithm) and the total number of malignant 
patients. 

A cohort study with 140 subjects was performed to investigate the proposed approaches. Fifty eight percent of 
the subjects were male and, from the biopsy result, out of the 140 subjects 82 had benign condition and 58 had 
malignant condition. Out of those 58 subjects with malignant condition, 6 were diagnosed with malignant-
melanomas (MM), 42 with basal-cell carcinoma (BCC) and 10 with squamous-cell carcinoma (SCC). The subjects 
were diagnosed by means of excisional biopsies performed at the University of New Mexico (UNM) Dermatology 
Clinic, New Mexico, USA, and all patient data was acquired at the same center. The acquisition harware used in 
this setting is described next as well as the data pre-processing stages required to apply the proposed 
techniques. 

4.1. Image acquisition hardware 
We performed DTI with three components. The first component is a cooling unit that is used to impart the 
temperature stimulus to the lesion and the surrounding skin tissue. Two different cooling unit were used in our 
study. The first one was a a Ranque-Hilsch vortex tube that generates an oil-free, moisture-free, ultra-quiet air 
flow. It was later replaced by a commercially available air-conditioning (AC) unit due to its portability. It was 
observed that by properly modifying the time the cool air was applied to the skin, the imparted temperature 
was almost the same for both cooling units. 

The second component is an infrared marker, which is used for correction of involuntary movement of the 
subject (i.e., image registration); the IR evolved from a canvas paper marker to a square piece of plastic with a 
square opening in the middle. Since the only purpose of the marker is to aid in the registration of the infrared 
sequence of frames, changing the material of the marker did not change the acquisition protocol. 

The third component includes the imagers. The first imager is a commercial visible still camera that is used to 
capture a reference image before the DTI acquisition commences. The second and most important imager is a 
longwave infrared (LWIR) camera that is used to capture a sequence of frames of the thermal recovery of the 
skin after the cool stimulus is applied. The LWIR camera consists of a 320×256 focal-plane array (FPA) of 
quantum-well infrared photodetectors (QWIP) operating at 60K. The noise equivalent temperature difference 
(NEDT) of the FPA is 20mK and the QWIP camera is fitted with a 50mm, f/2 LWIR lens, yielding an approximate 
spatial resolution of 300 microns per pixel. The QWIP camera was chosen for our study because it has higher 
array uniformity, lower NETD and high spatial resolution as compared with other IR camera technologies 
[22, 48]. 

All the components of the acquisition hardware are pictorially represented in Fig. 7(a) whereas Fig. 7(b)shows 
the infrared imager as well as the acquisition software. Next we explain the imaging procedure. 
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Fig. 7 Acquisition hardware utilized to acquire the patient datasets. (a) Prototype and (b) Infrared imager and 
aquisition software 
 
4.2. Imaging procedure 
After informed consent, each subject was escorted to a designated room in the UNM Dermatology Clinic to 
perform the imaging procedure. The temperature of the room was controlled to be between 20°C to 22°C to 
make sure that all the patients were exposed to the same temperature before applying the cooling stimulus to 
the area of interest. At the beginning of the procedure, the square registration marker was placed around the 
lesion with the lesion centered in the opening, as shown in Fig. 8(a). A visible image of the lesion was then taken 
with the digital camera for reference. After collection of the visible image, a 15 second infrared image sequence 
of the marked area was collected to serve as a baseline. Later, the subjectâĂŹs skin within the marker opening 
was cooled for 15 or 110 seconds, depending of the cooling unit used. After cooling, the exposed area was 
allowed to warm up naturally to ambient temperature. During the warm-up phase, thermal images of the skin 
were captured for a total of 2 minutes at a rate of 60 frames per second with the QWIP camera. All the thermal 
images were recorded using an uncompressed 14-bit format. The total time required to complete the entire 
imaging procedure was less than five minutes. 

 

 
 
Fig. 8 Example of a patient dataset: (a) example of one square plastic marker used in the data acquisition step; 
(b) first frame of the infrared sequence, note that the visible and this frame are spatially aligned; and (c) the 
thermal recovery curves (TRCs) for the labeled pixels in (b). 
If the subject was scheduled for a biopsy, the biopsy was performed following the data collection by the 
attending dermatologist and sent to pathology for diagnosis. The biopsy results were delivered to us within the 
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two weeks following the imaging procedure. Some patients were clinically diagnosed with a benign condition by 
the staff, and, therefore, no biopsy was performed. These patients are considered as control patients and are 
included in the set of benign patients. 

4.2.1. Image registration 
Since involuntary movements of the patients cannot be avoided, image registration must be performed over the 
infrared sequence of images. Moreover, to correctly reference the lesion location within the IR sequence (i.e., 
the mole, which not necessarily can be spotted in the IR sequence), the visible picture must also be spatially 
aligned with the IR sequence. Therefore, the visible image is considered as an additional frame for the purposes 
of the registration process. 

The registration is conducted as follows. First, we use the Harris corner-detector algorithm [49] to automatically 
detect the four corners of the plastic marker amongst the entire sequence of frames. Second, by assuming rigid 
movement of the scene, we estimate an affine transformation matrix that maps such a movement between the 
corners of consecutive frames (one matrix is estimated for each pair of consecutive frames) [50]. Third, we 
utilize the inverse of each transformation matrix to align each frame with respect to the first frame of the 
sequence [51]. After registration, both the visible image and the entire IR sequence are spatially aligned, 
generating a three-dimensional (3D) array real numbers that we term the patient dataset. Figure 8(b) depicts 
the first IR frame after the cooling was removed of the same example case presented in Fig. 8(a); note that both 
the visible and the first IR frame are spatially aligned. The thermal recovery curves (TRCs) of the labeled pixels 
are shown in Fig. 8(c), where it can be noted that there is some non-uniformity in the cooling process that make 
these TRCs to start at different initial temperature. 

4.2.2. Camera calibration 
In order to have a temperature measurement of the skin surface as accurate as possible, the QWIP camera must 
be radiometrically calibrated. As in any FPA, the camera suffers of the nonuniform response of its detectors (a 
problem known in the literature as non-uniformity) and it is compensated by means of non-uniformity 
correction (NUC) tables performed and stored during the factory calibration process. 

The radiometric calibration is achieved by means of the two-point calibration technique [52]. This calibration is 
performed by placing, in the field-of-view (FOV) of the camera, a uniform-intensity calibration device such as a 
black-body source at two distinct and known temperatures [53]. The gain and the bias of each detector are then 
calibrated across the array so that all detectors produce a radiometrically accurate and uniform readout at the 
two reference temperatures. The reference temperatures where chosen to be within the normal temperature of 
the skin, i.e., 25°C and 40°C. Examples of thermal recovery curves after the temperature calibration was 
performed were already shown in Fig. 8(c). 

4.3. Clinical application, analysis and discussion 
Recall we have 140 subjects, out of which 58 had a malignant condition (including melanoma, basal-cell and 
squamous-cell carcinoma) and 82 subjects had benign conditions. To reiterate, the subjects were diagnosed by 
means of excisional biopsies performed at the UNM Dermatology Clinic, New Mexico, USA. 

By performing the training over different sizes and permutations of datasets from the 140 patients while testing 
the method on the remaining patients that where not used in the training, we found that at least 110 patients 
with known conditions and ten KL coefficients may be used to train the method in order to perfectly separate 
both benign and malignant conditions for the patient datasets used in the training stage. In order to assess the 
robustness of using a size of 110 patients in the training dataset and 10 KL coefficients, we repeated the training 
200 times, each time with a distinct (but randomly selected) permutation of 110 patients from the totality of 
140 patients. Each selection of the 200 training dataset permutations yielded a lesion classifier. We then tested 
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the method by studying the performance of each of the 200 classifiers, namely, we used each classifier to 
determine the condition of each of the 30 remaining patients (outside of its training dataset). For the purpose of 
this study, we selected the theoretical false-alarm probability to be PF = 0.01. Since the eigenvalues were 
computed for each one of the trained classifiers, the corresponding optimal decision threshold varied for each 
classifier. 

The empirical results demonstrate that the method achieves 100% accuracy (i.e., 100% sensitivity and 100% 
specificity) for 46% of the 200 training selections, which we term the highly reliable training data-sets, when we 
specify a theoretical false-alarm rate of 0.01. Moreover, the tested methodology achieves 100% sensitivity and 
95% specificity (i.e., 5% false-alarm rate) for 76% of the 200 training datasets, and 100% sensitivity and 90% 
specificity for 93% of the 200 training datasets. These results demonstrate that by using highly reliable training 
datasets, the proposed technique is capable of correctly classifying both benign and malignant skin-cancer 
conditions with unprecedented accuracy. In addition, we have observed variability in the sensitivity (below 
100%) within only 3% across all the 200 training datasets. Moreover, for different possible lesion boundaries 
(required to define the pixel-to-pixel averaged TRCs), we observed that the method presents a variability of 0.1% 
due to a change of 30% in the radius of the selected lesion, proving the robustness of the proposed method to 
variability in the selection of the lesion boundary by the operator or the medical practitioner performing the 
test. 

After completing the above study, 11 new patient TRCs with known biopsy results were acquired: by means of 
biopsies 5 were diagnosed as malignant and 6 as benign. By testing the method on this new set of patients while 
using the same classifiers that were generated by the 200 training datasets from the previous study, we have 
correctly identified all malignant lesions and misclassified only one benign lesion for 76% of the original 200 
classifiers. Moreover, we were able to correctly classify all new 11 lesions for 36% (71 classifiers) of the original 
200 classifiers. Out of these 71 classifiers, 58 were from the “highly reliable dataset” identified in the earlier 
study (original set of 140 patients) as described in the previous paragraph, and 13 of the 71 were from the data 
set permutations that misclassified only one benign in the original set of patients. This observation shows 
consistency in the performance of the classifiers that were trained by the highly reliable datasets. 

When the dual-TRC approach was utilized to classify the lesions we have observed that the mean theoretical 
performance over the same 200 permutations is improved with the help of the self-reference signal introduced 
as shown in Fig. 9. Here we utilize the area-under-the-ROC-curve (AUC) metric to compare the performance and 
it is defined as the computed area below the receiver-operating-characteristic (ROC) curve of the detector. (A 
perfect classifier, i.e., with 100% accuracy, will have an AUC of 1.) The most important characteristic of the 
proposed alternatives is that the detection is still performed over an scalar expansion coefficient, which has 
equivalent statistical features of the dual TRCs in a similar fashion as the KL coefficients characterized the single 
TRCs. The real difference in performance is observed in the empirical performance when 110 patients are 
utilized to train the algorithm. In this case, we observed that perfect classification of all malignant cases is 
achieved in all the permutations with only 5 eigenvalue-eigenfunction pairs per hypothesis when the highly 
reliable training datasets are utilized. (Again, this accuracy is achieved when the theoretical false-alarm rate is 
specified to be 0.01.) The same performance was achieved by the single-TRC approach with 110 training patients 
with exactly the double of the eigenvalue-eigenfunction pairs. It seems, therefore, that the inclusion of the 
reference signal can actually compensate some anomalous behaviour of the the lesion TRCs. Nevertheless, there 
some numerical issues when computing the eigenvalue-eigenfunction pairs that must be compensated in order 
to further validate this extension of the proposed methodology. 
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Fig. 9 Comparison of the mean theoretical ROC curves over 200 permutations when 110 training are used to 
train the single-TRC algorithm (blue) and the dual-TRC algorithm (red). Comparison is made by using the mean 
AUC for different number of used eigenvalue-eigenfunction pairs, using 110 patients to train the algorithm. 
In Table 1 we compare the results between the proposed algorithm (last row) and other methodologies 
previously discussed. The ABCDE test is only applied to melanomas, but it represents a classical approach to 
non-invasively detect skin cancer. Melafind achieves good performance in terms of sensitivity (high detection 
probability) but poor specificity (high false-alarm probability). Vivosight, on the other hand, achieves good 
sensitivity and specificity (i.e., high detection probability and low false-alarm probability). As it was 
aforementioned, the suspicious lesion must be probed several times before such an accuracy is achieved, which 
makes the acquisition time prohibitively high for clinical applications. The only approach found in the literature 
that utilized DTI with reported sensitivity and specificity is our previous work [30]. In that work, we performed 
classification by a distance-based classifier. To do so, we computed the aggregated TRCs inside and outside the 
suspicious lesions and then compared the normalized Euclidean norm of their distance. Malignant lesions were 
expected to have a bigger difference between these two curves, and, as such, have bigger values of their 
Euclidean distance. Even though this approach obtained good results, it did not extracted all the statistical 
information from the TRCs and neglected the order in the data, i.e., the temporal evolution of the TRCs; this 
explains why the method proposed here achieves better results than all other non-invasive techniques. 
Moreover, the rapid acquisition time and relatively fast processing are two other clear advantages of the 
proposed method as compared with other techniques for skin cancer detection. 

Table 1 Comparison between the proposed methodology and other non-invasive techniques 
Method PD PF 
ABCDE [4,5] 0.56 – 0.65 0.11 – 0.53 
Melafind [19,20] >0.95 >0.90 
Vivosight [21] 0.79 – 0.94 0.04 – 0.15 
DTI (Euclidean-norm–based) [30] >0.95 <0.17 
DTI (optimal decision theory) >0.99 <0.01 

5. Conclusions 
In order to construct a suitable stochastic model for the TRCs we have simplified the bioheat equation and 
solved it for properly established boundary conditions. We used this model to derive analytical auto-covariance 
functions for the proposed hypotheses whose parameters are estimated from patients with known conditions. 
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An optimal statistical decision rule was then derived for which the sensitivity is guaranteed to be at a maximum 
for every prescribed false-alarm probability. The algorithm was trained using TRCs from 110 human subjects and 
tested on 30 human subjects with unknown diagnosis. All the malignant subjects were correctly identified (100% 
sensitivity) for a false-alarm probability below 1% (specificity > 99%). Robustness analysis was undertaken with 
various permutations of testing and training datasets, and under different selections of the lesion boundaries. 
The maximum variability in the sensitivity of the method was 3% and 0.1%, respectively, for 200 different 
random permutations in selecting the training set and different radii of the region that determine the lesion 
boundary. 

The detection method exploits, in a probabilistic sense, the temporal evolution of the warming-up process, as 
obtained from the thermal-image sequence, in order to extract statistical features that can be utilized to 
discriminate a case of a benign lesion from a malignant lesion. The term evolution is emphasized to highlight the 
importance of the temporal order of the warming-up data obtained from the image sequence. This is why the 
performance is far better than that obtained when the Euclidean norm of the thermal-image sequence is used 
because the latter, unlike the proposed method, does not depend on the ordering of the images in the sequence 
[30]. 

The success of the proposed methodology relies on knowledge of the auto-covariance function of the warming-
up process under each hypothesis, which has not been known (to the best of our knowledge) prior to this work. 
We have presented the construction of such auto-covariance function by parameterizing the warming-up 
process using a few random variables and by estimating (from patient-data with known conditions) the 
probability distribution for these random variables and their relevant correlation functions. 

We have also introduced and discussed an approach to represent vector random processes that in the literature 
is treated as the vector generalization of the KL expansion. Using this representation we have solved the 
detection problem in which each hypothesis is characterized by a dual TRC. The approach followed has the 
property of using scalar expansion coefficients, equivalent to the KL coefficients for the scalar TRC approach. 
Hence, after the expansion is applied to the vector random processes, the dual-TRC detection problem becomes 
equivalent to the single-TRC detection problem. As a consequence, once the expansion coefficients are 
characterized, they contain most of the statistical information of both of the signals of each hypothesis, and the 
solution is trivial because all the properties and limitations discussed for the single TRC approach hold for this 
new alternative. We explored both the theoretical and empirical performance of the proposed alternative using 
the same training settings utilized to test the robustness of the single-TRC approach. By comparing the 
theoretical performance for different number of eigenvalue-eigenfunction pairs, the dual-TRC approach 
achieves the same performance as the single-TRC approach by requiring less eigenvalue-eigenfunction pairs. The 
empirical performance follows the same trend, allowing, for example, 100% detection of malignant patients 
using one half of the eigenvalue-eigenfunction pairs that the single-TRC approach required for the same 
training/testing setting. 

To the best of our knowledge, this work reports the highest accuracy and robustness for any non-invasive 
method for detection of skin cancer. As a consequence, the method will be valuable in clinical applications 
where the accessibility to trained dermatologists is difficult. Moreover, the methodology is applicably to any 
continuous-time hypothesis testing problem for which an analytical parametric form of the auto-covariance 
function is obtainable. 
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