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Abstract 
A hardware implementation of a real-time compressed-domain image acquisition system is demonstrated. The 
system performs front-end computational imaging, whereby the inner product between an image and an 
arbitrarily-specified mask is implemented in silicon. The acquisition system is based on an intelligent readout 
integrated circuit (iROIC) that is capable of providing independent bias voltages to individual detectors, which 
enables implementation of spatial multiplication with any prescribed mask through a bias-controlled response-
modulation mechanism. The modulated pixels are summed up in the image grabber to generate the compressed 
samples, namely aperture-coded coefficients, of an image. A rigorous bias-selection algorithm is presented to 
the readout circuit, which exploits the bias-dependent nature of the imager’s responsivity. Proven functionality 
of the hardware in transform coding compressed image acquisition, silicon-level compressive sampling, in pixel 
nonuniformity correction and hardware-level implementation of region-based enhancement is demonstrated. 

1. Introduction 
Dramatic advances in the field of computational and medical imaging over the past decades have enabled many 
critical applications such as night vision, medical diagnosis, quality control, and remote sensing applications [1–
5]. The increasing demand in image quality and its fidelity needs an increase in pixel count and a sophisticated 
post-processing mechanism to efficiently store, transmit, and analyze this huge data [6–9]. There is an inherent 
trade-off between the generation of big data by such imaging systems, and efficiency in extraction of useful 
information within real-time constraints, limiting the efficacy of such sensors in real-time decision-making 
systems [10,11]. The traditional imaging system gets burdened by the acquisition, transmission, and storage of 
excess data, bearing redundant information for the given application of interest [12–16]. Transmission of the 
extra information requires a high bandwidth and consumption of extra power to store or transmit. Similarly, 
post-processing imposes extra latency and requires additive power consumption, which is troublesome for many 
low-power, real-time applications, and portable devices [17]. 

There is a need to address this problem by intelligently acquiring a limited but most important set of data and 
process the abstract information. This, in turn, needs an additional ability where computations are performed at 
the pixel level, within the readout integrated circuit, at the front-end of the imager [18]. 

In the pursuit of seeking an efficient computational imaging hardware, which tends to address the memory 
efficiency, low power consumption and minimal latency requirements, we demonstrate a CMOS-based imaging 
hardware [19], which supports compression at the acquisition time [20], inside the pixel. Figure 1(a) shows an 
iconic block diagram of the long established typical imaging system, and our alternative approach, compressed-
domain imaging, is demonstrated in Fig. 1(b). The proposed approach suggests integration of the post-
processing to the acquisition, which results in lower latency and reduction in power consumption. 

 
Fig. 1 a) A system-level block diagram of a conventional imaging system, which includes image acquisition, 
storage, and post-processing stages. b) Block diagram of the intelligent readout integrated circuit we propose for 
on-chip image acquisition and compression. 
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In Section 2, we discuss some background and prior works in the area of sensor-level compression. Section 3 
covers our proposed compressed-domain imaging hardware and the photodetector embedded in the design. 
The experimental setup is explained in Section 4. Different applications, including nonuniformity correction and 
compressive sensing are discussed in Sections 6 and 7, and the experimental results are also presented. Finally, 
we will outline conclusions and future works in Section 9. 

2. Background and previous work 
For a typical image sensor, imaging involves reading out the values sampled at different pixels [21]; whereas in 
the case of compressed-domain hardware, a set of gain matrices is loaded to the pixel array, and the image 
sensor’s output would be a linear combination of the projection of the object’s reflectance function to the gain 
matrices [16,22]. In the following paragraphs, we make some comparisons among a few other works that have 
been devoted to the problem of online compression and hardware domain sensing based on matrix projection. 

One of the earliest reported hardware implementations to the compressive sensing is based on a single-pixel 
camera [23]. The single-pixel imaging utilizes a digital micromirror (DMM) [24] to project the incident light 
coming from the object to the digital masks. The photodetector samples the integrated light coming from the 
sample, which is modulated by using the DMM. This method is usually used for far infrared imaging where 
having an array of low-cost, small size photodetectors is not feasible. The DMM degrades the sensitivity of the 
imager, and the alignment of different components is a limit to the scaling of this method. 

An optical-domain coded apertures based compressive sensing is demonstrated in [25]. A random phase mask 
injects the measurement matrices, and the modulated intensities at different pixels are sampled using a low-
resolution imager. This technique suffers from the noise added by the optical masks, and the complexity of the 
alignment setup is a big challenge. 

A CMOS imager is demonstrated in [26] that utilizes a flip-flop-based shift-register distributed over the pixel 
array to hold the random digital patterns. The shift register selectively disconnects the pixels from the readout 
and implements the measurement matrices. The proposed hardware offers multiplication only by a binary value. 
This limits the compressive-sensing algorithm to the binary projection matrices, which are composed of only one 
or zero. Furthermore, there is no control over the bias voltage of the detectors, the result of which many 
features that are offered by modulation at the detector level are not supported. Finally, because the unitcell 
does not support integration, the proposed hardware cannot work with the detectors with lower quantum 
efficiency. 

Figure 2 presents our proposed monolithic CMOS image sensor that can run as a stand-alone image sensor and 
is able to perform spatiotemporal region of interest enhancement. The hardware is also capable of generating 
already compressed images as well as canceling the nonuniformity inherent from process variation or other 
sources such as a voltage drop across the image sensor chip. The main contribution of this hardware is the 
introduction of control over a per-pixel modulation factor through controling the photodetector’s responsivity 
that is demonstrated as a controllable gain symbol in the pixels. The capacitor represents the analog memory 
that is embedded to store and hold the bias information for individual pixels. The AND gate selectively enables 
different pixels to load the bias voltage to the active pixel, and this selection occurs at the same time that the 
pixel is being readout; therefore, no delay penalty is associated with the new design. While sampling the 
integrated voltage to the sample-and-hold (S&H) capacitor, voltage Vref is used as a global reference voltage for 
all of the preamplifiers. This removes the bias voltage from showing up in the readout and makes the readout 
value meaningful. 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-4-4076&id=360076#ref21
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-4-4076&id=360076#ref16
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-4-4076&id=360076#ref22
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-4-4076&id=360076#ref23
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-4-4076&id=360076#ref24
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-4-4076&id=360076#ref25
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-4-4076&id=360076#ref26
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-4-4076&id=360076#g002


 

Fig. 2 Block diagram of the individual pixel bias tunable readout integrated circuit and the CTIA-based unitcell at 
the extended view. The extra circuitry added to the CTIA-based unitcell enables setting independent bias 
voltages for each individual pixel while the previously integrated voltage is being read out. 
 

During the readout, the bias information, which is loaded to different pixels, can be different from each other 
and also from the bias that is loaded to the same pixel in the previous frame. This is what we refer to as the 
spatiotemporal independence of pixels biasing scheme. 

The proposed hardware has the unique feature of performing application-specific transform coding based on a 
specialized set of bias masks. These sets of bias masks are dictated by a rigorous bias-selection algorithm that is 
then stored in the memory of the device. The incoming image data is projected into the designated masks to 
generate the code words used for image reconstruction. Most importantly, our proposed bias-selection 
algorithm, which has not been reported in the literature, considers the responsivity of the device, resulting in 
remarkably less reconstruction error. We will discuss the detail implementation of the iROIC in the next section. 

3. Design of the pixel 
Implementation of a compressed-domain imaging system requires a means to implement projection of the 
object’s reflectance function to the gain matrices. The way we have approached this problem is by embedding a 
fine control over operating voltage of each individual pixel’s detector. The current hardware is designed with an 
array of n+/nwell/psub detectors that is laid out along with the rest of the readout integrated circuit in silicon. 
The fill-factor of the detector is 8.4%. A cross section of the photodetector is shown in Fig. 3(a). 

 
Fig. 3 a) A cross section of the n+/nwell/psub photodetector used in this chip, b) the measured photoresponse 
of n+/nwell/psub photodetector as a function of the applied bias voltages at different illumination levels, and c) 
the same measured results that are scaled to one. In this experiment, a green LED is used as the illumination 
source and the dimension of the photodetector is 100 µm×100 µm. 
 

The graph in Fig. 3(b) shows the measured photocurrent of the n+/nwell/psub photodetector at six different 
illumination levels and at dark. A green LED is used as the light source in this experiment, and the intensity is 
modulated by controlling the injection current. The LED is placed at almost 40 cm away from the detector, 
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meaning that the intensity of illumination at the scale of the detector and the optical power meter can be 
approximated as uniform. The illumination intensity is measured simultaneously, and the reported optical 
power is scaled to the area of the detector. As seen in Fig. 3(b), because the photoresponse is a function of both 
the bias voltage and the intensity of the light, one could load the projection matrix to the pixel array and acquire 
the image while the pixels are operating at different response-modulation factors. The graph in Fig. 3(c) shows 
the same measured data, which are normalized to one. Because the normalized data are approximately 
overlapping, we can state that modulating the bias voltage scales the measured photocurrent. This could lead to 
many applications, which will be discussed in the following sections. 

Table 1 briefly compares different possible configurations for the preamplifier stage of the unitcell. Because the 
capacitive trans-impedance amplifier (CTIA) provides the best performance in terms of precise control over the 
detector’s bias voltage, as well as provides high injection efficiency, large voltage swing, and support for good 
charge storage, we have selected this configuration as the base for the preamplifier. 

Table 1. Comparison between different configuration for preamplifier used in an imager. Due to the need for 
good bias control, high injection efficiency, and sufficient charge storage, we have selected CTIA configuration 
for iROIC. 
 

Structure Injection efficiency Detector bias Power dissipation Pixel area Charge storage 

SF Low No control Low Small Very low 
DI Moderate No control Low Small Low 
BDI High Good High Large Moderate 
GMI Moderate Moderate Moderate Small Moderate 

 

 

Figure 4(a) depicts the detailed block diagram of the unitcell of iROIC. Figure 4(b) shows the video switches, the 
active load for the source follower at the output of the unitcells. The ROIC peripherals are shown in Fig. 4(c). In 
the proposed unitcell, the conventional CTIA configuration is featured with the ability to control each individual 
pixel’s bias voltage. Here, we briefly explain the process that is followed to operate the compressed-domain 
imaging. The readout mechanism is also demonstrated in Fig. 4(d): 

1. The bias control circuit is composed of an analog switch, SWBias, that is enabled when the row-select and 
column-select signals address the pixel, then the analog memory is loaded with the bias voltage. 

2. During the integration, the bias is held at the analog memory. Both SWBias and SWRefswitches are off for 
the entire integration time to protect the CBias capacitor from charging. 

3. At the end of the integration, the SWRef switch is enabled to set the same reference voltage for all of the 
pixels and to make the sample’s value meaningful. 

To provide a high voltage swing range, the chip has been fabricated by Taiwan Semiconductor Manufacturing 
Co. (TSMC) at CL035HV process technology node, which is a standard CMOS process technology, supporting four 
metal layers, two poly layers, and the two different voltage domains. The metal layers serve as the 
interconnection between various devices, and the polies are used at the gate of the transistors, and they have 
been employed to form the inter-poly capacitors. The high voltage domain is used for the unitcells to support 
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high swing voltage; the low voltage domain is employed for the row-select and column-select circuitry, resulting 
in higher integration and lower power consumption. The minimum feature size of the devices at the CL035HV 
process node is 1.5 µm for the transistors at high voltage domain and 0.35 µm for those at low voltage domain. 

 
Fig. 4 a) Switch level implementation of iROIC unitcell. The unitcell includes 15 transistors and three capacitors, 
b) the video switches, c) the row/column select peripherals, and d) a sample timing diagram of a single unitcell. 

A major challenge in the design of this circuit was the trade-off between the number of functionalities and the 
area for the pixel. To comply with the pitch of standard focal plane arrays (FPAs), we decided to restrict the 
unitcell to 30 µm × 30 µm. The constraint imposed by area forced us to have all the switches at the minimum 
size supported by the technology node. This minimum feature size of 1.5 µm is still large enough to neglect 
leakage currents that are dominant mainly at submicron or deep submicron devices. All of the switches are 
based on a single NMOS transistor. The rest of the area was equally divided between the capacitors to achieve 
the highest possible resolution for the output image data. In total, the unitcell is composed of seven transistors 
for the dual-stage differential amplifier and eight transistors for the rest of the unitcell circuitry. The unitcell also 
includes four capacitors that serve as the compensation, the integration, the sample-and-hold, and the bias-
voltage holder capacitor. 

To have a model for the response-modulation function of the imager, the response of the system to a uniform 
level of illumination at different bias voltages is measured. The normalized imagers photoresponse is shown 
in Fig. 5. In the error-bar graph, the mean and standard deviations are based on statistical analysis over all the 
pixels in the entire 96 × 96 frame, and each measurement was repeated 10 times to reduce random noises. The 
mean value and the standard variation shown in this figure are employed as the base for bias selection in a real-
time system. The curve infers that the system responds to the bias voltage in a semi-linear fashion as long as the 
detector’s bias voltage is limited to ∼ [+0.4, +3.5]. 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-25-4-4076&id=360076#g005


 
Fig. 5 Demonstration of the normalized modulation function of the system to a uniform illumination level. The 
graph reflects the system’s response to the modulation of the detector’s bias. 
 

The silicon-based photodetector has been laid out in the form of a 10 µm strip on the right and top side of the 
unitcell, which increases the size of the pixel to 40 µm × 40 µm. A microphotograph of the fabricated chip is 
shown in Fig. 6(a), and the layout of the unitcell is shown in the extended view. The dimension of the pixel array 
is 3840 µm × 3840 µm, and the total area of the chip, including test-cells, PADs, and ESD protection, is 5140 µm 
× 5140 µm. 

 
Fig. 6 a) A microphotograph of the fabricated ROIC, the row and column select, and the test devices. The unitcell 
is shown in the extended view. b) A block diagram of the experimental setup, which includes a Raspberry Pi 
board as the main controller of the system, an ADC and a DAC to set the bias voltage of the detectors and grabs 
the readout of the imager. All communication between the controller and a remote machine is over SSH. 
 

Although we have considered n+/nwell/psub photodetectors as a means to exploit compressed-domain image 
acquisition, the circuit would work fine with any detector, for which the nominal operating voltage and current 
of the detector fit in the specification of the designed readout integrated circuit. Additionally, we have 
embedded extra knobs, such as the bias current of the preamplifier, the integration time, and the readout clock 
speed, that are set from outside the chip. These knobs can be employed to optimize the operating point of the 
system. 

4. Experimental setup 
In the implemented hardware, the timing signal and the analog bias for the photodetectors are generated using 
a Raspberry Pi board (RPB). The main reason for choosing the RPB as the main controller is its extended support 
for on-board memory in the form of a micro-SD card. The typical FPGAs do not support for high volume storage; 
this challenges the storage of massive bias information. A DAC converts these digital values to analog and then 
feed them to the iROIC. The output video signal is sampled using an ADC chip, which is derived by the RPB. The 
sampled data are both sent to a remote computer for the purpose of online monitoring and also are stored in 
the local memory of the controller to be processed later. The RPB board acts as a stand-alone controller for the 
iROIC and performs all image acquisition details. A custom PCB board is designed to host the test chip, to 
interface the RPB board, and to deliver high signal integrity. The RPB board is controlled using a desktop over 
LAN, and test vectors are loaded using Linux’s standard commands such as rsync, ssh, scp, etc. A block diagram 
of the experimental setup is shown in Fig. 6(b). The control over bias information of every pixel’s detector and 
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the flexibility offered by the experimental setup has enabled many different applications that are explained in 
the following sections. 

5. Nonuniformity correction 
The pixels are designed to maximize the sensitivity to the photoresponse. However, the overall performance of 
the sensor is limited by noise, which comes from many different sources and contributes to the output signal. 
Random noise is a temporal variation in the signal that is not constant and changes over time, from frame to 
frame. This type of noise, which is hard to predict, has a statistical distribution and can be canceled statistically 
by the mean of averaging [27,28]. 

On the other hand, the pattern noise is the spatial variation in the photoresponse of different pixels while they 
are exposed to a uniform illumination. This type of noise is fixed over time and cannot be reduced by averaging. 
The pattern noise stems from the variations in the growth or fabrication of the photodetectors. The difference 
in the driving and sampling circuitry or the variation in power distribution also results in deviation in responsivity 
in the form of pattern noise [29]. 

The pattern noise is composed of fixed pattern noise (FPN) [30, 31] and photo response nonuniformity (PRNU) 
components [32,33]. The FPN is measured in the absence of illumination and is a result of variations in growth, 
detector dimension, doping concentrations, fabrication defects, characteristics of transistors (VT, gm, W, L, etc.) 
[34, 35], or nonuniformity in the distribution of power [36]. Additionally, at high-speed readout, the differences 
between the resistance and capacitance that are seen at the output of different unitcells can also cause 
nonuniformity. The second component of pattern noise, PRNU, is a function of illumination and varies based on 
the dimension of the photodetector, the doping concentration, and the color of the light incident to the 
detector [37]. 

Nonuniformity correction is an important topic under investigation and deals with processing inconsistencies 
that lead to unfavorable pattern noise. Independent of the source of the nonuniformity, it can be corrected 
using single-point calibration, two-point calibration [38, 39], or scene-based nonuniformity correction [40]. 

Because pattern noise does not change with time, it could be canceled by using proper biasing of the circuit. We 
have used a two points based nonuniformity correction to calibrate the responsivity of the image sensor. Two 
different uniform illuminations are used as the calibration points, and as a result, an offset and a gain are 
calculated for each pixel, which is employed to correct the photoresponses that are read from each pixel. This 
method has the extra benefit that if the nonuniformity grows with temperature, it will offer a better correction. 
The mathematical formulation for the correction algorithm we used is given below [41]. The linear model of the 
imaging device is estimated by: 

(1) 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑔𝑔𝑖𝑖𝑖𝑖𝑘𝑘 𝐼𝐼𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑜𝑜𝑖𝑖𝑖𝑖𝑘𝑘 , 

where 𝐼𝐼𝑖𝑖𝑖𝑖𝑘𝑘  is the actual object’s reflection function, which is incident to the image sensor, and the observed pixel 
value is given by 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘. Variable k is the frame index, and the gain and offset of the (i, j)th detector are denoted 
by 𝑔𝑔𝑖𝑖𝑖𝑖𝑘𝑘  and 𝑜𝑜𝑖𝑖𝑖𝑖𝑘𝑘  respectively. Here, nonuniformity correction is carried out by the means of a linear transformation 
of the observed pixel values 𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘. The goal is to provide an estimate of the true intensity 𝐼𝐼 𝐼𝐼𝑖𝑖𝑖𝑖𝑘𝑘  so that all of the 
detectors appear to be performing uniformly. The correction is given by: 

(2) 𝐼𝐼𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘𝑌𝑌𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘 , 

where 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘  and 𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘  are the gain and offset of the linear correction model of the (i, j)thdetector. 
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After we estimate the parameters 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘  and 𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘  or 𝑔𝑔𝑖𝑖𝑖𝑖𝑘𝑘  and 𝑜𝑜𝑖𝑖𝑖𝑖𝑘𝑘 , the NUC can be achieved as per Eq. (2) for which 
we computed the corrected bias to be applied from the responsivity graph. In Fig. 7(a), we demonstrate an 
image of a white paper, which is taken at uniform biasing for all of the pixels. Although the bias information is 
uniform, the pixels’ response across the image varies because of the nonuniform illumination, weakly sensitive 
pixels, and other sources of fixed pattern noise. Figure 7(b), on the other hand, shows another image under the 
same illumination condition with a bias matrix, which is optimized for the NUC technique discussed above. Gain 
and offset are calculated as per Eqs. (1) and (2) per pixel and are embedded in the bias applied to each pixel 
using the RPB board. The 3D intensity level shown in Figs. 7(a) and 7(b) reflects a Gaussian distribution with a 
flat variance in part (a) due to the presence of nonuniformity whereas the variance is minimal due to its 
correction in part (b). 

 
Fig. 7 a) The result of imaging a white paper with uniform biasing, while the illumination is not uniform. Defects 
and other sources of nonuniformity also contribute to the variation across the image. The stack of three graphs 
demonstrates (I) camera output image, (II) illumination contour, and (III) 3D view of the intensities. b) Another 
white paper is imaged with the same illumination condition using the implemented nonuniformity correction. 
The graph has the same scale as part (a), and the legend in the middle is for part (II). c) and d) show the 
histogram for the measured results of part (a) and (b), respectively. 
 

Figures 7(c) and (d) depict the histogram of the images shown in Figs. 7(a) and 7(b), respectively. While the 
histogram on Fig. 7(c) shows that it is flat as for the given non-uniform illumination, the camera results in an 
image with a wide range of pixel intensity level, while at the same time our NUC method resulted in a narrow 
histogram as shown in Fig. 7(d). Here, the point is that the hardware is able to cancel the integrated 
nonuniformity that stems in the pixels, the ROIC, and also in the illumination. 

The nonuniformity correction also aided in the fine-tuning of the responsivity curves. Because the responsivity is 
based on the calibration of pixels under different bias conditions and different lighting conditions, enabling 
nonuniformity correction before this calibration process allowed a uniform behavior of responsivity through all 
of the pixels and less invariant toward any form of noise. This also guaranteed that the SNR of responsivity is 
above a certain threshold, which enabled the bias-selection technique to have superior performance as 
discussed over results. 
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6. Compressed-domain image acquisition 
The most important application of the chip is targeted in a compressed-domain imaging framework. The 
compression is achieved by the hardware by performing a projection of the image to a set of basis masks 
implemented in the detectors’ biases. We have considered two different in-hardware compression modalities, 
which are in-pixel discrete-cosine-transform (DCT) based compressed-domain image acquisition and 
compressive sensing framework [42,43]. 

To implement the compression modalities in hardware, we need to adapt the compressive masks as per device 
responsivity so that we ensure the mask coefficients are exactly achievable as modulation factors at the pixels. 

6.1. Discrete cosine transform 
In this part, we present the mathematical formulations for compression and reconstruction of the image using 
the DCT. In order to realize any sort of transform coding on the computational imaging hardware, one needs to 
be able to project the acquired image into the designated mask where the transform coefficients need to be 
realized at each of the pixels as multiplication factors. Considering R is the responsivity of the image sensor, 
which is a function of the object’s reflectance function I and the detector’s bias voltage V, then: 

(3) 𝑅𝑅 = 𝑔𝑔(𝐼𝐼,𝑉𝑉), 
where g is some nonlinear function of I and V. Here, if I is the object reflectance function in spatial domain, then 
its frequency domain transform is given by: 

(4) 𝑦𝑦𝑢𝑢𝑢𝑢 = 2
√𝑀𝑀𝑀𝑀

� � [𝐶𝐶(𝑢𝑢)𝐶𝐶(𝑣𝑣)𝐼𝐼𝑖𝑖𝑖𝑖cos 𝜋𝜋(2𝑖𝑖+1)𝑢𝑢
2𝑀𝑀

cos 𝜋𝜋(2𝑖𝑖+1)𝑢𝑢
2𝑀𝑀

]
𝑀𝑀−1

𝑖𝑖=0

𝑀𝑀−1

𝑖𝑖=0

, 

where i and j are integers in the range of [0, N − 1], which are used to address different pixels, and C(u) and C(v) 
are defined in the following equation: 

(5) 𝐶𝐶(𝑢𝑢),𝐶𝐶(𝑣𝑣) = �
1
√2

if𝑢𝑢, 𝑣𝑣 = 0
1 otherwise.

 

The inverse of the DCT transform function is defined as: 

(6) 𝐼𝐼𝑖𝑖𝑖𝑖 = 2
√𝑀𝑀𝑀𝑀

� � [𝑦𝑦𝑢𝑢𝑢𝑢cos 𝜋𝜋(2𝑖𝑖+1)𝑢𝑢
2𝑀𝑀

cos 𝜋𝜋(2𝑖𝑖+1)𝑢𝑢
2𝑀𝑀

]
𝑀𝑀−1

𝑢𝑢=0

𝑀𝑀−1

𝑢𝑢=0

 

In order to implement the computationally intensive DCT transform in hardware, we have reordered Eq. (4) and 
decoupled the bias (mask) matrices from the image sensor responses, which is shown in the equation below: 

(7) 𝑦𝑦𝑢𝑢𝑢𝑢 = 2
√𝑀𝑀𝑀𝑀

𝐶𝐶(𝑢𝑢)𝐶𝐶(𝑣𝑣)� � [𝐼𝐼𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑢𝑢𝑢𝑢(𝑖𝑖, 𝑗𝑗)]
𝑀𝑀−1

𝑖𝑖=0
,

𝑀𝑀−1

𝑖𝑖=0

 

where: 

𝑢𝑢, 𝑣𝑣 = 0,1, … ,𝑁𝑁 − 1. 
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In the above equation, Maskuv(i, j) is the mask set that is to be loaded to the image sensor as the bias 
information. If we assume N equals M, for exact reconstruction the total number of masks would be N × N. The 
mask matrices can be represented as, 

(8) 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑢𝑢𝑢𝑢(𝑖𝑖, 𝑗𝑗) = cos 𝜋𝜋(2𝑚𝑚+1)𝑢𝑢
2𝑀𝑀

cos 𝜋𝜋(2𝑛𝑛+1)𝑢𝑢
2𝑀𝑀

. 

In the calculation of the mask matrices, because C(u) and C(v) are not a function of m and n, they are treated as 
constants and are not included in Eq. (8). Because all of the coefficients are limited to the same range of [−1, 
+1], we could efficiently use the limited dynamic range of the analog memory to store the bias voltage; 
otherwise, the DCT coefficient would need a greater number of bits to deliver the same SNR. 

The discussion above works fine as long as the system is noise free; however, the system’s response-modulation 
function shown in Fig. 5 triggers the need for a more intelligent bias-selection algorithm. Due to the device’s 
limited dynamic range and noise behavior of the system, it is a must to have a bias-selection algorithm. This 
algorithm efficiently prescribes the optimal bias to each pixel, which leads in minimization of the effect of noise. 
Also, some linear transformation is used to map all coefficients over the given implementable dynamic range. 
The next section is devoted to the mathematical model of the device-response and bias-selection algorithms. 

6.2. Bias selection algorithm 
In this section, we will describe a novel bias-selection algorithm based on the MMSE approach, which tends to 
address the issue of image reconstruction when noise comes into play in the responsivity of the device. When 
the bias corresponding to a basis coefficient is computed without considering the effect of noise in the 
responsivity of the device, then we call it a naïve technique. This term will be used frequently in the rest of 
paper to consider such cases. 

The projection and reconstruction are exact as long as the device behaves deterministically for the applied mask. 
However, the complexity rises as its behavior tends to be random and there exists a finite uncertainty to its 
response. In this case, the common reconstruction method does not lead to exact recovery as it is difficult to 
find a unique bias that is able to achieve the designated gain factor. Next, we discuss a technique that enables us 
to optimally choose the bias for the given mask coefficient. 

To begin describing the bias-selection method, as shown in Fig. 8, we consider a set of basis masks, {𝐵𝐵𝑘𝑘}𝑘𝑘=1𝑀𝑀 , 
each of which is to be implemented by a 2D array of biases to be determined later. Each of these masks consists 
of a 2D array of coefficients, given by {{𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘 }}𝑖𝑖,𝑖𝑖=1𝑀𝑀 . The objective is to map each of these 𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘  coefficients into 
achievable responsivity values by means of the application of appropriate bias drawn from the responsivity 
function given by 𝑅𝑅�(𝑣𝑣). Here, 𝑅𝑅�(𝑣𝑣) is the noisy responsivity of the device as a function of applied bias. This bias 
assignment is carried out according to the optimization criterion stated in Eq. (14). 

 
Fig. 8 Acquisition and compression processes, which include mapping k mask matrices to their corresponding 
bias voltages. The mapping is based on the system’s response-modulation function shown in Fig. 5. Then the 
bias matrices that are stored in the Raspberry Pi memory are loaded to the imager and projected to the object’s 
reflectance function. The resultant dot product is optionally summed up in the hardware, and the kresulting 
coefficients are sent to the remote computer for reconstruction. 
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For an imaging system of resolution N = 96 × 96 pixels, the image captured by the system I, the matrix of DCT 
coefficients Y, and the k-th ideal DCT mask B(k), is represented by 

𝐼𝐼 = �
𝐼𝐼1,1 … 𝐼𝐼1,96
⋮ ⋱ ⋮

𝐼𝐼96,1 … 𝐼𝐼96,96

� ,𝑌𝑌 = �
𝑦𝑦(1) … 𝑦𝑦96
⋮ ⋱ ⋮

𝑦𝑦(962−96) … 𝑦𝑦(962)
� 

and 

𝐵𝐵(𝑘𝑘) = �
𝑏𝑏�1,1

(𝑘𝑘) … 𝑏𝑏�1,96
(𝑘𝑘)

⋮ ⋱ ⋮
𝑦𝑦96,1

(𝑘𝑘) … 𝑏𝑏�96,96
(𝑘𝑘)

�. 

The k-th practical mask based on noisy responsivity is: 

𝑅𝑅�(𝑘𝑘) = �
�̃�𝑟1,1

(𝑘𝑘) … �̃�𝑟1,96
(𝑘𝑘)

⋮ ⋮ ⋮
�̃�𝑟96,1

(𝑘𝑘) … �̃�𝑟96,96
(𝑘𝑘)

�, 

and 

(9) �̃�𝑟(𝑣𝑣) = 𝑟𝑟(𝑣𝑣) + 𝜂𝜂(𝜇𝜇,𝜎𝜎𝑢𝑢2), 
where R(v) is the implementable kth mask based on ideal responsivity when the system is noise free. Now the 
expression for computing the individual DCT coefficients corresponding to the noisy responsivity mask and 
corresponding error are given by 

(10) 𝑦𝑦𝑅𝑅�
(𝑘𝑘) = � � 𝐼𝐼𝑖𝑖,𝑖𝑖�̃�𝑟𝑖𝑖,𝑖𝑖

(𝑘𝑘)(𝑣𝑣),
96

𝑖𝑖=1

96

𝑖𝑖=1

 

and 

(11) 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒
(𝑘𝑘) = 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

(𝑘𝑘) − 𝑦𝑦𝑅𝑅�
(𝑘𝑘) = � � 𝐼𝐼𝑖𝑖,𝑖𝑖(𝑏𝑏𝑖𝑖,𝑖𝑖

(𝑘𝑘) − �̃�𝑟𝑖𝑖,𝑖𝑖
(𝑘𝑘)(𝑣𝑣)),

96

𝑖𝑖=1

96

𝑖𝑖=1

 

where the k-th DCT coefficient corresponding to the ideal mask is denoted by 

(12) 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
(𝑘𝑘) = � � 𝐼𝐼𝑖𝑖,𝑖𝑖𝑏𝑏𝑖𝑖,𝑖𝑖

(𝑘𝑘).
𝑖𝑖

𝑖𝑖

 

For a specific pixel at (i, j) position, if b is the mask coefficient to be achieved and �̃�𝑟(𝑣𝑣) is the realizable 
coefficient from responsivity, then the objective function for bias selection for that specific pixel is given by 



(13) 𝑓𝑓(𝑣𝑣) = (𝑏𝑏 − �̃�𝑟(𝑣𝑣))2, 
and the optimization problem is given by 

(14) 
minimize

v
𝑓𝑓(𝑣𝑣)

subject to 𝐸𝐸(𝑓𝑓(𝑣𝑣)) = 0,
 

where 

• E(f (v)) stands for the expected value of the entity f(v), which is a function of v. 
• f(v) : ℝn → ℝ to be minimized over variable v. 
• E(f (v)) = 0 is the equality constraint. 

Equivalently, the problem can be reformulated as 

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = argmin
𝑢𝑢

𝐸𝐸(𝑓𝑓(𝑣𝑣)), 

where 

𝐸𝐸(𝑓𝑓(𝑣𝑣)) = (𝑏𝑏 − 𝑟𝑟(𝑣𝑣))2 − 2𝜇𝜇(𝑏𝑏 − 𝑟𝑟(𝑣𝑣)) + 𝜇𝜇2 + 𝜎𝜎𝑢𝑢2, 
then to find the optimum vopt, we differentiate the objective with respect to v such that 𝑖𝑖

𝑖𝑖𝑢𝑢
𝐸𝐸(𝑓𝑓(𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜)) = 0, and 

thus we obtain 

(15) 𝑟𝑟(𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑏𝑏 − 𝜇𝜇 − 𝜎𝜎
𝑑𝑑
𝑑𝑑𝑑𝑑𝜎𝜎𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
𝑑𝑑
𝑑𝑑𝑑𝑑𝑒𝑒(𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜)

, 

and 

(16) 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜎𝜎𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜
2 ��

𝑑𝑑
𝑑𝑑𝑑𝑑𝜎𝜎𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜
𝑑𝑑
𝑑𝑑𝑑𝑑𝑒𝑒(𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜)

�
2

+ 1�, 

where, r(vopt) corresponds to the optimal realizable gain coefficient for a given ideal value of mask coefficient b, 
and vopt stands for the optimal bias to be applied to realize gain r(vopt). The above expressions explained the 
optimal bias-selection rule driving the corresponding gain coefficients to be implemented on the pixel to realize 
the optimal mask coefficient b. 

The bias-selection algorithm works fine as long as the variance of noise in the responsivity lies within some limit 
and the lighting condition does not change drastically. This is because for different operating light conditions, 
the responsivity might change and the designed bias in the memory will not be able to suffice the objective. 

6.3. Conditioning the masks for mapping the bias into device dynamic range 
For an image {{𝐼𝐼𝑖𝑖𝑖𝑖}}𝑖𝑖,𝑖𝑖=1𝑀𝑀  and basis masks given by 𝐵𝐵𝑘𝑘 = {{𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘 }}𝑖𝑖,𝑖𝑖=1𝑀𝑀 , the DCT coefficient for the ideal case is 
achieved as 



𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 = ��𝐼𝐼𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖
𝑖𝑖

. 

However, due to the device’s limited operating dynamic range and memory, there is a need to appropriately 
condition the mask coefficients such that they are realizable as per the device responsivity. Once the projection 
is obtained, an equivalent transform needs to be applied to retrieve the actual DCT coefficients. 

Now for any linear transformation given by r = mb + c, where m is the gain, c is the offset and ris the entity 
equivalent to b in the transform domain. Hence, this transformation is identically applied to all of the basis 
coefficients, to accommodate all of them into the working dynamic range of the device responsivity. 
If rij = mbij + c, then 

(17) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘
′

= � � 𝐼𝐼𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖

𝑖𝑖

= � � 𝐼𝐼𝑖𝑖𝑖𝑖(𝑚𝑚𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑐𝑐)
𝑖𝑖

𝑖𝑖

= 𝑚𝑚� � 𝐼𝐼𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑐𝑐� � 𝐼𝐼𝑖𝑖𝑖𝑖
𝑖𝑖

𝑖𝑖
𝑖𝑖𝑖𝑖

= 𝑚𝑚𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑐𝑐� � 𝐼𝐼𝑖𝑖𝑖𝑖
𝑖𝑖

.
𝑖𝑖

 

Then, for each projection coefficient 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘
′
, we can condition as follow so to retrieve the actual projection 

coefficient: 

(18) 
𝑦𝑦𝑖𝑖𝑖𝑖
𝑘𝑘′

𝑚𝑚
− 𝑐𝑐� � 𝐼𝐼𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖
𝑖𝑖

. 

This conditioning is responsible for mapping of the target mask coefficients into the realizable region, the 
distribution of which is shown in Figs. 9(a) and 9(c) corresponding to naïve and MMSE methods, respectively. 
Also, as observed from the distribution of bias from Figs. 9(b) and 9(d), the MMSE spreads out the bias to 
ensure the quantization effects on implementation are minimized. As MMSE considers the effects of noise while 
bias is prescribed for the given mask, variance is added on the realizable mask coefficients, which leads to their 
spread when compared to that designed without considering the effect of noise. 
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Fig. 9 a) Distribution of 8 × 8 block-based DCT mask coefficients for naïve method, b) distribution of bias for 
naïve method, c) distribution of 8 × 8 block-based DCT mask coefficients for MMSE method, and d) distribution 
of bias for MMSE method. 
 

6.4. DCT-based image compression 
Once the optimal masks and gain are designed with the aid of the bias-selection algorithm, the biases are then 
applied to the hardware, which in turn, results in achieving the desired coefficients as modulation factors at 
each pixel. Finally, the DCT coefficient corresponding to each mask is achieved by 

(19) 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘 = � � 𝐼𝐼𝑖𝑖,𝑖𝑖�̃�𝑟𝑖𝑖,𝑖𝑖𝑘𝑘 (𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜)
96

𝑖𝑖=1

96

𝑖𝑖=1

. 

6.5. DCT-based image reconstruction 
Image reconstruction is achieved by simply applying the linear combination of the masks to which the image was 
projected. The reconstruction is achieved by the following equation: 

(20) 𝐼𝐼� 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘

𝑘𝑘
. 

Following the discussion above, we performed DCT-based image compression optimally on the hardware. 
However, some error still exists in the projection coefficients that propagate during the reconstruction, which is 
mainly due to the limited dynamic range of the pixels and different random uncharacterized noise present in the 
hardware. 

6.6. Compressive sensing implementation 
The second type of in-pixel compressed-domain acquisition we have explored is compressive sensing (CS). While 
in the DCT transform coding, the gain vectors vary continuously, which leads to the maximal exploitation of 
device dynamic range; the CS implementation simplifies the complexity by making use of only zeros and ones, 
which makes the system more resilient to noise. Here, we present some background regarding CS and 
implementation methodology on the proposed hardware. 

CS is based on the principle of achieving a larger and more efficient compression, provided that the desired data 
is sparse in some basis. Sparsity is the primary condition here, which will lead to efficient reconstruction of data 
if it is sampled in a proper domain. We consider the input image as a discrete-time column vector x ∈ RP with 
elements x[n] where n = 1, 2,…, P and P = 96 × 96. Then, x can be represented as a linear combination of 
elements from an orthonormal basis {𝜙𝜙𝑖𝑖}𝑖𝑖=1𝑃𝑃  and coefficients si. Here, 

(21) 𝑥𝑥 = ∑ 𝑀𝑀𝑖𝑖𝜙𝜙𝑖𝑖𝑃𝑃
𝑖𝑖=1 , 

or 

𝑥𝑥 = 𝜙𝜙𝑀𝑀. 
We assume that s is sparse with K nonzero coefficients. Now, by selecting an efficient binary random sensing 
matrix ψ, we can represent the reduced data set as y = ψx where ψ is a binary matrix of size M × P and M ≪ P. 
In this way, the dimension of data set is reduced from P to M. However, the size M also needs to be properly 
determined for stable reconstruction. The standard expressions for computing M are given as 



𝑀𝑀 ≥ 𝑐𝑐𝑐𝑐log �
𝑃𝑃
𝑐𝑐
�, 

where c is a constant. Here, the matrix ψ is composed of M basis functions in P dimension to which data x is 
projected, i.e. ψ = [ψ1|ψ2| … âŤĆψM]T, where ψ1 is of size P × 1. The matrix was designed with the restricted 
isometry property (RIP) [44] given below: 

(22) (1 − 𝜎𝜎𝑘𝑘)|𝑥𝑥|22 ≤ |𝜓𝜓𝑥𝑥|22 ≤ (1 + 𝜎𝜎𝑘𝑘)|𝑥𝑥|22, 
where σK ∈ [0, 1). Moreover, each ψi is converted to an equivalent 2D data set and then subjected to be 
implemented on hardware as a measurement mask. Because this mask is composed of binary elements, it is 
easier to achieve projections as the detector tends to switch on or off depending upon the bias applied for the 
acquisition. After we have obtained coefficients from the projection of the image to the reduced basis, the 
challenging problem is to reconstruct the image out of its dimensionally reduced format. Specifically, in this 
problem, we look forward to reconstruct image vector x by only using the M measurements in the vector y, the 
random measurement matrix ψ, and the orthonormal basis ϕ. Equivalently, we could reconstruct the sparse 
coefficient vector s. The estimate is given by the ℓ1 minimization criteria, which uses a convex relaxation of the 
ℓ0 norm given as 

(23) 𝑥𝑥� = minâĄą‖𝑥𝑥′‖1, 
such that 

𝜓𝜓𝑥𝑥′ = 𝑦𝑦, 
and 

‖𝑥𝑥′‖1 = �𝑥𝑥𝑖𝑖
𝑖𝑖

. 

The reconstruction was performed with the aid of ℓ1-magic algorithm, where the same random basis was 
considered for reconstruction, which was used for the projection during the hardware implementation [45]. 

6.7. Performance comparison between naïve DCT, LMS DCT, and CS reconstruction 
For a prescribed response-modulation factor, mandated by the DCT masks, for example, we analytically 
calculated the required voltage using the bias-selection algorithm as discussed in Section 6.2. Note that without 
such a statistical calculation of the voltage, the implementation of the modulation level would be inexact andd 
would result in errors in the image reconstruction. Figure 10 shows reconstructed images for different 
compression methods with a different number of projection coefficients taken into account. The criticality of the 
statistical calculation of the voltages is evidenced by the presence of noise in the reconstructed images using the 
naïve approach, which uses bias voltages that are calculated without considering uncertainty in ROIC’s 
implementation of the masks, as shown in Fig. 10(a). In contrast, the reconstruction based on a bias-selection 
algorithm tends to achieve a better reconstruction, as seen in Fig. 10(b). In addition, the CS reconstruction, as 
shown in Fig. 10(c), outperforms the DCT-based approach. For the given results, we can see that naïve based 
reconstruction fails to retrieve the details of the image as well as contrast levels due to the presence of noise. 
However, MMSE-based results suggest that they achieve a better contrast result as well as reproduce most of 
the details of the original image. Note that the CS gives almost exact reconstruction when a sufficient number of 
coefficients is used. This is due to the fact that CS exploits randomness as a tool to extract information with 
fewer coefficients, and the uncertainty in responsivity has less of an implication on it compared to the DCT 
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approach, which relies on the exact implantation of the masks. Also, for the DCT transform, a linear combination 
of projection coefficients, with the corresponding basis masks results into reconstruction where an error in 
projection is propagated during the reconstruction. CS reconstruction uses ℓ1 minimization-based optimization, 
which tends to keep the reconstruction noise as low as possible. Hence, the CS-based reconstruction is more 
tolerant of uncertainty in electronic mask implementation due to its robust ℓ1 optimization, whereas the DCT 
approach uses an ℓ2 optimization, which is known for its inferior performance compared to ℓ1 optimization. 

 
Fig. 10 The resulting images reconstructed using a) naïve DCT, b) minimum-mean-square error based DCT, c) 
compressive sensing, and d) ideal DCT. e) The performance of different method is compared in terms of the 
mean square error between the reconstructed image and the original image. 
 

A reconstruction based on ideal DCT is depicted in Fig. 10(d) where the given input image was projected on a set 
of ideal DCT masks, and the reconstruction was performed with different projection coefficients. The results 
demonstrated on Fig. 10(d) are entirely carried out at a simulation level. 

The reconstruction errors which are shown in Fig. 10(e) are computed with respect to the ground-truth image. 
For MMSE and naïve methods, although the visual results are better with the higher percent of coefficients 
considered to lower percent for binary CS in the reconstruction process; the individual pixel values were off 
from the original pixels, whereas the difference was less for CS. This is because the correlation between the 
pixels retains the image structure and looks better for the user. Thus, the correlation of pixels for larger 
projection coefficients for reconstruction in naïve and MMSE are higher when compared to lower number of 
projection coefficients for binary CS. However, compared to CS, because the coefficients are more sensitive to 
noise for MMSE and naïve, the reconstruction error is higher. In this context, considering more coefficients in 
reconstruction leads to more propagation of projection error. This error is less for MMSE when compared to 
naïve. 

The analog image sensor has a limited memory, which forces the device to operate over a limited dynamic 
range; this constrains the device to rely on small, block-sized transform coding instead of a large kernel mask. 
This is due to, for a large block size, the mask coefficients being significantly large in number and denser. This 
gives rise to quantization issue as most of the neighboring coefficient values are rounded to their nearby 
realizable coefficients. As a result, the realized mask loses its orthonormal property, and the implemented mask 
is no longer equivalent to the targeted mask, leading to reconstruction errors. 
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7. Functioning as a stand-alone camera 
Depending on the modulation scheme applied to the chip, different applications could be delivered. In the 
simplest scenario, if all of the pixels are biased with the same voltage, the iROIC camera can be used as a stand-
alone camera. In this mode of operation, Vbias should remain constant, and as a result, the modulation factor 
that is used for different pixels is the same. 

The extra benefit of this hardware over the conventional CTIA is that in stand-alone mode, because the 
reference voltage for the readout is different from the detector’s bias voltage, a Vref− Vbias offset is applied to the 
measured values, which means a level shifter is embedded in every pixel. This method is beneficial if there is a 
constant offset at the output of the imager. Figure 11 shows four images that are taken by the iROIC camera in 
stand-alone mode. 

 
Fig. 11 Four images that are taken using iROIC camera in normal mode. a) phantom, b) a cell, c) some rice grains, 
and d) UNM logo. 
 

8. Region of interest (ROI) enhancement 
The support for continuous spatiotemporal control over the bias voltage applied to each photodetector enables 
ROI enhancement achieved by means of selectively modulating responsivity of detectors located in the region of 
interest. Different applications are advantaged from this, and some are briefly discussed below: 

• It aids in enhancing the contrast of image over a given region, which is originally poor due to limited 
dynamic range of the sensor. This is also a solution to the challenge of finding an optimum bias for a 
high contrast image where part of it saturated and some other part is at the noise level. A smart 
selection of bias voltages enforces all pixels to operate in the linear region. 

• This method facilitates in achieving different resolutions for different regions of a given image by using 
sub-masks corresponding to low pass and high pass response. This is useful in the surveillance and 
medical applications, where the user may be interested in a specific region and wants to ignore the 
information in the rest of the image. 

• Spectral selectivity in different areas of the image is another application of the hardware; however, the 
requirement is to have support for multispectral tunability at the photodetectors. 

Figure 12(a) shows the original image of the white matter, which we have used at the input of iROIC in the 
image segmentation experiment. Figure 12(b) depicts the white matter image we have taken with iROIC when a 
uniform bias is applied to all of the pixels, and Figs. 12(c)–12(f) present the same scene with the exception of 
applying different bias to some selected area, which is referred to as region of interest. 
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Fig. 12 a) Original white matter image used for imaging. b) Image is taken using iROIC with a uniform biasing for 
all of the pixels where some of the pixels are saturated due to the high intensity. In c), d), e), and, f) the same 
scene is imaged using proper biasing for the different areas that normally are at the noise floor of the imager. 

9. Conclusions 
A monolithic implementation of compressive-domain image acquisition is presented, where all of the 
computations are performed at the acquisition time within the analog ROIC circuit. Detector-bias information is 
the knob we employed to control the modulation factor of each individual pixel. The reported hardware outputs 
a reduced set of compression coefficients of an image, thereby avoiding the generation of big data. A flexible 
image retrieval setup enables fine control over the matrix that is to be projected to the image. 

The enhanced acquisition technique, which utilizes a statistical detector biasing scheme, offers many different 
applications, such as in-place nonuniformity correction, sensor level region of interest enhancement, transform 
coding embedded in ROIC, and compressive sampling, where all of them are proven using the selection of 
proper biasing matrices. Additionally, for the case of transform coding, an intelligent bias-selection algorithm is 
proposed, and the result is compared against the naïve method. 

The motive of the current extension is to efficiently acquire data and reconstruct with fewer projection 
coefficients, which is highly desired for multispectral imaging. This reduces acquisition time and instrument 
complexity. Here we deploy a CS-based compression technique where an entire signal can be reconstructed 
from sparse data set where a proper basis pursuit algorithm is used for reconstruction of the multispectral 
image from a reduced data set. 
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