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ABSTRACT 

THE IMPACT OF ISOMETRIC EXERCISE ON SOMATOSENSORY 
PROCESSING IN PEOPLE WITH OR WITHOUT CHRONIC PAIN 

Ali Alsouhibani, PT, M.S. 

Marquette University, 2019 

Despite an increase in our understanding of the pathomechanisms of 
chronic pain and the advancement of new treatments, pharmacological 
management of chronic pain remains poor. This presents the need for non-
pharmacological treatments and understanding their efficacy and mechanisms in 
managing pain. The purpose of this dissertation was to examine the effects of 
isometric exercise on the somatosensory system and other biopsychosocial 
aspects related to pain in individuals with and without fibromyalgia. The first aim 
was to determine whether isometric exercise improves pain inhibitory 
mechanisms and vibration sense. The second aim was to determine what 
biopsychosocial factors influence pain relief following exercise. 

In study one, conditioned pain modulation (CPM; a measure of pain 
inhibitory mechanism) was assessed before and after exercise (submaximal 
isometric contraction of the knee extensors held for three minutes) and quiet rest 
in young healthy adults. In study two, CPM and vibration sense were assessed 
before and after exercise (submaximal isometric contraction of the knee 
extensors held until exhaustion) and quiet rest in individuals with and without 
fibromyalgia. In both studies, the influence of biopsychosocial factors (e.g. body 
composition, physical activity, pain catastrophizing, kinesiophobia, and pain self-
efficacy) were assessed.  

In study one, local hypoalgesia occurred at the exercising muscle while 
systemic hypoalgesia was much more variable. CPM decreased at the upper 
trapezius following exercise in those individuals that reported systemic 
hypoalgesia and was unchanged in those without systemic hypoalgesia. In study 
two, local and systemic hypoalgesia occurred with exercise. CPM increased at 
the deltoid following exercise only in those individuals with impaired baseline 
CPM irrespective of health status (healthy control or fibromyalgia). Vibration 
sense increased at a site distal from the exercising muscle (i.e. the index finger). 
Additionally, pain relief following exercise was not influenced by body 
composition physical activity, kinesiophobia, and pain self-efficacy.  

The results from these studies suggest that CPM and systemic exercise-
induced hypoalgesia may have similar mechanisms, and the biopsychosocial 
factors measured in these studies did not impact the pain relief following 
exercise. Thus, exercise may be a good modality to restore descending pain 
inhibition and improve vibratory sense.   
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I. INTRODUCTION AND LITERATURE REVIEW 

In the U.S, approximately 1/3 of the population report chronic pain that 

lasts at least 6 months that cost the U.S economy more than $600 billion 

annually in lost wages and productivity (Institute of Medicine (US) Committee on 

Advancing Pain Research, Care, and Education, 2011). Chronic pain has been 

shown to interfere with work, social activities and function reducing overall quality 

of life (American Pain Foundation, 2006). Despite an increase in our 

understanding of the pathomechanisms of chronic pain and the advancement of 

new treatments, pharmacological management of chronic pain remains poor 

(Turk, Wilson, & Cahana, 2011). Even when pharmacological treatments are 

effective in reducing pain, they are often presented with numerous side effects 

and they do not typically enhance physical and emotional functioning and overall 

health-related quality of life (Turk et al., 2011). One reason for this difficulty in 

treatment is the complex multidimensional nature of chronic pain. The perception 

of pain is an interaction between biological, psychological, and sociocultural 

factors (i.e. biopsychosocial model) (Sluka, 2016). This presents the need for 

non-pharmacological treatments and understanding their efficacy and 

mechanisms in managing pain. Exercise is a promising non-pharmacological 

treatment for patients with chronic pain that has been shown to influence 

endogenous pain modulation.  
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Exercise-Induced Hypoalgesia 

Exercise is an important treatment modality used in rehabilitation settings 

for treating patients with chronic pain and is crucial for maintaining physical 

fitness and overall health. Exercise has been shown to decrease pain induced 

experimentally in healthy subjects as well as in patients with chronic pain (Naugle 

et al. 2012). This phenomenon is known as exercise-induced hypoalgesia (EIH) 

(Koltyn 2000, 2002). The exact mechanism is not completely understood; 

however, multiple mechanisms have been suggested ranging from peripheral to 

central mechanisms. Several studies have investigated the role of EIH in healthy 

individuals and in patients with chronic pain (e.g., osteoarthritis, rheumatoid 

arthritis and fibromyalgia) and both peripheral and central mechanisms have 

been considered to be involved in this process (see [Hoeger Bement & Sluka, 

2016] for review). However, multiple measurements of pain have been used in 

the literature to study EIH and results are not always consistent (Naugle et al. 

2012).   

Different modes of exercise have been shown to reduce pain sensitivity 

including aerobic, isometric, and dynamic resistance exercise in healthy adults as 

well as in individuals with chronic pain (Naugle, Fillingim, & Riley, 2012). 

Previous research has shown that the reduction of pain sensitivity following 

exercise occurs locally at the exercising muscle (Koltyn, Trine, Stegner, & Tobar, 

2001; Kosek & Lundberg, 2003; Umeda, Newcomb, Ellingson, & Koltyn, 2010) 

and systemically (Hoeger Bement, Dicapo, Rasiarmos, & Hunter, 2008; Koltyn & 

Umeda, 2007; Kosek & Lundberg, 2003; Lemley, Drewek, Hunter, & Hoeger 
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Bement, 2014) at remote sites; although greater EIH may occur at the local site 

compared with distal sites (Vaegter, Handberg, & Graven-Nielsen, 2014b) 

suggesting both peripheral and central mechanisms may be responsible for EIH. 

Furthermore, these effects seem to have a dose-response relationship; where a 

low intensity contraction held for a long duration produces the greatest EIH 

compared with a low intensity contraction held for a shorter duration (Hoeger 

Bement et al., 2008; Naugle et al., 2012).  

Effects of aerobic exercise in healthy individuals 

With aerobic exercise, a single maximal oxygen consumption (V̇O2max) 

test in young healthy adolescents increased pressure pain thresholds (PPT) (i.e. 

less pain sensitivity) at the exercising muscle (quadriceps) and at distant sites 

(deltoid and nail bed) (Stolzman, Danduran, Hunter, & Bement, 2015). However, 

submaximal aerobic exercise at 50% of V̇O2max for 20 minutes did not show a 

significant reduction in PPTs (Vaegter et al., 2014b). This suggests that aerobic 

exercise needs to be intense enough to show effects.  However, Hoffman et al. 

(2004) have showed a reduction in pressure pain ratings when participants were 

engaged in longer durations of aerobic exercise at 75% V̇O2max for 30 minutes, 

but not when performed for only 10 minutes. In contrast, Ruble et al. (2005) 

showed no significant change in thermal pain sensitivity for participants 

performing 75% V̇O2max for 30 minutes. This discrepancy may be due to 

methodological differences in testing, as Hoffman et al. used constant pressure 

on the index finger whereas Ruble et al. used constant heat and cold on the 
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hand. Of note, Ruble et al. did not find a significant difference between heat and 

cold, although subjects rated heat as more painful. Using the same 

measurements as Ruble et al. (2005), another study by Naugle et al. (2014) 

showed a significant decrease in thermal pain sensitivity when healthy 

participants performed 25 minutes of aerobic exercise at 50% and 70% Heart 

Rate Reserve (HRR). Although this disagreement is difficult to explain, some 

methodological differences did exist. First, the sample used by Naugle and 

colleagues are younger in age (mean=21.78 years, SD=4.14) as opposed to 

(mean=32 years, SD=3) in Ruble et al. (2005). Second, the site of measurement 

was different in the two studies where Naugle et al. (2014) measured thermal 

sensitivity at the forearm and Ruble et al. measured it at the hand. Also, Naugle 

et al. (2014) used HRR as the intensity of exercise instead of V̇O2max, which is 

considered more accurate (Lounana, Campion, Noakes, & Medelli, 2007). 

Overall, with aerobic exercise, it seems that both intensity and duration are both 

important to produce hypoalgesia. 

Effects of isometric exercise in healthy individuals 

Acute isometric exercise has been shown in the literature to reduce pain 

sensitivity in healthy individuals. Hoeger Bement et al. (2008) have shown a 

decrease in pain ratings of constant pressure following 3 maximum voluntary 

contractions (MVC) of the elbow flexors for 2-3 seconds with 1 minute rest 

between contractions, 80% of MVC held until task failure and 25% of MVC held 

until task failure but not following 25% of MVC held for 2 minutes. These data 
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show that both low and high intensity contractions decrease pain, but the low 

intensity contraction must be held for a longer duration for this to occur. Along 

those lines, Koltyn et al. (2013) showed a reduction in temporal summation (TS) 

of repetitive heat stimuli, a measurement thought to represent windup of C fibers 

in the dorsal horn (Li, Simone, & Larson, 1999; Mendell & Wall, 1965), after 

isometric contractions of the hand (40% MVC) held until task failure and (25% 

MVC) for 3 minutes. In addition, performance of isometric contractions of the 

knee extensors and elbow flexors at 60% MVC twice for 90 seconds (total of 180 

seconds) reduced TS of repetitive pressure cuff (i.e., ischemic stimuli) and 

increased pain tolerance (Vaegter, Handberg, & Graven-Nielsen, 2014a). In the 

same study, when isometric contractions were performed at 30% MVC held twice 

for 90 seconds (total of 180 seconds) pain tolerance was increased for both 

contractions (knee extensors and elbow flexors) but TS of repetitive pressure cuff 

was only reduced following knee extensors contractions and not following elbow 

flexors contraction (Vaegter et al., 2014a). This may be due to a larger muscle 

mass for the knee extensors compared with the elbow flexors. However, when 

isometric contractions of 25% MVC of the hand were performed for 3 minutes (as 

opposed to 2 minutes in [Hoeger Bement et al., 2008]) TS of repetitive heat 

stimuli decreased (Koltyn et al., 2013; Naugle, Naugle, Fillingim, & Riley, 2014). 

This inconsistency may be due to the different pain induction methods, as 

discussed earlier with aerobic exercise, since Naugle et al. (2014) and Koltyn et 

al. (2013) used repetitive heat stimuli to test TS while Vaegter et al. (2014a) and 

Hoeger Bement et al. (2008) used mechanical stimuli. Also, It’s not clear whether 
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the results obtained by Vaegter et al. (2014a) were due to the different methods 

used for testing TS or due to the rest between the two 90 second contractions. 

Therefore, acute isometric exercise, at a sufficient intensity and duration, has 

been shown to reduce central pain facilitatory mechanisms (i.e. TS) (Lemley et 

al., 2014; Vaegter et al., 2014a); however to our knowledge, no study has 

investigated the effect of acute isometric exercise on central pain inhibitory 

mechanisms (e.g. Conditioned Pain Modulation [CPM]) (Specific Aim #1). 

Effects of dynamic resistance exercise in healthy individuals 

Research on the effects of resistance exercise on pain is limited in the 

literature. Two studies have found that 1 bout of mixed resistance exercises (45 

minutes at 75% of 1 repetition maximum [RM]) increases pain threshold and 

reduces pain ratings of constant pressure (i.e. TS of constant mechanical 

stimulus) 1 and 5 minutes following the exercise but not 15 minutes following 

exercise (Focht & Koltyn, 2009; Koltyn & Arbogast, 1998). Only two studies were 

found to investigate the effect of dynamic resistance exercise on TS of repetitive 

heat. Bishop et al. (2011) did not observe any reduction in TS when healthy 

participants performed 3 sets of cervical flexion exercises with 10 repetitions. The 

reason may be due to low intensity and duration of the exercises performed. As 

in aerobic and isometric exercises, a high enough intensity and sufficient duration 

is required to observe changes in TS. However, Alappattu et al. (2011) had 

tested TS in healthy participants after performing trunk flexion exercises at 80% 

MVC until fatigue. Interestingly, TS did not change significantly. This could be 
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attributed to the time of measurement, as TS was measured 48 hours after the 

performance of exercise. The effect of acute exercise or a single bout of exercise 

on TS seems to be temporary and does not have long-lasting effects. In the 

study conducted by Koltyn & Arbogast (1998) reduction in TS was only observed 

when tested 5 minutes after the exercise and this effect was demolished 15 

minutes after exercise. Therefore, from the few studies investigating dynamic 

resistance exercise, it appears that it may produce hypoalgesia and reduce TS in 

healthy individuals when performed at a sufficient intensity and duration. 

Longitudinal studies investigating the effect of resistance exercise programs 

(e.g., more than 4 weeks) on central pain facilitation and inhibition (e.g. TS and 

conditioned pain modulation) are required to better understand the long-lasting 

effect of exercise training. 

Effects of exercise in individuals with chronic pain 

Studies examining the effects of EIH in populations with chronic pain are 

limited. Because exact mechanisms of pain modulation and pathophysiology of 

chronic pain are poorly understood, results of EIH in chronic pain populations are 

difficult to interpret (Naugle et al., 2012). In a study conducted by Meeus et al. 

(2014) TS was tested in patients with rheumatoid arthritis and patients with both 

chronic fatigue syndrome and fibromyalgia before and after performing a single 

submaximal aerobic test at 75% of age predicted V̇O2max. Interestingly, TS was 

reduced in patients with rheumatoid arthritis after the exercise but did not change 

in patients with the both conditions of chronic fatigue syndrome and fibromyalgia, 
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as well as it did not change in healthy subjects. This indicates that the response 

to exercise may be different in different chronic pain populations, as the 

pathophysiology may play a different role in each disease. For example, 

differences in inflammatory state may explain the difference in their response. In 

addition, in the case of fibromyalgia, it was found that aerobic exercise to 

exhaustion (modified Bruce protocol) increased TS of repetitive heat (Vierck et 

al., 2001), indicating an increase in sensitization.  

Initial studies with submaximal isometric exercise in individuals with 

fibromyalgia reported an increase in pain sensitivity, similar to results following 

aerobic exercise (Kosek, Ekholm, & Hansson, 1996; Staud, Robinson, & Price, 

2005). For example, Staud and colleagues (2005) reported an increase in 

thermal pain ratings and a decrease in PPTs following a 30% MVC handgrip 

exercise sustained for 3 minutes in individuals with fibromyalgia compared with 

healthy controls. Similarly, Kosek and colleagues (1996) reported a decrease in 

PPTs following a 22% MVC of the knee extensors held until exhaustion or a 

maximum of 5 minutes in women with fibromyalgia compared with healthy 

controls. However, a study by Hoeger Bement et al. (2011) found that in women 

with fibromyalgia there was considerable variability in the pain response following 

isometric exercise that varied in intensity and duration; with a subgroup of 

women experiencing an increase in pressure pain threshold and decrease in pain 

ratings of constant pressure (i.e. reduced pain sensitivity), another subgroup 

experiencing no change, and another experiencing an increase in pain 

sensitivity. These results demonstrated that a group of patients with chronic pain 
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may respond to exercise while others may not respond and the variability in the 

pain response following exercise may partially be due to the exercising 

parameters. Determining the parameters of exercise that produce hypoalgesia 

and understanding the mechanisms of EIH is important in optimizing exercise 

prescription for patients with chronic pain.  

Potential mechanisms of EIH 

The mechanisms of EIH are poorly understood, however, opioid and non-

opioid mechanisms have been suggested (Hoeger Bement & Sluka, 2016). In 

animals, administration of naloxone, an opioid antagonist, prevents EIH partially 

following low intensity aerobic exercise and reverses chronic muscle pain 

(Bement & Sluka, 2005). In addition, systemic administration of naloxone 

prevented EIH in mice without tissue injury following wheel running and high 

intensity swimming (Li, Rhodes, Girard, Gammie, & Garland, 2004; Mazzardo-

Martins et al., 2010). These results, therefore, suggest that EIH is mediated, at 

least in part, by release of endogenous opioids. Furthermore, chronically 

exercising animals respond less to pharmacological administration of opioids, 

suggesting cross-tolerance between endogenous and exogenous opioids 

(Mathes & Kanarek, 2006; Smith & Lyle, 2006). However, results in humans are 

less consistent; with some studies showing EIH prevention following naloxone 

administration (Haier, Quaid, & Mills, 1981; Janal, Colt, Clark, & Glusman, 1984) 

and others showing no change (Droste, Greenlee, Schreck, & Roskamm, 1991; 

Koltyn, Brellenthin, Cook, Sehgal, & Hillard, 2014). Following exercise training for 
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4-6 months as an intervention for women with chronic neck pain, beta-

endorphins, an opioid peptide, increased along with an increase in PPTs and 

reduced pain ratings (i.e. hypoalgesia) (Karlsson et al., 2015). The changes in 

PPTs were not related to the increase in beta-endorphins, suggesting that pain 

relief following exercise may involve multiple mechanisms.   

Serotonergic mechanisms have been implicated in pain relief (Millan, 

1999) with serotonin acting as an important neurotransmitter involved in 

descending inhibitory pathways, including centers in the brainstem such as the 

periaqueductal gray (PAG) and the rostral ventromedial medulla (RVM) 

(Basbaum, 1981; Beitz, 1982; Bowker, Westlund, & Coulter, 1982). In animals, 

the analgesia occurring from muscle simulation is blocked by administering para-

chloroamphetamine methyl ester (PCPA), an inhibitor of serotonin synthesis 

(Hoffmann, Skarphedinsson, & Thoren, 1990). In addition, in healthy non-injured 

mice, EIH from high intensity swimming was blocked following administration of 

PCPA (Mazzardo-Martins et al., 2010). Furthermore, in an animal model of 

neuropathic pain, EIH by treadmill running was blocked by systemic depletion of 

serotonin (Bobinski et al., 2015). In humans, prolonged gum chewing have been 

shown to reduce nociceptive withdrawal reflex and pain reports along with an in 

increase in serotonin levels in the blood stream (Kamiya et al., 2010; Mohri, 

Fumoto, Sato-Suzuki, Umino, & Arita, 2005). These results suggest the 

involvement of serotonergic mechanisms of EIH. 

Opioidergic and serotonergic mechanisms alone do not fully explain EIH. 

There is some evidence indicating the interaction of serotonin with the opioid 
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system to produce hypoalgesia. In animals without tissue injury, induction of 

muscle pain increases serotonin transporter in the RVM which is prevented by 

wheel running (Lima, DeSantana, Rasmussen, & Sluka, 2017). In mu-opioid 

knockout mice and mice administered with naloxone, wheel running did not 

prevent the increase in serotonin transporter; indicating hypoalgesia is mediated 

by an interaction between opioid and serotonin. In line with this hypothesis, a 

recent study investigated the effects of opioid and serotonin transporter genetic 

polymorphisms on EIH following an isometric contraction of the knee extensors 

to exhaustion or a maximum of 5 minutes in individuals with and without 

fibromyalgia (Tour et al., 2017). The authors found that gene-to-gene interactions 

regulate pain inhibition following exercise, such that greater EIH was associated 

with individuals having genetically inferred strong opioid signaling combined with 

weak serotonin signaling.  

The role of endocannabinoids in EIH has also been suggested (Dietrich & 

McDaniel, 2004). In animals without tissue injury, an increase in the expression 

of cannabinoid receptor CB1 in the brain is found following aerobic and 

resistance exercise (Galdino, Romero et al., 2014a; Galdino, Romero et al., 

2014b) as well as an increase in endocannabinoid plasma levels. In addition, the 

EIH in these animals was prevented after systemic and central injection of 

cannabinoid receptors antagonists. In healthy humans, Koltyn et al. (2014) found 

that following a handgrip isometric contraction for 3 minutes, hypoalgesia occurs 

along with an increase in circulating endocannabinoids. These studies suggest 

the involvement of the endocannabinoid system in EIH. However, similar to 
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serotonergic mechanisms, endocannabinoids do not fully explain EIH which 

suggest perhaps an interaction with other systems such as opioids. Crombie et 

al. (2018) explored the possibility of an interaction between opioids and 

endocannabinoids and found that the increase in endocannabinoid N-

arachidonylethanolamine (AEA) following exercise was reduced with 

administration of naltrexone, an opioid antagonist, compared to placebo. 

Another mechanism of EIH that has been proposed is the modulation of 

the immune system both peripherally and centrally (Sluka, Frey-Law, & Hoeger 

Bement, 2018). At the muscle, physically active healthy animals have greater 

macrophages that release anti-inflammatory cytokines (M2) compared to 

macrophages that release pro-inflammatory cytokines (M1) (Leung, Gregory, 

Allen, & Sluka, 2016). In addition, local or systemic blockade of IL-10, an anti-

inflammatory cytokine, in these animals reversed hypoalgesia by physical 

activity. These studies suggest that regular exercise can modulate the immune 

system at the periphery. In healthy humans, regular physical activity reduces pro-

inflammatory cytokines (e.g. TNF-α or IL-6) and increases anti-inflammatory 

cytokines (Jankord & Jemiolo, 2004; Petersen & Pedersen, 2005). In addition, 

individuals with fibromyalgia following an exercise program improved cytokine 

profiles (i.e. reduced pro-inflammatory cytokines and increased anti-inflammatory 

cytokines) (Ortega, Bote, Giraldo, & Garcia, 2012). Therefore, modulation of the 

immune system peripherally and centrally are possible mechanisms of EIH.  
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Fibromyalgia Syndrome  

Fibromyalgia syndrome (FMS), a chronic pain condition, is characterized 

by widespread pain in the soft tissue and tender points throughout the body 

(Neumann & Buskila, 2003). The prevalence of FMS in the general population is 

5%, with 80-90% of them being women (Hawkins, 2013). Past research has 

shown that people with FMS demonstrate central sensitization that is 

characterized by abnormal endogenous pain modulation such as enhanced pain 

facilitation (Staud, Vierck, Cannon, Mauderli, & Price, 2001) and reduced pain 

inhibition (Kosek & Ordeberg, 2000) as well as a reduction in vibratory sense (da 

Silva, Kazyiama, Teixeira, & de Siqueira, 2013). These changes are related to 

function, as patients with fibromyalgia are known to have altered functional 

performance (Costa et al., 2017). Recent studies have suggested that the 

reduction in vibrotactile sense in patients with chronic pain is caused by 

abnormal pain processing in the central nervous system (Geber et al., 2008). 

Therefore, treatments that provide pain relief may also improve vibratory sense. 

Our laboratory has previously shown that isometric exercise may decrease pain 

facilitation in healthy individuals (Hoeger Bement et al., 2008; Lemley et al., 

2014) and in some individuals with fibromyalgia (Hoeger Bement et al., 2011). 

Whether exercise improves pain inhibition and/or vibratory sense in patients with 

FMS remains unclear. It is important to understand the effect of exercise on pain 

inhibition and vibratory sense in individuals with and without chronic pain to 

better translate clinically and improve function.  
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Quantitative Sensory Testing  

Quantitative Sensory Testing (QST) is a method that has been used to 

characterize pain conditions based on mechanisms rather than symptoms 

(Suokas et al., 2012). The protocol includes the evaluation of responses of the 

somatosensory system to controlled noxious or non-noxious stimuli such as 

mechanical, electrical, chemical and/or thermal stimuli (e.g. thresholds, 

suprathresholds, or tolerance) (Pavlakovic & Petzke, 2010). These responses 

were categorized previously as static or dynamic measures (Granot, 2009).  

Static QST identifies single points along a somatosensory continuum 

(Uddin & MacDermid, 2016). These measurements may be evaluated locally at 

the affected site or remotely to assess the peripheral or central nervous system 

involvement, respectively (Graven-Nielsen & Arendt-Nielsen, 2002). For 

example, reduced pain thresholds in the upper limb in individuals with knee 

osteoarthritis indicates sensitization in the central nervous system.  

Dynamic QST, on the other hand, disturbs the somatosensory system to 

evaluate certain mechanism (Arendt-Nielsen & Yarnitsky, 2009). Specifically, 

these methods have been used to assess the endogenous modulation of pain 

such as pain facilitation or inhibition. A common method to evaluate pain 

facilitation and inhibition is TS and CPM, respectively. TS is the excitability of the 

dorsal horn neurons as a result of repetitive stimulation of the C-fibers (Li, 

Simone, & Larson, 1999; Mendell & Wall, 1965). Increased TS is indicative of 

sensitization in the central nervous system (Arendt-Nielsen & Petersen-Felix, 

1995; Herrero, Laird, & Lopez-Garcia, 2000; Melzack, Coderre, Katz, & 
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Vaccarino, 2001) and therefore a decrease of TS is vital in treating patients with 

chronic pain.  

Conditioned pain modulation 

Descending inhibitory pathways comprises an important component of 

endogenous pain modulation. These pathways could be facilitatory or inhibitory 

(Villanueva, Bouhassira, & Le Bars, 1996). One common pathway is known as 

the PAG-RVM pathway, which is likely activated by higher centers in the cortex 

(Neugebauer, Galhardo, Maione, & Mackey, 2009). The PAG, upon activation, 

sends projections to the spinal cord through the RVM, which results in inhibition 

of nociception. The stimulation of these centers (i.e. the PAG or RVM) electrically 

or chemically produces analgesia in animals and humans (Gebhart, Sandkuhler, 

Thalhammer, & Zimmermann, 1983; Reynolds, 1969). The PAG also sends 

projections to other nuclei such as the locus coeruleus that, in turn, sends 

inhibitory projections to the spinal cord (Tsuruoka & Willis, 1996). The exact 

neurobiological mechanisms of these pathways remain unclear. However, 

serotonergic, opioidergic, and noradrenergic mechanisms have been implicated 

(Bannister & Dickenson, 2017).   

One method to evaluate central pain inhibition in humans includes CPM, 

which is described as ‘pain inhibits pain.’ The application of a noxious stimulus at 

one body location (i.e., conditioning stimulus) attenuates pain reports to another 

noxious stimulus at a remote location (i.e., test stimulus). This inhibition is the 

human correlate to diffuse noxious inhibitory control (DNIC) described in the 
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animal and it’s mediated via a spino-bulbo-spinal loop (Le Bars, Dickenson, & 

Besson, 1979a; Yarnitsky et al., 2010). While the exact anatomical pathway is 

poorly understood, it is likely different than the PAG-RVM pathway (de Resende, 

Silva, Sato, Arendt-Nielsen, & Sluka, 2011; Villanueva & Le Bars, 1995). Other 

nuclei that have been suggested to be involved in DNIC are: subnucleus 

reticularis dorsalis (SDR), parabrachial nuclei, and locus coeruleus (Bannister & 

Dickenson, 2017). In animals, lesions in the SDR, but not the PAG or the RVM, 

results in a diminished DNIC indicating the importance of this structure 

(Bouhassira, Villanueva, Bing, & le Bars, 1992; Le Bars, Villanueva, Bouhassira, 

& Willer, 1992). It is not clear whether the SDR then projects directly or indirectly 

(through other structures) to the spinal cord (Bannister & Dickenson, 2017). In 

humans, a study using functional magnetic resonance imaging (fMRI) confirmed 

the importance of the SDR, where the reduction in pain during CPM was 

associated with a reduction in SDR and parabrachial nuclei signal reductions 

(Youssef, Macefield, & Henderson, 2016).  

The neurotransmitters involved in descending pain inhibition in general 

and in DNIC/CPM in particular are complex and not fully understood. Opioidergic 

mechanisms have been implicated in the PAG-RVM pathway (Eippert et al., 

2009) as well as early studies investigating DNIC (Le Bars, Chitour, Kraus, 

Dickenson, & Besson, 1981; Willer, Le Bars, & De Broucker, 1990). Opioids such 

as morphine can act on the PAG, RVM and spinal cord exerting its analgesic 

effects (Millan, 2002). In a muscle inflammatory model in rats, injection of 

naloxone, an opioid antagonist, systemically or in the SDR prevented DNIC 
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effects but not when injected in the RVM (de Resende et al., 2011). This 

indicates that DNIC is mediated through opioidergic mechanisms via the SDR 

and not the RVM. However, in humans results are less consistent with some 

studies showing a reduction in CPM magnitude following administration of 

naloxone (Willer et al., 1990) or opioid medications (Arendt-Nielsen et al., 2012) 

and other studies demonstrating no effect of naloxone (Edwards, Ness, & 

Fillingim, 2004; Peters, Schmidt, Van den Hout, Koopmans, & Sluijter, 1992) or 

opioid medication (Suzan et al., 2013) on magnitude of CPM. Therefore, the role 

if opioids in CPM (in humans) is not clear. 

Serotonin and its receptors are available in neurons located in the PAG, 

RVM and spinal cord and have been implicated in descending inhibition as well 

as descending facilitation of pain, depending on the specific receptor activated 

(Beitz, 1982; Bowker et al., 1982). Administration of serotonin to neurons in the 

spinal cord decreases their activity and results in analgesia (Millan, 1999), 

suggesting that the PAG-RVM may exert its inhibitory effects through a 

serotonergic mechanism. However, under certain circumstances and conditions, 

such as in chronic pain, the serotonergic pathway may switch from being 

inhibitory to facilitatory (Millan, 1999). Serotonin was also shown to be critical to 

the DNIC pathway. In a neuropathic pain model in animals, DNIC was restored 

after application of selective serotonin reuptake inhibitors (SSRIs), indicating the 

importance of serotonin (Bannister, Lockwood, Goncalves, Patel, & Dickenson, 

2017). In humans, lower CPM magnitude was shown to be associated with low 
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serotonin transporter gene expression (Lindstedt et al., 2011). Thus, serotonergic 

mechanisms are likely important in the involvement of CPM. 

Additionally, the neurotransmitter norepinephrine (i.e. noradrenaline) 

appears to be crucial in CPM and DNIC pathways. Projections from the locus 

coeruleus, an essential component of the DNIC circuitry, to the spinal cord are 

noradrenergic and norepinephrine is primarily found in its nuclei. Stimulation of 

this region, electrically or chemically, is analgesic and reduces neuronal firing in 

the spinal cord (Jones & Gebhart, 1987; Li & Zhao, 1993; Tsuruoka & Willis, 

1996). However, similar to serotonin, norepinephrine may be inhibitory or 

facilitatory, dependent on the specific receptor its acting on (Nuseir & Proudfit, 

2000). The α2 –adrenergic receptor in the spinal cord is thought to be inhibitory 

while the α1 –adrenergic receptor is, generally, thought to be facilitatory (Millan, 

2002). In animals without tissue injury and a functioning DNIC, administration of 

α2 –adrenergic receptor antagonists diminished DNIC, indicating a vital role for 

norepinephrine and the α2 –adrenergic receptor (Bannister, Patel, Goncalves, 

Townson, & Dickenson, 2015). Therefore, the involvement of noradrenergic 

mechanisms in CPM are likely. 

While the importance of the α2 –adrenergic receptor and norepinephrine 

was demonstrated in the normal state of DNIC, under pathological conditions 

restoring DNIC may employ different mechanisms. Namely, interactions with 

opioidergic and serotonergic systems appear to be important. In an animal 

neuropathic model, where DNIC is diminished, administration of tapentadol, an 

opioid agonist and norepinephrine reuptake inhibitor, restored DNIC (Bannister et 
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al., 2015). Similarly, in patients with neuropathy, tapentadol and duloxetine, a 

serotonin norepinephrine reuptake inhibitor, were shown to be effective in 

individuals who had low CPM magnitude, presumably because it restored CPM 

functionality (Niesters et al., 2014; Yarnitsky, Granot, Nahman-Averbuch, 

Khamaisi, & Granovsky, 2012). In both studies, the common neurotransmitter 

was norepinephrine, suggesting that restoring DNIC, and possibly CPM, may 

require norepinephrine combined with either serotonin or opioid.  

Although DNIC has been studied in animals to understand CPM 

mechanisms in humans, we can only make inferences within the brainstem 

circuitry (Bannister & Dickenson, 2017). The increased variability of CPM in 

healthy and patients with chronic pain (Chimenti, Frey-Law, & Sluka, 2018; 

Potvin & Marchand, 2016) compared to DNIC suggests that there might be 

differences between animal and human paradigms. In humans, engagement of 

higher centers in the brain may influence the CPM response and contribute to its 

variability (Harper et al., 2018). In fact, psychosocial factors have been 

suggested to contribute to this variability such as expectations (Bjorkedal & 

Flaten, 2012; Goffaux, de Souza, Potvin, & Marchand, 2009), pain 

catastrophizing (Edwards et al., 2013; Nahman-Averbuch, Nir, Sprecher, & 

Yarnitsky, 2016), mood (Edwards, Dolman, Michna et al., 2016), stress level 

(Geva, Pruessner, & Defrin, 2014), anxiety (Bogdanov et al., 2015; Nahman-

Averbuch et al., 2016), and personality traits (Nahman-Averbuch, Yarnitsky, 

Sprecher, Granovsky, & Granot, 2016). In studies using fMRI, cortical areas such 

as the anterior cingulate cortex (ACC) (Sprenger, Bingel, & Buchel, 2011) and 



20 
 

 

the insula (Bogdanov et al., 2015) has been associated with CPM magnitude 

along with areas in the brainstem region; indicating an influence of other 

mechanisms in the brain on CPM.  

CPM has been used extensively in clinical and experimental research 

showing its impairment in multiple pain conditions (Lewis, Rice, & McNair, 2012). 

The increased interest in this measure arises from studies showing its clinical 

significance in predicting the development of chronic pain (van Wijk & 

Veldhuijzen, 2010; Yarnitsky et al., 2008) and its potential prognostic value in 

predicting treatment response (Yarnitsky, 2010). As discussed earlier, Yarnitsky 

and colleagues have showed that baseline CPM in patients with diabetic 

neuropathy predicted duloxetine efficacy (Yarnitsky et al., 2012). A similar finding 

in patients with knee osteoarthritis was reported recently that baseline CPM 

predicted efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) (Edwards, 

Dolman, Martel et al., 2016). These predictions are not limited to 

pharmacological treatments. Recent studies have shown that CPM predicts 

responses to exercise in healthy adults and adolescents (Lemley, Hunter, & 

Bement, 2015; Stolzman & Bement, 2016) and patients with chronic pain 

(Vaegter, Handberg, & Graven-Nielsen, 2016). Specifically, individuals with 

greater CPM magnitude have greater hypoalgesic responses from exercise. 

Therefore, increasing the capacity of descending inhibition appears to be vital in 

the efficacy of chronic pain treatment.  
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Vibration perception testing 

Early QST research have used vibration testing to study mechanisms of 

touch (Lindblom & Verrillo, 1979), since cutaneous mechanoreceptors (e.g. 

Merkel cells, Meissner corpuscles, Ruffini endings, and Pacinian corpuscles) also 

respond to different vibratory frequencies (Gardner & Johnson, 2013b). For 

example, Merkel cells (innervated by type 1 slow adapting (SA1) axons) respond 

to vibration frequency between 0-100 Hz. Meissner corpuscles (innervated by 

type 1 rapid adapting (RA1) axons) respond to vibration frequency between 1-

300 Hz. Pacinian corpuscles (innervated by type 2 raped adapting (RA2) axons) 

respond to vibration frequency between 5-1000 Hz (Gardner & Johnson, 2013b). 

While these receptors respond to a wide range of vibratory frequencies, there is 

a certain frequency that they best respond to; it is likely that they overlap in their 

response to certain frequencies (Bolanowski, Gescheider, Verrillo, & Checkosky, 

1988). Vibratory perception testing, hence, examines the somatosensory 

pathways that are transmitted through large myelinated Aα and Aβ cutaneous 

sensory fibers (Siao & Cros, 2003). These pathways are mediated through the 

dorsal column medial lemniscal tract and the dorsal column nuclei in the 

brainstem. The Aβ fibers (or group II if arising from the muscle), in particular, 

upon entering the spinal cord divide with some branches ascending ipsilaterally 

to the medulla and others going into lamina V of the spinal cord. The fibers then 

cross to the contralateral side at the medulla and terminate in the thalamus then 

ascend to the primary sensory cortex (Gardner & Johnson, 2013a). Therefore, 
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the spinal cord, thalamus, and the primary sensory cortex are areas where both 

noxious and innocuous input are received.  

Vibratory perception testing is an integral component of QST, which is a 

static response using non-noxious stimuli (Lindblom & Verrillo, 1979; Zaslansky 

& Yarnitsky, 1998). Testing vibration sense is most commonly used in the early 

detection of neuropathy, specifically diabetic neuropathy (Garrow & Boulton, 

2006). As part of the QST battery, vibration testing is recommended in the clinical 

setting with a graded tuning fork (Rolke et al., 2006). In the research setting, 

vibration detection is generally measured through electronic instruments such as 

the biothesiometer (Courtney, Atre, Foucher, & Alsouhibani, 2019; Shakoor, 

Agrawal, & Block, 2008) or the vibrometer (Dellon, 1983). Despite these 

recommendations, vibration perception testing is rarely reported in pain research, 

with the exception of neuropathic pain (Yarnitsky & Granot, 2006).  

While centrally mediated changes in patients with chronic pain have been 

traditionally recognized through evidence of generalized hyperalgesia (Graven-

Nielsen & Arendt-Nielsen, 2002; Klede, Handwerker, & Schmelz, 2003), 

hypoesthesia (i.e. a reduction in sensitivity to sensory stimuli) to innocuous 

stimuli in this population is also present (da Silva et al., 2013; Leffler, Kosek, & 

Hansson, 2000; Leffler, Hansson, & Kosek, 2003; Shakoor et al., 2008). The co-

existence of systemic hyperalgesia and hypoesthesia may indicate that both of 

these phenomena are centrally mediated and could potentially be related to each 

other. Testing hypoesthesia can be done by applying various innocuous stimuli 

and increasing its intensity until the individual reports sensation (i.e. threshold). 
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Different sensory modalities have been used in testing hypoesthesia in patients 

with chronic pain including thermal (heat or cold), mechanical (pressure, 

vibration, or touch), and movement (propioception) which each provides different 

information about the somatosensory system.  

Clinical and experimental research has suggested that diminished sense 

of vibration may be due to altered central pain processing rather than peripheral 

nerve damage (Geber et al., 2008). Experimental induction of noxious heat at the 

hand has been shown to increase vibration perception threshold (VPT) (meaning 

it reduces vibration sense) (Apkarian, Stea, & Bolanowski, 1994), a phenomenon 

that was termed the “touch gate.” This interaction between noxious and 

innocuous stimuli is not specific to the skin as induction of muscle pain with 

hypertonic saline inhibits cutaneous touch (Stohler, Kowalski, & Lund, 2001). 

Also, Geber and colleagues have showed that tactile hypoesthesia caused by 

various types of experimental pain last longer than the pain itself (Geber et al., 

2008); this suggests that the pain-induced changes in vibrotactile sense are due 

to changes in the central nervous system rather than peripheral sensitivity.  

The mechanisms underlying pain-related hypoesthesia are not completely 

understood, however spinal, supraspinal and cortical mechanisms have been 

proposed. Apkarian et al. (1994) proposed that since vibrotactile information is 

mediated primarily through the dorsal column nuclei that receive input directly 

from dorsal column tracts which bypass spinal cord processing, a supraspinal 

mechanism is likely. They suggested the thalamus as a location considering that 

noxious and innocuous sensory information converge. Alternatively, a spinal 
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mechanism was suggested by Magerle and Treede (2004). They proposed a 

presynaptic inhibition of primary afferent Aβ-fibers caused by C-fiber input. 

Specifically, inhibition of sensory information transmitted via Aβ (Group II) fibers 

may be caused by noxious C (Group IV) fiber input from the periphery, through 

interneuronal connections, at the spinal level. Perhaps since spinal processing of 

both Aβ- and C-fibers occur through interneurons in laminas III to V that project 

to the brain, it is possible that modulation of innocuous stimuli happens there. 

Cortical mechanisms of pain-related hypoesthesia has also been proposed. 

Hollins et al. (1996) found that vibrotactile thresholds are elevated (i.e. worse) in 

individuals with temporomandibular disorder (TMD) compared to healthy control 

participants and suggested an interaction between clinical pain and innocuous 

stimuli in the primary somatosensory cortex. Specifically, it was suggested that 

Brodmann area 3a, which receives input from noxious stimuli, inhibits neurons in 

area 3b, which receives non-noxious inputs, in the primary somatosensory cortex 

(Hollins, Sigurdsson, & Morris, 2001). While it is still unclear where this 

interaction between noxious and non-noxious input is happening, this 

phenomenon suggests that if pain is reduced then vibration sense should 

improve.   

Finally, the importance of including VPT measurement stems from the fact 

that it could potentially be related to poor functional outcomes and performance. 

For example, deficits in vibration detection have been associated with altered 

joint loading (Shakoor et al., 2012) and perceived instability during functional 

tasks (Kavchak et al., 2012) in individuals with knee osteoarthritis. In addition, in 
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individuals with multiple sclerosis, worse vibration thresholds were associated 

with worse walking and balance outcomes as measured with functional tests 

such as the 6 minute-walk (6MW), timed up and go, and the berg balance tests 

(Uszynski, Purtill, & Coote, 2015). Previous research has shown that people with 

fibromyalgia have decreased vibratory sense (da Silva et al., 2013) in addition to 

poor walking and balance performance (Costa et al., 2017). It is not known 

whether exercise improves vibration sense and whether this change, if any, 

parallels CPM.  

Similarities Between EIH and CPM  

Although both EIH and CPM evoke pain inhibition, it is unclear if they 

engage in similar neurobiological mechanisms. Certainly, EIH and CPM have 

similar manifestations in humans including systemic hypoalgesia in healthy 

individuals (Lemley et al., 2015; Stolzman & Bement, 2016; Vaegter et al., 

2014b), interaction with the opioid systems (Janal et al., 1984; Le Bars et al., 

1981; Smith & Yancey, 2003; Willer et al., 1990), and impaired responses in 

patients with chronic pain (Fingleton, Smart, & Doody, 2016; Vaegter et al., 

2016). As discussed above, both CPM and EIH may activate the opioid system. 

Animal studies have demonstrated that injection of naloxone systemically 

partially prevents EIH and DNIC (Bement & Sluka, 2005; Le Bars et al., 1981; 

Mazzardo-Martins et al., 2010). The involvement of opioids in humans are less 

consistent for both CPM and EIH (Droste et al., 1991; Edwards et al., 2004; Haier 

et al., 1981; Janal et al., 1984; Koltyn et al., 2014; Peters et al., 1992; Willer et 
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al., 1990). In addition, serotonergic mechanisms have been implicated in both 

CPM and EIH. In animals, injecting PCPA, an inhibitor of serotonin synthesis, 

prevents EIH from muscle stimulation (Hoffmann et al., 1990) and high intensity 

swimming (Mazzardo-Martins et al., 2010). DNIC is restored in animals of 

neuropathic pain after application of SSRI (Bannister et al., 2017) and lower CPM 

is associated with having low serotonin transporter gene (Lindstedt et al., 2011). 

Thus, opioidergic and serotonergic mechanisms are involved in both CPM and 

EIH. 

Although opioids and serotonin are involved with both CPM and EIH, 

neither mechanism alone explains the inhibition, indicating an interaction with 

more than one mechanism. For example, interactions with the opioid system 

have been suggested with exercise and CPM. With exercise, serotonin and 

endocannabinoids interact with the opioid system to produce hypoalgesia 

(Crombie et al., 2018; Tour et al., 2017). With CPM, opioids and serotonin 

interact with norepinephrine to produce hypoalgesia (Niesters et al., 2014; 

Yarnitsky et al., 2012). Exercise may also increase levels of norepinephrine, 

contributing to mechanisms of CPM. It is not known whether these mechanisms 

are activated together or separately to produce hypoalgsia; nevertheless, some 

suggest that activation of the specific descending inhibitory mechanism may 

depend on parameters of CPM stimulation (Nahman-Averbuch et al., 2016) or 

exercise (Mogil & Belknap, 1997; Naugle et al., 2012). 

In addition, similar cardiovascular responses and stimulated cortical areas 

have been shown with exercise and CPM. The stress response system, including 
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the hypothalamus-pituitary-adrenal axis and the autonomic nervous system is 

activated during CPM and exercise (Chrousos & Gold, 1992). This activation 

results in the release of hormones such as norepinephrine which may, on the 

level of the spinal cord, result in hypoalgesia. In addition, vasoconstriction could 

be caused in the non-active muscle during exercise and during CPM (Seals, 

Taylor, Ng, & Esler, 1994). This, in turn, may increase blood pressure and 

stimulate baroreceptors that may activate similar brain regions that are involved 

in pain inhibition such as the ACC, PAG, RVM, and the locus coeruleus (Bruehl & 

Chung, 2004; Ghione, 1996). Therefore, the similar cardiovascular response of 

both CPM and EIH may act on the same brain regions and result in descending 

pain inhibition. 

Besides the potential for shared mechanisms (Figure I.1), CPM may 

contribute to EIH (Lemley et al., 2015; Weissman-Fogel, Sprecher, & Pud, 2008). 

Specifically, exercise may act as a painful conditioning stimulus, thereby, 

activating descending inhibitory pathways resulting in systemic hypoalgesia 

(Weissman-Fogel et al., 2008). This is supported in young healthy adults in which 

greater hypoalgesia was observed following painful aerobic or isometric exercise 

compared to non-painful exercise (Ellingson, Koltyn, Kim, & Cook, 2014; Hoeger 

Bement et al., 2008). Moreover, CPM has been shown to predict EIH in young 

and old healthy individuals (Lemley et al., 2015) as well as in patients with 

chronic musculoskeletal pain (Vaegter et al., 2016). In individuals with knee 

osteoarthritis (OA), those who had normal CPM response experienced EIH 
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similar to age-matched controls, whereas individuals with abnormal CPM did not 

experience EIH (Fingleton et al., 2016).  

 

Few studies have examined CPM following an intervention. Dailey et al. 

(2013) has demonstrated that impaired CPM in individuals with fibromyalgia is 

restored after the application of transcutaneous electrical nerve stimulation 

(TENS). Another study has shown enhanced CPM responses in individuals with 

knee OA after joint mobilization (Courtney, Steffen, Fernandez-de-Las-Penas, 

Kim, & Chmell, 2016). In addition, enhanced CPM responses were observed in 

healthy men after transcranial direct current stimulation (tDCS) to the motor 

cortex (Flood, Waddington, & Cathcart, 2016). Exercise is a modality that is 

known to activate the motor cortex and may potentially enhance the CPM 

response in healthy individuals.  

 

Figure I.1 Potential shared mechanisms between conditioned pain 
modulation (CPM) and exercise induced hypoalgesia (EIH) 
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Therefore, the main aim of this dissertation was to evaluate CPM following 

isometric exercise in healthy individuals and individuals with FMS. Given the 

similar mechanisms between CPM and EIH just discussed, we expect that 

exercise will contribute to CPM and further enhance its analgesic response 

immediately following acute isometric exercise. In addition, it is not known if the 

effects of EIH are specific to pain or extend to the somatosensory system (e.g. 

vibration sense). Cross-sectional studies have demonstrated better vibration 

perception acuity in athletes compared to normal healthy controls and vibration 

perception threshold was correlated with V̇O2max (Tesarz, Gerhardt, Schommer, 

Treede, & Eich, 2013). This may indicate that exercise may enhance the 

perception of vibration leading to better function. To our knowledge, no study has 

examined the acute effects of isometric exercise on vibration perception (Specific 

Aim #1).  

Factors Contributing to EIH and CPM 

Body composition 

Evidence on the role of body composition in CPM and/or EIH is scarce. 

However, recently Stolzman and Hoeger Bement found that CPM was related to 

lean mass in adolescents across weight status (Stolzman & Hoeger Bement, 

2016). In addition, adolescents with higher total body lean mass were found to 

have greater EIH (Stolzman et al., 2015). One other study has investigated the 

role of subcutaneous fat on pain sensitivity measures including thermal detection, 
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pain thresholds, and CPM (Price, Asenjo, Christou, Backman, & Schweinhardt, 

2013). When tested on the abdomen, an area with excess subcutaneous fat, the 

authors found that obese participants were less sensitive to noxious and 

innocuous stimuli compared to normal weight participants; this sensitivity was 

correlated to adiposity. However, CPM was not different between the groups in 

areas with little subcutaneous fat (the forehead). This suggests that body 

composition might play a role in CPM and EIH in individuals across weight 

status. The effect of body composition on CPM or EIH is not known in individuals 

with FMS. Part of this dissertation investigated the role of body composition in 

CPM and EIH (Specific Aim #2). 

Physical activity  

Physical activity is an important factor that impacts pain perceptions and 

overall health. Healthy individuals who self-report higher physical activity show a 

greater CPM response compared to their less active counterparts (Lemley et al., 

2015; Naugle & Riley, 2014; Stolzman & Bement, 2016). In addition, using 

accelerometery, vigorous intensity physical activity was shown to be related to 

the magnitude of CPM in healthy men and women (Umeda, Lee, Marino, & 

Hilliard, 2016). In regards to EIH, adolescents with greater sedentary bouts show 

less EIH (Stolzman et al., 2015). Besides its effect on CPM or EIH, physical 

activity was demonstrated to be inversely related to muscle pain during exercise 

in women with and without fibromyalgia (Umeda, Corbin, & Maluf, 2015). This 

may have a great impact on exercise adherence in people with chronic pain, as it 
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is thought that they are deconditioned and less physically active. Therefore, it is 

important to understand the role of physical activity in CPM and EIH to better 

translate this to rehabilitation settings. This dissertation measured self-reported 

and objective physical activity and investigated its role in EIH (Specific Aim #2).   

Pain catastrophizing 

In individuals with and without chronic pain, psychosocial factors are 

widely acknowledged to contribute to the experience of pain (Sluka, 2016). Pain 

catastrophizing is an exaggerated negative mental state during an actual or 

anticipated pain experience (Sullivan, Bishop, & Pivik, 1995). Pain 

catastrophizing has been shown to reduce CPM in healthy adults (Goodin et al., 

2009). In people with chronic pain, catastrophizing has been found to predict 

poor outcomes following an exercise-based rehabilitation program (Cecchi et al., 

2011) and were related to less favorable treatment effects (Edwards, Bingham, 

Bathon, & Haythornthwaite, 2006). Specific to EIH, pain catastrophizing has not 

been investigated in people with fibromyalgia. Unlike trait or dispositional pain 

catastrophizing, which characterizes catastrophizing in general, the situational or 

state-like catastrophizing is related to a specific pain experience and may 

contribute uniquely to pain in laboratory settings (Edwards et al., 2006). In 

healthy men and women, situational pain catastrophizing was shown to predict 

change in TS after exercise (Brellenthin, Crombie, Cook, Sehgal, & Koltyn, 

2017). In this dissertation we used both to identify the influence of dispositional 
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pain catastrophizing as well as situational that is specific to the pain experience 

before and after exercise. 

Fear of movement 

Fear of movement is frequently reported by individuals with fibromyalgia 

(Burwinkle, Robinson, & Turk, 2005) and fear avoidance behaviors are known to 

exist in patients with chronic pain such as low back pain. Fear avoidance 

behaviors result in increased disability and present an obstacle for recovery from 

acute and chronic low back pain (Rainville et al., 2011). Clinically, using a fear 

avoidance behavior-based intervention such as graded exposure to treat patients 

with chronic pain shows promise in pain management (George & Zeppieri, 2009). 

It has been shown also that fear avoidance behaviors are highly prevalent in 

patients with FMS and it is related to the severity of symptoms, self-reported 

quality of life and disability (Nijs et al., 2013). Moreover, in people with chronic 

musculoskeletal disorders, fear of movement was related to reports of pain 

during physical activity (Damsgard, Thrane, Anke, Fors, & Roe, 2010). 

Minimizing movement may decrease pain reported during exercise as well as 

following exercise. 

 Pain self-efficacy 

Pain self-efficacy refers to the ability of the individual to have coping 

mechanisms with regards to pain. This construct was first derived from the social 
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learning theory, where self-efficacy is described as the level of confidence an 

individual has in regards to achieve a specific outcome (Bandura, 1977). Self-

efficacy has been linked to pain as well as physical activity, and it has been 

shown that having higher self-efficacy predicts better functional outcomes. 

Bandura et al. showed that the perceived confidence in tolerating pain predicted 

actual tolerance of pain irrespective of controlling the pain pharmacologically or 

cognitively (Bandura, O'Leary, Taylor, Gauthier, & Gossard, 1987). In patients 

with chronic knee osteoarthritis who had higher self-efficacy in controlling their 

pain, had higher pain thresholds and tolerance compared to patients with lower 

self-efficacy (Keefe, Lefebvre, Maixner, Salley, & Caldwell, 1997). In addition, in 

patients with chronic low back pain, higher self-efficacy in carrying out a specific 

activity was correlated with their ability in the actual performance of that activity 

(Council, Ahern, Follick, & Kline, 1988). The influence of pain self-efficacy on EIH 

has not been investigated. Therefore, this dissertation examined the effects of 

pain self-efficacy on EIH in people with and without FMS (Specific Aim #2). The 

potential benefits of investigating these constructs and clinical implications would 

include the focus on strategies that promotes self-efficacy at the beginning of the 

intervention and potentially engagement of it throughout the treatment plan. 

Significance and Purpose 

Restoring CPM has been shown to be critical in the management of 

chronic pain (Dailey et al., 2013; Yarnitsky et al., 2012); therefore, understanding 

the effects of exercise on CPM allows for a more personalized use of exercise in 
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rehabilitation settings. Because the effects of isometric exercise on CPM in 

healthy individuals has not been previously investigated, this dissertation tested 

the effects first in young healthy individuals (study one) following a 30% MVC of 

the knee extensors sustained for 3 minutes. The second study in this dissertation 

(chapter 3) investigated the effects of isometric exercise on CPM in individuals 

with and without FMS. CPM was measured following 30% MVC of the knee 

extensors until task failure.  

Another part of this dissertation was to investigate the effects of isometric 

exercise on vibration sense. Reduced vibration sense in individuals with chronic 

pain (da Silva et al., 2013; Shakoor et al., 2008) has been associated with poor 

functional outcomes (Kavchak et al., 2012; Shakoor et al., 2012); and individuals 

with FMS have been shown reduced vibration sense (da Silva et al., 2013) in 

addition to reduced functional performance (Costa et al., 2017). It has been 

suggested that the changes in innocuous perception in individuals with chronic 

pain are centrally mediated (Geber et al., 2008), similar to the changes in pain 

processing. Considering that innocuous perception, such as vibration sense, are 

influenced by pain (i.e. existing pain reduces innocuous perception) (Apkarian et 

al., 1994) and exercise may reduce pain; we propose that following exercise, as 

hypoalgesia occurs (pain reduces), vibration sense will improve. The effects of 

isometric exercise on vibration sense was investigated in study two (chapter 3). 

Studying the effects of isometric exercise on vibration sense and the 

mechanisms underlying these effects has the potential to facilitate our 
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understanding in how rehabilitation may influence sensory perception and 

possibly function.  

Finally, numerous factors have been suggested to modulate or effect EIH 

in individuals with and without FMS. These factors include body composition, 

physical activity, and psychosocial factors. In the first study in this dissertation 

(chapter 2), the effects of body composition, self-reported physical activity, and 

pain catastrophizing on EIH in young healthy adults were studied. In study two 

(chapter 3), the effects of the aforementioned factors along with accelerometery 

measured physical activity, fear of movement, and pain self-efficacy on EIH in 

individuals with and without FMS were studied. Knowing what factors influence 

the pain relief following exercise has the potential to be used in clinical practice. 

This in turn help us understand whether incorporating strategies such as 

reducing pain catastrophizing and fear of movement and increasing pain self-

efficacy is of particular importance.  

Based on this past research and to fill the significant gaps in the 

nonpharmacological management of pain, the following aims are being 

proposed: 

Specific Aims and Hypotheses 

Aim 1: Examine the effect of isometric exercise on vibratory sense and 

CPM in healthy individuals and in patients with FMS.  

Hypothesis: Isometric exercise will enhance CPM and improve vibratory 

sense.  
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Sub aim 1: Examine the effect of a 30% MVC of the quadriceps muscle 

held for 3 minutes on CPM in young healthy individuals. 

Sub aim 2: Examine the effect of a 30% MVC of the quadriceps muscle 

held to exhaustion on CPM and vibratory sense in patients with FMS and age 

matched controls.  

 

Aim 2: Determine factors that impact the pain response following 

isometric exercise in healthy individuals and in patients with FMS.  

Hypothesis: Lower fat mass, greater lean mass, higher physical activity 

levels, higher pain self-efficacy, and lower pain catastrophizing and fear of 

movement will be related to greater EIH. 

Sub aim 1: Determine factors that impact the pain response following a 

30% MVC of the quadriceps muscle held for 3 minutes in young healthy 

individuals. 

Sub aim 2: Determine factors that impact the pain response following a 

30% MVC of the quadriceps muscle held to exhaustion in patients with FMS and 

age matched controls. 
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II. SYSTEMIC EXERCISE-INDUCED HYPOALGESIA FOLLOWING 
ISOMETRIC EXERCISE REDUCES CONDITIONED PAIN 

MODULATION 

This is a pre-copyedited, author-produced version of an article accepted 

for publication in Pain Medicine following peer review. The version of record [Ali 

Alsouhibani, Henrik Bjarke Vaegter, Marie Hoeger Bement, Systemic Exercise-

Induced Hypoalgesia Following Isometric Exercise Reduces Conditioned Pain 

Modulation, Pain Medicine, Volume 20, Issue 1, January 2019, Pages 180–190] 

is available online at: https://doi.org/10.1093/pm/pny057. 

Introduction 

Conditioned pain modulation (CPM) and exercise-induced hypoalgesia 

(EIH) have similar manifestations in humans including systemic hypoalgesia in 

pain-free individuals (Lemley et al., 2015; Stolzman & Bement, 2016; Vaegter et 

al., 2014b), interaction with the opioid systems (Janal et al., 1984; Le Bars et al., 

1981; Smith & Yancey, 2003; Willer et al., 1990), and impaired responses in 

patients with chronic pain (Fingleton et al., 2016; Vaegter et al., 2016).  

Furthermore, CPM, which is often described as ‘pain inhibits pain,’ may 

contribute to EIH (Lemley et al., 2015). Specifically, exercise may act as a painful 

conditioning stimulus, thereby, activating descending inhibitory pathways 

resulting in systemic hypoalgesia (Kosek & Lundberg, 2003; Lemley et al., 2014). 

This is supported in young healthy adults in whom greater hypoalgesia was 

observed following painful aerobic or isometric exercise compared with non-
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painful exercise (Ellingson et al., 2014; Hoeger Bement et al., 2008). Moreover, 

CPM has been shown to predict EIH in young and old healthy individuals 

(Lemley et al., 2015) and in patients with chronic musculoskeletal pain (Vaegter 

et al., 2016). In individuals with knee osteoarthritis (OA), those with normal CPM 

responses experienced EIH, whereas individuals with abnormal CPM did not 

experience EIH (Fingleton et al., 2016).  

Physical activity level and body composition may contribute to both EIH 

and CPM. For instance, physically active individuals show a greater CPM 

response compared with their less active counterparts (Lemley et al., 2015; 

Naugle & Riley, 2014; Stolzman & Hoeger Bement, 2016), and EIH is less in 

adolescents with greater sedentary bouts (Stolzman et al., 2015). In relation to 

body composition, CPM efficiency was related to lean mass in adolescents 

(Stolzman & Hoeger Bement, 2016), and adolescents with higher total body lean 

mass experience greater EIH (Stolzman et al., 2015). Thus, similar contributing 

factors, such as physical activity and body composition, influence how people 

respond to a potentially noxious stimulus (i.e., exercise or a conditioning 

stimulus). 

Acute isometric exercise has been shown to reduce central pain 

facilitatory mechanisms (i.e. temporal summation of pain) (Vaegter et al., 2014a); 

however to our knowledge, no study has investigated the effect of acute 

isometric exercise on central pain inhibitory mechanisms (i.e. CPM). Previous 

research has shown that stimulation of the motor cortex, via transcranial direct 

current stimulation, enhances CPM in healthy men (Flood et al., 2016). 
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Accordingly, activation of the motor cortex occurs with exercise and may 

enhance the CPM response.  

Initially, CPM was used to quantify efficiency of descending pain inhibition 

in healthy and clinical populations (Lewis et al., 2012). This technique has 

progressed to predict non-pharmacological treatment responses (Lemley et al., 

2015; Stolzman & Bement, 2016; Vaegter et al., 2016) and identify how 

treatments impact endogenous pain modulation. Therefore, repetitive CPM 

testing is frequently done within and between sessions. The reliability of CPM 

depends on the parameters of stimulation, study methodology, and study 

population (Kennedy, Kemp, Ridout, Yarnitsky, & Rice, 2016). Research is 

ongoing to identify if CPM reliability is consistent across these parameters.  

The primary aim of this study was to investigate both the local 

(quadriceps) and systemic (upper trapezius) effects of lower extremity isometric 

exercise on the CPM response in young healthy individuals. Moreover, the 

experimental design allowed for investigation of the between- and within-session 

reliability of CPM. Because physical activity and anthropometrics may influence 

CPM and EIH, these measures were also included. It was hypothesized that 1) 

isometric exercise would enhance the CPM response in young healthy 

individuals and 2) CPM would have fair to good between- and within-session 

reliability.  
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Methods 

Subjects 

Thirty young healthy and pain-free men and women (mean age, 19.3 ±1.5 

years; 15 females) completed the study. Individuals were excluded from the 

study if they presented with the following: 1) acute or chronic pain, 2) mental 

health disorder, 3) history of traumatic injury or neurological disorder, 4) inability 

to tolerate ice water (e.g. Reynaud’s disease or cold urticaria), 5) or 

contraindication to exercise. Screening done via the phone eliminated two 

potential participants. On the days of testing, participants were asked to refrain 

from exercise. The protocol was approved by the Institutional Review Board at 

Marquette University.  

Experimental design 

Participants completed one familiarization session and two randomized 

and counterbalanced experimental sessions (isometric exercise or quiet rest) that 

were separated by one week. During the familiarization session, subjects signed 

a written informed consent, completed body composition testing (dual-energy X-

ray absorptiometry [DXA] scan), and were familiarized to the experimental 

procedures and the pressure pain device. Because the performance of maximal 

voluntary isometric contractions (MVIC) may influence pain perception in young 

adults (Hoeger Bement et al., 2008; Koltyn et al., 2001), MVIC force was 
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determined at the end of the familiarization session. Specifically, three MVICs 

were performed with the right knee extensor muscles with 1 minute rest between 

contractions. Participants were given verbal encouragement to achieve maximal 

force. The highest value was used to calculate the submaximal (30% MVIC) 

target force in the exercise session.  

During the experimental sessions (Figure II.1), CPM was assessed before 

and after isometric exercise or quiet rest. In both sessions, 20 minutes of quiet 

rest separated the first CPM assessment and initiation of exercise or quiet rest as 

previous studies have shown that the conditioning effects of pain return to 

baseline within 15 minutes (Lewis et al., 2012). Participants also completed the 

pain catastrophizing scale (PCS) (Sullivan et al., 1995) and international physical 

activity questionnaire (IPAQ) (Craig et al., 2003), during the quiet rest in the first 

and second experimental sessions, respectively. These measures were collected 

to assess their potential influence on CPM and EIH. 
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Conditioned pain modulation 

Pressure pain thresholds (PPTs) were measured at the right upper 

trapezius and right quadriceps muscles (test stimuli) before, during (after 20 

seconds), and after submersion of the left foot in a noxious ice water (0°C ± 1°C) 

bath (conditioning stimulus). Participants were instructed to keep their foot in the 

ice water bath until the PPTs were completed at which point they removed their 

foot from the ice water bath. During foot submersion, foot pain intensity was 

measured at 20 seconds using a 0-10 numerical rating scale (NRS) with the 

following anchors: 0= “no pain” and 10= “worst pain” (McCaffery & Pasero, 1999) 

followed by PPT measurements. Immediately after foot removal from the ice 

water bath, peak pain intensity was measured.  

Figure II.1 Study design of the experimental sessions. 
 “↑”= PPTs at the quadriceps and upper trapezius muscle. Abbreviations: 

PPT, pressure pain threshold; CPM, conditioned pain modulation; EX, exercise; 
QR, quiet rest. 
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Exercise 

Participants performed a submaximal (30% MVIC) isometric contraction of 

the right knee extensor muscles that was held for three minutes while seated 

upright on the edge of a plinth table. The hips and knees were positioned at 90° 

while the right foot was unsupported and aligned with the plinth table’s metal leg. 

A hand held dynamometer (Commander Echo Muscle Testing Dynamometer, 

JTech Medical, USA) was stabilized using Velcro® straps to the leg of the plinth 

and around the participant’s leg (above the malleolus). Two stabilizing straps 

were placed over the thighs, one distal to the hip joint and the other proximal to 

the knee joint. Subjects were instructed to fold their arms across their chest and 

to extend their knee while pushing against the Velcro® strap attached to the 

dynamometer. During the performance of the submaximal isometric contraction, 

participants were instructed to match the target force as displayed on the 

wireless portable monitor (Commander Echo Console, JTech Medical, USA) 

while receiving verbal encouragement to maintain the force. All participants 

maintained the force for the entire three minutes. Participants were asked to rate 

their perceived exertion using a 0-10 scale with the following anchors: 0= 

“nothing at all” and 10= “very very strong” and pain intensity in the leg in relation 

to the muscle contraction using the NRS at the beginning of the contraction, 

midway (1.5 minutes), and at the end of the contraction (3 minutes).  
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Pressure pain thresholds  

During each experimental session, PPTs were measured a total of seven 

times at the quadriceps and upper trapezius muscles with a handheld algometer 

(Algomed, Medoc Ltd); three times with each of the two CPM protocols (before, 

during, and after ice), and one immediately before quiet rest or exercise (20 

minutes after the first CPM protocol) (Figure 1). For the PPTs, a 1-cm2 rubber tip 

was used with a ramp protocol at a rate of 50 kPa/sec. Subjects were instructed 

to press a timing device when the pressure first changed to pain, which was 

electronically recorded in kilopascals. To minimize exposure time to ice water, 

two PPT trials were recorded at each site with a 10-second interstimulus interval 

and the two trials were averaged at each measurement site for further analysis. 

At the beginning of each experimental session, the order for the sites (upper 

trapezius and quadriceps) was randomized and counterbalanced and kept 

consistent throughout the session. PPTs were recorded with the participant 

seated upright in a chair with their knees and hips at 90°. The sites were located 

and marked as follows: the quadriceps muscle site was located midway between 

the anterior superior iliac spine and the patella, while the upper trapezius muscle 

site was located midway between the C7 spinous process and the lateral tip of 

the acromion (Ekstrom, Donatelli, & Soderberg, 2003). 
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Body composition  

Body composition was measured using a total body scanner (Lunar iDXA, 

GE Healthcare, Madison, WI). Scan analyses were performed using enCore™ 

software (version 14.10, GE Healthcare) to obtain the following outcome 

measures: body mass index (BMI), total body fat (%), android fat (%), gynoid fat 

(%), android/gynoid (A/G) ratio, leg fat (%), leg lean (lbs), and visceral fat mass 

(lbs).  

Statistical analysis 

Data were analyzed using the IBM Statistical Package for Social Sciences 

(SPSS version 23, Armonk, NY, USA) and reported as mean ± SD in the text and 

tables and mean ± SEM in the figures. Normality was checked using the 

Kolmogorov-Smirnov test. Outliers were tested with the Grubbs test and removed 

when significant.  

Conditioned Pain Modulation at Baseline 

A repeated-measures analysis of variance (ANOVA; session [exercise and 

quiet rest] x site [quadriceps and upper trapezius] x time [before, during and after 

ice]) was performed to determine if PPTs increased at the upper trapezius and 

quadriceps muscle during and/or after the baseline ice water bath performed in 

the two experimental sessions. In addition, a repeated measures ANOVA was 

done comparing the relative change in CPM at baseline between sessions (quiet 
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rest and exercise) at each site (upper trapezius and quadriceps). Relative 

change was calculated while the foot was submerged in ice water: CPMduring ice= 

([PPT during ice – PPT pre ice]/ PPT pre ice) and immediately following removal 

of the foot from ice water: CPMafter ice= ([PPT after ice – PPT pre ice]/ PPT pre 

ice). This analysis was repeated with sex as a between-subject factor to examine 

sex differences in CPM at baseline. To identify potential differences in peak pain 

intensity of the ice water bath and the total time of foot submersion in the ice 

during CPM protocols, paired t-tests or the Wilcoxon signed rank test for non-

normally distributed data were done as appropriate. 

Exercise-Induced Hypoalgesia  

To identify potential changes in PPT following quiet rest and exercise (i.e., 

EIH), a repeated-measures ANOVA was performed (session [exercise and quiet 

rest] x site [quadriceps and upper trapezius] x time [PPTs pre- and immediately 

post-rest and exercise]). This analysis was repeated with sex as a between-

subject factor to identify potential sex differences. 

Conditioned Pain Modulation after exercise and quiet rest 

To investigate the effect of exercise on the CPM response, relative 

change in CPM following quiet rest and exercise was analyzed using a repeated-

measures ANOVA (session [exercise and quiet rest] x site [quadriceps and upper 

trapezius] x time [CPM performed pre- and post-exercise or quiet rest]). Because 

there was considerable variability in systemic but not local EIH, EIH responders 

and non-responders at the upper trapezius muscle were categorized based on 

the PPT minimum detectable change (42.7 kPa) in a healthy pain-free population 



47 
 

 

with a non-pharmacological intervention (Walton et al., 2011). Subjects who had 

an increase in PPT greater than 42.7 kPa at the upper trapezius muscle after 

exercise compared with pre-exercise were placed in the EIH responders group 

(n= 9). Changes in CPM at the upper trapezius following quiet rest and exercise 

were analyzed using repeated measures ANOVA with EIH response (responders 

and non-responders) as a between-subject factor (time x session x EIH 

response). When a significant effect was found, post hoc analyses were done 

using paired t tests. Independent t tests or the Mann-Whitney U tests for non-

normally distributed data were performed between the groups (EIH responders or 

non-responders) to identify potential differences in characteristics.  

Within and between session reliability of CPM 

To examine the reliability of CPM between sessions, repeated-measures 

ANOVA were done comparing the relative change in CPM at baseline at each 

site. Within the quiet rest session, relative change in CPM was compared using a 

repeated measures ANOVA (time [pre- and post-rest] x site [quadriceps and 

upper trapezius]). Intraclass correlations (ICCs) on the bases of absolute 

agreement were computed for relative change in CPMduring ice between sessions 

(pre- session 1 and session 2) and within the quiet rest session for each site with 

95% confidence interval (CI).   

Correlations 

To determine potential factors that influenced CPM and or EIH, Pearson 

correlations or Spearman correlations for non-normally distributed data were 

calculated to determine associations between the relative changes in CPM and 
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EIH, body composition measures, pain catastrophizing (PCS), and self-reported 

physical activity (IPAQ). In addition, Spearman correlations were performed 

between the relative changes in CPM or EIH and the pain intensity induced by 

the ice or exercise, respectively. Because the absolute change in CPM was not 

normally distributed, all the analyses were performed using the relative change in 

CPM. For statistical significance, a P value ≤ 0.05 was used initially (i.e. for RM 

ANOVA); however a more rigorous alpha level was selected (p ≤ 0.01) to 

minimize type I and II errors with multiple group comparisons (i.e. post hoc 

analyses) and multiple correlations (Avin & Law, 2011; Garamszegi, 2006).  

Results 

Participant characteristics 

A summary of the subject characteristics is found in Table II.1. According 

to body mass index (BMI) classification, 8 participants (26%) were overweight 

and 22 participants (73%) were normal weight. The individuals’ self-reported 

physical activity levels were categorized as either moderate or vigorous; no 

participants reported low physical activity level. The majority of pain 

catastrophizing scores were considered normal as well; four participants had a 

score greater than 30. The following variables were non-normally distributed and 

therefore nonparametric tests were used: PCS scores, physical activity scores, 

pain intensity scores during ice water submersion, duration of ice water bath 
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submersion, A/G ratio, and visceral fat mass (lbs). One outlier was identified and 

removed from the variable CPMafter ice at the quadriceps muscle.  

Table II.1 Participant characteristics  

 All Participants 

n= 30 

Systemic EIH 

Responders 

n= 9 (30%) 

Systemic 

EIH 

non-

responders 

n= 21 (70%) 

P-value 

Age (yr) 19.3 ± 1.5 19.7 ± 1.3 19.8 ± 1.6 0.803 

Females (%) n= 15 (50%) n= 4 (44%) n= 11 

(52%) 

0.695 

Exercise     

MVC 368.5 ± 107.9 399.2 ± 

143.1 

355.4 ± 90 0.414 

Peak pain 3.8 ± 2.5 3.4 ± 2.1 4.0 ± 2.6 0.571 

Peak RPE 5.5 ± 2.1 4.7 ± 2.3 5.8 ± 1.9 0.242 

Weight status and 

body composition  

    

BMI 23.0 ± 3.1 22.2 ± 3.2 23.3 ± 3.0 0.230 

Total body fat (%)  24.3 ± 6.8 23.1 ± 7.2 24.8 ± 6.8 0.554 

Android fat (%) 22.8 ± 8.4 22.0 ± 7.9 23.2 ± 8.7 0.733 

Gynoid fat (%) 26.5 ± 8.6 25.0 ± 9.6 27.2 ± 8.4 0.533 

Android/gynoid 

(A/G) ratio 

0.86 ± 0.2 0.89 ± 0.13 0.85 ± 0.22 0.213 



50 
 

 

Leg fat (%) 25.6 ± 8.2 24.2 ± 8.7 26.1 ± 8.1 0.573 

Leg lean (Ibs) 19.2 ± 4.5 19.3 ± 4.8 19.1 ± 4.5 0.906 

Visceral fat mass 

(Ibs) 

0.35 ± 0.38 0.30 ± 0.25 0.37 ± 0.42 0.982 

Physical Activity     

IPAQ total walking 

MET-

(minutes/week) 

1495.1 ± 

1011.0 

1827.8 ± 

853.9 

1352.5 ± 

1057.9 

0.245 

IPAQ total 

moderate MET-

(minutes/week) 

674.6 ± 

1506.7 

550.0 ± 

867.5 

728.0 ± 

1726.5 

0.772 

IPAQ total vigorous 

MET-

(minutes/week) 

1900.0 ± 

1665.0 

1680.0 ± 

1570.3 

1994.2 ±  

1732.7 

0.617 

IPAQ MET-

(minutes/week) 

4069.7 ± 

2963.8 

4057.8 ± 

3033.4 

4074.9 ± 

3009.4 

0.989 

IPAQ total sitting 2991.0 ± 

1124.1 

2503.3 ± 

959.8 

3200.0 ± 

1144.9 

0.122 

Pain 

catastrophizing  

    

PCS-Total 18.1 ± 10.1 21.0 ± 12.8 16.8 ± 8.8 0.699 

PCS-Helplessness 6.6 ± 5.0 6.2 ± 2.8 6.7 ± 5.7 0.792 

PCS-Magnification 4.1 ± 2.7 3.4 ± 2.1 4.4 ± 2.9 0.345 
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PCS-Rumination 7.3 ± 4.1 6.4 ± 2.9 7.7 ± 4.5 0.554 

BMI, body mass index; IPAQ, International Physical Activity 
Questionnaire; PCS, Pain Catastrophizing Scale; yr, year; RPE, rate 
of perceived exertion. There were no significant differences between 
systemic EIH responders and non-responders.  

 

Conditioned pain modulation at baseline 

Subjects completed all the CPM protocols except two subjects who 

removed their foot from ice water before completing the test. These subjects, 

however, kept their foot in the ice water for at least 20 seconds and completed all 

PPT assessments. The analyses of CPM were done with and without these 

subjects, which did not affect the results. Subjects reported moderate to severe 

peak pain intensity (NRS= 6.6 ± 1.8) during submersion of foot in the ice water 

bath. Peak pain intensity during foot submersion in ice decreased significantly 

between sessions (session 1: 7.0 ± 1.0; session 2: 6.4 ± 1.7; p = 0.01) but was 

similar within sessions (p > 0.05). The average duration for submersion of the 

foot in ice water was 99.7 ± 24.5 seconds. This was dependent on PPT duration 

for each subject and was similar across all CPM protocols (p > 0.05).  

Results of the analysis for baseline CPM demonstrated a site x time 

interaction (F(2,28) = 3.526, p < 0.05, ηp
2= 0.201).  Post hoc analysis showed 

that while the foot was submerged in the ice water bath (CPMduring ice), there was 

an increase in PPTs at the quadriceps muscle and upper trapezius (p < 0.001), 

which signifies CPM (Figure II.2). The majority of subjects reported CPMduring ice 

(28/30). Immediately following removal of the foot from the ice water bath 
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(CPMafter ice), PPTs were not significantly different from baseline at the quadriceps 

and upper trapezius muscles (p > 0.05). In addition, PPTs were higher at the 

quadriceps muscle compared with the upper trapezius muscle (p < 0.001) 

(Figure II.2); however, CPMduring ice had similar relative change between the two 

sites (p > 0.05) (Figure II.3). No other interactions were found (p > 0.05). When 

analyses were repeated with sex as a between-subject factor, no main effects of 

sex or interactions were found (p > 0.05). Pain intensity at 20 seconds, peak pain 

intensity during ice water bath, and duration of ice water bath submersion were 

not related to the relative change in CPM in all protocols at both sites (p > 0.05). 
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Figure II.2 Pressure pain thresholds (kPa) at the quadriceps muscle 
and the upper trapezius muscle during the exercise session and 
the quiet rest session. 

Significantly different compared to pre ice (*) and significantly different 
compared to pre exercise (#). Data are presented as mean ± SEM. 
Abbreviations: EX, exercise; QR, quiet rest. 
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Figure II.3 Relative change in CPM at the quadriceps muscle and 
the upper trapezius muscle before and after exercise or quiet rest. 

Significantly different compared to pre exercise or quiet rest (*). Data 
are presented as mean ± SEM. Abbreviations: CPM, conditioned pain 
modulation. 

 

Exercise-induced hypoalgesia  

During exercise, subjects reported no pain (NRS= 0.0 ± 0.3) at the 

beginning of the isometric contraction, minimal pain (NRS= 2.2 ± 1.9) at the 

midpoint, and moderate pain (NRS= 3.8 ± 2.5) at the end. Likewise, subjects 
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reported ‘very weak’ exertion (RPE= 1.6 ± 1.5) at the beginning of the isometric 

contraction, ‘somewhat strong’ exertion (RPE= 4.1 ± 1.5) at the midpoint, and 

‘strong’ exertion (RPE= 5.5 ± 2.1) at the end.  

For PPTs, there was a session x site x time interaction (F(1,29) = 13.203, 

p = 0.001, ηp
2= 0.313). Post hoc analyses showed PPTs increased following 

exercise at the quadriceps muscle (mean = 15 ± 19% change; p < 0.001) and 

were unchanged following quiet rest (p > 0.05) (Figure II.2). At the upper 

trapezius muscle, no significant differences in PPTs were found (mean = 2 ± 14 

% change; p > 0.05) following exercise or quiet rest. Due to differences in the 

EIH response at the upper trapezius muscle, participants were divided into 

systemic EIH responders (n=9) and non-responders (n=21). The average change 

in PPTs at the upper trapezius muscle following exercise for EIH responders was 

20 ± 9 % compared with -5 ± 8 % in the non-responders. When analyses were 

repeated with sex as a between-subject factor, no main effects of sex or 

interactions were found (p > 0.05). Neither RPE nor pain intensity at all time 

points during the exercise were related to EIH at either site (p > 0.05). 

Conditioned pain modulation after exercise and quiet rest 

Following quiet rest and exercise, CPMduring ice decreased at the 

quadriceps and upper trapezius muscles (F(1,29) = 13.069, p= 0.001, ηp
2= 

0.311); this decrease was similar for the quiet rest and exercise sessions (time x 

session: p > 0.05, ηp
2 = 0.052) and between sites (session x site x time: p > 0.05, 

ηp
2 = 0.037) (Figure II.3). At the quadriceps muscle, CPMduring ice decreased 
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following exercise (32% to 19%) and quiet rest (35% to 26%). Similarly, CPMduring 

ice decreased at the upper trapezius following exercise (40% to 23%) and quiet 

rest (37% to 32%). 

The CPM response was different following exercise compared with quiet 

rest in systemic EIH responders and non-responders (time x session x EIH 

response; p = 0.03, ηp
2 = 0.154). Post hoc analyses showed that the EIH 

responders had a significant decrease in the CPM response following exercise 

(52% to 8%; p = 0.01) without any change following quiet rest (27% to 22%; p > 

0.05) (Figure II.4). The EIH non-responders did not have a significant change in 

their CPM response following exercise (34% to 29%) or quiet rest (40% to 36%; 

p > 0.05). 
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Figure II.4 Relative change in CPM at the upper trapezius muscle 
before and after exercise or quiet rest for EIH systemic responders 
and non-responders. 

Significantly different compared to pre exercise (*). Data are presented 
as mean ± SEM. Abbreviations: CPM, conditioned pain modulation. 

 

Within- and between-session reliability of CPM 

Results from the ANOVA showed no significant main effects or 

interactions within or between sessions; the relative change in baseline CPM was 

similar between the first and second sessions, and the CPM responses were 
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similar within the quiet rest session (p > 0.05). ICC results are shown in 

Table II.2. There was a fair to good within-session reliability for CPM during the 

quiet rest and poor reliability when comparing relative change in CPM at baseline 

between the two sessions.  

Table II.2 Reliability values (ICCs) and percent change for CPM within 
and between sessions 

  Percent 

change  

ICCs (95% CI) 

Within quiet 

rest session 

CPM Quad trial 1 35.4% 
0.707 (0.395 to 0.859) 

CPM Quad trial 2 26.5% 

    

 CPM Upper trap trial 1 36.7% 
0.433 (-0.190 to 0.730) 

 CPM upper trap trial 2 31.9% 

    

Between 

sessions 

CPM Quad session 1  33.4% 
0.208 (-0.715 to 0.628) 

CPM Quad session 2  34.2% 

    

 CPM Upper trap session 1  38.6% 
0.350 (-0.401 to 0.694) 

 CPM upper trap session 2 38.1% 

ICC, intraclass correlation coefficient; CPM, conditioned pain 
modulation; CI, confidence interval 
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Correlations 

Self-reported physical activity (IPAQ MET-min/week and IPAQ total 

walking MET-min/week) was moderately correlated with EIH at the quadriceps 

muscle; however, this relationship did not reach statistical significance when 

correcting for multiple correlations (r = 0.43, p = 0.02 and r = 0.38, p = 0.04, 

respectively). Similarly, CPMduring ice at the quadriceps after exercise was 

moderately related to A/G ratio (r = 0.432, p = 0.02) but failed to reach statistical 

significance after adjusting for multiple correlations. No other relations were 

found for pain catastrophizing, physical activity, or body composition with CPM or 

EIH (p > 0.05). 

Discussion 

The novel finding of the study was that individuals who reported systemic 

EIH had a significant decrease in CPM following exercise only, whereas those 

individuals that had no systemic EIH had no change in CPM following exercise or 

quiet rest. Thus, activation of descending inhibitory pathways was less following 

sustained isometric contractions for those individuals with systemic EIH 

indicating the possibility of shared mechanisms with CPM. Moreover, this study 

demonstrated that the decrease in CPM response after exercise and quiet rest 

was comparable and the within-session reliability of the CPM protocol used was 

fair to good. The reliability of CPM between sessions was poor. 
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Conditioned pain modulation 

In the current study CPM occurred only when the testing and conditioning 

stimuli were performed at the same time, which is in agreement with previous 

studies (Kosek & Ordeberg, 2000; Leffler, Hansson, & Kosek, 2002; Oono, 

Wang, Svensson, & Arendt-Nielsen, 2011; Vaegter et al., 2014b; Vaegter et al., 

2016), but not in line with other studies (Lewis et al., 2012; Pud, Sprecher, & 

Yarnitsky, 2005) or recent recommendations for CPM testing that favor 

measuring the test stimulus sequential to the conditioning stimulus (Yarnitsky et 

al., 2015). The discrepancy in these results could possibly be explained by the 

location of the conditioning stimulus, as the location in the previous studies 

(Lewis, Heales, Rice, Rome, & McNair, 2012; Pud et al., 2005) was the hand 

while the present study used the foot. The representation of the hand in the brain 

is larger than the foot, which may have yielded more central activation and a 

longer-lasting effect compared with the current study (Le Bars et al., 1979a). The 

results of Vaegter et al. (2014b) support this hypothesis where a higher CPM 

magnitude was observed during cold pressor test on the hand compared with the 

foot.  

To our knowledge, this is the first study to report reliability of CPM with 

foot submersion in a conditioning ice water bath. Despite acceptable within-

session reliability (fair to good), CPM decreased following quiet rest. This 

decrease reflects the mean change in CPM magnitude as a group, whereas ICCs 

represent the differentiability of the measure between subjects. Thus following 
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quiet rest, CPM decreased but the rank of subjects between others was relatively 

the same yielding an acceptable ICC value.  

One approach to attenuate potential changes in CPM magnitude following 

quiet rest is to increase the duration of the washout period. Valencia et al. 

(Valencia et al., 2014) found that a repeated assessment of CPM with a washout 

period of two minutes was not adequate, as CPM magnitude decreased 

significantly in the second CPM trial even with good to excellent reliability. 

Previous studies have been equivocal in relation to the washout period with 

ranges from two to 60 minutes (Kennedy et al., 2016). The reliability in these 

studies was between fair and excellent (Cathcart, Winefield, Rolan, & 

Lushington, 2009; Lewis et al., 2012; Valencia et al., 2014) but not all studies 

examined the difference in CPM magnitude following the washout period. 

Therefore, future studies with repeated CPM assessments should consider a 

longer washout period.  

In the current study the between-session reliability was poor despite 

similar magnitude between the two sessions. A recent study by Imai et al. (Imai, 

Petersen, Morch, & Arendt Nielsen, 2016) tested the reliability of CPM using 

different test and conditioning stimuli and concluded that the best between-

session reliability was achieved measuring PPTs during hand submersion in ice 

water (0-4°C) (ICC = 0.49). One potential reason for the poor between-session 

reliability in the current study could be the low temperature (i.e. high intensity) of 

the conditioning stimulus. Olesen et al. (Olesen, van Goor, Bouwense, Wilder-

Smith, & Drewes, 2012) observed poor reliability (ICC = 0.10) when using a 
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conditioning cold water immersion of the hand at 2°C for 3 minutes in patients 

with chronic pain. The authors reported that not all patients tolerated the 

conditioning stimulus, which may have impacted the reliability and was similar to 

our study, in which two people did not tolerate the ice water bath. Furthermore, a 

systematic review of the CPM reliability suggested temperatures between 8°C 

and 12°C of the cold conditioning water for improving repeatability (Kennedy et 

al., 2016). Thus, these results demonstrate that reliability may be lower when 

applying a stronger conditioning stimulus (ice water) to a larger surface area (foot 

vs. hand). 

The comparable decrease in CPM following exercise and quiet rest 

suggests that the modulatory effects of pain are not restored following the first 

CPM exposure, despite PPTs returning to baseline following the washout period. 

Thus, using a static pain assessment (PPTs) as a restorative marker for a 

dynamic process (CPM) may not be appropriate. Alternatively, the influence of 

expectations of a painful response has been shown to affect the CPM magnitude 

(Lariviere, Goffaux, Marchand, & Julien, 2007) where a higher expectation of the 

noxious conditioning stimulus results in a lower CPM magnitude. While not 

measured in this study, it is possible that participants in the current study had a 

higher expectation for the conditioning stimulus in the second CPM testing that 

resulted in a lower CPM magnitude. 
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Exercise-induced hypoalgesia  

In the current study, EIH occurred locally at the exercising muscle 

(quadriceps muscle) and not systemically (upper trapezius muscle). The local 

effects are in line with previous research showing greater EIH effects at the 

exercising muscle compared with contralateral or distal sites (Kosek & Lundberg, 

2003; Vaegter et al., 2014b). However, several studies have demonstrated 

systemic hypoalgesia after isometric exercise (Vaegter et al., 2014a; Vaegter et 

al., 2014b). One explanation for the lack of systemic hypoalgesia is that baseline 

CPM testing negatively impacted systemic EIH, potentially due to their shared 

manifestations. It is possible that CPM is a contributing mechanism to systemic 

EIH. As CPM was initiated earlier in the session and not enough washout period 

was provided to restore CPM, systemic EIH was not observed. Not all our data 

support this explanation as there were no correlations observed between CPM 

and EIH. Previous research has demonstrated an association between CPM and 

EIH across the lifespan (Lemley et al., 2015; Stolzman & Bement, 2016; Vaegter, 

Handberg, Jorgensen, Kinly, & Graven-Nielsen, 2015). This relation is more 

consistent when EIH is measured systemically and following exhaustive exercise. 

However, similar to the current study, Vaegter et al. (Vaegter et al., 2014b) 

showed no correlation between CPM and EIH after low-intensity isometric 

exercise held for three minutes. The relation between CPM and EIH is likely 

dependent on both the exercise dose and testing site for EIH. 
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To our knowledge, this is the first study to investigate the effect of 

isometric exercise on CPM. Because stimulation to the motor cortex enhances 

CPM, we expected that CPM would be enhanced following exercise. Contrary to 

our hypothesis, CPM decreased following exercise only in those individuals who 

had systemic EIH. This is potentially related to 1) a ceiling effect for PPTs and 

the exercise-induced increase in PPT attenuated the subsequent testing stimulus 

(Granot et al., 2008) or 2) systemic hypoalgesia that occurs following exercise is 

due to CPM. Arendt-Nielsen et al. (Arendt-Nielsen, Sluka, & Nie, 2008) found 

that two concurrent painful conditioning stimuli (muscle pain and cold presser 

pain) had a decreased effect than either stimulus alone. Because the exercise 

protocol in this study was painful, the increase in PPTs at the upper trapezius 

muscle following exercise may actually be a CPM protocol, with exercise acting 

as the conditioning stimulus and PPT the testing stimulus. EIH responders 

experienced a 20% increase in PPTs following exercise and an additional 8% 

increase following the ice conditioning stimulus, which is comparable to what 

they have experienced with the conditioning stimulus alone in the quiet rest 

session (27%). The non-responders had only local hypoalgesia (i.e., quadriceps 

muscle) following exercise; the lack of hypoalgesia systemically (i.e. upper 

trapezius muscle) suggests that local exercise effects do not influence CPM due 

to different mechanisms. Previous reports have shown that CPM magnitude is 

influenced by the intensity of conditioning stimulus but not by the pain reported 

during the conditioning stimulus (Nir, Granovsky, Yarnitsky, Sprecher, & Granot, 

2011). Likewise, in this study, pain reported during exercise or ice water bath did 
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not influence EIH nor CPM. If exercise produces hypoalgesia via activation of the 

CPM response, then increasing the exercise intensity (i.e. the conditioning 

stimulus) should produce greater hypoalgesia.  

Emerging evidence has shown that body composition and physical activity 

may influence EIH and CPM (Lemley et al., 2015; Naugle & Riley, 2014; 

Stolzman et al., 2015; Stolzman & Hoeger Bement, 2016). This is contrary to the 

current study in that body composition and self-reported physical activity were 

not correlated with EIH or CPM. This is similar to a recent study by Black et al. 

(Black et al., 2017) that showed no relation between EIH and physical activity 

assessed via accelerometer. These results may be due to the homogenous 

sample in the current study as most individuals reported moderate to vigorous 

physical activity levels and normal to slightly overweight BMI levels. Likewise, the 

weakly correlated pain catastrophizing scores with neither CPM nor EIH may be 

due to relatively normal catastrophizing scores (e.g. only four individuals above 

30) observed in this sample. 

Several potential limitations should be taken into consideration. First, a 

small number of individuals had a systemic EIH response (n=9) possibly due to 

the low intensity and short duration of the isometric exercise thereby limiting the 

generalizability of the results. Future studies should verify these results following 

an exercise duration that is known to produce systemic effects (e.g. isometric 

exercise until task failure or aerobic exercise). In addition, the between-session 

reliability of CPM was poor. However, this should have minimal effects with our 

results since we are comparing changes in CPM within session. Finally, the 
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results in the present study are generalizable to young healthy adults only. It is 

unclear whether individuals with chronic pain would yield similar results.  

Despite these limitations, several clinical implications can be drawn from 

this study. Our results suggest that the systemic effects of exercise activate 

descending inhibitory pathways, making exercise a good clinical modality in the 

management of pain. Thus, in individuals with impaired CPM, the systemic 

effects of exercise maybe more variable in producing pain-relieving effects. The 

local effects, however, do not appear to be mediated by CPM and could be an 

alternative clinical tool in those conditions with impaired CPM. Finally, our results 

show the potential benefits in assessing CPM to help guide clinical decision-

making. With repeated assessments, an appropriate length of time (e.g. greater 

than 23 minutes) is necessary for the restoration of CPM. Additional research 

that includes individuals with chronic pain is essential, including whether this 

relation between systemic EIH and CPM occurs with exercise training. 

Understanding these effects in patients will allow for a more targeted use of 

exercise in the management of pain. 

Conclusion 

Individuals that experienced EIH systemically had an attenuated CPM 

response compared with those individuals that only experienced local EIH. The 

results raise the possibility that there are shared mechanisms between CPM and 

systemic EIH. In addition, CPM decreased following exercise and quiet rest, 
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which may be due to an insufficient washout period, while the within-session 

reliability was fair to good and the between-session reliability was poor.   
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III. ISOMETRIC EXERCISE RESTORES CONDITIONED PAIN 
MODULATION AND ENHANCES VIBRATION SENSE IN 

PEOPLE WITH AND WITHOUT FIBROMYALGIA 

Introduction  

Fibromyalgia syndrome (FMS) is a chronic pain condition that is 

characterized by widespread pain in the soft tissue and tender points throughout 

the body (Neumann & Buskila, 2003). The prevalence of FMS in the general 

population is 5%, which primarily affects women (Hawkins, 2013). Past research 

has shown that people with FMS demonstrate abnormal endogenous pain 

modulation such as enhanced pain facilitation (Staud et al., 2001) and reduced 

pain inhibition (Kosek & Hansson, 1997) as well as a reduction in vibratory sense 

(da Silva et al., 2013). Unlike pain modulation, vibration perception is not typically 

used to assess chronic musculoskeletal pain. Clinically, testing vibration sense is 

most commonly used in the early detection of neuropathy, specifically diabetic 

neuropathy (Garrow & Boulton, 2006). Clinical and experimental research, 

however, has suggested that diminished sense of vibration in populations with 

chronic pain may be due to altered central pain processing rather than peripheral 

nerve damage (Apkarian et al., 1994; Geber et al., 2008; Hollins et al., 1996; 

Magerl & Treede, 2004). Whether transient reductions in pain improves vibratory 

sense in this population is not known. 

Exercise-induced hypoalgesia (EIH) is a phenomenon where a decrease 

in pain occurs with exercise (Hoeger Bement & Sluka, 2016) locally at the 
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exercising muscle (Koltyn et al., 2001; Kosek & Lundberg, 2003; Umeda et al., 

2010) and systemically (Hoeger Bement et al., 2008; Koltyn & Umeda, 2007; 

Kosek & Lundberg, 2003; Lemley et al., 2014) at remote sites. Different modes of 

exercise have been shown to reduce pain sensitivity including aerobic, isometric, 

and dynamic resistance exercise in healthy adults as well as in individuals with 

chronic pain (Naugle et al., 2012). In patient populations, such as FMS, variability 

in the pain response after exercise has been reported in that some people 

experience pain relief while others experience pain exacerbation following acute 

isometric exercise (Hoeger Bement et al., 2011). This variability may be due to 

differences in baseline (pre-exercise) conditioned pain modulation such that CPM 

predicts EIH in young and older healthy adults (Lemley et al., 2015; Stolzman & 

Bement, 2016). Additionally, we have shown that individuals who exhibit 

systemic EIH following an acute bout of isometric exercise have a significantly 

reduced CPM response, suggesting that systemic EIH may potentially work 

through similar mechanisms as CPM (Alsouhibani, Vaegter, & Hoeger Bement, 

2018). It is not known, however, how isometric exercise effects CPM in 

individuals with FMS who are known to have an impaired CPM response.  

Therefore, the primary aim of this study was to examine the effect of 

isometric exercise held to exhaustion on pain inhibition (conditioned pain 

modulation) and vibratory sense locally at the exercising muscle and systemically 

in patients with FMS and age matched controls. A secondary aim was to 

determine factors that may impact the pain response following isometric exercise 

including body composition, physical activity levels, and psychosocial factors 
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(Sluka, 2016). We hypothesized that individuals with FMS will have reduced 

CPM and vibratory sense compared to controls and that exercise will restore 

CPM and enhance vibration perception both locally and systemically. 

Additionally, body composition, physical activity levels and psychosocial factors 

will be related to the EIH response in both individuals with and without FMS; 

those with higher physical activity levels and better body composition and 

psychosocial outcomes will report greater EIH.  

Methods 

Participants 

Twenty one individuals with FMS (18 women and 3 men, mean age ± SD, 

50.5 ± 3.26) and 22 age-matched controls (20 women and 2 men, mean age ± 

SD, 49.2 ± 2.83) were recruited from a large Midwestern metropolitan area 

(Milwaukee, WI) through advertisements. Data were collected between July 2018 

and August 2019. Participants were screened and excluded if they had the 

following: 1) cardiovascular disease, 2) neurological disorder, 3) cancer, 4) 

contraindications to exercise, 5) diabetes, 6) contraindications for the DEXA scan 

(e.g. pregnancy and claustrophobia), 7) arthritis, 8) osteoporosis, 9) Reynaud’s 

disease, 10) neuropathy, 11) surgery in the past year, 12) inability to comply with 

study protocols, or 13) unstable medical or psychiatric condition (e.g. 

uncontrolled hypertension, anxiety or depression). Medication use in participants 

with FMS was allowed as long as they were stable for at least 2 weeks. The 
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Institutional Review Board at Marquette University approved the protocol of this 

study and a written informed consent was obtained from all participants at the 

start of the study. The study is registered at ClinicalTrials.gov (NCT03778476).  

Experimental design 

Participants participated in one familiarization session and two 

randomized experimental sessions (isometric exercise or quiet rest) with 

approximately one week separating sessions. At the beginning of the 

familiarization session, participants were given the written informed consent and 

completed a medical history form and physical activity readiness questionnaire 

(PARQ). The PARQ is a screening tool for physical activity readiness 

recommended by the American College of Sports Medicine (ACSM). If any 

medical concerns were noted, the participant was not allowed to exercise. 

Additional questionnaires during the familiarization included the following for all 

participants: Short form McGill questionnaire (SF-MPQ), dispositional-Pain 

Catastrophizing Scale (PCS) and for participants with FMS: Revised 

Fibromyalgia Impact Questionnaire (FIQR), and 2010 American College of 

Rheumatology Preliminary diagnostic criteria for Fibromyalgia (ACR) (Wolfe et 

al., 2010). Next participants were instructed on the experimental procedures 

followed by measurements in the following order: vibration perception thresholds 

(VPTs), familiarization to the pressure pain device, body composition, and 

familiarization to CPM and the exercise protocol by performing maximal voluntary 

contractions (MVCs).  
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During the experimental sessions (exercise or quiet rest), participants 

started each session by completing the SF-MPQ (for all participants) and the 

FIQR (for participants with FMS only). VPTs and CPM were measured twice, 

before and after exercise or quiet rest. After each CPM trial, situational-PCS was 

given in reference to the ice water bath experience (conditioning stimulus). In 

both sessions, and immediately following the first CPM trial, MVCs of the right 

knee extensor muscles were performed. Specifically, 3 MVCs were completed 

with one minute of rest between trials and the highest value was used to 

calculate the exercise intensity (i.e. 30% MVC). Participants were verbally 

encouraged to achieve maximal force. Following completion of the MVCs, forty-

five minutes of rest occurred before the start of exercise or quiet rest. During this 

time, participants completed the Pain Self-Efficacy Questionnaire (PSEQ) and 

Tampa Scale for Kinesophobia (TSK). Participants were given instructions on the 

Actigraph physical activity monitor in the first experimental session and 

completed the Physical Activity Assessment Tool (PAAT) and the International 

Physical Activity Questionnaire (IPAQ) in the second experimental session.  

Vibration perception thresholds (VPT) 

VPTs in the familiarization session were tested at 4 sites using the 

Biothesiometer (Bio-Thesiometer, USA) with a vibratory tip (1.3 cm cylinder) that 

oscillated at a frequency of 120hz / 60 cycle. The device is considered reliable 

and has been used in previous studies (Courtney, Steffen, Fernandez-de-Las-

Penas, Kim, & Chmell, 2016; Courtney, Atre, Foucher, & Alsouhibani, 2019; 
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Shakoor et al., 2008). The sites were located and marked as follows: right 

quadriceps muscle (halfway between the anterior superior iliac spine and the 

base of the patella), right deltoid muscle (one third from the acromion to the 

lateral epicondyle), right index finger (halfway between the distal and proximal 

interphalangeal joints), and the right abdomen (2 cm lateral to the umbilicus). 

These sites were chosen to determine if differences between groups, if any, are 

wide spread throughout the body or site specific. During the experimental 

sessions, however VPTs were measured only at 2 sites (the right quadriceps 

muscle and index finger) to test the effects locally at the exercising muscle and 

systemically. Participants were instructed to sit upright in a standard chair with 

their knees and hips at 90°. At the testing sites, one examiner held the probe and 

rested the tip against the skin of the participant while the other examiner 

increased the intensity slowly (1 volt per second). Participants were asked to 

close their eyes during testing and report when they first feel sense of vibration. 

Three testing trials were performed while the device was in place and the 

average of trials were recorded and used for analyses. Prior to testing, 

participants were given a demonstration on the effect of the biothesiometer by 

placing the device on their palm and increasing the amplitude from zero to 

moderate then to higher levels. Because changes in skin temperature may effect 

VPT measurements (Green, 1977), before each VPT measurement, temperature 

of the skin was measured using an infrared surface scanner DermaTemp 1001 

LN (Exergen Corporation, Watertown, MA). 
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Conditioned pain modulation 

Pressure pain thresholds (PPT), described in further detail below, were 

used as the test stimuli measured at the right deltoid and quadriceps muscles 

before, during (after 20 seconds), and after submersion of the left foot in a 

noxious circulating ice water (6°C ± 1°C) bath (the conditioning stimulus) for 2 

minutes. Participants were instructed to keep their foot in the ice water bath for 

the entire 2 minutes until the PPTs were completed. If a participant didn’t tolerate 

the test and chose to remove the foot before the end of 2 minutes, PPTs were 

still measured and included in the analyses. Foot pain intensity during foot 

submersion was measured at 20 seconds using the NRS followed by PPT 

measurements and at the end of 2 minutes just before foot removal. Immediately 

after foot removal from the ice water bath, peak pain intensity was measured 

followed by PPTs after ice. After the test, the situational pain catastrophizing 

scale (S-PCS) (Campbell et al., 2010) was given in reference to the ice water 

bath.  

Exercise 

The exercise task consisted of a submaximal isometric contraction (30% 

MVC) of the right knee extensor muscles held to exhaustion. The positioning of 

participants and exercise set up was the same as previously described 

(Alsouhibani et al., 2018). Briefly, participants were seated upright on an edge of 



75 
 

 

a plinth table with their hips and knees positioned at 90° stabilized with 2 straps 

over their thighs (distal to the hip and proximal to the knee). The right foot was 

aligned with the plinth table’s leg unsupported. A hand held dynamometer 

(Commander Echo Muscle Testing Dynamometer, JTech Medical, USA) was 

attached to the leg of the plinth and stabilized using Velcro® straps around the 

leg of participants just above the malleolus. While performing MVCs, participants 

were instructed to extend their knee pushing against the Velcro® strap attached 

to the dynamometer as hard as they can while folding their arms across their 

chest. While performing the exercise task, participants were told to leave their 

arms resting over their thighs to reduce potential contractions of the upper limb. 

Participants were instructed to match a target force displayed on a wireless 

portable monitor (Commander Echo Console, JTech Medical, USA) during the 

performance of the submaximal isometric contraction. Participants received 

verbal encouragement to maintain the force. Exhaustion was determined when 

participants were unable to maintain the force within 10% of the target force for 3 

out 5 consecutive seconds (Hoeger Bement et al., 2008; Lemley et al., 2014; 

Lemley et al., 2015). Participants were asked to rate their perceived exertion 

(RPE) using a 0-10 scale with the following anchors: 0= “nothing at all” and 10= 

“very very strong” and pain intensity using the NRS before the start of exercise 

and every minute until the end of exercise. After the end of exercise and the 

measurement of PPTs, a final pain intensity at the leg was measured just before 

the measurement of VPT. 
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Pressure pain thresholds  

During each experimental session, PPTs were measured a total of 8 times 

at the right quadriceps and deltoid muscles with a handheld algometer (1-cm2 

rubber tip, delivery rate 50 kPa/sec) (Somedic, Sweden); three times with each of 

the two CPM protocols (before, during, and after ice), and two immediately 

before and after quiet rest or exercise (45 minutes after the 1st CPM protocol) 

(Figure III.1). The 2 sites were similar to the VPTs assessments (i.e. the 

quadriceps muscle halfway between the anterior superior iliac spine and the 

base of the patella and the deltoid muscle one third from the acromion to the 

lateral epicondyle). Participants were instructed to press a trigger when the 

pressure first changed to pain that was recorded in kilopascals. To minimize 

participants’ exposure to multiple PPTs, only 2 PPT trials per location were 

measured with a 10 second inter-stimulus interval. In addition, the location of 

PPTs was shifted 1 cm up or down after the 4th PPT measurement (i.e. before 

exercise or quiet rest) to minimize peripheral tenderness. The two PPT trials 

recorded at each site were averaged for further analysis. The order for the sites 

(deltoid and quadriceps) were randomized at the beginning of each experimental 

session and kept consistent throughout the session and were measured in 

alternation (e.g. deltoid – quadriceps – deltoid – quadriceps). Participants were 

seated upright in a chair with their knees and hips at 90° during all PPT 

measurements.  



77 
 

 

 

 

Body composition 

A total body scanner (Lunar iDXA, GE Healthcare, Madison, WI, USA) 

was used to quantify body composition. Participants were instructed to refrain 

from food and drink 1 - 2 hours before the session and to remove all metal items 

prior to the body scan. Standard height and weight was measured prior to the 

scan. If participants did not fit under the scanner a half scan of the right side was 

done and the left side was estimated from the right (n=2). The following outcome 

measures were obtained from the scan: body mass index (BMI), total fat (%), 

total lean mass (lbs), total bone mineral content (BMC) (lbs), android fat (%), 

gynoid fat (%), android/gynoid ratio (A/G ratio), right arm fat (%), right arm fat 

mass (lbs), right arm lean mass (lbs), right arm BMC (lbs), right leg fat (%), right 

leg fat mass (lbs), right leg lean mass (lbs), right leg BMC (lbs), and visceral 

Figure III.1 Study design of the experimental sessions. 
“↑”= PPTs at the quadriceps and deltoid muscle. Abbreviations: PPT, 

pressure pain threshold; CPM, conditioned pain modulation; VPT, vibration 
perception threshold; S-PCS, situational pain catastrophizing scale; MVC, 
maximum voluntary contraction; EX, exercise; QR, quiet rest. 
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adipose tissue mass (lbs). Scans were analyzed using the Encore Software 

(version 14.10, GE Healthcare, Madison, WI).  

Physical activity  

 During the first experimental session, participants were given an activity 

monitor (Actigraph, wGT3X-BT, Pensacola, FL) to wear on the non-dominant 

wrist for 7 days. Participants were encouraged to keep the activity monitors on 

their wrists for the full 7 days and were provided daily logs to complete regarding 

sleep time, physical activity, and removal time if any. Activity monitors along with 

the logs were collected during the second experimental session. Actilife software 

(Actilife 6.13.1, Pensacola, FL) was used to download and analyze Actigraph 

Data with “worn on wrist” correction applied. Troiano algorithm and the daily logs 

were used to identify and remove the non-wear time from physical activity 

calculation. The data of four valid days (2 weekdays and 2 weekends) were used 

for all participants, which have been shown to be a representative for the data of 

1 week (Migueles et al., 2017). Activities were divided into either sedentary/light 

activities or moderate to vigorous physical activities (MVPA) based on Freedson 

criteria (Freedson, Melanson, & Sirard, 1998). 

Questionnaires  

Pain Catastrophizing Scale: This is a 13-item scale that evaluates the 

tendency of participants to magnify the threat value of pain and has 3 different 
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dimensions: helplessness, rumination, and magnification (Sullivan et al., 1995). 

For each item participants score using a 5-point Likert scale. Greater scores 

indicate higher pain catastrophizing levels with a score of 30 being the cutoff for 

clinically relevant pain catastrophizing. While this scale measures catastrophizing 

in relation to a general past pain experience (termed: dispositional pain 

catastrophizing), another version of this scale was developed to measure in 

relation to a recent painful experience (termed: situational pain catastrophizing) 

(Campbell et al., 2010). This is a short version of the dispositional pain 

catastrophizing scale (6-items) and is asked in reference to a recent painful 

experience. The dispositional scale was given once to participants at the 

beginning of the familiarization session while the situational scale was given 5 

times throughout the study after every CPM trial in reference to the ice water 

bath experience.  

Short Form McGill Pain Questionnaire (SF-MPQ): This questionnaire 

measures the multiple aspects of pain (affective, sensory, and cognitive) related 

to current pain (Melzack, 1987). Higher scores represent higher pain. This was 

given to all participants at the beginning of each session. 

Revised Fibromyalgia Impact Questionnaire (FIQR): This questionnaire 

evaluates mood and symptoms related to fibromyalgia and other components of 

health status that are believed to be affected by fibromyalgia. The questionnaire 

evaluates the 3 domains: overall impact, symptoms, and function during the past 

week. This was given to individuals with FMS only at the beginning of each 

session. Higher scores represent more severe symptoms (Bennett et al., 2009).  
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Pain Self Efficacy Questionnaire (PSEQ): This is a 10-item 

questionnaire that measures the confidence individuals have in performing 

activities while in pain. Each item is scored on a 7-point Likert scale from 0 “not 

confident at all” to 6 “completely confident.” The total score ranges from 0 to 60 

with higher scores indicating stronger self-efficacy beliefs (Nicholas, 2007). This 

was given to all participants during the quiet rest of the second session.   

Tampa Scale of Kinesiophobia (TSK): This questionnaire evaluates 

movement-related fear of pain and fear avoidance behaviors. It is an 11-item 

scale with each item scored from 1 “strongly disagree” to 4 “strongly agree”. The 

scores range from 11 to 44 with higher scores indicating greater fear of pain and 

movement (Woby, Roach, Urmston, & Watson, 2005). This was given to all 

participants during the quiet rest of the second session. 

Physical Activity Assessment Tool (PAAT): This questionnaire is a self-

reported measure of physical activity that asks participants to report on physical 

activity in the past week. It measures the type, frequency and duration of 

moderate and vigorous activities. The outcome is total moderate or vigorous 

minutes per week (Meriwether, McMahon, Islam, & Steinmann, 2006). This was 

given to all participants in the quiet rest of the third session. 

International Physical Activity Questionnaire (IPAQ): This 

questionnaire is another self-reported measure of physical activity that asks 

participants to report on physical activity in the past week. This questionnaire has 

4 domains: occupation, transportation, household, and leisure; all of which report 

the total time in minutes. In addition, the total time spent sitting per week is also 
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reported (Craig et al., 2003). This was given to all participants after the PAAT in 

the quiet rest of the third session. 

Data analysis 

Data were analyzed using the IBM Statistical Package for Social Sciences 

(SPSS version 26, Armonk, NY) and reported as mean ± standard deviation (SD) 

in the text and tables and mean ± standard error (SE) in the figures. Normality 

was checked using the Kolmogorov-Smirnov test and visual inspection of Q-Q 

plots. Extreme outliers were tested with the Grubbs test and when significant 

were winsorized to one unit greater than the next outlying score (Dixon, 1980). 

Independent t tests or the Mann-Whitney U tests for non-normally distributed 

data were performed between the groups (healthy controls or FMS) to identify 

potential differences in characteristics. Friedman’s test was used to compare if 

changes occurred to SF-MPQ or FIQR across sessions.  

Baseline Conditioned Pain Modulation: To determine if PPTs increased 

for the 2 groups at the deltoid and quadriceps muscles during and/or after the ice 

water bath compared to baseline (i.e., CPM) in the two experimental sessions a 

repeated measures Analysis of Variance (RM ANOVA) (session [exercise and 

quiet rest] x time [PPTs before, during and after ice] x site [deltoid and 

quadriceps]) was performed with group (healthy controls and FMS) as between 

subject factor. In addition, a RM ANOVA was done comparing the absolute and 

relative change in CPM at baseline between sessions (quiet rest and exercise) at 

each site (deltoid and quadriceps) with a between subject factor group. Absolute 
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change was calculated for each site as the difference between PPTs during 

(CPMduring ice) or after (CPMafter ice) ice water bath submersion and baseline PPTs. 

In addition, the relative change was calculated at each site while the foot was 

submerged in ice water: (RelCPMduring ice) = ([(PPT during ice – PPT pre ice)/ PPT 

pre ice] x 100) and immediately after ice water: (RelCPMafter ice) = ([(PPT after ice 

– PPT pre ice)/ PPT pre ice] x 100). In addition, pain perceived during the ice 

water bath and S-PCS at baseline CPM trials were examined with session as 

within subject factor and group as a between subject factor.  

To determine whether PPTs returned to baseline after the 45 minutes of 

quiet rest a RM ANOVA was performed (session [exercise and quiet rest] x time 

[baseline PPTs and PPTs before exercise quiet rest] x site [deltoid and 

quadriceps]) with group as a between subject factor. These analyses were 

followed by post hoc testing using paired and independent t tests. 

CPM Responders and Non-Responders: Participants for both groups 

were categorized as CPM responders based on the change in the standard error 

of measurement (SEM) of PPTs (Vaegter, Petersen, Morch, Imai, & Arendt-

Nielsen, 2018). First SEMs for each site were calculated by performing a RM 

ANOVA for baseline PPTs of all 3 sessions and then taking the square root of its 

mean square error for both groups (Vaegter et al., 2018; Weir, 2005). 

Participants who had an increase in PPTs during or after the ice water bath 

compared to baseline PPTs larger than the calculated SEM for each site were 

classified as CPM responders. This classification was done for the absolute 

change in CPM with each calculation method (i.e. CPMduring ice and CPMafter ice). In 
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addition, classification of CPM responders and non-responders was made for the 

relative change in CPM (Locke et al., 2014). This was done by calculating the 

percent change of SEM from the average baseline PPTs for each group at each 

site (e.g. % SEM change = (SEM-Average PPT)/Average PPT). Participants 

were then classified as CPM responders if the relative CPM change was larger 

than the % SEM change. This was also done for each calculation method (i.e. 

RelCPMduring ice and RelCPMafter ice).  

Preliminary analyses showed variability of CPM responders and non-

responders across the two experimental sessions. Therefore, classification was 

done based on the first CPM trial of each respective session (exercise and quiet 

rest). To identify agreement of responders between the two sites at each 

baseline CPM protocol and between sessions of baseline CPM protocols 

Cohen’s Kappa was used. Kappa statistics of 0.81-1 were considered almost 

perfect agreement, 0.61-0.8 substantial agreement, 0.41-0.6 moderate 

agreement, 0.21-0.4 fair agreement, 0-0.2 slight agreement, and <0 as poor 

agreement (Landis & Koch, 1977). In addition, a chi-square test was performed 

to determine if the proportion of responders and non-responders in each group 

were different for all CPM trials in the experimental sessions.  

Conditioned Pain Modulation after Exercise and Quiet Rest: To 

investigate the effect of exercise on the CPM response, CPM following exercise 

and quiet rest were analyzed using a RM ANOVA (session [exercise and quiet 

rest] x CPM trial [CPM pre and post exercise or quiet rest] x site [deltoid and 

quadriceps]) with a between subject factor group. To examine whether the 
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effects of exercise on CPM are similar in responders and non-responders a RM 

ANOVA (CPM trial [CPM pre and post exercise or quiet rest]) for each session 

and site separately with 2 between subject factors (group [healthy and FMS] and 

CPM response [responders and non-responders]. This was done for each site 

with all CPM calculation methods (i.e. CPMduring ice, CPMafter ice, RelCPMduring ice, 

and RelCPMafter ice) each with their respective classification method. When 

significant effects were found, post hoc analyses were done using paired t-tests. 

To identify potential differences in perceived pain intensity during ice water bath 

immersion or S-PCS following CPM for protocols in experimental sessions, RM 

ANOVA (session [exercise and quiet rest] x CPM trial [pain or S-PCS pre and 

post exercise or quiet rest]) was done with between subject factor group (healthy 

controls and FMS). Post hoc testing with paired t-tests or the Wilcoxon signed 

rank test for non-normally distributed data were done as appropriate. 

Pressure Pain Thresholds after Exercise and Quiet Rest:  To examine 

if PPTs increased locally at the exercising muscle and/or systemically for each 

group a RM ANOVA was performed (session [exercise and quiet rest] x time 

[PPTs pre and immediately post exercise and rest] x site [deltoid and 

quadriceps]) with between subject factor group. In addition, the absolute and 

relative change in PPTs at each site was compared between sessions using a 

RM ANOVA (session [exercise and quiet rest] x site [deltoid and quadriceps]) 

with between subject factor group. The analyses were followed by post hoc 

testing using paired t-tests.  
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Vibration Perception Threshold: To investigate the effect of exercise on 

VPTs, VPTs following exercise and quiet rest were analyzed using a RM ANOVA 

(session [exercise and quiet rest] x time [VPTs pre and immediately post 

exercise or quiet rest] x site [deltoid and quadriceps]) with a between subject 

factor group. In addition, the absolute and relative change in VPTs at each site 

was compared between sessions using a RM ANOVA (session [exercise and 

quiet rest] x site [deltoid and quadriceps]) with between subject factor group. The 

analyses were followed by post hoc testing using paired t-tests.  

Correlations: To investigate factors that influenced EIH or the CPM 

response following EIH, Pearson or Spearman correlations were performed with 

VPTs, questionnaire data, body composition, and physical activity. In addition, 

these correlations were performed to determine if pain during exercise, or ice 

water bath were related to EIH, or CPM, respectively. The relation of skin 

temperature to VPTs were investigated using Pearson correlations as well as 

whether the change in VPT values were related to the change in temperature 

following exercise or quiet rest. These analyses were done for all participants 

combined unless there were differences at baseline with measurements, then 

they were done separately for each group. To reduce type 1 and type 2 errors 

due to multiple correlations, a more rigorous p-value was selected (p= 0.01) to 

denote significance (Avin & Law, 2011; Garamszegi, 2006).  
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Results 

Participants characteristics  

Table III.1 summarizes participants’ characteristics. Pain medications for 

individuals with FMS were as follows: Acetaminophen (n=5), NSAIDs (n=4), 

Amitriptyline (n=2), Tramadol (n=3), Hydrocodone (n=1), Gabapentin (n=3), 

Duloxetine (n=2), Milnacipran (n=1), Lamotrigine (n=2), Cyclobenzaprine (n=4), 

Clonazepam (n=1), Escitalopram (n=1), Tizanidine (n=1), Eletriptan (n=1), 

Trazadone (n=1), Diazepam (n=1), and Dicyclomine (n=1). Four individuals 

(19%) reported not taking any pain medications. All participants completed all 

sessions except for one control participant who did not show up for the third 

session which was an exercise session; data of the first and second session was 

kept and analyzed. One individual with FMS refused to perform the body scan for 

personal reasons. Five participants were excluded from accelerometery data for 

the following reasons: 1) refused to wear actigraph (n=2); 2) did not meet wear 

time criteria (i.e. at least 4 days of wear time) (n=2); and 3) lost actigraph (n=1).  

  

Table III.1 Participant characteristics 

 Healthy 

Controls 

 

n Fibromyalgia 

 

n P-value 

Age (yr) 49.1 ± 13.3 22 50.5 ± 14.9 21 0.763 
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Males  n= 2   n= 3    

SF-MPQ      

Sensory 0.68 ± 1.1 22 6.6 ± 5.6 21 < 0.001 

Affective 0.15 ± 0.5 22 1.6 ± 1.9 21 < 0.001 

VAS 0.42 ± 0.7 22 2.8 ± 2.1 21 < 0.001 

PPI 0.36 ± 0.6 22 1.4 ± 0.9 21 < 0.001 

Total 0.82 ± 1.4 22 8.0 ± 6.5 21 < 0.001 

FIQR      

FIQR functional   26.7 ± 19.7 21  

FIQR overall impact   7.1 ± 5.2 21  

FIQR symptom   45.0 ± 20.3 21  

FIQR total   38.6 ± 19.7 21  

Pain 

Catastrophizing 

Scale 

     

PCS- Magnification 1.5 ± 2.1 22 5.1 ± 3.7 21 < 0.001 

PCS- Rumination 1.9 ± 2.5 22 8.5 ± 4.4 21 < 0.001 

PCS- Helplessness 2.0 ± 3.8 22 10.2 ± 4.4 21 < 0.001 

PCS- Total 5.4 ± 8.0 22 23.9 ± 10.9 21 < 0.001 

Vibration Threshold      

VPT index 5.6 ± 2.1 22 5.3 ± 2.0 21 0.820 

VPT deltoid 11.1 ± 4.0 22 16.2 ± 8.9 21 0.026 

VPT quadriceps 18.0 ± 6.5 22 17.9 ± 8.9 21 0.989 
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VPT abdomen 17.9 ± 7.4 22 21.1 ± 9.3 21 0.219 

Exercise      

MVC (lbs.) 293.3 ± 102.0 21 289.1 ± 98.8 21 0.892 

Target force (30% 

MVC)  

88.1 ± 30.5 21 86.7 ± 29.6 21 0.878 

Time to exhaustion 

(min) 

7.0 ± 4.1 21 5.3 ± 2.3 21 0.103 

Pain at the end (0-

10) 

7.4 ± 2.3 21 8.5 ± 2.1 21 0.142 

RPE at the end (0-

10) 

8.7 ± 1.5 21 9.0 ± 1.5 21 0.593 

Body composition       

BMI 27.9 ± 5.7 22 31.5 ± 8.5 20 0.105 

Total body fat (%)  37.3 ± 8.2 22 41.5 ± 9.0 20 0.125 

Total lean mass (lbs) 100.1 ± 17.9 22 105.1 ± 

17.8 

20 0.376 

Total body BMC (lbs) 5.6 ± 0.9 22 5.5 ± 1.1 20 0.694 

Android fat (%) 39.8 ± 12.5 22 46.4 ± 12.2 20 0.094 

Gynoid fat (%) 40.7 ± 8.0 22 43.6 ± 9.0 20 0.271 

Android/gynoid (A/G) 

ratio 

0.9 ± 0.2 22 1.0 ± 0.2 20 0.204 

Right arm fat (%) 37.3 ± 9.1 22 38.2 ± 10.0 20 0.784 

Right arm fat (lbs) 3.7 ± 1.4 22 3.9 ± 1.6 20 0.577 

Right arm lean (lbs) 5.6 ± 1.4 22 5.8 ± 1.4 20 0.655 
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Right arm BMC (lbs) 0.3 ± 0.1 22 0.3 ± 0.1 20 0.244 

Right leg fat (%) 35.6 ± 7.8 22 38.2 ± 8.4 20 0.309 

Right leg fat (lbs) 11.0 ± 4.6 22 12.7 ± 4.4 20 0.220 

Right leg lean (lbs) 18.0 ± 3.4 22 18.9 ± 4.3 20 0.434 

Right leg BMC (lbs) 1.0 ± 0.2 22 0.9 ± 0.2 20 0.721 

Visceral fat mass 

(lbs) 

1.6 ± 1.2 22 2.8 ± 2.0 20 0.027 

Physical Activity      

Accelerometery       

Sedentary (%) 52.8 ± 8.3 19 53.3 ± 7.3 19 0.850 

Light (%) 34.0 ± 7.1 19 33.7 ± 5.9 19 0.895 

Moderate/vigorous 

(%) 

13.1 ± 5.9 19 12.9 ± 5.8 19 0.916 

Average MVPA per 

day (min) 

189.0 ± 85.4 19 186.0 ± 

83.5 

19 0.916 

Vector magnitude 

counts per minute 

1673.3 ± 

485.3 

19 1602.6 ± 

411.5 

19 0.631 

Self-report      

IPAQ total walking 

MET-(minutes/week) 

1598.7 ± 

1871.6 

21 2354.8 ± 

2708.7 

21 0.489 

IPAQ total moderate 

MET-(minutes/week) 

1550.5 ± 

1645.2 

 

21 2384.2 ± 

3226.1 

 

21 0.724 
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IPAQ total vigorous 

MET-(minutes/week) 

607.6 ± 

1078.4 

21 2796.2 ± 

5087.2 

 

21 0.226 

IPAQ MET-

(minutes/week) 

3858.4 ± 

3090.5 

21 7603.4 ± 

9736.0 

 

21 0.521 

IPAQ total sitting 1894.8 ± 

1152.8 

21 2452.1 ± 

1464.9 

 

21 0.365 

PAAT total moderate 

per week 

294.3 ± 356.1 21 503.7 ± 

605.0 
 

21 0.248 

PAAT total vigorous 

per week 

53.3 ± 69.7 21 157.5 ± 

249.7 

21 0.261 

PAAT total 

moderate/vigorous 

per week 

339.8 ± 381.3 21 1559.3 ± 

4357.1 

21 0.190 

Other 

questionnaires 

     

TSK 16.8 ± 4.1 22 26.1 ± 7.2 21 < 0.001 

PSEQ 53.2 ± 10.3 22 35.2 ± 9.8 21 < 0.001 

SF-MPQ, Short form McGill Pain Questionnaire; VAS, visual analog 
scale; PPI, present pain intensity; FIQR, Revised Fibromyalgia Impact 
Questionnaire; VPT, vibration perception threshold; MVC, maximal 
voluntary contraction; BMI, body mass index; IPAQ, International 
Physical Activity Questionnaire; PAAT, Physical Activity Assessment 
Tool; MVPA, moderate to vigorous physical activity; PCS, Pain 
Catastrophizing Scale; yr, year; RPE, rate of perceived exertion; TSK, 
Tampa Scale of Kinesiophobia; PSEQ, Pain Self-Efficacy 
Questionnaire.  
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One outlier was detected and adjusted from each of the following 

variables: CPMafter ice at the quadriceps post exercise, RelCPMduring ice and 

RelCPMafter ice at the quadriceps pre quiet rest, relative EIH at the quadriceps, 

PCS total, PCS helplessness subscale, VPT at the index in the first session, right 

arm lean mass, IPAQ total MET, and PAAT total vigorous activity. Two outliers 

were detected and adjusted from the following variables: the absolute and 

relative change in PPT at the quadriceps following quiet rest, IPAQ total 

moderate MET, IPAQ total vigorous MET, PAAT total moderate activity and 

PAAT total moderate to vigorous activity. Analyses were performed with and 

without outlier adjustments with no differences in the results.  

SF-MPQ and FIQR did not differ across sessions (p > 0.05) for both 

groups. Compared to healthy controls, individuals with FMS had significantly 

higher SF-MPQ and PCS scores and lower TSK and PSEQ scores (p < 0.001). 

Only one healthy participant had a PCS score above 30 and a low PSEQ (value 

of 12) score. Body composition and physical activity were not significantly 

different between groups (p > 0.05) with the exception of visceral adipose tissue 

(p < 0.05). VPT measures were higher in individuals with FMS only at the deltoid 

site (p < 0.05).  

Baseline conditioned pain modulation  

Participants completed all the CPM protocols except two participants (one 

from each group) who removed their foot from ice water before completion of the 

two minutes. These participants kept their foot, however in the ice water for at 
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least 20 seconds and completed all PPT assessments and their data were used 

in the analyses.   

Results of the analysis for baseline CPM demonstrated a main effect of 

site (F(1,40) = 76.187, p < 0.001, ηp
2= 0.656), time (F(1,40) = 38.819, p < 0.001, 

ηp
2= 0.493), and group (F(1,40) = 6.879, p = 0.012, ηp

2= 0.147). Post hoc 

analyses showed there was an increase in PPTs at the deltoid and quadriceps 

muscles while the foot was submerged in the ice water bath (CPMduring ice) and 

immediately following removal of the foot from the ice water bath (CPMafter ice), 

which signifies CPM (p < 0.005; Figure III.2). This effect was significant for both 

groups; however, individuals with FMS had significantly lower PPTs than healthy 

controls at all time points (p < 0.01; Figure III.2 B). In addition, PPTs were higher 

at the quadriceps muscle compared with the deltoid muscle (p < 0.01; 

Figure III.2). No other interactions were found (p > 0.05).  
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Figure III.2 Pressure pain thresholds (kPa) at the quadriceps 
muscle and the deltoid muscle during the experimental sessions 
(exercise or quiet rest) for healthy controls (A) and fibromyalgia (B) 
participants. 

CPM occurred before and after exercise and quiet rest as 
demonstrated by the increased PPTs during and after ice water bath 
submersion. The increase in PPTs following exercise at the quadriceps and 
deltoid muscles represent local and systemic EIH, respectively. Absolute 
CPMafter ice (PPT after ice – PPT pre ice) reduced for the quadriceps following 
exercise and quiet rest (†) and reduced for the deltoid following quiet rest only 
(‡). Significantly different compared to pre ice at both sessions (*) and 
significantly different compared to pre exercise (#) for the exercise session. 
Data are presented as mean ± SE. Abbreviations: EX, exercise; QR, quiet rest. 

 

When comparing the two sites, however using the absolute or relative 

change there was a session x site x group interaction for RelCPMduring ice (F(1,40) 

= 4.349, p < 0.05, ηp
2= 0.098; Figure 3) and CPMduring ice (F(1,40) = 4.833, p < 

0.05, ηp
2= 0.108). Post hoc analyses for RelCPMduring ice showed a difference only 

among healthy controls between the two sites in the exercise session (deltoid = 

28 ± 31% vs quadriceps = 11 ± 15%; p < 0.05; Figure III.3 A) and for CPMduring ice 

between the groups for the deltoid in the exercise session (healthy controls = 89 

± 97 kPa vs FMS = 35 ± 71 kPa; p < 0.05) and the quad in the quiet rest session 

(healthy controls = 93 ± 79 kPa vs FMS = 39 ± 65 kPa; p < 0.05). There were no 

differences, however in baseline CPM calculated after ice (RelCPMafter ice and 

CPMafter ice) between sessions, sites, or groups (p >0.05). 

Individuals with FMS perceived greater pain during the ice water bath and 

scored the S-PCS higher than healthy controls (p < 0.05) but were similar across 

baseline CPM trials (session and session x group; p > 0.05). 

When we examined whether PPTs returned to baseline after the 45 min 

quiet rest, results demonstrated a main effect of time (F(1,40) = 6.243, p = 0.017, 
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ηp
2= 0.135), site (F(1,40) = 75.053, p < 0.001, ηp

2= 0.652), and group (F(1,40) = 

5.905, p = 0.020, ηp
2= 0.129). No other main effects or interactions were found (p 

> 0.05). Post hoc showed that PPTs did not completely return to baseline before 

exercise or quiet rest (p = 0.017). In addition, as shown before, healthy controls 

and the quadriceps muscle had higher thresholds (p < 0.05). 
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Figure III.3 Relative change in CPM at the quadriceps muscle and 
the deltoid muscle before and after exercise or quiet rest for 
healthy control (A) and fibromyalgia (B) participants. 

Significantly different than pre (*) and significantly different than 
quadriceps (†). Data are presented as mean ± SE. Abbreviations: CPM, 
conditioned pain modulation; EX, exercise; QR, quiet rest; During ice, 
(RelCPMduring ice) = ([(PPT during ice – PPT pre ice)/ PPT pre ice] x 100); After 
ice, (RelCPMafter ice) = ([(PPT after ice – PPT pre ice)/ PPT pre ice] x 100). 

 

CPM responders and non-responders 

The SEM at the deltoid was 41.41 kPa for healthy control participants and 

55.06 kPa for individuals with FMS. This corresponds to %13.37 change in 

healthy controls and %21.59 change in individuals with FMS, respectively. The 

SEM at the quadriceps was 79.29 kPa for healthy control participants and 59.6 

kPa for individuals with FMS. This corresponds to %17.55 change in healthy 

controls and %16.55 change in individuals with FMS, respectively. The number 

of CPM responders and non-responders for each CPM trial using all calculation 

methods are shown in Figure III.4. There were no differences in proportion of 

CPM responders between healthy controls and FMS (p > 0.05) except for 

baseline CPMduring ice at the deltoid in the exercise session (χ2(1) = 4.709, p 

=0.03) and quiet rest session (χ2(1) = 5.225, p =0.022). 
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Figure III.4 Number of CPM responders (blue) and non-responders 
(red) for healthy controls (solid bars) and fibromyalgia (hashed bars). 

CPM trial pre exercise (A), post exercise (B), pre quiet rest (C) and post 
quiet rest (D). 
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The CPM responders and non-responders agreement between sites was 

variable across CPM trials and dependent on calculation method. In the baseline 

CPM trial of the exercise session, agreement between sites was only significant 

with CPMduring ice (ĸ = 0.549, p = 0.005) and RelCPMafter ice (ĸ = 0.447, p = 0.027) 

for healthy controls. In the CPM trial following exercise, agreement between sites 

was only significant with RelCPMduring ice (ĸ = 0.625, p = 0.002) and RelCPMafter ice 

(ĸ = 0.444, p = 0.049) for individuals with FMS. In baseline CPM trial of the quiet 

rest session, agreement between sites was significant for individuals with FMS 

only with CPMduring ice (ĸ = 0.615, p = 0.004) and RelCPMduring ice (ĸ = 0.422, p = 

0.049). Following quiet rest, however, agreement between sites for both groups 

were significant with CPMduring ice (healthy controls: ĸ = 0.450, p = 0.035; FMS: ĸ = 

0.444, p = 0.040) and RelCPMduring ice (healthy controls: ĸ = 0.450, p = 0.035; 

FMS: ĸ = 0.538, p = 0.011). Agreement of CPM responders and non-responders 

within each site between baseline CPM protocols of experimental sessions were 

not significant except for individuals with FMS for RelCPMafter ice (deltoid: ĸ = 

0.507, p = 0.020; quadriceps: ĸ = 0.690, p = 0.001) and RelCPMduring ice 

(quadriceps only :ĸ = 0.432, p = 0.044). Thus, agreement of responders and non-

responders between sites within the same CPM protocol was moderate. In 

addition, consistency of responder or non-responder within the same site 

between sessions was also moderate. Given this moderate consistency only with 

certain calculation methods, it was necessary to evaluate CPM following exercise 

and quiet rest in responders and non-responders at each site separately.    
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Conditioned pain modulation following exercise and quiet rest 

Results of the analyses of CPMduring ice and RelCPMduring ice showed a 

significant session x site x group (F(1,40) = 13.191, p = 0.001, ηp
2= 0.248; 

F(1,40) = 9.359, p = 0.004, ηp
2= 0.190; respectively). No main effects of CPM 

trial or interactions were found (p > 0.05). CPMafter ice showed a significant 

session x CPM trial x site (F(1,40) = 10.146, p = 0.003, ηp
2= 0.202). No 

interactions with group were found; however, a main effect of group was 

significant (F(1,40) = 4.090, p = 0.050, ηp
2= 0.093). Post hoc analyses showed 

that CPMafter ice reduced for the quadriceps following exercise (p = 0.043) and 

quiet rest (p = 0.043) and reduced for the deltoid following quiet rest only (p < 

0.001; Figure III.2). When analyzing RelCPMafter ice, however there was only a 

main effect of trial (F(1,40) = 11.039, p = 0.002, ηp
2= 0.216) and a main effect of 

site (F(1,40) = 6.732, p = 0.013, ηp
2= 0.144) with no other interactions or main 

effects (Figure III.3). Post hoc analyses show that CPM decreased after exercise 

and quiet rest (p = 0.002), and the decrease was higher for the deltoid compared 

with the quad (p = 0.013).  

When analyzing each trial separately with group and CPM response as a 

between subject factor a significant CPM trial x CPM response interaction was 

found for all calculation methods at the deltoid (CPMduring ice: F(1,38) = 25.497, p 

< 0.001, ηp
2= 0.402; RelCPMduring ice: F(1,38) = 15.900, p < 0.001, ηp

2= 0.295; 

CPMafter ice: F(1,38) = 19.759, p < 0.001, ηp
2= 0.342; RelCPMafter ice: F(1,38) = 

12.546, p = 0.001, ηp
2= 0.248) and the quadriceps (CPMduring ice: F(1,38) = 7.851, 
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p = 0.008, ηp
2= 0.171; RelCPMduring ice: F(1,38) = 8.874, p = 0.005, ηp

2= 0.189; 

CPMafter ice: F(1,38) = 9.846, p = 0.003, ηp
2= 0.206; RelCPMafter ice: F(1,38) = 

7.552, p = 0.009, ηp
2= 0.166) in the exercise session. Post hoc analyses showed 

that for CPM responders CPM was reduced following exercise for both muscles 

(p < 0.05) but for non-responders CPM increased for the deltoid muscle only (p ≤ 

0.01; Figure III.5). 

In the quiet rest session, there was also a significant CPM trial x CPM 

response interaction for all calculation methods at the deltoid (CPMduring ice: 

F(1,39) = 7.905, p = 0.008, ηp
2= 0.169; RelCPMduring ice: F(1,39) = 10.759, p = 

0.002, ηp
2= 0.216; CPMafter ice: F(1,39) = 21.155, p < 0.001, ηp

2= 0.352; 

RelCPMafter ice: F(1,39) = 9.609, p = 0.004, ηp
2= 0.198) and the quadriceps 

(CPMduring ice: F(1,39) = 6.872, p = 0.012, ηp
2= 0.150; RelCPMduring ice: F(1,39) = 

6.401, p = 0.016, ηp
2= 0.141; CPMafter ice: F(1,39) = 5.626, p = 0.023, ηp

2= 0.126; 

RelCPMafter ice: F(1,39) = 16.912, p < 0.001, ηp
2= 0.302). Post hoc testing showed 

that for CPM responders CPM was reduced following quiet rest for both muscles 

(p < 0.05) with no significant change for non-responders except for CPMafter ice at 

the deltoid where CPM was further reduced (p < 0.01; Figure III.5). 
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Figure III.5 Relative change in CPM at the quadriceps and deltoid 
muscles before and after exercise or quiet rest for CPM responders 
(A) and non-responders (B). 

Significantly different compared to pre exercise or quiet rest (*). Data 
are presented as mean ± SE. Abbreviations: CPM, conditioned pain 
modulation; EX, exercise; QR, quiet rest; During ice, (RelCPMduring ice) = ([(PPT 
during ice – PPT pre ice)/ PPT pre ice] x 100); After ice, (RelCPMafter ice) = 
([(PPT after ice – PPT pre ice)/ PPT pre ice] x 100). 

 

Analyses of perceived pain perception during the ice water bath and S-

PCS showed there was a session x CPM trial interaction (pain at 20 sec: F(1,40) 

= 5.382, p = 0.026, ηp
2= 0.119; pain at the end: F(1,39) = 4.810, p = 0.034, ηp

2= 

0.110; peak pain: F(1,40) = 5.341, p = 0.026, ηp
2= 0.118; S-PCS: F(1,40) = 

8.482, p = 0.006, ηp
2= 0.175). No interactions with group were found; however, a 

main effect of group for all these variables were found. Post hoc analyses 

showed S-PCS was reduced after exercise (p < 0.05) with no change following 

quiet rest (p > 0.05) and peak pain increased following quiet rest (p < 0.01). Post 

hoc analyses of other variables were not significant following exercise or quiet 

rest (p > 0.05). Pain intensity and S-PCS were overall higher in individuals with 

FMS than healthy controls.  

 Pressure pain thresholds after exercise and quiet rest:  

Before the start of exercise, all participants reported an exertion of 

‘nothing at all’ (RPE = 0/10). Healthy controls reported no pain before the start of 

exercise except for 2 participants who reported pain of 1/10 NRS; individuals with 

FMS reported an average 1.04 ± 0.32. At the end of exercise, all participants 
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reported severe pain (healthy controls: NRS= 7.4 ± 2.3; FMS: NRS= 8.5 ± 2.09) 

and close to ‘very very strong’ exertion (healthy controls: RPE= 8.7 ± 1.5; FMS: 

RPE= 9.04 ± 1.5). Duration of exercise for healthy participants was 7.03 ± 4.11 

minutes and 5.3 ± 2.34 for individuals with FMS. There were no significant 

differences between groups in all these variables (p > 0.05); although two healthy 

control participants exercised for approximately 17 minutes. 

For PPTs, there was a session x time (F(1,40) = 20.845, p < 0.001, ηp
2= 

0.343) and a time x site (F(1,40) = 5.044, p = 0.03, ηp
2= 0.112) interaction. No 

interactions for group were found; however, a main effect of group was significant 

(F(1,40) = 6.327, p = 0.016, ηp
2= 0.137). Post hoc analyses showed that PPTs 

increased at both sites in the exercise session (p < 0.01; Figure III.2) and 

decreased following quiet rest for the deltoid site only (p = 0.043). PPTs were 

higher for healthy controls compared with FMS (p = 0.016). 

When comparing the absolute and relative change in PPTs between the 

sessions there was a main effect of session (absolute: F(1,40) = 22.583, p < 

0.001, ηp
2= 0.361; relative: F(1,40) = 20.909, p <  0.001, ηp

2= 0.343) and a main 

effect of site (absolute: F(1,40) = 6.708, p =  0.013, ηp
2= 0.114; relative: F(1,40) = 

4.773, p = 0.035, ηp
2= 0.107). No main effect of group or interactions were found 

(p > 0.05). Post hoc analyses showed that the absolute and relative change in 

the exercise session for both sites were significantly greater than the change in 

the quiet rest session (p < 0.005), indicating local and systemic EIH. 
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Vibration perception threshold 

VPT analyses showed there was a session x time x site interaction 

(F(1,40) = 8.084, p = 0.007, ηp
2= 0.168). No main effects or interactions for group 

were found. Post hoc analyses showed that VPT at the index decreased 

following exercise (p < 0.001) with no change following quiet rest (p > 0.05). VPT 

at the quadriceps did not change following exercise (p > 0.05) but decreased 

following quiet rest (p = 0.024; Figure III.6). 

When comparing the absolute and relative change in VPTs between the 

sessions there was a session x site interaction (absolute: F(1,40) = 8.082, p = 

0.007, ηp
2= 0.168; relative: F(1,40) = 17.731, p < 0.001, ηp

2= 0.307). No main 

effect of group or interactions were found (p > 0.05). Post hoc analyses showed 

that the absolute and relative change in the exercise session for the index finger 

were significantly lower than in the quiet rest session (i.e. following exercise 

systemic vibration improved) (p < 0.05; Figure III.6) 

The change for the quadriceps, however, was lower in the quiet rest 

session (i.e. better sensitivity) but higher in the exercise session (i.e. worse 

sensitivity). 
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Figure III.6 Vibration perception thresholds (biothesiometer units) at 
the index finger and the quadriceps muscle before and after 
exercise and quiet rest. 

Significantly different compared to pre exercise or quiet rest (*). Data 
are presented as mean ± SE. Abbreviations: VPT, vibration perception 
threshold. 
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Correlations 

VPTs were not related to skin temperature (p > 0.05) except for the 

abdomen site measured in the first session (r = -0.0413, p = 0.006). The change 

in vibration at both sites following exercise and quiet rest were not related to the 

change in skin temperature (p > 0.05). Pain during exercise, the six minute walk 

test, and ice water bath were not significantly related to EIH, distance covered, or 

CPM for all trials (p > 0.05), respectively. EIH was not related to any other 

measures except for absolute EIH at the quadriceps muscle and PSEQ in 

healthy control participants (r = 0.614, p = 0.003). Following exercise CPMduring ice 

at the quadriceps was related to percent light activity measured through 

accelerometery (r = - 0.420, p = 0.009). This relation was not consistent with 

other calculation methods and was not related to other activity measures (p > 

0.05). In individuals with FMS, the FIQR functional subscale was related to 

CPMafter ice and RelCPMafter ice at the quadriceps following exercise (r = 0.574 and 

r = 0.556, p < 0.01; respectively). The functional subscale was also related to 

RelCPMafter ice at the quadriceps (r = 0.576, p = 0.006). S-PCS was not related to 

CPM measurements (p > 0.05) except for RelCPMafter ice in individuals with FMS 

following exercise at the quadriceps (r = 0.568, p = 0.007). However, S-PCS was 

related to pain intensity during the ice water bath for all CPM measurements in 

healthy controls only (r ≥ 0.591, p ≤ 0.005). All other relations with CPM following 

exercise were non-significant (p > 0.05). 
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Discussion  

The novel finding of the study was that individuals who had a reduced 

CPM response prior to exercise, had a significant increase in CPM systemically 

(i.e. at the deltoid) following exercise only, whereas those individuals that had a 

‘normal’ functioning CPM prior to exercise had a decrease in CPM following 

exercise and quiet rest. This was true for both groups and using all calculation 

methods of CPM. Thus, a sustained isometric contraction may have activated 

descending inhibitory pathways in individuals with reduced CPM irrespective of 

their change in PPTs or their health status (healthy or FMS). This study also 

demonstrated that VPTs in both groups decreased systemically (i.e. vibratory 

sense improved at the index finger) following exercise with no significant change 

following quiet rest. Moreover, situational catastrophic thoughts (i.e. S-PCS) for 

the ice water bath were significantly reduced following exercise for both groups 

with no significant change in the pain intensity associated with the noxious 

stimulus.  

Conditioned pain modulation  

In the present study, CPM was similar between individuals with FMS and 

healthy controls. This finding is in contrast to multiple studies showing impaired 

CPM in individuals with FMS (Lewis et al., 2012). Previous studies, however 

have shown increased variability in the CPM response compared with healthy 

controls with some individuals having functional CPM (Chimenti et al., 2018). 
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Thus one explanation is that individuals with FMS who participated in this study 

were higher functioning compared with participants in previous studies, as shown 

by the lower FIQR scores compared with previous studies (Merriwether et al., 

2018; Wang et al., 2018)(mean total FIQR in the current study = 38.6 vs. 52.4 to 

60.4 in past studies). This is also shown by the lack of difference in body 

composition and physical activity measures between healthy controls and 

individuals with FMS. Higher levels of physical activity was previously linked to 

better CPM in young and older adults (Naugle, Ohlman, Naugle, Riley, & Keith, 

2017; Naugle & Riley, 2014). Considering this study was advertised as the 

‘exercise and pain study’; it’s conceivable that individuals with FMS who 

contacted us were interested in exercise as an intervention and had higher levels 

of physical activity.  

In addition, CPM occurred both during and following ice water bath 

immersion. This is in agreement with previous studies (Lewis et al., 2012; Pud et 

al., 2005) but not in line with others (Kosek & Ordeberg, 2000; Leffler et al., 2002; 

Vaegter et al., 2014b; Vaegter et al., 2016). We recently performed a CPM 

protocol similar to the one used in this study on young healthy adults and found 

that CPM occurred during, but not following, the ice water immersion 

(Alsouhibani et al., 2018). Furthermore, in that study, CPM was not restored 

following 23 minutes of quiet rest, suggesting carry over effects from the first 

CPM trial. The protocol used in this study was recently piloted in young healthy 

adults with a longer washout period (45 minutes), and CPM was restored. 

Paradoxically, the 50 minute washout period in this study (45 min quiet rest + 5 
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min additional rest in the quiet rest session) did not seem to be sufficient, as 

CPM magnitude was significantly reduced following quiet rest. Reasons for these 

differences between young healthy adults and healthy middle aged women could 

be related to reduced hepatic and renal metabolism as people age (Klotz, 2009). 

The specific molecular role of CPM is still debatable; however, opioidergic, 

serotonergic and noradrenergic mechanisms have been implicated (Le Bars & 

Villanueva, 1988; Le Bars et al., 1992; Le Bars et al., 1981; Roerig, Fujimoto, & 

Tseng, 1988; Yaksh, 1985). As such, clearance of the specific neurotransmitters 

released by CPM could be reduced with age (Karrer, McLaughlin, Guaglianone, 

& Samanez-Larkin, 2019; Seals & Esler, 2000), making the CPM effect last 

longer. While age could be one reason for the difference between the two 

protocols, other differences are also possible. For example, expectations of a 

painful response has been shown to influence CPM magnitude (France et al., 

2016) where anticipating a lower noxious conditioning stimulus results in greater 

CPM magnitude. It is possible that participants in the current study since they 

were familiarized to CPM in the first session, unlike in the previous study 

(Alsouhibani et al., 2018), had a higher expectation for the conditioning stimulus 

in the following sessions resulting in a lower CPM magnitude with longer lasting 

effects. The range of CPM magnitude in our previous study of young healthy 

adults was 32-40% (Alsouhibani et al., 2018) compared with 11-28% in the 

current study.  
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CPM responders and non-responders 

Our results showed that 1) differences between sites (deltoid and 

quadriceps) within the same CPM protocol, and 2) differences between sessions 

within the same site. To our knowledge, this is the first study to report differences 

in CPM responders and non-responders at different sites of measurement within 

the same CPM protocol. For example, the same person could be a CPM 

responder at the deltoid muscle but not quadriceps muscle. Previously, studies 

have shown disagreement in the number of CPM responders and non-

responders between different CPM protocols suggesting that CPM may have 

different inhibitory effects using different modalities (Vaegter et al., 2018). In the 

current study, however, we show that the inhibitory effects of CPM might not be 

the same for different muscles using the same modality. Although CPM is 

considered a systemic response, it may exert differential inhibitory effects on 

different muscles. In a recent study, the effects of CPM on the nociceptive 

withdrawal reflex differed based on the muscle tested (Jure, Arguissain, Biurrun 

Manresa, & Andersen, 2019) with inhibitory effects on some muscles but not 

others. This suggests that within the same individual the inhibitory effects of CPM 

may be site specific. The reasons for this deferential effect, however, is not 

known and warrants further study. We could speculate that differences in body 

composition between the two sites may explain this difference. Previously, lean 

mass was shown to be related to CPM in adolescents (Stolzman & Hoeger 
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Bement, 2016). In the current study, however, body composition did not explain 

this difference as body composition was not related to CPM. 

Similar to the moderate consistency between sites (within the same CPM 

trial), a moderate consistency between sessions (within the same site) was 

observed in this study only in individuals with FMS. The absence of a significant 

agreement among CPM responders and non-responders in healthy participants 

between sessions could possibly be attributed to the inherit nature of CPM being 

a dynamic process. Multiple biopsychosocial factors have been shown to effect 

CPM (Hermans et al., 2016), which are known to fluctuate between sessions. For 

example, attentional factors have been shown to effect CPM such that if 

participants are given instructions to focus on the test stimulus compared to no 

instructions, greater CPM magnitude is observed (Defrin, Tsedek, Lugasi, 

Moriles, & Urca, 2010). While instructions to all participants were the same in the 

current study (i.e. to focus on the test stimulus), perhaps some participants were 

not consistent in their focus to the test stimuli during both sessions (e.g. the 

instruction to focus on the test stimulus was ignored in one session). In addition, 

expectations were shown to effect CPM magnitude where expecting lower pain 

(hypoalgesia) during CPM, results in greater CPM magnitude compared to 

expecting no change or greater pain (hyperalgesia) (France et al., 2016). While 

not measured in this study, it is possible that expectations of participants 

regarding CPM varied across sessions effecting its consistency. These 

hypotheses, however, requires further investigation. 
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Exercise-induced hypoalgesia  

In the current study, EIH (i.e., increase in PPTs) occurred locally and to a 

lesser extent systemically in both groups. Previous research have shown that 

individuals with FMS have either worse or more variable pain responses to 

exercise compared to healthy controls. The significant hypoalgesic response in 

individuals with FMS found in this study, in contrast to previous studies (Kadetoff 

& Kosek, 2007; Staud et al., 2005), could either be explained by the permission 

of medications use in this study and/or the higher functioning group recruited in 

this study. In previous studies participants with FMS were usually asked to 

eliminate medication use at least 2 weeks prior to the study (e.g. [Staud et al., 

2005]), unlike the current study where medication use was allowed. However, 

numerous studies have reported the poor adherence of individuals with FMS to 

exercise, mainly due to pain exacerbation following exercise. It is not known 

whether continued use of medications will enhance pain relief following exercise 

and thereby adherence would improve. In addition, whether the effects of 

exercise interacts with the use of medications is currently unknown.  

The most interesting result of this study, however, is the distinctive effects 

of exercise on CPM responders and non-responders. Individuals who were 

classified as CPM non-responders prior to exercise experienced an enhanced 

CPM following exercise only systemically at the non-exercising muscle (i.e. the 

deltoid), regardless of EIH response, suggesting activation of descending 

inhibitory pathways. While individuals who were classified as CPM responders 
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prior to exercise experienced a reduction in CPM following exercise, regardless 

of EIH response. These responses occurred in both healthy controls and 

individuals with FMS. Interestingly, CPM was reduced following exercise in 

young healthy adults who report systemic EIH (Alsouhibani et al., 2018). 

Alternatively, when performing exercise immediately following CPM, hypoalgesia 

does not occur (Gajsar, Nahrwold, Titze, Hasenbring, & Vaegter, 2018). Thus, 

our results along with these studies suggest that CPM and systemic EIH may 

have similar mechanisms.  

Following exercise, there was no change in CPM at the exercising muscle 

in CPM non-responders which could be explained by the fact that the inhibitory 

effects of CPM omits the spinal segment of the corresponding conditioning 

stimulus (Le Bars, Dickenson, & Besson, 1979b). Participants reported severe 

pain with our exercise protocol, thus the exercise may have acted as a 

conditioning stimulus. If the exercise in this study was considered a conditioning 

stimulus activating the inhibitory system, then the systemic inhibition may have 

omitted the quadriceps region; accordingly, no change was observed in CPM at 

the quadriceps region. An alternative explanation could be that the mechanism 

by which local hypoalgesia occurs following exercise is different than systemic. 

These findings, nevertheless could have important clinical implications; because 

CPM may be activated at sites distal from the exercising muscle in individuals 

with low CPM, therapists may advise patients to exercise the entire body for 

maximal benefits of exercise.  
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There is some evidence showing that certain treatments are only effective 

in individuals with low CPM. For example, Yarnitsky et al. (Yarnitsky et al., 2012) 

have shown that in patients with neuropathic pain duloxetine may enhance the 

CPM response only in individuals who have low CPM. Other treatments such as 

joint mobilization, and transcutaneous electrical nerve stimulation have also been 

shown to activate CPM (Courtney Steffen, Fernandez-de-Las-Penas, Kim, & 

Chmell, 2016; Dailey et al., 2013). Relevant to exercise, transcranial direct 

current stimulation to the motor cortex have been shown to enhance the CPM 

response (Flood et al., 2016). Similarly, exercise is known to activate the motor 

cortex, which may have potentially enhanced the CPM response in individuals 

with inefficient CPM in the current study.  

Along with the increase in PPTs and the CPM changes following exercise, 

was a reduction in S-PCS in both groups. This reduction occurred despite 

unchanged pain reports of the ice water. This change was noticeable by 

participants as one participant stated after she completed the S-PCS that 

“although the pain [of the ice water bath] was similar to the previous test, I wasn’t 

worried as much after the exercise.” In longer clinical trials, changes in situational 

pain catastrophizing has been shown to precede changes in pain in individuals 

with FMS (Campbell et al., 2012). In addition, these changes in catastrophizing 

were shown to predict changes in pain but not vice versa. One potential 

mechanism in which exercise training reduces pain is by inducing changes in 

pain catastrophizing. Another possibility, as suggested by Campbell et al., is that 

the acute reduction in pain catastrophizing may enhance adherence to exercise 
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rehabilitation programs that will consecutively reduce clinical pain. However, 

future studies are needed to test this hypothesis.  

Vibration perception threshold 

Baseline vibration perception in this study was reduced in people with 

FMS compared with healthy controls only at the deltoid site. Research have 

shown that deficits in vibration in individuals with musculoskeletal pain could be 

caused by abnormal central processing rather than peripheral sensitivity (Geber 

et al., 2008). Experimentally induced pain increased vibration thresholds in 

healthy individuals (i.e. worse sensitivity) (Apkarian et al., 1994), a phenomenon 

termed the “touch gate.” These vibration thresholds were shown to be elevated in 

patients with chronic pain (Hollins et al., 1996; Shakoor et al., 2008) including 

FMS (da Silva et al., 2013). In the current study, vibration threshold was only 

reduced at the deltoid which could be related to pain itself. A common tender 

point in patients with FMS is between the shoulder joint and neck. Although the 

VPT measurement at the deltoid was not exactly at these tender points, previous 

research have shown that touch gating (i.e. the influence of pain on vibrotactile 

sensation) could possibly be related to dermatomal or somatotopical organization 

(Bolanowski, Maxfield, Gescheider, & Apkarian, 2000). Meaning that touch gating 

only occurs when the location of noxious and innocuous stimuli are localized 

within the dermatomal or somatotopical region. While pain was not measured at 

the time of measurement, possibly pain in the shoulder region in individuals with 

FMS may have altered the VPT at the deltoid site.   
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Results of this study showed a reduction in VPT following exercise only 

systemically at the index finger. This result parallels the enhancement of CPM 

systemically. The lack of a change in the quadriceps site could be potentially 

explained by the pain at that site at the time of measurement in some individuals. 

There was certainly more variability in the pain at time of VPT measurement as 

well as the change in VPT response at the quadriceps. This explanation, 

however, is not fully supported by our results as there was no correlation 

between pain at time of measurement and VPT measurement at the quadriceps. 

Changes in VPT after non-pharmacological treatments have been rarely 

investigated. One study, however have demonstrated a reduction in VPT 

following joint mobilization in individuals with knee osteoarthritis (Courtney 

Steffen, Fernandez-de-Las-Penas, Kim, & Chmell, 2016). Further studies are 

needed to determine whether changes in vibration sense follow changes in pain, 

potentially making it a clinical tool for pain sensitivity.  

Correlations  

We found that higher temperature of the skin was only related to vibration 

at the abdomen site (i.e. better perception). The effect of temperature changes 

on vibration thresholds were mixed in the literature with some studies showing as 

temperature increases threshold decreases (i.e. better vibration sensitivity) 

(Green, 1977; Harazin & Harazin-Lechowska, 2007) and others showing no 

effect (Bolanowski et al., 2000; Wiles, Pearce, Rice, & Mitchell, 1991). The 

results in this study suggest that the relation between temperature and vibration 
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is likely site dependent. Perhaps this relation is more likely to occur with glabrous 

skin. 

In the present study, pain intensity during ice water bath immersion and 

during exercise was not correlated to neither CPM nor EIH. This finding is in line 

with our previous finding in healthy young adults (Alsouhibani et al., 2018) as well 

as the finding of others (Granot et al., 2008; Lemley et al., 2015; Vaegter et al.; 

Weissman-Fogel et al., 2008). It has been suggested previously that the intensity 

of the conditioning stimulus but not the pain perceived from it is related to the 

magnitude of CPM (Nir et al., 2011). Similarly, if exercise works through 

activating the CPM response it would be logical that the intensity of exercise 

would be related to the magnitude of EIH. This was not supported by the present 

study as there were no correlation between exercise time and EIH. It is possible, 

however, that the exercise intensity, being percent MVC instead of time to 

exercise failure, would be related to EIH. This has not been tested in the current 

study as all participants exercised at a similar intensity.  

Finally, S-PCS was only related to CPM in individuals with FMS at the 

quadriceps following exercise. This relation was positive indicating higher 

negative thoughts and feelings about the ice water bath after the CPM protocol 

resulted in higher CPM. This relation, however was only true for one calculation 

method and was not consistent with other methods of calculation. Additionally, S-

PCS was related to pain intensity only in healthy control participants and not in 

individuals with FMS. The negative thoughts and feelings individuals with FMS 

experience during the ice water bath may possibly be a complex one not purely 
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related to pain. Unlike healthy controls where their negative feelings are only 

associated with the simple pain experience during ice water.  

Conclusion  

In summary, this study demonstrated that in both healthy controls and 

individuals with FMS a single isometric fatiguing exercise increases PPTs (i.e. 

EIH) locally at the exercising muscle and systemically at a distant muscle. In 

persons with low CPM, regardless of their EIH response, isometric exercise 

enhances CPM systemically. These changes were coupled with lower sensitivity 

to vibration sense systemically and an overall decrease in situational 

catastrophizing toward the noxious ice water bath. We propose the use of a 

personalized approach towards pain management with exercise where varying 

the exercised limbs in individuals who have impaired CPM may produce the 

greatest results. Further studies are needed investigating the effects of these 

results while using specific pain medications.  

  



120 
 

 

IV. DISCUSSION AND CONCLUSION 

This dissertation was the first to examine the effects of isometric exercise 

on CPM and vibration perception in healthy individuals and individuals with FMS. 

While pain thresholds and temporal summation following isometric exercise has 

received attention in the literature, there is a scarcity of information regarding 

CPM and vibration sense in individuals with and without FMS, an important part 

of the pain processing system. In addition, there is limited evidence on the 

psychosocial factors that impact EIH and CPM following isometric exercise in 

individuals with and without FMS. The aims of this dissertation were to 1) 

examine the effect of isometric exercise on vibratory sense and pain inhibition in 

individuals with and without FMS, and 2) determine factors that impact the pain 

response following isometric exercise in individuals with and without FMS. In 

study one, we examined the effects of a 30% MVC static contraction of the knee 

extensors for 3 minutes in young healthy adults on CPM. We also examined the 

effects of body composition, self-reported physical activity, and pain 

catastrophizing on the EIH and CPM response following the isometric 

contraction. In study two, we examined the effects of a 30% MVC static 

contraction of the knee extensors until exhaustion on CPM and vibration sense in 

individuals with and without FMS. Biopsychosocial factors including, body 

composition, physical activity, pain catastrophizing, fear of movement, and pain 

self-efficacy were also investigated in relation to CPM and EIH following the 

isometric contraction.  
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In study one we tested the first aim (sub aim 1) and found that following an 

isometric contraction of the knee extensors for 3 minutes in young healthy adults, 

EIH occurred locally at the exercising muscle (i.e. increase in PPTs at the 

quadriceps muscle). Considerable variability, however, regarding the systemic 

response (i.e. PPTs at the upper trapezius muscle) was observed, indicating that 

the exercise might not have been long enough to elicit a systemic EIH response 

in all participants. Nevertheless, some individuals (n=9) did experience EIH 

systemically (i.e. at the upper trapezius), and the CPM response following the 

exercise in those individuals was significantly reduced compared with individuals 

who didn’t experience EIH systemically. This suggests that different mechanisms 

may be activated for local and systemic EIH, where systemic EIH might employ a 

mechanism similar to CPM. In addition, CPM was attenuated following exercise 

and quiet rest, which may be attributed to an insufficient washout period. In this 

chapter we also tested the second aim (sub aim 1) and found that the 

biopsychosocial factors (i.e. body composition, self-reported physical activity, and 

pain catastrophizing) were not shown to be related to either EIH or CPM 

following exercise. This lack of relations was possibly due to the homogeneity of 

the sample that was recruited as most of the participants were lean, active and 

had low scores of catastrophizing.  

In study two we tested the first aim (sub aim 2) by having individuals with 

and without FMS perform an isometric contraction of the knee extensors (30% 

MVC) until task failure. We found that EIH occurred locally at the exercising 

muscle (i.e. the quadriceps) and systemically (i.e. the deltoid) for both groups. In 
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addition, we found that the CPM response following isometric exercise was 

dependent on whether individuals were CPM responders or non-responders at 

baseline (pre-exercise). Individuals who were CPM non-responders (i.e. they had 

impaired CPM) reported an increase in CPM following exercise at the deltoid 

muscle only (i.e. systemically) with no significant change at the exercising muscle 

(i.e. locally). In individuals who had a normal functioning CPM response, CPM 

was reduced after exercise and quiet rest at both sites (deltoid and quadriceps). 

Furthermore, vibration sense was better perceived in both groups following 

exercise systemically (i.e. at the index finger) with no significant change at the 

exercising muscle (i.e. the quadriceps muscle). This enhancement in vibration 

sense paralleled the enhancement of CPM systemically (at the deltoid muscle). 

However, no correlation was observed between CPM magnitude and change in 

VPT following exercise. Therefore, whether the systemic enhancement in 

vibratory sense was a direct result of CPM enhancement renders further 

investigation.  

In this chapter we also tested the second aim (sub aim 2) and found that 

the psychosocial factors (i.e. body composition, physical activity (self-report and 

accelerometer-measured), pain self-efficacy, fear of movement, and pain 

catastrophizing) were not shown to be related to either EIH or CPM following 

exercise except for pain self-efficacy in healthy individuals and situational pain 

catastrophizing. Pain self-efficacy in healthy controls was moderately correlated 

to absolute EIH at the quadriceps and situational pain catastrophizing was 

significantly reduced following exercise for both groups compared with quiet rest.  
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Exercise Induced Hypoalgesia 

In this dissertation EIH was tested following an isometric contraction (30% 

MVC) of the knee extensors held for 3 minutes in young adults and until 

exhaustion in middle aged adults and individuals with FMS. EIH occurred only 

locally, at the exercising muscle, following the 3 minute contraction in young 

adults while both local and systemic EIH occurred following the contraction until 

exhaustion in middle aged adults and individuals with FMS. Previous studies 

have suggested that a stronger and long lasting EIH occurs following low 

contractions held until exhaustion compared with low contractions held for 

shorter periods (Hoeger Bement et al., 2008). Similar results were demonstrated 

in this dissertation in that systemic EIH occurred only with the isometric 

contraction held to exhaustion.   

An important finding is that systemic EIH occurred in healthy middle-aged 

women and women with fibromyalgia. Previous literature has shown variability in 

the pain response following the performance of isometric contractions in women 

with fibromyalgia (Hoeger Bement et al., 2011). Interestingly, young adults did 

not report systemic EIH following a submaximal isometric contraction held for 

three minutes, which may have been too low of a dose. Thus, these results add 

to the current literature showing the benefits of exercise in the management of 

chronic pain in that exercise may produce widespread pain relief that is not 

localized to the exercising muscle. Furthermore, the results suggest that 

localized exercise to exhaustion may be beneficial. 
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Conditioned Pain Modulation 

In study one, CPM occurred only during ice water bath immersion of the 

foot and for most individuals (28/30). This is in contrast to what we found in study 

two in that CPM (increase in PPTs) occurred during and after the ice water bath 

immersion, which is similar to what others have reported (Lewis et al., 2012; Pud 

et al., 2005). Recommendations of CPM measurement (Yarnitsky et al., 2015) 

state that CPM should be measured following the conditioning stimulus. This 

discrepancy between studies one and two may be explained by sex differences 

because the group is predominantly women in study two. One study using a 

protocol similar to the one used in this dissertation demonstrated that in men 

CPM occurred only during submersion of the hand in ice water bath while in 

women CPM occurred during and after ice water submersion (Vaegter et al., 

2015). However, in study one, when analyses of CPM were repeated with sex as 

a between subject factor, the results did not change (meaning CPM occurred 

only during ice). 

Slight differences in CPM protocol could also explain these differences. 

The temperature of ice water used was higher in the CPM protocol (i.e. the 

intensity of conditioning stimulus was less) in study two (6°) compared with study 

one (0°), and the duration of foot submersion was fixed to 2 minutes in study two 

and averaged 99.7 seconds in study one (i.e. individuals remove the foot as soon 

as PPTs were complete). Perhaps the reduced intensity of the conditioning 

stimulus and the longer foot submersion in ice water bath in study two yielded 

longer lasting effects; thus, CPM occurred during and after ice water submersion. 
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These results, nevertheless, may have future research and potentially clinical 

implications, as the choice of measuring the test stimulus during or after the 

conditioning stimulus may influence the results and interpretation.  

In this dissertation we found that CPM following quiet rest was reduced in 

both studies, despite longer washout period in study two. While PPTs in study 

one returned to baseline before the next CPM measurement, in study two PPTs 

were still elevated before exercise or quiet rest. This suggests that a static QST 

measure (e.g., PPTs) may not be suitable as a restorative indicator of a dynamic 

QST (e.g., CPM). With repeated CPM measurements, previous studies have 

included washout periods that ranged from 2-60 minutes (Kennedy et al., 2016) 

with some studies suggesting PPTs returning to baseline after 15 minutes (Lewis 

et al., 2012). Surprisingly, the CPM protocol in study two was piloted in young 

healthy adults and found that a washout period of 45 minutes was sufficient to 

restore CPM. This suggests that a washout period may potentially depend on 

age or sex of the sample tested. Perhaps a sample that is either older or 

predominantly women need longer washout periods to fully restore CPM. This 

reasoning, however, needs further investigation.  

Somatosensory Changes Following Exercise  

In this dissertation, the somatosensory assessments following isometric 

exercise included CPM and vibration sense. In both studies one and two, the 

reduction in CPM at the exercising muscle (i.e. the quadriceps) following exercise 

was comparable to the reduction following quiet rest, despite a strong local 
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hypoalgesic response (i.e. increase in PPTs following exercise). Therefore, 

exercise does not appear to affect CPM when measured at the exercising 

muscle. In contrast to the CPM results at the exercising muscle, the change in 

CPM following exercise at a muscle distal from the exercising muscle (i.e. the 

upper trapezius or the deltoid) was dependent on the baseline CPM response 

(i.e. CPM responders or non-responders; study two) and whether participants 

reported systemic EIH (i.e. systemic EIH responders and non-responders; study 

one). These findings along with previous findings that EIH was reduced following 

CPM (Gajsar et al., 2018) suggest that both systemic EIH and CPM have similar 

manifestations and may share mechanisms.  

Although the studies in this dissertation were not designed for conclusions 

regarding neurobiological mechanisms, some inferences can be made from 

previous studies. Both CPM and exercise have been shown to have similar 

cardiovascular reactivity responses that activates baroreceptors (Cui, Wilson, 

Shibasaki, Hodges, & Crandall, 2001; Seals et al., 1994). This activation have 

been shown to stimulate areas in the brainstem that are involved in descending 

pain inhibition such as the locus coeruleus, nucleus tractus solitarius, and PAG 

(Bruehl & Chung, 2004; Ghione, 1996), which triggers the opioidergic, 

serotonergic, or noradrenergic mechanisms, or their interaction, to produce 

hypoalgesia systemically. Therefore, it is possible that once the specific 

mechanism is activated, and the neurotransmitter involved has been utilized, 

reactivation immediately with CPM or exercise results in a reduced release of this 

neurotransmitter. This is supported by the reduced CPM response following the 
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insufficient quit rest washout period in study one. Hypoalgesia following exercise 

locally, however, may employ different mechanisms as CPM was unaffected. 

Considering that during exercise there is vasodilation at the exercising muscle 

(Seals et al., 1994), in contrast to vasoconstriction with CPM and with exercise at 

non-exercising muscles, a peripheral mechanism is possible such as modulation 

of the immune system (e.g. increasing anti-inflammatory cytokines and reducing 

pro-inflammatory cytokines at the exercising muscle) (Sluka et al., 2018). 

In study one all participants except 2 were CPM responders but there 

were variations in the systemic EIH response, whereas in study two there were 

variations in the baseline CPM response but less variation in the systemic EIH 

response. Additionally, the finding in study two that CPM was restored following 

exercise only at a site distal from the exercising muscle (i.e. the deltoid) suggests 

that exercise may preferentially restore CPM systemically (i.e. at sites other than 

the exercising muscle) only in individuals with impaired CPM. Previous studies, in 

individuals with neuropathic pain, duloxetine, a serotonin norepinephrine 

reuptake inhibitor, and tapentadol, an opioid agonist and norepinephrine 

reuptake inhibitor, were effective in individuals with low CPM (Niesters et al., 

2014; Yarnitsky et al., 2012). The common neurotransmitter in both studies was 

norepinephrine, which is known to be activated with exercise (Cui et al., 2001; 

Seals et al., 1994). Thus, perhaps CPM was restored by the release of 

norepinephrine which interacted with opioid or serotonin to produce hypoalgesia 

systemically.  
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While these results are valuable in determining the mechanisms following 

a single bout of exercise, the mechanisms following exercise training remains 

elusive and worth investigating in future research as exercise training constitutes 

the foundation of rehabilitation programs. Clinically, these results can be 

incorporated in different ways. For example, a clinician may advise exercising the 

whole body for pain relief for activation of descending inhibitory mechanisms.  

Changes in the somatosensory system following exercise also included 

changes in vibratory sense. In study two, vibration sense improved following 

exercise at a site distal from the exercising muscle (i.e. the index finger). This 

systemic improvement paralleled the systemic improvement in CPM. However, 

there was no significant correlation between the change in vibration sense and 

CPM, suggesting it may not be directly related. The fact that vibration sense did 

not change locally at the exercising muscle (i.e. the quadriceps) could either be 

because of the pain at the time of measurement or the lack of change in CPM 

locally; although there was no significant correlation between pain perceived at 

the time of measurement and VPTs or the change in VPTs. Because reduced 

vibration sense has been linked to function (Kavchak et al., 2012; Shakoor et al., 

2012; Uszynski et al., 2015) and it has been shown that individuals with FMS 

have reduced vibratory sense and functional performance (Costa et al., 2017; da 

Silva et al., 2013), it is worthwhile for future research to investigate whether an 

enhancement in VPT long term would lead to better functional performance.  



129 
 

 

Biopsychosocial Factors 

The second aim of this dissertation was to test whether biopsychosocial 

factors would be related to the EIH response. The factors that were tested 

included, body composition, physical activity, pain catastrophizing, fear of 

movement, and pain self-efficacy. In the first study none of the factors were 

significantly correlated with the EIH response in young healthy adults. This was 

potentially due to the homogeneity of the sample as most individuals who 

participated were classified as lean, active and had low pain catastrophizing 

scores. In study two, none of the factors were related to the EIH response except 

for pain self-efficacy in healthy controls. Although this relation was not robust 

(e.g. it was only related to absolute measurement of EIH at the quadriceps), pain 

self-efficacy has recently been shown to be an important factor in pain 

management (Costa Lda, Maher, McAuley, Hancock, & Smeets, 2011). In fact, 

previous literature shows that individuals who have higher pain self-efficacy 

scores are more likely to benefit from exercise rehabilitation programs and 

therefore adhere to them (Frost, Klaber Moffett, Moser, & Fairbank, 1995; 

Tonkin, 2008). A common issue in individuals with FMS is adherence to exercise 

programs (Russell et al., 2018; van Santen et al., 2002); thus, we hypothesized 

that individuals who have greater pain relief following isometric exercise would be 

more confident in carrying out activities despite the pain (i.e. higher pain self-

efficacy scores). This relation, however, was not observed in individuals with 

FMS, possibly because pain relief following exercise in this population is 

multifactorial and not dependent on one factor. Pain processing in individuals 
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with FMS is complex and perhaps other factors influenced pain relief following 

exercise irrespective of pain self-efficacy.  

Recent studies have suggested that body composition and physical 

activity may play a role in EIH and CPM (Lemley et al., 2015; Naugle & Riley, 

2014; Stolzman et al., 2015; Stolzman & Hoeger Bement, 2016).This relation is 

contrary to the findings in this dissertation. In studies one and two, body 

composition and both self-reported and accelerometer-measured physical activity 

were not related to either EIH or CPM. In study one, the lack of associations 

could be due to the homogeneity of the sample as most individuals were active 

and lean. The participants’ physical activity level were either classified as 

moderate or vigorous on the IPAQ and had an average BMI of 23 which is 

considered normal. However, this explanation is not supported by the findings in 

the second study as the sample was more heterogeneous and there were still no 

relations. The discrepancies throughout the literature could be related to the 

differences in EIH and CPM measurement or differences in body composition 

and physical activity measurements. The findings in this dissertation, however, 

are similar to a recent study showing no correlation between physical activity 

assessed via accelerometer and EIH in healthy young adults (Black et al., 2017). 

In addition, another study showed no correlation of both self-reported and 

accelerometer-measured physical activity with pain sensitivity measures, 

including CPM, in individuals with FMS even when controlled for BMI and age 

(Merriwether et al., 2018). It is possible that the effects of body composition and 

physical activity on EIH or CPM are only observed at a certain threshold or 
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simply non-linear in nature. Conversely, because physical activity was only 

measured during one week of participation in the study, it is not known whether 

physical activity levels were routine or recently changed, which may change the 

relation with pain. Some studies have suggested that initial engagement in 

physical activity may increase pain in individuals with FMS (Kop et al., 2005) but 

would reduce pain when engaged routinely.  

In this dissertation, pain catastrophizing levels (dispositional) were not 

related to EIH or CPM. However, in the second study we found that situational 

catastrophizing towards the ice water bath (the conditioning stimulus during 

CPM) was reduced following exercise in both groups, despite no change in pain 

intensity. This finding suggests that a single bout of exercise effects how people 

view pain despite no change in the pain intensity. In longer interventional clinical 

trials, situational catastrophizing about pain has been shown to change before 

pain intensity (Campbell et al., 2012). In addition, changes in situational pain 

catastrophizing predicted changes in pain but not vice versa, suggesting that 

perhaps after repeated bouts of exercise changes in pain will follow. Therefore, 

changes in psychosocial variables directly related to pain may be important in 

inducing changes in pain intensity. Whether this will change will lead to better 

adherence is not known and worth investigating.  

Fear of movement has been shown to be an important factor related to 

symptoms of FMS (Nijs et al., 2013). To reduce fear of movement clinically, using 

a fear avoidance behavior-based intervention such as graded exposure has 

shown promise in pain management (George & Zeppieri, 2009). However, in this 
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dissertation, despite individuals with FMS reporting higher TSK values (i.e. 

greater kinesiophobia) it did not influence the hypoalgesia experienced after the 

isometric contraction. The average TSK values in this dissertation in individuals 

with FMS were comparable to a previous study (Roelofs et al., 2007) of more 

than 300 individuals with FMS (24.5 vs. 26.1, respectively). It is possible that 

because there is no movement with isometric exercise there was no relation 

between fear of movement and EIH. Thus, potentially, using isometric exercise in 

individuals with high levels of kinesiophobia in the clinic may be useful.  

Summary 

This dissertation demonstrated that a single bout of isometric exercise 

produces hypoalgesia in healthy young and middle aged adults as well as 

individuals with FMS. Local hypoalgesia occurred following submaximal isometric 

contractions held for three minutes and until exhaustion, whereas systemic 

hypoalgesia occurred only after the contraction held until exhaustion. In study 

one, CPM was shown to be reduced following an isometric contraction held for 

three minutes in areas where systemic hypoalgesia occurred (i.e. upper trapezius 

muscle); local hypoalgesia (EIH at the exercising muscle) did not affect CPM. In 

study two, a single bout of isometric contraction held until fatigue activated CPM 

systemically (i.e. the deltoid muscle) in individuals with impaired CPM 

irrespective of increase in PPTs following the contraction (i.e. EIH) and health 

status (healthy control or FMS). Taken together, these results suggest that CPM 

and EIH may have similar manifestations and modulatory effects such as similar 
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cardiovascular responses and stimulation of specific brain regions activating 

opioidergic, serotonergic, or noradrenergic mechanisms. Additionally, these 

changes were coupled with an increase in vibration perception sensitivity 

systemically (i.e. the index finger) and a reduction in situational pain 

catastrophizing. This suggests that deficits in vibration sense which is thought to 

be centrally mediated by pain may improve with isometric exercise. Which has 

the potential, pending further research, to enhance functional performance. 

Future studies investigating the long term effects of exercise on CPM, VPT, and 

S-PCS are important to help clinicians in the targeted use of exercise.  

 

  



134 
 

 

BIBLIOGRAPHY 

Alappattu, M. J., Bishop, M. D., Bialosky, J. E., George, S. Z., & Robinson, M. E. 
(2011). Stability of behavioral estimates of activity-dependent modulation of 
pain. Journal of Pain Research, 4, 151-157. doi:10.2147/JPR.S18105 [doi] 

Alsouhibani, A., Vaegter, H. B., & Hoeger Bement, M. (2018). Systemic exercise-
induced hypoalgesia following isometric exercise reduces conditioned pain 
modulation. Pain Medicine (Malden, Mass.), doi:10.1093/pm/pny057 [doi] 

American Pain Foundation. (2006). Voices of chronic pain survey. (). Baltimore, 
MD:  

Apkarian, A. V., Stea, R. A., & Bolanowski, S. J. (1994). Heat-induced pain 
diminishes vibrotactile perception: A touch gate. Somatosensory & Motor 
Research, 11(3), 259-267.  

Arendt-Nielsen, L., & Petersen-Felix, S. (1995). Wind-up and neuroplasticity: Is 
there a correlation to clinical pain? European Journal of 
Anaesthesiology.Supplement, 10, 1-7.  

Arendt-Nielsen, L., Sluka, K. A., & Nie, H. L. (2008). Experimental muscle pain 
impairs descending inhibition. Pain, 140(3), 465-471. 
doi:10.1016/j.pain.2008.09.027 [doi] 

Arendt-Nielsen, L., Andresen, T., Malver, L. P., Oksche, A., Mansikka, H., & 
Drewes, A. M. (2012). A double-blind, placebo-controlled study on the effect 
of buprenorphine and fentanyl on descending pain modulation: A human 
experimental study. The Clinical Journal of Pain, 28(7), 623-627. 
doi:10.1097/AJP.0b013e31823e15cb [doi] 

Arendt-Nielsen, L., & Yarnitsky, D. (2009). Experimental and clinical applications 
of quantitative sensory testing applied to skin, muscles and viscera. The 
Journal of Pain : Official Journal of the American Pain Society, 10(6), 556-
572. doi:10.1016/j.jpain.2009.02.002 [doi] 

Avin, K. G., & Law, L. A. (2011). Age-related differences in muscle fatigue vary 
by contraction type: A meta-analysis. Physical Therapy, 91(8), 1153-1165. 
doi:10.2522/ptj.20100333 [doi] 

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. 
Psychological Review, 84(2), 191-215.  



135 
 

 

Bandura, A., O'Leary, A., Taylor, C. B., Gauthier, J., & Gossard, D. (1987). 
Perceived self-efficacy and pain control: Opioid and nonopioid mechanisms. 
Journal of Personality and Social Psychology, 53(3), 563-571.  

Bannister, K., & Dickenson, A. H. (2017). The plasticity of descending controls in 
pain: Translational probing. The Journal of Physiology, 595(13), 4159-4166. 
doi:10.1113/JP274165 [doi] 

Bannister, K., Lockwood, S., Goncalves, L., Patel, R., & Dickenson, A. H. (2017). 
An investigation into the inhibitory function of serotonin in diffuse noxious 
inhibitory controls in the neuropathic rat. European Journal of Pain (London, 
England), 21(4), 750-760. doi:10.1002/ejp.979 [doi] 

Bannister, K., Patel, R., Goncalves, L., Townson, L., & Dickenson, A. H. (2015). 
Diffuse noxious inhibitory controls and nerve injury: Restoring an imbalance 
between descending monoamine inhibitions and facilitations. Pain, 156(9), 
1803-1811. doi:10.1097/j.pain.0000000000000240 [doi] 

Basbaum, A. I. (1981). Descending control of pain transmission: Possible 
serotonergic-enkephalinergic interactions. Advances in Experimental 
Medicine and Biology, 133, 177-189. doi:10.1007/978-1-4684-3860-4_9 
[doi] 

Beitz, A. J. (1982). The sites of origin brain stem neurotensin and serotonin 
projections to the rodent nucleus raphe magnus. The Journal of 
Neuroscience : The Official Journal of the Society for Neuroscience, 2(7), 
829-842.  

Bement, M. K., & Sluka, K. A. (2005). Low-intensity exercise reverses chronic 
muscle pain in the rat in a naloxone-dependent manner. Archives of 
Physical Medicine and Rehabilitation, 86(9), 1736-1740. doi:S0003-
9993(05)00356-4 [pii] 

Bennett, R. M., Friend, R., Jones, K. D., Ward, R., Han, B. K., & Ross, R. L. 
(2009). The revised fibromyalgia impact questionnaire (FIQR): Validation 
and psychometric properties. Arthritis Research & Therapy, 11(4), R120. 
doi:10.1186/ar2783 [doi] 

Bishop, M. D., Beneciuk, J. M., & George, S. Z. (2011). Immediate reduction in 
temporal sensory summation after thoracic spinal manipulation. The Spine 
Journal : Official Journal of the North American Spine Society, 11(5), 440-
446. doi:10.1016/j.spinee.2011.03.001 [doi] 

Bjorkedal, E., & Flaten, M. A. (2012). Expectations of increased and decreased 
pain explain the effect of conditioned pain modulation in females. Journal of 
Pain Research, 5, 289-300. doi:10.2147/JPR.S33559 [doi] 



136 
 

 

Black, C. D., Huber, J. K., Ellingson, L. D., Ade, C. J., Taylor, E. L., Griffeth, E. 
M., . . . Sutterfield, S. L. (2017). Exercise-induced hypoalgesia is not 
influenced by physical activity type and amount. Medicine and Science in 
Sports and Exercise, 49(5), 975-982. doi:10.1249/MSS.0000000000001186 
[doi] 

Bobinski, F., Ferreira, T. A. A., Cordova, M. M., Dombrowski, P. A., da Cunha, 
C., Santo, C C D E, . . . Santos, A. R. S. (2015). Role of brainstem serotonin 
in analgesia produced by low-intensity exercise on neuropathic pain after 
sciatic nerve injury in mice. Pain, 156(12), 2595-2606. 
doi:10.1097/j.pain.0000000000000372 [doi] 

Bogdanov, V. B., Vigano, A., Noirhomme, Q., Bogdanova, O. V., Guy, N., 
Laureys, S., . . . Schoenen, J. (2015). Cerebral responses and role of the 
prefrontal cortex in conditioned pain modulation: An fMRI study in healthy 
subjects. Behavioural Brain Research, 281, 187-198. 
doi:10.1016/j.bbr.2014.11.028 [doi] 

Bolanowski, S. J., Gescheider, G. A., Verrillo, R. T., & Checkosky, C. M. (1988). 
Four channels mediate the mechanical aspects of touch. The Journal of the 
Acoustical Society of America, 84(5), 1680-1694. doi:10.1121/1.397184 
[doi] 

Bolanowski, S. J., Maxfield, L. M., Gescheider, G. A., & Apkarian, A. V. (2000). 
The effects of stimulus location on the gating of touch by heat- and cold-
induced pain. Somatosensory & Motor Research, 17(2), 195-204.  

Bouhassira, D., Villanueva, L., Bing, Z., & le Bars, D. (1992). Involvement of the 
subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the 
rat. Brain Research, 595(2), 353-357. doi:0006-8993(92)91071-L [pii] 

Bowker, R. M., Westlund, K. N., & Coulter, J. D. (1982). Origins of serotonergic 
projections to the lumbar spinal cord in the monkey using a combined 
retrograde transport and immunocytochemical technique. Brain Research 
Bulletin, 9(1-6), 271-278. doi:0361-9230(82)90140-X [pii] 

Brellenthin, A. G., Crombie, K. M., Cook, D. B., Sehgal, N., & Koltyn, K. F. 
(2017). Psychosocial influences on exercise-induced hypoalgesia. Pain 
Medicine (Malden, Mass.), 18(3), 538-550. doi:10.1093/pm/pnw275 [doi] 

Bruehl, S., & Chung, O. Y. (2004). Interactions between the cardiovascular and 
pain regulatory systems: An updated review of mechanisms and possible 
alterations in chronic pain. Neuroscience and Biobehavioral Reviews, 28(4), 
395-414. doi:10.1016/j.neubiorev.2004.06.004 [doi] 



137 
 

 

Burwinkle, T., Robinson, J. P., & Turk, D. C. (2005). Fear of movement: Factor 
structure of the tampa scale of kinesiophobia in patients with fibromyalgia 
syndrome. The Journal of Pain : Official Journal of the American Pain 
Society, 6(6), 384-391. doi:S1526-5900(05)00411-6 [pii] 

Campbell, C. M., Kronfli, T., Buenaver, L. F., Smith, M. T., Berna, C., 
Haythornthwaite, J. A., & Edwards, R. R. (2010). Situational versus 
dispositional measurement of catastrophizing: Associations with pain 
responses in multiple samples. The Journal of Pain : Official Journal of the 
American Pain Society, 11(5), 443-453.e2. doi:10.1016/j.jpain.2009.08.009 
[doi] 

Campbell, C. M., McCauley, L., Bounds, S. C., Mathur, V. A., Conn, L., Simango, 
M., . . . Fontaine, K. R. (2012). Changes in pain catastrophizing predict later 
changes in fibromyalgia clinical and experimental pain report: Cross-lagged 
panel analyses of dispositional and situational catastrophizing. Arthritis 
Research & Therapy, 14(5), R231. doi:10.1186/ar4073 [doi] 

Cathcart, S., Winefield, A. H., Rolan, P., & Lushington, K. (2009). Reliability of 
temporal summation and diffuse noxious inhibitory control. Pain Research & 
Management, 14(6), 433-438.  

Cecchi, F., Molino-Lova, R., Paperini, A., Boni, R., Castagnoli, C., Gentile, J., . . . 
Macchi, C. (2011). Predictors of short- and long-term outcome in patients 
with chronic non-specific neck pain undergoing an exercise-based 
rehabilitation program: A prospective cohort study with 1-year follow-up. 
Internal and Emergency Medicine, 6(5), 413-421. doi:10.1007/s11739-010-
0499-x [doi] 

Chimenti, R. L., Frey-Law, L. A., & Sluka, K. A. (2018). A mechanism-based 
approach to physical therapist management of pain. Physical Therapy, 
98(5), 302-314. doi:10.1093/ptj/pzy030 [doi] 

Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system 
disorders. overview of physical and behavioral homeostasis. Jama, 267(9), 
1244-1252.  

Costa Lda, C., Maher, C. G., McAuley, J. H., Hancock, M. J., & Smeets, R. J. 
(2011). Self-efficacy is more important than fear of movement in mediating 
the relationship between pain and disability in chronic low back pain. 
European Journal of Pain (London, England), 15(2), 213-219. 
doi:10.1016/j.ejpain.2010.06.014 [doi] 

Costa, I. D., Gamundi, A., Miranda, J. G., Franca, L. G., De Santana, C. N., & 
Montoya, P. (2017). Altered functional performance in patients with 



138 
 

 

fibromyalgia. Frontiers in Human Neuroscience, 11, 14. 
doi:10.3389/fnhum.2017.00014 [doi] 

Council, J. R., Ahern, D. K., Follick, M. J., & Kline, C. L. (1988). Expectancies 
and functional impairment in chronic low back pain. Pain, 33(3), 323-331.  

Courtney, C. A., Steffen, A. D., Fernandez-de-Las-Penas, C., Kim, J., & Chmell, 
S. J. (2016). Joint mobilization enhances mechanisms of conditioned pain 
modulation in individuals with osteoarthritis of the knee. The Journal of 
Orthopaedic and Sports Physical Therapy, 46(3), 168-176. 
doi:10.2519/jospt.2016.6259 [doi] 

Courtney, C. A., Atre, P., Foucher, K. C., & Alsouhibani, A. M. (2019). 
Hypoesthesia after anterior cruciate ligament reconstruction: The 
relationship between proprioception and vibration perception deficits in 
individuals greater than one year post-surgery 
doi://doi.org/10.1016/j.knee.2018.10.014 

Craig, C. L., Marshall, A. L., Sjostrom, M., Bauman, A. E., Booth, M. L., 
Ainsworth, B. E., . . . Oja, P. (2003). International physical activity 
questionnaire: 12-country reliability and validity. Medicine and Science in 
Sports and Exercise, 35(8), 1381-1395. 
doi:10.1249/01.MSS.0000078924.61453.FB [doi] 

Crombie, K. M., Brellenthin, A. G., Hillard, C. J., & Koltyn, K. F. (2018). 
Endocannabinoid and opioid system interactions in exercise-induced 
hypoalgesia. Pain Medicine (Malden, Mass.), 19(1), 118-123. 
doi:10.1093/pm/pnx058 [doi] 

Cui, J., Wilson, T. E., Shibasaki, M., Hodges, N. A., & Crandall, C. G. (2001). 
Baroreflex modulation of muscle sympathetic nerve activity during 
posthandgrip muscle ischemia in humans. Journal of Applied Physiology 
(Bethesda, Md.: 1985), 91(4), 1679-1686. doi:10.1152/jappl.2001.91.4.1679 
[doi] 

da Silva, L. A., Kazyiama, H. H., Teixeira, M. J., & de Siqueira, S. R. (2013). 
Quantitative sensory testing in fibromyalgia and hemisensory syndrome: 
Comparison with controls. Rheumatology International, 33(8), 2009-2017. 
doi:10.1007/s00296-013-2675-6 [doi] 

Dailey, D. L., Rakel, B. A., Vance, C. G., Liebano, R. E., Amrit, A. S., Bush, H. 
M., . . . Sluka, K. A. (2013). Transcutaneous electrical nerve stimulation 
reduces pain, fatigue and hyperalgesia while restoring central inhibition in 
primary fibromyalgia. Pain, 154(11), 2554-2562. 
doi:10.1016/j.pain.2013.07.043 [doi] 



139 
 

 

Damsgard, E., Thrane, G., Anke, A., Fors, T., & Roe, C. (2010). Activity-related 
pain in patients with chronic musculoskeletal disorders. Disability and 
Rehabilitation, 32(17), 1428-1437. doi:10.3109/09638280903567877 [doi] 

de Resende, M. A., Silva, L. F., Sato, K., Arendt-Nielsen, L., & Sluka, K. A. 
(2011). Blockade of opioid receptors in the medullary reticularis nucleus 
dorsalis, but not the rostral ventromedial medulla, prevents analgesia 
produced by diffuse noxious inhibitory control in rats with muscle 
inflammation. The Journal of Pain : Official Journal of the American Pain 
Society, 12(6), 687-697. doi:10.1016/j.jpain.2010.12.009 [doi] 

Defrin, R., Tsedek, I., Lugasi, I., Moriles, I., & Urca, G. (2010). The interactions 
between spatial summation and DNIC: Effect of the distance between two 
painful stimuli and attentional factors on pain perception. Pain, 151(2), 489-
495. doi:10.1016/j.pain.2010.08.009 [doi] 

Dellon, A. L. (1983). The vibrometer. Plastic and Reconstructive Surgery, 71(3), 
427-431. doi:10.1097/00006534-198303000-00029 [doi] 

Dietrich, A., & McDaniel, W. F. (2004). Endocannabinoids and exercise. British 
Journal of Sports Medicine, 38(5), 536-541. doi:10.1136/bjsm.2004.011718 
[doi] 

Dixon, W. J. (1980). Efficient analysis of experimental observations. Annual 
Review of Pharmacology and Toxicology, 20, 441-462. 
doi:10.1146/annurev.pa.20.040180.002301 [doi] 

Droste, C., Greenlee, M. W., Schreck, M., & Roskamm, H. (1991). Experimental 
pain thresholds and plasma beta-endorphin levels during exercise. Medicine 
and Science in Sports and Exercise, 23(3), 334-342.  

Edwards, R. R., Dolman, A. J., Martel, M. O., Finan, P. H., Lazaridou, A., 
Cornelius, M., & Wasan, A. D. (2016). Variability in conditioned pain 
modulation predicts response to NSAID treatment in patients with knee 
osteoarthritis. BMC Musculoskeletal Disorders, 17, 284-6. 
doi:10.1186/s12891-016-1124-6 [doi] 

Edwards, R. R., Dolman, A. J., Michna, E., Katz, J. N., Nedeljkovic, S. S., 
Janfaza, D., . . . Wasan, A. D. (2016). Changes in pain sensitivity and pain 
modulation during oral opioid treatment: The impact of negative affect. Pain 
Medicine (Malden, Mass.), 17(10), 1882-1891. doi:pnw010 [pii] 

Edwards, R. R., Mensing, G., Cahalan, C., Greenbaum, S., Narang, S., Belfer, I., 
. . . Jamison, R. N. (2013). Alteration in pain modulation in women with 
persistent pain after lumpectomy: Influence of catastrophizing. Journal of 



140 
 

 

Pain and Symptom Management, 46(1), 30-42. 
doi:10.1016/j.jpainsymman.2012.06.016 [doi] 

Edwards, R. R., Ness, T. J., & Fillingim, R. B. (2004). Endogenous opioids, blood 
pressure, and diffuse noxious inhibitory controls: A preliminary study. 
Perceptual and Motor Skills, 99(2), 679-687. doi:10.2466/pms.99.2.679-687 
[doi] 

Edwards, R. R., Bingham, C. O.,3rd, Bathon, J., & Haythornthwaite, J. A. (2006). 
Catastrophizing and pain in arthritis, fibromyalgia, and other rheumatic 
diseases. Arthritis and Rheumatism, 55(2), 325-332. doi:10.1002/art.21865 
[doi] 

Eippert, F., Bingel, U., Schoell, E. D., Yacubian, J., Klinger, R., Lorenz, J., & 
Buchel, C. (2009). Activation of the opioidergic descending pain control 
system underlies placebo analgesia. Neuron, 63(4), 533-543. 
doi:10.1016/j.neuron.2009.07.014 [doi] 

Ekstrom, R. A., Donatelli, R. A., & Soderberg, G. L. (2003). Surface 
electromyographic analysis of exercises for the trapezius and serratus 
anterior muscles. The Journal of Orthopaedic and Sports Physical Therapy, 
33(5), 247-258. doi:10.2519/jospt.2003.33.5.247 [doi] 

Ellingson, L. D., Koltyn, K. F., Kim, J. S., & Cook, D. B. (2014). Does exercise 
induce hypoalgesia through conditioned pain modulation? 
Psychophysiology, 51(3), 267-276. doi:10.1111/psyp.12168 [doi] 

Fingleton, C., Smart, K., & Doody, C. (2016). Exercise-induced hypoalgesia in 
people with knee osteoarthritis with normal and abnormal conditioned pain 
modulation. The Clinical Journal of Pain, 
doi:10.1097/AJP.0000000000000418 [doi] 

Flood, A., Waddington, G., & Cathcart, S. (2016). High-definition transcranial 
direct current stimulation enhances conditioned pain modulation in healthy 
volunteers: A randomized trial. The Journal of Pain : Official Journal of the 
American Pain Society, 17(5), 600-605. doi:10.1016/j.jpain.2016.01.472 
[doi] 

Focht, B. C., & Koltyn, K. F. (2009). Alterations in pain perception after resistance 
exercise performed in the morning and evening. Journal of Strength and 
Conditioning Research, 23(3), 891-897. 
doi:10.1519/JSC.0b013e3181a05564 [doi] 

France, C. R., Burns, J. W., Gupta, R. K., Buvanendran, A., Chont, M., Schuster, 
E., . . . Bruehl, S. (2016). Expectancy effects on conditioned pain 
modulation are not influenced by naloxone or morphine. Annals of 



141 
 

 

Behavioral Medicine : A Publication of the Society of Behavioral Medicine, 
50(4), 497-505. doi:10.1007/s12160-016-9775-y [doi] 

Freedson, P. S., Melanson, E., & Sirard, J. (1998). Calibration of the computer 
science and applications, inc. accelerometer. Medicine and Science in 
Sports and Exercise, 30(5), 777-781. doi:10.1097/00005768-199805000-
00021 [doi] 

Frost, H., Klaber Moffett, J. A., Moser, J. S., & Fairbank, J. C. (1995). 
Randomised controlled trial for evaluation of fitness programme for patients 
with chronic low back pain. BMJ (Clinical Research Ed.), 310(6973), 151-
154. doi:10.1136/bmj.310.6973.151 [doi] 

Gajsar, H., Nahrwold, K., Titze, C., Hasenbring, M. I., & Vaegter, H. B. (2018). 
Exercise does not produce hypoalgesia when performed immediately after a 
painful stimulus. Scandinavian Journal of Pain, 18(2), 311-320. 
doi:10.1515/sjpain-2018-0024 [doi] 

Galdino, G., Romero, T. R., Silva, J. F., Aguiar, D. C., de Paula, A. M., Cruz, J. 
S., . . . Perez, A. C. (2014a). The endocannabinoid system mediates 
aerobic exercise-induced antinociception in rats. Neuropharmacology, 77, 
313-324. doi:10.1016/j.neuropharm.2013.09.022 [doi] 

Galdino, G., Romero, T., Silva, J. F., Aguiar, D., Paula, A. M., Cruz, J., . . . Perez, 
A. (2014b). Acute resistance exercise induces antinociception by activation 
of the endocannabinoid system in rats. Anesthesia and Analgesia, 119(3), 
702-715. doi:10.1213/ANE.0000000000000340 [doi] 

Garamszegi, L. (2006). Comparing effect sizes across variables: Generalization 
without the need for bonferroni correction. Behav Ecol, 17, 682-687.  

Gardner, E. P., & Johnson, K. O. (2013a). The somatosensory system: 
Receptors and central pathways. Principles of neural science (pp. 475-495) 
McGraw-Hill New York, NY, USA. 

Gardner, E. P., & Johnson, K. O. (2013b). Touch. In Kandel, ER, Schwartz, JH, 
Jessell, TM, Siegelbaum, SA, & Hudspeth, AJ (Ed.), Principles of neural 
science (pp. 498–529) McGraw Hill, New York, NY, USA. 

Garrow, A. P., & Boulton, A. J. (2006). Vibration perception threshold--a valuable 
assessment of neural dysfunction in people with diabetes. 
Diabetes/Metabolism Research and Reviews, 22(5), 411-419. 
doi:10.1002/dmrr.657 [doi] 

Geber, C., Magerl, W., Fondel, R., Fechir, M., Rolke, R., Vogt, T., . . . Birklein, F. 
(2008). Numbness in clinical and experimental pain--a cross-sectional study 



142 
 

 

exploring the mechanisms of reduced tactile function. Pain, 139(1), 73-81. 
doi:10.1016/j.pain.2008.03.006 [doi] 

Gebhart, G. F., Sandkuhler, J., Thalhammer, J. G., & Zimmermann, M. (1983). 
Quantitative comparison of inhibition in spinal cord of nociceptive 
information by stimulation in periaqueductal gray or nucleus raphe magnus 
of the cat. Journal of Neurophysiology, 50(6), 1433-1445. 
doi:10.1152/jn.1983.50.6.1433 [doi] 

George, S. Z., & Zeppieri, G. (2009). Physical therapy utilization of graded 
exposure for patients with low back pain. The Journal of Orthopaedic and 
Sports Physical Therapy, 39(7), 496-505. doi:10.2519/jospt.2009.2983 [doi] 

Geva, N., Pruessner, J., & Defrin, R. (2014). Acute psychosocial stress reduces 
pain modulation capabilities in healthy men. Pain, 155(11), 2418-2425. 
doi:10.1016/j.pain.2014.09.023 [doi] 

Ghione, S. (1996). Hypertension-associated hypalgesia. evidence in 
experimental animals and humans, pathophysiological mechanisms, and 
potential clinical consequences. Hypertension (Dallas, Tex.: 1979), 28(3), 
494-504. doi:10.1161/01.hyp.28.3.494 [doi] 

Goffaux, P., de Souza, J. B., Potvin, S., & Marchand, S. (2009). Pain relief 
through expectation supersedes descending inhibitory deficits in 
fibromyalgia patients. Pain, 145(1-2), 18-23. doi:10.1016/j.pain.2009.02.008 
[doi] 

Goodin, B. R., McGuire, L., Allshouse, M., Stapleton, L., Haythornthwaite, J. A., 
Burns, N., . . . Edwards, R. R. (2009). Associations between catastrophizing 
and endogenous pain-inhibitory processes: Sex differences. The Journal of 
Pain : Official Journal of the American Pain Society, 10(2), 180-190. 
doi:10.1016/j.jpain.2008.08.012 [doi] 

Granot, M. (2009). Can we predict persistent postoperative pain by testing 
preoperative experimental pain? Current Opinion in Anaesthesiology, 22(3), 
425-430. doi:10.1097/ACO.0b013e32832a40e1 [doi] 

Granot, M., Weissman-Fogel, I., Crispel, Y., Pud, D., Granovsky, Y., Sprecher, 
E., & Yarnitsky, D. (2008). Determinants of endogenous analgesia 
magnitude in a diffuse noxious inhibitory control (DNIC) paradigm: Do 
conditioning stimulus painfulness, gender and personality variables matter? 
Pain, 136(1-2), 142-149. doi:S0304-3959(07)00363-6 [pii] 

Graven-Nielsen, T., & Arendt-Nielsen, L. (2002). Peripheral and central 
sensitization in musculoskeletal pain disorders: An experimental approach. 
Current Rheumatology Reports, 4(4), 313-321.  



143 
 

 

Green, B. G. (1977). The effect of skin temperature on vibrotactile sensitivity. 
Perception & Psychophysics, 21(3), 243-248.  

Haier, R. J., Quaid, K., & Mills, J. C. (1981). Naloxone alters pain perception after 
jogging. Psychiatry Research, 5(2), 231-232. doi:0165-1781(81)90052-4 [pii] 

Harazin, B., & Harazin-Lechowska, A. (2007). Effect of changes in finger skin 
temperature on vibrotactile perception threshold. International Journal of 
Occupational Medicine and Environmental Health, 20(3), 223-227. 
doi:H5RU1LKJ2L11W421 [pii] 

Harper, D. E., Ichesco, E., Schrepf, A., Hampson, J. P., Clauw, D. J., Schmidt-
Wilcke, T., . . . Harte, S. E. (2018). Resting functional connectivity of the 
periaqueductal gray is associated with normal inhibition and pathological 
facilitation in conditioned pain modulation. The Journal of Pain : Official 
Journal of the American Pain Society, 19(6), 635.e1-635.e15. doi:S1526-
5900(18)30024-5 [pii] 

Hawkins, R. A. (2013). Fibromyalgia: A clinical update. The Journal of the 
American Osteopathic Association, 113(9), 680-689. 
doi:10.7556/jaoa.2013.034 [doi] 

Hermans, L., Van Oosterwijck, J., Goubert, D., Goudman, L., Crombez, G., 
Calders, P., & Meeus, M. (2016). Inventory of personal factors influencing 
conditioned pain modulation in healthy people: A systematic literature 
review. Pain Practice : The Official Journal of World Institute of Pain, 16(6), 
758-769. doi:10.1111/papr.12305 [doi] 

Herrero, J. F., Laird, J. M., & Lopez-Garcia, J. A. (2000). Wind-up of spinal cord 
neurones and pain sensation: Much ado about something? Progress in 
Neurobiology, 61(2), 169-203. doi:S0301-0082(99)00051-9 [pii] 

Hoeger Bement, M. K., Dicapo, J., Rasiarmos, R., & Hunter, S. K. (2008). Dose 
response of isometric contractions on pain perception in healthy adults. 
Medicine and Science in Sports and Exercise, 40(11), 1880-1889. 
doi:10.1249/MSS.0b013e31817eeecc [doi] 

Hoeger Bement, M. K., & Sluka, K. A. (2016). Exercise-induced hypoalgesia: An 
evidence based review. In K. A. Sluka (Ed.), Mechanisms and management 
of pain for the physical therapist (Second ed., pp. 177-201). Philadelphia: 
Wolters Kluwer Health. 

Hoeger Bement, M. K., Weyer, A., Hartley, S., Drewek, B., Harkins, A. L., & 
Hunter, S. K. (2011). Pain perception after isometric exercise in women with 
fibromyalgia. Archives of Physical Medicine and Rehabilitation, 92(1), 89-95. 
doi:10.1016/j.apmr.2010.10.006 [doi] 



144 
 

 

Hoffman, M. D., Shepanski, M. A., Ruble, S. B., Valic, Z., Buckwalter, J. B., & 
Clifford, P. S. (2004). Intensity and duration threshold for aerobic exercise-
induced analgesia to pressure pain. Archives of Physical Medicine and 
Rehabilitation, 85(7), 1183-1187. doi:S0003999303011377 [pii] 

Hoffmann, P., Skarphedinsson, J. O., & Thoren, P. (1990). Electric muscle 
stimulation in the spontaneously hypertensive rat induces a post-stimulatory 
reduction in activity: Role of different opioid receptors. Acta Physiologica 
Scandinavica, 140(4), 507-514. doi:10.1111/j.1748-1716.1990.tb09027.x 
[doi] 

Hollins, M., Sigurdsson, A., Fillingim, L., & Goble, A. K. (1996). Vibrotactile 
threshold is elevated in temporomandibular disorders. Pain, 67(1), 89-96. 
doi:0304-3959(96)03083-7 [pii] 

Hollins, M., Sigurdsson, A., & Morris, K. A. (2001). Local vibrotactile and pain 
sensitivities are negatively related in temporomandibular disorders. The 
Journal of Pain : Official Journal of the American Pain Society, 2(1), 46-56. 
doi:S1526-5900(01)92060-7 [pii] 

Imai, Y., Petersen, K. K., Morch, C. D., & Arendt Nielsen, L. (2016). Comparing 
test-retest reliability and magnitude of conditioned pain modulation using 
different combinations of test and conditioning stimuli. Somatosensory & 
Motor Research, 33(3-4), 169-177. doi:10.1080/08990220.2016.1229178 
[doi] 

Institute of Medicine (US) Committee on Advancing Pain Research, Care, and 
Education. (2011). No title. doi:NBK91497 [bookaccession] 

Janal, M. N., Colt, E. W., Clark, W. C., & Glusman, M. (1984). Pain sensitivity, 
mood and plasma endocrine levels in man following long-distance running: 
Effects of naloxone. Pain, 19(1), 13-25. doi:0304-3959(84)90061-7 [pii] 

Jankord, R., & Jemiolo, B. (2004). Influence of physical activity on serum IL-6 
and IL-10 levels in healthy older men. Medicine and Science in Sports and 
Exercise, 36(6), 960-964. doi:00005768-200406000-00008 [pii] 

Jones, S. L., & Gebhart, G. F. (1987). Spinal pathways mediating tonic, 
coeruleospinal, and raphe-spinal descending inhibition in the rat. Journal of 
Neurophysiology, 58(1), 138-159. doi:10.1152/jn.1987.58.1.138 [doi] 

Jure, F. A., Arguissain, F. G., Biurrun Manresa, J. A., & Andersen, O. K. (2019). 
Conditioned pain modulation affects the withdrawal reflex pattern to 
nociceptive stimulation in humans. Neuroscience, 408, 259-271. doi:S0306-
4522(19)30256-8 [pii] 



145 
 

 

Kadetoff, D., & Kosek, E. (2007). The effects of static muscular contraction on 
blood pressure, heart rate, pain ratings and pressure pain thresholds in 
healthy individuals and patients with fibromyalgia. European Journal of Pain 
(London, England), 11(1), 39-47. doi:S1090-3801(06)00005-X [pii] 

Kamiya, K., Fumoto, M., Kikuchi, H., Sekiyama, T., Mohri-Lkuzawa, Y., Umino, 
M., & Arita, H. (2010). Prolonged gum chewing evokes activation of the 
ventral part of prefrontal cortex and suppression of nociceptive responses: 
Involvement of the serotonergic system. Journal of Medical and Dental 
Sciences, 57(1), 35-43.  

Karlsson, L., Gerdle, B., Ghafouri, B., Backryd, E., Olausson, P., Ghafouri, N., & 
Larsson, B. (2015). Intramuscular pain modulatory substances before and 
after exercise in women with chronic neck pain. European Journal of Pain 
(London, England), 19(8), 1075-1085. doi:10.1002/ejp.630 [doi] 

Karrer, T. M., McLaughlin, C. L., Guaglianone, C. P., & Samanez-Larkin, G. R. 
(2019). Reduced serotonin receptors and transporters in normal aging 
adults: A meta-analysis of PET and SPECT imaging studies. Neurobiology 
of Aging, 80, 1-10. doi:S0197-4580(19)30106-X [pii] 

Kavchak, A. J., Fernandez-de-Las-Penas, C., Rubin, L. H., Arendt-Nielsen, L., 
Chmell, S. J., Durr, R. K., & Courtney, C. A. (2012). Association between 
altered somatosensation, pain, and knee stability in patients with severe 
knee osteoarthrosis. The Clinical Journal of Pain, 28(7), 589-594. 
doi:10.1097/AJP.0b013e31823ae18f [doi] 

Keefe, F. J., Lefebvre, J. C., Maixner, W., Salley, A. N.,Jr, & Caldwell, D. S. 
(1997). Self-efficacy for arthritis pain: Relationship to perception of thermal 
laboratory pain stimuli. Arthritis Care and Research : The Official Journal of 
the Arthritis Health Professions Association, 10(3), 177-184.  

Kennedy, D. L., Kemp, H. I., Ridout, D., Yarnitsky, D., & Rice, A. S. (2016). 
Reliability of conditioned pain modulation: A systematic review. Pain, 
157(11), 2410-2419. doi:10.1097/j.pain.0000000000000689 [doi] 

Klede, M., Handwerker, H. O., & Schmelz, M. (2003). Central origin of secondary 
mechanical hyperalgesia. Journal of Neurophysiology, 90(1), 353-359. 
doi:10.1152/jn.01136.2002 [doi] 

Klotz, U. (2009). Pharmacokinetics and drug metabolism in the elderly. Drug 
Metabolism Reviews, 41(2), 67-76. doi:10.1080/03602530902722679 [doi] 

Koltyn, K. F., & Arbogast, R. W. (1998). Perception of pain after resistance 
exercise. British Journal of Sports Medicine, 32(1), 20-24. 
doi:10.1136/bjsm.32.1.20 [doi] 



146 
 

 

Koltyn, K. F., Brellenthin, A. G., Cook, D. B., Sehgal, N., & Hillard, C. (2014). 
Mechanisms of exercise-induced hypoalgesia. The Journal of Pain : Official 
Journal of the American Pain Society, 15(12), 1294-1304. 
doi:10.1016/j.jpain.2014.09.006 [doi] 

Koltyn, K. F., Knauf, M. T., & Brellenthin, A. G. (2013). Temporal summation of 
heat pain modulated by isometric exercise. European Journal of Pain 
(London, England), 17(7), 1005-1011. doi:10.1002/j.1532-
2149.2012.00264.x [doi] 

Koltyn, K. F., Trine, M. R., Stegner, A. J., & Tobar, D. A. (2001). Effect of 
isometric exercise on pain perception and blood pressure in men and 
women. Medicine and Science in Sports and Exercise, 33(2), 282-290.  

Koltyn, K. F., & Umeda, M. (2007). Contralateral attenuation of pain after short-
duration submaximal isometric exercise. The Journal of Pain : Official 
Journal of the American Pain Society, 8(11), 887-892. doi:S1526-
5900(07)00737-7 [pii] 

Kop, W. J., Lyden, A., Berlin, A. A., Ambrose, K., Olsen, C., Gracely, R. H., . . . 
Clauw, D. J. (2005). Ambulatory monitoring of physical activity and 
symptoms in fibromyalgia and chronic fatigue syndrome. Arthritis and 
Rheumatism, 52(1), 296-303. doi:10.1002/art.20779 [doi] 

Kosek, E., & Lundberg, L. (2003). Segmental and plurisegmental modulation of 
pressure pain thresholds during static muscle contractions in healthy 
individuals. European Journal of Pain (London, England), 7(3), 251-258. 
doi:S1090-3801(02)00124-6 [pii] 

Kosek, E., & Ordeberg, G. (2000). Lack of pressure pain modulation by 
heterotopic noxious conditioning stimulation in patients with painful 
osteoarthritis before, but not following, surgical pain relief. Pain, 88(1), 69-
78. doi:S0304-3959(00)00310-9 [pii] 

Kosek, E., Ekholm, J., & Hansson, P. (1996). Modulation of pressure pain 
thresholds during and following isometric contraction in patients with 
fibromyalgia and in healthy controls. Pain, 64(3), 415-423. doi:0304-
3959(95)00112-3 [pii] 

Kosek, E., & Hansson, P. (1997). Modulatory influence on somatosensory 
perception from vibration and heterotopic noxious conditioning stimulation 
(HNCS) in fibromyalgia patients and healthy subjects. Pain, 70(1), 41-51. 
doi:S0304395996032952 [pii] 

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for 
categorical data. Biometrics, 33(1), 159-174.  



147 
 

 

Lariviere, M., Goffaux, P., Marchand, S., & Julien, N. (2007). Changes in pain 
perception and descending inhibitory controls start at middle age in healthy 
adults. The Clinical Journal of Pain, 23(6), 506-510. 
doi:10.1097/AJP.0b013e31806a23e8 [doi] 

Le Bars, D., Chitour, D., Kraus, E., Dickenson, A. H., & Besson, J. M. (1981). 
Effect of naloxone upon diffuse noxious inhibitory controls (DNIC) in the rat. 
Brain Research, 204(2), 387-402. doi:0006-8993(81)90597-7 [pii] 

Le Bars, D., Dickenson, A. H., & Besson, J. M. (1979a). Diffuse noxious inhibitory 
controls (DNIC). I. effects on dorsal horn convergent neurones in the rat. 
Pain, 6(3), 283-304.  

Le Bars, D., Dickenson, A. H., & Besson, J. M. (1979b). Diffuse noxious inhibitory 
controls (DNIC). II. lack of effect on non-convergent neurones, supraspinal 
involvement and theoretical implications. Pain, 6(3), 305-327. 
doi:10.1016/0304-3959(79)90050-2 [doi] 

Le Bars, D., & Villanueva, L. (1988). Electrophysiological evidence for the 
activation of descending inhibitory controls by nociceptive afferent 
pathways. Progress in Brain Research, 77, 275-299. doi:S0079-
6123(08)62795-8 [pii] 

Le Bars, D., Villanueva, L., Bouhassira, D., & Willer, J. C. (1992). Diffuse noxious 
inhibitory controls (DNIC) in animals and in man. Patologicheskaia 
Fiziologiia i Eksperimental'Naia Terapiia, (4)(4), 55-65.  

Leffler, A. S., Hansson, P., & Kosek, E. (2002). Somatosensory perception in a 
remote pain-free area and function of diffuse noxious inhibitory controls 
(DNIC) in patients suffering from long-term trapezius myalgia. European 
Journal of Pain (London, England), 6(2), 149-159. 
doi:10.1053/eujp.2001.0312 [doi] 

Leffler, A. S., Hansson, P., & Kosek, E. (2003). Somatosensory perception in 
patients suffering from long-term trapezius myalgia at the site overlying the 
most painful part of the muscle and in an area of pain referral. European 
Journal of Pain (London, England), 7(3), 267-276. doi:S1090-
3801(02)00138-6 [pii] 

Leffler, A. S., Kosek, E., & Hansson, P. (2000). The influence of pain intensity on 
somatosensory perception in patients suffering from subacute/chronic 
lateral epicondylalgia. European Journal of Pain (London, England), 4(1), 
57-71. doi:10.1053/eujp.1999.0159 [doi] 

Lemley, K. J., Drewek, B., Hunter, S. K., & Hoeger Bement, M. K. (2014). Pain 
relief after isometric exercise is not task-dependent in older men and 



148 
 

 

women. Medicine and Science in Sports and Exercise, 46(1), 185-191. 
doi:10.1249/MSS.0b013e3182a05de8 [doi] 

Lemley, K. J., Hunter, S. K., & Bement, M. K. (2015). Conditioned pain 
modulation predicts exercise-induced hypoalgesia in healthy adults. 
Medicine and Science in Sports and Exercise, 47(1), 176-184. 
doi:10.1249/MSS.0000000000000381 [doi] 

Leung, A., Gregory, N. S., Allen, L. A., & Sluka, K. A. (2016). Regular physical 
activity prevents chronic pain by altering resident muscle macrophage 
phenotype and increasing interleukin-10 in mice. Pain, 157(1), 70-79. 
doi:10.1097/j.pain.0000000000000312 [doi] 

Lewis, G. N., Heales, L., Rice, D. A., Rome, K., & McNair, P. J. (2012). Reliability 
of the conditioned pain modulation paradigm to assess endogenous 
inhibitory pain pathways. Pain Research & Management, 17(2), 98-102.  

Lewis, G. N., Rice, D. A., & McNair, P. J. (2012). Conditioned pain modulation in 
populations with chronic pain: A systematic review and meta-analysis. The 
Journal of Pain : Official Journal of the American Pain Society, 13(10), 936-
944. doi:10.1016/j.jpain.2012.07.005 [doi] 

Li, G., Rhodes, J. S., Girard, I., Gammie, S. C., & Garland, T. (2004). Opioid-
mediated pain sensitivity in mice bred for high voluntary wheel running. 
Physiology & Behavior, 83(3), 515-524. doi:S0031-9384(04)00395-6 [pii] 

Li, J., Simone, D. A., & Larson, A. A. (1999). Windup leads to characteristics of 
central sensitization. Pain, 79(1), 75-82. doi:10.1016/S0304-3959(98)00154-
7 

Li, W., & Zhao, Z. Q. (1993). Yohimbine reduces inhibition of lamina X neurones 
by stimulation of the locus coeruleus. Neuroreport, 4(6), 751-753. 
doi:10.1097/00001756-199306000-00038 [doi] 

Lima, L. V., DeSantana, J. M., Rasmussen, L. A., & Sluka, K. A. (2017). Short-
duration physical activity prevents the development of activity-induced 
hyperalgesia through opioid and serotoninergic mechanisms. Pain, 158(9), 
1697-1710. doi:10.1097/j.pain.0000000000000967 [doi] 

Lindblom, U., & Verrillo, R. T. (1979). Sensory functions in chronic neuralgia. 
Journal of Neurology, Neurosurgery, and Psychiatry, 42(5), 422-435. 
doi:10.1136/jnnp.42.5.422 [doi] 

Lindstedt, F., Berrebi, J., Greayer, E., Lonsdorf, T. B., Schalling, M., Ingvar, M., & 
Kosek, E. (2011). Conditioned pain modulation is associated with common 



149 
 

 

polymorphisms in the serotonin transporter gene. PloS One, 6(3), e18252. 
doi:10.1371/journal.pone.0018252 [doi] 

Locke, D., Gibson, W., Moss, P., Munyard, K., Mamotte, C., & Wright, A. (2014). 
Analysis of meaningful conditioned pain modulation effect in a pain-free 
adult population. The Journal of Pain : Official Journal of the American Pain 
Society, 15(11), 1190-1198. doi:S1526-5900(14)00908-0 [pii] 

Lounana, J., Campion, F., Noakes, T. D., & Medelli, J. (2007). Relationship 
between %HRmax, %HR reserve, %VO2max, and %VO2 reserve in elite 
cyclists. Medicine and Science in Sports and Exercise, 39(2), 350-357. 
doi:10.1249/01.mss.0000246996.63976.5f [doi] 

Magerl, W., & Treede, R. D. (2004). Secondary tactile hypoesthesia: A novel type 
of pain-induced somatosensory plasticity in human subjects. Neuroscience 
Letters, 361(1-3), 136-139. doi:10.1016/j.neulet.2003.12.001 [doi] 

Mathes, W. F., & Kanarek, R. B. (2006). Chronic running wheel activity 
attenuates the antinociceptive actions of morphine and morphine-6-
glucouronide administration into the periaqueductal gray in rats. 
Pharmacology, Biochemistry, and Behavior, 83(4), 578-584. doi:S0091-
3057(06)00079-7 [pii] 

Mazzardo-Martins, L., Martins, D. F., Marcon, R., Dos Santos, U. D., Speckhann, 
B., Gadotti, V. M., . . . Santos, A. R. (2010). High-intensity extended 
swimming exercise reduces pain-related behavior in mice: Involvement of 
endogenous opioids and the serotonergic system. The Journal of Pain : 
Official Journal of the American Pain Society, 11(12), 1384-1393. 
doi:10.1016/j.jpain.2010.03.015 [doi] 

McCaffery, M., & Pasero, C. (1999). Pain clinical manual. St. Louis: Mosby. 

Meeus, M., Hermans, L., Ickmans, K., Struyf, F., Van Cauwenbergh, D., 
Bronckaerts, L., . . . Nijs, J. (2014). Endogenous pain modulation in 
response to exercise in patients with rheumatoid arthritis, patients with 
chronic fatigue syndrome and comorbid fibromyalgia, and healthy controls: 
A double-blind randomized controlled trial. Pain Practice : The Official 
Journal of World Institute of Pain, doi:10.1111/papr.12181 [doi] 

Melzack, R. (1987). The short-form McGill pain questionnaire. Pain, 30(2), 191-
197. doi:0304-3959(87)91074-8 [pii] 

Melzack, R., Coderre, T. J., Katz, J., & Vaccarino, A. L. (2001). Central 
neuroplasticity and pathological pain. Annals of the New York Academy of 
Sciences, 933, 157-174.  



150 
 

 

Mendell, L. M., & Wall, P. D. (1965). Responses of single dorsal cord cells to 
peripheral cutaneous unmyelinated fibres. Nature, 206, 97-99.  

Meriwether, R. A., McMahon, P. M., Islam, N., & Steinmann, W. C. (2006). 
Physical activity assessment: Validation of a clinical assessment tool. 
American Journal of Preventive Medicine, 31(6), 484-491.  

Merriwether, E. N., Frey-Law, L. A., Rakel, B. A., Zimmerman, M. B., Dailey, D. 
L., Vance, C. G. T., . . . Sluka, K. A. (2018). Physical activity is related to 
function and fatigue but not pain in women with fibromyalgia: Baseline 
analyses from the fibromyalgia activity study with TENS (FAST). Arthritis 
Research & Therapy, 20(1), 199-3. doi:10.1186/s13075-018-1671-3 [doi] 

Migueles, J. H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nystrom, C., Mora-
Gonzalez, J., Lof, M., . . . Ortega, F. B. (2017). Accelerometer data 
collection and processing criteria to assess physical activity and other 
outcomes: A systematic review and practical considerations. Sports 
Medicine (Auckland, N.Z.), 47(9), 1821-1845. doi:10.1007/s40279-017-
0716-0 [doi] 

Millan, M. J. (1999). The induction of pain: An integrative review. Progress in 
Neurobiology, 57(1), 1-164. doi:S0301-0082(98)00048-3 [pii] 

Millan, M. J. (2002). Descending control of pain. Progress in Neurobiology, 66(6), 
355-474. doi:S0301008202000096 [pii] 

Mogil, J. S., & Belknap, J. K. (1997). Sex and genotype determine the selective 
activation of neurochemically-distinct mechanisms of swim stress-induced 
analgesia. Pharmacology, Biochemistry, and Behavior, 56(1), 61-66. 
doi:S0091-3057(96)00157-8 [pii] 

Mohri, Y., Fumoto, M., Sato-Suzuki, I., Umino, M., & Arita, H. (2005). Prolonged 
rhythmic gum chewing suppresses nociceptive response via serotonergic 
descending inhibitory pathway in humans. Pain, 118(1-2), 35-42. doi:S0304-
3959(05)00369-6 [pii] 

Nahman-Averbuch, H., Nir, R. R., Sprecher, E., & Yarnitsky, D. (2016). 
Psychological factors and conditioned pain modulation: A meta-analysis. 
The Clinical Journal of Pain, 32(6), 541-554. 
doi:10.1097/AJP.0000000000000296 [doi] 

Nahman-Averbuch, H., Yarnitsky, D., Sprecher, E., Granovsky, Y., & Granot, M. 
(2016). Relationship between personality traits and endogenous analgesia: 
The role of harm avoidance. Pain Practice : The Official Journal of World 
Institute of Pain, 16(1), 38-45. doi:10.1111/papr.12256 [doi] 



151 
 

 

Naugle, K. M., Ohlman, T., Naugle, K. E., Riley, Z. A., & Keith, N. R. (2017). 
Physical activity behavior predicts endogenous pain modulation in older 
adults. Pain, 158(3), 383-390. doi:10.1097/j.pain.0000000000000769 [doi] 

Naugle, K. M., Fillingim, R. B., & Riley, J. L.,3rd. (2012). A meta-analytic review 
of the hypoalgesic effects of exercise. The Journal of Pain : Official Journal 
of the American Pain Society, 13(12), 1139-1150. 
doi:10.1016/j.jpain.2012.09.006 [doi] 

Naugle, K. M., Naugle, K. E., Fillingim, R. B., & Riley, J. L.,3rd. (2014). Isometric 
exercise as a test of pain modulation: Effects of experimental pain test, 
psychological variables, and sex. Pain Medicine (Malden, Mass.), 15(4), 
692-701. doi:10.1111/pme.12312 [doi] 

Naugle, K. M., Naugle, K. E., Fillingim, R. B., Samuels, B., & Riley, J. L.,3rd. 
(2014). Intensity thresholds for aerobic exercise-induced hypoalgesia. 
Medicine and Science in Sports and Exercise, 46(4), 817-825. 
doi:10.1249/MSS.0000000000000143 [doi] 

Naugle, K. M., & Riley, J. L.,3rd. (2014). Self-reported physical activity predicts 
pain inhibitory and facilitatory function. Medicine and Science in Sports and 
Exercise, 46(3), 622-629. doi:10.1249/MSS.0b013e3182a69cf1 [doi] 

Neugebauer, V., Galhardo, V., Maione, S., & Mackey, S. C. (2009). Forebrain 
pain mechanisms. Brain Research Reviews, 60(1), 226-242. 
doi:10.1016/j.brainresrev.2008.12.014 [doi] 

Neumann, L., & Buskila, D. (2003). Epidemiology of fibromyalgia. Current Pain 
and Headache Reports, 7(5), 362-368.  

Nicholas, M. K. (2007). The pain self-efficacy questionnaire: Taking pain into 
account. European Journal of Pain (London, England), 11(2), 153-163. 
doi:S1090-3801(05)00193-X [pii] 

Niesters, M., Proto, P. L., Aarts, L., Sarton, E. Y., Drewes, A. M., & Dahan, A. 
(2014). Tapentadol potentiates descending pain inhibition in chronic pain 
patients with diabetic polyneuropathy. British Journal of Anaesthesia, 
113(1), 148-156. doi:10.1093/bja/aeu056 [doi] 

Nijs, J., Roussel, N., Van Oosterwijck, J., De Kooning, M., Ickmans, K., Struyf, F., 
. . . Lundberg, M. (2013). Fear of movement and avoidance behaviour 
toward physical activity in chronic-fatigue syndrome and fibromyalgia: State 
of the art and implications for clinical practice. Clinical Rheumatology, 32(8), 
1121-1129. doi:10.1007/s10067-013-2277-4 [doi] 



152 
 

 

Nir, R. R., Granovsky, Y., Yarnitsky, D., Sprecher, E., & Granot, M. (2011). A 
psychophysical study of endogenous analgesia: The role of the conditioning 
pain in the induction and magnitude of conditioned pain modulation. 
European Journal of Pain (London, England), 15(5), 491-497. 
doi:10.1016/j.ejpain.2010.10.001 [doi] 

Nuseir, K., & Proudfit, H. K. (2000). Bidirectional modulation of nociception by 
GABA neurons in the dorsolateral pontine tegmentum that tonically inhibit 
spinally projecting noradrenergic A7 neurons. Neuroscience, 96(4), 773-
783. doi:S030645229900603X [pii] 

Olesen, S. S., van Goor, H., Bouwense, S. A., Wilder-Smith, O. H., & Drewes, A. 
M. (2012). Reliability of static and dynamic quantitative sensory testing in 
patients with painful chronic pancreatitis. Regional Anesthesia and Pain 
Medicine, 37(5), 530-536. doi:10.1097/AAP.0b013e3182632c40 [doi] 

Oono, Y., Wang, K., Svensson, P., & Arendt-Nielsen, L. (2011). Conditioned pain 
modulation evoked by different intensities of mechanical stimuli applied to 
the craniofacial region in healthy men and women. Journal of Orofacial 
Pain, 25(4), 364-375.  

Ortega, E., Bote, M. E., Giraldo, E., & Garcia, J. J. (2012). Aquatic exercise 
improves the monocyte pro- and anti-inflammatory cytokine production 
balance in fibromyalgia patients. Scandinavian Journal of Medicine & 
Science in Sports, 22(1), 104-112. doi:10.1111/j.1600-0838.2010.01132.x 
[doi] 

Pavlakovic, G., & Petzke, F. (2010). The role of quantitative sensory testing in 
the evaluation of musculoskeletal pain conditions. Current Rheumatology 
Reports, 12(6), 455-461. doi:10.1007/s11926-010-0131-0 [doi] 

Peters, M. L., Schmidt, A. J., Van den Hout, M., Koopmans, R., & Sluijter, M. E. 
(1992). Chronic back pain, acute postoperative pain and the activation of 
diffuse noxious inhibitory controls (DNIC). Pain, 50(2), 177-187. doi:0304-
3959(92)90159-9 [pii] 

Petersen, A. M., & Pedersen, B. K. (2005). The anti-inflammatory effect of 
exercise. Journal of Applied Physiology (Bethesda, Md.: 1985), 98(4), 1154-
1162. doi:98/4/1154 [pii] 

Potvin, S., & Marchand, S. (2016). Pain facilitation and pain inhibition during 
conditioned pain modulation in fibromyalgia and in healthy controls. Pain, 
157(8), 1704-1710. doi:10.1097/j.pain.0000000000000573 [doi] 

Price, R. C., Asenjo, J. F., Christou, N. V., Backman, S. B., & Schweinhardt, P. 
(2013). The role of excess subcutaneous fat in pain and sensory sensitivity 



153 
 

 

in obesity. European Journal of Pain (London, England), 17(9), 1316-1326. 
doi:10.1002/j.1532-2149.2013.00315.x [doi] 

Pud, D., Sprecher, E., & Yarnitsky, D. (2005). Homotopic and heterotopic effects 
of endogenous analgesia in healthy volunteers. Neuroscience Letters, 
380(3), 209-213. doi:S0304-3940(05)00088-1 [pii] 

Rainville, J., Smeets, R. J., Bendix, T., Tveito, T. H., Poiraudeau, S., & Indahl, A. 
J. (2011). Fear-avoidance beliefs and pain avoidance in low back pain--
translating research into clinical practice. The Spine Journal : Official 
Journal of the North American Spine Society, 11(9), 895-903. 
doi:10.1016/j.spinee.2011.08.006 [doi] 

Reynolds, D. V. (1969). Surgery in the rat during electrical analgesia induced by 
focal brain stimulation. Science (New York, N.Y.), 164(3878), 444-445. 
doi:10.1126/science.164.3878.444 [doi] 

Roelofs, J., Sluiter, J. K., Frings-Dresen, M. H., Goossens, M., Thibault, P., 
Boersma, K., & Vlaeyen, J. W. (2007). Fear of movement and (re)injury in 
chronic musculoskeletal pain: Evidence for an invariant two-factor model of 
the tampa scale for kinesiophobia across pain diagnoses and dutch, 
swedish, and canadian samples. Pain, 131(1-2), 181-190. doi:S0304-
3959(07)00015-2 [pii] 

Roerig, S. C., Fujimoto, J. M., & Tseng, L. F. (1988). Comparisons of descending 
pain inhibitory pathways activated by beta-endorphin and morphine as 
characterized by supraspinal and spinal antinociceptive interactions in mice. 
The Journal of Pharmacology and Experimental Therapeutics, 247(3), 1107-
1113.  

Rolke, R., Baron, R., Maier, C., Tolle, T. R., Treede, R. D., Beyer, A., . . . 
Wasserka, B. (2006). Quantitative sensory testing in the german research 
network on neuropathic pain (DFNS): Standardized protocol and reference 
values. Pain, 123(3), 231-243. doi:S0304-3959(06)00152-7 [pii] 

Ruble, S. B., Hoffman, M. D., Shepanski, M. A., Valic, Z., Buckwalter, J. B., & 
Clifford, P. S. (2005). Thermal pain perception after aerobic exercise. 
Archives of Physical Medicine and Rehabilitation, 86(5), 1019-1023. 
doi:S0003999304014224 [pii] 

Russell, D., Alvarez Gallardo, I. C., Wilson, I., Hughes, C. M., Davison, G. W., 
Sanudo, B., & McVeigh, J. G. (2018). 'Exercise to me is a scary word': 
Perceptions of fatigue, sleep dysfunction, and exercise in people with 
fibromyalgia syndrome-a focus group study. Rheumatology International, 
38(3), 507-515. doi:10.1007/s00296-018-3932-5 [doi] 



154 
 

 

Seals, D. R., & Esler, M. D. (2000). Human ageing and the sympathoadrenal 
system. The Journal of Physiology, 528(Pt 3), 407-417. doi:PHY_0973 [pii] 

Seals, D. R., Taylor, J. A., Ng, A. V., & Esler, M. D. (1994). Exercise and aging: 
Autonomic control of the circulation. Medicine and Science in Sports and 
Exercise, 26(5), 568-576.  

Shakoor, N., Agrawal, A., & Block, J. A. (2008). Reduced lower extremity 
vibratory perception in osteoarthritis of the knee. Arthritis and Rheumatism, 
59(1), 117-121. doi:10.1002/art.23241 [doi] 

Shakoor, N., Lee, K. J., Fogg, L. F., Wimmer, M. A., Foucher, K. C., Mikolaitis, R. 
A., & Block, J. A. (2012). The relationship of vibratory perception to dynamic 
joint loading, radiographic severity, and pain in knee osteoarthritis. Arthritis 
and Rheumatism, 64(1), 181-186. doi:10.1002/art.30657 [doi] 

Siao, P., & Cros, D. P. (2003). Quantitative sensory testing. Physical Medicine 
and Rehabilitation Clinics of North America, 14(2), 261-286.  

Sluka, K. (Ed.). (2016). Mechanisms and management of pain for the physical 
therapist (Second ed.). Philadelphia: Wolters Kluwer Health. 

Sluka, K., Frey-Law, L., & Hoeger Bement, M. (2018). Exercise-induced pain and 
analgesia? underlying mechanisms and clinical translation. Pain, 159 Suppl 
1, S91-S97. doi:10.1097/j.pain.0000000000001235 [doi] 

Smith, M. A., & Lyle, M. A. (2006). Chronic exercise decreases sensitivity to mu 
opioids in female rats: Correlation with exercise output. Pharmacology, 
Biochemistry, and Behavior, 85(1), 12-22. doi:S0091-3057(06)00208-5 [pii] 

Smith, M. A., & Yancey, D. L. (2003). Sensitivity to the effects of opioids in rats 
with free access to exercise wheels: Mu-opioid tolerance and physical 
dependence. Psychopharmacology, 168(4), 426-434. doi:10.1007/s00213-
003-1471-5 [doi] 

Sprenger, C., Bingel, U., & Buchel, C. (2011). Treating pain with pain: 
Supraspinal mechanisms of endogenous analgesia elicited by heterotopic 
noxious conditioning stimulation. Pain, 152(2), 428-439. 
doi:10.1016/j.pain.2010.11.018 [doi] 

Staud, R., Vierck, C. J., Cannon, R. L., Mauderli, A. P., & Price, D. D. (2001). 
Abnormal sensitization and temporal summation of second pain (wind-up) in 
patients with fibromyalgia syndrome. Pain, 91(1-2), 165-175. doi:S0304-
3959(00)00432-2 [pii] 



155 
 

 

Staud, R., Robinson, M. E., & Price, D. D. (2005). Isometric exercise has 
opposite effects on central pain mechanisms in fibromyalgia patients 
compared to normal controls. Pain, 118(1-2), 176-184. doi:S0304-
3959(05)00406-9 [pii] 

Stohler, C. S., Kowalski, C. J., & Lund, J. P. (2001). Muscle pain inhibits 
cutaneous touch perception. Pain, 92(3), 327-333. doi:S0304395901002743 
[pii] 

Stolzman, S., & Bement, M. H. (2016). Does exercise decrease pain via 
conditioned pain modulation in adolescents? Pediatric Physical Therapy : 
The Official Publication of the Section on Pediatrics of the American 
Physical Therapy Association, 28(4), 470-473. 
doi:10.1097/PEP.0000000000000312 [doi] 

Stolzman, S., Danduran, M., Hunter, S. K., & Bement, M. H. (2015). Pain 
response after maximal aerobic exercise in adolescents across weight 
status. Medicine and Science in Sports and Exercise, 47(11), 2431-2440. 
doi:10.1249/MSS.0000000000000678 [doi] 

Stolzman, S., & Hoeger Bement, M. (2016). Lean mass predicts conditioned pain 
modulation in adolescents across weight status. European Journal of Pain 
(London, England), 20(6), 967-976. doi:10.1002/ejp.821 [doi] 

Sullivan, M. J. L., Bishop, S. R., & Pivik, J. (1995). The pain catastrophizing 
scale: Development and validation. Psychological Assessment, 7(4), 524-
532. doi:10.1037/1040-3590.7.4.524 

Suokas, A. K., Walsh, D. A., McWilliams, D. F., Condon, L., Moreton, B., Wylde, 
V., . . . Zhang, W. (2012). Quantitative sensory testing in painful 
osteoarthritis: A systematic review and meta-analysis. Osteoarthritis and 
Cartilage, 20(10), 1075-1085. doi:10.1016/j.joca.2012.06.009 [doi] 

Suzan, E., Midbari, A., Treister, R., Haddad, M., Pud, D., & Eisenberg, E. (2013). 
Oxycodone alters temporal summation but not conditioned pain modulation: 
Preclinical findings and possible relations to mechanisms of opioid 
analgesia. Pain, 154(8), 1413-1418. doi:10.1016/j.pain.2013.04.036 [doi] 

Tesarz, J., Gerhardt, A., Schommer, K., Treede, R. D., & Eich, W. (2013). 
Alterations in endogenous pain modulation in endurance athletes: An 
experimental study using quantitative sensory testing and the cold-pressor 
task. Pain, 154(7), 1022-1029. doi:10.1016/j.pain.2013.03.014 [doi] 

Tonkin, L. (2008). The pain self-efficacy questionnaire. The Australian Journal of 
Physiotherapy, 54(1), 77. doi:S0004-9514(08)70073-4 [pii] 



156 
 

 

Tour, J., Lofgren, M., Mannerkorpi, K., Gerdle, B., Larsson, A., Palstam, A., . . . 
Kosek, E. (2017). Gene-to-gene interactions regulate endogenous pain 
modulation in fibromyalgia patients and healthy controls-antagonistic effects 
between opioid and serotonin-related genes. Pain, 158(7), 1194-1203. 
doi:10.1097/j.pain.0000000000000896 [doi] 

Tsuruoka, M., & Willis, W. D. (1996). Descending modulation from the region of 
the locus coeruleus on nociceptive sensitivity in a rat model of inflammatory 
hyperalgesia. Brain Research, 743(1-2), 86-92. doi:S0006-8993(96)01025-6 
[pii] 

Turk, D. C., Wilson, H. D., & Cahana, A. (2011). Treatment of chronic non-cancer 
pain. Lancet (London, England), 377(9784), 2226-2235. doi:10.1016/S0140-
6736(11)60402-9 [doi] 

Uddin, Z., & MacDermid, J. C. (2016). Quantitative sensory testing in chronic 
musculoskeletal pain. Pain Medicine (Malden, Mass.), 17(9), 1694-1703. 
doi:10.1093/pm/pnv105 [doi] 

Umeda, M., Corbin, L. W., & Maluf, K. S. (2015). Examination of contraction-
induced muscle pain as a behavioral correlate of physical activity in women 
with and without fibromyalgia. Disability and Rehabilitation, 37(20), 1864-
1869. doi:10.3109/09638288.2014.984878 [doi] 

Umeda, M., Lee, W., Marino, C. A., & Hilliard, S. C. (2016). Influence of 
moderate intensity physical activity levels and gender on conditioned pain 
modulation. Journal of Sports Sciences, 34(5), 467-476. 
doi:10.1080/02640414.2015.1061199 [doi] 

Umeda, M., Newcomb, L. W., Ellingson, L. D., & Koltyn, K. F. (2010). 
Examination of the dose-response relationship between pain perception and 
blood pressure elevations induced by isometric exercise in men and 
women. Biological Psychology, 85(1), 90-96. 
doi:10.1016/j.biopsycho.2010.05.008 [doi] 

Uszynski, M., Purtill, H., & Coote, S. (2015). Relationship between foot vibration 
threshold and walking and balance functions in people with multiple 
sclerosis (PwMS). Gait & Posture, 41(1), 228-232. 
doi:10.1016/j.gaitpost.2014.10.010 [doi] 

Vaegter, H. B., Petersen, K. K., Morch, C. D., Imai, Y., & Arendt-Nielsen, L. 
(2018). Assessment of CPM reliability: Quantification of the within-subject 
reliability of 10 different protocols. Scandinavian Journal of Pain, 18(4), 729-
737. doi:10.1515/sjpain-2018-0087 [doi] 



157 
 

 

Vaegter, H. B., Handberg, G., & Graven-Nielsen, T. (2014a). Isometric exercises 
reduce temporal summation of pressure pain in humans. European Journal 
of Pain (London, England), doi:10.1002/ejp.623 [doi] 

Vaegter, H. B., Handberg, G., & Graven-Nielsen, T. (2014b). Similarities between 
exercise-induced hypoalgesia and conditioned pain modulation in humans. 
Pain, 155(1), 158-167. doi:10.1016/j.pain.2013.09.023 [doi] 

Vaegter, H. B., Handberg, G., & Graven-Nielsen, T. (2016). Hypoalgesia after 
exercise and the cold pressor test is reduced in chronic musculoskeletal 
pain patients with high pain sensitivity. The Clinical Journal of Pain, 32(1), 
58-69. doi:10.1097/AJP.0000000000000223 [doi] 

Vaegter, H. B., Handberg, G., Jorgensen, M. N., Kinly, A., & Graven-Nielsen, T. 
(2015). Aerobic exercise and cold pressor test induce hypoalgesia in active 
and inactive men and women. Pain Medicine (Malden, Mass.), 16(5), 923-
933. doi:10.1111/pme.12641 [doi] 

Valencia, C., Fillingim, R. B., Bishop, M., Wu, S. S., Wright, T. W., Moser, M., . . . 
George, S. Z. (2014). Investigation of central pain processing in 
postoperative shoulder pain and disability. The Clinical Journal of Pain, 
30(9), 775-786. doi:10.1097/AJP.0000000000000029 [doi] 

van Santen, M., Bolwijn, P., Landewe, R., Verstappen, F., Bakker, C., Hidding, 
A., . . . van der Linden, S. (2002). High or low intensity aerobic fitness 
training in fibromyalgia: Does it matter? The Journal of Rheumatology, 
29(3), 582-587.  

van Wijk, G., & Veldhuijzen, D. S. (2010). Perspective on diffuse noxious 
inhibitory controls as a model of endogenous pain modulation in clinical pain 
syndromes. The Journal of Pain : Official Journal of the American Pain 
Society, 11(5), 408-419. doi:10.1016/j.jpain.2009.10.009 [doi] 

Vierck, C. J.,Jr, Staud, R., Price, D. D., Cannon, R. L., Mauderli, A. P., & Martin, 
A. D. (2001). The effect of maximal exercise on temporal summation of 
second pain (windup) in patients with fibromyalgia syndrome. The Journal of 
Pain : Official Journal of the American Pain Society, 2(6), 334-344. 
doi:S1526-5900(01)72129-3 [pii] 

Villanueva, L., Bouhassira, D., & Le Bars, D. (1996). The medullary subnucleus 
reticularis dorsalis (SRD) as a key link in both the transmission and 
modulation of pain signals. Pain, 67(2-3), 231-240. doi:10.1016/0304-
3959(96)03121-1 [doi] 



158 
 

 

Villanueva, L., & Le Bars, D. (1995). The activation of bulbo-spinal controls by 
peripheral nociceptive inputs: Diffuse noxious inhibitory controls. Biological 
Research, 28(1), 113-125.  

Walton, D. M., Macdermid, J. C., Nielson, W., Teasell, R. W., Chiasson, M., & 
Brown, L. (2011). Reliability, standard error, and minimum detectable 
change of clinical pressure pain threshold testing in people with and without 
acute neck pain. The Journal of Orthopaedic and Sports Physical Therapy, 
41(9), 644-650. doi:10.2519/jospt.2011.3666 [doi] 

Wang, C., Schmid, C. H., Fielding, R. A., Harvey, W. F., Reid, K. F., Price, L. L., . 
. . McAlindon, T. (2018). Effect of tai chi versus aerobic exercise for 
fibromyalgia: Comparative effectiveness randomized controlled trial. BMJ 
(Clinical Research Ed.), 360, k851. doi:10.1136/bmj.k851 [doi] 

Weir, J. P. (2005). Quantifying test-retest reliability using the intraclass 
correlation coefficient and the SEM. Journal of Strength and Conditioning 
Research, 19(1), 231-240. doi:15184 [pii] 

Weissman-Fogel, I., Sprecher, E., & Pud, D. (2008). Effects of catastrophizing on 
pain perception and pain modulation. Experimental Brain Research, 186(1), 
79-85. doi:10.1007/s00221-007-1206-7 [doi] 

Wiles, P. G., Pearce, S. M., Rice, P. J., & Mitchell, J. M. (1991). Vibration 
perception threshold: Influence of age, height, sex, and smoking, and 
calculation of accurate centile values. Diabetic Medicine : A Journal of the 
British Diabetic Association, 8(2), 157-161. doi:10.1111/j.1464-
5491.1991.tb01563.x [doi] 

Willer, J. C., Le Bars, D., & De Broucker, T. (1990). Diffuse noxious inhibitory 
controls in man: Involvement of an opioidergic link. European Journal of 
Pharmacology, 182(2), 347-355. doi:0014-2999(90)90293-F [pii] 

Woby, S. R., Roach, N. K., Urmston, M., & Watson, P. J. (2005). Psychometric 
properties of the TSK-11: A shortened version of the tampa scale for 
kinesiophobia. Pain, 117(1-2), 137-144. doi:S0304-3959(05)00269-1 [pii] 

Wolfe, F., Clauw, D. J., Fitzcharles, M. A., Goldenberg, D. L., Katz, R. S., Mease, 
P., . . . Yunus, M. B. (2010). The american college of rheumatology 
preliminary diagnostic criteria for fibromyalgia and measurement of 
symptom severity. Arthritis Care & Research, 62(5), 600-610. 
doi:10.1002/acr.20140 [doi] 

Yaksh, T. L. (1985). Pharmacology of spinal adrenergic systems which modulate 
spinal nociceptive processing. Pharmacology, Biochemistry, and Behavior, 
22(5), 845-858. doi:0091-3057(85)90537-4 [pii] 



159 
 

 

Yarnitsky, D. (2010). Conditioned pain modulation (the diffuse noxious inhibitory 
control-like effect): Its relevance for acute and chronic pain states. Current 
Opinion in Anaesthesiology, 23(5), 611-615. 
doi:10.1097/ACO.0b013e32833c348b [doi] 

Yarnitsky, D., Bouhassira, D., Drewes, A. M., Fillingim, R. B., Granot, M., 
Hansson, P., . . . Wilder-Smith, O. H. (2015). Recommendations on practice 
of conditioned pain modulation (CPM) testing. European Journal of Pain 
(London, England), 19(6), 805-806. doi:10.1002/ejp.605 [doi] 

Yarnitsky, D., Arendt-Nielsen, L., Bouhassira, D., Edwards, R. R., Fillingim, R. B., 
Granot, M., . . . Wilder-Smith, O. (2010). Recommendations on terminology 
and practice of psychophysical DNIC testing. European Journal of Pain 
(London, England), 14(4), 339. doi:10.1016/j.ejpain.2010.02.004 [doi] 

Yarnitsky, D., Crispel, Y., Eisenberg, E., Granovsky, Y., Ben-Nun, A., Sprecher, 
E., . . . Granot, M. (2008). Prediction of chronic post-operative pain: Pre-
operative DNIC testing identifies patients at risk. Pain, 138(1), 22-28. 
doi:S0304-3959(07)00650-1 [pii] 

Yarnitsky, D., & Granot, M. (2006). Quantitative sensory testing. Handbook of 
clinical neurology (pp. 397-409) Elsevier. 

Yarnitsky, D., Granot, M., Nahman-Averbuch, H., Khamaisi, M., & Granovsky, Y. 
(2012). Conditioned pain modulation predicts duloxetine efficacy in painful 
diabetic neuropathy. Pain, 153(6), 1193-1198. 
doi:10.1016/j.pain.2012.02.021 [doi] 

Youssef, A. M., Macefield, V. G., & Henderson, L. A. (2016). Pain inhibits pain; 
human brainstem mechanisms. NeuroImage, 124(Pt A), 54-62. doi:S1053-
8119(15)00781-8 [pii] 

Zaslansky, R., & Yarnitsky, D. (1998). Clinical applications of quantitative 
sensory testing (QST). Journal of the Neurological Sciences, 153(2), 215-
238. doi:S0022-510X(97)00293-1 [pii] 

  

 


	The Impact of Isometric Exercise on Somatosensory Processing in People with or without Chronic Pain
	Recommended Citation

	tmp.1576090545.pdf.fh1Fe

