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Summary 
• As climate change continues, forest vulnerability to droughts and heatwaves is increasing, but 

vulnerability varies regionally and locally through landscape position. Also, most models used in 
forecasting forest responses to heat and drought do not incorporate relevant spatial processes. 

• In order to improve spatial predictions of tree vulnerability, we employed a nonlinear stochastic model 
of soil moisture dynamics accounting for landscape differences in aspect, topography and soils. Across a 
watershed in central Texas we modeled dynamic water stress for a dominant tree species, Juniperus 
ashei, and projected future dynamic water stress through the 21st century. 

• Modeled dynamic water stress tracked spatial patterns of remotely sensed drought‐induced canopy 
loss. Accuracy in predicting drought‐impacted stands increased from 60%, accounting for spatially 
variable soil conditions, to 72% when also including lateral redistribution of water and 
radiation/temperature effects attributable to aspect. Our analysis also suggests that dynamic water 
stress will increase through the 21st century, with trees persisting at only selected microsites. 

• Favorable microsites/refugia may exist across a landscape where trees can persist; however, if future 
droughts are too severe, the buffering capacity of an heterogeneous landscape could be overwhelmed. 
Incorporating spatial data will improve projections of future tree water stress and identification of 
potential resilient refugia. 

Introduction 
As climate change continues, more frequent and intense heatwaves and droughts will likely lead to greater tree 
mortality (Allen et al., 2015). Instances of climate‐induced tree mortality have already been documented world‐
wide (Allen et al., 2010). Increases in tree die‐off can alter plant community composition and species 
distributions (Mueller et al., 2005; Engelbrecht et al., 2007; Clark et al., 2016), with consequences to 
biodiversity, carbon cycling, hydrology and biophysics (e.g. Ciais et al., 2005; Jackson et al., 2008; Vicente‐
Serrano et al., 2014). 

Empirical (e.g. bioclimate‐envelope) or process‐based models (e.g. Dynamic Global Vegetation Models, DGVMs) 
are two commonly used methods to predict how forests will respond to changes in climate. Spatial patterns of 
canopy loss often follow local stress gradients and depend on both climate and edaphic factors (Loehle & 
LeBlanc, 1996; Gitlin et al., 2006; McLaughlin et al., 2017). Although a few bioclimate‐envelope models now 
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account for topography (e.g. Lutz et al., 2010), they lack mechanistic representations of tree mortality. 
Alternatively, DGVMs include various mechanisms for modeling tree mortality; however, their algorithms are 
rarely tested with spatially explicit canopy loss observations (McDowell et al., 2011), and often do not account 
for landscape heterogeneity of abiotic factors at fine spatial resolutions, such as soil conditions, slope and aspect 
(Moorcroft, 2006), even though these data are readily available for many locations. Many studies have focused 
on improving model representations of the physiological mechanisms of tree mortality (McDowell et al., 2013; 
Parolari et al., 2014; Mackay et al., 2015); however, only a few have examined if including landscape 
heterogeneity would improve predictions of tree mortality (Tague et al., 2013; Anderegg et al., 2015; 
Tai et al., 2017). 

Spatial patterns of tree mortality are associated with changes in soil texture and depth (Bowker et al., 2012; 
Peterman & Waring, 2014; Twidwell et al., 2014), topographic position (Adams et al., 2014; Hawthorne & 
Miniat, 2017) and local water stress gradients (Gitlin et al., 2006). Soil moisture variability across a landscape is 
driven by spatial variability in soil texture and depth to bedrock, surface runoff and subsurface lateral flow of 
water (Dunne et al., 1975; Beven & Kirkby, 1979), and differences in radiation and resulting evaporation due to 
aspect and slope (Moore et al., 1991; McCune & Keon, 2002). This landscape heterogeneity creates microsites or 
refugia with cooler, moister conditions that allow for tree survival during severe drought events. However, 
rarely is landscape heterogeneity considered in models, even though topography is important in identifying 
refugia locally buffered from climate change. 

Many studies have found that the topographic wetness index (TWI) is significantly correlated to spatial patterns 
of soil moisture (Moore et al., 1988; Western et al., 1999) and tree mortality (Kaiser et al., 2013). TWI is a spatial 
distribution function that can be used to describe lateral subsurface water flow along hillslopes (Beven, 1995). It 
is a physically based index of hydrological similarity, with areas having similar index values likely to respond in 
hydrologically similar ways (Beven, 1997). TWI is defined as loge(ac/tan(b)), where ac is the upslope contributing 
area per unit contour length and tan(b) is the local land surface slope. The index assumes that the hydraulic 
gradient (i.e. a metric controlling the capacity of accumulated water to pass through the grid cell) is 
approximated by the local slope, and that lateral discharge (i.e. the water volume passing through a grid cell) is 
proportional to upslope contributing area (Quinn et al., 1995; Beven, 1997). 

Spatial patterns of soil moisture also are correlated with solar radiation (Western et al., 1999) and landscape 
positions with higher insolation often have greater tree mortality (Kaiser et al., 2013). In the northern 
hemisphere, south‐facing slopes tend to have greater temperatures and evaporative demand, because they 
receive more radiation per unit area (i.e. insolation) compared to north‐facing slopes. Additionally, although the 
amount of radiation is equivalent on eastern‐ and western‐facing slopes averaged over a day, insolation on 
western‐facing slopes is highest in the afternoon, leading to higher afternoon temperatures (McCune & 
Keon, 2002). Higher temperatures result in greater vapor‐pressure deficits and potential evapotranspiration 
(PET). Under high temperatures and vapor‐pressure deficits, trees typically close stomata, to reduce 
transpiration and protect the integrity of the plant hydraulic system by maintaining water potentials above 
irreversible embolism thresholds. In turn, this stomatal response, decreases photosynthesis. 

In order to model plant–water relationships, two kinds of forest ecohydrological models exist: empirically‐based 
models defining statistical relationships, but with little input of a system's structure; and process‐based models 
defining key mechanisms to describe the structure and functioning of a system (Korzukhin et al., 1996). 
Inevitably, there is a trade‐off between purely empirical models, which can be biased when extrapolated beyond 
observed input values, and process‐based models that can have higher error attributable to lack of data for 
parameters, especially at global scales (Adams et al., 2013). However, these model classifications are not 
mutually exclusive. In the present study, we combine modeling frameworks by using a statistical–dynamic model 
of soil–plant water to model the probability of tree vulnerability to drought. Simplified mortality mechanisms 
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are incorporated (Parolari et al., 2014); the model is forced using stochastic precipitation (Laio et al., 2001; 
Rodriguez‐Iturbe & Porporato, 2004); and spatially explicit input parameters are included. The probability of tree 
mortality is then predicted given the mean intensity, duration and number of threshold crossings for percentage 
loss in hydraulic conductivity (PLC) associated with tree vulnerability to embolism curves. Simulations show, for 
instance, that tree species impacted by drought spend more time at higher PLC values (McDowell et al., 2013; 
Adams et al., 2017); chronically high PLC values among other risk factors also can predispose a tree to mortality 
(Sperry & Love, 2015). 

From October 2010 to September 2011, Texas experienced its most severe one‐year drought since record‐
keeping began in 1895 (Hoerling et al., 2013). The drought killed millions of trees across the region 
(Moore et al., 2016; Schwantes et al., 2016, 2017). First, we combine a new modeling approach with species‐
specific physiological parameters and a detailed spatial dataset of tree canopy loss (Schwantes et al., 2017; 
Johnson et al., 2018a,b). Starting with a nonlinear stochastic model of plot‐scale soil moisture dynamics for a 
single watershed in central Texas (Laio et al., 2001), we integrate plant hydraulic thresholds and landscape 
processes, incorporating effects of lateral redistribution of water as well as radiation and temperature 
differences on dynamic soil moisture. Second, we explore the effect of incorporating landscape heterogeneity in 
models, when forecasting future drought stress, to understand whether landscape heterogeneity will buffer 
against future droughts projected in the 21st century. We use climate projections under multiple climate‐
warming trajectories and compare models with and without landscape heterogeneity. 

Materials and Methods 
Study area 
Our study area is a watershed in the Edwards Plateau region of Texas (Fig. 1). We model tree water stress for a 
dominant tree species, Juniperus ashei. Our analysis only includes areas where J. ashei is a dominant species, as 
defined using an ecological systems map of Texas (Elliott et al., 2014) and a percentage tree cover threshold 
> 25%, using the National Land Cover Database percentage tree cover product (Homer et al., 2015). In 2011, a 
severe drought and heatwave led to 9.5% tree canopy loss overall across Texas, with J. ashei woodlands being 
one of the systems most impacted by the drought (Schwantes et al., 2017), even though J. ashei is an extremely 
drought‐tolerant species, with low vulnerability to root/stem embolism compared to other species in this region 
(Johnson et al., 2018b). Within the study watershed, we acquired maps of drought‐impacted area in 2011 from 
Schwantes et al. (2017), which were used to validate our tree water stress models. 
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Figure 1 Comparison of (a) drought‐impacted area, defined as pixels with > 25% canopy loss acquired from 
Schwantes et al. (2017), (b) soil depth and (c) soil texture, both acquired from the SSURGO database (United 
States Department of Agriculture, 2014), for a watershed in the Edwards Plateau region of Texas. 
 

Soil water balance model 
Following Laio et al. (2001), we employ a nonlinear stochastic, ordinary differential equation of soil moisture 
dynamics, where rainfall follows a marked Poisson process interpreted on a daily timescale. We express the soil 
moisture (s) balance at a point as: 

 

𝑛𝑛𝑛𝑛𝑇𝑇   d𝑠𝑠(𝑡𝑡)
d𝑡𝑡

=  𝑅𝑅(𝑡𝑡) −  𝐼𝐼(𝑡𝑡) −  𝑄𝑄𝑄𝑄[(𝑡𝑡), 𝑡𝑡]  −  ET[𝑠𝑠(𝑡𝑡)] −  𝐿𝐿[𝑠𝑠(𝑡𝑡)] (Eqn 1) 

(𝑍𝑍𝑟𝑟, active soil depth; 𝑛𝑛, porosity; 𝑠𝑠(𝑡𝑡), relative soil moisture content; 𝑅𝑅(𝑡𝑡), rainfall rate; 𝐼𝐼(𝑡𝑡), amount of rainfall 
intercepted by the canopy cover; 𝑄𝑄[𝑠𝑠(𝑡𝑡), 𝑡𝑡], surface/subsurface runoff rate; 𝐸𝐸𝐸𝐸[𝑠𝑠(𝑡𝑡)], evapotranspiration 
rate; 𝐿𝐿[𝑠𝑠(𝑡𝑡)], leakage below the root zone). The runoff, evapotranspiration and leakage rate depend on soil 
moisture levels through simple yet realistic representations of plant hydraulics, soil properties and topography. 
Under steady‐state conditions, we obtain analytical solutions of the soil moisture probability density function for 
each 30‐m grid cell across the watershed. The solution is provided in Supporting Information Eqn S1, 
Methods S1; however, the full derivation can be found in Laio et al. (2001) and Rodriguez‐Iturbe et al. (1999). 
We then assess the role of climate, soil properties, plant hydraulics and topography on soil moisture dynamics 
and associated tree water stress, by adapting the framework for modeling dynamic water stress, originally 
proposed by Laio et al. (2001) and Porporato et al. (2001), Fig. 2. 

 
Figure 2 Model overview: inputs include climate, tree physiology, soil and landscape parameters. Dynamic water 
stress incorporates outputs related to mean intensity, duration, and number of times a soil moisture threshold 
associated with severe drought‐stress was crossed using a daily time‐step and averaged over 1 yr. Remotely‐
sensed observations from 2011 are used to validate dynamic water stress. We then modeled annual dynamic 
water stress from 1980 to 2099. 
 

Infiltration: rainfall, canopy interception and lateral water flow 
Infiltration from rainfall is treated as an external random forcing factor where the occurrence of a rainfall event 
follows a marked Poisson process with a mean storm frequency, λ (d−1). The depth of each rainfall event follows 
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an exponential probability density function with a mean depth, α (cm), where α represents the amount of 
rainfall reaching the soil, while not accounting for canopy interception or lateral water flow. These distributions 
are commonly used to model rainfall at the daily timescale (Rodriguez‐Iturbe et al., 1999; Laio et al., 2001; 
Porporato et al., 2001; Parolari et al., 2014). Following Daly et al. (2008), we assume that for small storm events 
below a certain threshold, Δ, the canopy completely intercepts all rainfall. For J. ashei, Δ = 0.25 cm; storms 
below this value are typically fully intercepted (Owens et al., 2006). The process describing the frequency of a 
rainfall event then becomes a censored marked Poisson process, and 𝜆𝜆 is reduced to λ′ as: 

 

𝜆𝜆′ = 𝜆𝜆𝜆𝜆−Δ/𝛼𝛼  (Eqn 2) 

For larger rainfall events above Δ, throughfall (e.g. precipitation minus interception) is linearly related to the 
depth of the rainfall event (Daly et al., 2008). On average about 35% of bulk rainfall is intercepted by the canopy 
of J. ashei per storm event and sequentially lost due to evaporation (Owens et al., 2006). The depth of each 
rainfall event still follows an exponential distribution; however, the mean rainfall depth is reduced to (ki α), 
where 𝑘𝑘𝑖𝑖 =  0.65 (Owens et al., 2006). 

In order to predict the pattern of soil moisture attributable to topographic position (e.g. describing lateral 
surface and subsurface flow from topographically divergent areas such as ridges to topographically convergent 
areas such as valleys), we further modify the mean rainfall depth (ki α) to depend on each pixel's TWI, which is 
defined as: 

 

TWI =  loge  � 𝑎𝑎𝑐𝑐
tan(𝑏𝑏) + 0.001

� (Eqn 3) 

(ac, upslope contributing area (m2); b, local slope angle (degrees) (Beven, 1997)). Upslope contributing areas 
range from 900 m2 (e.g. the size of a single pixel) to the total area of the watershed (1961 km2). To avoid 
undefined values of TWI in areas of zero local slope (i.e. a zero denominator), we add a small number (0.001) to 
the denominator for all pixels. TWI is calculated using a 30‐m digital elevation model (DEM) from the Shuttle 
Radar Topography Mission (SRTM; v2). We calculate ac using a multiple flow direction approach and the TAUDEM 
ARCGIS toolbox (Tarboton, 2005). 

Topographically convergent areas (e.g. valleys) tend to be associated with higher than average values of TWI, 
greater upslope contributing area (e.g. greater lateral discharge) and lower slopes (e.g. low hydraulic gradient). 
Therefore, the mean rainfall depth is adjusted for each pixel to account for landscape position, by redistributing 
water from areas of low TWI to areas of high TWI. Thus, we use the index to modify water inputs (α′), which now 
represent both infiltration from rainfall as well as lateral surface flow and subsurface lateral discharge. If soil 
moisture is rapidly redistributed daily during each individual storm event then α′ can be reasonably linked to 
TWI as 

 

𝛼𝛼’ = 𝑘𝑘𝑗𝑗 × 𝑎𝑎 �1 + 𝑓𝑓 × [TWI−TWI������]
TWI������ 

�  (Eqn 4) 
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(f, a parameter that controls the magnitude of lateral redistribution). A sensitivity analysis is performed 
using f from 0.1 to 1.0, in increments of 0.1. 

Losses: evapotranspiration and leakage 
Evapotranspiration, ET(s), accounts for losses from both soil evaporation E(s) and tree transpiration T(s). We 
assume that for this system, ET(s) has an upper limit defined by the potential evapotranspiration, PET, which 
depends on climate conditions and the tree species. We also assume that tree water uptake from the soil 
declines as a function of water stress. Under water stress, trees will partially close their stomata, and transpire 
at a reduced rate, up to a point where stomata close completely and transpiration ceases. Following 
(Laio et al., 2001), we model this process by assuming that trees transpire at a maximum rate above a soil 
moisture associated with a stress point (s*). When soil moisture drops below s*, transpiration decreases linearly 
up to a soil moisture associated with complete stomatal closure (sw). Below sw only soil evaporation occurs, 
which we model as decreasing linearly from potential soil evaporation, PE, at sw to zero at the hygroscopic 
point, sh, defined as follows: 

 

ET(s) = �

PE’ 𝑠𝑠−𝑠𝑠ℎ
𝑠𝑠𝑤𝑤−𝑠𝑠ℎ

, 𝑠𝑠ℎ < 𝑠𝑠 ≤ 𝑠𝑠𝑤𝑤 ,

PE’ + (PET’ − PE’) 𝑠𝑠−𝑠𝑠𝑤𝑤
𝑠𝑠∗−𝑠𝑠𝑤𝑤

, 𝑠𝑠𝑤𝑤 < 𝑠𝑠 ≤ 𝑠𝑠∗,

PET’, 𝑠𝑠∗ < 𝑠𝑠 ≤ 1

 , (Eqn 5) 

Evapotranspiration also depends on the surface energy budget (Moore et al., 1991). We account for spatial 
variation in PET, defined as: 

 

PET’ = PET ×  HL  (Eqn 6) 

by using a heat load index (HL), which accounts for potential direct incident radiation and temperature 
differences attributable to aspect and steepness of slope (McCune & Keon, 2002; Evans et al., 2014). Higher 
values of PET′ are associated with greater radiation (e.g. south‐facing slopes) and warmer afternoon 
temperatures (e.g. western‐facing slopes). 

In order to differentiate potential soil evaporation (PE) from potential transpiration, we use the fraction of solar 
radiation that the canopy intercepts, defined as: 

 

𝑣𝑣𝑓𝑓 = 1 − 𝑒𝑒−𝑘𝑘𝑓𝑓×LAI  (Eqn 7) 

where LAI represents leaf area index and kf is a light extinction coefficient (Landsberg, 1986; Norman & 
Campbell, 1989). The higher this vegetation factor (vf), the less PET is partitioned into PE, following: 

 

PE’ = PET’ ×  (1 − 𝑣𝑣𝑓𝑓)  (8) 
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We measured LAI using a LAI‐2200C Plant Canopy Analyzer (Li‐Cor, Lincoln, NE, USA) during July 2016 at 
Colorado Bend State Park, in Central Texas. All measurements were taken at twilight, to minimize changing sky‐
conditions and scattering errors. We used a 45° view cap and masked out the outermost ring. Measurements 
were taken every 1 m, along 10 transects, each 10 m in length. The average LAI for stands of J. ashei was 
2.92 ± 0.46 (± SD). We used a kf for juniper of 0.37 from Kiniry (1998). 

The soil moisture value at which stomata start to close (s*), and the soil moisture at which stomata close 
completely (sw), both depend on tree species and soil texture. We obtain the relative soil moisture, s, for a 
corresponding soil water potential, Ψs, using soil water retention curves, as defined in Clapp & Hornberger 
(1978), as follows: 

 

Ψ𝑠𝑠 = Ψ�𝑠𝑠𝑠𝑠−𝑏𝑏(Eqn 9) 

(Ψ�𝑠𝑠 and b, experimentally derived parameters that vary with soil texture). The relative soil moisture for the 
hygroscopic point, sh, and the field capacity, sfc, can be found using Eqn 9 and the following respective soil water 
potentials: Ψsh = −10 MPa (Laio et al., 2001) and Ψsfc = −0.033 MPa (Hudson, 1994). To define Ψs* we assume 
that stomata start to close when the soil water potential reaches a point associated with 12% loss of hydraulic 
conductance in the leaves, P12, −1.0 MPa for J. ashei (Johnson et al., 2016). We used the P12, or air‐entry point, 
because it represents the point on a leaf hydraulic vulnerability curve (see Fig. 3b) where loss of conductance 
increases substantially (Domec & Gartner, 2001). We define Ψsw by assuming that stomata close completely 
when the soil water potential reaches the turgor loss point, TLP, for J. ashei, which is −3.8 MPa 
(Johnson et al., 2018a). This TLP is associated with a 99.8% loss of leaf hydraulic conductance (see Fig. 3b). 
Also, s* and sw represent the soil moisture associated with the start of stomatal conductance reduction and 
near‐zero stomatal conductance, respectively (Fig. 3a) using data from Johnson et al. (2018b), and described 
further in Methods S2 and Table S1. 

 
Figure 3 Justification for selecting parameters associated with incipient and complete stomatal closure: (a) Field 
observations of average stomatal conductance for Juniperus ashei as a function of soil moisture, where soil 
moisture for a silty clay was derived by assuming that measured pre‐dawn leaf water potential was equivalent to 
soil water potential. These field measurements for 5 d in summer 2013 were taken for J. ashei in central Texas 
by Johnson et al. (2018b). Each point represents a daily average; error bars represent standard errors associated 
with variability between individuals and time of day; and the blue line shows the lagged recovery following a 
time‐period of near zero stomatal conductance observed in July, despite rain returning in August 
(Johnson et al., 2018b). (b) Percentage loss of leaf hydraulic conductivity in J. ashei. The P12 or air entry point 
was chosen for the incipient stomatal closure point (s*). The turgor loss point (TLP) was chosen to represent 
complete stomatal closure (sw). Data reproduced with permission from Johnson et al. (2016). 
 

Soil properties were obtained from the Soil Survey Geographic (SSURGO) database (United States Department of 
Agriculture 2014). We computed area‐ and depth‐weighted averages of percentage sand, clay and silt for each 
soil polygon, whereas soil depth (Zr) was acquired directly. Based on these soil texture observations, we 
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classified each soil polygon as one of 12 United States Department of Agriculture (USDA) soil classes. The 

experimentally derived parameters for the soil water retention curves,  and b, the saturated hydraulic 
conductivity, Ks, and the porosity, n, were estimated using the USDA soil type classifications, following Clapp & 
Hornberger (1978), Daly et al. (2004) and Laio et al. (2001). Lastly, we assume that the soil hydraulic 
conductivity, K(s), follows an exponential decay from Ks, at s = 1 to zero, at s = sfc: 

 

𝐾𝐾(𝑠𝑠) = 𝐿𝐿(𝑠𝑠) = 𝐾𝐾𝑠𝑠

𝑒𝑒𝛽𝛽�1−𝑠𝑠𝑓𝑓𝑓𝑓�−1
�𝑒𝑒𝛽𝛽�𝑠𝑠−𝑠𝑠𝑓𝑓𝑓𝑓�−1� , 𝑠𝑠fc < 𝑠𝑠 ≤ 1   (Eqn 10) 

where 𝛽𝛽 depends on the soil texture and is equal to 2b + 4 and b is defined in Eqn 9 (Laio et al., 2001). 

Static and dynamic water stress 
Our objective was to model tree water stress in a semi‐arid ecosystem and evaluate factors contributing to tree 
mortality. Although some isohydric species tend to have greater mortality following periods of near‐zero gas 
exchange, Juniperus mortality likely occurs with hydraulic failure, especially in the absence of pathogens 
(Plaut et al., 2012); therefore, we define a new soil moisture level below the point of near‐zero gas exchange, at 
which a tree is under severe stress and vulnerable to mortality, sm. We define Ψsm as the soil water potential 
associated with a 50% loss in hydraulic conductivity in the roots, root P50, which is −9.5 MPa 
for J. ashei (Johnson et al., 2016). Brodribb et al. (2010) found that stem P50 correlated with lethal water 
potential thresholds across four conifer species. Instead of using stem P50, we used the root P50 as Ψsm, because 
roots are often more vulnerable to cavitation compared to shoots, especially in conifers (Kavanagh et al., 1999). 
Moreover, the root P50 acquired from Johnson et al. (2016) was nearly identical to modeled critical soil water 
potential, representing the point to which J. ashei could no longer transport water, as modeled by Johnson et al. 
(2018b) using the Terrestrial Regional Ecosystem Exchange Simulator model (Sperry et al., 1998; 
Mackay et al., 2015). The stem P50, −13.1 MPa, (Willson et al., 2008), and root P50, −9.5 MPa, are much lower 
than the leaf P50 of −1.66 MPa (Johnson et al., 2018b), likely due to the hydraulic vulnerability segmentation 
hypothesis, which suggests that distal portions (e.g. leaves) will embolize first at less negative pressures to avoid 
hydraulic impairment in the stems/roots (Tyree & Ewers, 1991; Johnson et al., 2016). 

We adapt the static water stress equations developed by Porporato et al. (2001), and define static water 
stress, ζ, as zero at s > sm to approaching 1 as s approaches the hygroscopic point, sh: 

 

𝜁𝜁(𝑡𝑡) = �𝑠𝑠𝑚𝑚−𝑠𝑠(𝑡𝑡)
 𝑠𝑠𝑚𝑚−𝑠𝑠ℎ

� ,  𝑠𝑠ℎ < 𝑠𝑠(𝑡𝑡) ≤ 𝑠𝑠𝑚𝑚(Eqn 11) 

We expect that larger deviations from 𝑠𝑠𝑚𝑚 would result in higher probabilities of tree mortality. Derivations for 
computing the probability distribution for the static water stress, ζ (Eqn S3), as well as the mean static water 
stress, 𝜁𝜁  ̅(Eqn S6), and the mean static water stress given that the tree was under stress, 𝜁𝜁  ̅(Eqn S7), can be 
found in the Supporting Information. 

In order to predict tree vulnerability to drought‐induced tree mortality, we calculate the dynamic water 
stress 𝜃̅𝜃 as follows: 
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𝜃̅𝜃 = �ζ
�’𝑇𝑇�sm
𝑇𝑇seas

�
1/�𝑛𝑛�sm

if ζ̅’𝑇𝑇�sm < 𝑇𝑇�seas
1 otherwise

  , (Eqn 12) 

𝜃̅𝜃 was adapted from the original equation proposed by Porporato et al. (2001) by incorporating  

ζ̅’ and two crossing properties below the soil moisture threshold associated with severe water stress and 
potential mortality, 𝑠𝑠𝑚𝑚. The two crossing properties include: 𝑛𝑛�sm the average number of crossings below sm, 
and 𝑇𝑇�sm the average time spent below sm. As such, dynamic water stress incorporates mean intensity, duration 
and frequency of soil water deficits associated with crossings below root P50. We can obtain analytical solutions 
for both 𝑇𝑇�sm and 𝑛𝑛�sm. Full solutions are in the Supporting Information, Eqns S8 and S9, respectively. We used 
the full year as the duration of the growing season (Tseas), because J. ashei is an evergreen species, and the 
model was run at a 30‐m spatial resolution. 

Historical and future projections of water stress 
Historical, 1980–2015, spatially interpolated 4‐km gridded daily precipitation and monthly potential 
evapotranspiration calculated using Penman–Monteith for a grass reference surface, PETg, were acquired from 
gridMET (Abatzoglou, 2013). We used spatial averages across the watershed for annual PETg, the mean rainfall 
depth, α, and the average time between rainfall events, 1/λ. For a similar juniper‐dominated 
woodland/savannah in the Edwards Plateau of Texas, Heilman et al. (2014) found an average annual PET of 
69 cm from 2005 to 2009, whereas PETg estimates in this region were 176 cm according to gridMET; therefore, 
we applied a plant correction coefficient of 0.39. This value was similar to expected crop coefficients for trees, 
which range from 0.4 to 1.0 (Allen et al., 1998). The PET for J. ashei was calculated by multiplying the crop 
coefficient, 0.39, by PETg acquired from gridMET (Abatzoglou, 2013). 

We also acquired downscaled (4‐km) climate projections from the coupled model intercomparison project, 
CMIP5, under two representative concentration pathways, RCP, 4.5 and 8.5 trajectories from 2006 to 2099 for 
PETg and precipitation (Abatzoglou & Brown, 2012). Of 20 global climate models (GCMs) that we considered, we 
selected 10 GCMs that showed the best performance in projecting historical annual precipitation values (1980–
2005) for our study watershed, considering mean absolute error (MAE) in annual precipitation. We again took 
spatial averages across the watershed for future annual projections of PETg, α and λ. We then examined 
historical (1980–2015) and future projections of dynamic water stress (2006–2099) for models with and without 
landscape heterogeneity. 

Accuracy assessments 
The soil water balance model was run for each 30‐m grid cell within the watershed, to obtain spatially explicit 
estimates of tree water stress. We then compared our modeled results forced using PET, α and λ values for 2011 
to remotely sensed 30‐m drought‐impacted area maps for 2011 from Schwantes et al. (2017), where areas of 
drought‐impact were defined as having > 25% canopy loss. We first aggregated both modeled results and 
observations of drought‐impacted area to hydrologically similar but noncontiguous stands of J. ashei, similar to 
Tai et al. (2017). Hydrologically similar stands, n = 24, were defined as stands with similar aspects, NE, −45° to 
135° vs SW, 135° to 315°; soil depths, < 100 cm vs > 100 cm; soil texture, silty clay, clay loam or other; and 
topographic divergence vs convergence, TWI below or above the mean, respectively. Following aggregation, we 
used linear regressions to compare modeled outputs to observations of drought‐impacted areas. 
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We also identified stands of spatially contiguous pixels of two classes: drought‐impacted vs homogenous live 
canopy. Pixels were considered contiguous if one of eight neighboring cells was the same class. We then 
compared explanatory power (e.g. Cragg and Uhler's pseudo R2) for logistic regressions in predicting whether a 
stand was either drought‐impacted or homogenous live canopy, using dynamic water stress as the continuous 
predictor variable. Dynamic water stress represents a probability of tree vulnerability to drought. Therefore, in 
order to select a threshold of dynamic water stress that best distinguished drought‐impacted stands from live 
canopy stands, we used receiver operating characteristic (ROC) curves (Sing et al., 2005). For multiple cut‐off 
values of modeled dynamic water stress, ROC curves plot true positive rate (TPR, accurately predicting a 
drought‐impacted stand) against true negative rate (TNR, accurately predicting a homogenous live canopy 
stand). The cut‐off value that balanced TPR and TNR was chosen, using 10‐fold cross‐validation. To test whether 
accuracy improved when considering average dynamic water stress in larger stands, we sequentially removed 
stands below a certain size threshold. Other studies have found that aggregation up to a 100‐m pixel (i.e. 1 ha) 
was necessary to improve correlations between modeled and observed soil moisture (Pellenq et al., 2003). The 
water stress model was solved using MATLAB; statistical analysis was conducted in R; and spatial analysis was 
performed using ARCGIS and PYTHON. 

Results 
Comparing modeled water stress to observations of drought‐impacted area 
Using our dynamic water stress model for each 30‐m pixel across a watershed in central Texas, we found that 
canopy loss from drought was greatest in areas of shallow soils, on hillslopes with low values of TWI, and on 
southwestern‐facing aspects (Fig. 4). We started with models that only had spatially explicit soil conditions, and 
then added parameters associated with lateral redistribution and then spatially explicit PET driven by radiation 
and temperature differences attributable to aspect. Spatially distributed inputs, characterizing soil conditions, 
lateral water flow, and PET, all drove patterns of dynamic water stress across the landscape. By increasing model 
complexity, modeled dynamic water stress had higher spatial concordance with remotely‐sensed observations 
of drought‐impacted area (Fig. 4). 
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Figure 4 Comparison of spatially explicit input variables of (a) soil depth, (b) topographic wetness index (TWI) 
and (c) heat load index to (d) a 30‐m remotely sensed drought‐impacted area map. We also present modeled 
estimates of mean dynamic water stress for scenarios including processes specific to (e) heterogeneous soil 
inputs, (f) lateral redistribution of water using TWI (f = 1) and (g) spatially variable potential evapotranspiration 
using a heat load index, accounting for radiation and temperature differences attributable to aspect. Using a 
cut‐off value of dynamic water stress (defined in Table 2), we also show a binary water stress map (h), which is 
directly comparable to observed canopy loss (d). 
 

Modeled dynamic water stress varied across two important environmental gradients. As expected, dynamic 
water stress decreased with increasing soil depth, as simulated with the following assumptions: constant clay 
loam soil texture, constant PET and no lateral flow of water (Fig. 5a). Directly matching model predictions, 
observations of drought‐impacted area also decreased with increasing soil depth. Furthermore, dynamic water 
stress decreased with increasing values of TWI (Fig. 5b). The model was forced using a constant clay loam soil 
texture and average soil depth. Observations of drought‐impacted area aggregated up to 2‐unit bins of TWI, also 
decreased with increasing TWI, following modeled dynamic water stress. 
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Figure 5 Modeled dynamic water stress decreased with increasing (a) soil depth and no lateral redistribution 
(f = 0) and (b) topographic wetness index (TWI, forced with average soil depth and a clay loam soil texture). 
Modeled results tracked observed drought impacted area (right axis, black circles): in (a) the drought‐impacted 
area was aggregated to noncontiguous stands with similar soil properties (e.g. clay loam soil texture with 
multiple soil depth bins of 25 cm) and in (b) the drought‐impacted area was binned by two units of TWI for areas 
with clay loam soils. 
 

In order to test the accuracy in predicting observed values of canopy loss during the 2011 drought year, we first 
aggregated modeled results and observed drought‐impacted area in 24 hydrologically similar but noncontiguous 
stands (Table 1). We compared explanatory power for linear regressions of observations of percentage drought‐
impacted area and four modeled outputs. We found that the explanatory power for dynamic water stress 
increased, as model complexity increased. When only considering spatial variability of soils, adjusted R2 was 
equal to 0.76; however, when including lateral flow of water and spatially variable PET from radiation and 
temperature differences, the explanatory power increased to 0.82 (Table 1). 

Table 1. Summary of linear regression coefficients: a comparison of drought‐impacted area to model outputs 
forced with the climate anomalies observed in 2011: dynamic water stress (𝜃̅𝜃), static water stress given that a 
tree was under stress (ζ̅’ ), the average number of crossings (𝑛𝑛�sm ) below root P50 (50% hydraulic conductivity 
lost), and the average time spent (𝑇𝑇�sm) below root P50, where f = 1, and the number of hydrologically similar 
noncontiguous stands is equal to 24  

Soils   Soils + LR   Soils + LR + H   
Modeled output R2 β P R2 β P R2 β P 

𝜃̅𝜃 0.76 0.90 *** 0.80 0.93 *** 0.82 1.02 *** 

ζ̅’, 0.75 0.52 *** 0.75 0.52 *** 0.76 0.53 *** 

𝑛𝑛�sm 0.77 0.02 *** 0.83 0.02 *** 0.85 0.03 *** 

𝑇𝑇�sm 0.75 −0.48 *** 0.47 −0.37 *** 0.45 −0.41 *** 

***, P < 0.001; Soils, soil texture and depth; LR, lateral redistribution; H, heat load. 
 

Second, we tested how well modeled dynamic water stress differentiated spatially contiguous J. ashei drought‐
impacted stands compared with homogenous live canopy stands. We compared Cragg and Uhler's pseudo R2 for 
logistic regressions and percentage accuracy for a threshold distinguishing the two types of stands using ROC 
curves (Fig. 6; Table 2). We also tested the influence of only including stands above a certain stand size class. 
There seemed to be an inflection point, where percentage accuracy and explanatory power increased 
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dramatically for stands >1 ha and started to level off at around 2 ha (Fig. 6). Also, increasing model complexity 
resulted in higher accuracy and higher explanatory power. For example, models that only included spatially 
variable soil conditions reached an accuracy of 60%, when considering stands >2 ha; however, when including 
spatially variable inputs related to soil, lateral flow of water and radiation/temperature effects, the accuracy 
increased to 72% (Table 2). Furthermore, increasing the amount of lateral redistribution of water, by 
increasing f, led to improvements in model accuracy and higher explanatory power. However, as f got larger and 
approached 1, large changes in f only led to minimal improvements in accuracy (Fig. 6). A cut‐off value of 0.28 
for dynamic water stress was most successful at distinguishing homogenous live canopy stands from drought‐
impacted stands (Table 2). We therefore used this cut‐off value and f = 1, to determine the percentage of the 
landscape that surpassed a dynamic water stress value associated with canopy loss for both historical and future 
climate projections. The cut‐off value was not dependent on the size of stands considered (Fig. 6c). 

 
Figure 6 Accuracy in distinguishing drought‐impacted stands from homogenous live canopy stands of Juniperus 
ashei above a certain patch area threshold (x‐axis): (a) Cragg and Uhler's pseudo R2 for logistic regressions, (b) 
percentage accuracy and (c) the dynamic water stress cut‐off defined using receiver operating characteristic 
(ROC) curves. Each line represents a different model with multiple levels of complexity, including only spatially 
variable soil conditions (soils), lateral redistribution of water (soils + topographic wetness index (TWI)) with the 
constant, f, ranging from 0.4, 0.6, 0.8 and 1.0, and spatially variable potential evapotranspiration (PET) due to 
radiation/temperature differences (soils + TWI + heat load). The number of stands ranged from c. 42 000 when 
including all size patches to c. 1000 when including only patches > 8 ha. 
 

Table 2. Summary of logistic regression coefficients and outputs of the receiver operating characteristic (ROC) 
curve analysis for models of increasing complexity, testing the capacity of model outputs in distinguishing 
drought‐impacted stands from homogenous live canopy stands 

Soils    Soils + LR    Soils + LR + H     
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Model 
output 

R2 P AIC % 
acc 

R2 P AIC % 
acc 

R2 P AIC % 
acc 

Cut‐
off 

>1 ha              

𝜃̅𝜃 0.08 *** 7715 60 0.12 *** 7567 69 0.13 *** 7502 69 0.28 

ζ̅’, 0.08 *** 7717 60 0.09 *** 7711 60 0.09 *** 7686 62 0.68 

𝑛𝑛�sm 0.08 *** 7718 59 0.13 *** 7503 70 0.14 *** 7428 69 10.35 

𝑇𝑇�sm 0.08 *** 7722 40 0.01 *** 8054 59 0.01 *** 8070 59 9.43 
>2 ha              

𝜃̅𝜃 0.10 *** 4570 60 0.14 *** 4458 71 0.16 *** 4396 72 0.28 

ζ̅’, 0.10 *** 4574 60 0.10 *** 4569 60 0.11 *** 4545 64 0.68 

𝑛𝑛�sm 0.10 *** 4573 59 0.16 *** 4413 71 0.18 *** 4340 72 10.43 

𝑇𝑇�sm 0.10 *** 4577 40 0.01 *** 4822 59 0.01 *** 4834 59 9.43 

Model outputs included dynamic water stress (𝜃̅𝜃), static water stress given a tree was under stress (ζ̅’), the 
average number of crossings (𝑛𝑛�sm) below root P50 (50% hydraulic conductivity lost), and the average time spent 
(𝑇𝑇�sm) below root P50, where f = 1, and the size of drought‐impacted or homogenous live canopy stands 
of J. ashei was either > 1 ha or > 2 ha. ***, P < 0.001; Soils, soil texture and depth; LR, lateral redistribution using 
topographic wetness index (TWI); H, heat load. R2, Cragg and Uhler's pseudo R2; % acc, percentage accuracy in 
differentiating drought‐impacted vs live canopy stands using ROC curve analysis and 10‐fold cross‐validation. 

Projecting dynamic water stress through the 21st century 
In order to understand how dynamic water stress is projected to change in the future, we selected 10 GCMs that 
showed the lowest MAE in predicting mean annual precipitation (Table S2). For several years in the 21st century 
and across several of the GCMs, the mean rainfall depth, α, and the time between rainfall events, 1/λ, surpassed 
drought conditions that were more severe than the 2011 drought year (Fig. 7a,b). PET for J. ashei increased 
dramatically compared to historical averages for both RCP 4.5 and even more so for RCP 8.5 (Fig. 7c). Ensemble 
means of dynamic water stress across 10 GCMs showed that average dynamic water stress increased over the 
21st century (Fig. 8a) for both RCP 4.5 and 8.5 scenarios. Furthermore, the percentage of the landscape 
surpassing a threshold of dynamic water stress associated with mortality increased through the 21st century 
(Fig. 8b). For models forced using no landscape heterogeneity, the maximum percentage of the area impacted 
by model construction was 100% for the most severe droughts projected in the 21st century. However, when 
landscape heterogeneity was included, the maximum percentage area impacted in the future was c. 90% for 
both RCP 4.5 and 8.5 (Table 3). 
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Figure 7 Comparison of how climate parameters vary with annual precipitation: (a) α, mean rainfall depth (mm), 
(b) 1/λ, time (days) between rainfall events, and (c) potential evapotranspiration (PET) for Juniperus ashei, using 
spatial averages across all areas in the watershed. We include both historical gridMET climate data: 1980–2015 
(Abatzoglou, 2013) and future MACA climate projections: 2020–2099, from two representative concentration 
pathway trajectories, RCP 4.5 and 8.5, acquired from Abatzoglou & Brown (2012). Each point represents climate 
parameters for each year from 2020 to 2099, for each of the 10 global climate models (GCMs). 

 
Figure 8 Comparison of how dynamic water stress has changed over the past 35 yr (1980–2015) 
(Abatzoglou, 2013) and was projected to change in the future 2006–2099, using climate data from two 
representative concentration pathway trajectories, RCP 4.5 and 8.5 (Abatzoglou & Brown, 2012): (a) spatial 
averages of dynamic water stress across the watershed with Juniperus ashei cover and (b) percentage area 
drought‐impacted (e.g. percentage of the landscape that surpassed the dynamic water stress threshold of 0.28 
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associated with canopy loss during the 2011 drought year, defined in Table 2). The dark line represents the 
average of 10 global climate models (GCMs), the colored shading: the standard deviation, and the gray shading: 
the range. 
 
Table 3. Comparison of future water stress projections of dynamic water stress for models with and without 
landscape heterogeneity, compiling dynamic water stress across 10 model runs, each forced with climate 
projections from 10 global climate models (GCMs) from 2006 to 2099, and two representative concentration 
pathways (RCP), 4.5 and 8.5  

Landscape heterogeneity No landscape heterogeneity 
RCP 4.5   
Dynamic water stress   
Mean 0.096 0.035 
SD 0.079 0.058 
Range [0.000, 0.379] [0.000, 0.367] 
Landscape past threshold (%)   
Mean 5.5% 0.6% 
SD 17.0% 8.0% 
Range [0%, 90.5%] [0%, 100%] 
No. of crossings at 100% 0 6 
RCP 8.5   
Dynamic water stress   
Mean 0.104 0.038 
SD 0.078 0.056 
Range [0.000, 0.362] [0.000, 0.343] 
Landscape past threshold (%)   
Mean 5.4% 0.2% 
SD 16.2% 4.6% 
Range [0%, 90.0%] [0%, 100%] 
No. of crossings at 100% 0 2 

Discussion 
Incorporating topography in models of tree water stress 
Model estimates of dynamic water stress compared well with remotely‐sensed observations of drought‐
impacted area from the 2011 drought. When using dynamic water stress to distinguish between drought‐
impacted stands vs homogenous live canopy stands > 2 ha, we found that accuracy increased from 60% for 
models including only spatially variable soil conditions to 72% for models considering soils and topography, 
including lateral redistribution of water using a topographic wetness index (TWI) and spatially variable potential 
evapotranspiration (PET) attributable to radiation/temperature differences (Table 2). Tai et al. (2017) also found 
that including topography to approximate lateral redistribution improved predictions of Aspen, Populus 
tremuloides, mortality in Colorado. Our approach expands upon Tai et al. (2017), by providing an alternative 
framework that cohesively integrates plant physiological thresholds limiting hydraulic capacity (Fig. 3b) and 
landscape processes. In the absence of widespread observations of leaf water potential thresholds for tree 
vulnerability to drying soil, the prediction of large‐scale response to drought seems difficult. Our model requires 
simple physiological traits that are consistent with known mechanisms of plant hydraulic failure and that are 
routinely measured when investigating plant response to drought (e.g. air entry, 50% loss in hydraulic 
conductivity in the roots (root P50) and turgor loss points derived from cavitation and pressure–volume curves, 
respectively). 

When aggregating modeled results to larger stands (> 1 ha; Fig. 6), we observed improved accuracy, which could 
be attributable to hydrological processes acting across pixels. The topographic index, TWI, was used to directly 
relate the land surface to lateral water flow; however, the land surface may not be the best predictor of 
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belowground processes. As an example, variations in the water table depth could be lower compared to 
variations in the land surface elevation (Wolock & Price, 1994). Also, the minimum size map delineation for the 
SSURGO soil database ranges from 0.4 to 4 ha; a much coarser resolution than the 30‐m digital elevation maps 
used to derive TWI. Moreover, soil maps often show sharp, unrealistic changes of soil texture and soil depth 
between neighboring soil polygons (Zhu & Mackay, 2001); aggregating across stands may smooth these 
transitions. Lastly, at fine spatial scales, tree mortality could appear stochastic due to a variety of mechanisms 
that are not included in most models (e.g. insects and pathogens, harvesting/land management and plasticity of 
plant traits). For these reasons, accuracy improved as we aggregated modeled results to larger stands, until a 
threshold of c. 2 ha was reached. Past this threshold of 2 ha and up to 8 ha, accuracy did not increase 
substantially (Figs S1, 6). 

Limitations 
The modeling framework had a few important limitations. Juniperus ashei is an evergreen species; therefore, we 
defined the growing season as the full year, but did not include seasonal differences when modeling rainfall 
stochastically. Incorporating seasonality could improve our ability to model tree water stress (Viola et al., 2008; 
Feng et al., 2017). We did not consider water inputs from the deep regolith, which could provide additional 
sources of water (Fellows & Goulden, 2013). A few J. ashei individuals have been observed to access water in 
caves up to 8‐m below the soil surface in central Texas (Jackson et al., 1999). When examining tree water stress 
in the future, we did not consider effects associated with increased water use efficiency (WUE) from elevated 
atmospheric CO2 concentrations. However, an experiment examining the interactive effects between elevated 
CO2 and drought found that elevated CO2 did not delay time to mortality for two gymnosperm species 
(Duan et al., 2015). If projected future droughts are too severe and cause complete closure of stomata, then the 
benefit of elevated CO2 will have no effect on photosynthesis (Franks et al., 2013). Also, in some species, 
elevated CO2 can cause changes in plant hydraulics that lead to greater potential for drought stress 
(Domec et al., 2017). Although we found that stomatal conductance was linearly related to soil moisture 
(Fig. 3a), J. ashei showed a lagged recovery in gas exchange, despite an increase in rainfall during August 
(Johnson et al., 2018b); our model does not account for delayed recovery from any hydraulic impairment. By not 
accounting for memory of impairment, we could be underestimating water stress, especially given the potential 
for consecutive droughts to increase in frequency with climate change. Lastly, models that can also account for 
re‐growth/recovery of vegetation could provide additional insight on how landscape heterogeneity influences 
tree survival and recovery following drought (Tague et al., 2013; Vicente‐Serrano et al., 2015). 

Modeling future tree water stress 
Using projected climate data from 10 global climate models (GCMs), we found that dynamic water stress was 
forecasted to increase through the 21st century due to both projected increases in PET and changes in the timing 
and amount of rainfall. Future projections of rainfall are highly uncertain; regional processes are often not 
included in many GCMs, causing projections of precipitation extremes to be less accurate at regional scales 
(Burke et al., 2006; Jentsch et al., 2007). However, there is high confidence in projected temperature increases; 
this warming also will lead to higher atmospheric moisture demand and PET (Fig. 7c). Higher projected PET 
values are likely the main driver of dynamic water stress increasing throughout the 21st century (Fig. 8a). When 
comparing models with and without landscape heterogeneity, it is important to consider that landscape 
heterogeneity allows for the existence of both stressful (e.g. drier, hotter) and favorable (e.g. wetter, cooler) 
landscape positions for tree growth. Not considering landscape heterogeneity results in the whole landscape 
experiencing the same level of water stress and requiring a more severe drought to cause stress. With landscape 
heterogeneity across a gradient of drought severity, some stress appears more readily, compared to the uniform 
landscape, (e.g. in hotter, drier landscape positions even under moderate drought). However, some refugia still 
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remain under the most severe droughts. Therefore, when landscape heterogeneity is included, the range of 
water stress is lower due to buffering from cooler, mesic landscape positions during severe drought. 

By including landscape heterogeneity in models, we identified microrefugia capable of buffering against water 
stress, allowing tree survival even during the most severe drought projected in the 21st century. For this study 
area, these microsites included areas with deep soil, substantial contributing area and northeastern‐facing 
aspects. When considering outputs from 10 GCMs across the 21st century (2006–2099), the maximum 
percentage area of the watershed surpassing a dynamic water stress threshold associated with canopy loss was 
100% for models with no landscape heterogeneity, compared to c. 90% for models including landscape 
heterogeneity (Table 3). For the most severe drought, only c. 10% of the landscape did not pass a dynamic water 
stress threshold associated with tree mortality in 2011. This supports the hypothesis of Allen et al. (2015) that 
the potential for microsites to buffer may be overwhelmed under the severe droughts and heatwaves projected 
under climate change. Alternatively, microsites might exist across the landscape that are too small to be 
adequately captured by the spatially distributed input variables of soil conditions and topography included in 
this model. For example, the SSURGO soil database does not identify areas with unique soil conditions below the 
minimum size map delineation of 0.4–4 ha. By using finer‐scale digital elevation models (DEMs) and soil maps 
we could potentially identify additional microsites, capable of providing buffering against future water stress. 

Failure to capture landscape heterogeneity in models could limit our capacity to accurately predict forest 
response to a changing climate. Tree mortality is often observed across local stress gradients within a species 
range, rather than at trailing range edges (Gitlin et al., 2006). Therefore, when projecting future water stress, it 
is important to account for the fact that not all landscape positions are equally stressful. For our watershed in 
central Texas, models only predicted minimal buffering of tree water stress through the 21st century. However, 
different watersheds would likely have different buffering capacities, depending on the landscape complexity. 

Models including landscape heterogeneity can also be used to determine the likely configuration of surviving 
stands. Landscape heterogeneity has the potential to act as a stabilizing process, if seeds can disperse from 
surviving trees (Lloret et al., 2012); these sites could then be prioritized for conservation 
(McLaughlin et al., 2017). However, if droughts become too severe and leave only isolated stands, this isolation 
may limit dispersion and the potential for a species to migrate to keep pace with changing climate conditions 
(Hewitt & Kellman, 2004; Gitlin et al., 2006; Lazarus & McGill, 2014). 

Conclusion 
We modeled dynamic water stress across a landscape at a 30‐m spatial resolution by incorporating plant 
hydraulic thresholds in relation to water deficit and spatial heterogeneity of soil conditions (e.g. texture and 
depth), surface/subsurface lateral water flow using a topographic index, and PET attributable to radiation and 
temperature differences. Our model simplifies the plant hydraulics to maintain analytical tractability. As such, 
the model is currently computationally efficient to run at regional scales, while still accounting for local water 
stress gradients. Landscape heterogeneity typically is not considered in DGVMs, with coarse spatial resolutions 
of c. 104 to 105 km2 (e.g. Moorcroft, 2006). Local water stress gradients with high spatial variability, combined 
with the nonlinear nature of mortality processes, suggest that modeling an average tree growing in an average 
environment will not give the same water stress predictions as a model that incorporates spatial heterogeneity 
of the environment (Levin et al., 1997; Moorcroft, 2006). We found that including topographically variable input 
parameters improved our ability to predict spatial patterns of canopy loss observed during the 2011 drought. 
Furthermore, the model projected increases in mean dynamic water stress throughout the 21st century with the 
use of key physiological parameters of drought‐induced vascular damage. Models with landscape heterogeneity 
showed some buffering capacity, but it was limited. The landscape can act as a buffer against water stress, but 
depending on the topography of the watershed, the buffering capacity has the potential to be overwhelmed if 
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future droughts are too severe. By incorporating landscape heterogeneity in models, we can test whether 
landscapes can act as effective buffers against future droughts and heatwaves projected under climate change. 
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