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Abstract: 
The robustness of the visual trackers based on the correlation maps generated from convolutional neural 
networks can be substantially improved if these maps are used to employed in conjunction with a particle filter. 
In this article, we present a particle filter that estimates the target size as well as the target position and that 
utilizes a new adaptive correlation filter to account for potential errors in the model generation. Thus, instead of 
generating one model which is highly dependent on the estimated target position and size, we generate a 
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variable number of target models based on high likelihood particles, which increases in challenging situations 
and decreases in less complex scenarios. Experimental results on the Visual Tracker Benchmark vl.0 demonstrate 
that our proposed framework significantly outperforms state-of-the-art methods. 

SECTION 1. Introduction 
One important aspect of visual target tracking is to accurately determine the target position as well as its size. 
Particle filters have been employed in visual tracking for years because of their ability to perform these tasks 
robustly [1]. Recently, deep convolutional neural networks have been used to produce highly discriminative 
target features [2]. Trackers such as HCFT and HDT [3], [4], which employ convolutional features in conjunction 
with correlation filters have shown better visual tracking performance than traditional trackers such as 
MEEM [5], KCF [6], Struck [7], SCM [8] and TLD [9]. Despite the substantial performance gains obtained in recent 
years by the aforementioned CNN -correlation methods, their main disadvantage is their inability to vary the size 
of the target bounding box [3], [4]. By combining CNN-based correlation maps with particle filters, we can 
overcome this limitation and improve overall tracking accuracy and robustness. 

We propose two new mechanisms to improve the performance of our previous visual tracker named Deep 
Convolutional Particle Filter (DCPF) [10]. Briefly, DCPF uses multiple particles as inputs to VGG-Net [2]. For each 
particle, it then applies the correlation filter used in HCFT on the extracted hierarchical convolutional features to 
construct the correlation map. The target position at the current frame is calculated based on the response of 
the correlation maps. However, similar to HCFT, DCPF tracks a bounding box of fixed size. Another limitation of 
DCPF and other trackers based on conventional correlation filters is the fact that they generate only one target 
model. Thus, errors in calculating the final target state cause the target model to be incorrectly updated. In our 
new visual tracker named DCPF2, we address the first limitation by extending DCPF's particle filter to estimate 
the target size. In addition, we employ an adaptive correlation filter, which produces a variable number of target 
models based on the number of high-likelihood particles that have been generated in the previous frame. In 
frames where the target can be easily tracked, this number is low because the best particle has a high likelihood 
and fewer particles have similar likelihoods. Conversely, in challenging situations, the target is less similar to the 
model and hence the likelihood of most particles decreases and the particle weight distribution becomes less 
centralized. We used the Visual Tracker Benchmark v1. 0 [11] to evaluate the performance of the proposed 
tracker and showed that it performs favorably with respect to other state-of-the-art methods. 

SECTION 2. Proposed Algorithm 
In this section, we first explain how our particle filter estimates the target size and its position. Then, our 
adaptive correction filter is discussed. Fig. 1 illustrates the proposed approach. 

2.1. Particle Filter to Estimate the Target Bounding Box 
Let the target position and size be represented by 

𝑧𝑧𝑡𝑡 = [𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡 ,ℎ𝑡𝑡 ,𝑤𝑤𝑡𝑡]𝑇𝑇 , (1) 

where 𝑢𝑢𝑡𝑡 and 𝑣𝑣𝑡𝑡 are the locations of the target on the horizontal and vertical image axes at frame 𝑡𝑡, 
and ℎ𝑡𝑡 and 𝑤𝑤𝑡𝑡 are its width and height. The target state is given by 

𝑥𝑥𝑡𝑡 = [𝑧𝑧𝑡𝑡 , 𝑧𝑧
˙
𝑡𝑡]𝑇𝑇 , (2) 

where 𝑧𝑧
˙
𝑡𝑡 is the velocity of 𝑧𝑧𝑡𝑡. The tracker employs a linear motion model to predict the current state of the 

target 𝑥𝑥
^
𝑡𝑡 based on the previous target state 𝑥𝑥𝑡𝑡−1. The predicted target state is given by 



𝑥𝑥
^
𝑡𝑡 = 𝐴𝐴𝑥𝑥𝑡𝑡−1, (3) 

where 𝐴𝐴 is a standard constant velocity process matrix. Then, particles 𝑥𝑥(𝑖𝑖) = [𝑧𝑧(𝑖𝑖), 𝑧𝑧
˙ (𝑖𝑖)]𝑇𝑇 are generated by 

adding samples 𝜂𝜂(𝑖𝑖) ∈ ℝ8 drawn from a zero-mean normal distribution. That is. 

𝑥𝑥𝑡𝑡
(𝑖𝑖) = 𝑥𝑥

^
𝑡𝑡 + 𝜂𝜂(𝑖𝑖), (4) 

where 𝑖𝑖 = 1, … ,𝑁𝑁 and 𝑁𝑁 is the number of the particles. In order to limit the number of particles needed, rather 
than drawing 𝜂𝜂(𝑖𝑖) directly from an eight-dimensional distribution, we draw its samples individually, and change 
its height and width simultaneously using the same sample (i.e., we change the target scale but not its aspect 
ratio). 

 
Fig. 1. Overview of our proposed tracker. 

In the next step, 𝑧𝑧(𝑖𝑖) are used to sample different patches from frame 𝑡𝑡. Each patch is then fed into the CNN to 
calculate its convolutional feature map. Let 𝑓𝑓𝑙𝑙,𝑑𝑑

(𝑖𝑖) ∈ ℝ𝑀𝑀×𝑄𝑄 be the convolutional feature map, where 𝑀𝑀,𝑄𝑄 are the 
width and height of the map, 𝑙𝑙 is the convolutional layer and 𝑑𝑑 is the number of the channels for that layer 𝑑𝑑 =
1, … ,𝐷𝐷. Then, its correlation response map 𝑅𝑅𝑙𝑙

(𝑗𝑗)(𝑖𝑖) ∈ ℝ𝑀𝑀×𝑄𝑄 is given by 

𝑅𝑅𝑙𝑙
(𝑗𝑗)(𝑖𝑖) = 𝔉𝔉−1 �� 𝐶𝐶𝑙𝑙,𝑑𝑑

(𝑗𝑗) ⊙𝑓𝑓𝑙𝑙,𝑑𝑑
(𝑖𝑖)𝐷𝐷

𝑑𝑑=1
� , (5) 

where 𝔉𝔉 represents the inverse Fourier transform [3], 𝑗𝑗 = 1, … ,𝐾𝐾𝑡𝑡−1 illustrates the number of models 
generated in the previous frame 𝑡𝑡 − 1,𝐶𝐶𝑙𝑙,𝑑𝑑

(𝑗𝑗) represents channel 𝑑𝑑 of layer 𝑙𝑙 of the correlation filter of the 
model 𝑗𝑗, the bar represents complex conjugation and ⊙ is the Hadamard product. The final correlation response 
map 𝑅𝑅∗(𝑗𝑗)(𝑖𝑖) for particle 𝑖𝑖 and model 𝑗𝑗 is calculated based on a weighted sum of the maps for all the CNN layers 
as proposed in [3]. The likelihood or weight of each correlation response map is calculated by 

𝜔𝜔(𝑗𝑗)(𝑖𝑖) = ∑  𝑀𝑀
𝑚𝑚=1 � 𝑅𝑅(𝑚𝑚,𝑞𝑞)

∗(𝑗𝑗)(𝑖𝑖)
𝑄𝑄

𝑞𝑞=1
, (6) 

where 𝑅𝑅(𝑚𝑚,𝑞𝑞)
∗(𝑗𝑗)(𝑖𝑖) refers to the element of the final correlation response map on row 𝑚𝑚 and column 𝑞𝑞. In total, we 

have 𝑁𝑁 × 𝐾𝐾𝑡𝑡−1 weights. The intuition behind this choice is that feature maps that correspond to the target tend 
to show substantially higher correlation values than background patches [12]. We then find the maximum 
weight 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 over all the particles and models 

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑥𝑥
𝑗𝑗,𝑖𝑖

𝜔𝜔(𝑖𝑖,𝑗𝑗). (7) 
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Let the indexes corresponding to 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 be 𝑖𝑖 = 𝑖𝑖∗ (the best particle) and 𝑗𝑗 = 𝑗𝑗∗ (the best model). Then, the final 
target size is given by ℎ(𝑖𝑖∗) and 𝑤𝑤(𝑖𝑖∗). That is, the 𝑖𝑖∗ -th patch with dimensions ℎ(𝑖𝑖∗) and 𝑤𝑤(𝑖𝑖∗) is the most similar 
to the best model 𝐶𝐶(𝑗𝑗∗). Additionally, let 𝑅𝑅∗(𝑗𝑗∗)(𝑖𝑖∗) be the correlation response map associated with 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚, its 
peak is located at 

[𝛿𝛿𝑢𝑢, 𝛿𝛿𝑣𝑣] = arg𝑚𝑚𝑚𝑚𝑥𝑥
𝑚𝑚,𝑞𝑞

 𝑅𝑅(𝑚𝑚,𝑞𝑞)
∗(𝑗𝑗∗)(𝑖𝑖∗), (8) 

where 𝑚𝑚 = 1, … ,𝑀𝑀 and 𝑞𝑞 = 1, … ,𝑄𝑄. The final target position is then calculated by shifting the best particle 
towards the peak of its correlation map 

[𝑢𝑢
~

,𝑣𝑣
~

] = [𝑢𝑢(𝑖𝑖∗) + 𝛿𝛿𝑢𝑢,𝑣𝑣(𝑖𝑖∗) + 𝛿𝛿𝑣𝑣], (9) 

where 𝑢𝑢(𝑖𝑖∗) and 𝑣𝑣(𝑖𝑖∗) correspond to the position of the best particle. Thus, the target state at the frame 𝑡𝑡 is 

𝑥𝑥𝑡𝑡 = [𝑧𝑧∗, 𝑧𝑧
˙ (𝑖𝑖∗)]𝑇𝑇 , (10) 

where 𝑧𝑧
˙ (𝑖𝑖∗) is the velocity of the best particle and 

𝑧𝑧∗ = [𝑢𝑢
~

,𝑣𝑣
~

, ℎ(𝑖𝑖∗),𝑤𝑤(𝑖𝑖∗)]𝑇𝑇 . (11) 

Algorithm 1 summarizes our method to estimate the target state. 

Algorithm 1: Calculate the Current Target State 

 
 

2.2. Adaptive Correlation Filter 
After finding ωmax, we examine the following relationship for all 𝑁𝑁 × 𝐾𝐾𝑡𝑡−1 weights 

𝜔𝜔(𝑗𝑗)(𝑖𝑖) > 𝛼𝛼𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 , (12) 

where 𝛼𝛼 is a constant. If Eq. 12 is true, the corresponding particle is considered a high likelihood particle. 
Let 𝑖𝑖′ and 𝑗𝑗′ be the indices of the selected weights. Then, ℎ(𝑖𝑖′) and 𝑤𝑤(𝑖𝑖′) calculated by Eq. 4 are considered the 
target size particle. Additionally, its associated correlation response map 𝑅𝑅∗(𝑗𝑗′)(𝑖𝑖′) is used to calculate the 
estimated target position 𝑢𝑢

~𝑖𝑖′  and 𝑣𝑣
~𝑖𝑖′similar to Eq. 8 and Eq. 9. Thus the corresponding high likelihood 

particle 𝑧𝑧ℎ𝑖𝑖𝑖𝑖ℎ
(𝑠𝑠)  is given by 
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𝑧𝑧ℎ𝑖𝑖𝑖𝑖ℎ
(𝑠𝑠) = [𝑢𝑢

~𝑖𝑖′ ,𝑣𝑣
~𝑖𝑖′ ,ℎ(𝑖𝑖′),𝑤𝑤(𝑖𝑖′)]𝑇𝑇 , (13) 

Algorithm 2: Adaptive Correlation Filter 

 
 

Where 𝑠𝑠 = 1, … ,𝐾𝐾𝑡𝑡 and 𝐾𝐾𝑡𝑡 is the number of the high-likelihood particles. We then generate a patch from 
frame 𝑡𝑡 for each of the 𝐾𝐾𝑡𝑡 high-likelihood particles. In the next step, these patches are fed into the CNN to 
extract Kt convolutional feature maps, and a new correlation filter 𝐶𝐶𝑙𝑙,𝑑𝑑

(𝑠𝑠) is then generated for each of the 𝐾𝐾𝑡𝑡 high 
likelihood particles. The generated models are used in frame 𝑡𝑡 + 1 to be compared with the convolutional 
features generated by each particle. 

Alg. 2 summarizes our adaptive correlation filter procedure. The comparison between the best model with the 
most accurate target size and position generates more accurate correlation maps. As previously mentioned, by 
varying the number of models 𝐾𝐾𝑡𝑡 with the number of high likelihood particles, we are able to maintain a larger 
number of tentative models in challenging scenarios such as in the presence of illumination variation, motion 
blur, or partial occlusion due to the wider distribution of the particle weights under these conditions. 

SECTION 3. Results and Discussion 
We evaluate our tracker on the well known Visual Tracker Benchmark v1.0 [11]. This benchmark contains 50 
data sequences that are annotated with 9 attributes representing challenging aspects of tracking, such as scale 
variation, in-plane rotation and illumination variations. We use a one-pass evaluation (OPE) in which the tracker 
is initialized with the ground truth location at the first frame of the image sequence [11]. Also, we heuristically 
set 𝛼𝛼 = 0.8 and 𝑁𝑁 =  300. 

Fig. 2 qualitatively illustrates the performance of our tracker in comparison with three trackers: the CNN-based 
trackers HCFT and HDT as well as the correlation filter tracker SCT6 [13]. As the results in Fig. 2 indicate, the 
baseline trackers get easily confused in situations such as scale variation, illumination variation, in-plane and 
out-of-plane rotations. The proposed particle-correlation filter is able to sample several image patches and it is 
hence capable of overcoming these difficulties. 
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Fig. 2. Qualitative evaluation of our tracker, HCFT, HDT and sct6 on six challenging sequences (from left to right 
and top to bottom are liquor, car4, lemming and singer1, respectively). 

 
Fig. 3. Quantitative evaluation of our tracker and fourteen state-of-the-art trackers on ope. 

Fig. 3 provides a quantitative evaluation of our proposed approach in comparison with 11 state-of-the-art 
trackers [3], [4], [14], [13], [7]–[8][9], [15]–[16][17][18]. In the figure, Precision plots correspond to the average 
Euclidean distance between the tracked locations and the ground truth while Success plots correspond to the 
area of overlap between the predicted bounding box and the respective ground truth [11]. In attributes such as 
scale variation, illumination and out-of-plane rotations where the common correlation filter loses track of the 
target, our adaptive correlation filter in conjunction with the particle filter are then able to recover using the 
weights generated by the CNN. For challenging scenarios of scale variation, illumination variation and out-of-
plane rotation as well in terms of overall performance, our tracker shows improvements of approximately 14%, 
10%, 9% and 7%, respectively, in comparison with the second best tracker HCFT. 

SECTION 4. Conclusion 
This article proposes a novel framework named DCPF2 for visual tracking. We extend the particle filter employed 
in our previous tracker DCPF to estimate the target size. Additionally, because the correlation filter used in DCPF 
is heavily dependent upon the estimated target position, we find all of the high-likelihood particles and calculate 
a model for each of them. The Visual Tracker Benchmark vl.0 is used for evaluating the proposed tracker's 
performance. The results show that these strategies improve the performance of CNN-correlation trackers in 
critical situations such as scale variation, illumination and out-of-plane rotations. 
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