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Abstract: 
Mid-wave and long-wave infrared (IR) quantum-dots-in-a-well (DWELL) focal plane arrays (FPAs) are promising 
technology for multispectral (MS) imaging and sensing. The DWELL structure design provides the detector with a 
unique property that allows the spectral response of the detector to be continuously, albeit coarsely, tuned with 
the applied bias. In this paper, a MS classification capability of the DWELL FPA is demonstrated. The approach is 
based upon: 1) imaging an object repeatedly using a sequence of bias voltages in the tuning range of the FPA 
and then 2) applying a classification algorithm to the totality of readouts, over multiple biases, at each pixel to 
identify the “class” of the material. The approach is validated for two classification problems: separation among 
different combinations of three IR filters and discrimination between rocks. This work is the first demonstration 
of the MS classification capability of the DWELL FPA. 

SECTION I. Introduction 
Typical infrared (IR) multispectral (MS) and hyperspectral (HS) systems are usually implemented by deploying 
multiple detectors, each sensing at a specific range of wavelengths. Another alternative is to use a single 
broadband detector combined with a dispersive optical system, such as a bank of IR optical filters, each tuned to 
a specific wavelength band. In either case, the sensor represents a highly complex optomechanical system that 
requires precision alignment and calibration. Once the calibration is completed and the sensor is deployed, the 
sensor's functionality cannot be easily modified. As a result, the sensor cannot be easily adapted to take 
advantage of specific sensing situations. In the absence of an agile software/hardware architecture, one is 
typically forced to acquire all available imagery data before its relevance becomes clear. This leads to the 
acquisition of maximum and often massive amounts of data that has to be stored for subsequent processing in 
applications such as classification, abundance estimation, image segmentation and analysis, etc. Besides the 
large storage demands, the analysis of this MS and HS imagery requires powerful hardware systems and 
efficient processing algorithms. 

The inflexibility of the functionality of most present-day MS/HS sensors to adapt to specific applications has 
prompted the development of a new modality for MS and HS sensing, providing greater flexibility in terms of 
compressive data acquisition and offering reduced complexity and cost. Spectrally adaptive sensing methods 
include those that are based on microelectromechanical systems (MEMS) [1] and acousto-optic tunable filters 
(AOTFs) [2]. However, a new emerging technology for adaptable and compressive sensing is the quantum dots-
in-a-well (DWELL)-based IR focal plane array (FPA) [3]–[4][5]. Owing to the quantum-confined Stark effect 
(QCSE) [6], [7], the DWELL sensor exhibits a unique feature that enables continuous spectral tuning in the mid-
wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions by means of changing the applied bias 
voltage. Such tunable sensors provide greater optical simplicity because their spectral response is controlled 
electrically rather than optically or mechanically. 

Fig. 1(a) shows the spectral responses of a single-pixel DWELL device. As seen in the figure, the central 
wavelength and the shape of the detector's responsivity change continuously with the applied bias voltage. 
Furthermore, the spectral diversity offered by the DWELL can be further enhanced by design via optimizing the 
well width and the asymmetric band structure. As a result, in the context of MS and HS sensing, a single DWELL 
detector can be exploited as a MS IR sensor; the photocurrents measured at different operational biases can be 
viewed as outputs of different spectrally broad and overlapping bands. Clearly, this capability is an excellent fit 
to compressive sensing once the sensor is combined with algorithms and reconfigurable readout integrated 
circuits (ROICs). 



 
Fig. 1. (a) Spectral responses of a DWELL detector as a function of the applied bias which demonstrate the tuning 
capability. (b) Series of synthesized filters (solid lines) in the projection stage of algorithmic spectrometer with 
full width half maximum (FWHM) of 0.3 μm. 

The flexibility offered by the DWELL FPA is not without a price, however. For instance, the DWELL's spectral 
response is relatively broad (≈1−2μm). As a result, the spectral bands corresponding to different bias voltages 
exhibit significant overlap. Another complication is the bias-dependence of the noise (dark current) in the 
photocurrents. In our previous works, we targeted addressing both of these challenges. In particular, the 
DWELL-based algorithmic spectrometer (DAS), proposed in [8] and demonstrated in [9] and [10], banks on using 
linear superposition of bias-tunable bands of the individual DWELL detector to minimize the effect of high 
correlation in the DWELL's bands in the presence of noise in achieving target spectrum 
reconstruction. Fig. 1(b) shows series of synthesized filters (solid lines) which approximate ideal tuning filters 
(dashed lines) in the projection stage of the DAS. The full width half maximum (FWHM) of the synthesized filters 
is 0.3 μm. 

Another example is the canonical correlation feature selection (CCFS) algorithm, reported in [11] and [12]. This 
algorithm addresses the problem of linear superposition of bias-tunable DWELL bands to perform spectral 
feature selection (for material classification) based on spectral matched filtering. Our previous work [11] also 
includes successful demonstration of MS classification of the DWELL detector, at a single-pixel level, in terms of 
rock-type classification. The study was conducted using laboratory spectral data for the rock types and spectral 
responsivities measurements of the DWELL detector. 

In this paper, we demonstrate for the first time MS classification using imagery obtained from the DWELL FPA. In 
our setting, multiple DWELL-FPA images are taken at different bias voltages. As such, the sequence of all images 
can be viewed as a MS imagery. We performed two studies. In the first study, we compare the classification 
error among different materials for two general classification problems using few combinations of bias voltages. 
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The first classification problem, termed filter classification problem, is that of classifying combinations of MWIR 
and LWIR optical filters with different bandwidths and center wavelengths. The second classification problem, 
termed rock classification problem, focuses on classification between pairs of rocks drawn from a set of three 
distinct rock types: granite, hornfels, and limestone. 

The second study is a separability analysis and optimal bias selection for classification. The separability analysis 
focuses on investigation of the separation between pairs of materials as a function of the DWELL's bias voltage. 
For the granite-limestone and granite-hornfels classification problems, we carry out exhaustive search over all 
possible combinations of the bias voltages in the context of optimal bias selection based on minimization of the 
classification error. 

The organization of this paper is as follows. In Section II, we briefly describe the development and the operation 
principle of the DWELL FPA, followed by the description of the bias-dependent spectral tunability capability of 
the DWELL FPA. Section III describes the MS classification approach for the two classification problems described 
above. In Section IV, the MS classification results are discussed. The separability and classification analysis for 
optimal bias selection are also presented and discussed in Section IV. Our conclusions are presented 
in Section V. 

SECTION II. The DWELL Focal Plane Array 
In this section, we briefly describe the operation principle, characterization and bias-dependent spectral 
tunability of the DWELL FPA. 

A. Operation Principle and Spectral Characterization of the DWELL FPA 
The DWELL photodetector, pioneered by Krishna [13], is a hybrid version of quantum dot (QD) and quantum 
well (QW) photodetectors. The DWELL photodetector reported in [9] has already been shown to exhibit bias 
tunability in the range of MWIR (3–5 μm) to the LWIR (8–12 μm) portions of the spectrum. In general, the MWIR 
response is driven by a bound-to-continuum transition, while the LWIR is driven by the bound state in the dot-
to-a-bound state in the well transition, as shown in Fig. 2. In addition, the asymmetry of the electronic potential 
controlled by the shape of the dot and the different thicknesses of QW above and below the dot, results in 
variation of the local potential as a function of the applied bias. As a result, by adjusting the applied bias voltage 
on the device, spectral shift (called also “redshift”) and overlaps are obtained, particularly in LWIR (8–12 μm) 
region. 



 
Fig. 2. Top: schematic of the energy transition levels in the conduction band of DWELL. Bottom: growth 
schematic of single-pixel DWELL (adapted from [9].). 

The spectral responses of the single-pixel DWELL shown in Fig. 3 demonstrate bias-dependent spectral tunability 
for various device operating temperatures. The details of the device characterization had been reported in [9]. 
The DWELL has been fabricated into a 320 by 256 detector array format and is used for this study. The 
fabrication process is described in great detail in [14] and [15]. The DWELL FPA responses have been 
characterized by using CamIRa demonstration system.1 Recently, an optimized DWELL FPA was reported 
in [14] demonstrating an increase in the operating temperature (up to 80 K) and smaller noise equivalent 
difference in temperature (min. NEDT2 around 78 mK). The higher operating temperature has been achieved by 
a strain reduction and an increased number of stacks in the active region, improving the responsivity and the 
absorption quantum efficiency. 

 
Fig. 3. Bias-tunable spectral responses of the single-pixel DWELL photodetector for various operating 
temperatures (adapted from [12]). 
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B. Bias Tunability of the DWELL FPA 
DWELL FPA imagery shown in Fig. 4(a)–(d) are used to demonstrate the DWELL FPA bias tunability. For all 
imagery, the operating temperature of the DWELL FPA was set to 60 K and the integration (exposure) time was 
11.5 ms. The images shown in columns one, three and five in Fig. 4(a)–(d) are taken at 0.3, 0.7,and 1.2 V, 
respectively. Normalized images at 0.3, 0.7, and 1.2 V are shown in columns two, four, and six, respectively, 
in Fig. 4(a)–(d). The DWELL FPA data is normalized at each pixel by the approximate area of the multibias pixel 
response in order to eliminate the intensity effect in the calculations. More details about the normalization are 
given in Section III. 

 
Fig. 4. Columns one, three, and five, a-d show DWELL FPA raw imagery acquired at 0.3, 0.7, and 1.2 V, 
respectively. Columns two, four, and six, a-d, show the normalized imagery at 0.3, 0.7, and 1.2 V, respectively. 
For more details on the normalization, please refer to Section III. Objects in scene; scene in row (a): 
filters MW1 (left) and MW2 (right); scene in raw (b): filters MW2 (left) and LW3 (right); scene in row (c): 
filters MW1 (left), MW2 (center) and LW3 (right); scene in row (d): filter MW2 (top), limestone (left) and granite 
(right). 

 
Fig. 4(a)–(c) contains images of different configurations of three IR optical filters, manufactured by Northumbria 
Optical Coatings, Ltd. The spectral responses of the filters are shown in Fig. 5 (left). The first scene, shown 
in Fig. 4(a) includes two IR filters: filter at 3–4 μm termed MW1, filter at 4–5 μm termed MW2, metal filter 
holders, and a blackbody background at 150 °C. A 150 °C temperature was used since such a high-temperature 
blackbody offered a good transmittance for objects in a scene. The blackbody is manufactured by MIKRON 
company (model M315) providing a temperature between ambient 5 °C and 350 °C, a control to within 0.2 °C 
and an emissivity of +0.99. 

 
Fig. 5. Left: spectral responses of the three IR optical filters: MW1, MW2, and LW3. Right: normalized (by the 
peak value) reflectance spectra of granite, hornfels, and limestone. 

 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7361/5752398/5648441/5648441-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7361/5752398/5648441/5648441-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7361/5752398/5648441/5648441-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7361/5752398/5648441/5648441-fig-5-source-large.gif


The second scene shown in Fig. 4(b) consists of two filters: MW2 and filter at 8.5 μmtermed LW3, the same 
metal filter holders and the uniform background at the same temperature. The third scene in Fig. 4(c) consists of 
all three filters MW1, MW2, and LW3 and the background. The scene in Fig. 4(d) includes two rocks: granite 
and limestone, and the MW2 filter. Granite is a common and widely occurring type of intrusive, felsic igneous 
rock. Granites usually have a medium to coarse grained texture. Limestone is a sedimentary rock composed 
largely of the minerals calcite and aragonite, which are different crystal forms of calcium carbonate. Hornfels is a 
fine-grained nonfoliated metamorphic rock with no specific composition. It is produced by contact 
metamorphism. Normalized reflectance measurements of granite, limestone, and hornfels using a broadband 
single-pixel HgCdTe device cooled to 77 K are shown in Fig. 5 (right). 

Fig. 6, left and right, shows plots of the normalized DWELL FPA multibias responses for every object from the 
scenes in Fig. 4(a) and (d), respectively. The multibias response for every object is averaged over spatially 
uniform regions that are visually associated with that object. From the plots in Fig. 6 (left), we can observe that 
at bias voltages 0.7 and 0.8 V the responses of the DWELL FPA for all objects exhibit significant overlap. Higher 
separation between all objects for this problem is observed in the bias range of 0.3–0.6 V and in the range of 
1.0–1.2 V. 

 
Fig. 6. Left: normalized multibias FPA responses for background, metal holder, MW1, and MW2 as a function of 
applied DWELL FPA bias. Right: normalized multibias FPA responses for background, MW2, limestone, and 
granite as a function of applied DWELL FPA bias. 

The normalized multibias FPA responses for granite, limestone, background and filter comprising the scene 
in Fig. 4(d) overlap at bias voltages 0.7 and 0.8 V, as observed in Fig. 6 (right). The pairwise separability between 
the normalized multibias FPA responses for granite and limestone has the lowest value at 0.6 V. At 0.9 V, the 
normalized multibias FPA responses for the black-body background and the filter are very close to each other. 
The rest of the biases provide a good separability between the black-body background and the filter, and the 
black-body background and each one of the two rocks. The pairwise separability between the multibias 
responses for the two rocks, granite and limestone, is low across the entire bias range making this problem very 
challenging for MS classification. 

Fig. 7, left and right, shows plots of the spectral ratios for pairs of sensed materials in as a function of the applied 
bias. Fig. 7 (left) shows the spectral ratios calculated for the pair of objects (filters, background and metal 
holder) from the scene in Fig. 4(b). The spectral ratios vary between 0.4 to almost 1.4 when the applied bias 
changes in the range from 0.3 to 1.2 V with a step of 0.1 V. Note that for bias voltages 0.7 and 0.8 V, the ratios 
between pair of objects are close to one, indicating low spectral separability between the materials at these 
particular biases. 
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Fig. 7. Left: ratio of pixel values for various pairs of the objects MW2, LW3, metal holder, and the background as 
a function of applied DWELL FPA bias. Right: ratio of pixel values between objects granite and limestone, granite 
and background, and limestone and background as a function of applied DWELL FPA bias. 

The fact that the ratio values change from one bias to another indicates that the DWELL FPA can sense different 
spectral contents of the targets observed in a scene simply by changing the applied bias. Note that for the 
conventional (nontunable) detector the spectral ratios would remain fixed as a function of the applied bias. 

Fig. 7 (right) shows spectral ratio plots for two rocks: granite and limestone, and the background. As observed 
from the plots in Fig. 7 (right), the ratio between granite and limestone does not exhibit wide range as, for 
example, the granite-background ratio or limestone-background ratio. Note that for bias voltages 0.6, 0.7, and 
0.8 V, the ratios between granite and limestone are close to one, indicating low spectral separability at these 
biases. The classification results presented in Section IV demonstrate that the spectral contrast captured by the 
bias-tunable DWELL FPA is sufficient to discriminate between the two types of rocks. 

SECTION III. Multispectral Classification Using Bias Tunable DWELL FPA 
In this section, we provide a brief overview of the mathematical model for bias-tunable MS sensing and discuss 
the classification approach. 

A. Bias-Tunable MS Sensing 
Mathematically, the DWELL spectral bands can be viewed as a family of functions {𝑓𝑓𝑣𝑣𝑖𝑖(𝜆𝜆)}, parameterized by 

the applied bias voltages 𝑣𝑣𝑖𝑖  [11]. In what follows, we denote the spectrum of an object by 𝑝𝑝(𝜆𝜆). For 
example, 𝑝𝑝(𝜆𝜆) may represent transmittance, bidirectional reflectance measurement or hemispherical 
reflectance data. The photocurrent for the ith band of the DWELL detector sensing an object with a given 
spectrum 𝑝𝑝(𝜆𝜆) can be written as 

𝐼𝐼𝑣𝑣𝑖𝑖 = � 𝑝𝑝(𝜆𝜆)𝑓𝑓𝑣𝑣𝑖𝑖(𝜆𝜆)𝑑𝑑𝑑𝑑 + 𝑁𝑁𝑣𝑣𝑖𝑖
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
. (1) 

Here, 𝑁𝑁𝑣𝑣𝑖𝑖 i denotes additive, scene-independent noise associated with the 𝑖𝑖th band, and the 

interval [𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚] represents the common spectral support for all bands and objects. Next, for a given set 
of applied bias voltages {𝑣𝑣1, … , 𝑣𝑣𝑛𝑛}, the output of the DWELL detector is a set of photocurrents at these bias 
voltages 

𝐈𝐈 = (𝐼𝐼𝑣𝑣1 , … , 𝐼𝐼𝑣𝑣𝑛𝑛). (2) 

This set represents the multibias or MS signature of the object as “seen” by the DWELL dectector. 

Because the DWELL bands are wide and overlapping, the photocurrents in 𝐈𝐈 are highly correlated. The 
redundancy in the information content of the photocurrents can be reduced by a suitable postprocessing 
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algorithm, which, in turn, can be used to improve the efficiency of the classification process. Here, we shall use 
the CCFS [11] algorithm to replace the 𝑛𝑛-dimensional multibias signature in (2) by a single feature that is 
optimized with respect to a given class of objects. 

For a given class of objects represented by a mean spectrum 𝑝𝑝(𝜆𝜆), the output from the CCFS algorithm is a 

single transformed feature 𝐼𝐼
~

= � 𝑎𝑎𝑖𝑖𝐼𝐼𝑣𝑣𝑖𝑖
𝑛𝑛

𝑖𝑖=1
, which is a weighted linear combination of all features in (2). The 

weights ai are optimized by the CCFS for every class of objects represented by their mean spectrum 𝑝𝑝(𝜆𝜆). 

The transformed feature 𝐼𝐼
~

 can be viewed as the current generated by a “virtual” superposition band, 𝑓𝑓
~

=

� 𝑎𝑎𝑣𝑣𝑖𝑖𝑓𝑓𝑣𝑣𝑖𝑖
𝑛𝑛

𝑖𝑖=1
; the optimal selection rule of the weights is derived rigorously in [11]. Consequently, the problem 

of determining the optimal current, 𝐼𝐼
~

, for a given class representative or class mean spectrum p¯(λ), is 

equivalent to finding a superposition band 𝑓𝑓
~

 that provides the best approximation of 𝑝𝑝(𝜆𝜆). 

Mathematically, 𝑓𝑓
~

 can be interpreted as an approximation of 𝑝𝑝(𝜆𝜆) in the space spanned by {𝑓𝑓𝑣𝑣𝑖𝑖}, which 
minimizes the distance and at the same time maximizes the signal-to-noise ratio [11]. 

B. Classification Problems 
The first classification problem considered in this paper is that of separating multiple combinations of MW and 
LW IR spectral filters with different bandwidths and center wavelengths. For this problem, we used the three 
scenes shown in Fig. 4(a)–(c). The second classification problem is to discriminate between pairs of rocks drawn 
from a set of three distinct rock types: granite, hornfels, and limestone. The scene configurations for this 
problem are shown in Figs. 4(d) and 9, left. The classes identified for both classification problems are 
summarized in Table I. 

Table I Summary of Identified Classes for the Filters and Rock Classification Problems 

 
 

 Filter classification problem Identified classes 
Scene (a) MW1, MW2, filters, metal holder and background 
Scene (b) MW2, LW3 filters and metal holder and background 
Scene (c) MW1, MW2 and LW3 filters and background 
Rock classification problem Identified classes 
Scene (a) MW2 filter, linestone, granite and background 
Scene (b) Granite, hornfels and background 
  

 
 

Two types of normalization techniques are applied to the raw digital numbers (DNs) that are retrieved directly 
from the DWELL FPA. First, at each bias voltage, pixel's DN values are radiometrically corrected by a two-point 
nonuniformity correction (NUC) algorithm. The NUC compensates for the spatially nonuniform response of the 
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detectors within the FPA [16] and is an integrated part of the image acquisition process. The two-point NUC is 
performed using temperatures at 22 °C and 150 °C. The lower temperature of 22 °C corresponds to the lens-
cap's room temperature, which was used to yield the lower-temperature uniform field. 

Next, for every radiometrically corrected pixel and its replicas at each bias voltage, the pixel's value is 
normalized as follows: 

𝐼𝐼(𝑣𝑣𝑗𝑗) = 𝐼𝐼(𝑣𝑣𝑗𝑗)

Δ𝑣𝑣� 𝐼𝐼(𝑣𝑣𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

 (3) 

where Δ𝑣𝑣 is the voltage step size used to increment the DWELL FPA's bias. Equation (3) is equivalent to 
normalization by the area enclosed under the multibias response of each pixel in the DWELL FPA. The 
normalized multibias response of a pixel can then be written as 

𝐈𝐈 = (𝐼𝐼(𝑣𝑣1), … , 𝐼𝐼(𝑣𝑣𝑛𝑛)). (4) 

This normalization minimizes the role of broadband emissivity in the discrimination process and emphasizes the 
spectral contrast. The normalized images at 0.3, 0.7, and 1.2 V for both classification problems are shown in 
columns two, four, and six in Fig. 4(a)–(d) and in Fig. 9 (left), respectively. 

We perform a supervised classification comprising of training and testing steps for both classification problems. 
To determine representative multibias signatures for each class listed in Table I, we follow the same approach as 
used in [11]. Specifically, for each class we compute statistical mean and covariance matrix using spatially 
uniform regions that are visually associated with that class. Subsequently, Euclidean- and Mahalanobis-distance 
classifiers are trained by the classes' mean multibias signatures and the covariance matrices [17]. 

At the testing step, the trained classifiers are used to classify the objects in Table I from a set of testing scenes. 
These scenes capture the same images as the training scenes but were acquired at different times. As a result, 
the testing scenes carry inherent variability in the data due to the difference in the measurement conditions 
from day-to-day and the presence of ambient and system noise. The testing images are normalized in the same 
fashion as the training images. The size of training and testing data set for the filter and rock classification 
problems are listed in Table II. 

Table II Number of Pixels Used in the Training and Testing Data Sets for the Filter and Rock Classification 
Problems 

 

 

Filter classification problem Number of pixels in training/testing sets 
Scene (a) MW1: 140/235, MW2: 140/235, metal holder: 66/161, background: 300/300 
Scene (b) MW2: 154/330, LW3: 108/320, metal holder: 126-260, background: 352/340 
Scene (c) MW1: 400/280, MW2: 400/280, LW3: 400/280, background: 336/350 
Rock classification problem Number of pixels in training/testing sets 
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Scene (a) Granite: 340/420, limestone: 360/450, MW2: 360/300, background: 336/400 
Scene (b) Granite: 224/526, hornfels: 308/870, background 300/000 

 

SECTION IV.Discussion of the Results 
A. Classification Results 

 
Fig. 8. Thematic maps, from left to right: bias at 0.3 V used, bias at 0.7 V used, combination of biases at 0.6 and 
0.7 V used, and all biases in the range of 0.3–1.2 V used; (a) MW1 and MW2; (b) MW2and LW3; 
(c) MW1, MW2 and LW3; (d) thematic maps for MW2, limestone and granite, left to right: bias at 0.4 V used; bias 
at 0.7 V used; biases at 0.3 and 0.4 V used, all biases in the range of 0.3 to 1.2 V used. 

 
Fig. 9. Left: normalized image at 0.6 V where the rock on the left is granite and the rock on the right is hornfels 
(shown also in [18]); middle: thematic maps for granite-hornfels classification problem when all biases in the 
range of 0.3–1.2 V used (shown also in [18]); right: thematic maps for granite-hornfels classification problem 
when two superposition bands derived by CCFS are used. 

The thematic maps for the filter and rock classification problems using Euclidean-distance classifier are 
presented in Figs. 8(a)–(d) and 9, respectively. These maps show the distribution of the derived classes over the 
spatial area captured by the DWELL FPA. Each map defines a partitioning of the area into sets, each including the 
points with identical class labels. In order to investigate the effect of the bias selection on the classification 
accuracy, the classification is performed for multiple combinations of biases. 
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The results for the filter classification problem, specified in Table I, are shown in Fig. 8(a)–(c), and Table III shows 
the calculated classification errors per various class. The thematic maps in Fig. 8(a)–(c) are obtained using four 
different sets of bias voltages: (i) one bias at 0.3 V; (ii) one bias at 0.7 V; (iii) two biases at 0.6 and 0.7 V; and (iv) 
all biases in the range of 0.3–1.2 V. 

Table III Classification Errors in the Filter Classification Problem Using Euclidean-Distance Classifier 

 
  

Problem 1 (a) Bias (V) MW1 Error [%] MW2 Error [%] Metal Error [%] 
 0.3 2 0.4 32 
 0.7 63 4 70 
 0.6, 0.7 15 .08 0 
 0.3 -1.2 0.8 0 0 
Problem 1 (b) Bias (V) MW2 Error [%] LW3 Error [%] Metal Error [%] 
 0.3 0 0 5 
 0.7 64 44 23 
 0.6, 0.7 0.5 0 7 
 0.3-1.2 0 0 5 
Problem 1 (c) Bias (V) MW1 Error [%] MW2 Error [%] LW3 Error [%] 
 0.3 0 2.5 4 
 0.7 42.75 58.5 4.5 
 0.6, 0.7 1 2.7 1 
 0.3-1.2 1.7 1.7 0 

 

Table IV Classification Errors for the Rock Classification Problem Using Euclidean-Distance Classifier and Two 
CCFS Bands for the Granite-Hornfels Problem 
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Problem 2 (a) Bias (V) MW2 Error [%] Limestone Error [%] Granite Error [%] 
 0.4 2.076 29.81 1.91 
 0.7 62.62 47.26 17.94 
 0.3, 0.4 0.34 12.77 3.82 
 0.3-1.2 0.34 17.84 1.43 
Problem 2 (b) Bias (V) Granite Error [%] Hornfels Error [%] - 
 0.3 55 46 - 
 1.1 0 20 - 
 0.6, 0.7 5 27 - 
 0.3-1.2 1 17 - 
 CCFS 2 features 1 16 - 

 

For the first bias voltage set, the Euclidean-distance classifier consistently shows good classification for all three 
scenes as shown by the thematic maps in the first column in Fig. 8(a)–(c). This observation is confirmed by the 
classification errors in Table III for this case. In contrast, for the second bias voltage set the Euclidean-distance 
classifier cannot discriminate successfully between the filters, metal holders and background, as shown by the 
thematic maps in the second column in Fig. 8(a)–(c). This result and the classification errors in Table III show that 
the bias voltage at 0.7 V is not a good choice for these scenes. However, adding a second bias voltage at 0.6 V to 
the second set (resulting in our third bias voltage set) improves the classification as shown by the thematic maps 
in third column in Fig. 8(a)–(c). Finally, the thematic maps in the last column in Fig. 8(a)–(c) and the classification 
errors in Table III indicate almost perfect classification results for the fourth set of bias voltages, i.e., when all ten 
biases are used. 

Thematic maps and classification errors for the rock classification problem are shown in Figs. 8(d) and 9, 
and Table IV, respectively. For the granite-limestone-MW2classification problem, we use four different sets of 
bias voltages defined as follows: (i) one bias at 0.4 V; (ii) one bias at 0.7 V; (iii) two biases at 0.3 and 0.4 V; and 
(iv) all ten biases in the range of 0.3–1.2 V. The first and the second thematic maps in Fig. 8(d)show that the first 
bias voltage set gives more accurate results than the second one, i.e., bias at 0.4 V is more effective for this 
scene content than the bias at 0.7 V. Using the third biasvoltage set, which combines two biases at 0.3 and 0.4 V, 
improves the classification accuracy compared to the first two cases [the third thematic map in Fig. 8(d)]. 
Moreover, from the fourth thematic map in Fig. 8(d), we see that the third bias set gives results comparable to 
those using the fourth bias set, i.e., when all ten DWELL FPA bands are used. 

To summarize, the results for the filter and granite-limestone-MW2 classification problems demonstrate that 
accurate classification can be achieved by either considering a broader range of spectral information, namely, by 
using all bias voltages, or by using specific biases, or combination thereof. However, as our results show, the 
optimal subselection of the bias range depends on the specific classification problem. To reduce this ambiguity, 
we will use the CCFS algorithm in order to determine the optimal superposition bands for the granite-hornfels 
classification problem. 

The feasibility of the CCFS concept is illustrated by the thematic map shown in Fig. 9(right). This map is obtained 
using two superposition CCFS bands in conjunction with the Euclidean-distance classifier. The first superposition 
band is optimized with respect to granite and the second is optimized with respect to hornfels. Recall, that these 
superposition bands are obtained via optimal superposition weights, 𝑎𝑎𝑣𝑣1 , … , 𝑎𝑎𝑣𝑣𝑛𝑛  [11]. Note, that there is one 
such set of weights for each class; numerical values of these weights are not shown here for brevity. We see that 
the two superposition bands are sufficient to yield classification results that are essentially the same as those 
obtained using all ten DWELL FPA bands, as shown in the first and the second thematic maps in Fig. 9, middle 



and right, respectively. Moreover, the classification results presented in Table IV indicate that in general, the 
two CCFS bands give better accuracy than that obtained from two randomly selected bands, as for example the 
combination of 0.6 and 0.7 V. 

In the next section, we investigate in greater details the dependence of the between-class separability and the 
classification accuracy on the selection of the bias voltages for the granite-limestone-MW2 classification 
problem. 

B. Separability Analysis and Optimal Bias Selection 
The idea of using a measure of between class separability to select spectral bands or features has been widely 
used in machine learning and computer vision. Let 𝝁𝝁𝐺𝐺 = �𝜇𝜇𝐺𝐺(𝑣𝑣1), … ,𝜇𝜇𝐺𝐺(𝑣𝑣𝑚𝑚)�  and 𝝁𝝁𝐿𝐿 =
(𝜇𝜇𝐿𝐿(𝑣𝑣1), … ,𝜇𝜇𝐿𝐿(𝑣𝑣𝑚𝑚)) denote the means of class granite and limestone, respectively, for given 
biases 𝑣𝑣1, … ,𝑣𝑣𝑚𝑚. 

We define the normalized separability between the two rock types, granite, and limestone, at bias voltage 𝑣𝑣𝑖𝑖  as 
follows: 

𝑆𝑆𝑣𝑣𝑖𝑖 = |𝜇𝜇𝐺𝐺(𝑣𝑣𝑖𝑖)−𝜇𝜇𝐿𝐿(𝑣𝑣𝑖𝑖)|
‖𝝁𝝁𝐺𝐺−𝝁𝝁𝐿𝐿‖

 (5) 

where |𝜇𝜇𝐺𝐺(𝑣𝑣𝑖𝑖) − 𝜇𝜇𝐿𝐿(𝑣𝑣𝑖𝑖)| is the net difference distance between the means of the classes granite and 
limestone, respectively, when bias voltage 𝑣𝑣𝑖𝑖  is applied, and ‖𝝁𝝁𝐺𝐺 − 𝝁𝝁𝐿𝐿‖ denotes the Euclidean-distance 
between the (vector) mean of classes granite and limestone when all biases are used. The normalized 
separability metric provides information about the contribution of the individual biases to the overall 
separability achieved when all bias voltages are used. 

Fig. 10 (left) shows the normalized separability between the granite and limestone classes from the scene 
in Fig. 4(d) as a function of the applied bias. For bias voltages 0.3, 0.4, and 0.5 V, the normalized separability 
between the granite and limestone classes is in the range of 40%–50%. This means that bands at 0.3, 0.4, or 0.5 
V contribute almost half of the total separability between the two rocks. At 0.6 V, the normalized separability 
drops to approximately 18% and it is below 30% at 0.7 V. In the range of 0.9–1.1 V, the individual band's 
contributions are all below 20%. 

 
Fig. 10. Left: normalized separability between granite and limestone for each individual bias used. Right: average 
(over the two classes) classification error between granite and limestone as a function of each individual bias 
used. 

Fig. 10 (right) shows the average classification error between granite and limestone classes as a function of the 
applied bias. The average classification error is calculated by dividing the number of misclassified pixels between 
the two classes over the number of tested pixels per class and averaging over the number of classes. 
Comparison between the results presented in Fig. 10, left and right, demonstrates that for a given classification 
problem, bias voltages that exhibit higher contribution to the overall separability in general lead to lower 
classification errors. For example, in the range of 0.3–0.5 V, for all three biases characterized by high granite-
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limestone separability, the averaged classification error is between 8%–18%. The bias voltage of 0.6 V, 
characterized by the lowest contribution to the overall separability of 18%, leads to highest classification error of 
24%. For the bias voltages of 0.7 and 0.8 V, the normalized separability between the two classes increases, 
which leads to a decrease in the classification errors to 9% and 7% for the 0.7 and 0.8 V biases, respectively. In 
the range of 0.9–1.2 V, where the bands exhibit relatively low, contribution to the overall separability (20%), the 
classification error increases and varies between 15%–21%. 

Fig. 11 (left) shows the progression in the normalized separability between granite and limestone as bias 
voltages are added one by one. In reference to the normalized separability calculated as described by (5), let 

𝑉𝑉 = {𝑣𝑣1, … ,𝑣𝑣𝑛𝑛} 

denote set of all bias voltages and 

𝛼𝛼 = 𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑘𝑘1 < 𝑘𝑘 ≤ 10 

be a multi-index, where 1 ≤ 𝑖𝑖𝑚𝑚 ≤ 𝑛𝑛. We define the subset 𝑉𝑉𝛼𝛼  of 𝑉𝑉 as follows: 

𝑉𝑉𝛼𝛼 = {𝑣𝑣𝑖𝑖1 , … , 𝑣𝑣𝑖𝑖𝑘𝑘} 

and the progression of the normalized separability as a function of the number of bias voltages can now be 
recast as 

𝑆𝑆𝑉𝑉𝛼𝛼 = ‖𝝁𝝁𝐺𝐺(𝑉𝑉𝛼𝛼)−𝝁𝝁𝐿𝐿(𝑉𝑉𝛼𝛼)‖
‖𝝁𝝁𝐺𝐺−𝝁𝝁𝐿𝐿‖

. (6) 

 

 
Fig. 11. Left: normalized separability between granite and limestone when bands are added sequentially in an 
increasing order. Right: average classification error between granite, limestone, and filter when bands are added 
sequentially in an increasing and a decreasing order. 

We observe that the addition of the bias at 0.4 V to the bias at 0.3 V increases the contribution to the total 
separability (when all biases are used) from 50% to 70%. Furthermore, the addition of the bias at 0.5 V increases 
the contribution up to 80%. However, note that sequential addition of the biases in the range of 0.6–1.2 V 
increases the contribution to the total separability only by 20%. This observation is consistent with the results 
shown in Fig. 10 (left). 

Fig. 11 (right) shows the progression of the average classification error for granite, limestone and MW2 for two 
classifiers (based upon the Euclidean and Mahalanobis distances) as a function of the number of applied biases. 
Two cases are considered. In the first case, the bands are added in sequential order from low bias to high bias, 
one at a time. As expected, the highest error (18%) is achieved when only bias 0.3 V and bias 0.4 V are used and 
the lowest error is achieved when all biases are used. Note, that when all biases are used, the Mahalanobis-
distance classifier gives lower error than the Euclidean-distance classifier. In the second case, the biases are 
added sequentially in descending order, one at a time. As in the first case, the highest error is achieved when 
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only two bias voltages are used (1.2 and 1.1 V, respectively) and the lowest error is achieved again when all 
biases are used. 

Table V Optimal Band Selection Based on Minimizing the Average Classification Error for Mahalanobis-Distance 
Classifier for the Granite, Limestone, and the MW2 Classification Problem 

 

 

Classification Error [%] Number of biases Biases (V) 
5.83 2 fo 10 0.3, 1.2 
1.16 3 fo 10 0.8, 0.9, 1.2 
0.36 4 fo 10 0.6, 0.8, 0.9, 1.2 
0.0 5 fo 10 0.3, 0.6, 0.8, 0.9, 1.2 
0.0 6 fo 10 0.3, 0.6, 0.7, 0.8, 0.9, 1.2 
0.08 7 fo 10 0.3, 0.5, 0.7, 0.8, 0.9, 1.1, 1.2 
0.12 8 fo 10 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.1, 1.2 
0.35 9 fo 10 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 
0.34 10 fo 10 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 

 

Table VI Optimal Band Selection Based on Minimizing the Average Classification Error for the Mahalanobis-
Distance Classifier for the Granite and Limestone Pair 

 

 

Classification Error [%] Number of biases Biases (V) 
4.14 2 fo 10 0.6, 0.9 
1.4 3 fo 10 0.8, 0.9, 1.2 
0.2 4 fo 10 0.6, 0.8, 0.9, 1.2 
0.0 5 fo 10 0.3, 0.6, 0.8, 0.9, 1.2 
0.0 6 fo 10 0.3, 0.6, 0.7, 0.8, 0.9, 1.2 
0.01 7 fo 10 0.3, 0.5, 0.7, 0.8, 0.9, 1.1, 1.2 
0.0 8 fo 10 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.1, 1.2 
0.39 9 fo 10 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 
0.40 10 fo 10 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 

 

Table VII Optimal Band Selection Based on Minimizing the Average Classification Error for the Mahalanobis-
Distance Classifier for the Granite and Hornfels Classification Problem 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7361/5752398/5648441/5648441-table-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7361/5752398/5648441/5648441-table-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7361/5752398/5648441/5648441-table-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7361/5752398/5648441/5648441-table-6-source-large.gif


 
 

Classification Error [%] Number of biases Biases (V) 
3.98 2 fo 10 1.0, 1.2 
1.32 3 fo 10 0.9, 1.0, 1.1 
1.15 4 fo 10 0.6, 0.8, 0.9, 1.1 
0.98 5 fo 10 0.6, 0.7, 0.9, 1.0, 1.2 
1.01 6 fo 10 0.5, 0.6, 0.7, 0.9, 1.1, 1.2 
1.10 7 fo 10 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1 
1.09 8 fo 10 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.1, 1.2 
1.24 9 fo 10 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 
1.27 10 fo 10 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 

 

Notably, the error magnitude depends on the order in which the biases are added. Clearly, two DWELL biases at 
1.2 and 1.1 V lead to more than twice the increase in the classification error (∼50%) compared to biases at 0.3 
and 0.4 V (18%). The trend is similar up to 5–6 biases used for classification. 

Tables V–VII present the results of an exhaustive search for selection of optimal combinations of biases, 
minimizing the average classification error for the Mahalanobis-distance classifier, as a function of number of 
biases used. Table V presents the results for granite, limestone and the MW2 filter classification 
problem. Table VI presents the results for the pair granite and limestone, and Table VII presents the results for 
granite and hornfels. The overall trend in the results presented in Tables V–VII demonstrates that as the number 
of biases increases, the classification error decreases. For example, the optimal combination of two bias voltages 
gives a classification error of approximately 6% for the granite, limestone and the MW2 filter classification 
problem, while using nine of ten biases leads to an error of less than 1%. For the granite-limestone pair, the 
optimal combination of two bias voltages gives a classification error of approximately 4%, while for the optimal 
combination of nine of ten band the error is again less than 1%. Same observations hold for granite and hornfels 
as seen from the results presented in Table VII. Note however that in all three cases, optimal combinations of 
five biases and above give almost the same classification error as the case when all biases are used. 

SECTION V. Conclusion 
In this paper, we have demonstrated for the first time the MS-based classification of the DWELL FPA by 
exploiting the DWELL's bias tunability along with traditional and customized algorithms. The DWELL FPA 
performance has been validated using two classification problems: 1) separation between three mid IR spectral 
filters and 2) discrimination among two pairs of rocks and a filter. The second classification problem is more 
challenging than the first one as the rocks exhibit lower overall spectral contrast within the tuning range of the 
DWELL FPA. 

Our verification studies with the DWELL FPA data allow us to draw several conclusions. First, the studies show 
that, as a result of its bias tunability, the DWELL FPA can successfully capture spectral contrast between 
different materials, which, in turn, enables their accurate classification. Second, the results from the separability 
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and classification analysis for optimal bias selection in both problems demonstrate that accurate classification 
can be achieved by either considering a broader range of spectral information, i.e., by using all bias voltages, or 
by using specific biases, or combination thereof. Our results also indicate that the optimal subselection of the 
bias range depends on the classification problem. As expected, the optimal selection of biases varies from case 
to case. Finally, a customized feature-selection algorithms that specifically addresses the abundant spectral 
overlap and noise in the DWELL bands, such as the CCFS, can additionally enhance the MS capability of the 
DWELL FPA by selecting only few optimized superposition bands that yield the same classification results as 
when using all DWELL FPA bands. 
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