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Abstract

In the thesis we study topological aspects of string and M-theory. We derive a large N

holomorphic string expansion for the Macdonald-deformed U(N) Yang-Mills theory

on a closed Riemann surface. Macdonald deformation of two-dimensional Yang-Mills

theory computes entropies of BPS black holes and it is also dual to refined topological

string theory. In the classical limit, the expansion defines a new β-deformation for

Hurwitz theory of branched covers wherein the refined partition function is a gener-

ating function for certain parameterized Euler characters. We also apply the large N

expansion to observables corresponding to open surfaces and Wilson loops.

We study AKSZ constructions for the A and B sigma-models of topological string

theory within a double field theory formulation that incorporates backgrounds with

geometric and non-geometric fluxes. AKSZ formulations provide natural geometric

methods for constructing BV quantized sigma-models. After a section condition, we

relate the A- and B-model to a three-dimensional Courant sigma-model, correspond-

ing to a generalized complex structure, which reduces to the A- or B-models on the

boundary. We introduce S-duality at the level of the three-dimensional sigma-model

based on the generalized complex structure, which exchanges the related AKSZ field

theories, and interpret it as topological S-duality of the A- and B-models.

We also study AKSZ constructions for closed topological membranes on G2-manifolds.

These membranes were originally introduced to be the worldvolume formulation for

topological M-theory, which is intended to capture a topological sector of physical M-

theory. We propose two inequivalent AKSZ membrane theories, in each of which the

two existing topological membranes appear as different gauge fixed versions, and their

dimensional reductions give new AKSZ constructions for the topological A-model. We

show that the two AKSZ membrane models originate through worldvolume dimen-

sional reduction of a single AKSZ three-brane theory, which gives the higher Courant

bracket of exceptional generalized geometry of M-theory as the underlying derived

bracket.

The thesis is based on three papers [1–3].



Összefoglaló

A disszertációban a húrelmélet és az M-elmélet topologógiai vonatkozásait tanulmá-

nyozzuk. Kiszámoljuk az U(N) Yang–Mills-elmélet Macdonald-deformációjának nagy

N kifejtését zárt Riemann-felületeken. A Macdonald-deformált Yang–Mills-elmélet-

ben, amely a finomı́tott topologikus húrelmélet duálisa, BPS feketelyukak entrópiája

számolható. Klasszikus limeszben a kifejtés elágazó fedések Hurwitz-elméletének egy

új β-deformációját definiálja, amelyben a finomı́tott part́ıciós függvény parametrizált

Eurel-karakterek generátor függvényét adja. Kiszámoljuk további obszervábilisek

nagy N kifejtését, úgy mint a nýılt felületeknek megfelelő mennyiségekét és Wilson-

hurkokét.

Tanulmányozzuk a topologikus húrelmélet A- és B-modelljének AKSZ konstrukcióját

kettőzött térelméleten belül, amely geometriai és nem geometriai fluxusokat tartal-

mazó háttereket is léır. Az AKSZ formalizmus olyan geometriai módszer, amellyel

BV-kvantált szigma-modellek konstruálhatók. Megfelelő szelési feltétel után az A-

és B-modellt olyan háromdimenziós Courant szigma-modellel hozzuk kapcsolatba,

amelyet egy általánośıtott komplex struktúra definiál, és a peremen visszaadja az

A- és B-modellt. A háromdimenziós szigma-modell szintjén az általánośıtott komp-

lex struktúrára alapozva S-dualitást vezetünk be, ami kicseréli a kapcsolódó AKSZ

elméleteket, és ezt az A- és B-modell topologikus S-dualitásaként interpretáljuk.

Tanulmányozzuk G2-sokaságon definiált zárt topologikus membránok AKSZ konst-

rukcióját is. Ezen membránokat eredetileg azért vezették be, hogy világtérfogati

léırást adjanak a topologikus M-elmélet számára, melynek célja, hogy a fizikai M-

elmélet topologikus szektoráról szerezzen információt. Bevezetünk két nem ekviva-

lens AKSZ membrán modellt, amelyekben a már ismert topologikus membránok úgy

jelennek meg, mint különböző mértékrögźıtett esetek, és dimenziós redukcióik az A-

modell új AKSZ konstrukcióihoz vezetnek. Végül megmutatjuk, hogy ezen két AKSZ

membrán modell egyetlen AKSZ három-brán elmélet világfelületi dimenziós reduk-

ciójából származtatható, amelynek indukált zárójele az M-elmélet általánośıtott geo-

metriájának 2-Courant zárójele.

A disszertáció három cikk eredményeire épül [1–3].
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of my Phd. I also thank Dániel Nógradi for employing me for a short time.

I thank my family and all my friends, specially Zoltán Markó and my brother Tamás
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Chapter 1

Introduction and outline

1 Introduction

String theory is a theory of quantum gravity, which is able to describe the known

particle physics. The necessity of a theory for quantum gravity comes to the fore

near to a black hole, where the effect of gravity is strong enough to take us out of the

area of ordinary perturbative descriptions. Currently, the most promising and also

the most popular candidate is string theory, which replaces the concept of pointlike

particles with extended objects such as strings. It has a number of fascinating appli-

cations, such as gauge/geometry dualities and calculation of black hole entropies, but

also leads to unsolved problems for example its background-dependence and the large

number of phenomenologically realizable vacuums, i.e. the string landscape. In addi-

tion to all of these it lacks experimental confirmation and has not given any testable

physical prediction so far.

Topological string theory

Calculation of quantities in string theory can usually be very complicated, but there

are useful geometric methods, which work on a restriction of the original construc-

tion and help to obtain information about a subsector of string theory. In particular

topological string theory has been proved to be effective in the past decades to cap-

ture topological information about physical string theory, and helped to understand

some of its fundamental questions like black hole entropies and effective superpoten-

tials.
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To be more specific, the free energy of topological string theory computes F-terms in

the four dimensional N = 2 effective theory of type IIA or IIB superstring compact-

ifications on a Calabi-Yau manifold, which is also responsible for the gravitational

correction to the scattering of graviphotons. Topological string theory is defined us-

ing a so called topological sigma-model, which can be obtained after an operation,

called topological twist on the supersymmetry algebra of an N = 2 sigma-model. We

will outline the definition later in more detail.

Since its birth, topological string theory has been a widely studied area by both

physicists and mathematicians, and it has inspired many applications. One of the

fascinating results that was not expected from the original construction is that topo-

logical string theory counts microstates of four dimensional BPS black holes, so it can

give a microscopic description for a class of black hole entropies. The first part of the

thesis is related to this duality.

Compactification with fluxes

Type II compactifications that preserve N = 2 supersymmetry give the Calabi-Yau

conditions in general. These compactifications have a rich mathematical structure,

while they possess various phenomenological problems. A physically realistic model

must have at most N = 1 supersymmetry, because higher supersymmetry does not

allow chiral interactions such as the electroweak. In addition it also suffers from the

problem of moduli stabilization. After compactification, the theory is left with a

number of massless fields with no potential (such as the complex structure or the

Kähler deformations of the metric), which are called moduli. This would lead to an

instability of the four-dimensional theory because their vacuum expectation values,

which should specify the compactified theory, would not be fixed. They would result

in long range forces unobserved so far in nature. Consequently a mechanism creating

a potential, which stabilizes their vacuum expectation values, is necessary for realistic

models.

Compactification with fluxes is not only useful to break the supersymmetry partially

or completely, but also provides a mechanism that creates potential for scalar fields

and stabilizes their vacuum expectation values (see [5, 6] for reviews). The basic ex-

ample is the H flux for the Kalb-Ramond two-form B, but also fluxes for the RR fields

have relevance in compactifications. Surprisingly these fluxes, which can be called as

geometric fluxes, are not enough to stabilize all moduli in a Minkowski vacuum, but
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an other family of fluxes arises if we consider their T-duals, which includes the so

called non-geometric fluxes. It turns out that their T-duals are necessary in order to

stabilize the moduli, but the presence of fluxes back-reacts on the compactified mani-

fold and changes its geometrical properties making it to nicely fit into the framework

of generalized geometry.

T-duality

T-duality originates from toroidal compactification of closed bosonic or type II strings,

where the mass spectrum is invariant under the exchange of the winding number of

strings wi and their quantized momentum ni in the compactified direction, with the

change of the toroidal scale (i.e. R ↔ α′/R, where R is the radius of the tori and α′

is proportional to the inverse of the string tension). So the momenta and winding

numbers can be combined into a ’doubled’ vector N I = (wi, ni), which is an element of

the so called generalized tangent bundle T ⊕T ∗, whereon T-duality acts as a discrete

subgroup SO(d, d,Z) in O(d, d), which leaves the matrix

ηIJ =

(
0 δij
δi
j 0

)
(1.1)

invariant. So far we only discussed the compactifications on torus, but this is far

not the most general one. However every manifold can be treated as a torus locally,

which has the stringy SO(d, d) symmetry. The formalism that covariantizes T-duality

symmetry is called generalized geometry.

Generalized geometry

Generalized geometry has been introduced by Hitchin together with his students [7,8],

and their original motivation was to unify complex and symplectic geometry, which

has led to generalized complex geometry. Generalized geometry is based on two

premises. The first is to replace the tangent bundle T with the generalized tangent

bundle T⊕T ∗, which means that a generalized vector is given by a sum of an ordinary

vector and a one-form. The second premise is to replace the Lie bracket of vectors

with the Courant bracket:

[X + α, Y + β]C = [X, Y ] + LXβ − LY α−
1

2
d(ιXβ − ιY α) , (1.2)

where X, Y ∈ T and α, β ∈ T ∗, and [X, Y ] is the ordinary Lie bracket of X and Y .

The Courant bracket does not satisfy the Jacobi identity. The graph of the generalized
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tangent bundle with respect to the so called B-field transformation X + α 7→ X +

α + ιXB, where B is a closed two-form and physically related to the Kalb-Ramond

B-field, is closed under the Courant bracket

[X + α + ιXB, Y + β + ιYB]C = [X + α, Y + β]C + ι[X,Y ]B . (1.3)

Ordinary diffeomorphism acts on T and T ∗ separately, but there are more general

transformations that mix vectors with one-forms, such as the B-field transformation.

The ordinary diffeomorphism and the B-field transformation together with a third

transformation given by a two-vector β with X+α 7→ X+ιαβ+α generate the O(d, d)

transformations of the generalized tangent bundle leaving the symmetric pairing

〈X + α, Y + β〉 =
1

2
(ιXβ + ιY α) (1.4)

invariant.

The introduction of a generalized complex structure is very analogous to the ordinary

complex structure. An endomorphism of the generalized tangent bundle J is called an

almost complex structure, if it squares to −12d, and obeys the hermiticity condition

JtηJ = η, where η is theO(d, d) invariant metric (1.1). One can define projectors Π± =
1
2
(12d± i J), which are analogous to the holomorphic and antiholomorphic projectors,

and the integrability condition of the vanishing Nijenhuis tensor for the ordinary

complex structures can be rewritten for generalized complex structure as

Π±[Π±(X + α),Π±(Y + β)]C = 0 . (1.5)

An ordinary complex structure J as well as a symplectic structure ω can be embedded

into generalized complex structures. The integrability identities of the generalized

complex structure

J1 =

(
J 0
0 −J t

)
(1.6)

gives the integrability conditions of the ordinary complex structure J , while the iden-

tities of

J2 =

(
0 −ω−1

ω 0

)
(1.7)

result the condition of a symplectic structure. Thus we can say that complex and

symplectic geometry are two sides of generalized complex geometry.
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A higher structure arises in the so called exceptional generalized geometry of M-

theory, wherein the generalized tangent bundle is replaced by T ⊕
∧2 T ∗, and the

Courant bracket by its generalization

[X + λ, Y + ξ]2C = [X, Y ] + LXξ − LY λ +
1

2
d(ιX λ− ιY ξ) (1.8)

for two-forms λ and ξ, which we call a 2-Courant bracket. This higher generalized

structure will appear in connection with our results later.

Geometric and non-geometric fluxes

We will illustrate the appearance of geometric and non-geometric fluxes through a

simple example and focus on a three-torus of toroidal compactification. We start with

the NSNS H-flux, which is locally determined as H = dB and gives a characteristic

class of a gerbe. Such a flux background lies within the realm of what is called a

geometric background. Starting with a constant H-flux and applying T-duality in the

three different directions produces a chain of different fluxes [9, 10]

Hijk
Tk←→ fij

k Tj←→ Qi
jk Ti←→ Rijk . (1.9)

The second member of the T-duality chain is the metric flux f , which determines the

torsion of the geometry through the Maurer-Cartan equations

dek = fij
kei ∧ ej (1.10)

of one-forms ei. The resulting geometry is called a twisted torus, and this T-duality

frame is also geometric.

The other two fluxes are called non-geometric fluxes because the closed string mo-

menta and winding modes become entangled, and the background no longer can be

described within a standard manifold, as the transition functions of local charts in-

volve T-duality transformations. The presence of Q-flux deforms the background with

non-zero winding to be non-commutative

[xj, xk] = iQi
jkxi , (1.11)

while the R-flux is responsible for the non-associative deformation [11]

[xi, xj, xk] = Rijk , (1.12)

5



where the three-bracket means the Jacobiator here. The R-flux background is not

even locally geometric.

Courant algebroids are central objects in generalized geometry as they are the cor-

responding algebraic construction to the Courant bracket introduced in (1.2). They

will be defined in more detail in §3.1, but we mention that the four fluxes fit nicely

into this framework [12] and appear as twists of the Courant algebroids, and their

defining axioms give Bianchi identities for the fluxes.

Double field theory

Double field theory (DFT) [13–15] is a manifestly T-duality invariant low-energy

formulation of string theory, where the original coordinates conjugate to closed string

momentum modes are extended with dual coordinates conjugate to winding modes.

Roughly saying it is a T-duality invariant ’supergravity’ in doubled space, which

intermediates between string theory and realistic four dimensional theories. On the

other hand DFT is a natural framework to describe non-geometric fluxes (see [16–18]

for reviews).

In DFT there are two natural length scale, the string length ls and the compactifica-

tion scale R. Since winding effects are suppressed if R� ls, the dual coordinates go

can to zero, and the DFT action reproduces an original supergravity action. However,

if the compactification scale is so small that R� ls, the strings can wind up enough

to dominate the momentum modes, and we arrive at a T-dual description, where the

ordinary coordinates can be zero while the dual ones are not. As we see, a restriction

is necessary to reduce the doubling in DFT in a T-duality covariant way. So DFT is

a restricted theory, which is specified after imposing the so called section condition

ηIJ∂I∂J = 0, where I, J are doubled indices. Usually DFT is related to generalized

geometry after imposing the section condition.

Since DFT contains stringy information from the beginning, its compactification in-

cludes geometric and non-geometric fluxes and provides a geometric interpretation

for both of them, while compactifications of ordinary supergravities only describe

geometric fluxes.
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AKSZ sigma-models

Worldsheet and worldvolume sigma-models appear in the context of non-commutative

and non-associative geometries. The low-energy effective field theory of open string

sigma-model with constant B-field on D-brane has a non-commutative space struc-

ture [19], while in the context of closed strings non-associative geometry arises in

membrane sigma-models in the presence of fluxes (e.g. in SU(2) WZW models [20]).

So non-commutative and non-associative structures can originate from sigma-model

descriptions. Even more is true, the so called AKSZ sigma-models can capture the

algebraic structure of generalized geometry: three-dimensional AKSZ sigma-models

has a one-to-one correspondence to Courant algebroids [21–27], and also the fluxes

appear in both sides. They are twist deformations of the Courant algebroid, and

on the other side, Courant sigma-models geometrize fluxes in the sense that they

are uplifts of string sigma-models to one higher dimension which can accomodate

fluxes [11, 28–30].

AKSZ formulation is a natural geometric methods for constructing Batalin-Vilkovisky

(BV) quantized topological sigma-models [28, 29, 31, 32]. They produce examples of

topological field theories of Schwarz-type in arbitrary dimensionality such as the Pois-

son sigma-model, Chern-Simons theory and BF-theory; special gauge fixing action

functionals also yield examples of topological field theories of Witten-type, such as

the A- and B-models. We will review AKSZ construction in detail later.

In the second part of the thesis we study AKSZ constructions for topological string

sigma-models and relate them to generalized complex geometry and double field the-

ory. Then we continue with AKSZ construction for topological membranes on G2-

manifolds, which has a relevance in topological M-theory, and relate our construction

to the generalized geometry of M-theory.

2 Summary and outline

The thesis is based on three papers [1–3], and contains results in two slightly different

areas. The first part (Chapter 2 and 3) focuses on dualities between two-dimensional

Yang-Mills theory, black hole entropy and topological string theory. Our main results

centralize around the large N string expansion of a two parameter deformed U(N)

Yang-Mills theory on a Riemann surface, which is motivated by refined topological

string theory and has an application in counting microstates of BPS black holes. We
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also mention our previous paper [33], which focuses on different aspects of the two

parameter deformed Yang-Mills theory. In this paper the author of this thesis mainly

worked on the Douglas-Kazakov phase transition of the Yang-Mills theory in planar

limit and its relation to topological string theory, but since this is an earlier result

related to the author’s master degree, it is not presented in this thesis.

We start with some preliminary background on two-dimensional Yang-Mills theory

and topological string theory in Chapter 2. We review the specific features of two-

dimensional Yang-Mills theory §1.1 and its Gross-Taylor string expansion §1.2, then

introduce topological string theory very briefly in §2.1. The q-deformed Yang-Mills

theory with its chiral expansion and the relation to BPS black holes and topolog-

ical string theory are presented in §2.2. The introduction of (q, t)-deformed two-

dimensional Yang-Mills theory can be found in §3.1, and the refinement of related

dualities is summarized in §3.2.

In Chapter 3 we present our results on the large N string expansion of the (q, t)-

deformed U(N) Yang-Mills theory. In §1 we describe our calculation applied in the

derivation of the expansion. It combines Schur-Weyl duality for quantum groups with

the Etingof-Kirillov theory of generalized quantum characters, which are related to

Macdonald polynomials, and Hecke algebras. In §2 we perform the chiral expansion

of the partition function for closed Riemann surface and in a special limit introduce

a new deformation of Hurwitz theory, which is a theory of branched covers. In §3 we

continue with the expansion of other observables in the theory, such as the partition

function for open surface and Wilson loops.

In the second part (Chapter 4, 5 and 6) we study AKSZ sigma-models related to

generalized geometry and double field theory. In Chapter 4 we review the relevant

background about AKSZ construction. In §1 we introduce AKSZ construction with

two dimensional reduction method that we will use later in the thesis. Then we

survey several relevant examples of two-dimensional AKSZ sigma-models in §2, which

are mostly related to topological string sigma-models. In §3 we describe Courant

algebroids and Courant sigma-models with the relevant examples in more detail.

DFT algebroids and sigma-models are summarized in §4, and higher algebroids with

the related four-dimensional AKSZ sigma-models are presented in §5.

In Chapter 5 we present our results about the double field theoretical formulation of

AKSZ topological string sigma-models and its relation to generalized complex geom-

etry. We start with their AKSZ construction within DFT in §1 and after imposing a
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constraint, which has a similar role as a section condition, we reduce our DFT model

to an AKSZ formulation which naturally defines a background with generalized com-

plex structure in §2. We finish this chapter with an application in §3 and we show

that topological S-duality arises from the AKSZ sigma-model of generalized complex

structure.

We continue the study of AKSZ formulations in Chapter 6 with constructions for

topological membranes on G2-manifolds. In §1 we review the two different membranes

on G2-manifolds already known in the literature and present two different AKSZ

constructions for them, which are unified within a single AKSZ three-brane theory.

In §2 we show that it dimensionally reduces to the A-model topological string, and

we further reduce it to the supersymmetric quantum mechanics in §3.
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Chapter 2

Background on two-dimensional
Yang-Mills theories

In the first part of the thesis we study the large N expansions of two-dimensional

Yang-Mills theory with special regard on the deformations, which are motivated by

topological string theory and BPS black holes. In this chapter we will go step by

step introducing the original, q-deformed and (q, t)-deformed Yang-Mills theories,

their relations to topological strings and black hole physics, and their large N expan-

sions.

1 Two-dimensional Yang-Mills theory

Two-dimensional Yang-Mills theory is not just a good testing ground for gauge/string

dualities, but also has physical relevance in supersymmetric black hole physics and

topological string theory as well as mathematical interest in calculating branched

covers of Riemann surfaces.

Gluons in two dimensions have no propagating degrees of freedom since they have

no transverse directions. Such a theory does not seem to be interesting at first sight,

but since there are so few degrees of freedom, it has a large group of symmetries: it

is not just invariant under the original gauge transformation, but also under the area

preserving diffeomorphisms of the two-dimensional surface. Consequently, it is exactly

solvable and includes important information about the topology. This introductory

section is based on the review papers [34] and [35].
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1.1 Partition function and observables

The action of the pure bosonic Yang-Mills theory on a closed Riemann surface Σh

classified by the genus h is given as usual

SYM[A] = − 1

2gYM

∫
Σh

dµTr (F 2
A) , (2.1)

where FA is the curvature of the gauge connection A associated to the gauge group G,

gYM is the coupling constant, dµ is the volume form on Σh and the trace is computed

in the fundamental representation of G. The quantum theory is defined by the path

integral over the connection, which leads to the partition function

ZYM(h, gYM) =
1

vol(G)

(
1

2πgYM

)dimG/2 ∫
DA e −SYM[A] , (2.2)

where the group of gauge transformations is denoted by G = Ω0(Σh, G). We also

mention an equivalent formulation of the partition function as it will be relevant

for us later in the deformation theory of two-dimensional Yang-Mills theory. The

partition function can be rewritten as

ZYM(h, gYM) =
1

vol(G)

∫
DA

∫
Dφ e −SBF[φ,A] , (2.3)

where

SBF[φ,A] =

∫
Σh

Tr
(

iφFA −
gYM

2
φ2dµ

)
(2.4)

is the first order formulation of the action SYM[A]. The integration of the field φ ∈
Ω0(Σh, g) leads to the equality between (2.3) and (2.2), where g is the Lie-algebra of

G.

The partition function ZYM(h, gYM) has been evaluated using Migdal’s combinatorial

heat kernel expansion [36–39] and it can be rewritten as a sum over all irreducible

representations of the gauge group G

ZYM(h, gYM) =
∑
λ∈Λ+

(dim(Rλ))
2−2h e −

a
N
C2(Rλ) , (2.5)

where the dominant weights λ ∈ Λ+ are used to label the irreducible representation

Rλ, and the functions dim(Rλ) and C2(Rλ) are natural quantities in representation

theory: the dimension and the quadrative Casimir of Rλ respectively. We have already

dropped a normalization factor as well as we will do it in the following, and used

the substitution a = vol(Σh)NgYM/4, which is the only geometric parameter of the
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theory besides the genus as we expected from the area preserving diffeomorphism

symmetry.

For G = U(N) the irreducible representation Rλ labeled by the dominant weight λ

is parametrized by the N -component partition λ = (λ1, . . . , λN); λ1 ≥ λ2 ≥ . . . ≥
λN ≥ 0, or equivalently a Young diagram Yλ ⊂ (Z>0)N with at most N rows. The

number of rows are called the length of the partition and it is denoted by `(λ), and

the notation |λ| =
∑

i λi is used for the number of boxes in λ. The dimension and

the quadrative Casimir are given by the formulas

dimRλ =
∏

1≤i<j≤N

λi − λj + j − i
j − i

(2.6)

and

C2(Rλ) = (λ, λ+ 2ρ) =
N∑
i=1

(
λ2
i + (N + 1− 2i)λi

)
, (2.7)

where the symmetric bilinear form on the weight lattice Λ ∼= ZN of g is (λ, µ) =∑
i λiµi, which is induced by the Killing form. The Weyl vector is defined as the half

sum of positive roots R+

ρ =
1

2

∑
α∈R+

α with ρi =
N − 2i+ 1

2
. (2.8)

The calculation of the heat kernel expansion (2.5) is based on the triangulation of

the two-dimensional Riemann surface, where the surface is cut into triangles, which

are glued together along their boundaries to get the closed surface. In the partition

function, this means that a holonomy is associated to each boundary of each triangle,

and the triangles are glued together through the integration of their holonomies. This

derivation is exact and independent of the triangulation, and also allows the definition

of the partition function on open surfaces. Physically the holonomy terms correspond

to insertion of defect operators along the boundaries.

Thus a partition function associated to a general surface with genus h and b bound-

aries is given by

ZYM(h, gYM;U1, . . . , Ub) =
∑
λ∈Λ+

(dim(Rλ))
2−2h−b e −

a
N
C2(Rλ)

b∏
i=1

χRλ(Ui) , (2.9)

where the holonomies Ui along the boundaries are specified by their characters χRλ(Ui).
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Wilson loops are also natural defect observables in Yang-Mills theory, which corre-

spond to simple closed curves on the surface Σh. For simplicity we only work with

one single non self-intersecting Wilson loop. In this case, the closed curve divides the

Riemann surface into two faces of genera h1 and h2 with h = h1 +h2. The expectation

value of the Wilson loop operator in the representation Rλ is given by

Wλ(h1, h2, gYM) =
∑

µ1,µ2∈Λ+

∫
[dU ]

(
dim(Rµ1)

)1−2h1
(

dim(Rµ2)
)1−2h2

× e −
a1
N
C2(Rµ1 ) e −

a2
N
C2(Rµ2 ) χRµ1

(U)χRλ(U)χRµ2
(U †) ,

(2.10)

which is coming from the gluing of the two faces with area parameters a1 and a2 and

the insertion of the Wilson loop operator.

1.2 Gross-Taylor string expansion

Large N dual of two-dimensional Yang-Mills theory with gauge group G = SU(N)

has a nice interpretation as a two-dimensional string theory [40]. We review the large

N expansion and the related Hurwitz theory of branched covers.

The SU(N) representation theory can be translated into the language of N free

fermions. The idea behind the description of large N limit is that the filled Fermi

sea, corresponding to the trivial representation, has two Fermi levels, which are ’far’

from each other, if the excitations are small around the Fermi levels. This means that

the space of all representations factorize into a tensor product of two representation,

a chiral and an antichiral part:

RSU(N) −→ Rchiral ⊗Rantichiral . (2.11)

The chiral representation (and analogously the antichiral as well) is defined as

Rchiral =
∞⊕
n=1

⊕
λ∈Λn+

Rλ , (2.12)

where the set of Young diagrams with fixed n boxes is denoted by Λn
+. Here the

irreducible representations are summed in two steps: in the first sum the constraint

`(λ) ≤ N on Young diagrams has been dropped, then all Young diagrams with fixed

boxes are summed in the second step.

If we consider excitations around both Fermi level, the most general representations

that contribute in the large N expansion of ZYM(h, gYM) (2.2) according to Gross and
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Taylor are labeled by the so called ’composite’ or ’coupled’ Young diagrams. They

are built from two diagrams λ and µ, each of them has boxes much less then N . The

composite diagram is denoted by η = µλ and defined as

ηi =


µ1 + λi i ≤ `(λ) ,

µ1 `(λ) < i ≤ N − `(µ) ,

µ1 − µN+1−i N − `(µ) < i ≤ N .

(2.13)

Although the two diagrams have boxes much less then N , which allows them to be

described as chiral representations, the composite diagram has boxes order of N . The

quadratic Casimir

C2(Rµλ) = C2(Rλ) + C2(Rµ) +
2|λ||µ|
N

(2.14)

and the dimension

dim(Rµλ) = dim(Rλ) dim(Rµ)

(
1 +O

(
1

N2

))
(2.15)

factorize in the largest order ofN . As a consequence, the partition function ZYM(h, gYM)

also factorizes into a chiral and an antichiral part. Thus the chiral expansion

Zh(a) =
∞∑
n=0

∑
λ∈Λn+

(dim(Rλ))
2−2h e −

a
N
C2(Rλ) , (2.16)

is the building block of the full expansion and also the subject of our study.

The difference between U(N) and SU(N) representations is the appearance of the

extra U(1) charge in U(N), which couples the chiral and the antichiral representations,

but does not affect the chiral expansion significantly.

In order to study the relation of chiral expansion to string theory, the useful tool is

the well known Schur-Weyl duality

R⊗nω1
∼=
⊕
λ∈Λn+

Rλ ⊗ rλ , (2.17)

which relates the n times tensor product of fundamental representation Rω1 of gauge

groups U(N) or SU(N) to the sum of the irreducible representations of the gauge

groups, denoted by Rλ, and the symmetric group, denoted by rλ.

Relations to the topology of Hurwitz space become more transparent in the limit

a→ 0 where we have a topological theory in spacetime. Since in the thesis we study

this limit, we only review this case (see e.g. [34] for the full expansion).
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The chiral partition function with zero area can be expanded with delta functions on

the symmetric group algebra CSn

Zh(0) =
∞∑
n=0

Nn(2−2h) 1

n!

∑
σ1,τ1,...,σh,τh∈Sn

δ

(
Ω2−2h
n

h∏
i=1

σiτiσ
−1
i τ−1

i

)
, (2.18)

where the delta functions are given by the character formula

δ(σ) =
∑
λ∈Λn+

dim(rλ)χrλ(σ) , (2.19)

Ωn is a central element in the algebra given by

Ωn =
∑
σ∈Sn

(
1

N

)n−Kσ
σ (2.20)

and Kσ is the number of cycles in the permutation σ. The conjugacy class of σ

corresponds to a Young diagram λ, which have cycles of length λi. In this notation

Kσ = `(λ).

The inverse of Ωn

Ω−1
n = 1 +

∞∑
L=1

∑
ζ1,...,ζL∈Sn
ζ1,...,ζL 6=1

(−1)LN
∑L
s=1(Kζs−n)

L∏
s=1

ζs (2.21)

is useful to rewrite the chiral expansion as

Zh(0) =
∞∑
n=0

∞∑
B=0

Nn(2−2h)−B 1

n!

B∑
L=0

∑
σ1,τ1,...,σh,τh∈Sn

∑
ζ1,...,ζL∈Sn
ζ1,...,ζL 6=1

χ(Σh,L)

× δ

(
L∏
s=1

ζs

h∏
i=1

σiτiσ
−1
i τ−1

i

)
,

(2.22)

where we have introduced the number B =
∑L

s=1(n−Kζs) and

χ(Σh,L) =
Γ(3− 2h)

Γ(L+ 1) Γ(3− 2h− L)
, (2.23)

which is the Euler characteristic of the configuration space of L points on the Riemann

surface Σh, i.e. the L-tuples of distinct points on Σh modulo the natural action of

the permutation group SL.

Hurwitz theory is reviewed in Appendix 1 very briefly. The sum of the delta functions

reduces to sum of Hurwitz numbers defined in (A.10), the complete sum is given by
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(A.9), which is the number of distinct n-sheeted branch covers of Σh with branching

number B and L branch points. Even more can be said about the chiral expansion,

the Hurwitz numbers together with the Euler character χ(Σh,L) give the orbifold Euler

character of the Hurwitz space Hn,B,h,L

χorb

(
Hn,B,h,L

)
= χ(Σh,L)

∑
f∈Hn,B,h,L

1

|Aut(f)|
. (2.24)

So the chiral partition function can be reformulated using a two-dimensional ’word-

sheet theory’, where the wordsheet Σg is the covering surface and the target Σh is the

covered surface.

The chiral expansion assembles nicely

Zh(0) =
∞∑
n=0

∞∑
B=0

N2−2g

B∑
L=0

χorb

(
Hn,B,h,L

)
, (2.25)

where g is determined by the Riemann-Hurwitz formula (A.4). We can define the

space of holomorphic maps from the wordsheet Σg to the target Σh as the quotient

space

H(Σg → Σh) = Hconf
/

Diff+(Σg) n Weyl(Σg) , (2.26)

where Hconf denotes the configuration space of the pair of metrics and holomorphic

maps, Diff+(Σg) is the orientation preserving diffeomorphisms and Weyl(Σg) is the

Weyl transformations of the worldsheet Σg. Finally the chiral free energy has a

compact form

Fh(0) =
∞∑
g=0

(
1

N

)2g−g

χorb

(
H(Σg → Σh)

)
, (2.27)

in terms of orbifold Euler character χorb

(
H(Σg → Σh)

)
. This formula gives a natural

interpretation of the large N dual theory as a perturbative two-dimensional string

theory.

2 Topological string theory, BPS black holes and

q-deformation of two-dimensional Yang-Mills the-

ory

Counting of four-dimensional BPS black hole microstates arises upon comapctification

in type IIA string theory on a special class of Calabi-Yau manifolds and it is given
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by a two-dimensional U(N) gauge theory, where the finite gauge group parameter

N corresponds to the number of D4-branes in the Calabi-Yau. The resulting gauge

theory is a deformation of the original Yang-Mills theory only in two dimension, and

called q-deformed Yang-Mills theory. It has further interest in string theory as its

large N dual string theory is the topological string theory on the Calabi-Yau. In this

section we review some pertinent background about topological strings, BPS black

holes, q-deformed Yang-Mills and their relations mentioned above.

2.1 Topological string theory

The physical string theory can be described by a two-dimensional conformal field

theory coupled to gravity. In the case when the conformal field theory has topological

symmetry as well, the corresponding string theory is a topological string theory,

which can be solved exactly and includes topological information of the geometry

(see [4, 41–43] for reviews).

The topological sigma-model can be constructed from an N = 2 supersymmetric

sigma-model by the procedure called ’topological twisting’ [44]. The target space of

the supersymmetric sigma-model is a Calabi-Yau manifold. The topological twisting

is based on the redefinition of the U(1) spin current of the two-dimensional theory in

order to get a scalar topological BRST charge, thus the resulting cohomological field

theory has a topological invariance. The twisting procedure can be applied in two

non-equivalent way leading to two non-equivalent topological sigma-models, namely

the A- and B-models. The topological charge Q corresponding to the respective twist

is given by the supersymmetric generators of the N = 2 sigma-model as follows

A-twist: Q = Q++ + Q−− ,

B-twist: Q = Q+− + Q−− ,
(2.28)

where the first indices of the generators are those that belong to the two-dimensional

surface, and the seconds are the R-symmetry indices.

2.1.1 Topological A-model

It is defined by maps X i = (Xa, X ā) from the worldsheet Σ2 to the six-dimensional

Calabi-Yau manifold M , where a = 1, 2, 3 are complex target space indices and we use

local complex coordinates σ = (z, z̄) on the Riemann surface Σ2. We further introduce

fermionic ghost fields (χaz̄ , χ
ā
z , ψ

a, ψā) with ghost number (−1,−1, 1, 1), where ψi are
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worldsheet scalars and χi are worldsheet one-forms. The action of the topological

A-model is then

SA = 2t

∫
Σ2

d2z
(
gab̄ ∂z̄X

a ∂zX
b̄ + i gab̄

(
χaz̄ ∇zψ

b̄ + χb̄z∇z̄ψ
a
)
− Rab̄cd̄ χ

a
z̄ χ

b̄
z ψ

c ψd̄
)

+ t

∫
Σ2

d2z X∗(k) ,

(2.29)

where gab̄ is the Kähler metric which obeys the Kähler identity ∂agbc̄ = ∂bgac̄ and

its complex conjugate ∂āgbc̄ = ∂c̄gbā. The Levi-Civita connection is defined by

∇zψ
ā = ∂zψ

ā + Γāb̄c̄ ψ
b̄ ∂zX

c̄, and the complex Christoffel symbol is Γabc = gad̄ Γd̄bc,

where Γab̄c̄ = ∂b̄gac̄. The Riemann tensor is Rab̄cd̄ = −gaē ∂cΓēb̄d̄. The Kähler form

k = i gab̄dX
a ∧ dX b̄, which can be complexified together with the B-field as usual,

gives a topological term equal to 2πn, n ∈ Z, which become crucial in the quantum

level.

The action is invariant under the BRST transformations

δXa = iψa , δX ā = iψā , δψa = 0 and δψā = 0 , (2.30)

together with

δχaz̄ = − ∂z̄Xa − i Γabc ψ
b χcz̄ and δχāz = − ∂zX ā − i Γāb̄k̄ ψ

b̄ χc̄z , (2.31)

and it is BRST exact on-shell up to the topological term

SA = −t
∫

Σ2

d2z δΨA + t

∫
Σ2

d2z X∗(k) , (2.32)

where the fermion ΨA is defined by

ΨA =

∫
Σ2

d2z gab̄

(
χaz̄∂zX

b̄ + χb̄z∂z̄X
a
)
. (2.33)

Such a theory has a topological invariance and called cohomological field theory.

Moreover the path integral localizes over the fixed point locus of the BRST transfor-

mation, which is the space of holomorphic maps X : Σ2 → M . They are classified

topologically by the homology class H2(M,Z) and called worldsheet instantons which

have degree n.

The cohomology of observables are equivalent to the de Rham cohomology H•(M),

and a general degree p observable can be written in the form

αi1,...ip ψ
i1 . . . ψip (2.34)
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where α = αi1,...ipdX
i1 ∧ . . . ∧ dX ip is a closed p-form in Hp(M).

It is worth to mention that the A-model action only changes in a BRST exact term

if the complex structure is changed, so the observable quantities of the A-model do

not depend on the complex structure, just on the Kähler structure. The opposite is

true for the B-model.

2.1.2 Topological B-model

Its field contents are similar to that of the A-model, the bosonic fields Xa, X ā are

the same maps as that of the A-model. The fermionic fields are the worldsheet scalar

fields (ηā, χa) with ghost number 1 and the one-form fields ρa with ghost number −1.

The action is given by

SB = t

∫
Σ2

d2z
(
gab̄
(
∂zX

a ∂z̄X
b̄ + ∂z̄X

a ∂zX
b̄
)
− gab̄

(
ρaz ∇z̄η

b̄ + ρaz̄ ∇zη
b̄
)

+ ρaz ∇z̄χa − ρaz̄ ∇zχa − Ra
bc̄d ρ

b
z ρ

d
z η

c̄ χa

)
,

(2.35)

where the definitions of the metric, Christoffel symbol, Riemann tensor and Levi-

Civita connection are the same as that in the case of the A-model.

The BRST transformations are

δXa = 0 , δX ā = ηā , δρa = dXa , δηā = 0 , and δχa = 0 .

(2.36)

The B-model action can also be rewritten as a sum of a BRST exact term and a

topological term

SB = t

∫
Σ2

d2z δΨB + t

∫
Σ2

ρa dχa , (2.37)

where the fermion is defined by

ΨB =

∫
Σ2

d2z
(
gab̄
(
ρaz ∂zX

b̄ + ρaz ∂zX
b̄
)
− Γabc ρ

b
z ρ

c
z χa

)
. (2.38)

The B-model is a cohomological field theory as well, and the path integral localizes

on constant X maps, therefore it reduces to an ordinary integral over M .

A general observable can be expressed as

β
a1...aq
b̄1...b̄p

ηb̄1 . . . ηb̄p χa1 . . . χaq , (2.39)

where β = β
a1...aq
b̄1...b̄p

dX b̄1 . . . dX b̄p∂a1∧ . . . ∂aq is an element of the Dolbeault cohomology

of ∧qT (1,0)M -valued (0, p)-forms, since the BRST transformation acts on X i and ηā
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as the Dolbeault differential ∂. So the cohomology of observables are equivalent to

the twisted Dolbeault cohomology Hp

∂
(M,∧qTM).

Quantities in the B-model do not depend on the Kähler form, but depend on the

complex structure. The action above (2.35) includes an explicit choice of the complex

structure, as the holomorphic and antiholomorphic coordinates are distinguished.

2.1.3 Coupling to gravity

The coupling to gravity in the topological theory is analog to that of the bosonic string

theory. The stress tensor T (z) in bosonic string theory is BRST exact T (z) = δb(z),

and the free energy is calculated as the expectation value in CFT of the ghost field

b(z) coupled to the moduli of the metric. The stress tensor in topological string

theory is also exact with respect to the topological charge: Tα,β = δbαβ and bαβ plays

the role of the ghost field. Following this analogy, the definition of the free energy of

the topological string for genus g ≥ 1 is given by

Fg =

∫
Mg

〈
6g−6∏
k=1

(b, µk)

〉
, (2.40)

where

(b, µk) =

∫
Σg

d2z
(
bzz (µk)z

z + bzz (µk)z
z
)
, (2.41)

and µk are refer to the infinitezimal change in the metric and they are called Beltrami

differentials. The vacuum expectation value is calculated in the topological sigma-

model, and then the moduli space M g of Riemann surfaces of genus g is integrated

over, which has dimension 6−6g. The zero genus free energy is called the prepotential

and it is defined purely in the topological sigma-model. They give the supergravity

prepotential in type II string theories. The topological A-model strings only depend

on the Kähler structure and calculate Gromow-Witten invariants of the Calabi-Yau,

while topological B-model strings depend on the complex structure and has a relation

to matrix models and Kodaira-Spencer theory of gravity.

2.1.4 Topological S-duality

Topological S-duality arises from the physical S-duality of type IIB superstring the-

ory [45], and it relates the A- and B-model topological strings on the same Calabi-Yau
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manifold: D-instanton contributions of one model correspond to perturbative ampli-

tudes of the other model. The string couplings gA and gB of the A- and B-models are

related to each other by

gA =
1

gB

(2.42)

and the Kähler forms kA and kB of the two theories are also related by

kA =
kB

gB

. (2.43)

In other words, S-duality exchanges the A- and B-models as a weak/strong coupling

duality.

2.2 q-deformed Yang-Mills theory and BPS black holes

A-model topological string theory on the special Calabi-Yau

O(p+ 2h− 2)⊕O(−p)→ Σh , (2.44)

which is a Riemann surface Σh fibrated by two complex line bundles with degrees

p + 2h − 2 and −p, reduces to a q-deformed SU(∞) Yang-Mills theory on Σh. The

geometric parameter p classifies the topologically different Calabi-Yau manifolds. In

the following we introduce the q-deformation and its relation to BPS black holes.

2.2.1 q-deformed Yang-Mills theory

The topological string amplitudes as well as the partition functions of q-deformed

Yang-Mills can be sewed together from building blocks in a similar way as in the

original Yang-Mills theory. In topological string theory Lagrangian D3-branes are

associated to each boundaries, which wrap the punctures and two dimensions in the

fibers. The related Chan-Paton degrees of freedom appear as boundary holonomy

terms, then gluing two surfaces through their boundary means an integration over

their holonomy. The resulting two-dimensional Yang-Mills theory has gauge group

SU(∞), but it can be defined for finite SU(N) or U(N) as well. The deformation

parameter is related to the string coupling gs = gA by

q = e −gs , (2.45)
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and the original slN or glN characters1 in the partition functions are replaced by

quantum group characters of the universal enveloping algebras Uq(slN) or Uq(glN)

(see Appendix 2). In the following we summarize the definition of q-deformed Yang-

Mills theory.

The partition function for a closed surface of genus h is given by

Zh(q; p) =
∑
λ∈Λ+

(dimq Rλ)
2−2h q pC2(Rλ)/2 (2.46)

up to a normalization factor. The quantum dimension is defined by

dimq Rλ =
∏

1≤i<j≤N

[λi − λj + j − i]q
[j − i]q

, (2.47)

where the symbol

[x]q =
qx/2 − q−x/2

q1/2 − q−1/2
(2.48)

is called the q-number. The q-deformation only affects the dimension significantly,

and the p has the role of an area parameter. An important property of the quantum

dimension is that it is given by character of the quantum group element q(ρ,H), where

Hi are the generators of the Cartan subalgebra.

The partition function for a Riemann surface of genus h with b boundaries has the

form

Zh(q; p;U1, . . . , Ub) =
∑
λ∈Λ+

(dimq Rλ)
2−2h−b q

p
2
C2(Rλ) χRλ(U1) . . . χRλ(Ub) , (2.49)

where the holonomies are specified by characters of the quantum universal enveloping

algebras Uq(glN) or Uq(slN).

The Wilson loop observable for a single non self-intersecting loop is also possible to

define, and its expectation value is given by

Wλ(q; p;h1, h2) =
∑

µ1,µ2∈Λ+

∫
[dU ]q

(
dimq(Rµ1)

)1−2h1
(

dimq(Rµ2)
)1−2h2

× q
p
2
C2(Rµ1 )+ p

2
C2(Rµ2 )χRµ1

(U)χRλ(U)χRµ2
(U †) ,
(2.50)

where the surface with genus h = h1 + h2 is divided into the two faces by the loop

having genus h1 and h2.

1We work with the Lie-algebras slN and glN instead of su(N) and U(N) since their representation
theory is equivalent.
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2.2.2 Relation to BPS black holes and topological strings

A microscopic description of extremal four-dimensional black holes can be obtained

by counting D-branes in superstring theories. In this study we focus on BPS black

holes. Embedding into supergravity turns the extremal bound of black holes into BPS

bound of supermultiplets, which keeps them to not emit any Hawking radiation. So

they can carry both electric and magnetic charges, they are static and they do not

emit any Hawking radiation (see [46] for a short review).

We consider BPS black hole that arises in type IIA string compactifications on the

Calabi-Yau (2.44) and its partition function is given by counting D-branes wrapping

holomorphic cycles in the compactified space. The D0- and D2-branes have electric

charges which are summed over with given chemical potentials, while the D4- and

D6-branes have magnetic charges, which are left fixed. The partition function is the

sum

ZBH(P6, P4, φ2, φ0) =
∑
Q2,Q0

Ω(P6, P4, Q2, Q0) e −φ2Q2−φ0Q0 , (2.51)

where P6, P4, Q2 and Q0 denotes the D6, D4, D2 and D0 charges respectively while

φ2 and φ0 are the chemical potentials associated to the eletrically charged D-branes.

The coefficient

Ω(P6, P4, Q2, Q0) = TrHP,Q(−1)F (2.52)

is the Witten index which calculates the fermionic number operator F in the fixed

charged sector.

The reduction to two-dimensional U(N) Yang-Mills theory is the following [47]. D2-

branes wrap Σh, while N D4-branes wrap the total space of O(−p) → Σh, then the

black hole partition function localizes on the surface Σh, and can be computed by the

path integral

ZBH =

∫
DqADqΦ exp

(
φ0

4π2

∫
Σh

Tr ΦFA +
φ2

2π

∫
Σh

Tr ΦωΣh

− p
φ0

2π

∫
Σh

Tr Φ2 ωΣh

)
,

(2.53)

where the field Φ is the holonomy of the four-dimensional gauge field A around the

circle at infinity of the fiber of O(−p) → Σh and ωΣh is the volume form of Σh

normalized to unit volume. The chemical potentials are given by

φ0 =
4π2

gs
and φ2 =

2πθ

gs
, (2.54)
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where the theta-angle θ is choosen to be zero in our case. The q-deformation appears

in the measure and together with the action can be calculated using localization tech-

niques which leads to the partition function ZqYM of the q-deformed two-dimensional

Yang-Mills in (2.46).

The large N string dual of the q-deformed Yang-Mills with gauge group SU(N) is

the topological A-model string theory on the Calabi-Yau (2.44) with fixed Kähler

modulus

k =
1

2
(p+ 2h− 2)Ngs . (2.55)

Its amplitudes are computed by TQFT using SU(∞) representations and they are

given by the chiral expansion of the q-deformed two-dimensional SU(N) Yang-Mills

theory. The black hole partition function ZBH, as an U(N) Yang-Mills theory, in the

1/N expansion factorizes to a chiral and an antichiral amplitude in SU(N) Yang-Mills

theory, and thus in topological string theory

ZBH =
∑
l∈Z

∑
λ1,...λ|2h−2|∈Λ+

Ztop
Rλ1

...Rλ|2h−2|
(k + pgsl)Z

top
Rλ1

...Rλ|2h−2|
(k − pgsl) , (2.56)

where the chiral blocks Ztop. str.
Rλ1

...Rλ|2h−2|
are calculated by the topological string ampli-

tudes

Ztop(U1, . . . , U|2h−2|) =
∑

λ1,...λ|2h−2|∈Λ+

Ztop
Rλ1

...Rλ|2h−2|
χRλ1

(U1) . . . χRλ|2h−2|
(U|2h−2|)

(2.57)

that arise from Langrangian D-branes wrapping 1-cycles in the fiber with holonomies

U1, . . . , U|2h−2|, which are specified by characters in SU(∞) representations Rλ1 , . . . ,

Rλ|2h−2| . So we can see that the large N expansion of the black hole partition function

can be computed using topological string theory, and this duality originates from the

large N expansion of the intermediate q-deformed Yang-Mills theory. This duality is a

manifestation of the Ooguri-Strominger-Vafa (OSV) conjecture [48], which says that

the microscopic entropy of the black hole can be computed in terms of topological

string amplitudes.

2.2.3 Chiral expansion of q-deformed Yang-Mills theory

This part of the review is more detailed, as similar techniques introduced here is em-

ployed in our calculations later. The results and techniques were developed in [49].

Main difference between the chiral expansions of q-deformed and original two-dimensional
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Yang-Mills theories is that the symmetric group algebra is replaced by its q-deformation,

the Hecke algebra Hq(Sn) (see Appendix 3). In the original theory the expansion is

based on the Schur-Weyl duality (2.17) of glN characters, but now quantum Schur-

Weyl duality

R⊗nω1
∼=
⊕
λ∈Λn+

Rλ ⊗ rλ (2.58)

arises because of the quantum group Uq(glN) characters, whereRω1 andRλ are Uq(glN)

representations this time, while rλ is the irreducible representation of the Hecke al-

gebra Hq(Sn) associated to λ. The actions of Uq(glN) and Hq(Sn) on R⊗nω1
are given

respectively by the iterated coproduct ∆n−1 = (∆⊗1⊗(n−1))◦ · · · ◦ (∆⊗1)◦∆. Thus

a character in R⊗nω1
can be written in terms of irreducible representations by

Tr R⊗nω1
(U h(σ)) =

∑
λ∈Λn+

χRλ(U)χrλ(h(σ)) , (2.59)

where h(σ) ∈ Hq(Sn) is the Hecke algebra element associated to σ ∈ Sn. Letting Pλ

denote the quantum Young projector for the representation rλ, one has

PλR
⊗n
ω1
∼= Rλ ⊗ rλ , (2.60)

and Pλ is expressed with a sum of Hecke algebra elements

Pλ =
dλ(q)

q
n (n−1)

4 [n]q!

∑
σ∈Sn

q−`(σ) χrλ
(
h(σ−1)

)
h(σ) . (2.61)

where dλ(q) = dimq(rλ) is a q-deformation of the dimension of the symmetric group

representation rλ (A.18). These equations are used to express the quantum dimension

with Hecke characters, and one get

dimq(Rλ) = χRλ
(
q(ρ,H)

)
=

q−
n (n−1)

4

[n]q!

dλ(q)

dλ(1)

∑
σ∈Sn

q−`(σ) χrλ
(
h(σ−1)

)
Tr R⊗nω1

(
q(ρ,H) h(σ)

)
.

(2.62)

Calculating the trace of Hecke-elements and reformulating (2.62) in terms of central

elements2 CT in Hq(Sn) labeled by conjugacy classes T in Sn, one arrives at the large

N expansion of the quantum dimension

dimq(Rλ) =
q−

n (n−1)
4

[n]q!

dλ(q)

dλ(1)
[N ]nq χrλ(Ωn) , (2.63)

2We give a definition for central elements CT later in (3.21).
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where Ωn is also central and defined by

Ωn =
∑
T∈S∨n

[N ]KT−n q
N−1

2
`(T ) CT . (2.64)

One can rewrite the rest of the coefficients in the chiral expansion as characters of

central elements with( [n]q!

q−
n (n−1)

4 dλ(q)

)2

=
1

dλ(1)

∑
σ,τ∈Sn

q−`(σ)−`(τ)

× χrλ
(
h(σ) h(τ) h(σ−1) h(τ−1)

) (2.65)

and

dλ(q) = χrλ(Dn) , (2.66)

where Dn is defined in the completed Hecke algebra Ĥq(Sn) by

Dn =
q−

n (n−1)
4

[n]q!

∞∑
k=0

(−1)k
∑

σ1,...,σk∈Sn
σi 6=1

q−
∑
i `(σi)

k∏
j=1

h(σ−1
j ) h(σj) . (2.67)

Central elements can be collected together under one single character using the prop-

erty

χrλ(C)χrλ(h(σ)) = dλ(1)χrλ(C h(σ)) (2.68)

for a general central element C. A delta-function on Hecke algebras can be defined

by

δ
(
h(σ)

)
=

{
1 if σ = 1 .

0 otherwise ,
(2.69)

and extended over Hq(Sn) by C-linearity. It can be expressed as the sum of characters

of Hq(Sn) given by

δ
(
h(σ)

)
=
q−

n (n−1)
4

[n]q!

∑
λ∈Λn+

dλ(q)χrλ
(
h(σ)

)
. (2.70)

Then one gets the chiral expansion of the partition function (2.46) in the topological

limit (p = 0)

Zh(q; 0) =
∞∑
n=0

q−
n (n−1)

4

[n]q!

∑
σ1,τ1,...,σh,τh∈Sn

[N ]n (2−2h)
q

× δ

(
Dn Ω2−2h

n

h∏
i=1

q−`(σi)−`(τi) h(σi) h(τi) h(σ−1
i ) h(τ−1

i )

)
,

(2.71)
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furthermore the Ωn factors can be expanded as follows

Zh(q; 0) =
∞∑
n=0

∞∑
L=0

q−
n (n−1)

4

[n]q!
χ(Σh,L)

∑
σ1,τ1,...,σh,τh∈Sn

∑
T1,...,TL∈S∨n
T1,...,TL 6=1

[N ]
n (2−2h)−

∑L
i=1(KTi−n)

q

× q
N−1

2

∑L
i=1(i−1)KTi δ

(
DnCT1 . . . CTL

h∏
i=1

q−`(σi)−`(τi) h(σi) h(τi) h(σ−1
i ) h(τ−1

i )

)
.

(2.72)

To perform the chiral expansion of the partition function (2.49) for open surface one

have to implement the transformation first

Zh(q; 0;C1, . . . , Cb)

:=

∫
T b

b∏
i=1

[dUi]q

∞∑
ni=0

q−
ni (ni−1)

4

[ni]q!
Tr

R
⊗ni
ω1

(
Ci U

†
i

)
ZqYM(U1, . . . , Ub) ,

(2.73)

which changes the basis from holonomies to central elements. The integral measure

[dUi]q on the maximal torus T is the Haar measure on the gauge group. We clarified

this Fourier-like transformation in [1] (see Appendix 4 together with its refinement).

The chiral expansion of the transformed partition function is given by

Zh(q; 0;C1, . . . , Cb) =
∞∑
n=0

( q−n (n−1)
4

[n]q!

)b ∑
λ∈Λn+

(
dimq(Rλ)

)2−2h−b
b∏

j=1

χrλ(Ci)

=
∞∑
n=0

[N ]n (2−2h−b)
q

( q−n (n−1)
4

[n]q!

)b ∑
σ1,τ1,...,σh,τh∈Sn

× δ
(

(En)b−1 Ω2−2h−b
n

h∏
i=1

q−`(σi)−`(τi) h(σi) h(τi) h(σ−1
i ) h(τ−1

i )
b∏

j=1

Cj

)
,

(2.74)

where the central element En is defined by

En :=
∑
σ∈Sn

q−`(σ) h(σ−1) h(σ) . (2.75)

The Wilson loop observable defined in (2.50) is also expanded in transformed ver-

27



sion

W (q; 0;h1, h2;C) =
q−

nλ (nλ−1)

4

[nλ]q!

∑
λ∈Λ

nλ
+

χrλ(C) Wλ

=
∞∑

n1=0

∞∑
n2=0

(
[N ]q

)n1 (1−2h1)+n2 (1−2h2)
δn1+nλ,n2

q−
n1 (n1−1)

4

[n1]q!

q−
nλ (nλ−1)

4

[nλ]q!

×
∑

σ1∈Sn1

∑
σ2∈Snλ

q−`(σ1)−`(σ2) δ
(
C h
(
σ−1

2

))
× δ

(
Dn1 Ω1−2h1

n1
Π(h1)
n1

h
(
σ−1

1

))
δ
(

Ω1−2h2
n2

Π(h2)
n2

(
h(σ1) · h(σ2)

))
,

(2.76)

where nλ is the number of boxes corresponding to the representation Rλ with n1+nλ =

n2, and h(σ1) · h(σ2) acts on Hq(Sn2) via g1, . . . , gn1−1 ∈ Hq(Sn1) ⊂ Hq(Sn2) and

gn1+1, . . . , gn1+nλ−1 ∈ Hq(Snλ) ⊂ Hq(Sn2). The notation

Π(h)
n =

∑
σ1,τ1,...,σh,τh∈Sn

h∏
i=1

q−`(σi)−`(τi) h(σi) h(τi) h(σ−1
i ) h(τ−1

i ) (2.77)

is also defined for simplicity.

3 Refinement

The two-dimensional (q, t)-deformed or Macdonald-deformed Yang-Mills theory is a

two-parameter deformation of the usual two-dimensional Yang-Mills theory. It can be

thought of as a refinement of the q-deformation in a sense that Macdonald polynomi-

als are refined versions of original Schur polynomials, or as a quantum deformation of

the classical β-deformation which can be characterised in certain cases by β-ensembles

of random matrix models. In this section we consider the partition function defining

the gauge theory together with more general amplitudes, and its geometrical inter-

pretations in the context of refined topological string amplitudes. We also review

shortly the refinement of the dualities related to BPS black holes.

3.1 Macdonald deformation of two-dimensional Yang-Mills
theory

We start with a combinatorial definition of the partition function of (q, t)-deformed

Yang-Mills theory, then review the theory of generalized characters, and end with
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the introduction of more general amplitudes such as partition functions for arbitrary

open surfaces and Wilson loop observabels.

3.1.1 The partition function

The partition function for the Macdonald deformation of Yang-Mills theory with

gauge group G on a closed oriented Riemann surface Σh of genus h can be written as

a generalization of the q-deformed Yang-Mills theory (2.46) given by [50–52]

Zh(q, t; p) =
∑
λ∈Λ+

dimq,t(Rλ)
2−2h

(gλ)1−h q
p
2

(λ,λ) tp (ρ,λ) . (2.78)

Here the degree p ∈ Z and the deformation parameters q, t ∈ C∗ satisfy |q| < 1 and

|t| < 1 in order to ensure that the series (2.78) has a non-zero radius of convergence;

we shall sometimes assume q, t ∈ (0, 1) for convenience. For simplicity of presentation,

below we shall write some formulas for the case when the refinement parameter

β =
log t

log q
(2.79)

is a positive integer, and then extend our final results to arbitrary β ∈ C by analytic

continuation. The refined quantum dimension of the representation Rλ is

dimq,t(Rλ) =

β−1∏
m=0

∏
α∈R+

[
(λ+ β ρ, α) +m

]
q[

(β ρ, α) +m
]
q

. (2.80)

The Macdonald metric is given by

gλ =
1

N !

β−1∏
m=0

∏
α∈R+

[
(λ+ β ρ, α) +m

]
q[

(λ+ β ρ, α)−m
]
q

. (2.81)

We shall often assume that the rank N is such that ρ ∈ ZN , which in particular can

be supposed in the large N expansion that we consider in the following.

In this thesis we shall specialize to the unitary gauge group G = U(N). In this

case there are convenient combinatorial expressions available for the dimension and

metric factors. The Weyl vector is given in (2.8) and the dominant weights λ ∈ Λ+

are parametrized by Young diagrams Yλ ⊂ (Z>0)2 with at most N rows, Then the

refined quantum dimension and Macdonald metric have the equivalent forms

dimq,t(Rλ) = t
1
2

(‖λt‖−N |λ|)
∏

(i,j)∈Yλ

1− tN−i+1 qj−1

1− tλt
j−i+1 qλi−j

,

gλ = g∅
∏

(i,j)∈Yλ

1− tλt
j−i qλi−j+1

1− tλt
j−i+1 qλi−j

1− tN−i+1 qj−1

1− tN−i qj
,

(2.82)
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where |λ| :=
∑N

i=1 λi and ‖λ‖ :=
∑N

i=1 λ
2
i , while

g∅ =
1

N !

β−1∏
m=0

∏
1≤i<j≤N

[
β (j − i) +m

]
q[

β (j − i)−m
]
q

. (2.83)

The products in (2.82) run over all boxes (i, j) of the Young diagram Yλ with 1 ≤ i ≤
N , 1 ≤ j ≤ λi, and λt corresponds to the transposed Young diagram, i.e. λt

i is the

number of entries ≤ i in Yλ.

3.1.2 Generalized characters and Macdonald polynomials

Before we discuss boundary partition functions and Wilson loop observables, we need

the theory of generalized characters in order to introduce the refinement of quantum

group characters (see e.g. [53, §2] and [35, §6.1]). Then Macdonald deformation cor-

responds to the deformation wherein original quantum group characters are replaced

with generalized characters.

If V,W are finite-dimensional representations of Uq(glN), and Φ : V → V ⊗W is a

non-zero intertwining operator for Uq(glN), then the vector-valued function

χΦ(U) = Tr V
(
ΦU

)
(2.84)

on the maximal torus T ⊂ G is called a generalized character. Contrary to the

classical case q = 1, if the representation W is non-trivial then χΦ(U) is not invariant

under the action of the Weyl group SN on T . Since the operator Φ preserves weight,

the vector χΦ(U) actually takes values in the weight zero subspace W0 ⊂ W .

To compute the generalized character explicitly, let V ∗ denote the dual Uq(glN)-

module, and let vi, v
i be dual bases for V, V ∗. We can then identify Φ with an

intertwiner Φ : V ∗ ⊗ V → W and

χΦ(U) = Φ
(
vi ⊗ Uvi

)
, (2.85)

where throughout we use the Einstein summation convention for repeated upper and

lower indices. Since vi ⊗ vi = (1V ∗ ⊗ q−(ρ,H)) 1C, where H = (H1, . . . , HN) are the

Cartan generators of glN and 1C = ı(1) with ı : C → V ∗ ⊗ V an embedding of

Uq(glN)-modules, we can also write the generalized character as

χΦ(U) = Φ
(
(1V ∗ ⊗ q−(ρ,H) U)1C

)
. (2.86)
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In the special instance where W = C is the trivial representation of Uq(glN) and

Φ : V → V is the identity operator, so that Φ : V ∗ ⊗ V → C is the canonical

dual pairing, then χ1V (U) = χV (U) = Tr V (U) is the usual character of U in the

representation V .

Now let V = Rλ for fixed λ ∈ Λ+ and W = Wβ−1 for fixed β ∈ Z>0 where

Wβ−1 := R�(β−1)N
ω1

⊗ (det)−(β−1) (2.87)

is the q-deformation of the traceless (β − 1)N -th symmetric power of the first fun-

damental representation Rω1 = CN of G, which is a finite-dimensional irreducible

representation of Uq(glN) with highest weight (β − 1)N ω1 − (β − 1) (1, . . . , 1) =

(β − 1) (N − 1,−1, . . . ,−1). By [54, Lemma 1], the space of intertwining operators

HomUq(glN )

(
Rλ′ , Rλ′⊗Wβ−1

)
for Uq(glN) is one-dimensional if λ′ = λβ := λ+(β−1) ρ

for a highest weight λ and zero otherwise; recall that λ is a dominant weight of glN

if and only if it is of the form

λ = a (1, . . . , 1) +
N∑
i=1

ni ωi (2.88)

for some ni ∈ Z≥0 and a ∈ C, where ωi = (1i 0N−i), i = 1, . . . , N are the fundamental

weights of glN . It follows that a non-zero Uq(glN)-homomorphism Φλ : Rλβ → Rλβ ⊗
Wβ−1 is unique up to normalization. As the weight zero subspace

(
Wβ−1

)
0

is one-

dimensional, the corresponding generalized character

χΦλ(U) := Tr Rλβ

(
Φλ U

)
(2.89)

can be regarded as taking values in C. By [54, Theorem 1], if λ is a partition these gen-

eralized characters are given in terms of the monic form Mλ(x; q, t) of the Macdonald

polynomials at t = qβ, where U = e (z,H) and x = e z. We choose the normalization

of Φλ and the identification
(
Wβ−1

)
0
∼= C in such a way so that

χΦλ(U) =
Mλ(x; q, t)
√
gλ

. (2.90)

In the unrefined limit β = 1, we have gλ = 1 and the Macdonald polynomials reduce

to the Schur polynomials Mλ(x; q, q) = sλ(x) (independently of q), which coincide

with the ordinary characters χRλ(U) = Tr Rλ(U) of the irreducible representation

Rλ.
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Then the refined partition function on open surface of genus h with b boundaries is

given by

Zh,b(q, t; p;U1, . . . , Ub) =
∑
λ∈Λ+

dimq,t(Rλ)
2−2h−b

(gλ)1−h−b/2 q
p
2

(λ,λ) tp (ρ,λ)

b∏
i=1

χΦλ(Ui) , (2.91)

which is a one-parameter deformed version of (2.49). The refinement of the Wilson

loop observable (2.50) is defined by [35]

Wλ(q, t; p;h1, h2) =
∑

µ,ν∈Λ+

∫
T

[dU ]q,t
dimq,t(Rµ)1−2h1

(gµ)
1
2
−h1

dimq,t(Rν)
1−2h2

(gν)
1
2
−h2

q
p
2

(λ,λ) tp (ρ,λ)

× χΦµ(U)χΦλ(U)χΦν (U
†) . (2.92)

3.2 Refined dualities

In this section we introduce refined topological string theory based on the motivation

coming from M-theory and survey the refinement of dualities between BPS black

holes, refined topological string theory and two dimensional Yang-Mills theory.

3.2.1 M-theory motivation

The refined topological string theory only exists for the A-model and originally it is

based on the refinement of the topological vertex on toric manifolds [55, 56]. The

complete geometrical picture of refined topological string theory involves M-theory

on a particular eleven-dimensional manifold [52], which we now describe (see [1] for

a more detailed description).

The refined topological string partition function is given by the index of M-theory on

the geometry

(X × TN× S1)ε1,ε2 , (2.93)

where X denotes the Calabi-Yau ((2.44) in our case), TN the Taub-NUT spacetime,

and the circle product is twisted: going around the S1 circle, the two complex coor-

dinates of TN are rotated by

(z, w, x) 7−→ (qn z, t−nw, x+ 2π r n) , (2.94)

where (z, w) ∈ C2 denotes the coordinates on TN, x ∈ R the coordinate on the circle,

and n ∈ Z. The deformation parameters

q = e −ε1 and t = e ε2 , (2.95)
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are given by the equivariant parameters

ε1 =
1√
β
gs and ε2 = −

√
β gs (2.96)

of the Ω-background [57], where gs is the topological string coupling constant. The

partition function of M-theory on this geometry defines the refined topological string

theory, and it is computed by an five-dimensional index of the resulting theory on

TN×S1 (see [52] for the details). In the case when ε1 = ε2 = gs it gives the partition

function of the ordinary topological string theory.

The Ω-background symmetry (ε1, ε2) 7→ (−ε2,−ε1) corresponds to the inversion sym-

metry β 7→ 1
β

of the refinement parameter together with the rank change N 7→
β (N − 1) + 1. It acts on the Macdonald deformation parameters as (q, t) 7→ (t, q)

which corresponds to the symmetry p 7→ 2−2h−p that exchanges the two line bundle

summands of the Calabi-Yau fibration over Σh.

3.2.2 Refined black hole partition function

The BPS black hole partition function defined in (2.51) and (2.52) is not the most

general partition function which counts microstates of BPS black holes in four dimen-

sions. One can include information about the spin [52] by replacing the Witten index

with the spin character

TrHBPS
(−1)F e −2γJ3 , (2.97)

where J3 is the three-dimensional generator of rotations and γ is the conjugate chem-

ical potential. This is not an index, but one can take the gravity decoupling limit,

where an SU(2) R-symmetry appears, and this can be used to form a genuine in-

dex [58]

TrHP,Q(−1)2J3 e −2γ(J3−R) =
∑
J3,R

Ω(P,Q; J3, R) e −2γ(J3−R) . (2.98)

This is used to define the refined partition function of BPS black hole with the

summation over electric charges as in the unrefined case

Zref BH(P6, P4, φ2, φ0; γ) =
∑

Q2,Q0,J3,R

Ω(P6, P4, Q2, Q0; J3, R) e −2γ(J3−R)−φ2Q2−φ0Q0 .

(2.99)

The refined partition function Zref BH corresponding to the compactified Calabi-Yau

(2.44) reduces to a two-dimensional gauge theory on the base surface as before, but

now the gauge theory is the Macdonald deformation of the two-dimensional U(N)
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Yang-Mills theory introduced in §3.1.1. In the Lagrangian formalism, the action is

the same as of the unrefined in (2.53), the refinement appears in the measure of the

path integral. The parameters ε1 and ε2 are given by the chemical potentials φ2, φ2

and γ with

ε1 =
4π2

φ0

and ε2 =
4π2

φ0

(
1− γ

2π i

)
. (2.100)

The large N dual of the (q, t)-deformed SU(N) gauge theory is the refined string

theory, and the dualities are very analogous to the original q-deformed case described

in §2.2.2, only the string coupling gs is replaced in the Kähler modulus with parameter

ε2

k =
1

2
(p+ 2h− 2)Nε2 , (2.101)

and so the refined black hole partition function (2.56) factorizes into a chiral and an

antichiral part as well as the unrefined partition function (2.56), where the ε1 has the

role of the string coupling gs this time. The duality is developed to the refined OSV

conjecture, which says that the microscopic description of BPS black holes with spin

is computed by refined topological string amplitudes.
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Chapter 3

Chiral expansion of
Macdonald-deformed
two-dimensional Yang-Mills
theory

In this chapter we present our results on the chiral expansion of Macdonald de-

formed two-dimensional Yang-Mills theory, and introduce a deformed Hurwitz theory

of branched covers. We finish the chapter with the chiral expansion of observables in

the theory. The results have been published in [1].

1 Generalized quantum characters as Hecke char-

acters

In this section we develop a combinatorial description of the dimension factors defined

in (2.80) for the quantum universal enveloping algebra Uq(glN) appearing in (2.78)

in terms of characters of the Hecke algebra Hq(Sn) of type An−1. Our final result is

summarised in Proposition 3.39. For this, we shall use quantum Schur-Weyl duality

between Uq(glN) and Hq(Sn), which has been discussed in §2.2.3 in Chapter 2. See

Appendix 2 for relevant definitions and properties of quantum groups which are used

throughout, and Appendix 3 for those pertaining to Hecke algebras.
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1.1 Quantum Schur-Weyl duality

Generalized characters have been introduced in §3.1.2 in Chapter 2, and they were also

used to express the refined quantum dimension. Using quantum Schur-Weyl duality

introduced in (2.58) we can write the generalized characters χΦλ(U) for λβ ∈ Λn
+ as

combinatorial expansions over the symmetric group Sn involving characters of the

Hecke algebra Hq(Sn). For this, we introduce a Uq(glN)-intertwiner

Φn : R⊗nω1
−→ R⊗nω1

⊗Wβ−1 (3.1)

for each n ≥ 0, where Wβ−1 is given by (2.87). This intertwiner can be defined in the

following (non-canonical) way: As a Uq(glN)-module the vector space R⊗nω1
decomposes

into irreducible unitary representations as

R⊗nω1
=
⊕
λ∈Λn+

R
⊕dλ(1)
λ (3.2)

where dλ(1) = dim(rλ). We can use the projector property
∑

λ∈Λn+
Pλ = 1R⊗nω1

to

write

Φn =
∑

λ,µ∈Λn+

(
Pµ ⊗ 1Wβ−1

)
Φn Pλ , (3.3)

with (
Pµ ⊗ 1Wβ−1

)
Φn Pλ := δλ,µ

∑
λ∈Λn+

Φλβ−2
⊗ 1rλ , (3.4)

where we used (3.2) and Φλβ−2
∈ HomUq(glN )

(
Rλ, Rλ⊗Wβ−1

)
. In the large N limit, if

λ is a dominant weight then so are λβ and λβ−2, and thus HomUq(glN )

(
Rλ, Rλ⊗Wβ−1

)
is non-zero and one-dimensional if λ ∈ Λ+. This gives an identification of underlying

linear transformations

Φn =
⊕
λ∈Λn+

Φλβ−2
⊗ 1rλ . (3.5)

We evaluate the trace Tr R⊗nω1

(
Φn U Pλ

)
in two different ways. Firstly, using (2.60)

and (3.2) along with (2.85) we easily get

Tr R⊗nω1

(
Φn U Pλ

)
= Tr Rλ(Φλβ−2

U) dλ(1) = χΦλβ−2
(U) dλ(1) . (3.6)
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Secondly, we substitute the explicit expansion (2.61), and hence for any weight λ ∈ Λn
+

we can express the vector-valued trace as

Tr Rλ(Φλβ−2
U) =

q−
n (n−1)

4

[n]q!

dλ(q)

dλ(1)

∑
σ∈Sn

q−`(σ) χrλ
(
h(σ−1)

)
Tr R⊗nω1

(
Φn U h(σ)

)
. (3.7)

It will prove useful later on to derive directly a formula for the inverse of this trans-

formation of characters, generalizing (2.59) by

Tr R⊗nω1

(
Φn U h(σ)

)
=
∑
λ∈Λn+

χrλ
(
h(σ)

)
χΦλβ−2

(U) . (3.8)

A short proof is presented in Appendix 5 as Lemma (A.32).

By multiplying the left-hand side and the right-hand side of the character formula

(3.8) with q−`(σ) χrλ′
(
h(σ−1)

)
, summing over all permutations σ ∈ Sn and using the

orthogonality relations for Hecke characters [49]∑
σ∈Sn

q−`(σ) χrλ
(
h(σ)

)
χrλ′

(
h(σ−1)

)
= δλ,λ′ q

n (n−1)
4 [n]q!

dλ(1)

dλ(q)
, (3.9)

we arrive at the expression (3.7).

1.2 Refined quantum dimensions

We are finally ready to derive our Hecke character expansion for the refined quantum

dimensions. Firstly we note that the refined quantum dimension (2.80) and the

Macdonald metric (2.81) are both invariant under any shift of the dominant weight

λ by the maximal partition (1N) := (1, . . . , 1) of length N , i.e.

dimq,t(Rλ+a (1N )) = dimq,t(Rλ) and gλ+a (1N ) = gλ . (3.10)

We shall assume that a is an integer. The refined quantum dimension is obtained by

the specialization U = t(ρ,H) in the generalized characters (2.90), i.e.

dimq,t(Rλ)√
gλ

= χΦλ

(
qβ (ρ,H)

)
= Tr Rλβ

(
Φλ q

β (ρ,H)
)
. (3.11)

We wish to substitute in the expansion (3.7), but the Hecke characters and dimensions

are only defined for partitions, whereas λβ is not necessarily a partition. Hence we
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use the shift symmetry (3.10) to get a partition λβ + a (1N), which is true as long as

a ≥ N−1
2

(β − 1). For definiteness we use the lowest value

a = N−1
2

(β − 1) (3.12)

which for large N can be regarded as integral. In the large N expansion that we

consider later on, we will typically also consider the limit β → 1 such that the

quantity aN is finite. Then we get

dimq,t(Rλ)√
gλ

=
q−

n (n−1)
4

[n]q!

dλβ+a (1N )(q)

dλβ+a (1N )(1)

∑
σ∈Sn

q−`(σ) χr
λβ+a (1N )

(
h(σ−1)

)
× Tr R⊗nω1

(
Φn q

β (ρ,H) h(σ)
) (3.13)

for λβ +a (1N) ∈ Λn
+, i.e. λ ∈ Λn−aN

+ . We can easily check that this expression agrees

with the anticipated formula for the quantum dimension dimq(Rλ) = Tr Rλ
(
q(ρ,H)

)
in

the unrefined limit: In the limit β = 1, we have λβ = λ, a = 0, and the intertwiners

Φλ and Φn become identity operators on finite-dimensional modules, so that (3.13)

coincides with the q-dimension formula (2.62).

To manipulate the sum in (3.13), let us first explicitly specify how the Hecke operators

act. From [59] we can express h(σ) ∈ Hq(Sn) as a product of generators gi, i =

1, . . . , n− 1 in the same way that we express σ ∈ Sn in the form of a reduced word;

we say that h(σ) ∈ Hq(Sn) is a reduced word if σ ∈ Sn is a reduced word. From [49],

gi acts on R⊗nω1
as the braiding operator

g = q1/2 Ř (3.14)

on the tensor product Rω1 ⊗ Rω1 in the (i, i + 1) slot of R⊗nω1
, where Ř = PR with P

the flip operator P(v ⊗ w) = w ⊗ v; here R is the FRT quantum R-matrix [60]

R = q1/2

N∑
i=1

Hi ⊗Hi +
∑
i 6=j

Hi ⊗Hj +
(
q1/2 − q−1/2

) ∑
i>j

Eij ⊗ Eji , (3.15)

where Hi = Eii and Eij for i, j = 1, . . . , N act on the standard basis {ek} ⊂ Rω1 = CN

of the fundamental representation as

Eijek = δjk ei . (3.16)

Let us define the (q, t)-trace of an element x ∈ Hq(Sn) by

Tr q,t(x) := Tr R⊗nω1

(
Φn t

(ρ,H) x
)
, (3.17)
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where Φn is the intertwiner (3.1). This terminology is justified by the cyclicity prop-

erty

Tr q,t(x y) = Tr q,t(y x) (3.18)

for all x, y ∈ Hq(Sn). The proof of this statement can be found in Appendix 5 as

Lemma (A.34).

We can use the cyclicity to truncate the reduced words h(σ) to minimal words in

the sum (3.13). A word is said to be minimal if it is both reduced and contains no

generators gi more than once. Using the Hecke relations on gi and cyclicity of the

(q, t)-trace, we can then truncate the sum in (3.13) to conjugacy classes T in Sn and

express the (q, t)-trace Tr q,t
(
h(σ)

)
for any σ ∈ T as the (q, t)-trace Tr q,t

(
h(mT )

)
of

the minimal word mT ∈ T in the conjugacy class [59]. Hence following the derivation

of [49, eq. (2.38)], we can write the expansion (3.13) as

dimq,t(Rλ)√
gλ

=
q−

n (n−1)
4

[n]q!

dλβ+a (1N )(q)

dλβ+a (1N )(1)

∑
T∈S∨n

q−`(T ) χr
λβ+a (1N )

(CT )

× Tr R⊗nω1

(
Φn q

β (ρ,H) h(mT )
) (3.19)

where `(T ) is the length of the permutation mT ∈ Sn and CT are the same central

elements of the Hecke algebra Hq(Sn) as in [49]. To write CT explicitly, we need to

express an arbitrary character of the Hecke algebra in terms of characters of minimal

words [59] using cyclicity property of the (q, t)-trace and the Hecke relations (A.15)

from Appendix 3 as

χrλ
(
h(σ)

)
=
∑
T∈S∨n

αT (σ)χrλ
(
h(mT )

)
, (3.20)

where the expansion coefficients αT (σ) do not depend on the representation rλ. Then

the central element CT is defined by

CT = q`(T )
∑
σ∈Sn

q−`(σ) αT (σ−1) h(σ) . (3.21)

This central element is the same as that was used for the expansion of the unrefined

Ωn element in (2.64). The quantum Young projector (2.61) can be rewritten as

Pλ =
dλ(q)

q
n (n−1)

4 [n]q!

∑
T∈S∨n

q−`(T ) χrλ
(
h(mT )

)
CT . (3.22)

This transformation can be inverted to express CT in terms of the central elements

Pλ, because the determinant of the transformation matrix is non-zero. To see that
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the determinant of χrλ
(
h(mT )

)
is non-zero, we use the orthogonality relation (3.9)

and expand it into minimal words using (3.20). Then we take the determinant of

the obtained expression and use multiplicativity of the determinant to find that it is

non-vanishing. Hence the centrality of the elements CT follows from the centrality of

the projectors.

1.3 (q, t)-traces of minimal words

We are left with the problem of evaluating the (q, t)-traces Tr R⊗nω1

(
Φn q

β (ρ,H) h(mT )
)

of minimal words; we shall follow the strategy of [49, Appendix B]. For n = 1, the

R-matrix Ř acts trivially while qβ (ρ,H)ei = tρi ei, where ρi = N+1
2
− i. Using

dimq,t(Rω1) = [N ]t = Tr Rω1
(t(ρ,H)) and gω1 = g∅

[
N
]
t[

β (N − 1) + 1
]
q

(3.23)

where generally

[N ]tk :=
[k β N ]q
[k β]q

, (3.24)

we then easily find for the (q, t)-trace

Tr Rω1

(
Φ1 t

(ρ,H)
)

=
dimq,t(Rω1)
√
gω1

=

( [N]
t

[
β (N − 1) + 1

]
q

g∅

)1/2

. (3.25)

Note that here the intertwining operator Φ1 = Φω1 : Rω1 → Rω1 ⊗ Wβ−1 simply

acts in the (q, t)-trace proportionally to 1 to rescale the normalization of the trace

of t(ρ,H) by the Macdonald measure factor (gω1)−1/2. In the unrefined limit β = 1,

this expression reduces as expected to the quantum dimension of the fundamental

representation dimq(Rω1) = [N ]q. Below we shall also need the generalization of the

trace formula in (3.23) to arbitrary powers tk (ρ,H), k ∈ Z>0, which is given by

Tr Rω1

(
tk (ρ,H)

)
= [N ]tk . (3.26)

Next we set n = 2. We can use the FRT formula (3.15) for the R-matrix to com-

pute (
tk (ρ,H) ⊗ 1Rω1

)
Ř(ei ⊗ ej) = tk ρj ej ⊗ ei + tk ρj

(
q1/2 − 1

)
δij ei ⊗ ej

+ tk ρi
(
q1/2 − q−1/2

)
θij ei ⊗ ej

(3.27)

for any k ∈ Z>0, where θij := 1 if i < j and θij := 0 otherwise. From this expression

one can easily derive the partial traces(
Tr Rω1

⊗ 1Rω1

)((
tk (ρ,H) ⊗ 1Rω1

)
g1

)
= tk

N+1
2

q − 1

tk − 1
1Rω1

+
tk − q
tk − 1

tk (ρ,H) (3.28)
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as operators in Uq(glN) acting on the fundamental representation Rω1 . In the unre-

fined limit t = q at k = 1, this operator reduces to q
N+1

2 1Rω1
as in [49, eq. (B.5)]; in

the general case it is also diagonal but no longer proportional to the identity opera-

tor.

Let us decompose the representation Wβ−1 into its one-dimensional weight subspaces(
Wβ−1

)
α
∼= Cwα; in particular, the isomorphism

(
Wβ−1

)
0
∼= C is given by mapping

w0 7→ 1. Then one can find explicit formulas for the matrix elements of Φ2 : R⊗2
ω1
→

R⊗2
ω1
⊗Wβ−1 in the following way: we write

Φ2(ei ⊗ ej) = Pij
kl
α ek ⊗ el ⊗ wα , (3.29)

then the condition that Φ2 is an intertwiner can be rewritten as a system of linear

equations for the expansion coefficients Pij
kl
α. Since Φ2 is uniquely determined up to

the normalization in (2.90), this linear system has a unique solution which determines

Pij
kl
α as a rational function in q1/2 and t1/2 = qβ/2; with (2.90) the intertwining

operators Φλ : Rλβ → Rλβ ⊗ Wβ−1 are normalized in such a way that if vλβ is a

highest weight vector of Rλβ , then the component of Φλ(vλβ) in Rλβ ⊗
(
Wβ−1

)
0

is

(gλβ)−1/2 vλβ ⊗w0. Setting Pij
kl := Pij

kl
0, the (q, t)-trace of the generator g1 can then

be written as

Tr R⊗2
ω1

(
Φ2 t

(ρ,H) g1

)
:=

(
Tr Rω1

⊗ Tr Rω1

)(
Φ2 (t(ρ,H) ⊗ t(ρ,H)) g1

)
= q1/2 tN+1

( N∑
i,j=1

t−i−j Pji
ij +

(
q1/2 − 1

) N∑
i=1

t−2i Pii
ii

+
(
q1/2 − q−1/2

) ∑
i<j

t−i−j Pij
ij
)
. (3.30)

In the unrefined limit β = 1, we have Pij
kl = δi

k δj
l and it is easy to check that this

expression reduces to q
N+1

2 [N ]q as in [49, eq. (B.5)]. In the general case we have

Pij
kl = (gω1)−1 δi

k δj
l , (3.31)

which has been proved in Lemma (A.38) in Appendix 5.

Using this we can straightforwardly express the (q, t)-trace (3.30) in terms of q-

numbers as

Tr R⊗2
ω1

(
Φ2 t

(ρ,H) g1

)
=

[
β (N − 1) + 1

]
q

g∅

(
t
N+1

2
q − 1

t− 1
+
t− q
t− 1

[N ]t2

[N ]t

)
. (3.32)
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We can use the general results of Lemma (A.38) together with the partial trace

formula (3.28) and the traces (3.26) to calculate the (q, t)-trace

Tr R⊗nω1

(
Φn t

(ρ,H) g1 g2 · · · gn−1

)
:=

(
Tr Rω1

)⊗n(
Φ⊗nω1

(t(ρ,H))⊗n g1 g2 · · · gn−1

)
= (gω1)−n/2 Tr Rω1

(
t(ρ,H)

(
Tr Rω1

⊗ 1Rω1

)(
(t(ρ,H) ⊗ 1Rω1

) g1

)
· · ·

(
Tr Rω1

⊗ 1
⊗(n−2)
Rω1

)(
(t(ρ,H) ⊗ 1

⊗(n−2)
Rω1

) g1

)
(3.33)

×
(
Tr Rω1

⊗ 1
⊗(n−1)
Rω1

)(
(t(ρ,H) ⊗ 1

⊗(n−1)
Rω1

) g1

))
recursively in n. The derivation is presented as Lemma (A.44) in Appendix 5.

It is straightforward to show that Lemma (A.44) reduces to (3.32) for n = 2, while

for n = 3 it reads as

Tr R⊗3
ω1

(
Φ3 t

(ρ,H) g1 g2

)
= (gω1)−3/2

(
tN+1 q − 1

t− 1

( q − 1

t− 1
+

t− q
t2 − 1

)
[N ]t

+ t
N+1

2
(q − 1)(t− q)

(t− 1)2
[N ]t2 +

(t− q)
(
t2 − q

)
(t− 1)

(
t2 − 1

) [N ]t3

)
.

(3.34)

Let us look at the unrefined limit q = t of Lemma (A.44). In this case (q−1; q)k+1 = 0

for k > 0 from the definition (A.54), so only the k = 0 term in (A.44) is non-zero

and the sum over partitions in ζm receives a non-vanishing contribution from only the

maximal partition λ = (1m) with `(λ) = m parts, and L(1,...,1) = 1, so that

ζm(q, q) =
m∏
i=1

1

q
= q−m for m ≥ 0 . (3.35)

Then the q = t limit of the (q, t)-trace formula (A.44) becomes

Tr R⊗nω1

(
Φn t

(ρ,H) g1 g2 · · · gn−1

)∣∣∣
q=t

= q(n−1) N+1
2 [N ]q (3.36)

which coincides with the unrefined quantum trace formula of [49, eq. (B.6)]. The ensu-

ing simplicity of the unrefined limit as compared to the general case in Lemma (A.44)

is explained in terms of the combinatorics of symmetric functions in Appendix 6.

We can now use Lemma (A.44) to evaluate Tr R⊗nω1

(
Φn t

(ρ,H) h(mT )
)
. If the conjugacy

class T is composed of permutations which have µi(T ) cycles of length i, then n =∑
i i µi(T ) and we get

Tr R⊗nω1

(
Φn t

(ρ,H) h(mT )
)

=

(gω1)−n/2
qn tn

N+1
2

(q − 1)
∑
i µi(T )

n∏
i=1

( i−1∑
k=0

t−(k+1) N+1
2

(
q−1; t

)
k+1

(t; t)k
ζi−1−k(q, t) [N ]tk+1

)µi(T )

.

(3.37)
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Let us rewrite this formula in terms of the partitions µ = µ(T ) which parameterize

the conjugacy classes T = Tµ as

Tr R⊗nω1

(
Φn t

(ρ,H) h(mTµ)
)

=

(gω1)−n/2
qn tn

N+1
2

(q − 1)`(µ)

`(µ)∏
i=1

( µi∑
k=1

t−k
N+1

2

(
q−1; t

)
k

(t; t)k−1

ζµi−k(q, t) [N ]tk
) (3.38)

where `(µ) =
∑

i µi(T ) is the length of the partition µ.

We can finally substitute the formula (3.38) into (3.19) to get the main result of this

section.

Proposition 3.39 The refined quantum dimensions can be expressed as

dimq,t(Rλ)√
gλ

=
q−

n (n−5)
4 tn

N+1
2

(gω1)n/2 [n]q!

dλβ+a (1N )(q)

dλβ+a (1N )(1)

∑
µ∈Λn+

q−`
∗(µ)

(q − 1)`(µ)
χr

λβ+a (1N )
(Cµ)

×
`(µ)∏
i=1

( µi∑
k=1

t−k
N+1

2

(
q−1; t

)
k

(t; t)k−1

ζµi−k(q, t) [N ]tk
)

for λ ∈ Λn−aN
+ , where `∗(µ) =

∑
i (i− 1)µi = n− `(µ) is the colength of the partition

µ (the complement to its length) which coincides with the length of the permutation

(the minimal number of generators) that belongs to the conjugacy class labelled by µ,

and the central Hecke algebra element Cµ := CTµ is defined by (3.21). The coefficients

ζm(q, t) are defined in (A.44).

It easy to see that this refined quantum dimension formula reduces at β = 1 to the

quantum dimension formula (2.63) with (2.64).

2 Chiral expansion of the partition function

To explore the relations between the (q, t)-deformed Yang-Mills theory on Σh and a

refined topological string theory, we consider the topological limit of the gauge theory

which is the limit of degree p = 0. In this section we will study the partition function

which from (2.78) is given by

Zh(q, t; 0) =
∞∑
n=0

∑
λ∈Λn+

( dimq,t(Rλ)√
gλ

)2−2h

, (3.40)

analogously to [49]. The chiral expansion is the asymptotic large N expansion defined

by dropping the constraint `(λ) ≤ N on the lengths of the partitions λ, as we described
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in §1.2. Our main results of this part are summarised in Propositions (3.60) and

(3.78).

2.1 Generalised quantum Ω-factors

Let us begin by rewriting the refined quantum dimension from Proposition 3.39 in a

simpler condensed form. Following (2.20) and (2.64), we define the element

Ωn(q, t) =
tn

N+1
2(

[N ]t
)n ∑

µ∈Λn+

( q

q − 1

)`(µ)

(3.41)

×
`(µ)∏
i=1

( µi∑
k=1

t−k
N+1

2

(
q−1; t

)
k

(t; t)k−1

ζµi−k(q, t) [N ]tk
)
Cµ .

This is a sum of central elements Cµ of the Hecke algebra Hq(Sn), so Ωn(q, t) is also

central. The normalization is chosen so that the identity is the leading term at large

N . For this, we note that, under the assumptions q, t ∈ (0, 1), the largest terms

of Ωn(q, t) in the large N expansion come from rectangular partitions of the form

µ = (m, . . . ,m) which give the leading term( q (q−1; t)m
(q − 1) (t; t)m−1

)`(µ)

. (3.42)

For β ≥ 1 and k ∈ Z>0 we have∣∣∣ 1− q−1 tk

1− tk
∣∣∣ =

∣∣∣ 1− tk−
1
β

1− tk
∣∣∣ < 1 . (3.43)

This implies that the absolute value of (3.42) is less than 1, unless µ = (1, . . . , 1) in

which case it is equal to 1. Hence the maximal partition (1, . . . , 1) is the leading term

which corresponds to the identity permutation, and we can write

Ωn(q, t) = 1 + Ω′n(q, t) , (3.44)

where Ω′n(q, t) has the same form as Ωn(q, t) except that the sum runs over all non-

maximal partitions µ of n.

The q = t limit of (3.41)

Ωn(q, q) =
∑
µ∈Λn+

q
N−1

2
`(µ)

(
[N ]q

)−`∗(µ)
Cµ (3.45)

coincides with the unrefined element defined by (2.64). As we discuss further below,

the power
(
[N ]q

)−`∗(µ)
appearing here suggests an interpretation of Ωn(q, q) in terms
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of branch points on Σh in a topological string theory of worldsheet branched covers

of the target Riemann surface Σh, with string coupling gstr = 1
[N ]q

.

With this new notation we can write the result of Proposition (3.39) as

dimq,t(Rλ)√
gλ

=
q−

n (n−1)
4

[n]q!

dλβ+a (1N )(q)

dλβ+a (1N )(1)

( [N ]t√
gω1

)n
χr

λβ+a (1N )

(
Ωn(q, t)

)
. (3.46)

This formula is very similar to the unrefined one from (2.63), except that in our case

the expansion parameter is

[N ]t√
gω1

=

( [N]
t

[
β (N − 1) + 1

]
q

g∅

)1/2

(3.47)

and g∅ is of order 1 in the large N limit. This expansion parameter respects the Ω-

background symmetry (ε1, ε2) 7→ (−ε2,−ε1) described in §3.2.1; however, fixing p = 0

breaks this symmetry of the topological partition function in the ensuing large N

expansion.

2.2 Chiral series

We next collect every central element under a single character using the formula

(2.68). This implies

Zh(q, t; 0) =
∞∑

n=aN

∑
λ∈Λn−aN+

( q−n (n−1)
4 dλβ+a (1N )(q)

[n]q!

)2−2h 1

dλβ+a (1N )(1)

×
( [N ]t√

gω1

)n (2−2h)

χr
λβ+a (1N )

(
Ωn(q, t)2−2h

)
.

(3.48)

Because of our normalization (3.44), the element Ωn(q, t) is always formally invertible

in the large N expansion.

By (2.65) we have( [n]q!

q−
n (n−1)

4 dλβ+a (1N )(q)

)2

=
1

dλβ+a (1N )(1)

∑
σ,τ∈Sn

q−`(σ)−`(τ) (3.49)

× χr
λβ+a (1N )

(
h(σ) h(τ) h(σ−1) h(τ−1)

)
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which yields

Zh(q, t; 0) =
∞∑

n=aN

∑
λ∈Λn−aN+

1

dλβ+a (1N )(1)

( [N ]t√
gω1

)n (2−2h)

×
( q−n (n−1)

4 dλβ+a (1N )(q)

[n]q!

)2 ∑
σ1,τ1,...,σh,τh∈Sn

q−
∑
i (`(σi)+`(τi))

× χr
λβ+a (1N )

(
Ωn(q, t)2−2h

h∏
i=1

h(σi) h(τi) h(σ−1
i ) h(τ−1

i )
)
,

(3.50)

where we used (2.68) and the centrality property of (3.49) from [49]. We use the

element defined in (2.67) to express the q-dimension dλβ+a (1N )(q) in terms of the

character of Dn as

dλβ+a (1N )(q) = χr
λβ+a (1N )

(Dn) . (3.51)

Since Dn is central in Ĥq(Sn), using (2.68) we get

Zh(q, t; 0) =
∞∑

n=aN

q−
n (n−1)

2(
[n]q!

)2

( [N ]t√
gω1

)n (2−2h)

×
∑

σ1,τ1,...,σh,τh∈Sn

q−
∑
i (`(σi)+`(τi))

∑
λ∈Λn−aN+

dλβ+a (1N )(q)

× χr
λβ+a (1N )

(
Dn Ωn(q, t)2−2h

h∏
i=1

h(σi) h(τi) h(σ−1
i ) h(τ−1

i )
)
.

(3.52)

The delta-function on Hecke algebras are defined by (2.69) and (2.70). To write the

partition function in terms of delta-functions as in the unrefined case, we have to

take the sum over all partitions of n. There is a bijection between partitions α ∈ Λn
+

such that αi ≥ (β − 1) ρi + a = (β − 1) (N − i) for i = 1, . . . , N and partitions in

Λn−aN
+ . Thus we need to construct a step function Θn(β) on partitions that cuts off

the contributions involving smaller partitions and allows us to sum over all α ∈ Λn
+;

it is defined by the property

χα
(
Θn(β)

)
=

{
dα(1) if αi ≥ (β − 1) (N − i) ,
0 otherwise ,

(3.53)

for α ∈ Λn
+. The sum of quantum Young projectors (2.61) given by

Θn(β) =
∑
µ∈Λn+

µi≥(β−1) (N−i)

Pµ (3.54)
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fulfills this criterion, and it is a central element of Hq(Sn) because the projectors are

central.

We now insert
(
dλβ+a (1N )(1)

)−1
χλβ+a (1N )

(
Θn(β)

)
= 1 in (3.52) and using (2.68) we

get

Zh(q, t; 0) =
∞∑

n=aN

q−
n (n−1)

2(
[n]q!

)2

( [N ]t√
gω1

)n (2−2h)

×
∑

σ1,τ1,...,σh,τh∈Sn

q−
∑
i (`(σi)+`(τi))

∑
λ∈Λn−aN+

dλβ+a (1N )(q)

× χr
λβ+a (1N )

(
Θn(β)Dn Ωn(q, t)2−2h

h∏
i=1

h(σi) h(τi) h(σ−1
i ) h(τ−1

i )
)
.

(3.55)

A partition α ∈ Λn
+ satisfies αi ≥ (β − 1) (N − i) for i = 1, . . . , N if and only if it

can be written as α = λβ + a (1N) for some λ ∈ Λn−aN
+ . The contributions involving

αi < (β − 1) (N − i) for some i in the partition function vanish because of the step

function Θn(β). Hence we can shift the summation range and sum over all α ∈ Λn
+

to get

Zh(q, t; 0) =
∞∑

n=aN

q−
n (n−1)

2(
[n]q!

)2

( [N ]t√
gω1

)n (2−2h) ∑
σ1,τ1,...,σh,τh∈Sn

q−
∑
i (`(σi)+`(τi))

×
∑
α∈Λn+

dα(q)χrα

(
Θn(β)Dn Ωn(q, t)2−2h

h∏
i=1

h(σi) h(τi) h(σ−1
i ) h(τ−1

i )
)
,

(3.56)

and then using the expression for the delta-function from (2.70) we arrive at

Zh(q, t; 0) =
∞∑

n=daNe

( [N ]t√
gω1

)n (2−2h) q−
n (n−1)

4

[n]q!

×
∑

σ1,τ1,...,σh,τh∈Sn

δ
(

Θn(β)Dn Ωn(q, t)2−2h

h∏
i=1

q−`(σi)−`(τi) h(σi) h(τi) h(σ−1
i ) h(τ−1

i )
)
.

(3.57)

Now we can analytically continue β away from integer values, because this expansion

only depends on β in the q-numbers and in a, and we can choose a larger value for

a; the smallest choice is a0 such that a0N = daNe, and daNe also vanishes in the

unrefined limit. The restriction on the sum in the definition of the step function

Θn(β) from (3.54) can also be continued in a straightforward way. This expansion is

the refined version of (2.71); it is a refined quantum deformation of the large N chiral
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Gross-Taylor expansion given by (2.18). The Hecke element Θn(β) does not have any

unrefined analog, as it reduces to Θn(β = 1) =
∑

µ∈Λn+
Pµ = 1 by (2.61) together

with the expression for the delta-function from (2.70) and we recover the unrefined

expansion.

Finally, using (3.44) we can expand the Ω-factors Ωn(q, t)2−2h in the completion

Ĥq(Sn) via the power series

Ωn(q, t)2−2h =
∞∑
L=0

d(2− 2h, L) Ω′n(q, t)L , (3.58)

where

d(m,L) =
Γ(m+ 1)

Γ(L+ 1) Γ(m− L+ 1)
. (3.59)

As explained in [34], the binomial coefficient d(2 − 2h, L) is the Euler characteristic

χ(Σh,L) of the configuration space of L points on the Riemann surface Σh, also given

by (2.23). In this way we arrive at

Proposition 3.60 The chiral series for the partition function of topological (q, t)-

deformed Yang-Mills theory on Σh is given by

Zh(q, t; 0) =
∞∑

n=daNe

∞∑
L=0

(
gω1

)n (h−1) (
[N ]t

)n (2−2h−L) χ(Σh,L)

[n]q!
q−

n (n−1)
4 tnL

N+1
2

×
∑

σ1,τ1,...,σh,τh∈Sn

L∏
l=1

∑
µl∈Λn+
µl 6=(1n)

( q

q − 1

)`(µl)

×
`(µl)∏
i=1

( µli∑
k=1

t−k
N+1

2

(
q−1; t

)
k

(t; t)k−1

ζµli−k(q, t) [N ]tk
)

× δ
(

Θn(β)DnCµ1 · · ·CµL
h∏
j=1

q−`(σj)−`(τj) h(σj) h(τj) h(σ−1
j ) h(τ−1

j )
)
.

(3.61)

Here the central Hecke algebra elements Θn(β) and Dn are defined in (3.54) and

(2.67).

This is a refined quantum deformation of the symmetric group enumeration of cov-

ering maps of the Riemann surface Σh, analogously to the description in terms of

quantum spectral curves discussed in Appendix 7. In particular, following [49] it is

tempting to suppose that this expansion is captured by a balanced topological string

theory [61] with target space the M-theory compactification described in §3.2.1, which
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would naturally compute Euler characters of certain moduli spaces of curves in this

background. We elaborate further on these points below.

In the unrefined limit q = t, the asymptotic expansion of Proposition 3.60 becomes

(2.71) independently of the parts of the partitions µ1, . . . , µL.

2.3 β-deformed Hurwitz theory

To understand better the geometrical effect of refinement as it occurs in the expan-

sion of Proposition 3.60, let us consider the classical limit q → 1 with β fixed. In

this limit the Macdonald polynomials reduce to the Jack polynomials which are ordi-

nary generalized characters of irreducible U(N) representations [54], and the Hecke

algebra reduces to the ordinary group algebra of the symmetric group C[Sn]. It is

straightforward to show that the Ω-factors reduce to

lim
q→1

Ωn(q, t)
∣∣
t=qβ

=
∑
µ∈Λn+

∆µ(β)

N `∗(µ)
cµ , (3.62)

where cµ =
∑

σ∈Tµ σ is the undeformed version of (3.21), and we have defined

∆µ(β) =

`(µ)∏
i=1

( µi∑
k=1

γk(β)
∑

λ∈Λ
µi−k
+

β−`(λ) `(λ)!

zλ

`(λ)∏
j=1

γλj(β)
)
, (3.63)

with

γ1(β) = 1 ,

γk(β) =
k−1∏
l=1

β l − 1

β l
=

Γ(k − 1
β
)

Γ(1− 1
β
) Γ(k)

for k > 1 . (3.64)

The integer

zλ =

|λ|∏
i=1

imi(λ)mi(λ)! (3.65)

is the order of the stabilizer, under conjugation, of any element of the conjugacy

class Tλ. In the unrefined limit, ∆µ(β) → 1 as β → 1 and (3.62) coincides with the

unrefined Ω-factor from (2.20), in which case the weights of the sum depend only

on the colengths `∗(µ) = n − `(µ) of the partitions µ ∈ Λn
+ (the same is true of the

unrefined q-deformed Ω-factors (3.45)). In marked contrast, for β 6= 1 the weights

depend explicitly on the parts of the partition µ through the combinatorial coefficients

∆µ(β).
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The expansion into Euler characters given in Proposition 3.60 reduces to

Z̃h(β) := lim
q→1

Zh(q, t; 0)
∣∣
t=qβ

=
∞∑

n=daNe

g̃(β)n (h−1)

∞∑
L=0

χ(Σh,L)

n!

L∏
l=1

∑
µl∈Λn+
µl 6=(1n)

∆µl(β) Nn (2−2h)−
∑L
l=1 `

∗(µl)

×
∑
λ∈Λn+

ωλ(β)
∑

σ1,τ1,...,σh,τh∈Sn

δ
(
cλ cµ1 · · · cµL

h∏
i=1

[σi, τi]
)
,

(3.66)

where [σ, τ ] = σ τ σ−1 τ−1 denotes the group commutator and

g̃(β) :=
N

β (N − 1) + 1

β−1∏
m=0

∏
1≤i<j≤N

β (j − i) +m

β (j − i)−m
. (3.67)

We used (3.22) and (3.23), and defined a new deformation weight

ωλ(β) =
1

n!

∑
µ∈Λn+

µi≥(β−1) (N−i)

dµ χrµ(mTλ) , (3.68)

which reduces to δ(cλ) = δλ,(1n) in the β = 1 limit. Rewriting this expansion entirely

as sums over elements of the symmetric group Sn reveals that it is a β-deformation of

the ordinary chiral Gross-Taylor series given in (2.22), containing an extra class sum,

and with extra deformation weights ∆µ(β) and ωλ(β). In this expansion the weights

depend explicitly on the parts of the partitions and not only on their colengths,

although they are decoupled according to distinct partitions.

To make contact with Hurwitz theory, we shall collect terms with a fixed value of the

integer

B =
L∑
l=1

`∗(µl) (3.69)

and set

2g − 2 = n (2h− 2) +B , (3.70)

which has the form as a Riemann-Hurwitz formula defined in (A.4), where h is the

genus of the covered surface Σh, g is the genus of the covering surface Σg, n is the

number of covering sheets, L is the number of fixed branched point and B is the

branching number of the cover. The Hurwitz number introduced in (A.10) counts the

number of branched covers like this, whose branch points have ramification profiles
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specified by partitions. We incorporate all weights corresponding to the partitions,

and express (3.66) with Hurwitz numbers. Thus we have

Z̃h(β) =
∞∑

n=daNe

g̃(β)n (h−1)
∑
λ∈Λn+

ωλ(β)
∞∑
B=0

( 1

N

)2g−2
B∑
L=0

χ(Σh,L)

×
∑

µ1,...,µL∈Λn+
µl 6=(1n) ,

∑L
l=1 `

∗(µl)=d

∆µ1(β) · · ·∆µL(β) Hh,n

(
λ, µ1, . . . , µL

)
.

(3.71)

From this expression we can infer at least four novel aspects of the closed string

expansion of the β-deformation of two-dimensional Yang-Mills theory, interpreted

from the geometric point of view of Hurwitz theory:

1. Branched covers of index n < daNe do not contribute to the string expansion.

This feature has important ramifications for the planar limit of the gauge theory

which we discuss below.

2. The refinement introduces an additional weighting by the quantity (3.67) such

that the expansion parameter does not simply distinguish the genera of the covering

worldsheets Σg. Below we shall replace this weight with its leading term g̃(β) = 1
β

in

the large N limit.

3. The string expansion (3.71) generically involves deformations of the enumeration

of branched covers f : Σg → Σh in terms of Hurwitz numbers Hh,n(µ1, . . . , µL) which

include an additional marked point with holonomy in the representation (2.87) of

U(N); the inclusion of such marked points is the earmark of refinement and is captured

by the intertwining operators defining the generalised characters [35,53]. Accordingly,

the Hurwitz numbers Hh,n

(
λ, µ1, . . . , µL

)
account for additional branching over this

marked point with ramification profile λ ∈ Λn
+. Due to the deformation weights ωλ(β),

for β 6= 1 their contributions are strongly suppressed in the large N limit.

4. The expansion (3.71) involves weighted sums of Hurwitz numbers, with defor-

mation weights ∆µl(β) and ωλ(β) depending explicitly on the parts of the parti-

tions µl and λ which label the winding numbers of closed strings around the branch

points in the target space Σh. This deformation obstructs a rewriting of the par-

tition function as a generating function of characters of Hurwitz spaces of holo-

morphic maps f : Σg → Σh, as occurs in the unrefined case [34], and as such

an interpretation as a balanced topological string theory [61] with string coupling

gstr = 1
N

and two-dimensional target space Σh is not immediately evident. In fact,

this weighting suggests that the string expansion involves contributions from marked
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covers fm : Σg → Σh; a marking of a branched cover f : Σg → Σh consists of a

marking of each of its branch points zl for l = 1, . . . , L, i.e. a choice of labelling{
wl1, . . . , w

l
`(µl)

}
= f−1(zl) such that µli is the ramification index at wli. An automor-

phism α : Σg → Σg of a marked cover preserves the labels wli, and we denote the

corresponding marked cover counts by Hm
h,n(µ1, . . . , µL). The action of the automor-

phism group Aut(f) on the labels of fm gives a group homomorphism

Aut(f) −→
L∏
l=1

Aut
(
µl
)

(3.72)

whose kernel is Aut(fm) and whose image has index given by the number m of mark-

ings of f (up to isomorphism). It follows that |Aut(f)|m = |Aut(fm)|
∏L

l=1 |Aut(µl)|,
and hence the combinatorial expansion (3.71) can be written in terms of marked Hur-

witz numbers as

Z̃h(β) =
∞∑

n=daNe

β−n (h−1)
∑
λ∈Λn+

ωλ(β)∣∣Aut(λ)
∣∣ ∞∑

B=0

( 1

N

)2g−2
B∑
L=0

χ(Σh,L) (3.73)

×
∑

µ1,...,µL∈Λn+
µl 6=(1n) ,

∑L
l=1 `

∗(µl)=d

∆µ1(β)∣∣Aut
(
µ1
)∣∣ · · · ∆µL(β)∣∣Aut

(
µL
)∣∣ Hm

h,n

(
λ, µ1, . . . , µL

)
.

While the refined weights (3.68) have a natural meaning as deformations of the iden-

tity, it would be interesting to understand better the geometrical significance of the

combinatorial weights (3.63) in terms of orbifold Euler characteristics of moduli spaces

of Riemann surfaces, as suggested by the appearence of the binomial-type coefficients

(3.64). We can give further insight into this perspective following the geometric in-

terpretation of refinement from Appendix 7. Let Hn,B,h,L denote the Hurwitz space

of isomorphism classes of n-sheeted branched covers f : Σg → Σh with branching

number B and L branch points. It has the structure of a discrete fibration

πn,B,h,L : Hn,B,h,L −→ Σh,L (3.74)

over the configuration space of L indistinguishable points on Σh, which sends the

class of a holomorphic map f : Σg → Σh to the branch locus of f . There is also a

natural map

Hn,B,h,L −→ Mg (3.75)

which sends the class of the cover f : Σg → Σh to the class of the curve Σg; the image

of Hn,B,h,L under this map is a subvariety of the moduli spaceMg of genus g curves.
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Recall from Appendix 7 that, in the planar limit of the gauge theory on the sphere,

refinement can be interpreted geometrically as replacing the orbifold Euler characters

χorb(Mg) with the parameterized Euler characters (A.105). It is natural to think of

pulling back the corresponding characteristic classes under the map (3.75), and for

fixed N we define the parameterized Euler character

χn,B,h,L(β) :=
∑
λ∈Λn+

ωλ(β)

βn (h−1)

∑
µ1,...,µL∈Λn+

µl 6=(1n) ,
∑L
l=1 `

∗(µl)=B

∆µ1(β) · · ·∆µL(β) (3.76)

× χ(Σh,L)Hh,n

(
λ, µ1, . . . , µL

)
for n ≥ daNe. Via the fibration (3.74), in the unrefined limit it reduces to the orbifold

Euler character

χn,B,h,L(1) = χorb(Hn,B,h,L) (3.77)

given by (2.24). Then we can rewrite (3.71) in the more suggestive form

Proposition 3.78 The chiral series for the partition function of topological β-

deformed Yang-Mills theory on Σh is the generating function

Z̃h(β) =
∞∑

n=daNe

∞∑
B=0

( 1

N

)2g−2
B∑
L=0

χn,B,h,L(β)

for the parameterized Euler characters (3.76), where g is determined from n, h and

B by the Riemann-Hurwitz formula (3.70).

This generalizes the string theory interpretation of the unrefined case §1.2, wherein

the orbifold Euler characters of Hurwitz spaces χorb(Hn,B,h,L) are replaced under

refinement by the parameterized Euler characters χn,B,h,L(β). As in Appendix 7,

it is natural to expect that these β-deformed characters are themselves associated

to characteristic classes of some related moduli spaces; in particular, for β = 2 the

deformation weights are given by

∆µ(2) = 2`
∗(µ)

`(µ)∏
i=1

( µi∑
k=1

(2k − 3)!!

(k − 1)!

∑
λ∈Λ

µi−k
+

`(λ)!

zλ

`(λ)∏
j=1

(2λj − 3)!!

(λj − 1)!

)
. (3.79)

However, in the present case the characters are non-polynomial functions of β; be-

low we will compare their forms explicitly with the parameterized Euler characters

(A.105).
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For the case of a spherical target space Σ0 = P1, certain classes of Hurwitz num-

bers can be expressed as integrals of psi-classes and Hodge classes over the Deligne-

Mumford moduli spaces of punctured curvesMg,n [62]. The corresponding partition

functions are annihilated by the differential operator of a quantum curve, see e.g. [63]

for a review; it would be interesting to see if there is a similar quantum spectral

curve underlying the partition function Z̃0(β). On the other hand, orbifold Hurwitz

numbers lead to partition functions which are annihilated by the difference opera-

tor of a quantum curve [63], and it would be interesting to understand the general

(q, t)-deformed partition function Z0(q, t; 0) also in this context.

2.4 Planar limit

In the planar limit of Appendix 7, the pertinent generalised Selberg integrals can

also be expressed in terms of Jack symmetric functions [64], which gives a geomet-

rical meaning to the refinement parameter β as a combinatorial invariant of non-

orientability for maps of graphs into surfaces. Let us now compare the leading term

of the partition function (3.57) for h ≥ 2 in the classical limit q = 1 with the param-

eterized Euler characteristics (A.105). This amounts to setting the Ω-factors Ωn(q, t)

to 1 and keeping only the n = aN term of the sum in (3.57), which yields

Zpl
h (q, t; 0) =

q−
aN (aN−1)

4

[aN ]q!

(
d(β−1) ρ+a (1N )(q)

)2−2h
( [N ]t√

gω1

)aN (2−2h)

. (3.80)

In the classical limit this becomes

Z̃pl
h (β) =

1

(aN)!

(
d(β−1) ρ+a (1N )

)2−2h
( N4

g̃(β)

)aN (1−h)

, (3.81)

where we used (3.23). We can rewrite (3.67) in the form

g̃(β) =
N

β (N − 1) + 1

N∏
i=1

Γ(β i)
Γ(β)

β−1∏
m=0

N−1∏
i=1

βi Γ
(
i+1−m

β

)
Γ
(

1−m
β

) , (3.82)

and using the dimension formula (A.19) in Appendix 3 we can write the dimension of

the symmetric group representation corresponding to the partition (β − 1) ρ+ a (1N)

as

d(β−1) ρ+a (1N ) =
β
N (N−1)

2 Γ(aN + 1)G(N + 1)
N−1∏
i=1

Γ(1 + β i)

, (3.83)
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where G(z) is the Barnes G-function with the property that G(N + 1) =
∏N

i=1 Γ(i).

The appearence of this Barnes function suggests, following [65], that our asymptotic

expansion could be related to refined topological closed string theory on the resolved

conifold geometry.

The corresponding free energy F̃ pl
h (β) := − log Z̃pl

h (β) can be expanded as a power

series in β, whose coefficients are combinations of Bernoulli numbers, in much the

same way that we dealt with the partition function (A.97). The resulting expansion

is somewhat complicated, so we content ourselves with an integral representation

from which the expansion is straightforwardly extracted. For this, we use the integral

formula for the gamma-function [66]

log Γ(z) =

∫ ∞
0

dx

x

1

e x − 1

(
(z − 1) (1− e −x) + e −x (z−1) − 1

)
, (3.84)

which holds for Re(z) > 0. After some calculation, one infers the free energy

F̃ pl
h (β) = (h− 1)

(
N (N − 1) log β − 1

2
aN2 (N − 1) β log β − 3 aN logN

− aN log(β (N − 1) + 1)
)

+

∫ ∞
0

dx

x

1

e x − 1
Fβ,Nh (x) ,

(3.85)

where we have defined

Fβ,Nh (x) = aN
(
1 + β

2
N (N − 1) (1− h)

) (
1− e −x

)
+ (2h− 2)

( 1− e −β (N−1)x

1− e β x
− 1− e −(N−1)x

1− e x

)
+ (2h− 1)

(
e −aN x − 1

)
+ aN (h− 1)

( e −β (N−1)x + e x − e −(β N−1)x − 1

1− e β x
−N + 1

+ N e −(β−1)x + β
2
N (N − 1) e −β x

(
e x − 1

) )
.

(3.86)

In the β = 1 limit (which also induces a = 0) the planar free energy vanishes, as we

expect from (3.80).

The power series expansion in β can now be obtained by using the generating function

(A.102) to expand the denominators (1 − e β x)−1 and the integral identities of [66,

Appendix A]. For example, we can readily compute the contribution

−
∫ ∞

0

dx

x

1

e x − 1

1− e −β (N−1)x

1− e β x
=

∞∑
n=0

FNn βn (3.87)

where

FN0 = (N − 1)
(

1
ε

+ 1
2

log ε+ 1
2

(γ − log 2π)
)
,

FNn = ζ(n) (n− 1)!
n∑
k=0

(N − 1)k+1 Bn−k

(k + 1)! (n− k)!
for n ≥ 1 .

(3.88)
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Here ε → 0+ gives the leading one-loop linear and logarithmic divergences, γ is the

Euler-Mascheroni constant, and ζ(z) is the Riemann zeta-function. These formulas

explicitly illustrate the analytic dependence of the parameterized Euler characteristics

(3.76) on the refinement parameter β, as compared to the polynomial characters

(A.105).

3 Chiral expansions of defect observables

As we discussed in §1.1 in Chapter 2 two-dimensional Yang-Mills theory also involves

observables corresponding to insertions in the partition function of operators sup-

ported on real codimension one defects in Σh. In this section we extend the chiral

expansion of §2 to these observables.

3.1 Boundaries

We first describe the large N expansion of the refinement of q-deformed Yang-Mills

theory on open Riemann surfaces of genus h with b boundaries. The correspond-

ing partition function has been introduced in (2.91). Again we consider only the

topological gauge theory and study

Zh,b(q, t; 0;U1, . . . , Ub) =
∞∑
n=0

∑
λ∈Λn+

( dimq,t(Rλ)√
gλ

)2−2h−b b∏
i=1

χΦλ(Ui) . (3.89)

This partition function was also considered in [52] but with a different normalization

for the boundary characters.

We begin by using the transformation from Appendix 4 to change to a basis of central

elements Ci of Hq(S∞) and set

Zh,b(q, t; 0;C1, . . . , Cb) :=

∫
T b

b∏
i=1

[dUi]q,t

∞∑
ni=aN

q−
ni (ni−1)

4

[ni]q!
Tr

R
⊗ni
ω1

(
Φni Θni(β)Ci U

†
i

)
× Zh,b(q, t; 0;U1, . . . , Ub) ,

(3.90)

where the intertwining operator Φni is defined in §1.1 in Chapter 2, the step function

Θni(β) is defined in (3.54), and the integration measure [dU ]q,t on the maximal torus

T ⊂ G given by (A.28) defines the Macdonald inner product of generalized charac-

ters as an integral over holonomies [54]. Since the commutant of the representation of
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Uq(glN) on R⊗nω1
is the Hecke algebra Hq(Sn), the map (3.90) may be regarded as the

refined version of the quantum Fourier transformation of the boundary holonomy am-

plitudes. The generalized characters are orthonormal with respect to the Macdonald

inner product, i.e. ∫
T

[dU ]q,t χΦλ(U)χΦλ′
(U †) = δλ,λ′ (3.91)

for λ, λ′ ∈ Λ+. Using Lemma A.32 we can write

Tr R⊗nω1

(
Φn Θn(β)Ci U

†
i

)
=

∑
λ∈Λn+

χrλ
(
Θn(β)Ci

)
χΦλβ−2

(U †i )

=
∑

µ∈Λn−aN+

χr
µβ+a (1N )

(Ci)χΦ
µ+a (1N )

(U †i ) , (3.92)

which yields

Zh,b(q, t; 0;C1, . . . , Cb) =
∞∑

n=aN

( q−n (n−1)
4

[n]q!

)b ∞∑
n′=0

∑
λ∈Λn

′
+

( dimq,t(Rλ)√
gλ

)2−2h−b

×
∑

µ1,...,µb∈Λn−aN+

b∏
i=1

χr
µiβ+a (1N )

(Ci) δλ,µi+a (1N )

=
∞∑

n=aN

( q−n (n−1)
4

[n]q!

)b ∑
µ∈Λn−aN+

( dimq,t(Rµ)
√
gµ

)2−2h−b

×
b∏
i=1

χr
µβ+a (1N )

(Ci)

(3.93)

where we used (3.91) and (3.10).

We can now use (3.46) to expand the refined quantum dimensions and from (2.68)

we get

Zh,b(q, t; 0;C1, . . . , Cb) =
∞∑

n=daNe

( [N ]t√
gω1

)n (2−2h−b) ( q−n (n−1)
4

[n]q!

)b
×

∑
σ1,τ1,...,σh,τh∈Sn

δ
(

Θn(β) (En)b−1 Ωn(q, t)2−2h−b

×
h∏
i=1

q−`(σi)−`(τi) h(σi) h(τi) h(σ−1
i ) h(τ−1

i )
b∏

j=1

Cj

)
,

(3.94)
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where the central element En is defined by (2.75) with the properties

E−1
n =

q−
n (n−1)

4

[n]q!
Dn in Ĥq(Sn) (3.95)

and

χrλ(En) = q
n (n−1)

4 [n]q!
dλ(1)2

dλ(q)
for λ ∈ Λn

+ . (3.96)

For fixed n this expression reduces to (2.74) in the unrefined limit, whereas our deriva-

tion gives the full partition function summed over all indices n. In particular, this

partition function is a refined quantum deformation of the counting of holomorphic

maps with specified monodromies Cj at the boundaries [67]; by expanding the Ω-

factors, in the classical limit q = 1 it can be expressed in terms of parameterized

Euler characters as in §2.3.

Let us look at some of the basic amplitudes which are the building blocks for the

entire (q, t)-deformed gauge theory. The topological disk amplitude (with puncture

of holonomy in the representation (2.87)) is the case h = 0, b = 1 in (3.89) which

evaluates to

Z0,1(q, t; 0;U) =
∞∑
n=0

∑
λ∈Λn+

dimq,t(Rλ)√
gλ

χΦλ(U) = δq,t
(
U, qβ (ρ,H)

)
, (3.97)

where δq,t is the delta-function in the measure [dU ]q,t. This shows that the wavefunc-

tion Ψ(U) for a disk in the topological (q, t)-deformed gauge theory is supported on

generalized quantum group holonomies of flat connections on a disk, generalising the

unrefined case of [49, eq. (3.7)] wherein δq,q is the delta-function in the Haar measure

for U(N). Dually, we can represent the disk partition function in a form that depends

solely on Hecke algebra quantities by using (3.94) to write

Z0,1(q, t; 0;C) =
∞∑

n=daNe

( [N ]t√
gω1

)n q−n (n−1)
4

[n]q!
δ
(
Θn(β) Ωn(q, t)C

)
, (3.98)

independently of the central elements (2.75). Similarly, the punctured topological

cylinder amplitude is obtained from (3.89) with h = 0, b = 2, giving

Z0,2(q, t; 0;U1, U2) =
∞∑
n=0

∑
λ∈Λn+

χΦλ(U1)χΦλ(U2) = δq,t(U1, U2) (3.99)

with the dual formulation

Z0,2(q, t; 0;C1, C2) =
∞∑

n=daNe

( q−n (n−1)
4

[n]q!

)2

δ
(
Θn(β)EnC1C2

)
(3.100)

independently of the Ω-factors (3.41).
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3.2 Wilson loops

The natural closed defect observables of the gauge theory are of course the Wilson

loops which correspond to simple closed curves on the surface Σh. As before, we

consider the large N expansion of the expectation value of the single Wilson loop

observable defined by (2.92). In the topological limit p = 0 we can use the orthonor-

mality relation (3.91) to obtain

Wλ(q, t; 0;h1, h2) =
∑

µ,ν∈Λ+

( dimq,t(Rµ)
√
gµ

)1−2h1
( dimq,t(Rν)√

gν

)1−2h2

Ñ ν
µλ , (3.101)

where Ñ ν
µλ are refined fusion coefficients defined by the relation

χΦµ(U)χΦλ(U) =
∑
ν∈Λ+

Ñν
µλ χΦν (U) (3.102)

expressing the completeness of the Macdonald polynomials Mλ(x; q, t) in the ring of

symmetric functions. We compare them to the Littlewood-Richardson coefficients

N ν
µλ ∈ Z≥0 which give the multiplicities in the decomposition of tensor products of

irreducible U(N)-modules as

Rµ ⊗Rλ =
⊕
ν∈Λ+

R
⊕Nν

µλ
ν , (3.103)

and the same decomposition is true as Uq(glN)-modules. To suitably express Ñ ν
µλ and

expand the Wilson loops we need the preliminary lemmatas A.62 and A.68, which

are proved in Appendix 5.

To work out the large N expansion of the Wilson loop (3.101), we use the expansion of

the Littlewood-Richardson coefficients in terms of Hecke characters given by [49]

Nν
µλ =

q−
n1 (n1−1)

4

[n1]q!

q−
n2 (n2−1)

4

[n2]q!

dµ(q)

dµ(1)

dλ(q)

dλ(1)

∑
σ1∈Sn1

∑
σ2∈Sn2

q−`(σ1)−`(σ2) (3.104)

× χrµ
(
h(σ−1

1 )
)
χrλ
(
h(σ−1

2 )
)
χrν
(
h(σ1) · h(σ2)

)
,

where |µ| = n1, |λ| = n2, |ν| = n1 + n2 =: n, and h(σ1) · h(σ2) acts on Hq(Sn) via

g1, . . . , gn1−1 ∈ Hq(Sn1) ⊂ Hq(Sn) and gn1+1, . . . , gn1+n2−1 ∈ Hq(Sn2) ⊂ Hq(Sn). We

rewrite the expectation value of the Wilson loop (3.101) using (3.10), Lemma A.68

and Lemma A.62 to get

Wλ(q, t; 0;h1, h2) =
∞∑

n1=aN

∞∑
n=2aN

∑
µ∈Λ

n1−aN
+

∑
ν∈Λn−2aN

+

N
νβ+2a (1N )

µβ+a (1N ) λβ+a (1N )
(3.105)

×
( dimq,t(Rµ+a (1N ))

√
gµ+a (1N )

)1−2h1
( dimq,t(Rν+2a (1N ))

√
gν+2a (1N )

)1−2h2

,
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for |λ| = n2 − aN . Again we expand a transformed version of the Wilson loop given

by

W (q, t; 0;h1, h2;C) =
q−

n2 (n2−1)
4

[n2]q!

∑
λ∈Λ

n2−aN
+

χr
λβ+a (1N )

(C) Wλ(q, t; 0;h1, h2) , (3.106)

where C is an arbitrary central element of the Hecke algebra Hq(Sn2). Using now the

expansion of the Littlewood-Richardson coefficients Nν
µλ from (3.104), the expansion

of the refined quantum dimensions from (3.46), the character of the central element

Dn from (3.51), the definition of the step function Θn(β) from (3.54), the properties

(3.49) and (2.68), and the definition of the delta-functions on Hecke algebras from

(2.70) we finally arrive at the chiral series for Wilson loop observables given by

W (q, t; 0;h1, h2;C) =
∞∑

n1=daNe

∞∑
n=d2aNe

( [N ]t√
gω1

)n1 (1−2h1)+n (1−2h2)

δn1+n2,n
q−

n1 (n1−1)
4

[n1]q!

× q−
n2 (n2−1)

4

[n2]q!

∑
σ1∈Sn1

∑
σ2∈Sn2

q−`(σ1)−`(σ2) δ
(

Θn2(β)C h
(
σ−1

2

))
× δ

(
Θn1(β)Dn1 Ωn1(q, t)1−2h1 Π(h1)

n1
h
(
σ−1

1

))
× δ

(
Θ2
n(β) Ωn(q, t)1−2h2 Π(h2)

n

(
h(σ1) · h(σ2)

))
,

(3.107)

where we have defined

Θ2
n(β) =

∑
µ∈Λn+

µi≥(β−1) ρi+2a

Pµ (3.108)

and Π
(h)
n is defined previously in (2.77). This expression is the refined version of

(2.76). It is a refined quantum deformation of the counting of covering worldsheets

with boundary that maps to the corresponding Wilson graph on Σh according to

the specified monodromy C [67,68]; the expansion into parameterized orbifold Euler

characters in the classical limit q = 1 proceeds as in §2.3.
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Chapter 4

Sigma-models from AKSZ
constructions

1 Aspects of the AKSZ construction

In this section we survey some pertinent background about AKSZ construction and

BV quantization, and describe two dimensional reduction method that we will apply

in the thesis.

1.1 AKSZ sigma-models

We begin by briefly introducing the ingredients of AKSZ theory. A more complete

review can be found in [29]. The AKSZ construction is a BV quantized sigma-model

formulation, and it gives a geometric solution to the classical master equation

(S,S)BV = 0 (4.1)

given by the BV bracket, which imposes BRST symmetry. The solution S is called

the AKSZ action, which is just a BV action.

The basic ingredients of AKSZ theory consists of two classes of supermanifolds. The

super worldvolume or source (W , QW , µ) consists of a differential graded (dg-)mani-

fold, which is a graded manifoldW equiped with a cohomological vector field QW , i.e.

QW is of degree 1 and its Lie derivative LQW squares to zero, and a measure µ which

is invariant under QW . In the thesis we take W = T [1]Σd, the tangent bundle of a

d-dimensional oriented worldvolume manifold Σd with the degree of its fibers shifted

by 1, which is isomorphic to the exterior algebra of differential forms (Ω(Σd),∧). We
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choose the cohomological vector field QW corresponding to the de Rham differential,

which in local affine coordinates ẑµ̂ = (σµ, θµ) ∈ T [1]Σd, with degree 0 coordinates

σµ on Σd and degree 1 fiber coordinates θµ, has the form QW = θµ ∂
∂σµ

=: D, where

repeated upper and lower indices are always implicitly understood to be summed over.

The measure in local coordinates can be written in the form µ = ddẑ := ddσ ddθ.

The target (M, Qγ, ω) is a symplectic dg-manifold, which is a graded manifold M
with a cohomological vector field Qγ, and a graded symplectic form ω for which Qγ

is a Hamiltonian vector field: ιQγω = dγ for some Hamiltonian function γ on M,

where ιQ denotes contraction of a differential form along the vector field Q. In order

to reproduce the BV formalism, the symplectic structure ω is taken to be of degree

d+ 1, so that the Hamiltonian function γ is of degree d.

The AKSZ space of fields is the mapping space

M = Map
(
T [1]Σd ,M

)
(4.2)

consisting of smooth maps from (T [1]Σd,D, µ) to (M, Qγ, ω), which we refer to as

superfields in the following. We can introduce local coordinates on M via the super-

fields

X̂ ı̂(ẑµ̂) = φ∗(X̂ ı̂ )(ẑµ̂) , (4.3)

for local coordinates ẑµ̂ ∈ W , X̂ ı̂ ∈M and φ ∈M. The cohomological vector fields

QW = D and Qγ induce a cohomological vector field Q on M in the following way.

For φ ∈M and ẑ ∈ W , use local coordinates to define

Q0 =

∫
T [1]Σd

ddẑ DX̂ ı̂(ẑ)
δ

δX̂ ı̂(ẑ)
,

Qγ =

∫
T [1]Σd

ddẑ Qı̂
γ

(
X̂(ẑ)

) δ

δX̂ ı̂(ẑ)
,

(4.4)

where Qı̂
γ(X̂) ∂/∂X̂ ı̂ is the local form of the vector field Qγ onM, while the de Rham

differential on M is given by the vector field

δ =

∫
T [1]Σd

ddẑ δX̂ ı̂(ẑ)

�
δ

δX̂ ı̂(ẑ)
(4.5)

with ghost number 1. Relevant definitions and formulas in differential calculus on

mapping superspaces are summarized in Appendix 8. Then M is a dg-manifold with

the cohomological vector field

Q = Q0 +Qγ . (4.6)

We note that Q0 has ghost number1 |D| − d = 1 − d and Qγ has ghost number

1We use the terminology ‘ghost number’ for the degree of a superfield φ in M.
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|Qγ| − d = 1 − d as well, where |Qγ| denotes the degree of Qγ. If a vector field on

M acts as a derivative, its ghost number is shifted by d − 1, because a vector field

based with coordinate X̂ ı̂(ẑ) has ghost number |X̂ ı̂| − 1, but a functional derivative

with respect to X̂ ı̂(ẑ) has ghost number |X̂ ı̂|+ d.

Given an n-form α ∈ Ωn(M), we can lift it to an n-form α ∈ Ωn(M) by transgression

to the mapping space as

α =

∫
T [1]Σd

ddẑ ev∗(α) , (4.7)

where ev : T [1]Σd ×M → M is the evaluation map. As we see, α is an n-form

functional of the fields in M, and due to the integration α has ghost number |α|−d,

where |α| denotes the total degree of α (i.e. the form degree coming from the grading

of δ plus the degree of the graded coordinates). In particular, since transgression is a

chain map, from the degree d+ 1 symplectic form ω on M and a Liouville potential

ϑ, such that ω = dϑ, we get the symplectic form ω of ghost number 1 and Liouville

potential ϑ on M, such that ω = δϑ. Furthermore, the cohomological vector field

Q on M is also Hamiltonian with Hamiltonian function −ιQ0
ϑ + γ of degree 0:

ιQγω = δγ, where ιQ0
and ιQγ have ghost number 0, while γ has ghost number

|γ|−d = 0. In other words, the mapping space of superfields M is itself a symplectic

dg-manifold.

The BV bracket ( · , · )BV is the graded Poisson bracket of ghost number 1 on M
defined from ω, and it corresponds to the graded Poisson bracket { · , · } of degree

−d + 1 on M defined from ω, since the transgression map
∫
T [1]Σd

ddẑ ev∗ is a Lie

algebra homomorphism from (M, { · , · }) to (M, ( · , · )BV):∫
W
µ ev∗

(
{F,G}

)
=
(∫
W
µ ev∗(F ) ,

∫
W
µ ev∗(G)

)
BV

, (4.8)

where F and G are any local functions onM. In particular, the cohomological vector

fields as derivatives can be represented through derived brackets as

Qγ = {γ, · } and
�
Q = (S, · )BV , (4.9)

where the Hamiltonian S on M is defined to be the AKSZ action, which is the

desired BV action. To explicitly specify it, we choose a Liouville potential ϑ on M,

and consider its zero locus L which is a Lagrangian submanifold of M. We pick a

submanifold L′ ⊆ L and restrict the space of fields M to the subspace ML′ ⊂M
consisting of maps that send the boundary ∂W = T [1]∂Σd into L′. This assigns
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boundary conditions on our fields, and now we can write the degree 0 AKSZ action

S on ML′ in the form

S = S0 + γ , (4.10)

where

S0 = −ιQ0
ϑ (4.11)

is the kinetic term and the Hamiltonian function

γ =

∫
T [1]Σd

ddẑ ev∗(γ) (4.12)

is the interaction term. The cocycle conditions Q2
γ = 0 and

�
Q2 = 0 are equivalent

to {γ, γ} = 0 and (γ,γ)BV = 0, hence the AKSZ action is a solution of the classical

master equation (S,S)BV = 0. In the BV formalism, the cohomological vector field
�
Q corresponds to the BRST charge.

A canonical transformation is associated to a degree d− 1 function α onM. We use

the notation δα for the corresponding Hamiltonian vector field, and e δα and e δα for

the respective canonical transformations. The action of the canonical transformation

on γ is given by e δαγ =
∫
T [1]Σd

ddẑ ev∗( e δαγ), which preserves the classical master

equation as

{ e δαγ, e δαγ} = e δα{γ, γ} = 0 , (4.13)

due to {γ, γ} = 0. If α|L′ = 0, then the AKSZ action S0 + γ is equivalent to

S0 + e δαγ up to a canonical transformation. The canonical transformation e δα

is an example of a duality transformation, which in the AKSZ formalism is defined

to be a symplectomorphism, i.e. a diffeomorphism between underlying symplectic

manifolds

f : (M,ω) −→ (M′,ω′ ) , (4.14)

satisfying

f ∗ω′ = ω . (4.15)

In other words, f is a coordinate transformation on symplectic manifolds which leaves

the symplectic structure invariant.

We can then introduce a boundary term in the AKSZ action using the ingredients of

a canonical transformation. Let β be a degree d − 1 function on M as before, and

further assume that {β, β} = 0 and e δβγ
∣∣
L′ = 0. Then the AKSZ action S0 + γ on

ML′ is equivalent to the AKSZ action

S = S0 + γ −
∮
T [1]∂Σd

dd−1ẑ ev∗(β) (4.16)
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on ML′β , which is given by shifting the Liouville potential ϑ to ϑ−dβ with L′β = e δβL′

the new zero locus of the shifted Liouville potential.

A common choice of target for the AKSZ construction is to take M to be an N-

manifold, which is a graded manifold with no coordinates of negative degree. In

this case the triple (M, Qγ, ω) is called a QP-manifold of degree n = d − 1; if the

N-manifold M is concentrated in degrees 0, 1, . . . , n, then (M, Qγ, ω) is called a

symplectic Lie n-algebroid, and it arises from an n-graded vector bundle over the

degree 0 body M = M0 of M [29]; in particular, functions of degree n − 1 can

be identified with sections of a vector bundle E → M equiped with the structure

of a Leibniz algebroid. For example, in the simplest dimension d = 1 with target

a degree 0 QP-manifold, one necessarily has Qγ = 0 and thus a symplectic Lie 0-

algebroid is just an ordinary symplectic manifold (M, ω); in this case the degree 1

Hamiltonian function γ is locally constant onM and the AKSZ construction produces

a topological quantum mechanics given as a one-dimensional Chern-Simons theory

whose Chern-Simons form is a Liouville potential ϑ [69, 70].

In the following we will describe gauge fixing and dimensional reduction methods of

AKSZ theories which we will apply in different contexts through the thesis. Some

of these techniques and approaches seems to be novel, as we have not found them

in the literature. Furthermore we shall survey the AKSZ topological field theories

associated with the first few non-trivial members in the hierarchy of QP-structures

on the target manifold for dimensions d = 2, 3 and 4, in the context of the string

and membrane models of interest in the thesis. We shall also deal with targets that

have negative degree coordinates and hence unravel new constructions even in low

dimension.

1.2 Gauge fixing in the superfield formalism

The entire field content of a system with degenerate symmetries is usually specified

by separating it into ‘fields’, which includes the original physical and ghost fields from

the BRST picture, and dual ‘antifields’, which correspond to the equations of motion

and define canonically conjugate variables with respect to the symplectic phase space

structure on the space M of all fields. In AKSZ constructions the fields and antifields

are not distinguished from the onset. The theory is specified once the antifields are

assigned, and different choices yield different field theories.
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In the usual BV quantized theories, the fields and antifields are distinguished from

the start. One chooses a gauge fixing fermion Ψ[φ], which is a functional of the

fields φa (but not the antifields) of ghost number U = −1, and then the antifields

φ+
a are fixed to the variations φ+

a = δΨ
δφa

. This can be reformulated in terms of the

BV symplectic structure on the space of superfields M. For this, we consider the

case where the source dg-manifold is the superworldvolume W = T [1]Σd with local

coordinates ẑ = (σ, θ) and write a generic BV symplectic structure on superfields in

its canonical form as

ω =

∫
T [1]Σd

ddẑ δφ+
a (ẑ) δφa(ẑ) , (4.17)

where we chose a convenient ordering of antifields φ+
a and fields φa in this way. We

write |a| for the degree of the superfield φa; then its antifield φ+
a has degree d−1−|a|.

If the Liouville potential is chosen as

ϑ =

∫
T [1]Σd

ddẑ φ+
a (ẑ) δφa(ẑ) , (4.18)

then the kinetic part of the AKSZ action is

S0 =

∫
T [1]Σd

ddẑ (−1)|a|φ+
a (ẑ)Dφa(ẑ) . (4.19)

We choose a gauge fixing fermion Ψ[φ], which is a functional on superfields φ(ẑ) ∈
M, and fix the antifields to

φ+
a (ẑ) = (−1)|a| (d+1)

�
δΨ

δφa(ẑ)
, (4.20)

where an extra sign factor has been introduced, which depends on the dimension of

the worldvolume. The left-acting functional derivative is defined in the usual way

by

lim
ε→0

Ψ[φ+ ε ξ ] − Ψ[φ]

ε
=:

∫
T [1]Σd

ddẑ ξ(ẑ)

�
δΨ

δφ(ẑ)
. (4.21)

The BV symplectic form (4.29) in the gauge that is fixed by Ψ[φ] according to (4.20)

is

ωΨ =
∑
a

(−1)|a| (d+1)

∫
T [1]Σd

ddẑ1 δ

�
δΨ

δφa(ẑ1)
δφa(ẑ1)

= (−1)d+1
∑
a,b

(−1)|b| (|a|+1)+|a| d
∫
T [1]Σd

ddẑ1

∫
T [1]Σd

ddẑ2

×
�
δ2Ψ

δφb(ẑ2) δφa(ẑ1)
δφb(ẑ2) δφa(ẑ1) .

(4.22)
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Interchanging variables and indices yields sign changes which are given by

�
δ2Ψ

δφb(ẑ2) δφa(ẑ1)
= (−1)(|a|+d) (|b|+d)

�
δ2Ψ

δφa(ẑ1) δφb(ẑ2)
,

δφb(ẑ2) δφa(ẑ1) = (−1)(|a|+1) (|b|+1) δφa(ẑ1) δφb(ẑ2) ,∫
T [1]Σd

ddẑ1

∫
T [1]Σd

ddẑ2 = (−1)d
∫
T [1]Σd

ddẑ2

∫
T [1]Σd

ddẑ1 .

(4.23)

This shows that the gauge fixed BV symplectic form is a product of a symmetric

and an antisymmetric expression, and hence ωΨ = 0. Thus gauge fixing with a

fermion in the sense of (4.20) means that one chooses a Lagrangian submanifold L
of the space of all fields M, i.e. a subspace L ⊂M on which the symplectic form

ω vanishes and which has half the dimension of M. In the following we use this

prescription generally: A choice of gauge in BV quantization is equivalent to a choice

of a Lagrangian submanifold L in M. The Batalin-Vilkovisky theorem [71] ensures

that the path integral over L is independent of the choice of representative for the

homology class of the Lagrangian submanifold L. By the localization theorem, the

path integral localizes over the fixed point locus of the BV–BRST charge Q in the

Lagrangian subspace L. From a physical point of view, the Lagrangian submanifold

intersects the gauge orbits orthogonally, i.e. the action of the BV–BRST charge

(S, · )BV vanishes on Lagrangian submanifolds, as the BV bracket acts as zero there.

Thus the BV gauge symmetry is completely fixed on Lagrangian submanifolds.2

Let us now reformulate these observations in terms of the expansion coefficients of

superfields. An arbitrary superfield φa can be expanded in terms of the degree 1 fiber

coordinates θµ of W = T [1]Σd in the form

φa(ẑ) = φ(0) a(σ) + φ(1) a
µ1

(σ) θµ1 +
1

2
φ(2) a
µ1µ2

(σ) θµ1 θµ2 + · · · + 1

d!
φ(d) a
µ1···µd(σ) θµ1 · · · θµd ,

(4.24)

where φ(p) a are the degree |a| − p coefficients of φa which can be identified with p-

forms on Σd. The BV symplectic form can be written as an integral over the original

worldvolume Σd as

ω =
d∑
p=0

∫
Σd

δφ(p) +
a ∧ δφ(p) a

=
d∑
p=0

1

p!

∫
Σd

ddσ
∑
a

(−1)|a|+p δφ̃ (p) +;µ1···µp
a (σ) δφ(p) a

µ1···µp(σ) ,

(4.25)

2We have not studied the Gribov problem in this context.
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where φ̃
(p) +
a is the dual antifield of φ(p) a defined by

φ̃
(p) +;µd−p+1···µd
a = (−1)d (d+1+|a|+p)+|a| (p+1)+p 1

(d− p)!
εµ1···µd

(
φ+
a

)(d−p)
µ1···µd−p

. (4.26)

Here εµ1...µd is the Levi-Civita tensor density on Σd, and
(
φ+
a

)(d−p)
are the expansion

coefficients of the superfield φ+
a . The BV symplectic form with this sign convention

gives the canonical Poisson bracket relations{
φ(p) a
µ1···µp , φ̃

(p′ ) +; ν1···νp′
b

}
= δpp

′
δab δµ1···µp

ν1...νp′ . (4.27)

Gauge fixing with a fermion Ψ[φ] then takes the more familiar form

φ̃ (p) +
a =

�
δΨ

δφ(p) a
, (4.28)

and it gives a vanishing symplectic structure ωΨ = 0, whence the fermion Ψ generates

a Lagrangian submanifold in the terms of the expansion coefficients as well. In order

to apply our reduction techniques later, we have introduced the gauge fixing procedure

of BV quantized superfields in this detailed context, since we have not found it in the

literature.

1.3 Dimensional reduction by gauge fixing

In the following we introduce a particular gauge fixing as a novel dimensional re-

duction technique which reduces a given AKSZ theory on the superworldvolume

W = T [1]Σd to an AKSZ theory on its boundary ∂W = T [1]∂Σd. We consider

the case when the fields (but not the antifields) occur in even number and can be

paired: a superfield φa(ẑ) with ghost degree |a| is paired with another superfield χa(ẑ)

with ghost degree d− 2− |a|, and vice versa. The BV symplectic form is written in

the canonical form

ω =

∫
T [1]Σd

ddẑ
(
(−1)d+|a| δφ+

a (ẑ) δφa(ẑ) + (−1)|a| δχa+(ẑ) δχa(ẑ)
)
, (4.29)

where we chose a convenient ordering of antifields φ+
a ,χ

a+ and fields φa,χa in this

way. The ghost degrees of the antifields φ+
a and χa+ are d − 1 − |a| and |a| + 1

respectively.
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We choose a submanifold as gauge fixing on the space of superfields M. It is given

by the constraints3

φ+
a = Dχa and χa+ = (−1)|a| (d+1)+1Dφa , (4.30)

which reduces the BV symplectic form to

ωgf =

∮
T [1]∂Σd

dd−1ẑ (−1)d+|a|+1 δχa(ẑ) δφa(ẑ) . (4.31)

In the following we refer to this gauge as the exact gauge. If the worldvolume has no

boundaries or the boundary conditions give ωgf = 0, the submanifold is a Lagrangian

submanifold as well, and hence it gives a full gauge fixing. Otherwise the submanifold

is not Lagrangian, and therefore it only gives a full gauge fixing in the bulk W \ ∂W
but not on the boundary ∂W .

If the Liouville potential is chosen as

ϑ =

∫
T [1]Σd

ddẑ
(
(−1)d+|a|φ+

a (ẑ) δφa(ẑ) + (−1)(d+1) |a|χa(ẑ) δχa+(ẑ)
)
, (4.32)

then the kinetic part of the AKSZ action is given by

S0 = −ιQ0
ϑ =

∫
T [1]Σd

ddẑ
(
(−1)d+|a|+1φ+

a (ẑ)Dφa(ẑ)

+ (−1)(d+1) |a|+1χa(ẑ)Dχa+(ẑ)
)
.

(4.33)

We have not specified any boundary conditions yet. They are needed in order to

derive consistent equations of motion. The variation of the action S0 gives

δS0 =

∫
T [1]Σd

ddẑ
(
(−1)d+|a|+1 δφ+

a (ẑ)Dφa(ẑ) + (−1)d+|a|+1φ+
a (ẑ)Dδφa(ẑ)

+ (−1)(d+1) |a|+1χa(ẑ)Dδχa+(ẑ) + (−1)(d+1) |a|+1χa(ẑ)Dδχa+(ẑ)
)
.

(4.34)

The equations of motion for φa and χa are obtained via integration by parts. The

boundary terms of the variation

δS0

∣∣
T [1]∂Σd

=

∮
T [1]∂Σd

dd−1ẑ
(
φ+
a (ẑ) δφa(ẑ) − (−1)d (|a|+1)χa(ẑ) δχa+(ẑ)

)
(4.35)

must vanish on their own. The straightforward boundary conditions φ+
a |T [1]∂Σd = 0,

χa+|T [1]∂Σd = 0 and δφa|T [1]∂Σd = 0, δχa|T [1]∂Σd = 0 result in a vanishing reduced

3It is important to note that the fields and antifields in this gauge are assigned in the bulk
W \ ∂W.
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kinetic action on the boundary, so they are not suitable for us. On the other hand,

the boundary variation term δS0

∣∣
T [1]∂Σd

in the partial exact gauge fixing reduces

to

δS0,gf

∣∣
T [1]∂Σd

=

∮
T [1]∂Σd

dd−1ẑ
(
Dχa(ẑ) δφa(ẑ) + (−1)d+|a|φa(ẑ)Dδχa(ẑ)

)
=

∮
T [1]∂Σd

dd−1ẑ D
(
χa(ẑ) δφa(ẑ)

)
= 0 .

(4.36)

As we see, the exact gauge is consistent with the necessary boundary conditions,

which means the equations of motion are well-defined in this gauge, and the master

equation also holds because the interaction term reduces to the boundary as well.

This is not true without the exact gauge or suitable boundary conditions. Hence the

exact gauge fixing appears here as a boundary condition.

The gauge fixed kinetic action

S0,gf =

∮
T [1]∂Σd

dd−1ẑ (−1)d+|a|+1χa(ẑ)Dφa(ẑ) (4.37)

can be derived from the Liouville potential

ϑb =

∮
T [1]∂Σd

dd−1ẑ (−1)d+|a|+1χa(ẑ) δφa(ẑ) , (4.38)

with ωgf = δϑb, but with the opposite sign:

S0,gf = ιQ0,b
ϑb , (4.39)

where Q0,b is the cohomological vector field on T [1]∂Σd. The interaction term enters

into the picture in a simpler way. Let us assume that the Hamiltonian functional γ =∫
T [1]Σd

ddẑ ev∗(γ), which satisfies the equation ιQγω = δγ, reduces to the boundary

in the exact gauge as

γgf = −
∫
T [1]Σd

ddẑ D ev∗(β) = −
∮

T[1]∂Σd

dd−1ẑ ev∗(β) =: −β (4.40)

for a function β on the target graded manifold M with degree d − 1. Then the full

action (4.10) reduces in the exact gauge to

Sgf = ιQ0,b
ϑb − β , (4.41)

which satisfies the BV master equation, and thus gives an AKSZ action on the bound-

ary.
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1.4 Dimensional reduction by effective actions

In the thesis we shall also apply another dimensional reduction method, called ‘Losev’s

trick’ [72], which is not specific to boundary reductions. We briefly recall the technique

following [73], see also [74] where a similar technique is employed.

The symplectic structure ω on the target supermanifoldM induces a natural second

order differential operator ∆, which in local coordinates is given by

∆ =
1

2
ω ı̂̂

�
∂

∂X̂ ı̂

�
∂

∂X̂ ̂
, (4.42)

where ω ı̂̂ is the inverse of ωı̂̂. This pulls back to give the BV Laplacian ∆ for

the BV bracket ( · , · )BV on the space of AKSZ fields M. The AKSZ action S
satisfies the BV quantum master equation ∆ e −S/~ = 0 on M, which is equivalent

to 1
2

(S,S)BV = ~∆S. This ensures independence of the BRST-invariant quantum

field theory on the choice of gauge fixing, provided we define the path integral by

equiping M with a measure µ which is compatible with ω [71].

Borrowing standard terminology from renormalization of quantum field theory, let us

now assume that the space of AKSZ fields can be decomposed into a direct product

M = MUV ×MIR of ultraviolet (UV) and infrared (IR) degrees of freedom, with

a compatible decomposition of the canonical symplectic form ω = ωUV + ωIR. Then

the BV Laplacian also decomposes as ∆ = ∆UV + ∆IR. One now ‘integrates out’ the

ultraviolet degrees of freedom to get an effective action. The integration requires a

gauge fixing on the ultraviolet sector MUV of the space of superfields, which means

a choice of a Lagrangian submanifold L ⊂MUV. Then the effective BV action Seff

in the infrared sector is defined as

e −Seff/~ :=

∫
L

√
µL e −S/~ , (4.43)

where
√
µL is the measure on L induced by µ. Therefore the effective action satisfies

the quantum master equation ∆IR e −Seff/~ = 0. A change of gauge fixing in the

ultraviolet sector only changes e −Seff/~ by a ∆IR-exact term. Similarly, the value

of the partition function is independent of the particular choice of splitting M =

MUV ×MIR by the Batalin-Vilkovisky theorem [71].
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2 String sigma-models

In this section we describe several relevant examples of two-dimensional AKSZ sigma-

models which are related to string sigma-models and topological A- and B-models.

2.1 B-fields and the Poisson sigma-model

In dimension d = 2, the AKSZ theory with target space a degree 1 QP-manifold

describes the topological sigma-model for closed strings in an NS–NS B-field back-

ground. In the worldsheet sigma-model approach, the fundamental field is a map

X : Σ2 → M from a closed and oriented Riemann surface Σ2 to a target space M .

Denoting the local coordinates by (X i) ∈ M and (σµ) ∈ Σ2, the string field X is

described by a set of functions
(
X i(σµ)

)
on Σ2. The topological part of the bosonic

string action is

IΣ2, B =

∫
Σ2

X∗(B) =
1

2

∫
Σ2

Bij dX i ∧ dXj , (4.44)

where B = 1
2
Bij dX i ∧ dXj is the Kalb-Ramond two-form field on M . If B is non-

degenerate, it corresponds to an almost symplectic structure on M and we can write

the classically equivalent first order string sigma-model

IΣ2, π =

∫
Σ2

(
χi ∧ dX i +

1

2
πij χi ∧ χj

)
, (4.45)

where Bij is the inverse of −πij and χ = (χi) ∈ Ω1(Σ2, X
∗T ∗M) is an auxiliary one-

form. The bivector π = 1
2
πij ∂

∂Xi ∧ ∂
∂Xj on M is a Poisson bivector on-shell, which

is equivalent to a flat B-field dB = 0, so that the Kalb-Ramond field corresponds

to a symplectic structure on M . This is the action functional of the Poisson sigma-

model [75, 76].

The AKSZ formulation of the Poisson sigma-model is studied in [32]. We take W =

T [1]Σ2, andM = T ∗[1]M with degree 0 base coordinates X i on M and degree 1 fiber

coordinates χi. The canonical symplectic form on M is

ω2 = dχi ∧ dX i , (4.46)

which leads to the canonical graded Poisson bracket {χi, Xj} = δi
j on the local

coordinates of M. We choose the Liouville potential to be ϑ = χi dX
i. The most
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general form of a degree 2 Hamiltonian function γ on M is given by a (0, 2)-tensor

π = πij ∂
∂Xi ⊗ ∂

∂Xj on M as

γπ =
1

2
πij(X)χi χj . (4.47)

The corresponding cohomological vector field Qγπ on M is

Qγπ = πij χj
∂

∂X i
+

1

2

∂πij

∂Xk
χi χj

�
∂

∂χk
. (4.48)

Compatibility of Qγπ with ωπ implies π ∈ Γ(
∧2 TM) and the classical master equation

{γπ, γπ} = 0 implies that π = 1
2
πij ∂

∂Xi ∧ ∂
∂Xj must be a Poisson bivector on M , i.e.

πl[i ∂π
jk]

∂Xl = 0 or equivalently [π, π]S = 0, where [ · , · ]S denotes the Schouten bracket

on multivectors. In other words, a QP1-manifold or symplectic Lie 1-algebroid is

the same thing as a Poisson manifold (M,π), which by construction is also a Lie

algebroid on the cotangent bundle T ∗M . The Hamiltonian function determines a

derived bracket which defines a Poisson bracket on C∞(M) through

{f, g}π = π(df ∧ dg) = −{{f, γ}, g} . (4.49)

The kinetic part of the AKSZ action is inherited from the cohomological vector field

QW on W = T [1]Σ2, and is given by4

S(2)
0 =

∫
T [1]Σ2

d2ẑ χiDX
i , (4.50)

where as before the superworldsheet differential is D = θµ ∂
∂σµ

= QW . The BV

bracket has the form

( · , · )BV =

∫
T [1]Σ2

d2ẑ
δ

δX i ∧
δ

δχi
, (4.51)

where

δ

δX i ∧
δ

δχi
:=

�
δ

δX i

�
δ

δχi
−

�
δ

δχi

�
δ

δX i . (4.52)

Together these ingredients give the AKSZ action for the Poisson sigma-model as

S(2)
π =

∫
T [1]Σ2

d2ẑ
(
χiDX

i +
1

2
πij χiχj

)
, (4.53)

where f = φ∗(f) = f(φ) for a function f on M and φ ∈ M. Integrating over

the odd coordinates θµ and restricting to the degree 0 fields in (4.53) recovers the

4The upper index of a particular AKSZ action, which is locked in brackets, is used to indicate
the dimension of the worldvolume, where the AKSZ action is defined on.
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classical action (4.45), and in this sense the action (4.53) provides a BV quantization

of the original Poisson sigma-model, which yields the Cattaneo-Felder path integral

approach [77] of the Kontsevich star-product. By the fixed point theorem, the path

integral localizes onto critical points of the action S(2)
π , which are the fixed points

of the cohomological vector field Qγ that defines the Poisson cohomology H•π(M) of

M .

2.2 AKSZ formulations of the A-model

The topological A- and B-models coupled to gravity are the topological A- and B-

model string theories, which have been widely studied for more than 20 years. They

were also one of the first examples of the AKSZ construction in [31]. In the following

we review their relevant AKSZ constructions, which reduce to the A- or B-model

in a particular gauge. The reader can find details about their field-antifield choices

and gauge fixing in the indicated references, and therefore we only define their AKSZ

sigma-models.

We begin with the A-model, whose AKSZ constructions were mostly related to the

Poisson sigma-model or the B-field coupling. We found rather different constructions

related to the AKSZ membranes on G2-manifolds, which we will discuss later.

A1. The original AKSZ construction [31] is formulated in the same way as the

Poisson sigma-model in §2.1 but with zero kinetic term. Thus it has the same target

QP1-manifold with the same symplectic structure and Hamiltonian as those of the

Poisson sigma-model, where the Poisson bivector π is given by the inverse of the

Kähler form on the target Calabi-Yau manifold. The AKSZ action thus constructed

is

S(2)
A1 =

1

2

∫
T [1]Σ2

d2ẑ πij χiχj . (4.54)

A2. A complete Poisson sigma-model formulation for the A-model with kinetic term

(4.53) appeared in [78] as

S(2)
A2 = S(2)

π =

∫
T [1]Σ2

d2ẑ
(
χiDX

i +
1

2
πij χiχj

)
. (4.55)

The equation of motion for χi reduces it to the AKSZ action (4.54) up to a sign, so

they are classically equivalent.
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A3. The BV quantized topological NS–NS B-field coupling is not strictly speaking

constructed by the AKSZ formalism, but it is nevertheless worth mentioning as a BV

action which gives the A-model [79] with the same field definitions as those of the

Poisson sigma-model:

S(2)
A3 =

1

2

∫
T [1]Σ2

d2ẑ BijDX
iDXj , (4.56)

where the two-form B is the Kähler form, and the flat condition dB = 0 is equivalent

to the Poisson condition of its inverse π. It is of course not surprising that the B-field

coupling is classically equivalent to the Poisson sigma-model as well.

A4. In [79,80] an AKSZ Poisson sigma-model together with the topological B-field

coupling is used as an AKSZ formulation of the A-model with action

S(2)
A4 =

∫
T [1]Σ2

d2ẑ
(
χiDX

i +
1

2
πij χiχj +

1

4
BijDX

iDXj
)
, (4.57)

where Bij is the inverse of πij. The last term has no effect in the BV bracket since

dB = 0.

Zucchini model. The BV sigma-model of [79] is not strictly speaking given by an

AKSZ construction, since it involves BV quantized kinetic terms which do not arise

from a Louville potential of the BV symplectic form. It has the same field content

and BV symplectic form as those of the Poisson sigma-model, and the BV action is

given by

S(2)
Z =

∫
T [1]Σ2

d2ẑ
(
χiDX

i +
1

2
πij χiχj +

1

2
ωijDX

iDXj + J ij χiDX
j
)
,

(4.58)

where π is a bivector and ω is a two-form, and together with the tensor (1, 1)-tensor

J they satisfy the identities

J ik J
k
j + πik ωkj + δij = 0 ,

J ik π
kj + J jk π

ki = 0 ,

ωik J
k
j + ωjk J

k
i = 0 .

(4.59)

The master equation imposes further constraints

π[i|l ∂lπ
jk] = 0 ,

J li ∂lπ
jk + 2πjl ∂[iJ

k
l] + πkl ∂lJ

j
i − J j l ∂iπ

lk = 0 ,

2 J l[i| ∂lJ
k
|j] − 2 Jkl ∂[iJ

l
j] + 3πkl ∂[lωij] = 0 ,

J li ∂[lωjk] + J lj ∂[lωki] + J lk ∂[lωij] − ∂[i

(
ωj|l J

l
|k]

)
= 0 ,

(4.60)
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where ∂i = ∂/∂X i, which are the same identities as the integrability condition of a

generalized complex structure J in the form

JIJ =

(
J ij πij

ωij −J j i

)
, (4.61)

where the doubled indices I, J have been introduced. The Zucchini model reduces to

the Poisson sigma-model upon setting J = 0 and ω = 0, which is the A-model. If in

addition ω is non-zero it adds a B-field coupling, which is just another copy of the

A-model. These two cases are those that appear in (1.6) and (1.7) as the ordinary

complex and symplectic structures embedded in generalized complex structure.

2.3 AKSZ formulations of the B-model

AKSZ constructions for the topological B-model are more diverse and have different

superfield contents. We do not enumerate all of them here, nor the original construc-

tion from [31], since they are similar to the ones described below.

B1. The base degree 0 manifold of the target QP-manifold, which is a Calabi-Yau

threefold M , is equiped with a complex structure which splits the local coordinate

indices to i = (a, a), where a = 1, 2, 3. The target QP-manifold M is defined by its

coordinates: Xa, Xa, X̃a have degree 0, and χa, χa, χ̃
a have degree 1. The symplectic

form on M is

ωB1 = dXa ∧ dχa + dXa ∧ dχa + dX̃a ∧ dχ̃ a . (4.62)

The B-model is constructed in [81] by the AKSZ action

S ′ (2)
B1 =

∫
T [1]Σ2

d2ẑ
(
χaDX

a + χaDX
a + X̃aDχ̃

a + χa χ̃
a
)
. (4.63)

We can enlarge its field content with the addition of new coordinates χ̃ a and X̃a

whose contribution to the symplectic structure is defined by the term

dX̃a ∧ dχ̃ a , (4.64)

and furthermore we also add the term X̃aDχ̃
a + χa χ̃

a to the AKSZ action (4.63)

which can be set to zero with gauge fixing χ̃a = 0. Introducing the new fields leads

to an extended AKSZ action for the B-model given by

S(2)
B1 =

∫
T [1]Σ2

d2ẑ
(
χiDX

i + X̃ iDχ̃
i + χi χ̃

i
)
. (4.65)
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B2. The AKSZ construction of the B-model with an explicit complex structure J

was studied in [74], see also [29]. It has the same field content as the first construction

of the B-model: X i, X̃i are degree 0 coordinates and χi, ζ
i are degree 1 coordinates.

The symplectic structure only differs in a sign from the first construction:

ωB2 = dX i ∧ dχi − dX̃i ∧ dχ̃ i . (4.66)

The AKSZ action is given by

S(2)
B2 =

∫
T [1]Σ2

d2ẑ
(
χiDX

i − X̃ iDχ̃
i + J ij χi χ̃

j
)
, (4.67)

where J ij is a constant complex structure on the target manifold. The first construc-

tion is just a special case of this: If we take J ij = i δij, and rescale the fields X̃ i and

χ̃i by i , then the action (4.67) reduces to S(2)
B1 .

The case of non-constant complex structure J was also studied in [74], and an AKSZ

sigma-model was proposed, of which the master equation gives the integrability con-

dition

J l[i| ∂lJ
k
|j] − Jkl ∂[iJ

l
j] = 0 , (4.68)

and the condition

J ik J
k
j = − δij (4.69)

is added by hand. The field content is the same as that of the constant case, and the

action constructed by the AKSZ formalism is given by

S(2)
J =

∫
T [1]Σ2

d2ẑ
(
χiDX

i − X̃ iDχ̃
i + J ij χi χ̃

j + ∂jJ
i
k X̃ i χ̃

j χ̃k
)
. (4.70)

3 Courant sigma-models

The next dimension d = 3 is particularly relevant to extending the Poisson sigma-

model to closed string backgrounds with non-zero NS–NS three-form flux H = dB, or

to M-theory backgrounds with three-form C-field. In this setting the closed strings

are replaced with membranes described by maps X = (X i) from a closed three-

dimensional worldvolume Σ3 to the target space M . The topological part of the

bosonic membrane action is the Wess-Zumino coupling

IΣ3,H =

∫
Σ3

X∗(H) =
1

3!

∫
Σ3

Hijk dX i ∧ dXj ∧ dXk . (4.71)

77



This action is classically equivalent to the first order membrane sigma-model ac-

tion

I ′Σ3,H
=

∫
Σ3

(
Fi ∧

(
dX i − ψi

)
− χi ∧ dψi +

1

3!
Hijk ψ

i ∧ ψj ∧ ψk
)
, (4.72)

where ψ = (ψi) ∈ Ω1(Σ3, X
∗TM) and χ = (χi) ∈ Ω1(Σ3, X

∗T ∗M) are one-forms,

while F = (Fi) ∈ Ω2(Σ3, X
∗T ∗M) is an auxiliary two-form. The corresponding

AKSZ sigma-model is defined on worldvolume superfields with target space a QP-

manifold of degree 2, which corresponds to the standard Courant algebroid. This is

true for general, an AKSZ sigma-model with source dg-manifold W = T [1]Σ3 and

target space a QP-manifold of degree 2, corresponds to a Courant algebroid [24], and

vice versa.

In this section we review the Courant algebroid and the corresponding three-dimen-

sional Courant sigma-model. We describe its specific examples which are relevant for

us: the standard and the contravariant Courant sigma-models. We also study their

boundary reductions in the exact gauge.

3.1 Courant algebroids

A Courant algebroid on a manifold M is a vector bundle E over M equiped with a

symmetric non-degenerate bilinear form 〈 · , · 〉 on its fibers, an anchor map ρ : E →
TM , and a binary bracket of sections [ · , · ]D, called the Dorfman bracket, which

together satisfy

[e1, [e2, e3]D]D = [[e1, e2]D, e3]D + [e2, [e1, e3]D]D ,

ρ(e1)〈e2, e3〉 = 〈[e1, e2]D, e3〉 + 〈e2, [e1, e3]D〉 ,

ρ(e1)〈e2, e3〉 = 〈e1, [e2, e3]D + [e3, e2]D〉 ,

(4.73)

where e1, e2, e3 are sections of E.

Let us now review the correspondence between Courant algebroids and QP-manifolds

of degree 2, following [29, 82] for the most part. We choose local Darboux coordi-

nates on the QP-manifold M (X i, ζa, Fi) with degrees (0, 1, 2) in which the graded

symplectic structure is given as

ω = dFi ∧ dX i +
1

2
kab dζa ∧ dζb . (4.74)

Here we have introduced a constant metric kab on the degree 1 subspace, which is a

local coordinate expression of the symmetric pairing in the corresponding Courant
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algebroid. The graded Poisson brackets of the coordinates are canonical in the sense

that

{X i, Fj} = δij and {ζa, ζb} = kab , (4.75)

where kab is the inverse of kab.

The most general form of the degree 3 Hamiltonian function γ is given by

γρ,T = ρia(X)Fi ζ
a +

1

3!
Tabc(X) ζa ζb ζc , (4.76)

where the functions ρia and Tabc on M give the local forms of the anchor map and

fluxes, respectively. The three operations on the Courant algebroid are given by

taking derived brackets defined by γρ,T and the graded Poisson bracket through

[e1, e2]D = {{e1, γρ,T}, e2} , 〈e1, e2〉 = {e1, e2} and ρ(e) = {e, {γρ,T , · }} .
(4.77)

These operations are defined on degree 1 functions e with local expression e =

fa(X) ζa, where fa is a degree 0 function on the body M = M0 of M, which

are identified as local sections of a vector bundle E over M . They satisfy the

Courant algebroid axioms in (4.73) as a consequence of the classical master equa-

tion {γρ,T , γρ,T} = 0.

Conversely, given a Courant algebroid on a vector bundle E over M , we define the

target QP-manifold M of degree 2 to be the symplectic submanifold of T ∗[2]E[1]

corresponding to the isometric embedding E ↪→ E ⊕E∗ with respect to the Courant

algebroid pairing and the canonical dual pairing. Then X i are local coordinates on

M , Fi are local fiber coordinates of the shifted cotangent bundle T ∗[2]M , and ζa

are local fiber coordinates of the shifted vector bundle E[1]. In other words, a QP-

manifold of degree 2 or a symplectic Lie 2-algebroid is the same thing as a Courant

algebroid.

In the thesis we shall only work with Courant algebroids on the generalized tangent

bundle

E = TM ⊕ T ∗M . (4.78)

The corresponding QP-manifold of degree 2 is then simply M = T ∗[2]T [1]M . The

local degree 1 coordinates are dual pairs5 ζI = (ψi, χi) and the symplectic form

is

ω3 = dFi ∧ dX i + dχi ∧ dψi . (4.79)

5We use capital indices I, J, . . . = 1, . . . 2d for the generalized tangent bundle, where d is the
dimension of M .
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For the Liouville potential we choose ϑ = Fi dX
i − χi dψ

i. Its zero locus is L3 =

{Fi = 0, ψi = 0}. In the Hamiltonian function given by (4.76), the three-form TIJK

encodes the allowed geometric and non-geometric supergravity fluxes for given ρiI .

The local sections of the generalized tangent bundle are identified symbolically as the

degree 1 functions with

Ai χi + αi ψ
i ←→ Ai

∂

∂X i
+ αi dX

i . (4.80)

Standard Courant algebroid

The simplest Hamiltonian function with ρiI = δiI and TIJK = 0 is given by

γ0 = Fi ψ
i . (4.81)

Its derived brackets on degree 1 functions (4.80) gives the standard Courant algebroid

on the generalized tangent bundle E = TM ⊕ T ∗M , which features in generalized

geometry [7,8]. It is an extension of the Lie algebroid of tangent vectors by cotangent

vectors with the three operations

〈A+ α,B + β〉 = ιAβ + ιBα ,

ρ(A+ α) = A ,

[A+ α,B + β]D,0 = [A,B] + LAβ − ιB dα ,

(4.82)

where the sections of E = TM ⊕ T ∗M are composed of vector fields A,B and one-

forms α, β. The antisymmetrization of the standard Dorfman bracket in (4.82) given

by

[A+ α,B + β]C = [A,B] + LAβ − LBα−
1

2
d(ιAβ − ιBα) , (4.83)

is called the Courant bracket, and is has already been introduced previously in (1.2).

It is the natural bracket in generalized geometry which is compatible with the com-

mutator algebra of generalized Lie derivatives [7, 8].

Only the simplest case of pure NS–NS flux TIJK = Hijk is consistent with the choice

of anchor map ρiI = δiI of the standard Courant algebroid, which is necessarily closed

by the classical master equation. Given a Kalb-Ramond two-form field B on M , with

H = dB, canonical transformation of the Hamiltonian function (4.81) by the degree 2

function B = 1
2
Bij(X)ψi ψj on M yields the twisted Hamiltonian function

γH := e δBγ0 = Fi ψ
i +

1

3!
Hijk ψ

i ψj ψk . (4.84)
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The NS–NS H-flux thus appears as a twisting of the standard Courant algebroid,

which gives rise to a deformation of the Dorfman bracket through an extra term

as

[A+ α,B + β]D,H = [A,B] + LAβ − ιB dα + ιAιBH . (4.85)

Poisson Courant algebroid

Consider the Hamiltonian defined through a bivector π and a three-vector R on M

by setting ρiI = πij, TIJK = (∂iπ
jk, Rijk) to give

γπ,R = πij Fi χj −
1

2
∂iπ

jk ψi χj χk +
1

3!
Rijk(X)χi χj χk . (4.86)

The master equation {γπ,R, γπ,R} = 0 gives the constraints

[π, π]S = 0 and [π,R]S = 0 . (4.87)

Note that the R-flux also enters here as a twist: The Hamiltonian (4.86) can be

regarded as a canonical transformation γπ,R = e δβγπ,0 by a degree 2 function β =
1
2
βij(X)χi χj with R = dββ where dβ = [β, · ]S, regarded as a bivector β on M which

is T-dual to the B-field of the H-flux frame. The corresponding Courant algebroid

is the Poisson Courant algebroid [83], for which the identities are equivalent to the

Poisson condition for π if R = 0: The Poisson Courant algebroid is the Courant

algebroid on the generalized tangent bundle E = TM⊕T ∗M over a Poisson manifold

(M,π) with the operations

〈A+ α,B + β〉 = ιAβ + ιBα ,

ρ(A+ α) = ιαπ ,

[A+ α,B + β]D;π,R = [α, β]π + LπαY − ιβ dπX − ιαιβR ,

(4.88)

where Lπα = ια dπ+dπ ια and [ · , · ]π is the Koszul bracket on one-forms given by

[α, β]π = Lιαπβ − Lιβπα − d
(
π(α ∧ β)

)
. (4.89)

3.2 Standard Courant sigma-model

It is evident from the general construction that Courant algebroids are uniquely en-

coded (up to isomorphism) in the corresponding AKSZ topological membrane theo-

ries, which are called Courant sigma-models [27]. In the particular example of the

81



standard Courant algebroid on E = TM⊕T ∗M twisted by a closed NS–NS three-form

flux H, the mapping space M of superfields supports the canonical BV symplectic

structure

ω3 =

∫
T [1]Σ3

d3ẑ
(
δX i δF i + δψi δχi

)
, (4.90)

where the ghost number 2 superfields F i and ghost number 0 superfields X i, as well

as the conjugate pairs of ghost number 1 superfields χi and ψi, contain each other’s

antifields respectively. The AKSZ construction leads to the action

S(3)
H =

∫
T [1]Σ3

d3ẑ
(
F iDX

i − χiDψi + F iψ
i +

1

3!
H ijkψ

iψj ψk
)
, (4.91)

which solves the classical master equation
(
S(3)
H ,S(3)

H

)
BV

= 0. Integrating over θµ and

restricting to degree 0 fields in (4.91) yields the first order membrane sigma-model

action (4.72).

The standard Courant sigma-model on an open worldvolume is well-defined if, as

usual, one specifies its boundary conditions. Instead we consider it in exact gauge as

an illustration. The exact gauge defined in §1.3 reads here as

F i = Dχi and ψi = −DX i . (4.92)

It gives the gauge fixed BV symplectic structure

ω3,gf =

∮
T [1]∂Σ3

d2ẑ δX i δχi , (4.93)

and reduces the AKSZ action (4.91) without H-flux to zero. With H-flux, the AKSZ

action leads to a pure Wess-Zumino coupling

S(3)
H,gf = − 1

3!

∫
T [1]Σ3

d3ẑ H ijkDX
iDXjDXk (4.94)

which is no longer an AKSZ action, as there are no BV gauge degrees of freedom in

the bulk. This is reminescent of the fact that the equation of motion for F i also gives

the same action (4.94) up to a sign. If Hijk = ∂[iBjk] is exact, then we obtain the

boundary AKSZ action

− 1

2

∮
T [1]∂Σ3

d2ẑ BijDX
iDXj , (4.95)

which is the quantization of the NS–NS B-field coupling. Hence the exact gauge is

nicely applicable for boundary reductions of topological membranes describing flux

deformations of string sigma-models.
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Our observation is that the standard Courant sigma-model is related to the B-model

on its boundary via the exact gauge. We will unfold this later in the thesis, but now

we only present the observation as a motivation to study Courant sigma-models in

the context of A- and B-models.

Although we have found that the standard Courant sigma-model has a trivial bound-

ary reduction in the exact gauge, we can obtain a non-trivial boundary theory if we

extend its field content and then set the extra fields to zero with gauge fixing.

The standard Courant sigma-model without H-flux is given by the Hamiltonian γ0

in (4.81) and the symplectic form ω3 in (4.79). The AKSZ action is

S(3)
0 =

∫
T [1]Σ3

d3ẑ
(
F iDX

i − χiDψi + F iψ
i
)
. (4.96)

We double its fields with the introduction of degree 0 coordinates X̃i, degree 1 coor-

dinates χ̃ i, ψ̃i and degree 2 coordinates F̃ i on the target QP2-manifold. The extra

term in the symplectic structure is

dX̃i ∧ dF̃ i + dχ̃ i ∧ dψ̃i , (4.97)

which together with the extended Hamiltonian

γ0 + γ̃0 = Fi ψ
i − ψ̃i F̃

i (4.98)

defines the AKSZ action

S̃
(3)

0 =

∫
T [1]Σ3

d3ẑ
(
F iDX

i − χiDψi + F iψ
i − ψ̃i F̃

i
)
, (4.99)

where we did not introduce all the possible kinetic terms. This extended standard

Courant sigma-model is comparable to the membrane sigma-model in [74], which

was introduced in order to uplift the AKSZ construction of the B-model in (4.67) to

an AKSZ membrane theory with generalized complex structure. Our construction

arrives at a different B-model construction and uses less fields, but does not include

the generalized complex structure.

The last term in (4.99) decouples from the original standard Courant sigma-model.

To see this we can choose a different gauge than that we will choose for the boundary

reduction, but we use the same field-antifield decomposition. For example, if we set

F̃ i = 0 and χ̃i = 0 as a partial gauge fixing, we can trivially integrate out the fields

X̃ i and ψ̃i, which gives the action of the standard Courant sigma-model in (4.96).

83



Alternatively, we can arrive at the same conclusion if we rescale the fields by a real

parameter λ in a way which leaves the symplectic structure invariant:

χ̃i −→ λ χ̃i and ψ̃i −→
1

λ
ψ̃i , (4.100)

which is a duality transformation given by a symplectomorphism at the BV level.

Then we take the λ → ∞ limit: the term ψ̃i F̃
i in the action tends to zero and we

get the standard Courant sigma-model in this way as well. Later on we will employ

a similar rescaling technique to propose topological S-duality of A- and B-models in

the level of their AKSZ formulations.

Now we reduce the extended standard Courant sigma-model to its boundary with

the previously defined exact gauge from §1.3. In this case it means the specific gauge

choice

χ̃i = −DX i , F i = Dψ̃i , χi = −DX̃ i and F̃ i = Dψi .

(4.101)

The BV symplectic form becomes∮
T [1]∂Σ3

d2ẑ
(
δX i δψ̃i + δX̃ i δχ̃

i
)
, (4.102)

which is the same BV symplectic form induced by (4.62) and (4.64) with the rela-

belling ψ̃i → χi. Our gauge fixing also reduces the AKSZ action in (4.99) to the

boundary action

S̃
(3)

0,gf =

∮
T [1]∂Σ3

d2ẑ
(
ψ̃iDX

i + X̃ iDχ̃
i + ψ̃i χ̃

i
)

= S(2)
B1 , (4.103)

which is the same action as that of the B-model in (4.65) with the same relabelling

ψ̃i → χi as before.

3.3 Contravariant Courant sigma-model

The contravariant Courant sigma-model was introduced in [84] as the Courant sigma-

model corresponding to a Poisson Courant algebroid. It is defined by the AKSZ

action

S(3)
π,R =

∫
T [1]Σ3

d3ẑ
(
F iDX

i − χiDψi + πij F iχj

− 1

2
∂iπ

jkψiχj χk +
1

3!
Rijk χiχj χk

)
.

(4.104)
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In the absence of R-flux the master equation gives the Poisson condition for the bivec-

tor π, so we can expect that the contravariant Courant sigma-model is closely related

to the Poisson sigma-model. This relation turns out to be the exact gauge boundary

reduction. We use the same gauge fixing as we used for the standard Courant sigma-

model in (4.92) which gives the boundary BV symplectic form (4.93). The resulting

boundary AKSZ action is that of the Poisson sigma-model in (4.53):

S(3)
π,0;gf =

∮
T [1]∂Σ3

d2ẑ
(
χiDX

i +
1

2
πij χiχj

)
= S(2)

π . (4.105)

We also found that, in the degenerate limit, where the anchor of the contravariant

Courant sigma-model is set to zero, and in the exact gauge, it coincides precisely with

the membrane sigma-model of [11] which quantizes the nonassociative phase space

and geometry of the R-flux background [20, 85, 86]. This clarifies more precisely the

geometrical meaning of the model of [11] in terms of a Courant algebroid structure.

An alternative geometric description as a certain reduction of the standard Courant

sigma-model for the target space of double field theory is discussed in [93], which we

study in §4. A vanishing anchor map ρ with non-zero R-flux means that the bivector

field π is identically zero, and the Dorfman bracket is given solely by the three-vector

R in the simple form

[X + α, Y + β]D;0,R = − ιαιβR , (4.106)

so that the tangent bundle TM decouples completely from this structure.

We choose the exact gauge (4.92). In this case our gauge choice is not compatible

with boundary conditions, because the BV master equation forces the flux term to

be zero on the boundary, which means χi = 0 on T [1]∂Σ3 if R 6= 0. This can be

circumvented by adding a non-topological boundary term to the action as in [11]. We

introduce this as a strictly classical term after the full gauge fixing, and for brevity

avoid here issues concerning its quantization. Hence the AKSZ action (4.104) with

π = 0 reduces to

S(3)
0,R;gf =

∮
T [1]∂Σ3

d2ẑ χiDX
i +

1

3!

∫
T [1]Σ3

d3ẑ Rijk χiχj χk . (4.107)

There is still a gauge degree of freedom on the boundary fields remaining, therefore

we choose χ
(0)
i = χ

(2)
i = X i (1) = 0. The bulk fields are not antifields in the BV sense,

so we cannot set any of them to zero. Instead we eliminate the non-zero parts in
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the bulk by their equations of motion. The gauge fixed action for constant R in the

superfield expansion (4.24) is

S(3)
0,R;gf =

∮
∂Σ3

d2σ χi ∧ dX i +
1

3!

∫
Σ3

d3σ
(
Rijk χi ∧ χj ∧ χk − Rijk fi χj ∧ φk

+ Rijk fi fj Ck
)

(4.108)

where χ
(1)
i = χi is a degree 0 one-form, χ

(0)
i = fi is a degree 1 function, χ

(2)
i = φi

is a degree −1 two-form and χ
(3)
i = Ci is a degree −2 three-form. Both fi and φi

vanish on the boundary, due to the boundary gauge fixing. The equations of motion

of the three non-zero degree fields sets the last two bulk terms to zero, and they are

consistent with each other. Now we introduce a boundary term given by the inverse

of a target space metric gij since we need χi to be non-zero on the boundary. Finally

we arrive at the action containing only degree 0 fields:

S(3)
0,R;gf =

∮
∂Σ3

d2σ χi ∧ dX i +
1

3!

∫
Σ3

d3σ Rijk χi ∧ χj ∧ χk +

∮
∂Σ3

d2σ gij χi ∧ ∗χj ,

(4.109)

where ∗ is the Hodge duality operator corresponding to a chosen metric on the mem-

brane worldvolume Σ3. This is precisely the string sigma-model derived in [11] which

quantizes the non-geometric R-flux background.

4 DFT membrane sigma-models

The algebroid structure of double field theory was studied in [82, 88–94]; in particu-

lar, the notion of DFT algebroid was introduced in [93] whose derived bracket is the

C-bracket of double field theory, and whose corresponding membrane sigma-model

naturally captures the T-duality orbit of geometric and non-geometric flux back-

grounds in a single unified description. DFT algebroids correspond to topological

membrane sigma-models, which can be obtained by reducing (or projecting) larger

AKSZ sigma-models. In this section we describe the construction of DFT membrane

sigma-model in AKSZ theory, which we shall apply later.

4.1 DFT algebroids

The definition of DFT algebroid starts with the large Courant algebroid which is a

straightforward doubled version of a general Courant algebroid. We formulate the def-

inition from the graded symplectic geometry viewpoint, since this is explicitly relevant
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in AKSZ constructions. For simplicity we consider the case when the large Courant

algebroid is a Courant algebroid corresponding to the QP2-manifold T ∗[2]T [1]T ∗M ,

where the doubling of the original base manifold M appears as the total space of the

cotangent bundle T ∗M . We use the doubled index I = 1, . . . , 2d to label coordinates

on the base space T ∗M , which can be split into the first d indices I = 1, . . . , d, which

are the original indices labelling coordinates on M , and the second d dual indices

I = d + 1, . . . , 2d labelling the covectors of T ∗M ; both sets of indices are labeled by

i = 1, . . . , d.

The symplectic form coming from (4.79) is

ωDFT = dXI ∧ dFI + dχI ∧ dψI

= dX i ∧ dFi + dX̃ i ∧ dF̃ i + dχi ∧ dψi + dχ̃ i ∧ dψ̃i ,
(4.110)

where the splitting of a general doubled coordinate φI has been used: φI = (φi, φ̃i).

As we know from (4.80) a degree one function AI χI +αI ψ
I corresponds to a section

of T (T ∗M)⊕ T ∗(T ∗M) symbolically as

Ai χi + Ãi χ̃
i + αi ψ

i + α̃ i ψ̃i ←→ Ai
∂

∂X i
+ Ãi

∂

∂X̃ i

+ αi dX
i + α̃ i dX̃ i , (4.111)

and the derived brackets (4.77) with a given general Hamiltonian (4.76):

γDFT = ρIJ FI ψ
J + βIJ FI χJ +

1

3!
T (0)

IJK ψ
I ψJ ψK +

1

2
T (1)

IJ
K ψI ψJ χK

+
1

2
T (2)

I
JK ψI χJ χK +

1

3!
T (3) IJK χI χJ χK ,

(4.112)

define a Courant algebroid on T (T ∗M)⊕ T ∗(T ∗M).

The DFT algebroid is based on the projection to DFT vectors, which halves the

number of degree 1 coordinates. We introduce a new basis for the subspace of degree

1 fields spanned by χI and ψI given as

τ I± =
1

2

(
ψI ± ηIJ χJ

)
, (4.113)

where ηIJ is the O(d, d)-invariant constant metric defined in (1.1). The projection p+

to the subspace L+ spanned by τ I+ yields the projection to DFT vectors, which are

vectors under O(d, d). The corresponding sub-bundle of T (T ∗M)⊕ T ∗(T ∗M) is also

denoted L+.

For the symplectic structure ωDFT the projection means

dχI ∧ dψI = ηIJ dτ I+ ∧ dτJ+ − ηIJ dτ I− ∧ dτJ−
p+−−→ ηIJ dτ I+ ∧ dτJ+ . (4.114)
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The coordinates τ I+ are counted twice in the symplectic structure compared to the

original (4.110), so we halve their contribution in the symplectic structure solely:

ωDFT,+ = dXI ∧ dFI +
1

2
ηIJ dτ I+ ∧ dτJ+ . (4.115)

For the Liouville potential we take ϑDFT,+ = FI dXI − 1
2
ηIJ τ

I
+ dτJ+. To specify its

zero locus LDFT,+ as a Lagrangian submanifold, we choose a polarisation which is

defined by a projector P on L+ of rank d that is maximally isotropic with respect to

the O(d, d) metric (1.1):

P iK ηKLPjL = 0 . (4.116)

It acts on the basis τ I+ to give degree 1 coordinates

τ i = P iJ τJ+ (4.117)

which span a d-dimensional subspace of L+; then LDFT,+ := {FI = 0, τ i = 0}.
Different polarizations define different Lagrangian submanifolds which are all related

by O(d, d) transformations: Acting withO ∈ O(d, d) changes the polarization as( P
P̃

)
7−→

( P ′
P̃ ′
)

=
( P
P̃

)
O , (4.118)

where P̃ = 1− P is the complementary projector.

The Hamiltonian is projected to the subspace L+ as

γDFT,+ = (ρ+)IJ FI τ
J
+ +

1

3!
(T+)IJK τ

I
+ τ

J
+ τ

K
+ , (4.119)

where the new structure functions are defined by

(ρ+)IJ = ρIJ + βIK ηKJ , (4.120)

and

(T+)IJK = T (0)
IJK + 3T (1)

[IJ
K′ ηK]K′ + 3T (2)

[I|
J ′K′ ηJ ′|J | ηK′|K]

+ T (3) I′J ′K′ ηI′[I| ηJ ′|J | ηK′|K] .
(4.121)

The Hamiltonian γDFT,+ defined by these functions does not necessarily satisfy the

master equation, despite the fact that the original Hamiltonian γDFT of the large

Courant algebroid defined by ρIJ , βIJ , T (0)
IJK , T (1)

IJ
K , T (2)

I
JK and T (3) IJK does.

The C-bracket is defined on DFT vectors of L+, which correspond to the degree 1

functions A in the subspace spanned by eI = ηIJ τ
J
+:

A = AI eI =
1

2
AI
(
χI + ηIJ ψ

J
)
. (4.122)
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It can be obtained from derived brackets of the QP2-manifold together with the

symmetric pairing and anchor map as

JA1, A2KL+ = − 1

2

(
{{A1, γDFT,+}, A2} − {{A2, γDFT,+}, A1}

)
,

〈A1, A2〉L+ = {A1, A2} ,

ρ+(A) = {A, {γDFT,+, · }} ,

(4.123)

for DFT vectors A, A1 and A2. Since the master equation does not hold for γDFT,+,

the algebraic structure is not that of a Courant algebroid, but called a DFT algebroid

in [93]:

A DFT algebroid on T ∗M is a vector bundle L+ of rank 2d over T ∗M equiped with

a non-degenerate symmetric form 〈 · , · 〉L+ on its fibres, an anchor map ρ+ : L+ →
T (T ∗M), and a skew-symmetric bracket of sections J · , · KL+ , called the C-bracket,

which together satisfy

〈D+f,D+g〉L+ =
1

4
〈df, dg〉L+ ,

JA, f BKL+ = f JA,BKL+ +
(
ρ+(A)f

)
B − 〈A,B〉L+ D+f ,

ρ+(C)〈A,B〉L+ =
〈
JC,AKL+ + D+〈C,A〉L+ , B

〉
L+

+
〈
A , JC,BKL+ + D+〈C,B〉L+

〉
L+

,

(4.124)

for all sections A,B,C ∈ C∞(T ∗M,L+) and functions f, g ∈ C∞(T ∗M), where

D+ : C∞(T ∗M) → C∞(T ∗M,L+) is the derivative defined through 〈D+f, A〉L+ =
1
2
ρ+(A)f .

4.2 AKSZ construction of DFT membrane sigma-models

The large Courant sigma-model constructed by AKSZ theory corresponds to the large

Courant algebroid in the spirit of §3. Then we execute the projection by p+ on the

level of AKSZ fields, which means selecting a special submanifold (by projection to

DFT vectors) containing half of the ghost number 1 fields. This method is quite

natural, because fields with identical properties appear twice, and we keep only one

field of each identical pair. Note that there are infinitely many possibilities to perform

the reduction on ghost number 1 fields, but only this projection to DFT vectors gives

the right C-bracket structure of double field theory. One can think of the other

reductions as a class of duality transformations, which leads out of the realm of the

original physical double field theory.
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The AKSZ action of the large Courant sigma-model corresponding to (4.112) is de-

fined by

S(3)
DFT =

∫
T [1]Σ3

d3ẑ
(
F IDX

I − χIDψI + ρIJ F I ψ
J + βIJ F I χJ

+
1

3!
T (0)

IJK ψ
I ψJ ψK +

1

2
T (1)

IJ
K ψI ψJ χK

+
1

2
T (2)

I
JK ψI χJ χK +

1

3!
T (3) IJK χI χJ χK

)
.

(4.125)

The BV symplectic structure coming from (4.110) is given by

ωDFT =

∫
T [1]Σ3

d3ẑ
(
δXI δF I + δχI δψ

I
)

=

∫
T [1]Σ3

d3ẑ
(
δXI δF I + ηIJ δτ

I
+ δτ

J
+ − ηIJ δτ

I
− δτ

J
−
)
,

(4.126)

where we performed a duality transformation originating from (4.113):

τ I± =
1

2

(
ψI ± ηIJ χ

J
)
. (4.127)

Now we restrict the superfields to the submanifold τ I− = 0. This is not a partial

gauge fixing, since both fields and antifields are set to zero. The corresponding action

is given by

S(3)
DFT,+ =

∫
T [1]Σ3

d3ẑ
(
F IDX

I − ηIJ τ
I
+Dτ

J
+ + (ρ+)IJ F I τ

J
+

+
1

3!
(T+)IJK τ

I
+ τ

J
+ τ

K
+

)
.

(4.128)

The reason we do not define this action directly from a DFT algebroid is that the

action S(3)
DFT,+ does not satisfy the BV master equation, so it cannot be constructed

by AKSZ theory, nor does it define a BV quantized sigma-model. In order for it

to define a BV quantized theory or an AKSZ theory we have to impose additional

conditions on the structure functions (ρ+)IJ and (T+)IJK coming from the BV master

equation for the reduced action. This can be done with the section condition. We will

use this method later in the thesis to study the topological A- and B-models within

the framework of double field theory.
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5 AKSZ threebranes and Lie algebroids up to ho-

motopy

Just as it proves useful to view closed strings as modes of membranes when deforming

their target spaces by fluxes, it is likewise useful to view membranes as modes of higher

degrees of freedom, threebranes, particularly when the membranes are regarded as

the fundamental objects in M-theory with background four-form fluxes G = dC.

With notation as previously, the threebrane theory is defined on a four-dimensional

worldvolume Σ4, and the topological part of the bosonic action is

IΣ4,G =

∫
Σ4

X∗(G) =
1

4!

∫
Σ4

Gijkl dX
i ∧ dXj ∧ dXk ∧ dX l . (4.129)

This action is classically equivalent to the first order threebrane sigma-model ac-

tion

I ′Σ4,G
=

∫
Σ4

(
Fi ∧

(
ψi − dX i

)
+ χi ∧ dψi +

1

4!
Gijkl ψ

i ∧ ψj ∧ ψk ∧ ψl
)
, (4.130)

where ψ ∈ Ω1(Σ4, X
∗TM) and χ ∈ Ω2(Σ4, X

∗T ∗M), while F ∈ Ω3(Σ4, X
∗T ∗M) is

an auxiliary three-form. In dimension d = 4, the target superspace of the AKSZ

construction is a QP-manifold of degree 3, which is equivalent to a higher algebroid

structure introduced in [95] that arises from a homotopy deformation of a Lie alge-

broid. It is called a Lie algebroid up to homotopy.

5.1 Lie algebroids up to homotopy

Let E0 be a vector bundle over a manifold M . We consider a general QP-manifold

of degree 3 on M = T ∗[3]E0[1], regarded as a symplectic Lie 3-algebroid on E0 with

underlying N-manifold

M = M ←− E0[1]←− E0[1]⊕ E∗0 [2]←− T ∗[3]E0[1] . (4.131)

The local coordinates onM are denoted (X i, ψa, χa, Fi) with degrees (0, 1, 2, 3), where

X i are local coordinates on M , ψa are local fiber coordinates of the shifted vector

bundle E0[1], χa are dual fiber coordinates of T ∗[3]E0[1] → E0[1], and Fi are local

fiber coordinates of the shifted cotangent bundle T ∗[3]M . The canonical symplectic

structure is given by

ω = dFi ∧ dX i + dψa ∧ dχa . (4.132)
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The most general form of a degree 4 Hamiltonian function γk,ρ,T on M is given by a

sum

γk,ρ,T = γk + γρ + γT , (4.133)

where

γk =
1

2
kab(X)χa χb ,

γρ = ρia(X)Fi ψ
a +

1

2
fabc(X)χa ψ

b ψb ,

γT =
1

4!
Tabcd(X)ψa ψb ψc ψd ,

(4.134)

are given by functions kab, ρia, f
a
bc and Tabcd on M . A Lie algebroid up to homotopy

is defined with respect to this decomposition of the Hamiltonian function as the vector

bundle E0 over M with a symmetric pairing 〈 · , · 〉 on sections of E∗0 , an anchor map

ρ : E0 → TM , an antisymmetric bracket [ · , · ]uth on sections of E0, a de Rham-type

differential d on sections of
∧•E0, and a four-form Ω on E0. We can identify sections

e of E0 with degree 2 functions e = fa(X)χa and sections α of E∗0 with degree 1

functions α = ga(X)ψa, where fa and ga are degree 0 functions on M . Then the five

operations are defined via derived brackets as

〈α1, α2〉 = {{γk, α1}, α2} ,

ρ(e) = {{γρ, e}, · } ,

[e1, e2]uth = {{γρ, e1}, e2} ,

d = {γρ, · } ,

Ω(e1, e2, e3, e4) = {{{{γT , e1}, e2}, e3}, e4} .

(4.135)

The pairing additionally defines a symmetric bundle map d : E∗ → E by

dα = −{γk, α} . (4.136)

The classical master equation {γk,ρ,T , γk,ρ,T} = 0 implies that these operations obey

the identities

[e1, f e2]uth = f [e1, e2]uth +
(
ρ(e1)f

)
e2 for f ∈ C∞(M) ,

[[e1, e2]uth, e3]uth + cyclic = dΩ(e1, e2, e3, · ) ,

ρ ◦ d = 0 ,

ρ(e)〈α1, α2〉 = 〈Leα1, α2〉 + 〈α1,Leα2〉 with Le := {{γρ, e}, · } ,

d ◦ Ω = 0 ,
(4.137)
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and we also note that d2 6= 0 in general. In other words, a symplectic Lie 3-algebroid

is a vector bundle with operations ([ · , · ]uth, ρ, d,Ω) characterized by the algebraic

identities (4.137). A particularly interesting feature behind the algebraic structure of

a Lie algebroid up to homotopy is that its bracket can be extended to all degree 2

functions onM = T ∗[3]E0[1], which are identified as the sections of E := E0⊕
∧2E∗0 .

This leads to a higher analogue of the Courant bracket

[ · , · ]2C = {{γ, · }, · } , (4.138)

where now the full Hamiltonian function is used. We shall call it a 2-Courant bracket

in the following.

The simplest relevant example for us is what we shall call the standard Lie algebroid

up to homotopy, which is the case E0 = TM . The symplectic structure is

ω4 = dX i ∧ dFi + dψi ∧ dχi . (4.139)

We choose the Liouville potential given by ϑ = Fi dX
i +χi dψ

i. The simplest Hamil-

tonian function from (4.133) and (4.134) has identity anchor map ρij = δij with all

other structure functions equal to zero, and is given by

γ0 = Fi ψ
i . (4.140)

The cohomological vector field is again the de Rham vector field Qγ0 = ψi ∂
∂Xi on

M = T ∗[3]T [1]M . In this instance, the derived bracket on degree 2 functions

Ai χi +
1

2
λij ψ

i ψj ←→ Ai
∂

∂X i
+

1

2
λij dX i ∧ dXj (4.141)

gives the standard 2-Courant bracket introduced previously in (1.8) on the vector

bundle

E = TM ⊕
∧2 T ∗M , (4.142)

which reads explicitly as

[A+ λ,B + ξ]2C = [A,B] + LAξ − LBλ +
1

2
d(ιB λ− ιA ξ) (4.143)

for vector fields A,B and two-forms λ, ξ on M .6 The standard 2-Courant bracket

(4.143) appears in exceptional generalized geometry as the natural bracket which is

compatible with the commutator algebra of generalized Lie derivatives [99,100].

6This is called a Vinogradov algebroid in [96–98].
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One can also introduce a flux deformation by an additional term γT in the Hamil-

tonian function, which twists the standard 2-Courant bracket by a four-form which

is necessarily closed by the classical master equation. Given an M-theory three-form

C-field on M , with four-form flux G = dC, canonical transformation of the Hamil-

tonian function γ0 by the degree 3 function C = 1
3!
Cijk(X)ψi ψj ψk on M yields the

twisted Hamiltonian function

γG := e δCγ0 = Fi ψ
i +

1

4!
Gijkl ψ

i ψj ψk ψl , (4.144)

and it gives the twisted standard 2-Courant bracket as

[A+ λ,B + ξ]2C,G = [A,B] + LAξ − LBλ +
1

2
d(ιB λ− ιA ξ) + ιAιBG . (4.145)

5.2 Twisted standard 2-Courant sigma-model and double di-
mensional reduction

One can now use the AKSZ construction to build BV quantized sigma-models in four

dimensions based on degree 3 QP-manifolds, which we shall call 2-Courant sigma-

models. For the standard Lie algebroid up to homotopy on E0 = TM twisted by a

closed four-form flux G, the BV bracket is

( · , · )BV =

∫
T [1]Σ4

d4ẑ

(
δ

δX i ∧
δ

δF i

+
δ

δχi
∧ δ

δψi

)
, (4.146)

and the classical master equation is solved by the topological threebrane action

S(4)
G =

∫
T [1]Σ4

d4ẑ
(
F iDX

i + ψiDχi + F iψ
i +

1

4!
Gijklψ

iψj ψkψl
)
. (4.147)

Integrating over θµ and restricting to degree 0 fields in (4.147) recovers the classical

action (4.130).

As a simple example of the dimensional reduction technique described in §1.4, we

present our observation on the reduction of the standard 2-Courant sigma-model to

the standard Courant sigma-model with flux deformations. To motivate the reduction

of threebrane flux to membrane flux, consider the simple topological threebrane action

(4.129) given by the pullback of a closed four-form flux G on a d-dimensional manifold

M by the worldvolume map X : Σ4 → M . For simplicity we take Σ4 to be a closed

manifold. We perform a double dimensional reduction on a circle taking both the

worldvolume and the target to be product manifolds Σ4 = Σ3×S1 and M = M̂ ×S1,
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with M̂ a manifold of dimension d− 1, and wrap the S1 of the worldvolume around

the S1 of the target space; in other words, we regard the membranes as modes of

threebranes wrapping S1. We write the local coordinates on the worldvolume Σ4 as

σ = (σ̂, t), where σ̂ ∈ Σ3 and t is the coordinate on S1. The target space coordinate

indices are I = (i, d), where i = 1, . . . , d− 1 label directions along M̂ .

Wrapping the target circle means that the map X has the local expression

X =
(
XI(σ)

)
=
(
X̂ i(σ̂), w t

)
(4.148)

with the reduced map X̂ : Σ3 → M̂ and Xd = w t, where w is a winding number. The

dimensional reduction of the action IΣ4,G from (4.129) is then given by IΣ3,H from

(4.71), where the closed three-form flux H on M̂ is given by

Hijk(X̂) = w

∫
S1

dt Gijkd(X̂, t) . (4.149)

Hence the threebrane flux G reduces to a membrane flux H under double dimensional

reduction on a circle. We shall now show that this reduction also works at the level

of the full AKSZ sigma-models.

We start with the G-twisted standard 2-Courant sigma-model given by (4.147), and

use the dimensional reduction method of §1.4. We write the expansion of an arbitrary

superfield φ ∈M with respect to the coordinate direction t as

φ = φ̂ + φt θ
t , (4.150)

where neither φ̂ nor φt contain the odd coordinate θt. If φ has ghost number n, then

φ̂ has ghost number n and φt has ghost number n− 1. We choose the infrared fields

to be (F t)i, X̂
i, ψ̂i and (χt)i. On the ultraviolet fields we fix the gauge by choosing

the Lagrangian submanifold L defined by

XI
t = 0 , X̂d = −w t , ψi

t = 0 , ψd
t = w and ψ̂d = 0 .

(4.151)

The equations of motion for F̂ i and χ̂i give ∂tX̂
i = 0 and ∂tψ̂

i = 0, and in this way

we get the AKSZ action of the H-twisted standard Courant sigma-model (4.91) and

its BV symplectic form (4.90) with the definitions of the fields

X i = X̂ i , F i =

∫
S1

dt (F t)i , ψi = ψ̂i and χi =

∫
S1

dt (χt)i ,

(4.152)
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and H-flux as in (4.149). We refer to this type of gauge fixing as a double dimensional

reduction on a circle.

It is worth stressing that the kinetic terms are necessary in this construction because

without the term F̂ d ∂tX̂
d, the term F̂ dψ

d
t gives w F̂ d, which would yield w = 0 and

vanishing H-flux on-shell. An interesting feature here is that the term coming from

the Liouville potential ψi dχi of the threebrane has been reversed via the reduction

to the Liouville potential −χi dψi of the membrane. Note also that this dimensional

reduction can be done at the purely bosonic level without the ghost fields: Starting

from (4.130), we use the expression (4.148) for the wrapping of X, and then the

equations of motion for the three-form field FI and reduced two-form fields gives the

bosonic part of the standard Courant sigma-model with H-flux in (4.72).

By a direct computation in local coordinates, it is further possible to show that the

standard 2-Courant bracket (4.143) on M = M̂ ×S1 suitably reduces to the standard

Courant bracket (4.83) on M̂ . The dimensional reduction of the 2-Courant sigma-

model to the Courant sigma-model is analogous to the reduction discussed by [100] in

the context of SL(5) exceptional field theory, wherein the SL(5) generalized Courant

bracket reduces to the O(3, 3) generalized Courant bracket (C-bracket) of double field

theory.
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Chapter 5

Double field theory and
generalized complex geometry for
the A/B-models

In this chapter we reformulate the AKSZ constructions of the A- and B-models in

the framework of double field theory as a single membrane sigma-model, and study

its relation to generalized complex geometry and S-duality. In the following we rely

on our paper [2].

The A- and B-model topological string theories in backgrounds with H-flux are cap-

tured by generalized complex geometry [101–103]. They have been extensively stud-

ied by introducing AKSZ string and open membrane sigma-models with generalized

complex structures, which reduce upon gauge fixing to the A- and B-models [74,78–

80, 104]. These were based on AKSZ constructions for generalized complex geome-

try, which describes the Kähler structure of A-model and the complex structure of

B-model within one generalized complex structure. The novelty of our approach is

that their AKSZ sigma-models are reformulated within double field theory on both

the string and membrane levels, which gives a more natural explanation of how their

AKSZ constructions are related to generalized complex structures. It also highlights

some new aspects, such as how topological S-duality appears on the level of AKSZ

sigma-models and can be traced back to generalized complex geometry.

Based on our observation that the Poisson sigma-model on doubled spaces captures

both the A- and B-models with different choices of the doubled Poisson structure, we

propose an open AKSZ membrane sigma-model, inspired by the approach of [84] to

T-duality between geometric and non-geometric fluxes, which gives back the doubled

97



Doubled Poisson
sigma-model

Large contravariant
Courant sigma-model

A-model B-model

Boundary red.: 
Exact gauge

Courant sigmamodel for
generalized complex str.

DFT projection 
& 

zero dual coord. 

Contravariant Courant
sigma-model

Complex str. Courant
sigma-model

S-duality 

Poisson str.

Poisson str.

Complex str.

Complex str.

A-model B-model

Boundary red.: 
Exact gauge

Boundary red.:  
Effective action 

Zucchini model

Boundary red.: 
Exact gauge

Membrane

String

A-model

Poisson str.

Figure 5.1. Schematic presentation of the different reductions and connections between the
AKSZ string and membrane sigma-models related to the topological A- and B-models.

Poisson sigma-model on the boundary in a specific gauge. Then we reduce the fields

in a way which can be interpreted as the same reduction performed in [93], where it

was called a DFT projection. The resulting AKSZ membrane sigma-model captures

a particular class of generalized complex structures given by an initial Poisson and

complex structure. It therefore corresponds to a Courant algebroid for the generalized

complex structure with the identities of its integrability condition; to the best of our

knowledge this is a new example of Courant algebroid. We also show that the AKSZ

membrane theory can be reduced through gauge fixing to the A- or B-models on

the boundary if the generalized complex structure is given by a purely Poisson or

complex structure respectively. Furthermore, we find a realization of topological S-

duality, which exchanges the weakly and strongly coupled sectors of the topological

A- and B-model string theories [45], on the level of the AKSZ construction. Our

result is based on an S-duality which maps Poisson and complex structure Courant

algebroids into each other, and lies within the Courant algebroid for the generalized

complex structure. This duality is promoted to the AKSZ membrane sigma-model

and interpreted as S-duality which relates the couplings gA and gB of the A- and

B-models in the usual way: gA = 1/gB. In Figure 5.1 we summarize the relations

between the different AKSZ string and membrane sigma-models appearing in the
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thesis.

1 Double field theory for the A- and B-models

Our starting point is a double field theoretic formulation of the AKSZ constructons

of A- and B-models, which, on the one hand, leads to the AKSZ formulation with

generalized complex geometry, and on the other hand, shows a possible new direction

in the study of A- and B-models.

1.1 Doubled Poisson sigma-model

We shall start by proposing an AKSZ Poisson sigma-model with doubled target space

coordinates, which gives the A- and B-models separately. Let us consider an AKSZ

Poisson sigma-model with target QP1-manifold T ∗[1]T ∗M with degree 0 and degree 1

coordinates

XI =

(
X i

X̃i

)
and χI =

(
χi
χ̃ i

)
(5.1)

respectively. The doubled Poisson structure is denoted by ΩIJ , and it depends on

both degree 0 coordinates X i and X̃i. The symplectic form and AKSZ action are as

introduced in §2.1 in Chapter 4:

ωD2 = dχI ∧ dXI , (5.2)

and

S(2)
Ω =

∫
T [1]Σ2

d2ẑ
(
χIDX

I +
1

2
ΩIJ χI χJ

)
. (5.3)

The master equation imposes the Poisson condition for ΩIJ :

Ω[I|L ∂LΩJK] = 0 , (5.4)

where the doubled derivative ∂I is defined by

∂I =

(
∂/∂X i

∂/∂X̃ i

)
. (5.5)

We will now show that particular choices of ΩIJ give the A- or B-models.
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A-model

The A-model is obtained by using the doubled Poisson structure

ΩIJ
A =

(
πij 0
0 0

)
, (5.6)

where the bivector πij only depends on X i. The AKSZ action S(2)
ΩA

defined by ΩIJ
A is

given by

S(2)
ΩA

=

∫
T [1]Σ2

d2ẑ
(
χiDX

i + χ̃iDX̃ i +
1

2
πij χiχj

)
, (5.7)

where the additional term χ̃iDX̃ i can be removed with a partial gauge fixing. Thus

it yields the original Poisson sigma-model, which is the AKSZ construction of the

A-model (4.55). Then the constraint (5.4) reduces to the original constraint that π

defines a Poisson structure on M .

B-model

The B-model cannot be obtained simultaneously with the A-model, as it arises from

a different doubled Poisson structure. The AKSZ construction given by a constant

complex structure in (4.67) can be obtained using

ΩIJ
B =

(
0 J ij
−J j i 0

)
. (5.8)

It gives the AKSZ construction of the B-model after the sign flip X̃ i → −X̃ i. The

AKSZ construction of the B-model in (4.65) can be derived directly with the choice

J ij = i δij from the doubled Poisson sigma-model using

Ω′ IJB =

(
0 δij
−δj i 0

)
. (5.9)

The AKSZ formulation of the B-model for an arbitrary complex structure J ij, which

only depends on X i, is given in (4.70). Our doubled Poisson sigma-model also includes

this construction and it is given by choosing

ΩIJ
J =

(
0 J ij
−J j i −2 ∂[iJ

k
j] X̃k

)
(5.10)

after the sign flip X̃ i → −X̃ i. The constraint (5.4) gives the same constraint as in

the original construction, which is the integrability condition (4.68).1

1Since the complex structure appears as a Poisson structure on doubled space, it can be quantized
using the Cattaneo-Felder approach [77]. In particular, the case of a constant complex structure can
be quantized in closed form analogously to the Moyal star-product, but on doubled space.
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General doubled Poisson structure

We write a general doubled Poisson structure in the block matrix form

ΩIJ
G =

(
Pij Jij
−Jj i Qij

)
, (5.11)

where the blocks Pij, Jij and Qij are constrained by (5.4), and they depend on both

X i and X̃ i. The corresponding AKSZ action is

S(2)
ΩG

=

∫
T [1]Σ2

d2ẑ
(
χiDX

i + χ̃iDX̃ i +
1

2
Pij χiχj + Jij χi χ̃

j +
1

2
Qij χ̃

i χ̃j
)
.

(5.12)

It is tempting to try to relate ΩIJ
G to the general complex structure JIJ in (4.61), but

the identities (4.60) are not equivalent to (5.4). We will return to this problem later.

It is also interesting to note that the action S(2)
ΩG

gives the Zucchini model (4.58) if

we replace χ̃i with DX i, and nothing depends on X̃i. But they are different BV

theories with different constraints on their block structures.

1.2 Large contravariant Courant sigma-model

We have seen that the A- and B-models on the AKSZ level appear to be two different

particular cases of the same two-dimensional AKSZ theory on a doubled target space.

These Poisson sigma-models can be uplifted to the membrane level as a contravariant

Courant sigma-model from §3.3 in Chapter 4, which gives them back on the boundary

in the exact gauge. The novelty of the membrane description is that one can introduce

flux terms in the bulk. We shall now study the doubled contravariant Courant sigma-

model with doubled Poisson structures introduced in §1.1. These AKSZ constructions

will play a similar role later in the study of the A- and B-models within double field

theory as the large Courant sigma-model in §4 in Chapter 4.

The BV symplectic form of the contravariant Courant sigma-model in doubled space

with QP2-manifold T ∗[2]T [1]T ∗M is given by (4.126). The AKSZ action comes from

(4.104) and is given by

S(3)
Ω,R =

∫
T [1]Σ3

d3ẑ
(
F IDX

I − χIDψI + ΩIJ F I χJ

− 1

2
∂IΩ

JK ψI χJ χK +
1

3!
RIJK χI χJ χK

)
,

(5.13)

with the definition of a general three-vector flux RIJK on T ∗M , which is allowed in

the contravariant Courant sigma-model.
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A-model

The doubled Poisson structure ΩIJ
A in (5.6) gives the original contravariant Courant

sigma-model action (4.104) on M after the gauge fixing F̃ i = 0 and χ̃i = 0, which

leaves only the R-flux Rijk = Rijk. One needs to assume that Rijk only depends

on X i in order to reduce the action purely to M . We have already seen that the

contravariant Courant sigma-model in the exact gauge further reduces to the Poisson

sigma-model formulation of the A-model in §3.3 in Chapter 4.

B-model

The doubled Poisson structure Ω′ IJB defined in (5.9) with vanishing flux R = 0 gives

the standard Courant sigma-model and a ‘dual’ standard Courant sigma-model with

action

S(3)

Ω′B,0
=

∫
T [1]Σ3

d3ẑ
(
F iDX

i + F̃ iDX̃ i − χiDψi − χ̃iDψ̃i + F i χ̃
i − F̃ iχi

)
.

(5.14)

It can be seen that the standard and the dual standard Courant sigma-models are

decoupled from each other (in both the action and the symplectic form), so they can

be separately gauge fixed. For example, the gauge F̃ i = 0 and ψi = 0 yields the

standard Courant sigma-model, which is related to the B-model as described in §3.2

in Chapter 4. The exact gauge defined in §1.3 in Chapter 4 reads here as

F i = Dχi , ψi = −DX i , F̃ i = Dχ̃i and ψ̃i = −DX̃ i ,

(5.15)

and it gives the action of the B-model (4.65) on the boundary:

S(3)

Ω′B,0;gf =

∮
T [1]∂Σ3

d2ẑ
(
χiDX

i + X̃ iDχ̃
i + χi χ̃

i
)

= S(2)
B1 . (5.16)

The B-model construction with general constant complex structure is similar: the

doubled Poisson structure ΩIJ
B in (5.8) leads to the AKSZ action

S(3)
ΩB,0

=

∫
T [1]Σ3

d3ẑ
(
F iDX

i + F̃ iDX̃ i − χiDψi

− χ̃iDψ̃i + J ij F i χ̃
j − J j i F̃

iχj
)
.

(5.17)

The exact gauge (5.15) gives the B-model construction (4.67) on the boundary:

S(3)
ΩB,0;gf =

∮
T [1]∂Σ2

d2ẑ
(
χiDX

i + X̃ iDχ̃
i + J ij χi χ̃

j
)

= S(2)
B2 . (5.18)
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Finally, we consider the choice of doubled Poisson structure ΩJ from (5.10) which is

associated to a non-constant complex structure. The corresponding AKSZ action is

given by

S(3)
ΩJ ,0

=

∫
T [1]Σ3

d3ẑ
(
F iDX

i + F̃ iDX̃ i − χiDψi − χ̃iDψ̃i + J ij F i χ̃
j

− J j i F̃ iχj − 2∂ [iJ
k
j] X̃k F̃

i χ̃j − ∂iJ jkψiχj χ̃
k

+ ∂ [iJ
k
j] ψ̃k χ̃

i χ̃j + ∂i∂jJ
l
k X̃ lψ

i χ̃j χ̃k
)
.

(5.19)

The master equation does not give the integrability condition (4.68) for J ij this time.

We will use the DFT projection later to obtain the right Courant algebroid whose

relations give the integrability condition. In the exact gauge (5.15), the action S(3)
ΩJ ,0

reduces to the boundary action for the non-constant complex structure defined in

(4.70) after a sign flip:

S(3)
ΩJ ,0;gf =

∮
T [1]∂Σ3

d2ẑ
(
χiDX

i + X̃ iDχ̃
i + J ij χi χ̃

j − ∂jJ ik X̃ i χ̃
j χ̃k

)
= S(2)

J .

(5.20)

General doubled Poisson structure

The general AKSZ action (5.13) can be expanded in block form using the general

doubled Poisson structure ΩIJ
G from (5.11) as

S(3)
ΩG,0

=

∫
T [1]Σ3

d3ẑ
(
F iDX

i + F̃ iDX̃ i − χiDψi − χ̃iDψ̃i + Pij F iχj

+ Qij F̃
i χ̃j + Jij F i χ̃

j − Jj i F̃
iχj −

1

2
∂iP

jkψiχj χk

− 1

2
∂iQjkψ

i χ̃j χ̃k − ∂iJjkψiχj χ̃
k − 1

2
∂̃iPjk ψ̃iχj χk

− 1

2
∂̃iQjk ψ̃i χ̃

j χ̃k − ∂̃iJjk ψ̃iχj χ̃
k
)
,

(5.21)

where the dual derivative is defined by ∂̃i = ∂/∂X̃ i. As expected it reduces in the

exact gauge (5.15) on the boundary to the action S(2)
ΩG

given by (5.12).
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Fluxes in the A- and B-models

Introducing R-flux in (5.13) gives four different terms

1

3!
RIJK χI χJ χK =

1

3!
Rijk χiχj χk +

1

2
Qi

jk χ̃iχj χk

+
1

2
F ij

k χ̃i χ̃j χk +
1

3!
H ijk χ̃

i χ̃j χ̃k .
(5.22)

Both geometric and non-geometric fluxes can appear in the membrane formulations of

the A- and B-models, but the gauge fixings leave only Rijk in the case of the original

contravariant Courant sigma-model and H ijk in the case of the standard Courant

sigma-model. One of the main features of our new construction for the A- and B-

models is that it allows for the introduction of four different fluxes. The compatibility

condition [Ω,R]S = 0 between the fluxes and the doubled Poisson bivector Ω can be

derived from the master equation (4.87). The same fluxes (5.22) can be defined in

the AKSZ theories (5.21) as well.

2 Generalized complex geometry and A/B-models

In this section we continue our study of A/B-models with the reduction of doubled

degrees of freedom, which leads to their reformulation within generalized complex

geometry.

2.1 Courant sigma-model for generalized complex geome-
try

So far we have introduced a contravariant Courant sigma-model on doubled space,

which reduces to the topological A- and B-models in the exact gauge. We shall

now treat it as a large Courant sigma-model and use the projection to DFT vectors

from §4 in Chapter 4, which halves the number of degree 1 coordinates. Explicitly, the

degree 1 coordinates χI and ψI are transformed to τ I± in (4.113), which in components

can be written as

τ I± =
1

2

(
ψi ± χ̃ i

ψ̃i ± χi

)
. (5.23)

The coordinates τ I− are projected out by 1
2
p+ in the same way they were in (4.115),

hence in Darboux coordinates

τ I+ =

(
qi

pi

)
(5.24)
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the symplectic structure ωDFT from (4.110) becomes

ωDFT

1
2
p+−−−−→ ωDFT,+ = dX i ∧ dFi + dX̃i ∧ dF̃ i + dqi ∧ dpi . (5.25)

In the Hamiltonian (4.112) we substitute

χi −→ pi , ψi −→ qi , χ̃ i −→ qi and ψ̃i −→ pi , (5.26)

which together with the symplectic form ωDFT,+ reduces the AKSZ action S(3)
ΩG,0

from

(5.21) to the action

S(3)
ΩG,+

=

∫
T [1]Σ3

d3ẑ
(
F iDX

i + F̃ iDX̃ i − piDqi + Pij F i pj + Qij F̃
i qj

+ Jij F i q
j − Jj i F̃

i pj −
1

2
∂iP

jk qi pj pk −
1

2
∂iQjk q

i qj qk

+ ∂iJ
k
j q

i qj pk −
1

2
∂̃iPjk pi pj pk −

1

2
∂̃kQij q

i qj pk

− ∂̃jJki qi pj pk
)
,

(5.27)

where for simplicity we imposed the O(d, d)-invariant boundary condition2

(pi q
i)
∣∣
T [1]∂Σ3

= 0 . (5.28)

We reduce the dual coordinates in (5.27) with a gauge fixing F̃ i = 0 and assume

that none of the blocks Pij, Jij or Qij depend on X̃ i. The resulting action is not

necessarily an AKSZ action as it does not satisfy the master equation. Instead we

impose the master equation as a further constraint on the blocks in order to satisfy

the quantization condition, and we define the reduced action with the constrained

blocks, which we write symbolically as

Pij
master−−−−−→ πij , Jij

master−−−−−→ J ij and Qij
master−−−−−→ ωij . (5.29)

The reduced AKSZ action is given by

S(3)
Z =

∫
T [1]Σ3

d3ẑ
(
F iDX

i − piDqi + πij F i pj + J ij F i q
j

− 1

2
∂iπ

jk qi pj pk −
1

2
∂iωjk q

i qj qk + ∂iJ
k
j q

i qj pk

)
.

(5.30)

2This boundary condition will be compatible with our further reduction to the B-model, but
not to the A-model. To be compatible with the latter reduction we need to start with a different
kinetic term for the large Courant algebroid, in order to obtain the right kinetic term of the Courant
sigma-model for the generalized complex structure.
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The special property of this AKSZ action is that in the exact gauge

F i = Dpi and qi = −DX i (5.31)

it gives the Zucchini action (4.58):

S(3)
Z,gf =

∮
T [1]∂Σ3

d2ẑ
(
piDX

i +
1

2
πij pi pj +

1

2
ωijDX

iDXj −J ij piDXj
)

= S(2)
Z ,

(5.32)

on the boundary after the sign flip J ij → −J ij.

One may naturally expect that the master equation for S(3)
Z will give the constraints

of a generalized complex structure (4.60) as the Zucchini model does, but this is not

precisely true. If ωij vanishes then we get the same identities as those of a generalized

complex structure with ω = 0, or if we set ω = π−1 then dω = 0 and the term

involving ω vanishes, thus we arrive at the same AKSZ action. Otherwise the ω term

generally prevents the constraints from being the identities of a generalized complex

structure.

Thus we propose a Courant sigma-model

S(3)
π,J =

∫
T [1]Σ3

d3ẑ
(
F iDX

i − piDqi + πij F i pj + J ij F i q
j

− 1

2
∂iπ

jk qi pj pk + ∂iJ
k
j q

i qj pk

) (5.33)

for the generalized complex structure

JIJ =

(
J ij πij

0 −J j i

)
. (5.34)

In the language of symplectic dg-geometry this means that the master equation for

the Hamiltonian

γπ,J = πij Fi pj + J ij Fi q
j − 1

2
∂iπ

jk qi pj pk + ∂iJ
k
j q

i qj pk (5.35)

with the symplectic form

ω3 = dX i ∧ dFi + dqi ∧ dpi (5.36)

gives the conditions

π[i|l ∂lπ
jk] = 0 ,

J li ∂lπ
jk + 2πjl ∂[iJ

k
l] + πkl ∂lJ

j
i − J j l ∂iπ

lk = 0 ,

J l[i| ∂lJ
k
|j] − Jkl ∂[iJ

l
j] = 0 .

(5.37)
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The first identity says that πij satisfies the Poisson condition, the third says J ij

satisfies the integrability condition of the ordinary complex structure, and the sec-

ond identity is an additional compatibility condition needed to combine them into a

generalized complex structure.

The Hamiltonian γπ,J defines a Courant algebroid for the generalized complex struc-

tures (5.34) over the target space M , with the Dorfman bracket and anchor

[e1, e2]D;π,J = {{e1, γπ,J}, e2} and ρ(e) = {e, {γπ,J , · }} (5.38)

where the functions e, e1 and e2 have degree 1. It would be interesting in its own

right to study further this new Courant algebroid structure.

2.2 Dimensional reductions to the A- and B-models

The relation of the Courant sigma-model (5.33) to the A-model is quite straightfor-

ward. If we set J to zero, and only keep π non-zero, the remaining identity from (5.37)

is the Poisson condition. The resulting AKSZ action is just that of the contravariant

Courant sigma-model, which reduces to the Poisson sigma-model on its boundary in

the exact gauge, and thus to the A-model as well.

The relation to the B-model is not immediately apparent. Let π be zero, and J

non-zero. The remaining identity from (5.37) is the integrability condition for the

ordinary complex structure J . The Hamiltonian associated to the resulting AKSZ

action is

γ0,J = J ij Fi q
j + ∂iJ

k
j q

i qj pk , (5.39)

from which a Courant algebroid for a generic complex structure can be derived with

the Dorfman bracket and anchor

[e1, e2]D;0,J = {{e1, γ0,J}, e2} and ρ(e) = {e, {γ0,J , · }} (5.40)

respectively, where again e, e1 and e2 are degree 1 functions. This structure is similar

to that of the Poisson Courant algebroid, which is the derived Courant algebroid for

a generic Poisson structure.

We apply the dimensional reduction method introduced in §1.4 in Chapter 4 on the

AKSZ action with the ordinary complex structure solely:

S(3)
0,J =

∫
T [1]Σ3

d3ẑ
(
F iDX

i − piDqi + J ij F i q
j + ∂iJ

k
j q

i qj pk
)
. (5.41)
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The reduction method requires that the membrane worldvolume Σ3 be a product

manifold, hence we apply it in a neighbourhood of the boundary. For this, choose an

open subset U of Σ3 which includes ∂Σ3:

Σ3

∣∣
U

= ∂Σ3 × R+ , (5.42)

where R+ is the half-line parameterized with coordinate t, for which the t = 0 points

belong to the boundary. Then the worldvolume Σ3 is covered by open sets as

Σ3 = U ∪ U ′ , (5.43)

where the open set U ′ does not include the boundary, i.e. it is contained in the bulk

interior Σ3 \ ∂Σ3. Then the BV symplectic form is given by the sum of two integrals

over the covering sets U and U ′ as3

ω3 = ω3|U + ω3|U ′

:=

∫
T [1]U

d3ẑ
(
δX i δF i + δqi δpi

)
+

∫
T [1]U ′

d3ẑ
(
δX ′i δF ′i + δq′i δp′i

)
,

(5.44)

where we have rescaled the fields F i, pi, F
′
i and p′i with a suitable partition of unity

subordinate to the covering (5.43). These fields are chosen so that the decomposition

of the AKSZ action

S(3)
0,J = S(3)

0,J |U + S(3)
0,J |U ′

:=

∫
T [1]U

d3ẑ
(
F iDX

i − piDqi + J ij F i q
j + ∂iJ

k
j q

i qj pk
)

+

∫
T [1]U ′

d3ẑ
(
F ′iDX

′i − p′iDq′i + J ij F
′
i q
′j + ∂iJ

k
j q
′i q′j p′k

) (5.45)

is independent of the choice of partition of unity.

First we deal with the boundary contributions. They are defined on a product man-

ifold ∂Σ3 ×R+, so we can apply the method of §1.4 in Chapter 4. We use a uniform

notation for an arbitrary superfield φ:

φ = φ̂ + φt θ
t , (5.46)

where the component superfields φ̂ and φt do not depend on the odd coordinate θt

of T [1]R+. The integrals over U factorize and we get the BV symplectic form

ω3|U ;gf = −
∮
T [1]∂Σ3

d2ẑ

∫
R+

dt
(
δX̂ i δ(F t)i + δq̂i δ(pt)i

)
, (5.47)

3We use the same notation for the boundary fields as well for brevity, but they are not the
identical to those used earlier.
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where we have used a different gauge fixing and also different antifields than those

which were used for the reduction to the A-model: we have set X i
t and qit to zero.

The gauge fixed boundary action is

S(3)
0,J |U ;gf =

∮
T [1]∂Σ3

d2ẑ

∫
R+

dt
(
F̂ i ∂tX̂

i + p̂i ∂tq̂
i − (F t)i D̂X̂

i − (pt)i D̂q̂
i

− J ij (F t)i q̂
j + ∂iJ

k
j q̂

i q̂j (pt)k
)
.

(5.48)

The first two terms determine the boundary conditions. Integrating out the fields F̂ i

and p̂i imposes the condition that the fields X̂ i and q̂i are independent of t, while

the zero modes of F̂ i and p̂i on R+ lead to the condition that X̂ i and q̂i vanish at

t = 0 which means they vanish on the boundary.

We introduce the new notations

χi = −
∫
R+

dt (F t)i , X i = X̂ i ,

X̃ i = −
∫
R+

dt (pt)i , χ̃i = q̂i ,

(5.49)

and rewrite the BV symplectic form and the boundary AKSZ action with them

as

ω3|U ;gf =

∮
T [1]∂Σ3

d2ẑ
(
δX i δχi + δX̃ i δχ̃

i
)
, (5.50)

and

S(3)
0,J |U ;gf =

∮
T [1]∂Σ3

d2ẑ
(
χiDX

i + X̃ iDχ̃
i + J ij χi χ̃

j − ∂jJ ik X̃ i χ̃
j χ̃k

)
= S(2)

J ,
(5.51)

which give the BV symplectic form corresponding to (4.66) and the AKSZ action

(4.70) for the B-model after the sign flip X̃ i → −X̃ i. Hence the action S(3)
0,J defined

in (5.41) reduces to the B-model action in a neighbourhood of the boundary ∂Σ3.

For the bulk contributions, one can gauge fix the bulk fields independently from the

boundary fields using the same fields and antifields that were used for the reduction

to the A-model. The exact gauge was a gauge fixing on the bulk as well, and not only

on the boundary. Hence if we set F ′i and q′i to zero, we get a vanishing bulk action

S(3)
0,J |U ′;gf , and thus the action S(3)

0,J in (5.41) can be reduced entirely to the B-model

action on the boundary.

We recall that, in all schemes presented in the thesis, the reductions to the A- and B-

models differ significantly: not only are the gauge choices different, but the antifields
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are also assigned differently, and the boundary conditions differ as well. But they

both appear as boundary AKSZ sigma-models while the bulk fields are gauge fixed

completely.

3 Topological S-duality in generalized complex ge-

ometry

As an application of the formalism developed in the thesis, in this section we shall

demonstrate how the topological S-duality described in §2.1.4 in Chapter 2 is realised

geometrically in generalized complex geometry using our Courant algebroids and

AKSZ sigma-models.

3.1 Duality between Poisson and complex structure Courant
algebroids

A duality transformation in the language of QP-manifolds is a transformation of

supercoordinates which leaves the symplectic structure invariant. One of the simplest

non-trivial cases is the renormalization of the fields by a scale transformation: a

coordinate is scaled inversely with respect to its dual coordinate. In the following we

study the Courant algebroid for generalized complex structures in this context.

The symplectic form ω3 given by (5.36) is left invariant under the scale transforma-

tion

pi 7−→ λ pi and qi 7−→ 1

λ
qi , (5.52)

with a constant parameter λ ∈ R, which transforms the Hamiltonian γπ,J from (5.35)

to

γλπ,J = λπij Fi pj −
λ

2
∂iπ

jk qi pj pk +
1

λ
J ij Fi q

j +
1

λ
∂iJ

k
j q

i qj pk . (5.53)

The scale transformation has no effect on the identities (5.37), and γλπ,J satisfies the

master equation as well.

Now we can take both the large or small λ limit. They give different Courant al-

gebroids, namely the Poisson and the complex structure Courant algebroid respec-

tively:
1

λ
γ0,J

λ�1←−−−− γλπ,J
λ�1−−−−→ λ γπ,0 , (5.54)
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where the Hamiltonian γ0,J is defined in (5.39) while γπ,0 is defined in (4.86). Af-

ter the limits are taken the parameter λ can be scaled back to obtain the original

Hamiltonians which are independent of λ.

Thus scaling with λ introduces a type of weak/strong duality, which interpolates

continuously between Poisson and complex structure Courant algebroids within the

Courant algebroid for generalized complex geometry, and it exchanges them between

the two limits. In the following we relate this duality to the topological S-duality

between the A- and B-models based on our AKSZ constructions and boundary re-

ductions from §1.

3.2 Topological S-duality

In the following we promote our duality to the level of AKSZ constructions. We start

with the AKSZ action given by the Hamiltonian λ γπ,J defined in (5.53):

S(3)
A/B =

∫
T [1]Σ3

d3ẑ
( 1

λ
F iDX

i − 1

λ
piDq

i + πij F i pj −
1

2
∂iπ

jk qi pj pk

+ J ij F i q
j + ∂iJ

k
j q

i qj pk

)
,

(5.55)

where we explicitly introduced an overall constant 1/λ as a membrane tension in

the definition of the action, which does not affect the BV quantization of the sigma-

model. Now we perform the scaling duality (5.52). Since it leaves the BV symplectic

form invariant, the kinetic terms do not change, only the interaction terms. The scale

transformed AKSZ action is given by

Sλ (3)
A/B =

∫
T [1]Σ3

d3ẑ
( 1

λ
F iDX

i − 1

λ
piDq

i + λπij F i pj −
λ

2
∂iπ

jk qi pj pk

+
1

λ
J ij F i q

j +
1

λ
∂iJ

k
j q

i qj pk

)
.

(5.56)

The large λ limit gives the contravariant Courant sigma-model without kinetic terms,

which reduces to the A-model action given by (4.54) in the exact gauge in the same

way that it reduced in §3.3 in Chapter 4:

Sλ (3)
A/B

λ�1−−−−→ λ

2

∮
T [1]∂Σ3

d2ẑ πij pi pj . (5.57)

Here λ appears as the inverse of the A-model string coupling:

λ =
1

gA

. (5.58)
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On the other hand, if we take λ to be small, we get the AKSZ action of the complex

structure Courant algebroid with an overall membrane tension 1/λ, which can be

reduced to the B-model on its boundary as in §2.2:

Sλ (3)
A/B

λ�1−−−−→ 1

λ

∮
T [1]∂Σ3

d2ẑ
(
χiDX

i + X̃ iDχ̃
i + J ij χi χ̃

j − ∂jJ ik X̃ i χ̃
j χ̃k

)
.

(5.59)

Here λ appears as the B-model string coupling this time:

λ = gB , (5.60)

which together with (5.58) gives the relation (2.42). However, it says nothing about

the scaling relation of Kähler forms in (2.43). This is due to the fact that the scalings

of π and J are not fixed to each other by the constraints (5.37).
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Chapter 6

AKSZ constructions for topological
membranes on G2-manifolds

In this chapter we describe our results in topological membranes related to topological

M-theory, which was published in the paper [3].

Topological M-theory was originally proposed as a unification of the topological A-

and B-models [105,106], and is intended to capture a topological sector of physical M-

theory. It can be constructed on seven-dimensional manifolds of G2-holonomy where

it has reduced N = 1 supersymmetry. The theory of [105] is based on a Hitchin-type

form theory of G2-manifolds, and its dimensional reduction on a circle gives Hitchin’s

form theories of the topological A- and B-models.

The A- and B-models have worldsheet formulations as string theories where they are

given by two-dimensional topological sigma-models. Hence it is natural to expect that

topological M-theory has a worldvolume formulation and its fundamental objects are

topological membranes. Two different membrane theories have been proposed for

this purpose. One is constructed using the Mathai-Quillen formalism in [107], which

reduces on a circle to the Mathai-Quillen construction of the A-model [108,109] and

its path integral localizes on associative three-cycles. The other one is introduced

in [110] as a BRST gauge fixed version of the simple topological action constructed

by pullback to the membrane worldvolume of the harmonic three-form associated

to the G2-structure, which also reduces to the A-model and localizes on associative

three-cycles.

Both types of topological membranes are intended to be the fundamental objects of

the same theory, which inevitably raises the question of whether they can be described
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within a single membrane model. We give a unified treatment of these objects within

AKSZ formulation. We propose two different BV quantized sigma-models for topo-

logical membranes on G2-manifolds given by the AKSZ formulation, which each give

back the membrane theories discussed above in particular gauges. Our distinct AKSZ

membrane theories have the special feature that they can be unified within a single

AKSZ three-brane sigma-model, which reproduces them through a worldvolume di-

mensional reduction. The AKSZ three-brane theory yields the standard 2-Courant

bracket as its derived bracket, which fits it into the context of exceptional general-

ized geometry in M-theory. The derived bracket is also the same as the anomaly-free

current algebra of topological membranes induced on the generalized tangent bundle

T ⊕
∧2 T ∗ of G2-manifolds [96]. Furthermore we dimensionally reduce our AKSZ

membranes to give new AKSZ constructions for the A-model after gauge fixing and

canonical transformation. Performing a further dimensional reduction of one of these

string models then gives a novel AKSZ construction for supersymmetric quantum

mechanics.

1 AKSZ theories of topological membranes on G2-

manifolds

In this section we study the two topological membrane theories on G2-manifolds. The

first is the topological membrane model of [107] which is based on the Mathai-Quillen

formalism,1 the second one is the BRST model of [110]. We supplement the Mathai-

Quillen construction with an auxiliary field, analogously to the construction of [110],

and we give AKSZ formulations which reproduce both membrane models after gauge

fixing.

1.1 Topological membrane theories

Mathai-Quillen membrane sigma-model

Let us begin by reviewing the topological membrane theory of [107], which we call

the Mathai-Quillen membrane sigma-model. Let M7 be an oriented seven-dimensional

Riemannian manifold with G2-structure, which is equivalent to equiping M7 with a

global three-form Φ that is closed, dΦ = 0, and coclosed, d ∗ Φ = 0, where ∗ is the

1For further details about the Mathai-Quillen formalism in general, see e.g. [108,109].
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Hodge duality operator with respect to the metric g of M7. Given an embedding map

X : Σ3 →M7, let us introduce a local section of the cotangent bundle T ∗M7 by

ΞI =
1

3!
(∗Φ)IJKL ∂µX

J ∂νX
K ∂ρX

L εµνρ , (6.1)

where Greek indices label local coordinates σµ on the worldvolume Σ3, with ∂µ := ∂
∂σµ

,

and capital Latin indices label coordinates XI on M7 this time, with ∂I := ∂
∂XI . The

symbol εµνρ is the Levi-Civita tensor density on Σ3. If ΞI vanishes, then X(Σ3) ⊂M7

is called an associative three-cycle.

We further introduce a ghost field ψI on Σ3 with ghost number 1 and an antighost field

χI on Σ3 with ghost number −1. Then the action of the Mathai-Quillen membrane

sigma-model is

IMQ =

∫
Σ3

d3σ
( 1

2
gIJ ΞI ΞJ + iχI

(
δΞI − ΓKIJ ψ

J ΞK

)
− 1

4
RIJKL ψ

I ψJ χK χL
)
,

(6.2)

where

δΞI − ΓKIJ ψ
J ΞK =

1

2
(∗Φ)IJKL∇µψ

J ∂νX
K ∂ρX

L εµνρ , (6.3)

with ∇µψ
I = ∂µψ

I +ΓIJK ψ
J ∂µX

K given by the Levi-Civita connection of the metric

g pulled back to Σ3 by X, and RI
JKL are the components of the Riemann curvature

tensor of g.2 The action (6.2) is invariant under the BRST transformations

δXI = ψI , δψI = 0 and δχI = i gIJ ΞJ − ΓIJK ψ
J χK , (6.4)

which is nilpotent only on-shell, and it is BRST-exact up to the equations of mo-

tion:

IMQ = δΨ′MQ with Ψ′MQ = − i

2

∫
Σ3

d3σ χI ΞI . (6.5)

The fixed point locus of the BRST charge is the space of associative three-cycles X :

Σ3 →M7, which are membrane instantons.

Let us now linearize the BRST transformations by supplementing the Mathai-Quillen

membrane sigma-model with an auxiliary field. We define an auxiliary field bI with

the new BRST transformations

δXI = ψI , δψI = 0 , δχI = bI and δbI = 0 , (6.6)

2Capital Latin indices are raised and lowered with the metric g.
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which is now nilpotent off-shell, and the membrane action is BRST-exact with the

gauge fixing fermion

ΨMQ = −
∫

Σ3

d3σ χI
(

i ΞI +
1

2
ΓIJK χ

J ψK − 1

2
gIJ b

J
)
. (6.7)

Then the membrane action SMQ = δΨMQ is given by

SMQ =

∫
Σ3

d3σ
(
− i bI ΞI + χI

(
i δΞI + ΓJIK b

J ψK
)

+
1

2
∂LΓIJK χ

I χJ ψK ψL +
1

2
gIJ b

I bJ
)
.

(6.8)

The equation of motion for bI gives

bI = i gIJ ΞJ − ΓIJK χ
J ψK . (6.9)

Using this expression one can show that the membrane action (6.8) reduces to the

Mathai-Quillen membrane action (6.2).

Bonelli-Tanzini-Zabzine membrane sigma-model

In [110] a different topological membrane action on G2-manifolds is given, which is

based on BRST quantization of the topological action IΣ3,Φ =
∫

Σ3
X∗(Φ); we call it

the Bonelli-Tanzini-Zabzine (BTZ for short) membrane sigma-model. With the same

fields and notation as above, the action is

SBTZ = − IΣ3,Φ + δΨBTZ , (6.10)

with the gauge fixing fermion

ΨBTZ =

∫
Σ3

d3σ χI
(
gIJ Ẋ

J + ΦIJK ∂1X
J ∂2X

K +
1

2
ΓIJK χ

J ψK − 1

2
gIJ b

J
)
,

(6.11)

where the worldvolume indices run through µ = 0, 1, 2 and the dot denotes the action

of the derivative ∂0. The BRST transformations are the same as those of the Mathai-

Quillen membrane model in (6.6), thus they have identical BV formulations. Since

dΦ = 0, the topological flux term IΣ3,Φ in the AKSZ framework arises from a canonical

transformation as in §3.1 in Chapter 4, and consequently it has no effect in the BV

algebra on the mapping space M. Hence in the following we will only study the

BRST-exact term in (6.10).
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1.2 BV formulation and AKSZ constructions

Both topological membrane sigma-models are described by a gauge fixing fermion

Ψ
[
XI , ψI , χI , bI

]
. The only non-zero BRST transformations are δXI = ψI and δχI =

bI , so

δΨ =

∫
Σ3

d3σ
(
ψI

δΨ

δXI
+ bI

�
δΨ

δχI

)
. (6.12)

With the definition of the antifields3

X+
I =

δΨ

δXI
and χ+

I =

�
δΨ

δχI
, (6.13)

we can rewrite the BRST-exact part of the membrane actions as

δΨ =

∫
Σ3

d3σ
(
ψI X+

I + bI χ+
I

)
. (6.14)

Thus the BRST-exact membrane actions in (6.8) and (6.10) differ only in the choice

of gauge fixing, i.e. in the choice of Lagrangian submanifold L ⊂ M. In the fol-

lowing we propose two different AKSZ constructions for these topological membrane

theories.

AKSZ construction I.

Our first AKSZ construction contains a rather large number of fields, but very few of

them are explicitly used in the gauge fixed action. The source dg-manifold is W =

T [1]Σ3 as usual, and the target symplectic dg-manifold is M = T ∗[2]T [−1]T [1]M7.

The base coordinates in T [−1]T [1]M7 are (XI , ξI , BI , ηI) with degree (0, 1, 0,−1),

where XI are associated to the coordinates of M7. The graded fiber coordinates

are (FI , ζI , NI , GI) with degree (2, 1, 2, 3), and the canonical symplectic structure of

degree 2 on M is

ω3,I = dFI ∧ dXI + dζI ∧ dξI + dNI ∧ dBI + dGI ∧ dηI . (6.15)

In the following we expand a general AKSZ superfield φ ∈ M as in (4.24) for

d = 3. Our membrane BRST fields XI , ψI , χI , bI do not have form components, so

we choose them as the zeroth or third components of a superfield. Our choice in this

3As in §1.3 in Chapter 4 we denote the antifield of a field φ by φ+.
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first construction is as the zeroth component for both membrane models, and their

antifields are assigned to the third components. Explicitly this means we take

X(0) I = XI and F
(3)
I = X+

I ,

ξ(0) I = ψI and ζ
(3)
I = ψ+

I ,

η(0) I = χI and G
(3)
I = χ+

I ,

B(0) I = bI and N
(3)
I = b+

I .

(6.16)

The AKSZ action is constructed without kinetic terms and with a degree 3 Hamil-

tonian function γ such that the corresponding BV bracket with the associated coho-

mological vector field Q on M generates the BRST transformations (6.6). Thus we

take

S(3)
G2,I

=

∫
T [1]Σ3

d3ẑ
(
ξI F I + BIGI

)
, (6.17)

which has eight components after expanding the superfields. We use a gauge fixing

fermion to set the antifields X+
I , ψ+

I , χ+
I , b+

I , and we choose the gauge fixing of (6.17)

on the other fields to give the gauge fixed action (6.14). For example, we may choose

the Lagrangian submanifold L determined by the equations

X(1) I = X(3) I = 0 and F
(1)
I = 0 ,

ξ(1) I = ξ(3) I = 0 and ζ
(1)
I = 0 ,

η(1) I = η(3) I = 0 and G
(1)
I = 0 ,

B(1) I = B(3) I = 0 and N
(1)
I = 0 ,

(6.18)

for the antifields. The other antifields given by the gauge fixing fermion are X+
I , χ+

I ,

ψ+
I and b+

I . If we choose (6.7) we get the Mathai-Quillen membrane action (6.8), while

if we choose (6.11) we get the BRST-exact part of the BTZ topological membrane

action (6.10).

For example, in the Mathai-Quillen membrane sigma-model the pertinent antifields

are given by

X+
I =

δΨMQ

δXI
= − i

δ

δXI

∫
Σ3

d3σ χI ΞI −
1

2
∂IΓJKL χ

J χK χL +
1

2
∂IgJK χ

J bK ,

χ+
I =

�
δΨMQ

δχI
= − i ΞI − Γ[IJ ]K χ

J ψK +
1

2
gIJ b

J ,

(6.19)
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and it is easy to see

ψI
δ

δXI

∫
Σ3

d3σ χI ΞI = −χI δΞI , (6.20)

so that gauge fixing the antifields in this way restricts the AKSZ action functional

(6.17) on L to the action (6.8). The gauge fixing with ΨBTZ is very similar, and it

gives the BTZ membrane action (6.10). Note that it is possible to add kinetic terms

to the AKSZ action, and then set them to zero with a more specific gauge fixing

choice, but evidently the model (6.17) is simpler to work with.

AKSZ construction II.

We introduce another AKSZ construction for both topological membrane theories,

which is based on the standard Courant sigma-model from §3.1 in Chapter 4. The

BV action that we want to reproduce in the AKSZ theory is again (6.14), but now

we define the fermionic fields ψI and χI as one-forms in the superfield formalism.

The target in this case is taken to be the QP-manifoldM = T ∗[2]T [1]M7 of degree 2

corresponding to the standard Courant algebroid on TM7 ⊕ T ∗M7, which contains

half as many coordinates compared to the previous construction. The notation for

the coordinates are the same as before, so that (XI , FI , ξ
I , ζI) have degrees (0, 2, 1, 1).

The symplectic form is

ω3,II = dFI ∧ dXI + dζI ∧ dξI . (6.21)

The relevant fields in the superfield formalism are

X(0) I = XI and X
(1) I
0 = χI ,(

F
(2)
I

)
12

= χ+
I and

(
F

(3)
I

)
012

= X+
I ,

ξ(0) I = ψI and ξ
(1) I
0 = bI ,(

ζ
(2)
I

)
12

= − b+
I and

(
ζ

(3)
I

)
012

= ψ+
I ,

(6.22)

where we used an explicit worldvolume index convention to define the membrane fields

χI , bI and their antifields. The BV action then simply corresponds to the untwisted

Hamiltonian function γ0 from §3.1 in Chaptet 4 and reads

S(3)
G2,II

=

∫
T [1]Σ3

d3ẑ ξI F I . (6.23)
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There are many possible gauge fixings which recover the action (6.14). One choice is

to take the Lagrangian submanifold defined by

F
(0)
I = F

(1)
I = 0 and ζ

(0)
I = ζ

(1)
I = 0 ,(

F
(2)
I

)
01

= 0 and
(
ζ

(2)
I

)
01

= 0 ,(
F

(2)
I

)
13

= 0 and
(
ζ

(2)
I

)
3

= 0 .

(6.24)

The residual antifields are again set by the gauge fixing fermion Ψ
[
XI , ψI , χI , bI

]
,

given in (6.7) for the Mathai-Quillen membrane sigma-model and in (6.11) for the

BTZ membrane sigma-model.

It is an interesting feature of our first AKSZ construction that the two terms in (6.17)

are decoupled from each other, in the sense that they can be gauge fixed separately

and decoupled in the AKSZ action as well. This means that one can remove the

second term with a gauge fixing to get our second AKSZ construction, but they

differ from those proposed for the topological membranes, because the antifields are

assigned differently.

1.3 Derived brackets

The main geometric distinction between the two AKSZ membrane theories we have

constructed above is that the second construction is based on a target which is a QP-

manifold of degree 2, corresponding to the standard Courant algebroid, whereas the

first construction is based on a target which is not an N-manifold, as it involves local

affine coordinates of degree −1, and consequently does not correspond to a symplectic

Lie 2-algebroid. Passing to dg-manifolds which are equiped with negative gradings is

of course natural and standard in the BV–BRST formalism, wherein ghost fields and

antifields typically come with negative gradings, but it takes us out of the realm of

graded geometry into derived geometry [111]: Whereas non-negatively graded sym-

plectic dg-manifolds generally correspond to symplectic L∞-algebroids, those which

are arbitrarily graded correspond to derived symplectic L∞-algebroids. The relevance

of L∞-algebroids in BV quantization was already emphasised by [31,112], but enter-

ing into further discussion of these geometric facts would take us far away from the

scope of the thesis, so we content ourselves in pointing out a few interesting geometric

consequences of the corresponding derived bracket construction.
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The degree 3 Hamiltonian function on M = T ∗[2]T [−1]T [1]M7 corresponding to the

first AKSZ action (6.17) is given by

γG2,I = FI ξ
I +GI B

I . (6.25)

Its first term is the same as the Hamiltonian function (4.81) for the standard Courant

algebroid, so its derived brackets gives the standard Courant bracket (4.83) on degree

1 functions of (X, ξ, ζ). Moreover, this is also the derived bracket of the Hamiltonian

function corresponding to the second AKSZ action (6.23), which contains solely the

first term of (6.25).

The interesting feature here is the consequence of the second term in (6.25) and the

negative degree coordinates ηI . The derived bracket of a symplectic dg-manifold with

symplectic structure of degree 2 is defined on degree 1 functions. Such a function f

can be expanded in the form

f = f (0)(X,B, ξ, ζ) + f
(1)
I (X,B, ξ, ζ, F,N) ηI

+
7∑
l=2

f
(l)
I1···Il(X,B, ξ, ζ, F,N,G) ηI1 · · · ηIl ,

(6.26)

where f (l) is an l-form in the non-negatively graded coordinates onM of degree l+1.

The second term GI B
I in the Hamiltonian function decouples on the zeroth order

functions f (0)(X,B, ξ, φ), since it does not contain any of the canonically conjugate

coordinates to X, B, ξ or ζ. Hence our derived bracket is closed on the subspace

of zeroth order functions f (0), where it gives the standard Courant bracket (4.83),

with the coefficients now depending on the two degree 0 coordinates X and B. The

degree 0 fields are doubled in this sense, but they play an asymmetric role in the

underlying geometric structure.

The restriction of the derived bracket to any higher order in ηI is no longer closed,

and only closes if we consider all orders at once. Thus our derived bracket appears

as an infinite extension of the standard Courant bracket, which contains the stan-

dard Courant bracket as the subalgebra of functions which are independent of ηI .

This structure underlies the derived symplectic L∞-algebroid over M7 alluded to

above.4

4See e.g. [97] for a general definition of L∞-algebroids.
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1.4 Dimensional reductions from topological threebrane the-
ories

In §5 in Chapter 4 we introduced an AKSZ topological threebrane sigma-model which

has the standard 2-Courant bracket as its derived algebraic structure on a graded

target space which is a QP-manifold of degree 3. We can shed further light on the

algebroid structure discussed in §1.3 by considering our membrane models as arising

through certain reductions of such a threebrane theory. We first consider this sigma-

model without a four-form flux deformation and defined for the G2-manifold M = M7.

We suppose that the threebrane worldvolume is a product manifold Σ4 = Σ3 × S1,

and that all superfields are independent of the extra coordinate t of S1. Using the

same notation (4.150) for the expansion of an arbitrary superfield, integration over

the odd coordinate θt in the action (4.147) without the flux term leads to the AKSZ

action5

S(4)
0,red =

∫
T [1]Σ3

d3ẑ
(
GI B

I + F I ξ
I − F IDX

I + ξIDζI − GIDη
I − BIDN I

)
(6.27)

and the BV symplectic form

ω4,red =

∫
T [1]Σ3

d3ẑ
(
δF I δX

I − δζI δξI + δGI δη
I − δN I δB

I
)
, (6.28)

where we have introduced the fields

F I = − (F t)I , GI = F̂ I , ζI = (χt)I and N I = χ̂I ,

XI = X̂I , ηI = XI
t , BI = −ψI

t and ξI = − ψ̂I ,
(6.29)

and rescaled them by the length of S1. Thus the reduced AKSZ action without the

kinetic terms is our first AKSZ membrane action (6.17), up to a few sign differences

appearing in the symplectic forms which can be resolved with a redefinition of the

original symplectic form of the membrane sigma-model that leaves its gauge fixed

action invariant. On the other hand, the kinetic terms can be removed with the same

gauge fixing that we used to obtain the topological membrane theories in this section.

In this way, the threebrane AKSZ action without any kinetic term∫
T [1]Σ4

d4ẑ F I ψ
I (6.30)

5The kinetic part of the AKSZ action is given here by −ϑ, where ϑ is the Liouville potential on
the symplectic dg-manifold M.
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is a straightforward extension of our AKSZ membrane sigma-models.

This means therefore that our first AKSZ construction for topological membranes on

G2-manifolds is a reduced AKSZ theory of topological threebranes on the same target

space. The special feature of the threebrane theory is that its derived bracket on the

target QP-manifold T ∗[3]T [1]M7 of degree 3 gives the standard 2-Courant bracket

(4.143) on the vector bundle E = TM7 ⊕
∧2 T ∗M7, which relates the geometry

behind our specific AKSZ construction to the exceptional generalized geometry of

M-theory.

The second AKSZ construction for topological membranes from §1.2 can also be

reformulated within a topological threebrane sigma-model, in the same way as the

first construction. The only difference is that we get an additional term in the AKSZ

action after the reduction, which can be set to zero with gauge fixing, because we

do not need those fields to get the topological membrane theories with further gauge

fixing. Hence the action (6.30) reduces to the second AKSZ sigma-model action as

well.

In §5.2 in Chapter 4 we saw that viewing membranes as wrapping modes of three-

branes, by wrapping the worldvolume circle on the target circle, reduces the four-

dimensional standard 2-Courant sigma-model with G-flux to the three-dimensional

standard Courant sigma-model with H-flux. This means that it is possible to add

G-flux to our topological membrane theories at the threebrane level. Although the

reduction above, wherein the fields are taken to be independent of one worldvolume

direction, removes the topological flux term in (4.129), at the level of the full AKSZ

action it does not. It leaves an extra contribution

1

3!

∫
T [1]Σ3

d3ẑ GIJKL ξ
I ξJ ξKBL , (6.31)

which can be taken as a definition of a flux deformation for our first AKSZ membrane

construction in §1.2.

Alternatively, one can directly induce the topological flux deformation IΣ3,Φ that we

neglected in the action (6.10) by applying the double dimensional reduction technique

from §5.2 in Chapter 4. For this, we first note that, generally, the AKSZ threebrane

sigma-model (4.147) gives the BV action for the sigma-model of [96] for topological

threebranes on an eight-dimensional Spin(7)-manifold M8, with the twist G taken

to be the global self-dual closed four-form corresponding to the Spin(7)-structure on

M8 [95], whose path integral localizes on Cayley four-cycles (threebrane instantons).
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We can then embed our topological brane sigma-models with target G2-manifold

(M7,Φ) into this threebrane theory by taking Σ4 = Σ3 × S1 and M8 = M7 × S1 with

the Cayley four-form

G = dX8 ∧ Φ + ∗Φ . (6.32)

Using double dimensional reduction on a circle as in §5.2 then reproduces the H-

twisted standard Courant sigma-model (4.91) with flux H = wΦ, and consequently

leads to our second AKSZ construction from §1.2 with topological term. On the

other hand, if the original threebrane is localized on S1, i.e. X8 is constant, then the

threebrane theory reduces on t-independent superfields as above to our first AKSZ

construction, with extra flux term (6.31) given by G = ∗Φ. In this setting these

threebrane worldvolume theories are regarded as providing a microscopic description

of topological F-theory [110,113].

2 AKSZ theories for the topological A-model

The topological A-model has been introduced in §2.1.1 in Chapter 2 and its known

AKSZ constructions are closely related to the Poisson sigma-model as was discussed

in §2.2 in Chapter 4. In this section we will follow the general procedure of §1.4 in

Chapter 4 to compute a dimensional reduction, at the level of the AKSZ construction,

for both AKSZ topological membrane theories which we derived in §1.2. In each case

the reduction leads to a new AKSZ formulation for the topological A-model which

differs from the Poisson sigma-model.

2.1 Dimensional reduction of AKSZ membrane sigma-models

We begin by applying a canonical transformation as described in §1.1 in Chapter 4.

Here we will only use infinitesimal canonical transformations, which act on functions

f on the phase space M as

f 7−→ αf = f + ε (f ,α)BV , (6.33)

where ε is an infinitesimal parameter and α is a fermionic functional of the fields

with ghost number −1. We perform such a canonical transformation on our two

AKSZ membrane actions to induce kinetic terms, which will be used for dimensional

reduction.
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For the first AKSZ membrane action (6.17), the fermionic functional we choose

is

α =

∫
T [1]Σ3

d3ẑ
(
ζIDX

I + N IDη
I
)
, (6.34)

where as previously the superworldvolume differential is D = θµ ∂µ. Calculating the

BV bracket
(
S(3)
G2,I

,α
)

BV
term by term we get the BRST-equivalent action

αS(3)
G2,I

= S(3)
G2,I

+ ε
(
S(3)
G2,I

,α
)

BV

=

∫
T [1]Σ3

d3ẑ
(
F I ξ

I + BIGI

+ ε
(
F IDX

I + ξIDζI + BIDN I − GIDη
I
))

.

(6.35)

Similar considerations apply to the second action (6.23): If we restrict the functionals

and hence also the action to half of the fields F , X, ξ and ζ, we get the fermionic

functional of the canonical transformation α =
∫
T [1]Σ3

d3ẑ ζIDX
I which gives us

the BRST-equivalent action

αS(3)
G2,II

=

∫
T [1]Σ3

d3ẑ
(
F I ξ

I + ε
(
F IDX

I + ξIDζI
))

. (6.36)

Now let us turn to the dimensional reduction of the AKSZ membrane sigma-models.

We assume that the target and worldvolume manifolds are products M7 = M6 × S1

and Σ3 = Σ2 × S1, where the coordinates of the target and worldvolume circles are

indexed by I = 7 and µ = t respectively. We use again the expansion (4.150) of

an arbitrary superfield φ ∈ M. In terms of expanded superfields, the symplectic

structure is given by

ω3,I =

∫
T [1]Σ2

d2ẑ

∫
S1

dt
(
− δF̂ I δX

I
t − δ(F t)I δX̂

I − δζ̂I δξIt + δ(ζt)I δξ̂
I

− δĜI δη
I
t + δ(Gt)I δη̂

I − δN̂ I δB
I
t − δ(N t)I δB̂

I
)
,

(6.37)

and the action (6.35) by

αS(3)
G2,I

=

∫
T [1]Σ2

d2ẑ

∫
S1

dt
(
F̂ I ξ

I
t − (F t)I ξ̂

I + B̂I (Gt)I − BI
t ĜI

+ ε
(
F̂ I D̂X

I
t + F̂ I ∂tX̂

I − (F t)I D̂X̂
I + ξ̂I D̂ζ

I
t

− ξ̂I ∂tζ̂I + (ξt)I D̂ζ̂
I − ĜI D̂η

I
t + ĜI ∂tη̂

I

− (Gt)I D̂η̂
I + B̂I D̂N

I
t + B̂I ∂tN̂

I − (Bt)I D̂N̂
I
))

.

(6.38)
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We choose F̂ , X t, φ̂, ξt, Ĝ, ηt, N̂ and Bt to be the ultraviolet fields, and the rest

to be the infrared fields. We define the gauge fixing condition as the Lagrangian

submanifold L defined by X t = ηt = ξt = Bt = 0, and then integrate out the

remaining ultraviolet fields. This leads to the conditions ∂tX̂ = ∂tξ̂ = ∂tη̂ = ∂tB̂ = 0,

so these fields do not depend on t. We also integrate out all of the fields with I = 7

index, and introduce new fields

χi = −
∫
S1

dt (F t)i , pi =

∫
S1

dt (ζt)i ,

hi =

∫
S1

dt (Gt)i , ni = −
∫
S1

dt (N t)i

(6.39)

and

X i = X̂ i , qi = ξ̂i , ηi = η̂ i and bi = B̂i , (6.40)

where we used the index notation I = (i, 7) with i = 1, . . . , 6 the coordinate directions

along M6. Our effective action is then

S(2) eff
G2,I

=

∫
T [1]Σ2

d2ẑ
(
χi q

i + bi hi + ε
(
χiDX

i + qiDpi − hiDηi − biDni
))

,

(6.41)

and the new symplectic form is

ω2,I =

∫
T [1]Σ2

d2ẑ
(
δχi δX

i + δpi δq
i + δhi δη

i + δni δb
i
)
. (6.42)

We now perform another infinitesimal canonical transformation with the same pa-

rameter ε and the fermion

α′ = −
∫
T [1]Σ2

d2ẑ piDX
i −

∫
Σ2

d2σ
(
n

(0)
i dη

(1)
i − n

(1)
i dη

(0)
i

)
(6.43)

in order to eliminate the kinetic terms. In this way we arrive at the action

S(2)
A,I =

∫
T [1]Σ2

d2ẑ
(
χi q

i + bi hi
)
. (6.44)

If we restrict this construction and the dimensional reduction to half of the fields F ,

X, ξ and ζ, we arrive at the action for the dimensional reduction of our second AKSZ

membrane model in the form

S(2)
A,II =

∫
T [1]Σ2

d2ẑ χi q
i . (6.45)

In the following we will introduce AKSZ constructions which give the actions (6.44)

and (6.45), and then relate them to the topological A-model via suitable choices of
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gauge fixing. For this, we equip M7 = M6 × S1 with a direct product metric, where

M6 is a six-dimensional Riemannian manifold with SU(3)-structure, and write the

G2-structure on M7 as

Φ = dX7 ∧B + ρ , (6.46)

where B is an almost Kähler form of type (1, 1) with respect to the almost complex

structure defined by the three-form ρ on M6. If B and ρ are independent of X7, then

dΦ = 0 implies dB = dρ = 0 and M6 is a Calabi-Yau threefold, as in the A-model

topological string theory, where ρ is the real part of the global holomorphic three-

form Ω on M6. However, for the purposes of our ensuing AKSZ constructions only

the Kähler class of the Calabi-Yau structure is required, as in [31]. In particular,

double dimensional reduction on a circle of the flux deformation IΣ3,Φ along the lines

of §5.2 in Chapter 4 gives the B-field coupling IΣ2,w B for the topological string, whose

AKSZ construction is given by the Poisson sigma-model of §2.1 in Chapter 4. Hence

in what follows we shall only require that M6 be a Kähler manifold.

2.2 BV formulation and AKSZ constructions for the A-model

The topological A-model was briefly reviewed in §2.1.1 in Chapter 2, whose Mathai-

Quillen formalism is given in e.g. [108]. Let us now reformulate the topological A-

model with a linearizing auxiliary field, analogously to what we did in §1.1 for the

Mathai-Quillen membrane sigma-model. We introduce two fields baz and bāz with ghost

number 0, and the new BRST transformations given by (2.30) together with

δχaz̄ = baz , δχāz = bāz , δbaz = 0 and δbāz = 0 . (6.47)

The action

SA = δΨA , (6.48)

with the gauge fixing fermion

ΨA = −
∫

Σ2

d2z
(
gab̄
(
χaz̄ ∂zX

b̄ + χāz ∂z̄X
b
)

+
1

2
gab
(
χaz b

b
z + χaz b

b
z

)
+

i

2
Γab̄c̄ ψ

b̄ χc̄z χ
a
z̄ +

i

2
Γābc ψ

b χcz̄ χ
ā
z

)
,

(6.49)

reduces to the action (2.29) after using the equations of motion of the auxiliary fields

baz and bāz which give

baz̄ = − ∂z̄Xa − i Γabc ψ
b χcz̄ and bāz = − ∂zX ā − i Γāb̄c̄ ψ

b̄ χc̄z . (6.50)
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If we define the antifields as

X+
a =

δΨA

δXa
, X+

ā =
δΨA

δX ā
,

(
χ+
a

)
z

=

�
δΨA

δχaz
and

(
χ+
ā

)
z

=

�
δΨA

δχāz
,

(6.51)

we can rewrite (6.48) as a BV-type action

SA =

∫
Σ2

d2z
(
ψaX+

a + ψāX+
ā + baz̄

(
χ+
a

)
z

+ bāz
(
χ+
ā

)
z̄

)
. (6.52)

In the following we give two new AKSZ constructions for the topological A-model,

which each differ from the Poisson sigma-model.

AKSZ construction I.

Our first AKSZ construction for the topological A-model is analogous to the first

AKSZ membrane sigma-model in §1.2. The source dg-manifold is the superworldsheet

W = T [1]Σ2, while the target symplectic dg-manifold is M = T ∗[1]T [−1]T [1]M6,

whereM6 is a Kähler manifold. The base coordinates in T [−1]T [1]M6 are (X i, qi, bi, ηi)

with degree (0, 1, 0,−1), where X i are associated to the coordinates of M6. The

graded fiber coordinates are (χi, pi, ni, hi) with degree (1, 0, 1, 2). The canonical sym-

plectic structure of degree 1 on the target superspace M is

ω2,I = dχi ∧ dX i + dpi ∧ dqi + dhi ∧ dηi + dni ∧ dbi . (6.53)

This gives the same BV symplectic structure on the space M of superfields as in

(6.42), and the AKSZ action is (6.44).

We choose the gauge given by

χ(0) = χ(1) = 0 , p(0) = p(1) = 0 , n(0) = n(1) = 0 , h(0) = h(1) = 0 .

(6.54)

Writing the coordinate indices of the Kähler manifold M6 as before in complex nota-

tion i = (a, ā), where a = 1, 2, 3, and the complex coordinates on the worldsheet Σ2

as (z, z̄), we define the component fields

X(0) i = X i , χ
(2)
i = X+

i , q(0) i = ψi , p
(2)
i = −ψ+

i ,

b(0) a = baz̄ , b(0) ā = bāz , n(2)
a =

(
b+
a

)
z
, n

(2)
ā =

(
b+
ā

)
z̄
,

η(0) a = χaz̄ , χ(0) ā = χāz , h(2)
a = −

(
χ+
a

)
z
, h

(2)
ā = −

(
χ+
ā

)
z̄
.

(6.55)
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With this notation, the gauge fixing of the AKSZ action (6.44) yields the BV action

−SA in (6.52), and it can be gauge fixed further to the A-model action with gauge

fixing fermion −ΨA from (6.49).

AKSZ construction II.

We introduce a second AKSZ construction for the topological A-model, which is the

analogue of the second AKSZ membrane sigma-model in §1.2. We start with the

same source dg-manifold W = T [1]Σ2 as in the previous construction, but now we

choose M = T ∗[1]T [1]M6 to be the target QP-manifold of degree 1 with coordinates

(X i, χi, q
i, pi) with degree (0, 1, 1, 0). The symplectic structure

ω2,II = dχi ∧ dX i + dpi ∧ dqi (6.56)

is the restriction of (6.53). The AKSZ action is also the restriction (6.45).

We introduce the component fields

X(0) i = X i ,
(
χ

(2)
i

)
zz

= X+
i , q(0) i = ψi ,

(
q

(2)
i

)
zz

= ψ+
i ,

X
(1) a
z = χaz ,

(
χ(1)
a

)
z

= −
(
χ+
a

)
z
, X(1) ā

z = χāz ,
(
χ

(1)
ā

)
z

=
(
χ+
ā

)
z
,

q
(1) a
z = baz ,

(
p(1)
a

)
z

= −
(
b+
i

)
z
, q(1) ā

z = bāz ,
(
p

(1)
ā

)
z

=
(
b+
ā

)
z
,

(6.57)

and choose the Lagrangian submanifold as gauge fixing defined by

χ(0) i = 0 , p
(0)
i = 0 ,

(
χ(1)
a

)
z

=
(
χ

(1)
ā

)
z

= 0 ,
(
p(1)
a

)
z

=
(
p

(1)
ā

)
z

= 0 .

(6.58)

This yields the same BV action −SA from (6.52), which gives the A-model action

with gauge fixing fermion −ΨA from (6.49). Note that in neither of these AKSZ

constructions does the target dg-manifold coincide with that of the Poisson sigma-

model from §2.1 in Chapter 4 associated to string fields X : Σ2 →M6.

2.3 Dimensional reduction from the standard Courant sigma-
model

The first AKSZ construction of the A-model can be embedded into the standard

Courant sigma-model, which is a membrane theory, in a similar way as we embedded

our AKSZ membrane sigma-models into the standard 2-Courant sigma-model, which
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is a threebrane theory, in §1.4. For this, let us consider the standard Courant sigma-

model from §3.1 in Chapter 4 on a product worldvolume Σ3 = Σ2 × S1, and assume

that our superfields do not depend on the extra coordinate of S1. The AKSZ action of

the standard standard Courant sigma-model is given by (4.91) and the BV symplectic

form by (4.90). After integration over the extra supercoordinates on T [1]S1 and a

relabelling of superfields, we arrive at the AKSZ action

S(2)
0,red =

∫
T [1]Σ2

d2ẑ
(
χi q

i + bi hi − χiDX i − hiDηi − niDbi − piDqi
)
, (6.59)

and the BV symplectic form

ω2,red =

∫
T [1]Σ2

d2ẑ
(
δχi δX

i + δpi δq
i + δhi δη

i + δni δb
i
)
. (6.60)

This symplectic form is the same as that of the A-model in (6.42), and the AKSZ

action reduces to the A-model action (6.44) if we set the kinetic terms to zero by

definition or via gauge fixing.

3 AKSZ theory for supersymmetric quantum me-

chanics

In this section we continue the dimensional reduction procedure one final time, and

reduce our second AKSZ construction of the A-model to an AKSZ formulation for

supersymmetric quantum mechanics. We have seen in §1.2 and §2.2 that both the

topological A-model and the topological membrane sigma-models on G2-manifolds

have similar AKSZ constructions. Following the same procedure as before we give an

analogous AKSZ construction for supersymmetric quantum mechanics.

3.1 Dimensional reduction of the A-model

We start with the canonically transformed action from (6.41) restricted to the fields

of the second AKSZ construction:

S(2) eff
G2,II

=

∫
T [1]Σ2

d2ẑ
(
χi q

i + ε
(
χiDX

i + qiDpi
))

, (6.61)

and the corresponding symplectic structure from (6.42):

ω2,II =

∫
T [1]Σ2

d2ẑ
(
δχi δX

i + δpi δq
i
)
. (6.62)

130



We apply dimensional reduction method as before and use the same notation as in

(4.150) to calculate the reduction on a product source space Σ2 = S1 × Σ1, where

we distinguish the circle Σ1 = S1 along which the dimensional reduction takes place.

We choose χ̂i, q̂
i, X i

t and (pt)i to be the ultraviolet fields, and we set the gauge

X i
t = 0 and q̂ i = 0. After integrating out the ultraviolet fields, we obtain the

effective action

S(1) eff
A,II =

∫
T [1]S1

dẑ
(
Bi ξ

i + ε
(
−BiDX

i − ξiDηi
))

, (6.63)

and the symplectic structure

ω1 =

∫
T [1]S1

dẑ
(
δBi δX

i + δηi δξ
i
)
, (6.64)

where we relabeled the fields as

Bi = −
∫

Σ1

dt (χt)i , X i = X̂ i , ηi = −
∫

Σ1

dt (pt)i , ξi = − q̂ i ,

(6.65)

and these new fields are independent of the coordinate t of Σ1.

The infinitesimal canonical transformation (6.33) with the fermionic functional

α =

∫
T [1]S1

dẑ ηiDX
i (6.66)

gives the action

S(1)
SQM =

∫
T [1]S1

dẑ Bi ξ
i . (6.67)

We will see in §3.2 below that this action gives an AKSZ formulation of supersymmet-

ric quantum mechanics (see Appendix 9). Nothing we discuss in this section depends

on the target space Kähler structure nor even on its dimensionality, and the reduction

of the topological sigma-model described here applies to generic maps whose target

is any Riemannian manifold.

3.2 AKSZ construction

Following the procedure in §1.2 and §2.2, we give an AKSZ formulation of super-

symmetric quantum mechanics which reduces to the action (A.135) after gauge fixing

and eliminating the auxiliary field bi. Our source dg-manifold is W = T [1]S1 and

the target symplectic dg-manifold is M = T ∗(T [1]M), where M is a Riemannian
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manifold with metric g. Denote the degree 0 and 1 coordinates of T [1]M by X i and

ξi, respectively, and their cotangent coordinates by Bi and ηi with degree 0 and −1,

respectively. The canonical symplectic structure on M = T ∗(T [1]M) is

ω1 = dBi ∧ dX i + dηi ∧ dξi , (6.68)

which gives the same symplectic form on the mapping space of superfields M as in

(6.64). The AKSZ superfields are expanded as

X i = xi − b+ i θ ,

Bi = − bi + x+
i θ ,

ξi = −ψi + ψ̄+ i θ ,

ηi = ψ̄i − ψ+
i θ ,

(6.69)

where the superworldline coordinate θ has degree 1. Our choice for the AKSZ action

is the same as that in (6.67) which was obtained from the dimensional reduction of

the A-model:

S(1)
SQM =

∫
T [1]S1

dẑ Bi ξ
i = −

∫
S1

dτ
(
ψi x+

i + bi ψ̄
+ i
)
, (6.70)

and it trivially solves the classical master equation (S(1)
SQM,S

(1)
SQM)BV = 0. The BV–

BRST transformations6 are generated by the cohomological vector field given by the

BV bracket QSQM = (S(1)
SQM, · )BV and read as

QSQMx
i = ψi and QSQMψ

+
i = x+

i ,

QSQMψ
i = 0 and QSQMx

+
i = 0 ,

QSQMψ̄i = bi and QSQMb
+ i = − ψ̄+ i ,

QSQMbi = 0 and QSQMψ̄
+ i = 0 .

(6.71)

The nilpotent fermionic symmetryQSQM acts trivially on the AKSZ action SSQM.

We reduce the action S(1)
SQM to ISQM after gauge fixing. We choose the same gauge

fixing fermion −ΨSQM as in (A.141). The pertinent antifields are given by

x+
i = − δΨSQM

δxi
= − i ˙̄ψi +

1

2
∂i
(
Γjml g

mk
)
ψ̄j ψ̄k ψ

l − 1

2
∂ig

jk ψ̄j bk ,

ψ̄+ i = −
�
δΨSQM

δψ̄i
= i ẋi + Γ[i

lk g
j]l ψ̄j ψ

k − 1

2
gij bj ,

(6.72)

6The action S(1)
SQM is also invariant under the transformations δx+i = bi, δψ̄

+ i = ψi, δψi = 0 and

δbi = 0, and under the transformations δx+i = 0, δψ̄+ i = 0, δψi = ψ̄+ i and δbi = −x+i , but our
transformations do not include these.
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where the other gauge fixing equations are not important here. Calculating the gauge

fixed action of S(1)
SQM we get the action (A.142), which is classically equivalent to

ISQM.
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Chapter 7

Conclusions

Summary

In the thesis we presented our results related to topological aspects of string theory.

In Chapter 3 we derived an analog of the large N Gross-Taylor holomorphic string

expansion for (q, t)-deformed U(N) Yang-Mills theory on a compact oriented Riemann

surface, which arises in the study of BPS black holes and refined topological strings. In

the classical limit q = 1, the expansion defines a new β-deformation for Hurwitz theory

of branched covers wherein the refined partition function is a generating function for

certain parameterized Euler characters, which reduce in the unrefined limit β = 1 to

the orbifold Euler characteristics of Hurwitz spaces of holomorphic maps. We also

applied the large N expansion to observables corresponding to open surfaces and

Wilson loops.

In Chapter 5 we studied AKSZ formulations of the topological A- and B-models within

the framework of double field theory. We introduced a two-dimensional sigma-model

on doubled space, which describes both the A- and B-models simultaneously. We

uplifted it to the membrane level as a three-dimensional Courant sigma-model, which

can accommodate both geometric and non-geometric fluxes. We applied the projec-

tion to DFT vectors on the Courant sigma-model of double field theory, which led

to the introduction of the Courant sigma-model of a particular class of generalized

complex structures, and also its corresponding Courant algebroid. We also studied

two marginal cases, the purely Poisson and purely complex structure cases, which

were reduced to the A- and B-models on their boundaries respectively. We also pro-

posed an S-duality at the level of the Courant sigma-model based on the generalized
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complex structure, which was interpreted as topological S-duality of the A- and B-

models.

Finally in Chapter 6 we have constructed BV quantized topological membrane theo-

ries on G2-manifolds using the AKSZ formulation, which unify the topological mem-

brane theories of [107] and [110]. We have dimensionally reduced them to the A-

model, and one of them has been reduced further to supersymmetric quantum me-

chanics. We have further proposed a topological three-brane model given by the

AKSZ construction, which reduces to our AKSZ membrane theories upon worldvol-

ume dimensional reduction. Its derived bracket is the standard 2-Courant bracket,

which appears in exceptional generalized geometry as the antisymmetrization of the

generalized Lie derivative, and it is also the induced bracket of anomaly-free current

algebras of topological membranes on G2-manifolds [96]. We have found that double

dimensional reduction on a circle of our threebrane model with G-flux twisting yields

the twisted standard Courant sigma-model, which geometrizes the H-flux in type II

string theory.

Outlook

One would expect that coefficients in the large N expansion of (q, t)-deformed Yang-

Mills theory have relation to quantities in refined topological string. This connection

is not even fully investigated in the expansion of the original q-deformed version, so it

can be a further direction to study their. So far we worked only on the chiral part of

the partition function in the topological limit, thus another direction can be to go one

step further and derive the full expansion of the partition function. Besides the open

surface and Wilson loop observables there are other observables in the theory: defect

holonomy punctures on the surface. This would be another avenue for further study.

Our new deformation of Hurwitz theory has not found a full geometrical meaning,

therefore it would be interesting to interpret it better geometrically.

It would be interesting to study further the appearance of generalized geometry and

double field theory in the context of the A- and B-models as they are defined orig-

inally in standard (not generalized) Calabi-Yau manifolds. The double field theory

formulation of the A- and B-models also allows for the introduction of both geometric

and non-geometric fluxes, which would be a further open direction to investigate its

physical relevance, particularly in the context of topological string theory. The fluxes
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correspond to twist deformations of the proposed Courant algebroids which lead to

the introduction of twists of the generalized and original complex structures, which

is another avenue for further investigation. Another direction would be to find a

Courant algebroid which gives the identities of a general version of generalized com-

plex structure, and to relate it to the double field theory formulations of the A- and

B-models. Our S-duality gives a continuous mapping between the A- and B-models,

so it would be interesting to investigate whether the intermediate membrane theory

has a clearer physical relevance. A surprising observation is that our S-duality arises

from the T-duality inspired generalized complex geometry, thus it raises the question

as to whether there is a physical origin behind this relation or whether it is just a

coincidence found in the topological field theories.

Our constructions related to topological membranes on G2-manifolds are the starting

point for the introduction of exceptional generalized geometry [99, 100, 114] and M-

theory fluxes [115,116] for membranes in M-theory described by the AKSZ formalism.

The first step towards this goal is our AKSZ threebrane sigma-model with its derived

standard 2-Courant bracket. However, implementing non-geometric M-theory fluxes

into this setting seems somewhat perplexing. In the string theory setting, T-duality

in AKSZ membrane theory acts as a duality between standard and contravariant

Courant sigma-models, and also transforms geometric H-flux and non-geometric R-

flux into each other [84]. It is tempting to try lifting this T-duality to a duality at the

level of AKSZ threebrane theory, which transforms our threebrane into another topo-

logical threebrane with non-geometric flux. In the case of the Courant sigma-models,

the duality interchanges the degree 1 coordinates ψi and χi, and it is implemented as

a canonical transformation given by a bivector and its T-dual two-form B-field. For

the 2-Courant sigma-models, it is natural to expect that there similarly exist canoni-

cal transformations which implement the interchange between the degree 2 quantities

ψi ψj and χi. In this case a trivector and a three-form would arise, which should be re-

lated to the trivector and three-form C-field in exceptional generalized geometry. But

unfortunately this does not seem to be the case as there are no symplectomorphisms

which interchange ψi ψj and χi. Thus implementing this duality and non-geometric

fluxes seems to be far more complicated than in the string theory case.

In [117] a closed string on a G2-manifold has been proposed as the dual of a topological

G2 membrane, and its quantization at one-loop order is considered in [118], which

may be relevant to the quantization of our membrane construction that is of interest

when considering its connection to physical string theory (see also [107]). Likewise
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an open G2 string theory is introduced in [119], wherein the worldvolume theory of

associative three-cycles has a membrane formulation given by a gauge fixed Chern-

Simons theory coupled to normal deformations of the cycle. A further development

would be to give an AKSZ construction for this three-cycle theory, and to compare it

with our AKSZ topological membrane theories. It would also be interesting to study

the topological membrane of [120] in the context of the AKSZ construction. We also

studied the derived bracket of one of our AKSZ topological membrane theories whose

target is a derived symplectic dg-manifold with fields of negative degree, which gave

an L∞-extension of the standard Courant bracket. It would be interesting to study

further the consequences of this more complex derived algebroid structure. Finally, in

the present paper we also derived AKSZ constructions for the A-model, hence one of

the applications of our results is to study the possible dualities between the A-model

and the B-model at the level of the AKSZ formalism, and in particular to find a

realization of S-duality [45] in AKSZ theory. In this respect it would be interesting

to study further the threebrane theory of calibrated four-cycles on eight-dimensional

Spin(7)-manifolds that we discussed in §1.4 in Chapter 6, which may be relevant to

the study of S-duality as in [113].
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Appendix A

1 Hurwitz theory of branched covers

Hurwitz theory is the theory of branched covers (see [34, 121, 122]). An n-sheeted

branched covering of Riemann surface Σh with an other Riemann surface Σg is a

continuous map f : Σg → Σh, which covers Σh n times in the sense that in the

neighborhood of every point Q ∈ Σg the map f looks like z 7→ zn(Q) locally, where

n(Q) is called the ramification index of Q. Illustratively speaking n(Q) is the number

of covering sheets meet in the ramification point Q. The image of the point Q is

the branch point P , and the sum of all ramification indices corresponding to a given

branch point is called the degree of f

deg(f) =
∑

Q∈f−1(P )

n(Q) = n , (A.1)

which is simply n in our case, therefore fixed for all branch points. The sum

BP =
∑

Q∈f−1(P )

(n(Q)− 1) (A.2)

is called the branching number at P . The branching number of f is the sum of the

branching numbers

B =
∑

P∈S(f)

BP , (A.3)

where S(f) is the set of all branch points and it is called the branch locus. The genus

g of the covering space Σg is determined by the Riemann-Hurwitz formula

2g − 2 = n(2h− 2) +B . (A.4)

Two branch covers are equivalent if there exists a homeomorphism φ : Σg → Σg such

that f1 ◦ φ = f2. An automorphism of a branch cover f is a homeomorphism of Σg

which leaves the image invariant.
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Lifting a closed curve in Σh acts as a permutation on the sheets of Σg, so it seems

natural to reformulate the counting of equivalence classes of branched covers in the

language of symmetric groups.

We start with the homotopy group π1(Σh \ {P1, . . . , PL}, y0) of a Riemann surface Σh

with genus h and L punctures {Pi} at a fixed point y0. It is isomorphic to the free

group modulo constraint

π1(Σh \ {P1, . . . , PL}, y0) ∼=

〈
{αi, βi}hi=1 , {γ}

L
s=1

∣∣∣∣∣
L∏
s=1

γs

h∏
i=1

αiβiα
−1
i β−1

i = 1

〉
.

(A.5)

The number of distinct homomorphism (i.e. not connected through inner automor-

phism)

ψ : π1(Σh \ {P1, . . . , PL}, y0)→ Sn (A.6)

is the same as the number of equivalence classes of n-fold branched coverings of Σh

with P1, . . . , PL branch points:

n!

|C(ψ)|
=

n!

|Aut(f)|
, (A.7)

where C(ψ) is the centralizer of ψ and also the subgroup of Sn, which acts on ψ

as an inner automorphism and leaves ψ invariant. The factor n! is coming from the

all possible permutations of n sheets, and |Aut(f)| is the order of the automorphism

group of f , which is isomorphic to C(ψ). So the number of distinct homomorphism

ψ, which acts as

ψ : αi 7→ σi , ψ : βi 7→ τi , ψ : γi 7→ ζi (A.8)

on the generators of π1(Σh \ {P1, . . . , PL}, y0), can be counted by the delta function

on Sn

∑
σ1,τ1,...,σh,τh,ζ1,...,ζL∈Sn

δ

(
L∏
s=1

ζs

h∏
i=1

σiτiσ
−1
i τ−1

i

)
=

∑
f∈Hn,B,h,L

n!

|Aut(f)|
, (A.9)

where we have introduced the Hurwitz space Hn,B,h,L, which is the space of n-sheeted

branched covers of a Riemann surface with genus h, branching number B and L

branch points.

One can express the left hand side of (A.9) in terms of central elements cµ =
∑

σ∈Tµ σ

in the symmetric group algebra, where Tµ is the conjugacy class corresponding to the
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partition µ. Then we define the Hurwitz number

Hh,n

(
µ1, . . . , µL

)
=

1

n!

∑
σ1,τ1,...,σh,τh∈Sn

δ
(
cµ1 · · · cµL

h∏
i=1

σi τi σ
−1
i τ−1

i

)
, (A.10)

which depends on the ramification profiles of the L branch points P1, . . . , PL. They

are specified by partitions µ1, . . . , µL ∈ Λn
+ such that µl =

(
µl1, . . . , µ

l
`(µl)

)
are the ram-

ification indices of the preimages f−1(Pl). The Hurwitz number has an explicit com-

binatorial expression given by the Frobenius-Schur formula [123, Appendix A]

Hh,n

(
µ1, . . . , µL

)
= (n!)2h

∑
λ∈Λn+

1

(dλ)L+2h−2

L∏
l=1

χrλ
(
mT

µl

)
zµl

. (A.11)

Note that Hh,n(µ1, . . . , µL) is independent of the branch point positions P1, . . . , PL ∈
Σh and also of the choice of (fixed) complex structure on Σh.

2 Quantum group Uq(glN)

For a generic value of q, let Uq(glN) be the associative algebra over C with generators

Ei, Fi for i = 1, . . . , N − 1 and q±Hi/2 for i = 1, . . . , N obeying the relations

qHi/2Ei q
−Hi/2 = q1/2Ei ,

qHi/2Ei−1 q
−Hi/2 = q−1/2Ei−1 ,

qHi/2 Fi q
−Hi/2 = q−1/2 Fi ,

qHi/2 Fi−1 q
−Hi/2 = q1/2 Fi−1 ,[

qHi/2, Ej
]

=
[
qHi/2, Fj

]
= 0 for j 6= i, i− 1 ,

[Ei, Fj] = δij
q(Hi−Hi+1)/2 − q−(Hi−Hi+1)/2

q1/2 − q−1/2
,

[Ei, Ej] = [Fi, Fj] = 0 for |i− j| > 1 ,

E2
i Ej −

(
q1/2 + q−1/2

)
EiEj Ei + Ej E

2
i = 0 for |i− j| = 1 ,

F 2
i Fj −

(
q1/2 + q−1/2

)
Fi Fj Fi + Fj F

2
i = 0 for |i− j| = 1 . (A.12)
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In the fundamental representation (3.16), we have Hi = Eii, Ei = Ei i+1 and Fi =

Ei+1 i. The coproduct on Uq(glN) is defined by

∆(Ei) = Ei ⊗ q−(Hi−Hi+1)/2 + q(Hi−Hi+1)/2 ⊗ Ei ,

∆(Fi) = Fi ⊗ q−(Hi−Hi+1)/2 + q(Hi−Hi+1)/2 ⊗ Fi ,

∆
(
qHi/2

)
= qHi/2 ⊗ qHi/2 . (A.13)

3 Hecke algebra of type An−1

The symmetric group Sn of degree n ≥ 2 is generated by the elementary transposi-

tions σi = (i i+ 1) for i = 1, . . . , n− 1 satisfying the relations

σi σi+1 σi = σi+1 σi σi+1 , σi σj = σj σi for |i− j| > 1 and σ2
i = 1 .

(A.14)

The length `(σ) of a permutation σ ∈ Sn is the smallest integer r such that there exists

i1, . . . , ir with σ = σi1 · · ·σir ; such an expression is called a decomposition of σ into a

reduced word. Note that decompositions into reduced words are not unique.

The Hecke algebra Hq(Sn) of Sn for n ≥ 2 is the algebra over Hq(S0) = Hq(S1) :=

C[q, q−1] generated by gi for i = 1, . . . , n− 1 with the relations

gi gi+1 gi = gi+1 gi gi+1 , gi gj = gj gi for |i−j| > 1 and (gi−q) (gi+1) = 0 .

(A.15)

The inverse of the generator gi is

g−1
i = q−1 gi +

(
q−1 − 1

)
. (A.16)

If σ = σi1 · · ·σir is a decomposition of σ ∈ Sn in the form of a reduced word, then

we set h(σ) = gi1 · · · gir ∈ Hq(Sn). One can show that h(σ) is independent of the

decomposition of σ into a reduced word and that
{
h(σ)

}
σ∈Sn

is a C[q, q−1]-basis of

the free C[q, q−1]-module Hq(Sn). Given σ, τ ∈ Sn with `(σ τ) = `(σ) + `(τ), one

has h(σ) h(τ) = h(σ τ). The algebra Hq(Sn) is a q-deformation of the group algebra

C[Sn]; in the classical limit q = 1 the element h(σ) becomes the permutation σ. The

combinatorial identity ∑
σ∈Sn

q`(σ) = q
n (n−1)

4 [n]q! (A.17)

expresses a q-deformation of the order of Sn, where we defined the q-factorial [n]q! :=

[1]q · · · [n]q.
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The irreducible representations rλ of the symmetric group Sn are in one-to-one corre-

spondence with partitions λ of n. In particular, the sign representation det =
∧nR⊗nω1

corresponds to the trivial partition λ = (n) while the trivial representation corre-

sponds to the maximal partition λ = (1n) with n parts. The splitting (2.58) then gives

the decomposition of R⊗nω1
into subrepresentations corresponding to its λ-isotopical

components. The q-deformation of the dimension of rλ is given by

dλ(q) =

∏
i<j

(
q`i − q`j

)
`(λ)∏
i=1

(
q − 1

) (
q2 − 1

)
· · ·
(
q`i − 1

)
(
q − 1

) (
q2 − 1

)
· · ·
(
qn − 1

)
q
`(λ) (`(λ)−1) (`(λ)−2)

6

, (A.18)

where `(λ) is the length of the partition λ (the number of non-zero λi) and `i =

λi + `(λ) − i. In the classical limit q → 1 this expression reduces to the usual

dimension formula

dλ(1) = dλ := χrλ(1) =
n!

`(λ)∏
i=1

`i!

∏
1≤i<j≤`(λ)

(`i − `j) . (A.19)

4 Center of Hq(S∞)

There is a natural embedding of Hecke algebras Hq(Sn) ↪→ Hq(Sn+1), and so the in-

ductive limit of Hq(Sn) as n→∞ exists [59]; we write this inductive limit as Hq(S∞).

We want to find an inductive limit of central elements of the Hecke algebras as well.

Firstly we need an embedding of central elements given by a monomorphism

ϕn : Z̃
(
Hq(Sn)

)
� � // Z̃

(
Hq(Sn+1)

)
, (A.20)

where Z̃
(
Hq(Sn)

)
is a linear subspace of the center Z

(
Hq(Sn)

)
of the algebra Hq(Sn)

such that ∑
i

Tr R⊗nω1

(
Φn xC

(n)
i U

)
=
∑
i

Tr R⊗nω1

(
Φn xC

(n+1)
i U

)
, (A.21)

for U ∈ T and x ∈ Hq(Sn), where C
(n)
i span a linear basis of Z̃

(
Hq(Sn)

)
.

According to [124, Theorem 2.14], the center Z
(
Hq(Sn)

)
is the algebra of symmetric

polynomials in the Murphy operators Li, i = 1, . . . , n, which are defined as

L1 = h(1) = 1 ,

Li = q−(i−1)

i−1∑
j=1

qj−1 h
(
(j i)

)
for i > 1 , (A.22)
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where (i j) = σi · · ·σj−2 σj−1 σj−2 · · ·σi for j > i is the transposition which in-

terchanges i and j. For example, using the definition of the central elements CT

from (3.21), for n = 3 we obtain C(1,1,1) = 1, C(2,1) = q (L2 + L3) and C(3) =
q2

2
(L2 L3+L3 L2) as homogeneous symmetric polynomials in Murphy operators.

Given a symmetric polynomial s(L1, . . . , Ln) in Li ∈ Hq(Sn), we need to embed it into

Hq(Sn+1), but a symmetric polynomial in n variables is not necessarily a symmetric

polynomial in n+ 1 variables so we need a non-trivial embedding. Because of (A.21)

we require

ϕn
(
s(L1, . . . , Ln)

)
= s(L1, . . . , Ln) + p(L1, . . . , Ln+1) , (A.23)

where p(L1, . . . , Ln+1) is not necessarily a symmetric polynomial. If Z̃
(
Hq(Sn)

)
is

the space of homogeneous symmetric polynomials in Murphy operators, then ϕn is

unique and so there exists just one p for every s in (A.23). For example one has

ϕ1(1) = 1 ,

ϕ2(L2) = L2 + L3 ,

ϕ3(L2 L3 + L3 L2) = L2 L3 + L3 L2 + L2 L4 + L4 L2 + L3 L4 + L4 L3 . (A.24)

In the representation R⊗nω1
, the Murphy operator Ln+1 is represented as 0 if gn+i ·

(Rω1 ⊗ · · · ⊗Rω1) = 0 for i ≥ 0. Hence we get

ϕn
(
s(L1, . . . , Ln)

)
· (Rω1 ⊗ · · · ⊗Rω1) = s(L1, . . . , Ln) · (Rω1 ⊗ · · · ⊗Rω1) . (A.25)

All elements of Z̃
(
Hq(Sn+1)

)
either belong to the image of ϕn, or else all of their

monomials contain at least one factor Ln+1 and so are represented as 0 in R⊗nω1
.

Using this embedding, we can now take the inductive limit of Z̃
(
Hq(Sn)

)
as n→∞,

which is given by the equivalence classes

Z̃
(
Hq(S∞)

)
=
∞⊔
n=1

Z̃
(
Hq(Sn)

) /
∼ (A.26)

where x ∼ y if and only if y = ϕm−1 ◦ ϕm−2 ◦ · · · ◦ ϕn(x) for x ∈ Z̃
(
Hq(Sn)

)
,

y ∈ Z̃
(
Hq(Sm)

)
and m > n; here the disjoint union over Z̃

(
Hq(Sn)

)
is factorized

with a sequence of the embeddings.

Now we can consider the transformation of a function f(U) for U ∈ T given by

f(C) =
∞∑
n=0

∫
T

[dU ]q,t Tr R⊗nω1
(Φn ynC U) f(U) , (A.27)
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for yn ∈ Hq(Sn) and C ∈ Z̃
(
Hq(S∞)

)
, provided the series converges. Here we defined

the integration measure

[dU ]q,t :=
(−1)N

N !

N∏
i=1

dzi ∆q,t(x) ∆q,t(x
−1) (A.28)

where

∆q,t(x) := t−
N (N−1)

2

∏
i<j

(
xi x

−1
j ; q

)
∞(

t xi x
−1
j ; q

)
∞

=

β−1∏
m=0

∏
i<j

(
q−m/2 e (zj−zi)/2 − qm/2 e (zi−zj)/2

)
(A.29)

for β ∈ Z>0, with U = e (z,H) and x = e z. In the unrefined limit β = 1, the measure

(A.28) reduces to the usual Haar measure

[dU ]q = [dU ]q,q =
1

N !

N∏
i=1

dzi ∆q(x)2 (A.30)

for integration over the maximal torus T ⊂ G, where

∆q(x) = ∆q,q(x) =
∏
i<j

2 sinh
( zi − zj

2

)
(A.31)

is the Weyl determinant for G = U(N).

5 Proof of several statements

In this part we present several proofs of the statements used in our derivation of the

chiral expansion of (q, t)-deformed Yang-Mills theory.

Lemma A.32 Tr R⊗nω1

(
Φn U h(σ)

)
=
∑
λ∈Λn+

χrλ
(
h(σ)

)
χΦλβ−2

(U) .

Proof: Starting from the projector and centrality properties of Pλ in the Hecke algebra

along with (3.4) we compute

Tr R⊗nω1

(
Φn U h(σ)

)
=

∑
λ,µ∈Λn+

Tr R⊗nω1

(
(Pµ ⊗ 1Wβ−1

) (Pµ ⊗ 1Wβ−1
) Φn Pλ U h(σ)Pλ

)
=

∑
λ∈Λn+

Tr Rλ⊗rλ

((
Φλβ−2

⊗ 1rλ

) (
U ⊗ h(σ)

))
(A.33)

=
∑
λ∈Λn+

Tr Rλ
(
Φλβ−2

U
)

Tr rλ
(
h(σ)

)
=

∑
λ∈Λn+

Tr Rλ
(
Φλβ−2

U
)
χrλ
(
h(σ)

)
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as required. �

Lemma A.34 The (q, t)-trace is cyclic: Tr q,t(x y) = Tr q,t(y x) for all x, y ∈
Hq(Sn).

Proof: Since the reduced words {h(σ)}σ∈Sn form a basis of Hq(Sn), we can express

Tr q,t(x y) as a linear combination of (q, t)-traces Tr q,t
(
h(σ) h(τ)

)
, and therefore we

only need to show that Tr q,t
(
h(σ) h(τ)

)
= Tr q,t

(
h(τ) h(σ)

)
for all σ, τ ∈ Sn. We

first prove that Φn and the Hecke algebra generators gi commute. Let us consider a

fixed element fj of a basis {fi} ⊂ Wβ−1, with corresponding dual basis {f i}. If we

restrict the codomain of Φn to fj, then fj |Φn ∈ EndUq(glN )

(
R⊗nω1

)
and using quantum

Schur-Weyl duality we can decompose this restriction as

fj

∣∣Φn =
⊕
λ∈Λn+

(
fj

∣∣Φn

)∣∣
Rλ
⊗ 1rλ , (A.35)

where ( fj |Φn )|Rλ ∈ EndUq(glN )(Rλ). It follows that fj |Φn acts on the Hecke algebra

representation rλ as the identity, and so fj |Φn and gi commute. Note that gi commutes

with U⊗n, because both P and R ∈ Uq(glN) ⊗ Uq(glN) commute with t(ρ,H) ⊗ t(ρ,H).

Thus we get

Tr R⊗nω1

(
fj

∣∣Φn U x y
)

= Tr R⊗nω1

(
fj

∣∣Φn U y x
)

(A.36)

and hence

Tr q,t(x y) = Tr R⊗nω1

(
Φn U x y

)
= f j

(
Tr R⊗nω1

( fj |Φn U x y )
)
fj

= Tr R⊗nω1

(
Φn U y x

)
= Tr q,t(y x) . (A.37)

�

Lemma A.38 The coefficients defined by Φn(ei1⊗· · ·⊗ein) = Pi1···in
j1···jn

α ej1⊗· · ·⊗
ejn ⊗ wα are simply

Pi1···in
j1···jn = (gω1)−n/2 δi1

j1 · · · δinjn .

Proof: We start with the n = 2 case. By Uq(glN)-equivariance we have the rela-

tions

Φ2 ∆(Hp) = ∆2(Hp) Φ2 for p = 1, . . . , N (A.39)
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as operators on R⊗2
ω1
→ R⊗2

ω1
⊗Wβ−1, where ∆(Hp) = Hp⊗ 1+ 1⊗Hp and ∆2(Hp) =

(∆ ⊗ 1)∆(Hp). We evaluate both sides of this equation on a generic basis element

ei ⊗ ej of Rω1 ⊗ Rω1 , and denote the action of the Cartan generators on the weight

subspaces of Wβ−1 as Hpw
α = αpw

α with αp ∈ C. Then the equality can be written

as (
Ppj

kl
α δpi + Pip

kl
α δpj

)
ek ⊗ el ⊗ wα = (A.40)

Pij
kl
α

(
δpk ep ⊗ el + δpl ek ⊗ ep + αp ek ⊗ el

)
⊗ wα .

In particular, for the weight α = 0 component we obtain the constraints

Pij
kl (δpk + δpl − δpi − δpj) = 0 (A.41)

for all i, j, k, l, p = 1, . . . , N . The tensor Pij
kl = δi

k δj
l solves this equation, and it

is the unique solution up to normalization. The normalization is found as above by

observing that the intertwiner Φ2 acts in the (q, t)-trace as a multiple of the identity

operator 1Rω1
⊗ 1Rω1

, with proportionality constant (gω1)−1.

Next we have to generalize this expression to the (q, t)-trace of the connected mini-

mal word g1 g2 · · · gn−1 for n ≥ 2. Setting Pi1···in
j1···jn := Pi1···in

j1···jn
0, by a completely

analogous argument to that used in the proof of Lemma A.38 one obtains the con-

straints

Pi1···in
j1···jn (δp j1 + · · ·+ δp jn − δp i1 − · · · − δp in) = 0 (A.42)

for all p, i1, . . . , in, j1, . . . , jn = 1, . . . , N , and Pi1···in
j1···jn = δi1

j1 · · · δinjn solves this;

thus again Φn acts in the (q, t)-trace as a multiple of the identity operator 1⊗nRω1
with

the normalization determined as before to be (gω1)−n/2, and we find

Pi1···in
j1···jn = (gω1)−n/2 δi1

j1 · · · δinjn . (A.43)

�

Lemma A.44

Tr R⊗nω1

(
Φn t

(ρ,H) g1 g2 · · · gn−1

)
=

(gω1)−n/2
qn

q − 1

n−1∑
k=0

t(n−1−k) N+1
2

(
q−1; t

)
k+1

(t; t)k
ζn−1−k(q, t) [N ]tk+1 ,
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where

ζ0(q, t) := 1 ,

ζm(q, t) :=
∑
λ∈Λm+

(−1)`(λ) Lλ

`(λ)∏
i=1

(
q−1; t

)
λi

(t; t)λi
for m > 0 .

and Lλ is a combinatorial weight defined by

Lλ =
`(λ)!∣∣Aut(λ)

∣∣ with
∣∣Aut(λ)

∣∣ =

|λ|∏
i=1

mi(λ)! .

Proof: To simplify the derivation, let us introduce the short-hand notation

ξk := tk
N+1

2
q − 1

tk − 1
and ϕk :=

tk − q
tk − 1

. (A.45)

Using (3.28), we then compute the first partial trace from (3.33) as

O1 :=
(
Tr Rω1

⊗ 1
⊗(n−1)
Rω1

)(
(t(ρ,H) ⊗ 1

⊗(n−1)
Rω1

) g1

)
= ξ1 1

⊗(n−1)
Rω1

+ ϕ1 t
(ρ,H) ⊗ 1

⊗(n−2)
Rω1

.

(A.46)

The factors of t(ρ,H) can be cyclically permuted in the partial traces, so for 0 ≤ m ≤
n− 1 the m-th partial trace

Om :=
(
Tr Rω1

⊗ 1
⊗(n−m)
Rω1

)(
(t(ρ,H) ⊗ 1

⊗(n−m)
Rω1

) g1

)
· · ·

(
Tr Rω1

⊗ 1
⊗(n−2)
Rω1

)(
(t(ρ,H) ⊗ 1

⊗(n−2)
Rω1

) g1

)
(A.47)

×
(
Tr Rω1

⊗ 1
⊗(n−1)
Rω1

)(
(t(ρ,H) ⊗ 1

⊗(n−1)
Rω1

) g1

)
can be written as

Om =
m∑
k=0

f
(m)
k [ξ, ϕ] tk (ρ,H) ⊗ 1

⊗(n−m−1)
Rω1

, (A.48)

where f
(m)
k [ξ, ϕ] for 0 ≤ k ≤ m are polynomials in ξl and ϕl with l ≤ k. We derive a

recursion relation for f
(m)
k inductively by writing

Om+1 =
m∑
k=0

f
(m)
k

(
Tr Rω1

⊗ 1
⊗(n−m−1)
Rω1

)(
(t(k+1) (ρ,H) ⊗ 1

⊗(n−m−1)
Rω1

) g1

)
(A.49)

and using (3.28) to get

Om+1 =
m∑
k=0

f
(m)
k ξk+1 1

⊗(n−m−1)
Rω1

+
m∑
k=0

f
(m)
k ϕk+1 t

(k+1) (ρ,H) ⊗ 1
⊗(n−m−2)
Rω1

. (A.50)
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Comparing this with the expansion (A.48) forOm+1 yields the recursion relations

f
(m+1)
0 =

m∑
k=0

f
(m)
k ξk+1 , (A.51)

f
(m+1)
k+1 = f

(m)
k ϕk+1 (A.52)

with initial condition f
(0)
0 = 1.

For k > 0 we can use (A.52) to express f
(m)
k entirely in terms of f

(m)
0 as

f
(m)
k = ϕ1 · · ·ϕk f (m−k)

0 =
qk+1

q − 1

(
q−1; t

)
k+1

(t; t)k
f

(m−k)
0 , (A.53)

where we introduced the q-Pochhammer symbols

(a; q)k :=
k−1∏
l=0

(
1− a ql

)
for 0 < k ≤ ∞ (A.54)

and (a; q)0 := 1. Using (A.51) we can express f
(m)
0 recursively as

f
(m)
0 =

m−1∑
k=0

f
(k)
0 φm−k , (A.55)

where we defined

φk := ξk ϕ1 · · ·ϕk−1 = −tk
N+1

2 qk
(
q−1; t

)
k

(t; t)k
. (A.56)

It is easy to see that the solution to this recursion with f
(0)
0 = 1 is given by an

expansion into partitions of m as

f
(m)
0 =

∑
λ∈Λm+

Lλ φλ , (A.57)

where this formula should be understood in the large N limit as it involves a sum

over all partitions of m. Here φλ :=
∏`(λ)

i=1 φλi with `(λ) the length of the partition λ,

and the combinatorial weight

Lλ =
`(λ)!∣∣Aut(λ)

∣∣ (A.58)

is the number of distinguishable orderings of λ (e.g. L(2,1) = 2 and L(1,1) = 1),

where ∣∣Aut(λ)
∣∣ =

|λ|∏
i=1

mi(λ)! (A.59)
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is the order of the automorphism group of λ consisting of permutations σ ∈ S`(λ)

such that λσ(i) = λi for all i, and mi(λ) is the number of parts of λ equal to i. For

example, the first four terms are given by

f
(1)
0 = φ1 ,

f
(2)
0 = φ2 + φ2

1 ,

f
(3)
0 = φ3 + 2φ1 φ2 + φ3

1 ,

f
(4)
0 = φ4 + 2φ1 φ3 + φ2

2 + 3φ2
1 φ2 + φ4

1 . (A.60)

We can finally evaluate the (q, t)-trace of the connected minimal word using (3.33)

and (A.48) to write

Tr R⊗nω1

(
Φn t

(ρ,H) g1 g2 · · · gn−1

)
= (gω1)−n/2 Tr Rω1

(
t(ρ,H)On−1

)
= (gω1)−n/2

n−1∑
k=0

f
(n−1)
k Tr Rω1

(
t(k+1) (ρ,H)

)
,

(A.61)

and using (3.26), (A.53) and (A.57) we get the required statement. �

Lemma A.62 If λ, µ, ν, λβ, µβ and νβ are all partitions, then for large N one has

Ñ ν
µλ = N

νβ
µβ λβ

in Uq(glN).

Proof: Let us consider Tr R⊗nω1
(Φn Pλβ U) for λ ∈ Λn

+. The trace takes values in the

weight zero subspace of Wβ−1 from (2.87), and in this subspace the intertwiner Φn

acts proportionally to the identity on R⊗nω1
via (A.43). This yields

Tr R⊗nω1
(Φn Pλβ U) = (gω1)−n/2 Tr R⊗nω1

(Pλβ U) , (A.63)

where the second trace is an ordinary C-valued trace. We can use quantum Schur-

Weyl duality and the definition of the quantum Young projectors from (2.60) together

with the definition of Φn in (3.5) to get

dλβ(1)χΦλ(U) = dλβ(1) (gω1)−n/2 Tr Rλβ (U) . (A.64)

It follows that the generalized character and the trace of U differ only by a factor

as

Tr Rλβ (U) = (gω1)n/2 χΦλ(U) . (A.65)
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Using in addition the definitions of the coefficients (3.103) and (3.102), we then

get
χΦµ(U)χΦλ(U) = (gω1)−(|µ|+|λ|)/2 Tr Rµβ (U) Tr Rλβ (U)

= (gω1)−(|µ|+|λ|)/2
∑
ν∈Λ+

N ν
µβ λβ

Tr Rν (U)

=
∑
ν∈Λ+

N ν
µβ λβ

χΦνβ−2
(U)

(A.66)

and

χΦµ(U)χΦλ(U) =
∑
ν∈Λ+

Ñν
µλ χΦν (U) . (A.67)

The result now follows by taking the inner product (3.91) of χΦµ(U)χΦλ(U) with

χΦν (U) in each of these expressions and comparing the two results. �

Lemma A.68 Ñ ν
µλ = Ñ

ν+2a (1N )

µ+a (1N ) λ+a (1N )
.

Proof: We use the shift property of the Macdonald polynomials from [125, §IV,

eq. (4.17)] which reads

Mλ+a (1N )(x; q, t) = xaMλ(x; q, t) (A.69)

where xa := (x1 · · ·xN)a. Together with (3.10) this implies

χΦ
λ+a (1N )

(U) = xa χΦλ(U) , (A.70)

where x = e z and U = e (z,H). We then obtain

χΦ
µ+a (1N )

(U)χΦ
λ+a (1N )

(U) = x2a χΦµ(U)χΦλ(U)

=
∑
ν∈Λ+

Ñ ν
µλ χΦ

ν+2a (1N )
(U) (A.71)

and

χΦ
µ+a (1N )

(U)χΦ
λ+a (1N )

(U) =
∑
ν∈Λ+

Ñ ν
µ+a (1N ) λ+a (1N ) χΦν (U) . (A.72)

The result now follows by taking the inner product (3.91) of χΦ
µ+a (1N )

(U)χΦ
λ+a (1N )

(U)

with the generalized character χΦ
ν+2a (1N )

(U) in each of these expressions and compar-

ing the two results. �
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6 (q, t)-traces and symmetric functions

We are interested in the large N expansion of refined U(N) Yang-Mills amplitudes.

The computation of the traces Tr R⊗nω1

(
Φn U h(mT )

)
in this limit can be related to some

combinatorial identities involving symmetric functions. For this, we shall say that

the minimal word h(mT ) of Hq(Sn) has connectivity class µ(T ) =
(
µ1(T ), . . . , µn(T )

)
if the conjugacy class T ∈ S∨n is parameterized by the partition µ(T ) of n, i.e. any

element of T is composed of reduced words with µi(T ) cycles of length i. The minimal

word mT in the conjugacy class T has length

`∗
(
µ(T )

)
=

n∑
i=1

(i− 1)µi(T ) , (A.73)

and `(µ(T )) =
∑n

i=1 µi(T ) is the total number of cycles in the cycle decomposition

of T .

We interpret Lemma A.32 as an expansion in (normalized) Macdonald polynomials

as

Tr R⊗nω1

(
Φn U h(σ)

)
=
∑
λβ∈Λn+

χrλβ

(
h(σ)

) Mλ(x; q, t)
√
gλ

. (A.74)

Let us consider the unrefined limit β = 1, wherein the normalized Macdonald polyno-

mials in (A.74) reduce to Schur polynomials sλ(x). We can then apply [59, Theorem 1

and Definition 1] to get

Tr R⊗nω1

(
U h(mT )

)
=

n∏
i=1

pµi(T )(q;x) , (A.75)

where

pr(q;x) :=
r−1∑
a,b=0

a+b=r−1

(−1)b qa s(a+1 1b)(x) . (A.76)

By [59, Lemma 1] we can equivalently write (A.76) as

pr(q;x) =
1

q − 1

∑
λ∈Λr+

sλ(q| − 1) sλ(x) , (A.77)

where sλ(q| − 1) is a supersymmetric Schur function [35, Section 4.4]. The sum in

(A.77) can be evaluated by using the Cauchy-Binet identity for supersymmetric Schur

functions [35, eq. (4.27)]∑
λ∈Λ+

sλ(x|z) sλ(y|w) =
N∏

i,j=1

(1 + xiwj) (1 + yi zj)

(1− xi yj) (1− ziwj)
, (A.78)
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which at the specializations z = (0, . . . , 0), y = (q, 0, . . . , 0) and w = (−1, 0, . . . , 0)

yields ∑
λ∈Λ+

sλ(q| − 1) sλ(x) =
N∏
i=1

1− xi
1− q xi

. (A.79)

The sum over partitions of r can in this way be computed by using the homogeneity

property sλ(αx) = α|λ| sλ(x) of Schur polynomials and the generating function

∞∑
r=1

αr
∑
λ∈Λr+

sλ(q| − 1) sλ(x) =
∑
λ∈Λ+

sλ(q| − 1) sλ(αx) (A.80)

for α ∈ C. Using (A.79) we then find

pr(q;x) =
1

q − 1

1

r!

∂r

∂αr

∣∣∣∣
α=0

N∏
i=1

1− αxi
1− α q xi

. (A.81)

In particular, the connected minimal word h(mT ) = g1 g2 · · · gn−1 belongs to the

connectivity class µ(T ) = (n) and the corresponding trace gives exactly pn(q;x), so

that

Tr R⊗nω1

(
U g1 g2 · · · gn−1

)
=

1

1− q
∑
λ∈Λn+

sλ(q| − 1) sλ(x) . (A.82)

At the specialization U = q(ρ,H) we can compare this formula with the explicit com-

putation of the trace from [49, eq. (B.6)] to arrive at the combinatorial identity

Proposition A.83
∑
λ∈Λn+

sλ(q| − 1) sλ(q
ρ) = (q − 1) q(n−1) N+1

2 [N ]q .

This identity can be compared explicitly with the formula (A.81), in which case

the specialization of the product in (A.79) to xi = α q
N+1

2
−i yields the generating

function ∑
λ∈Λ+

sλ(q| − 1) sλ(α q
ρ) =

1− α q−N−1
2

1− α qN+1
2

. (A.84)

Substituting now pr(q; q
ρ) = q(r−1) N+1

2 [N ]q into (A.75) we get

Tr R⊗nω1

(
q(ρ,H) h(mT )

)
=

n∏
i=1

(
q(i−1) N+1

2 [N ]q
)µi(T )

= q
N+1

2
`∗(µ(T ))

(
[N ]q

)`(µ(T ))
(A.85)

as in [49, eq. (B.7)]. We are not aware of any analogous simplifying identities for

generating functions of Macdonald polynomials which could aid in simplifying the

(q, t)-traces for β 6= 1.
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7 Quantum spectral curves and β-ensembles

We can define the (2, 0) theory by wrapping M5-branes on the six-manifold Σh × C2

in

(X × C2 × S1)ε1,ε2 (A.86)

equipped with a non-trivial fibration of C2 over Σh which specifies the Ω-background [57].

In this case Σh acquires an interpretation as the base of a branched covering by the

Seiberg-Witten curve of a four-dimensional N = 2 gauge theory of class S, which can

in turn be regarded as the spectral curve of an associated Hitchin system [126, 127]

that is quantized via a suitable deformation; the five-dimensional gauge theories com-

pactified on a circle of radius r lead to a relativistic (q-deformed or difference) version

of this Hitchin system. For p = 1, the bound state of N M5-branes is described by

an N -sheeted branched covering of Σh given by

ΣSW =
{

(x, z) ∈ Tot
(
OΣh(−1)

) ∣∣∣ xN +
N∑
j=2

tj(z)xN−j = 0
}
, (A.87)

where tj is a (j, 0)-differential on Σh.

Generally, the Seiberg-Witten curve is an affine curve characterized by an algebraic

relation of the form P (x, y) = 0 for (x, y) ∈ C2. Turning on the Ω-background

lifts this relation to a differential equation P ( x̂, ŷ )ψ = 0 which quantizes the coor-

dinate algebra C[x, y] to the Weyl algebra C[~]〈 x̂, ŷ 〉 defined by the commutation

relations

[ x̂, ŷ ] = −~ with ~ =
√
β − 1√

β
=
ε1 + ε2
gs

. (A.88)

We can represent x̂ as the multiplication operator by x ∈ C and ŷ as the differential

operator ~ ∂x. This differential equation is interpreted as a “quantum curve” [128]:

The differential λ~ = ~ ∂x logψ(x, ~) dx is a “quantum” differential generating the

“quantum” periods of the quantized Riemann surface which in the unrefined limit

~ = 0 coincides with the meromorphic differential λ0 = y(x) dx of the original Seiberg-

Witten curve (with y = y(x) depending on x through the equation P (x, y) = 0). Thus

refinement corresponds to a system of differential equations satisfied by the partition

functions of the four-dimensional gauge theory. In the five-dimensional gauge theory,

the quantum spectral curve is instead given by a difference equation P ( X̂, Ŷ )ψ = 0,

where the difference operators X̂ = e r x̂ and Ŷ = e r ŷ obey X̂ Ŷ = q Ŷ X̂ with

q = e −r
2 ~.
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In order to understand this point from the perspective of two-dimensional gauge

theory, following [33, 35, 52] we define shifted weights ni = λi + β ρi for i = 1, . . . , N

and rewrite the partition function (2.78) for G = U(N) in the form (up to overall

normalization)

Zh(q, t; p) =
∑
n∈ZN0

∆q,t

(
e ε1 n

)1−h
∆q,t

(
e −ε1 n

)1−h
e −

p ε1
2

(n,n) , (A.89)

where ZN0 is the set of N -vectors of integers n = (n1, . . . , nN) for which ni 6= nj for all

i 6= j, and the Macdonald measure ∆q,t(x) is defined in Appendix 4. Let us consider

the case of genus h = 0. Since ∆q,t(1
N) = 0, we can then sum over all n ∈ ZN and

following [129] we rewrite the partition function on the sphere as

Z0(q, t; p) =
N∏
i=1

∫ ∞
0

dqxi
xi

e
− p

2ε1
log2 xi ∆q,t(x) ∆q,t(x

−1) , (A.90)

where the multiple Jackson q-integral is defined by

N∏
i=1

∫ ∞
0

dqxi
xi

f(x) := (1− q)N
∑
n∈ZN

f(qn) (A.91)

for a continuous function f(z) on (C∗)N (provided the multiple series is absolutely

convergent).

The rewriting (A.90) demonstrates that the Macdonald deformation of two-dimensional

gauge theory can be described as a generalized Gaussian matrix model in the q-

deformed β-ensemble of random matrix theory. In particular, for p = 1 the inde-

terminancy of the moment problem for the Stieltjes-Wigert distribution implies that

the discrete and continuous matrix models are equivalent [35]. In this case the ge-

ometrical setup greatly simplifies: The relevant Calabi-Yau fibration is the conifold

geometry Tot
(
OP1(−1)⊕OP1(−1)

)
, the vector bundle E0,1 is trivial [130,131], while

the surface Tot
(
OP1(−1)

)
is the blow-up of C2 at two points (with boundary the

three-sphere S3). This equivalence implies that we may replace the Jackson integral

in (A.90) with an ordinary Riemann-Lebesgue integral, and by setting zi := log xi we

may write

Z0(q, t; 1) =
N∏
i=1

∫ ∞
−∞

dzi e
− 1

2ε1
z2
i ∆q,t

(
e z
)

∆q,t

(
e −z
)
, (A.92)

which up to normalization coincides with the Stieltjes-Wigert matrix model for refined

Chern-Simons theory on S3 [50]. However, for p 6= 1 such an equivalence ceases to
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hold and one must work directly with the discrete matrix model (A.90) for generic

values of p ∈ Z.

Let us now consider the classical limit q → 1 defined by taking the limits ε1 → 0,

p→∞ while keeping fixed the refinement parameter β (so that also ε2 → 0) and the

parameter a := ε1 p; in this limit the (q, t)-deformed gauge theory generally reduces

to a β-deformation of ordinary Yang-Mills theory on a Riemann surface of area a.

The right-hand side of (A.91) is a multiple infinite Riemann sum, which for q → 1−

formally converges to
∏N

i=1

∫∞
0

dxi
xi
f(x). By rescaling zi → ε1 zi, up to normalization

we then find the partition function

Z̃0(a, β) := lim
q→1

lim
p→∞

Z0(q, t; p)
∣∣∣
t=qβ , p=− a

log q

=
N∏
i=1

∫ ∞
−∞

dzi e −
a
2
z2
i

β−1∏
m=0

∏
i<j

(
(zi − zj)2 −m2

)
. (A.93)

The planar limit is defined by taking

τ1 = ε1N and τ2 = ε2N (A.94)

large but fixed for N →∞. In this limit the refinement parameter β = − τ2
τ1

is finite,

hence the product in (A.93) is finite and mε1 = mτ1
N
→ 0. By rescaling zi → N zi as

finite variables at large N , it follows that the planar limit of the partition function

(A.93) is given by

Z̃pl
0 (µ, β) =

N∏
i=1

∫ ∞
−∞

dzi e −
µ
2
z2
i ∆(z)2β , (A.95)

where µ := p τ1N and

∆(z) =
∏
i<j

(zi − zj) (A.96)

is the Vandermonde determinant. Thus in this limit the weak coupling phase of the

two-dimensional gauge theory can be described by a Gaussian matrix model in the

classical β-ensembles of random matrix theory. In particular, log Z̃pl
0 (µ, β) coincides

with the partition function of two-dimensional c = 1 string theory at radius R = β;

this generalizes the usual identification of the conifold geometry with the c = 1

string at the self-dual radius for β = 1. In this formulation the symmetry β → 1
β

is

manifest [57] and corresponds to T-duality invariance of the string theory. For later

use and comparison, let us run through the details of this identification.
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The matrix integral (A.95) is a special case of the Selberg integral which can be

evaluated analytically in terms of Mehta’s formula

Z̃pl
0 (µ, β) =

( √
2π

µ
1
2

((N−1)β+1)

)N N∏
i=1

Γ(1 + β i)

Γ(1 + β)
. (A.97)

One can show that [132]

N∏
i=1

Γ(1 + β i) =
(√

2π β
1
2

((N−1)β+1)
)N

Γ(1 +N β) Γ(N) Γ2

(
N ;−β−1,−1

)
, (A.98)

where Γ2(τ2; ε1, ε2) is the Barnes double gamma-function defined via

log Γ2(τ2; ε1, ε2) = − d

ds

∣∣∣∣
s=0

1

Γ(s)

∫ ∞
0

dt

t
ts

e −τ2 t(
1− e ε1 t

) (
1− e ε2 t

) (A.99)

which is the double zeta-function regularization of the infinite product
∏

m,n≥0 (τ2 −
mε1−n ε2). To obtain the large N expansion of the partition function (A.95) we use

the asymptotic expansion [133, Appendix E]

log Γ2(τ2; ε1, ε2) =
1

ε1 ε2

(
1
2
τ 2

2 log τ2 − 3
4
τ 2

2

)
+
ε1 + ε2
ε1 ε2

(
τ2 log τ2 − τ2

)
+
ε21 + ε22 + 3 ε1 ε2

12 ε1 ε2
log τ2 −

∞∑
n=3

dn(ε1, ε2) τ 2−n
2

n (n− 1) (n− 2)
,(A.100)

where the series coefficients dn(ε1, ε2) are defined through the generating function

t2(
1− e ε1 t

) (
1− e ε2 t

) =
∞∑
n=0

1

n!
dn(ε1, ε2) tn . (A.101)

Introducing the Bernoulli numbers Bm through the generating function

s

1− e s
= −

∞∑
m=0

1

m!
Bm s

m (A.102)

with B0 = 1, B1 = 1
2
, B2 = 1

6
and Bk = 0 for all k > 1 odd, by comparing series

expansions we find

dn(ε1, ε2) = gn−2
s

n∑
k=0

(
n

k

)
(−1)k−1Bk Bn−k β

k−n
2 (A.103)

where we have used the relations (2.96). By dropping overall prefactors, for the free

energy F̃ pl
0 (τ2, β) := − log Z̃pl

0 (τ2, β) = − log Γ2(τ2; β−1/2 gs, β
1/2 gs) in the large N

limit this gives the asymptotic expansion

F̃ pl
0 (τ2, β) =

1

g2
s

(
3
4
τ 2

2 − 1
2
τ 2

2 log τ2

)
+

1

gs

(
1√
β
−
√
β
) (
τ2 − τ2 log τ2

)
+χ0(β) log τ2 +

∞∑
n=1

χn(β)
( gs
τ2

)n
, (A.104)
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where

χ0(β) = −1

4
+
β−1

12
+
β

12
,

χn(β) = (n− 1)!
n+2∑
k=0

(−1)k−1Bk Bn+2−k

k! (n+ 2− k)!
βk−

n
2
−1 for n ≥ 1 . (A.105)

Note that the expansion parameter is

gs
τ2

=
1√
β N

. (A.106)

In the unrefined limit β = 1, the identity

1(
1− e s

) (
1− e −s

) = − d

ds

1

1− e s
(A.107)

together with (A.102) imply that dn(gs,−gs) = 0 for n odd while d2g(gs,−gs) =

g2g−2
s (2g − 1)B2g for g ≥ 1, so that the non-vanishing coefficients

χ0(1) = − 1

12
and χ2g−2(1) =

B2g

2g (2g − 2)
(g > 1) (A.108)

coincide with the orbifold Euler characteristics χorb(Mg) of the Riemann moduli

spaces Mg of genus g ≥ 1 complex curves, i.e. the Euler character of Mg calculated

by resolving its orbifold singularities. On the other hand, for β = 2 one can use the

identity

1(
1− e s

) (
1− e −2s

) = −1

2

d

ds

1

1− e s
+

1

2

1

1− e −2s
− 1

2

1

1− e −s
(A.109)

together with (A.102) to infer that

χ2g−1(2) =
√

2 2−g
(
22g−2 − 1

2

)
B2g

2g (2g − 1)
and χ2g−2(2) = 2−g χorb(Mg) (A.110)

for g ≥ 1, so that the coefficients χ2g−1(2) are proportional to the orbifold Euler

characteristics of the moduli spaces of certain real algebraic curves of genus g [64].

Thus in this case refinement corresponds to the replacement of χorb(Mg) with the

parameterized Euler characters χn(β) [66,134], which provide a geometric parameter-

ization that interpolates between the orbifold Euler characters of the moduli spaces

of closed oriented Riemann surfaces at β = 1 and closed unoriented Riemann surfaces

with crosscap at β = 2. In other words, the string theory at β = 2 can be regarded

as the orientifold of the string theory at β = 1. From this perspective, it is natural
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to expect that the generic β-deformed Euler characters χn(β) themselves describe

characteristic classes of some related moduli spaces [64].

The expansion (A.104) governs the leading order behaviour of the dual refined B-

model topological string amplitudes on the mirror of the conifold geometry, which

is the cotangent bundle T ∗S3. Generally, these local Calabi-Yau geometries are de-

scribed by algebraic equations of the form

u v + F (x, y) = 0 (A.111)

in C4, where the equation F (x, y) = 0 describes an affine curve Σ in C2 and a (local)

function y(x) which determines a meromorphic differential λ = y(x) dx giving the

periods of Σ. In the Gaussian matrix model (A.95) at β = 1, the Riemann surface Σ

is the corresponding rational spectral curve which is given by a double cover of the y-

plane with F (x, y) = x2−y2+m = 0, where m is the Kähler parameter of the resolved

conifold. After a simple change of variables this spectral curve can be regarded as the

holomorphic curve F (z, w) = z w−m = 0 in C2, which after refinement quantizes to

the differential operator F ( ẑ, ŵ ) = ~ z ∂z −m [135]; the quantum curve in this case

is the canonical example of a D-module [128] and it can be regarded as a differential

equation for certain correlators in the matrix model [57]. After q-deformation, the

quantum spectral curve for the conifold is naturally described by a difference equation

(rather than a differential equation) with difference operator

F ( X̂, Ŷ ) =
(

1− q−1/2 X̂
)
Ŷ −

(
1−Q q X̂

)
, (A.112)

where Q := e −r
2m; it can be thought of as a differential equation for the partition

functions of refined topological string theory [136]. It is then natural to expect that

a similar quantum spectral curve governs the matrix model (A.90) of the q-deformed

β-ensemble that represents the (q, t)-deformed gauge theory, along the lines of [137].

In the following, these lines of reasoning will be applied to the closed string chiral

expansion of the (q, t)-deformed two-dimensional gauge theory to give geometrical

interpretations of the Macdonald deformation in terms of contributions from deformed

characteristic classes associated to quantum Riemann surfaces.

8 Differential calculus of graded functionals

A nice and elaborate summary of formulas from differential calculus on graded mani-

folds can be found in [29]. In the following we rely on this treatment and only review

formulas with regard to graded functionals.
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The space of superfields is once again the mapping space

M = Map
(
T [1]Σd ,M

)
, (A.113)

and the superfield coordinates on M are defined via the coordinates ẑµ̂ ∈ T [1]Σd,

X̂ ı̂ ∈M as

X̂ ı̂(ẑ) = φ∗(X̂ ı̂ )(ẑ) , (A.114)

where φ ∈ M is an arbitrary superfield. We use the notation |̂ı| for the degree of

X̂ ı̂, and also for the ghost number of X̂ ı̂.

A graded functional1 of the superfields X̂ ı̂(ẑ) is defined by a function F (X̂) on M
as

F =

∫
T [1]Σd

ddẑ ev∗(F ) =

∫
T [1]Σd

ddẑ F
(
X̂(ẑ)

)
, (A.115)

and it has ghost number |F | − d, where |F | denotes the ghost number of F
(
X̂(ẑ)

)
.

The definition of a graded functional n-form α with ghost number |α|−d is analogous

and given by an n-form α on M as

α =

∫
T [1]Σd

ddẑ ev∗(α)

=

∫
T [1]Σd

ddẑ δX̂ ı̂1(ẑ) · · · δX̂ ı̂n(ẑ)αı̂1···̂ın
(
X̂(ẑ)

)
:=

∫
T [1]Σd

ddẑ α
(
X̂(ẑ)

)
.

(A.116)

The exterior product of two graded functional forms α and β also gives a graded

functional form with ghost number |α|+ |β| − d which reads as

α∧β =

∫
T [1]Σd

ddẑ ev∗(α ∧ β) =

∫
T [1]Σd

ddẑ α
(
X̂(ẑ)

)
β
(
X̂(ẑ)

)
. (A.117)

As can be seen, it depends on the integration measure. The one-form local basis

elements have ghost number |̂ı|+ 1− d and they are given by

δX̂ ı̂ =

∫
T [1]Σd

ddẑ ev∗(dX̂ ı̂) =

∫
T [1]Σd

ddẑ δX̂ ı̂(ẑ) . (A.118)

We can write the n-form α with the exterior product as

α = δX̂ ı̂1∧ · · ·∧δX̂ ı̂n∧αı̂1···̂ın , (A.119)

1We only consider non-local graded functionals, hence the kernel function F (X̂
)

can be taken to

be an ordinary graded function of X̂.
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where the scalar functional is given by

αı̂1···̂ın =

∫
T [1]Σd

ddẑ αı̂1···̂ın
(
X̂(ẑ)

)
. (A.120)

A graded vector functional V with ghost number |V | − d can be written in the

form

V =

∫
T [1]Σd

ddẑ V ı̂
(
X̂(ẑ)

) δ

δX̂ ı̂(ẑ)
, (A.121)

which acts as a left functional derivative

�
V F =

∫
T [1]Σd

ddẑ V ı̂
(
X̂(ẑ)

) �
δF

δX̂ ı̂(ẑ)
(A.122)

on graded functionals F , and is defined as

lim
ε→0

F [X̂ + ε η̂] − F [X̂]

ε
=:

∫
T [1]Σd

ddẑ η̂ ı̂(ẑ)

�
δF

δX̂ ı̂(ẑ)
, (A.123)

where η̂ ı̂ is an arbitrary superfield with the same degree as X̂ ı̂. The functional

derivative with respect to X̂ ı̂(ẑ) has ghost number −|̂ı| + d. As graded functionals

are non-local, the functional derivatives are given by ordinary derivatives of the kernel

function as
�
δF

δX̂ ı̂(ẑ)
=

�
∂F

∂X̂ ı̂

∣∣∣∣
X̂ ı̂(ẑ)

. (A.124)

The interior product is given by contraction with the graded vector functional V :

ιV =

∫
T [1]Σd

ddẑ V ı̂
(
X̂(ẑ)

) �
δ

δ (δX̂ ı̂(ẑ))
, (A.125)

which acts on exterior products as

ιV (α∧β) = ιVα∧β + (−1)(|V |+1) |α|α∧ιV β . (A.126)

The de Rham differential can be written in the form

δ =

∫
T [1]Σd

ddẑ δX̂ ı̂(ẑ)

�
δ

δX̂ ı̂(ẑ)
. (A.127)
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It has the following properties:

δF = lim
ε→0

F [X̂ + ε δX̂] − F [X̂]

ε
,

δ2 = 0 ,

δ(α∧β) = δα∧β + (−1)|α|α∧δβ ,

δα =

∫
T [1]Σd

ddẑ ev∗(dα) .

(A.128)

The symplectic structure on the target dg-manifold M has degree d + 1 and it can

be written in the form

ω = (−1)(d+1) |a| dqa ∧ dpa , (A.129)

where qa and pa are local Darboux coordinates such that |qa|+ |pa| = d− 1. The BV

symplectic form ω with ghost number 1 is defined by

ω =

∫
T [1]Σd

ddẑ ev∗(ω) =

∫
T [1]Σd

ddẑ (−1)(d+1) |qa| δqa(ẑ)∧δpa(ẑ) . (A.130)

The definition of the Hamiltonian vector field of a graded functional F is given by

the expression

ιXFω := δF , (A.131)

and it has ghost number |F | − d+ 1. The solution to this equation

XF = (−1)|F |+d
∫
T [1]Σd

ddẑ

(
F

�
δ

δqa(ẑ)

δ

δpa(ẑ)
− (−1)|q

a| |pa| F
�
δ

δpa(ẑ)

δ

δqa(ẑ)

)
(A.132)

is used to define the BV bracket of graded functionals F and G as

(F ,G)BV = (−1)|F |+d
�
XFG

= (−1)|F |+d ιXF δG

= (−1)|F |+d+1 ιXF ιXGω

=

∫
T [1]Σd

ddẑ

(
F

�
δ

δqa(ẑ)

�
δG

δpa(ẑ)
− (−1)|q

a| |pa| F
�
δ

δpa(ẑ)

�
δG

δqa(ẑ)

)
.

(A.133)

The BV bracket has the following properties:

(F ,G)BV = −(−1)(|F |+d+1) (|G|+d+1) (G,F )BV ,

(F ,GH)BV = (F ,G)BV H + (−1)(|F |+d+1) |G|G (F ,H)BV ,

(F , (G,H)BV)BV = ((F ,G)BV,H)BV + (−1)(|F |+d+1) (|G|+d+1) (G, (F ,H)BV)BV .

(A.134)
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9 Supersymmetric quantum mechanics

Supersymmetric quantum mechanics provides a simple example of a topological field

theory; its Mathai-Quillen formalism can be found in e.g. [107–109]. The target

space is a Riemannian manifold M with metric g and the parameter manifold is

just a compact worldline S1. The local coordinates of the mapping space LM :=

Map(S1,M) are {xi(τ)} with τ ∈ [0, 1] and xi(0) = xi(1), and so they parameterize

(smooth) loops in M . We furthermore define two fermionic fields ψi(τ) and ψ̄i(τ)

with ghost number 1 and −1, respectively. The action of supersymmetric quantum

mechanics is

ISQM =

∫
S1

dτ
( 1

2
gij ẋ

i ẋj + i ψ̄i∇τψ
i − 1

4
Rij

kl ψ̄i ψ̄j ψ
k ψl

)
, (A.135)

where a dot denotes a τ -derivative, ∇τψ
i = ψ̇i + Γijk ψ

j ẋk is defined by the action of

the Levi-Civita connection ∇ of the metric g pulled back to the loop via the map x,

and R is the associated Riemann tensor. The action (A.135) is invariant under the

BRST transformations

δxi = ψi , δψi = 0 and δψ̄i = i gij ẋ
j + Γkij ψ

j ψ̄k , (A.136)

which is only nilpotent on-shell, and it is BRST-exact on-shell:

ISQM = δΨ′SQM with Ψ′SQM = − i

2

∫
S1

dτ ψ̄i ẋ
i . (A.137)

The set of δ-fixed points is the space of instantons, i.e. the constant loops xi(τ),

which can be identified with the target space M .

We follow the same procedure as in §1.1 and §2.2 in Chapter 6 to reformulate su-

persymmetric quantum mechanics using a linearizing auxiliary field bi with ghost

number 0. The BRST transformations with the field bi are given by

δxi = ψi , δψi = 0 , δψ̄i = bi and δbi = 0 , (A.138)

and they are nilpotent off-shell. The action

δΨ′SQM = − i

2

∫
S1

dτ
(
bi ẋ

i − ψ̄i ψ̇
i
)

(A.139)

is invariant under these new BRST transformations, and it reduces to the action

(A.135) if we impose the constraint

bi = i gij ẋ
j − Γkij ψ̄k ψ

j (A.140)
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as gauge fixing. In the language of the BRST formulation, this means that we choose

the gauge fixing fermion as

ΨSQM = −
∫
S1

dτ ψ̄i

(
i ẋi +

1

2
gjl Γilk ψ̄j ψ

k − 1

2
gij bj

)
. (A.141)

The BRST variation of (A.141) gives us the action

SSQM = δΨSQM =

∫
S1

dτ
(

i ψ̄i ψ̇
i − i bi ẋ

i + gil Γjkl ψ̄j ψ
k bi +

1

2
gij bi bj

− 1

2
∂k
(
gjm Γiml

)
ψ̄i ψ̄j ψ

k ψl
)
.

(A.142)

The equation of motion for bi gives the same field redefinition as in (A.140), and

using this we find that the action (A.142) is classically equivalent to the action

(A.135).
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