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Abstract: Smartphone-based technologies for medical imaging purposes are limited, especially when
it involves the measurement of physiological information of the tissues. Herein, a smartphone-based
near-infrared (NIR) imaging device was developed to measure physiological changes in tissues across
a wide area and without contact. A custom attachment containing multiple multi-wavelength LED
light sources (690, 800, and 840 nm; and <4 mW of optical power per LED), source driver, and optical
filters and lenses was clipped onto a smartphone that served as the detector during data acquisition.
The ability of the device to measure physiological changes was validated via occlusion studies on
control subjects. Noise removal techniques using singular value decomposition algorithms effectively
removed surface noise and distinctly differentiated the physiological changes in response to occlusion.
In the long term, the developed smartphone-based NIR imaging device with capabilities to capture
physiological changes will be a great low-cost alternative for clinicians and eventually for patients
with chronic ulcers and bed sores, and/or in pre-screening for potential ulcers in diabetic subjects.

Keywords: smartphone; near-infrared imaging; occlusion; singular value decomposition; wound
care; optical imaging; diffuse reflectance

1. Introduction

1.1. Wound Care Management

Chronic wounds—also termed as ulcers—are wounds with a full thickness in depth and a slow
healing tendency. Chronic wounds are a silent epidemic that affect a large fraction of the world,
and ~1–2% of the population will experience a chronic wound during their lifetime in developed
countries [1]. According to the Wound Healing Society (WHS), chronic wounds include pressure ulcers,
diabetic foot ulcers (DFUs), venous leg ulcers (VLUs), and arterial insufficiency ulcers. The various
complications that arise from chronic wounds include infection (e.g., cellulitis and infective venous
eczema), gangrene, hemorrhage, and lower-extremity amputations. There is a need to improve wound
care management to reduce economic burden, reduce number of amputations, and improve the quality
of life in subjects with chronic wounds (with various comorbidities).

The clinical gold-standard assessment of wounds during their periodic treatment employs visual
inspection of chronic wounds to assess wound healing status. Visual clinical assessment of the wound
occurs by its color, degree of epithelialization, and size reduction across weeks of treatment. It is a
non-objective approach with no systematic or digitized tracking of healing status. Oxygen is a vital
factor that is required to enhance wound healing [2]. Determining if there is sufficient oxygen in
and around the wound can determine the potential of the wound to heal. There are various imaging
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approaches that have been developed to measure the physiological maps of oxygen or blood flow in
and around the wound or to the wound.

1.2. Physiological Assessment of Wounds

Subclinical wound assessment tools include histological detection—to characterize infection,
Doppler ultrasound [3]—to measure blood flow to the wound required for healing, and transcutaneous
oxygen measurement device (TCOM) [4]—to measure the partial pressure of oxygen around the
wound. While Doppler ultrasound and TCOM measure blood flow or oxygen, they measure these
parameters at discrete point locations and away from the wound site.

More recently, various non-invasive optical imaging techniques have been developed to measure
oxygenation in and around the wounds. These include hyperspectral imaging (HSI), multispectral
imaging (MSI), diffuse reflectance spectroscopy (DRS), and near-infrared spectroscopy (NIRS) [2,5].
HSI and MSI provide 3D anatomical maps of microcirculatory changes and tissue oxygenation
using a broad spectrum of 400–1100 nm wavelength of light, while DRS uses wavelengths up to
800 nm to provide hemodynamic information of wounds (superficially) [2,5]. NIRS uses discrete
NIR wavelengths to obtain these tissue oxygenation measurements at discrete point locations via
contact in and around the wound [6,7]. More recently an NIR-based optical scanner (NIROS) light
was developed [8–11] to obtain tissue oxygenation maps of the wound region via non-contact imaging
(as in HSI and MSI) [10–12]. NIROS uses discrete NIR wavelengths unlike HSI and MSI technologies
and the device is handheld, low cost, and portable. All these technologies developed to date are not
available in all clinics as part of standard point of care.

Translating the above developed imaging technologies for wound care management in low
resource settings is further challenging due to limited resources/income and affordability for such
expensive imaging approaches. Herein, with a global focus in mind, a low-cost smartphone-based
near-infrared optical imaging technology was developed and its feasibility tested to obtain
physiological information from the wound site apart from visible clinical changes. Physiological
changes manifest prior to visual reduction in wound size, allowing potential detection of serious
complications early on.

1.3. Near-Infrared Optical Imaging

Near-infrared optical imaging is an emerging non-invasive and non-ionizing technology that
can map the hemodynamic changes in the site of interest (e.g., the wounded or healthy tissue sites)
even up to a few centimeters deep. The technology uses near-infrared (NIR) light between 650 and
1000 nm, which is minimally absorbed and preferentially scattered allowing deep tissue imaging.
Multi-wavelength NIR images map the spatial and temporal distribution of the optical properties
(which translate to oxy-, deoxy-hemoglobin, total hemoglobin, and/or oxygen saturation changes).
NIR optical imaging technology has been used in various applications such as cancer diagnostics,
functional brain mapping, and more recently in the area of wound imaging. In the area of wound
imaging, both spectroscopic point-based NIR imaging [6,7] and area-based imaging approaches [8–12]
have been developed.

1.4. Smartphone Technologies for Wound Care

Recently, researchers have developed smartphone-based apps for 2D and 3D wound image
analysis [13,14], to track patients’ wound healing status and select appropriate wound dressings [15]
based on surface features. Wound image analysis apps acquire digital images of the visual wound
and apply algorithms to demarcate wound boundaries to estimate and track wound size reduction.
These approaches do not provide any physiological assessment of the wound to augment clinical
assessments that various expensive imaging tools (e.g., TCOM, HSI, and MSI) provide.
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1.5. Smartphone-Based NIR Optical Imaging Technologies

In the area of medical imaging, there are a few smartphone-based imaging technologies that
have been developed to cater to various applications [16–23]. These technologies are summarized
in Table 1. Of all the smartphone-based devices for imaging purposes, only two devices to date
have focused on near-infrared-based imaging to obtain physiological information of the tissues. Both
these devices employ LED-based NIR light sources (between 660 and 830 nm) for contact-based
spectroscopic measurements of oxygenation at discrete point locations (for brain imaging, skin cancer,
etc., [16]). While contact-based discrete point imaging may be applicable for brain imaging or skin
cancer assessments, imaging of chronic, painful, and/or infectious wounds would prefer a non-contact
imaging approach, imaging the entire wound and its surroundings instead of discrete point locations
(as in TCOM). To date, there has been no smartphone-based near-infrared optical imaging device that
has been developed to obtain tissue oxygenation measurements of large tissue areas without contact
(similar to the large HSI and MSI imaging systems). Thus, a smartphone-based near-infrared imaging
device (SPOT—smartphone-based oxygenation tool) has been developed to perform area imaging of
tissues without contact. The SPOT device is innovative and novel as it is the only smartphone-based
spectrometer that is developed to acquire physiological (or oxygenation in terms of diffuse reflectance)
information of large tissue areas (e.g., wounds). Oxygenation measurement devices developed to date
image via contact, at discrete point locations, are bulky, time consuming (e.g., ~30 min for TCOM), not
cost effective, and/or not handheld for prehospital settings or on-field remote imaging applicability.
The SPOT device is a miniature version of the NIR optical imaging system, developed as a novel NIR
attachment to any smartphone, which can provide oxygenation measurements. The details of the
NIR-based SPOT device and its validation via occlusion studies were described in this study. Standard
noise removal algorithms were implemented to differentiate changes in physiologically relevant optical
signals in response to occlusion, via studies on healthy subjects.

Table 1. Summary of existing cellphone-based technologies and their features/applications relevant
to imaging and comparison with the proposed device. NDVI: Normalized difference vegetative
index; MEMS: Micro-electro-mechanical systems; FLIR: Forward-looking infrared radiometer; NIR:
Near-infrared; SPOT: Smartphone-based oxygenation tool.

Device Name Applications Source/Wave
Length Non-Contact Area

Assessment

MEMS Spectrometer [16] Rapid screening skin
cancer 340–780 nm No No

NDVI Sensor [17] Agriculture, measures
plant reflectivity

780 nm
660 nm Yes Yes

FLIR one [18] Wound studies None Yes Yes

Image Capture Box [19] Imaging diabetic foot
ulcers None No Yes

Smartphone based Blood
Oxygen Level Measurement [20]

Monitor oxygen level
in blood 400–779 nm No No

Cellphone-based colorimetric
microplate reader [21]

Disease detection
(ELISA)

464 nm
(blue LED) No No

Mobile phone based NIR
Attachment [22]

Tissue oxygen
assessments

660 nm
730 nm Yes No

Our proposed device: SPOT [23] Tissue oxygen
assessments

690 nm
800 nm
840 nm

Yes Yes

2. Materials and Methods

2.1. Instrumentation

A near-infrared smartphone-based imaging system or SPOT device (see Figure 1) was developed
to measure hemoglobin-related oxygenation changes (as optical images in this study) beneath the
surface of the skin. The imaging system consisted of a smartphone (Android based) along with a
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custom-developed attachment that included all the imaging components. This integrated device
outputs a continuous wave source with four multi-wavelength LEDs (690, 800, and 840 nm in each
LED) that were multiplexed at 2.5 Hz to emit one wavelength at a time. A separate white light LED
was also multiplexed along with these, as a baseline signal during data extraction (as described in
Section 2.2.2). The source included a custom-developed LED driver, which was battery powered.
The light source was designed to emit multiple wavelengths (sequentially), where the cycle lasted for
approximately 4 s when multiplexing across the three wavelengths and the reference (or baseline) white
light LED. Four LED’s were contained within the housing unit outputting <4 mW max from a single
LED’s wavelength as measured at the LED surface via an optical power meter. The NIR light from the
SPOT device illuminated the tissue surface and the diffuse reflectance signal was collected from the
same surface. The diffuse reflectance signal from the imaged tissue medium was acquired using the
smartphone’s camera as a video file. The source was attached to an adjustable mount for various phone
sizes and a detachable handle was utilized for handheld use. The custom attachment also housed a
645 nm long pass filter with a diffuser (for maximum beam spread) and linear polarizers at the source
and detector ends (in order to remove specular reflection). All the above imaging components were
assembled into the custom-developed attachment, which works in conjunction with most smartphone
cameras (excluding most iPhones) to develop the first prototype of the SPOT device. In this study an
Android-based smartphone (Samsung Galaxy S6) was used for imaging.
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Figure 1. (a) Frontal view of the SPOT device, and (b) rear view with a custom attachment including
all the imaging components, except the detector (which is the smartphone’s camera).

2.2. Data Acquisition and Analysis

An overview of the data acquisition and analysis steps is given in Figure 2. Data acquired using
the smartphone-based imaging device were analyzed by transferring the acquired data, extracting
the individual wavelength images, removing noise, and registering the images onto the white light
images of the imaged tissue. The details of each step are as described in the subsections below.
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Figure 2. Flow chart of imaging analysis from the acquired data, involving data extraction, noise
removal, and coregistration.

2.2.1. Data Acquisition

The device (smartphone along with the custom attachment) was fastened to a table side for
stable imaging and maintained approximately 3” above the imaging surface. The ambient light was
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lowered during imaging studies in order to minimize background noise. The smartphone’s camera
was maintained in auto focus mode and high dynamic range (HDR) mode of acquisition was selected
during imaging studies. The sampling rate (in video mode) was chosen to be 60 fps and images of
1920 × 1080 (5M) pixels were captured. The custom-attachment device had a manual switch to control
the LED driver with a 5 s delay. The delay allowed for the user to start the camera and the camera to
auto-focus and stabilize. The LED driver controlled the white light LED and the multi-wavelength
LEDs that simultaneously multiplex at 2.5 Hz frequency to emit each wavelength independently.
In parallel, the camera was continuously capturing the diffuse reflectance images at 60 fps during a
4 s cycle. The cycle was repeated three times for each case, with each cycle preceded by a white light
flash at the same frequency of 2.5 Hz during multiplexing. The white light was also programmed
to flash at the end of the three cycles, thus acting as an indicator that data acquisition was complete.
The LED driver was programmed to automatically stop after the three cycles, whereas the smartphone
camera was manually stopped. In future, the LED driver and camera controls will be automated and
synchronized via an app for ease of imaging. The diffuse reflectance signals acquired at a frame rate of
60 fps (i.e., as a video file) were uploaded from the camera and further image analysis was carried out
on an external computer (desktop or laptop).

2.2.2. Data Extraction

The 60 fps video file included the diffuse reflectance signals from all the four wavelengths (white
light, 690, 800, and 840 nm). The diffuse reflectance signals (or intensity) of the red color channel of each
frame were averaged and plotted across the number of frames (that spanned across the three cycles,
as shown in Figure 3). Once video files were acquired, images were extracted manually using this
average intensity profile. The distinction between white light and each wavelength and also between
cycles (cycles 1, 2, and 3) can be seen in Figure 3. There were four distinguishable outputs from the
video file, consisting of four wavelengths. Only three of these outputs were used in relation to the three
wavelengths considered in this study. The remaining was related to the white light frames that were
used to separate the cycles, and hence not used in data processing. After manually identifying the
frames appropriate for each wavelength, they were extracted and stored as bitmap images (reduced to
the red channel for processing).
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2.2.3. Noise Removal Technique

Singular value decomposition (SVD) is a widely used image processing technique that is
implemented in medical imaging data to reduce the image dimensionality. It extracts relevant details
by reducing the dimensionality of the data via a simple implementation. SVD is so closely related with
principal component analysis (PCA) that the techniques can often be interchangeably used. However,
SVD is a more general method and robust approach to understand changes of basis [24]. SVD has been
used extensively in the past for image compression and noise removal [25,26]. Other strategies have
also been implemented, wherein a Metz filter was applied to the singular values when processing
medical images [27]. In the current study, a standard SVD approach was applied to determine whether
the application of an image reconstruction approach can effectively remove noise from the diffuse
reflectance data that were obtained using a smartphone (which is not as sensitive as regular NIR
imaging cameras).

Herein, SVD was implemented to the diffuse reflectance data at each wavelength (represented as
a matrix, X). SVD was used as an approximation for a matrix X of a given full rank, where X (M × N)
is decomposed into orthogonal matrices U (M × M) and V (N × N) and a diagonal matrix S (N × M),
as shown in Equation (1).

[X]M×N = [U]M×M[S]N×M[V]TM×N (1)

The diagonal matrix represents the significance of each eigen value (by an assigned weight),
organized with the most significant eigen values (EVs) in descending order. The matrix, X was
reconstructed using only the most significant EVs (selected values along the diagonal, matrix ∆) and
the orthogonal U and V matrices, as a reduced low ranking matrix (represented as matrix A for the
Kth EV), given by Equation (2).

[A]K = [U]K[∆]K[V]T =
K

∑
k

Uk∆kVT
k (2)

A low-ranking image implies majority of the information is stored within a few EVs and can be
represented by small set of these dominant components [28]. Each EV specifies a luminance of an
image layer while the corresponding pair of eigen vectors specifies the geometry in the image [28]. In
this study, the most significant eigen value–vector pairs and their effect on noise removal in the optical
data were evaluated.

2.2.4. Coregistration

The resulting reconstructed images of diffuse reflectance signals (after SVD analysis, i.e., noise
removal) were cropped to only the field of interest. The data were normalized and coregistered
onto the white light image for anatomical representation. Coregistration was achieved via
optimizing intensity-based algorithms with an initial step size of 0.02 at 300 iterations (using built-in
coregistration-based functions in MATLAB). A preliminary analysis of the most significant EVs and
their role in image reconstruction is described in Section 3.1.

2.3. Occlusion Studies

Venous occlusion studies are a standard validation technique widely employed to demonstrate
the feasibility of physiological measuring imaging technology. It has been widely used by various
researchers for various imaging studies in the past [29–32]. Herein, near-infrared imaging studies were
performed using the smartphone-based device in response to venous occlusion studies. These studies
were carried out in order to demonstrate the feasibility of this low-cost device to capture physiological
differences in response to occlusion. Occlusion causes changes in blood flow, which relate to
physiological changes of the tissue region (in terms of tissue oxygenation). Since NIR-based optical
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imaging techniques can determine physiological changes, occlusions studies are widely used as a
validation study.

In this Institutional Review Board (IRB) approved study, four healthy control subjects over
18 years of age were recruited and imaged in the lab using the smartphone-based imaging device.
Initially, the subject was seated in a relaxed position with arm on bench top and a pressure cuff at the
bicep for venous occlusion. A fiducial marker was placed on the subject within the field of view (for
coregistration purposes). The diffuse reflectance signal was acquired under rest conditions, and after
45 s of occlusion at 160 mm Hg. The arm cuff pressure was released rapidly after acquiring the second
image and the last image was acquired within 2 s of cuff release. A schematic of the study and the
time stamp at which diffuse reflectance images were acquired is shown in Figure 4. Diffuse reflectance
images (acquired as a video file by the smartphone device) were transferred onto a computer, the
individual wavelength data extracted, noise removed using SVD, and finally coregistered onto the
white light image of the hand. Two evaluation studies were carried out with the acquired data. In the
first evaluation, the images acquired under rest were compared across all subjects for various EVs in
order to determine the effect of each EV on noise removal. In the second evaluation, the variations in
the optical images across the three time stamps were compared to determine if physiological changes
from occlusion were apparent from the optical images and also to determine the effect of noise removal
(SVD approach) applied to optical images.
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Quantitative Analysis

A quantitative analysis was performed to determine if the difference in the diffuse reflectance data
across the three time stamps using various EVs was significant. Initially, a region of interest (ROI) was
selected in similar regions (from the wrist below) in subjects 1, 2, and 4. The ROI remained constant
across the time stamps in each of the above subjects (1, 2, and 4). In each ROI, 17 30 × 30 pixel boxes
were selected (similar across all time stamps in a given subject) as shown in Figure 5. The average of
the diffuse reflectance data from each of the seventeen 30 × 30 pixel boxes was used to determine the
mean and standard deviation of the overall diffuse reflectance signal at the given time stamp (i.e., rest,
occlusion, or relax). A three-paired t-test was performed across the mean diffuse reflectance data
obtained from rest, occlusion, and relax, with 95% significance (α = 0.05). A significant difference
between rest vs. occlusion and occlusion vs. relax was determined and a resulting hypothesis (H)
developed to differentiate three cases: H = 0 implies no significant difference between rest vs. occlusion
and relax vs. occlusion; H = 1 implies a significant difference across one of the two comparisons
(i.e., rest vs. occlusion or occlusion vs. relax); and H = 2 implies a significant difference across both the
comparisons. The entire data processing was carried out on each subject for each time stamp using the
reconstructed diffuse reflectance data obtained from various EVs. This data analysis was repeated four
times (within the initially chosen ROI in each case) to assess repeatability in the quantitative analysis
and determine the optimal EVs that best differentiate occlusion from rest and relax conditions.
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Figure 5. Flowchart of the steps in quantitative analysis of diffuse reflectance data using various eigen
values (EVs) to determine significant difference (if any) across the time stamps (rest, occlusion, and
relax).

3. Results and Discussion

3.1. Effect of Noise Removal

Single value decomposition (SVD) was applied to images acquired at rest across all four subjects.
A sample plot of the intensity of the EVs (diagonal of S) at each EV is given in Figure 6. This plot
demonstrates that majority of the information is contained within the first 15 EVs. Beyond these first
15 EVs, there is little to no information regarding the observed diffuse reflectance signal. Hence, images
were reconstructed using the first 15 most significant EVs. Considering that the significance of the
first EV is very high compared to the remaining, the first EV-related data were removed. Images were
sequentially reconstructed with one less EV for each iteration. Results are shown for four subjects
as images are reconstructed with lesser significant eigen values in Figure 7. In the case where SVD
was not applied (i.e., noise not removed), the distinct features are of the light source on the surface
of the skin. Once SVD was applied, the image intensity was enhanced across the tissue area but still
depicted surface properties. Reconstructed images with the first EV removed showed subsurface
physiological information of the tissue by eliminating the surface details. Images were reconstructed
up to the 15th EV, but shown are the results descending to the 8th EV (in Figure 7) as there was no
significant information observed beyond the 8th EV. As lower EVs were removed, the images removed
the effect of the surface and the subsurface detail was enhanced. A quantitative approach to determine
the number of EVs to be removed consistently during imaging studies to maximize noise removal and
retain subsurface physiological details is part of our ongoing studies. In these preliminary validation
studies, only one NIR wavelength’s data (at 690 nm) were processed to demonstrate the potential of
the technology. Future work will involve data across all wavelengths and also tissue oxygenation
measurements from these multi-wavelength NIR data.
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Figure 7. Reconstructed diffuse reflectance images (at 690 nm) under rest conditions, as obtained
from four healthy subjects. The first row shows the white light image (in gray scale) of the region of
interest that was imaged. The second row shows the coregistered reconstructed images when no single
value decomposition (SVD) was applied. The 3rd–10th rows are coregistered reconstructed images
employing SVD and eliminating one lower EV sequentially across the rows.
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3.2. Optical Changes in Response to Occlusion

Reconstructed images of diffuse reflectance at a given wavelength (here only 690 nm data were
used during preliminary assessment of the device) were compared across the three time stamps (rest,
occlusion, and release). Figure 8 illustrates the diffuse reflectance images with and without noise
removal (i.e., SVD not applied). The SVD reconstructed images with decreasing EV significance
across rest, occlusion, and release are plotted along with the no SVD applied case, for a single subject.
From these 2D pseudo-color plots of diffuse reflectance data, there is no visually significant difference
between rest, occlusion, and release when no SVD was applied. Upon using the first 15 EVs, a slight
difference was observed. Upon removing the first two EVs, the difference across the time stamps was
apparent. The effect of the fiducial marker also diminished with the application of SVD and as the
lower EVs was removed (i.e., EVs 1 and 2). The differences in the diffuse reflectance images (or optical
images) across the three time stamps that appeared distinct for optical images included 3:15, 4:15, and
5:15 EVs. Upon further removal of EVs (i.e., removal of 6th, 7th, and 8th EV), the difference in the
optical images across the time stamps appeared to diminish. This demonstrated that the EVs beyond
six may not significantly contribute to the physiological changes unlike the 3rd, 4th, and 5th EV (as
described above).

Similar results were observed across the four subjects, where the optical images varied across the
time stamps when 3:15, 4:15, and/or 5:15 EVs were used and further removal of EVs diminished that
difference. Figure 9 plots the optical images across the time stamps for all the four subjects for results
obtained when using 4:15 EV-based SVD analysis (all cases are not shown for brevity).

The results of the quantitative analysis are shown in Figure 10 as mean diffuse reflectance data
plotted across the three time stamps and using EVs (1:15, 2:15, and so on until 10:15) for subject 1 (as
a sample case). The values from the three-paired t-test with hypothesis counter (H = 0, 1, or 2) were
also included in the plot. A summary of the resulting hypothesis values (H = 0, 1, 2) from the four
repeated measurements for each subject and various EV ranges is included in Table 2. From these
hypothesis values, it is obvious that when including EVs 1 and 2 toward image reconstructions of the
wrist (subjects 1, 2, and 4), there was predominantly no significant difference (i.e., H = 0) between
rest or relax vs. occlusion. This implies that the first two EVs probably relate to surface noise. Upon
using EVs 3:15, 4:15, and 5:15, the resulting hypothesis was predominantly 1 or 2, stating there was
a significant difference between rest and/or relax vs. occlusion. This result corroborates with the
qualitative results, which demonstrated that image reconstructions using EVs 3:15, 4:15, and/or 5:15
better differentiated the diffuse reflectance signal across rest, occlusion, and relax.

Upon further removing the EVs (i.e., 6:15 and higher), the qualitative pseudo-color plots from rest
did not appear to depict physiological signals. Hence quantitative analysis was not carried out across
these EV ranges. While subject 1, 2, and 4’s wrist was imaged, subject 3’s dorsal of the hand was imaged
during occlusion (to determine if the differences in diffuse reflectance across the time stamps was
significant) at a different location on the hand. From qualitative pseudo-color plots in Figure 9, it was
apparent that occlusion-induced physiological change can be measured independent of location on the
hand. However, since there was only one sample case from dorsal of the hand, extensive quantitative
analysis is not included in this study. Future work will involve a systematic study of repeated
measurements across multiple subjects and multiple hand locations toward statistical validation.

Comparing the optical images across the rest, occlusion, and release, it was consistently observed
that the diffuse reflected signal reduced after 45 s of occlusion, when compared to rest. Similarly,
a significant increase was observed upon immediate release after the 45 s occlusion across all the
four subjects. Typically 690 nm predominantly signifies deoxy-hemoglobin concentration changes.
Upon occlusion, the deoxygenated hemoglobin tends to increase in the occluded region causing an
increased absorption (or decreased diffuse reflectance) of the 690 nm NIR light. Upon immediate
release, there is possibly a rapid decrease in deoxygenated hemoglobin as oxygen rich blood flows
through the tissue, causing a reduction in its absorption (or increase in diffuse reflectance).
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Figure 8. Reconstructed diffuse reflectance images (at 690 nm) across the three time stamps (rest,
occlusion, and release) as obtained from the four subjects. The first row shows the coregistered
reconstructed images when no SVD was applied. The 2nd–9th rows are coregistered reconstructed
images employing SVD and eliminating one lower EV sequentially across the rows.
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Figure 10. Mean diffuse reflectance data across the three time stamps for subject 1. The error bars show
the standard deviation across the 17 averaged locations. The numbers 0, 1, and 2 represent the success
counter of the hypotheses, stating whether diffuse reflectance was not significant (H = 0), significant
across one pair of stimuli (H = 1), or significant across both pairs of stimuli (H = 2).

Table 2. Resulting hypotheses (from four repetitions on data analysis) in response to occlusion across
subjects 1, 2, and 4 when using EVs 1:15 to 5:15.

EVs → 1:15 2:15 3:15 4:15 5:15

Subject 1 0 0 0 0 0 0 0 0 2 2 2 2 2 1 1 1 1 2 1 0
Subject 2 1 0 1 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2
Subject 4 0 0 0 1 0 0 0 0 1 2 2 2 1 1 1 1 0 1 1 1

4. Conclusions

An NIR-based SPOT (smartphone-based oxygenation tool) device was developed to image for
physiological changes in, in- vivo tissues without contact. The custom attachment that contained all
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the relevant imaging components (sources, drivers, and lenses) was used along with the smartphone’s
camera (i.e., detector)—collectively the SPOT device—to acquire multi-wavelength diffuse reflectance
signals. The ability of the SPOT device to observe physiological changes was validated via occlusion
studies. Upon employing SVD-based noise removal algorithms, subsurface information that pertains to
physiological changes was observed distinctly when using EVs 3:15, 4:15, and/or 5:15. The differences
in the diffuse reflected signal in response to occlusion were similar across all the imaged subjects.
Future work will include extensive quantitative studies to show the percentage of change in optical
signals and its consistency during repeatability studies within the subject, across the subjects, and at
different locations of the hand. Additionally, the multi-wavelength NIR images will be used along with
modified Beer–Lambert’s law to obtain changes in oxy- and deoxy-hemoglobin concentrations along
with oxygenation saturation maps (and hence the device is termed as smartphone-based oxygenation
tool—SPOT).

The SPOT device is currently modified to synchronize source and detector operations and
automate image acquisition via custom-developed application software. In the current study, data
corresponding to each wavelength were manually extracted, causing delays in the entire data
processing steps. Our ongoing studies are attempting to automate the data extraction process using
machine learning algorithms, such that the required attributes are extracted and frames appropriately
labeled automatically. Assessing wounds from a subclinical physiological perspective is a novel
addition to smartphone-based technologies that augments wound care management, with a potential
to predict serious complications early on, or periodically monitor the wound status in chronic cases.
A smartphone-based imaging technology with capabilities to capture physiological changes (as a
tissue oxygenation measuring tool) will be a great low-cost alternative for clinicians and eventually for
patients with chronic ulcers, bed sores, and/or in pre-screening for potential ulcers in diabetic subjects.

5. Patents

Both the authors are co-inventors on the patent related to the smartphone-based imaging
technology and methodology described in this manuscript. The patent is currently filed by Florida
International University.
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