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ABSTRACT

Many chemical/petrochemical processes in industry are not completely modeled

from a first-principles perspective because of the complexity of the underlying

physico-chemical phenomena and the cost of obtaining more accurate, physically

relevant models. System identification methods have been utilized successfully

for developing empirical, though not necessarily physical, models for advanced

model-based control designs such as model predictive control (MPC) for

decades. However, a fairly recent development in MPC is economic model

predictive control (EMPC), which is an MPC formulated with an economics-based

objective function that may operate a process in a dynamic (i.e., off steady-state)

fashion, in which case the details of the process model become important for

obtaining sufficiently accurate state predictions away from the steady-state, and

the physics and chemistry of the process become important for developing

meaningful profit-based objective functions and safety-critical constraints.

Therefore, methods must be developed for obtaining physically relevant models

from data for EMPC design. While the literature regarding developing models

from data has rapidly expanded in recent years, many new techniques require a

model structure to be assumed a priori, to which the data is then fit. However,

from the perspective of developing a physically meaningful model for a chemical

process, it is often not obvious what structure to assume for the model, especially

considering the often complex nonlinearities characteristic of chemical processes

(e.g., in reaction rate laws). In this work, we suggest that the controller itself may

facilitate the identification of physically relevant models online from process

operating data by forcing the process state to nonroutine operating conditions
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for short periods of time to obtain data that can aid in selecting model structures

believed to have physical significance for the process and, subsequently,

identifying their parameters. Specifically, we develop EMPC designs for which the

objective function and constraints can be changed for short periods of time to

obtain data to aid in model structure selection. For one of the developed designs,

we incorporate Lyapunov-based stability constraints that allow closed-loop

stability and recursive feasibility to be proven even as the online “experiments”

are performed. This new design is applied to a chemical process example to

demonstrate its potential to facilitate physics-based model identification without

loss of closed-loop stability. This work therefore reverses a question that has been

of interest to the control community (i.e., how new techniques for developing

models from data can be useful for control of chemical processes) to ask how

control may be utilized to impact the use of these techniques for the identification of

physically relevant process dynamic models that can aid in improving process

operation and control for economic and safety purposes.

Keywords

economic model predictive control, nonlinear model identification, regression

Introduction

Many industrial chemical processes are complex or poorly understood; however, to control

such processes with advanced model-based control designs like model predictive control

(MPC) [1–3], sufficiently accurate process models are required [4]. There is a significant

incentive for companies to employ MPC for certain processes because it is able to deter-

mine control actions that are optimal with respect to the objective function of the con-

troller (which in industrial applications of MPC has been a quadratic objective function

with its minimum at a process steady-state) and that cause constraints to be met. To facili-

tate the use of MPC in cases where process models are not available, system identification

techniques [5–8] can be employed to develop process models.

A variety of system identification methods exist, some of which identify linear process

models [9] (which often provide reasonably accurate state predictions for an MPC because

chemical processes have traditionally been operated around a process steady-state where a

linear model can sufficiently approximate the nonlinear process dynamics), whereas others

can identify nonlinear models [5]. System identification techniques can be classified into

input–output [5,10] and state-space [7,11] methods, depending on whether they produce

models relating the inputs and outputs of the process, or instead models reflecting the

dynamics of process states. A characteristic of system identification techniques is that

a structure for the process model must be chosen before the method can be used (e.g., be-

fore the MOESP [9,12,13] method can be used, it must be assumed that the process dy-

namics can be adequately characterized by a linear state-space empirical model). Many

system identification techniques require a relatively specific structure for the model

(e.g., a linear or polynomial structure) that is not highly conducive to being able to extract

physically meaningful dynamic models (e.g., conservation equations) from the techniques.

Once this structure is selected, it may be assumed that all coefficients of that model can

exist (i.e., the model identification problem becomes a data-fitting problem, rather than an
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attempt to determine which terms most represent the underlying dynamics; indeed, it is

not possible to attempt to determine which terms most represent the underlying dynamics

if the selected model structure is not representative of the underlying dynamics). However,

methods for extracting dynamic models from data such as those based on symbolic and

sparse regression techniques in Refs. [14] and [15], respectively, have examined how mod-

els containing only a subset of terms available to the model identification algorithm might

be obtained. In recent years, there has been a growing interest in machine learning [16]

and data science [17], which are related to the solutions of a variety of model identification

problems. Various MPC designs have been developed that can take advantage of aspects of

machine learning such as support vector machines [18], reinforcement learning [19], neu-

ral networks [20–22], and sparse regression [23]. Model reduction techniques that support

MPC design have included the naive elastic net technique with orthogonal decomposition

[24] and clustering with dynamic mode decomposition with control [25], which have been

demonstrated to have applications for the hydraulic fracturing process.

The need to obtain physics-based models of chemical processes from operating data is

growing as there are greater pushes toward smart/next-generation manufacturing tech-

niques that seek to streamline process operation and control [26,27]. From an operational

standpoint, physics-based process models can improve an engineer’s understanding of the

dynamics of a process to aid in trouble-shooting and therefore to enhance profits. They

may also aid in improvements to both process operational and maintenance safety by

giving employees a better understanding of how the process behaves under different con-

ditions. On the control side, physically meaningful models are important for the design of

advanced MPC-type controllers such as economic model predictive controllers (EMPC’s)

[28–30]. EMPC is an MPC design that is not required to have the minimum value of the

objective function at a process steady-state (it allows for general economics-based objective

functions in MPC so that the control actions are economically optimal with respect to the

objective function, given the constraints). EMPC may operate a process in a time-varying

fashion, rather than driving the process state to a steady-state. This introduces new chal-

lenges related to the practical design of these controllers that have not been encountered

before with traditional tracking MPC designs. For example, nonlinearities in the dynamics

may become important for making state predictions when the EMPC operates a process in

a time-varying fashion, and the traditional linear empirical models utilized in industry may

only provide reasonably good state predictions in a neighborhood of the origin, thereby

potentially limiting the economic performance of a process operated under an EMPC us-

ing a linear empirical model compared to one that uses a more accurate nonlinear model

[31,32]. Furthermore, the constraints and objective function of EMPC are often physics-

based (e.g., an economics-based objective function may be related to process behavior

known to enhance or detract from profits, and physically meaningful constraints, such

as those related to safety [33], may be important to prevent the potentially off steady-state

operation of the EMPC from leading to dangerous operating conditions).

The traditional technique used for obtaining physically meaningful models of proc-

esses where dynamics are not known has been to perform experiments in a laboratory

setting. In these cases, specific variables are often fixed so that the impacts on measured

states of changing other variables can be observed. Online model identification is prefer-

able to extensive laboratory testing given the cost of performing many experiments, but

model identification techniques may require that the data to be used for model identifi-

cation is adequate for the algorithm being utilized to derive a model. Furthermore, it can be
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desirable to check how well an identified model fits data that was not utilized to develop it

to be sure that the identified model has good predictive performance.

Experimentation, developing appropriate data for model identification techniques,

and developing nontraining data to use in model validation all require methods for chang-

ing the process inputs in well-characterized and desired ways, though not for long periods

of time. MPC’s have long been utilized to manipulate process inputs; EMPC presents even

greater flexibility in the objective function and constraints than traditional tracking MPC

for adjusting the process inputs in desired ways and also has the ability to move the process

state throughout an operating region rather than forcing it to a steady-state. Motivated by

these considerations, in this work, we develop EMPC designs that can be utilized to seek to

obtain specific process data for short periods of time to aid in obtaining physically mean-

ingful process models from data online to use in updating the EMPC’s (including the

model, constraints, and objective function) so that their design becomes more conducive

to achieving operational economic and safety goals. We present an example formulation of

the proposed controller with Lyapunov-based stability constraints that can achieve flex-

ibility in manipulating the process states while maintaining closed-loop stability and re-

cursive feasibility, even in the presence of disturbances. A chemical process example is

utilized to demonstrate the potential benefits of utilizing an EMPC for online model iden-

tification and online EMPC design. This work extends that in [34].

Preliminaries

NOTATION

The Euclidean norm and transpose of a vector x are denoted by jxj and xT , respectively.

The function αð⋅Þ∶½0, aÞ → ½0,∞Þ belongs to classK if it is strictly increasing and αð0Þ = 0.

For a sufficiently smooth, positive definite function V , we define Ωρ∶ = fx ∈ Rn∶
VðxÞ ≤ ρg. Set subtraction is signified by “/” (i.e., x ∈ A=B∶ = fx ∈ A∶x ∈= Bg). An n × n

matrix with the entries of the vector x ∈ Rn on its diagonal is denoted by diagðxÞ. The floor
function b⋅c returns the largest integer less than its argument.

CLASS OF SYSTEMS

The class of nonlinear systems considered is the following:

ẋðtÞ = f ðxðtÞ, uðtÞ,wðtÞÞ (1)

where f is a nonlinear locally Lipschitz vector function of the state vector x ∈ X ⊂ Rn, the

manipulated input vector u ∈ Rm, and the disturbance vector w ∈ Rl , where X represents

the set where the state is constrained. The control action is constrained in

U∶ = fu ∈ Rm∶umin
i ≤ ui ≤ umax

i , i = 1, : : : ,mg, while the noise is bounded in W ⊂ Rl

ðw ∈ W∶ = fw ∈ Rl∶jwðtÞj ≤ Θ,Θ > 0gÞ. We will refer to Eq 1 as the nominal system

when wðtÞ ≡ 0. The origin of the nominal nonlinear system is considered to be the

equilibrium point (i.e., f ð0, 0, 0Þ = 0). The state is measured at each sampling time

tk = kΔ where k = 0, 1, : : : , and Δ is the sampling period. We restrict the class of non-

linear systems considered to those for which there exists an explicit stabilizing Lyapunov-

based controller hðxÞ that is locally Lipschitz and is able to render the origin asymptotically

stable in the sense that there exists a sufficiently smooth Lyapunov function V∶Rn → R+

such that:
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α1ðjxjÞ ≤ VðxÞ ≤ α2ðjxjÞ (2)

∂VðxÞ
∂x

f ðx, hðxÞ, 0Þ ≤ −α3ðjxjÞ (3)

���� ∂VðxÞ∂x

���� ≤ α4ðjxjÞ (4)

hðxÞ ∈ U (5)

for all x ∈ D ⊂ Rn, where D is an open neighborhood of the origin and the

αið⋅Þ, i = 1, 2, 3, 4, are functions of class K. We define Ωρ ⊂ D to be the stability region

of the nominal closed-loop system under the controller hðxÞ and require that it be chosen

such that x ∈ X, ∀x ∈ Ωρ. Because V is a sufficiently smooth function and f is locally

Lipschitz, the following inequalities hold:

j f ðx1, u,wÞ − f ðx2, u, 0Þj ≤ Lxjx1 − x2j + Lwjwj (6)

���� ∂Vðx1Þ∂x
f ðx1, u,wÞ −

∂Vðx2Þ
∂x

f ðx2, u, 0Þ
���� ≤ L 0

xjx1 − x2j + L 0
wjwj (7)

∀x1, x2 ∈ Ωρ, u ∈ U , and w ∈ W, where Lx, L 0
x, Lw, and L 0

w are positive constants.

Moreover, there exists M > 0 that is bounded such that

jf ðx, u,wÞj ≤ M (8)

∀x ∈ Ωρ, u ∈ U , and w ∈ W because f ð⋅, ⋅ , ⋅Þ is a locally Lipschitz vector function.

In this work, we assume that the nonlinear model of Eq 1 is not available, so we

instead develop an empirical model that can have a general nonlinear form as follows:

ẋðtÞ = f NLðxðtÞ, uðtÞÞ (9)

where f NL is a locally Lipschitz nonlinear vector function of the state x ∈ Rn and the input

u ∈ Rm with f NLð0, 0Þ = 0. We consider empirical models for which the origin can be

rendered asymptotically stable by a locally Lipschitz explicit stabilizing controller

hNLðxÞ in the sense that

α̂1ðjxjÞ ≤ V̂ðxÞ ≤ α̂2ðjxjÞ (10)

∂V̂ðxÞ
∂x

f NLðx, hNLðxÞÞ ≤ −α̂3ðjxjÞ (11)

���� ∂V̂ðxÞ∂x

���� ≤ α̂4ðjxjÞ (12)

hNLðxÞ ∈ U (13)

for all x ∈ DNL, where V̂∶Rn → R+ is a sufficiently smooth Lyapunov function and α̂i, i =
1, 2, 3, 4 are class K functions. We define Ωρ̂ ⊂ DNL (chosen such that x ∈ X, ∀x ∈ Ωρ̂) as

the stability region of the system of Eq 9. There exist ML > 0 and LL > 0 such that
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jf NLðx, uÞj ≤ ML (14)

���� ∂V̂ðx1Þ∂x
f NLðx1, uÞ −

∂V̂ðx2Þ
∂x

f NLðx2, uÞ
���� ≤ LLjx1 − x2j (15)

∀x, x1, x2 ∈ Ωρ̂ and u ∈ U . Furthermore, because f is a locally Lipschitz function of its

arguments, we can also write the following ∀x1, x2 ∈ Ωρ̂, u ∈ U , and w ∈ W, and Lx,

Lw, L
0
x, and L 0

w as positive constants:

j f ðx1, u,wÞ − f ðx2, u, 0Þj ≤ Lxjx1 − x2j + Lwjwj (16)

���� ∂V̂ðx1Þ∂x
f ðx1, u,wÞ −

∂V̂ðx2Þ
∂x

f ðx2, u, 0Þ
���� ≤ L 0

xjx1 − x2j + L 0
wjwj (17)

Remark 1. We assume full state feedback, and therefore do not consider the case where

a physics-based empirical model to be developed must model or account for the effects of

unmeasured states.

EMPC

EMPC is a control design that determines control actions to apply to a process by solving

an optimization problem of the following form:

min
uðtÞ∈SðΔÞ

Z
tk+N

tk

LeðexðτÞ, uðτÞÞ dτ (18)

s:t: ėxðtÞ = f ðexðtÞ, uðtÞ, 0Þ (19)

exðtkÞ = xðtkÞ (20)

exðtÞ ∈ X, ∀ t ∈ ½tk, tk+NÞ (21)

uðtÞ ∈ U ,∀ t ∈ ½tk, tk+NÞ (22)

where the stage cost Leðex, uÞ is minimized (Eq 18), subject to a nominal system model

(Eq 19) and the initial condition in Eq 20 that sets the predicted state ðexÞ equal to the

measured state at the sampling time. ex and the input u are bounded (Eqs 21 and 22).

The notation uðtÞ ∈ SðΔÞ signifies that the inputs are piecewise constant over the predic-
tion horizon comprised of N sampling periods of length Δ. It is noted that the nominal

nonlinear dynamic model of Eq 1 is used in Eq 19 (i.e., this is not an empirical model) for

consistency with the majority of the EMPC literature, which has, in general, not considered

empirical models (some exceptions include Refs. [31,32,35–38]). The use of an empirical

model in the EMPC development in this work will be clarified in what follows.

LYAPUNOV-BASED EMPC

Lyapunov-based EMPC (LEMPC) [39] is formulated as follows:

min
uðtÞ∈SðΔÞ

Z
tk+N

tk

LeðexðτÞ, uðτÞÞ dτ (23)
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s:t: ėxðtÞ = f ðexðtÞ, uðtÞ, 0Þ (24)

exðtkÞ = xðtkÞ (25)

exðtÞ ∈ X, ∀ t ∈ ½tk, tk+NÞ (26)

uðtÞ ∈ U ,∀ t ∈ ½tk, tk+NÞ (27)

VðexðtÞÞ ≤ ρe, ∀ t ∈ ½tk, tk+NÞ, if xðtkÞ ∈ Ωρe (28)

∂VðxðtkÞÞ
∂x

f ðxðtkÞ, uðtkÞ, 0Þ

≤
∂VðxðtkÞÞ

∂x
f ðxðtkÞ, hðxðtkÞÞ, 0Þ if xðtkÞ ∈= Ωρe (29)

The notation in Eqs 23–29 is like that in Eqs 18–22 but with Eqs 28 and 29 added to

ensure that the closed-loop state cannot leave Ωρ. Eq 28 requires that the predicted state is

contained in Ωρe ⊂ Ωρ throughout the prediction horizon if xðtkÞ ∈ Ωρe . Eq 29 is applied

when xðtkÞ ∈= Ωρe and causes the LEMPC to compute control actions that will drive the

closed-loop state into Ωρe in finite time.

Data-Gathering EMPC Design

EMPCmay require an understanding of the process dynamics for developing an appropriate

economics-based objective function and meaningful constraints. It would be expected that

system identification techniques would be more preferable to use for obtaining dynamic

models for EMPC than first-principles modeling for many large-scale or complex chemical

processes. However, though empirical models have the potential to enable sufficiently ac-

curate state predictions by the controller, they may not aid in the development of constraints

or objective functions that are reflective of the physics and chemistry of the process.

Therefore, in the following sections, we will develop a class of EMPC formulations and their

implementation strategy that can aid in obtaining data for developing and validating em-

pirical models with potentially physically meaningful terms.

MOTIVATING CONSIDERATIONS

A hurdle in obtaining a physics-based model from data can be obtaining good data for

using the chosen identification technique or validating the model obtained from it. For

example, an MPC will operate a process at steady-state, in which case the changes in states

and inputs over time would be expected to be relatively minimal. An EMPC may also find

a steady-state to be an economically optimal operating point with respect to the objective

function and constraints. As a result, the routine operating data would be expected to be

approximately the same for extended periods of time and may not aid in utilizing certain

methods for getting models from data or in having different data available with which to

validate a model than was used to identify it.

A second hurdle in obtaining a physics-based model can be selecting physically mean-

ingful model structures with which to fit the data. For example, consider a novel technique

for developing dynamic models from data in Ref. [15]. In this work, it is proposed that a

dynamic model with potentially physically relevant terms may be developed from data

through a sparse regression technique. A large number of terms can initially be postulated
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that may potentially be present in the model, and sparse regression is utilized to attempt to

identify coefficients for the postulated terms that trade off between fitting the data and

seeking to keep the number of terms in the model low in the hopes that the terms that are

given significant nonzero values through this procedure may be those with greatest physi-

cal relevance. For the purpose of modeling only, it is possible that neglecting terms on

which a model only weakly depends may not significantly affect predictions of the process

state; however, it is possible that some such terms have a physical meaning. To obtain a

better understanding of a chemical process to enable factors affecting its economics and

safety-based constraints to be accounted for in control design, it would be preferable to

avoid the potential for neglecting physically relevant dependencies between states and in-

puts, even if they are weak. Another difficulty with using a method like that in Ref. [15] for

a chemical process is that the nonlinearities present in chemical processes can be non-

intuitive (e.g., one would be hard-pressed to guess the form of the rate law developed

in Ref. [40] as a potential term for which coefficients should be identified in a model iden-

tification procedure). Furthermore, some coefficients which it may be desirable to deter-

mine from data for a chemical process (e.g., activation energies, powers in rate laws,

coefficients of sums that appear in the denominator of a reaction rate law expression

[41]), may appear nonlinearly, which can make linear regression techniques more difficult

to apply to obtain these coefficients (though it is possible that there may be a way to re-

arrange the terms in the model to still identify them through a linear regression, as dem-

onstrated in the section titled “Application to a Chemical Process Example” nonlinear

optimization methods may not be ideal for identifying coefficients that appear nonlinearly

because many nonlinear optimization algorithms locate local minima, and these would not

be guaranteed to give physically meaningful values of parameters). The following numeri-

cal example illustrates the concepts just described.

Example 1. To exemplify the impacts of selecting inappropriate model structures on

one’s ability to obtain a physically meaningful model, we consider an illustrative numerical

example based on the following simple nonlinear system:

ẋ = ax2 + bu (30)

where x is the state of the system, u is an input, and a, b ∈ R are coefficients

(a = 0.35, b = 12.1). The dynamic model in Eq 30 was integrated with an integration step

of 10−3 time units, starting from the initial condition xðt0Þ = 6.3 and with the following set

of inputs [−15, −5, −10, −10, −20, −2, −5, −10, −15], each component of which was held

for 1,000 integration steps and stored every integration step to generate a data set. This set

of manipulated inputs was chosen to maintain boundedness of x during the simulations

performed. The model identification was performed using Ipopt [42] by minimizing the

squared two-norm of the difference between the vector of measured values of x and the

vector of the predictions of x (each prediction was determined by numerical integration

from the measured value from 10−3 time units prior). The initial guess of each of the

optimization variables in Ipopt was 10, the Ipopt tolerance was 10−7, the limited memory

Hessian approximation was selected, and the numerical approximations of the derivatives

in the gradient of the objective function were performed with a centered finite difference

approximation using a perturbation of 0.0001. When the terms for which the coefficients

to be identified were only those on the right-hand side of Eq 30 (i.e., a and b were de-

termined by the optimization problem), the solver returned approximately the correct

values of the coefficients (specifically, a = 0.350113 and b = 12.1007). Another simulation
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was performed in which the coefficients of four terms were determined such that the as-

sumed dynamic model was as follows:

ẋ = ax2 + bu + cx + dx3 (31)

In this case, the solution to the optimization problem was a = 0.347838, b = 12.0996,

c = −0.00961972, d = −8.11362 × 10−5. The small values of c and d compared to the val-

ues of a and b suggest that the solver was able to determine a meaningful model (with

respect to the actual process dynamics) when the terms for which coefficients were iden-

tified included those in the actual model, even when other terms were included as well.

However, if no correct terms are selected for which the coefficients are determined, no

meaningful model can be developed. For example, when the dynamic model was:

ẋ = ex + f u2 + gex + heu (32)

the coefficients identified by the optimization problem were e = −0.804014,
f = −0.109085, g = 0.566903, and h = 67.7681. The resulting model is not meaningful

with respect to the dynamics of the system.

DATA-GATHERING EMPC DESIGN

In this section, we suggest that controllers may help to address the challenges noted with

respect to developing adequate structures for physically meaningful chemical process

dynamic models and with respect to developing appropriate data for identification and

validation of such models. Specifically, we present an EMPC design that is able to operate

a chemical process in a nonroutine manner for short periods of time with the goal of

manipulating the process state to achieve desired patterns in the process data that can

be utilized to seek to obtain more physically meaningful process models from state

measurements.

Data-Gathering EMPC Formulation

The proposed EMPC design is a modification of Eqs 18–22, where constraints can be

added to the controller or terms can be added to the objective function that are multiplied

by coefficients that can take either a zero or one value to represent that the modification is

either off (not used to force the EMPC to gather the specific type of data implied by this

constraint/term) or on (used by the EMPC to seek to obtain specific data). To clarify this

concept, we present an example formulation of an EMPC that has the potential to move ns
selected components of the closed-loop state toward desired states xd,i, i = 1, : : : , ns, and

nk selected components of the manipulated input vector to desired values ud,j,

j = 1, : : : , nk, while forcing changes in nROC selected components up, p = 1, : : : , nROC ,

of the input vector at each sampling time in the prediction horizon. This formulation

is expressed by the following equations:

min
uðtÞ∈SðΔÞ

Z
tk+N

tk

½Leðx̂ðτÞ, uðτÞÞ + δ1
Xnk
j=1

αwjðujðτÞ − ud,jÞ2 + δ2
Xns
i=1

αyiðx̂iðτÞ − xd,iÞ2

− δ3
Xk+N−2

q=k−1

XnROC
p=1

αp,ROCðupðtqÞ − upðtq+1ÞÞ2�dτ
(33)
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s:t: ˙̂x = f NLðx̂ðtÞ, uðtÞÞ (34)

x̂ðtkÞ = xðtkÞ (35)

x̂ðtÞ ∈ X, ∀ t ∈ ½tk, tk+NÞ (36)

uðtÞ ∈ U ,∀ t ∈ ½tk, tk+NÞ (37)

gMPCðx̂, uÞ ≤ 0 (38)

where αwj, for j = 1, : : : , nk, αyi, i = 1, : : : , ns, and αp,ROC , for p = 1, : : : , nROC , are weight-

ing constants, and upðtqÞ, p = 1, : : : , nROC , represents the value of up computed for t ∈
½tq, tq+1Þ (upðtk−1Þ represents the value of up applied for t ∈ ½tk−1, tkÞ). The notation in

Eqs 33–38 is like that in Eqs 18–22, but three additional terms have been added to

the stage cost, which include penalties on the deviations of the selected components of

the state and input vectors from desired values. The penalties in the objective function

enforce desired “experimental” goals as soft constraints. The values of the terms δi,

i = 1, 2, 3, depend on whether the terms in Eq 33 that each δi multiplies are selected

to be activated (δi = 1) or not (δi = 0). The function gMPC in Eq 38 represents any general

inequality constraints in x and u that may be added to achieve online data-gathering goals;

they may also include constraints added to maintain closed-loop stability. The model uti-

lized for making state predictions in this MPC is the nonlinear empirical model of Eq 9,

where x̂ represents predictions of the process state obtained from this empirical model.

The empirical model is used because we assume that since we want to determine a physics-

based model from data, we do not know the model of Eq 1.

Remark 2. If it is desired to obtain data where uj = ud,j, j = 1, : : : , nk, or x̂i = xd,i,

i = 1, : : : , ns, then it may be beneficial to make the weighting terms αwj and αyi large

to attempt to drive these states to the desired values quickly (as deviation from the desired

values will then make the objective function large) so that the online experiment can be

completed relatively quickly and routine operation can be restored. Notably, once the

states or inputs reach the desired values, the terms on the right-hand side of Eq 33 will

be small, such that the economic objective function will become important (i.e., while data

is being gathered with the states at their desired values, it will be gathered in the most

economically optimal manner subject to values of some states being approximately con-

stant; however, this may not be as economically optimal as the objective function without

those states fixed, which is the motivation for seeking to complete the experiments

quickly). Similarly, if δ1 = δ2 = 0, but δ3 = 1, though the penalty on the input rate of

change is a negative addition to the objective function, this does not necessarily mean

that the economics-based part of the stage cost is minimized more than if δ3 = 0 (the

changes in the inputs encouraged by the input rate of change term in the objective function

do not necessarily result in input trajectories that minimize Le more than smaller input

variations). It is therefore again desirable to seek to complete experiments quickly.

Remark 3. ud,j and xd,i are desired values that for the purposes of the formulation in

Eq 33 are constant, though another EMPC formulation could be developed in which they

change over time.
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Data-Gathering EMPC Analysis

Several comments should be made with respect to the EMPC of Eqs 33–38 and EMPC’s

with similar on–off terms in the objective function and constraints to aid in gathering

specific data for model identification (data-gathering EMPC’s). First, the concept of

obtaining “specific data” utilizing the proposed EMPC design should be clarified. In

Eqs 33–38, the specific desired data is considered to be that which corresponds to the

soft constraints being achieved (i.e., uj = ud,j for j = 1, : : : , nk, xi = xd,i for i = 1, : : : , ns,

and significant changes between upðtqÞ and upðtq+1Þ for p = 1, : : : , nROC , and

q = k − 1, : : : , k + N − 2). Soft constraints are not guaranteed to be met, however, both

because they may not be possible to achieve given the other constraints of the optimization

problem (this would correspond to the case that they would be infeasible if they had been

enforced as hard constraints) and because the minimum of the objective function does not

necessarily correspond to all soft constraints being met (i.e., the terms in Eq 33 are com-

peting with one another and with Le when the EMPC is determining the values of u that

most minimize the sum of all terms in Eq 33 given the constraints). However, Eqs 33–38

form only one example among many potential data-gathering EMPC formulations.

Therefore, though the goal of these designs is to obtain specific data, there may be some

formulations better suited to obtaining certain types of data than others for a given proc-

ess, and some types of data may not be practically possible to obtain.

It can be expected that for the design of Eqs 33–38 to work well, sufficiently small

errors are required between the actual and the empirical model so that sufficiently accurate

process models are utilized to make predictions of the state when selecting input trajec-

tories that optimize the objective function and meet the constraints. It would be expected

that utilizing an empirical model that captures the physics of the process would allow the

state predictions to be more accurate in a larger region of state-space, leading potentially to

an increased ability of the EMPC to optimize profit [31,32] and, as would be important

from a safety perspective, enabling the inputs it is computing to cause the system to more

closely meet the constraints of the actual process if they caused these constraints to be met

in the EMPC.

Without any conditions on the EMPC of Eqs 33–38, closed-loop stability of the proc-

ess of Eq 1 operated under this EMPC and recursive feasibility of the EMPC optimization

problem are not guaranteed. A variety of EMPC designs with a form similar to that in

Eqs 33–38 at each sampling time have been developed with stability and feasibility guar-

antees in the case of no plant-model mismatch/disturbances (e.g., Refs. [43–46]). However,

for the practical case considered in this article where the actual process dynamic model is

unknown, it would be expected that there will be plant-model mismatch/disturbances,

which motivates us to focus in a subsequent section on an example data-gathering

EMPC formulation with guaranteed feasibility, stability, and robustness properties.

Another point with regard to data-gathering EMPC’s is that the benefits of obtaining

a physics-based model for EMPC can impact not only the state prediction accuracy but

also the design of the controller. For example, unlike a tracking MPC, in which the form of

the quadratic objective function is set a priori and the only adjustments made are in tuning

the weighting matrices in the objective function, the objective function of EMPC is allowed

to be a general profit measure. For some processes, profit may be a function of either a state

or quantity that is not directly measured but is a function of other states that has signifi-

cance because of its physical relevance with respect to the process dynamics (an example of

this will be provided in the section titled “Application to a Chemical Process Example”).
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In this case, obtaining a physics-based process model is key to being able to extract the

relevant part of the dynamics that can be used to predict the process profit over time.

Without such a means for obtaining the economic measure for an online process for which

a first-principles model is not available, an economic measure that is not fully reflective of

the process economics may be selected, which can lower the potential benefits of EMPC for

such a process. Obtaining physics-based process models can also aid in developing im-

portant constraints for an EMPC design. It is sometimes desirable to constrain a combi-

nation of states, for example, and this combination may be dictated by the physics of the

process but may not be readily discerned without a physical model. For example, in

Ref. [47], a first-principles model for an ethylene oxidation process [48] coupled with

a model for a valve experiencing stiction [49] is developed. Though the pressure applied

to this valve by a pneumatic actuator is a function of the states and inputs (i.e., it was not

itself a measured state), a constraint was imposed in the EMPC design on the pressure. In

cases like this, it may be beneficial to develop physics-based dynamic models from which

parts of the model which it is desired to constrain in the EMPC can be extracted for con-

straint design.

Remark 4. It is noted that the state predictions x̂ðtÞ constitute a type of data for the

system of Eq 9. In light of the concept that a data-gathering EMPCmay be used to generate

desired data from the system of Eq 1, it could also be explored whether it can generate

desired data from the system of Eq 9. Specifically, MPC is implemented with a receding

horizon and only the first input of the input trajectory that it computes at a given sampling

time is applied to the process. Though it is beneficial to compute subsequent inputs in the

prediction horizon to make the best possible selection of an input to apply from tk to tk+1
based on longer-term profit and constraint satisfaction predictions (i.e., avoiding myopic

behavior), it is possible to utilize the part of the prediction horizon after the first sampling

period to, for short periods of time (to avoid possible degradation of profit or feasibility

from these changes), perform “experiments” on the predicted state. In this case, it is pos-

sible to apply soft constraints as in the previous section but to have them activated only

after the first sampling period to analyze the effects on the trajectory of the predicted states

and to better understand their behavior.

Remark 5. It is conceivable that certain experiments may be preferably carried out in

units with different designs than a unit has under routine operation (e.g., it is conceivable

that certain types of data may be more readily generated in a continuous than a batch

process, or vice versa). If it is believed that this may be the case, once could consider

at the design stage of a process the types of data that it may be desirable to obtain online

and the type of unit configuration necessary to achieve this and then develop the appro-

priate design/instrumentation (e.g., valves that are not typically actuated by a controller

but can be opened or closed) at the key points in the process that would permit the desired

unit configuration to be obtained for short periods of time for the purpose of gathering

data. However, such a course of action has the potential to be complex (e.g., if a continuous

process is switched to batch operation sometimes, some method for storing the fluid that

would typically be flowing through the system would need to be developed to contain it

during short-term batch operation) and must be rigorously investigated from a design,

control, and control-theoretic perspective before being attempted. However, it is impor-

tant to note that such manipulations may not be necessary. For example, in the section

titled “Application to a Chemical Process Example”, a process example will be presented in
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which creative manipulations of the process model with respect to regression techniques

are used to derive reaction rate laws from operating data for a continuous process, though

traditional chemical engineering design principles (e.g., Ref. [50]) suggest that batch ex-

periments offer an effective reactor configuration for obtaining reaction rate data. This

reflects that the controller and methods for getting models from data, when combined,

may provide a good deal of power for obtaining information on the physics of the process.

Data-Gathering EMPC Implementation Strategy

An implementation strategy for data-gathering EMPC’s should achieve the following goals:

(1) determine how to initially operate a process for which the model, objective func-
tion, or constraints, or any combination thereof, may not be fully characterized
because of a lack of complete knowledge of the process dynamics;

(2) initiate desired experiments for short periods of time; and
(3) update the model, objective function, and constraints of the EMPC once the experi-

ments have improved the available information on the process dynamics.

To accomplish Goal 1, traditional methods for tracking MPC design with linear

empirical models can be utilized because of their practical success in industry to date.

Goal 2 can be pursued by developing a logic unit that determines the best times to turn

on and off constraints (δi = 1, or δi = 0, i = 1, 2, 3, in Eq 33), either by receiving input from

an engineer or through an automated method. The implementation strategy for a data-

gathering EMPC design is as follows:

Step 1. Utilize standard industrial techniques for developing linear empirical models
and MPC designs with quadratic objective functions for a process, develop an MPC
design that uses a linear empirical model, and operate the process under this controller.
Step 2. Develop any additional terms in the objective function or constraints with their
activation condition (e.g., δ) and set these terms/constraints to initially not be activated.
Step 3. When the logic unit indicates that one or more terms/constraints related
to data-gathering should be activated, activate these terms/constraints at each sampling
time to determine the MPC solution until the logic unit indicates that the constraint/
term should be turned off. Repeat as necessary until it is determined that sufficient
information has been obtained for attempting to identify a physics-based model.
Step 4. Process the obtained data to seek to develop a physics-based model.
Step 5. Analyze the obtained data to determine the types of data (not included in the
training data) that would best verify the adequacy of the model to describe the process
physics or determine what is still lacking.
Step 6. Perform the designated experiments according to Step 5 by using the logic unit
to indicate when constraints/terms should start and stop being used. If the predictions
using the developed model match well with the nontraining data, continue to Step 7. If
not, repeat Steps 2–6.
Step 7. Use the new dynamic model to update the constraints, objective function, and
model in the MPC.
Step 8. Operate the process under this updated MPC until it is desired to reidentify a
model to reduce plant–model mismatch or to change the objective function and con-
straints. When these changes become desired, repeat Steps 2–8.

Remark 6. It is likely that the modeling strategy described previously will need to be

repeated over time. In particular, if a known persistent disturbance, fault, or process recon-

figuration occurs, or sufficient time has elapsed since the last model identification such

that slow changes in the process dynamics are to expected to have occurred (because of, for
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example, heat exchanger fouling or catalyst deactivation), this process may need to be re-

executed.

EXAMPLE OF DATA-GATHERING EMPC WITH CLOSED-LOOP STABILITY

GUARANTEES

In this section, we focus on an EMPC for which the constraint of Eq 38 takes a specific

form as in Eqs 28 and 29 to provide guaranteed closed-loop stability, feasibility, and ro-

bustness properties.

Data-Gathering Lyapunov-Based EMPC Formulation

One may conceive of a large number of desired types of data that one may wish to obtain

online using a data-gathering EMPC with Lyapunov-based stability constraints and, con-

sequently, a large number of constraints or terms in the objective function that may be

added in an effort to develop and validate a physics-based process model. We provide an

example of an EMPC formulation that can handle several different types of experiments

and demonstrates the flexibility of the control design for handling a variety of data-

gathering objectives as follows:

min
uðtÞ∈SðΔÞ

Z
tk+N

tk

½Leðx̂ðτÞ, uðτÞÞ + δ1
Xnk
j=1

αwjðujðτÞ − ud,jÞ2 + δ2
Xns
i=1

αyiðx̂iðτÞ − xd,iÞ2

−δ3
Xk+N−2

q=k−1

XnROC
p=1

αp,ROCðupðtqÞ − upðtq+1ÞÞ2�dτ
(39)

s:t: ˙̂x = f NLðx̂ðtÞ, uðtÞÞ (40)

x̂ðtkÞ = xðtkÞ (41)

x̂ðtÞ ∈ X, ∀ t ∈ ½tk, tk+NÞ (42)

uðtÞ ∈ U ,∀ t ∈ ½tk, tk+NÞ (43)

V̂ðx̂ðtÞÞ ≤ ρ̂e, ∀ t ∈ ½tk, tk+NÞ if xðtkÞ ∈ Ωρ̂e (44)

∂V̂ðxðtkÞÞ
∂x

ðf NLðxðtkÞ, uðtkÞÞÞ

≤
∂V̂ðxðtkÞÞ

∂x
ðf NLðxðtkÞ, hNLðxðtkÞÞÞÞ if xðtkÞ ∈= Ωρ̂e

or δ4jxiðtkÞj ≥ γi, i = 1, : : : , nf , or tk ≥ t 0, or δ5 = 1 (45)

where the notation follows that of Eqs 33–38 except that the constraint of Eq 38 is replaced

by the Lyapunov-based stability constraints of Eqs 44 and 45. This is a form of LEMPC

using an empirical process model [31,32]. In addition to δ1, δ2, and δ3, which have the

same purpose as they do in Eqs 33–38, δ4, and δ5 are also parameters in this equation that

take a value of either zero or one, depending on whether it is desired to utilize the con-

straint of Eq 45 that they activate or not. Specifically, when δ4 = δ5 = 0 and tk < t 0, the
LEMPC seeks to maintain the predictions of the closed-loop state obtained from the em-

pirical model of Eq 40 in the level setΩρ̂e of V̂ . When the closed-loop state exits this region,

the constraint of Eq 45 is activated to drive the closed-loop state back into Ωρ̂e . t
0 is a

predetermined time after which it is desired to enforce the constraint of Eq 45 in the
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LEMPC regardless of whether xðtkÞ ∈ Ωρ̂e or not, with the goal of driving the closed-loop

state to a neighborhood of the origin in finite time. If tk < t 0, then when δ5 = 1, Eq 45 is

again activated repeatedly regardless of whether xðtkÞ ∈ Ωρ̂e or not to drive the closed-loop

state toward a neighborhood of the origin. The difference between setting δ5 = 1 and hav-

ing tk ≥ t 0 is that it is assumed that after t 0, the constraint of Eq 45 is not again inactivated,

whereas it is not necessary to maintain δ5 = 1 for all times, such that the constraint of

Eq 45 can be activated for finite periods of time when xðtkÞ ∈ Ωρ̂e by this condition.

The term containing δ4 is also used to activate Eq 45 regardless of the location of

xðtkÞ in state-space, but unlike δ5, it is used to activate Eq 45 only when the magnitudes

of the nf components of the measured state vector are not within the corresponding γi of

their steady-state value [51]. Because the γi, i = 1, : : : , nf , are taken to be positive con-

stants, when δ4 = 0, then δ4jxiðtkÞj = 0 cannot be greater than or equal to γi, which means

that the condition δ4jxiðtkÞj ≥ γi cannot be used to activate Eq 45. However, if δ4 = 1, then

whenever the measured values of any of the nf states xi at tk are more than γi from their

steady-state values, Eq 45 is activated to attempt to drive the closed-loop state of Eq 1

closer to its steady-state value. The γi may be chosen based on the amount of deviation

of xi, i = 1, : : : , nf , that an engineer would like to allow for each xi, i = 1, : : : , nf , from

its steady-state value; however, as will be demonstrated in the section titled “Data-

Gathering LEMPC Stability Analysis,” the closed-loop state is only guaranteed to be able

to be driven into a region where jxiðtkÞj < γi, i = 1, : : : , nf , if certain conditions are met on

γi. The implementation strategy for the LEMPC of Eqs 39–45 is like that for the EMPC of

Eqs 33–38 that is outlined in the section titled “Data-Gathering EMPC Implementation

Strategy,” except that provision must be made for developing the Lyapunov-based

stability constraints whenever the model updates, and furthermore, the model updates

must take place in a manner that maintains closed-loop stability and recursive feasibility.

Specifically, the modifications to the implementation strategy in the section titled “Data-

Gathering EMPC Implementation Strategy” are that in Step 1, the design of the LEMPC

should include appropriate design of ρ̂, ρ̂e, V̂ , and hNL. Furthermore, in Step 7, these

parameters should be updated as necessary for the new model, and it should be ensured

that before the model is updated, the closed-loop state is driven into a region where the

model can be changed with closed-loop stability and feasibility guarantees (this region

can be a region of overlap between the stability regions associated with the new and old

models, which will be clarified in the section titled “Data-Gathering LEMPC Stability

Analysis”).

Data-Gathering LEMPC Stability Analysis

In this section, we prove recursive feasibility and closed-loop stability of the process of Eq 1

under the LEMPC of Eqs 39–45. We first present three propositions used in the proofs of

the three theorems to be presented.

Proposition 1. [32] Consider the systems

ẋa = f ðxaðtÞ, uðtÞ,wðtÞÞ (46)

ẋb = f NLðxbðtÞ, uðtÞÞ (47)

with initial states xaðt0Þ = xbðt0Þ ∈ Ωρ̂ with t0 = 0, u ∈ U , and w ∈ W. If xaðtÞ, xbðtÞ ∈ Ωρ̂

for t ∈ ½0,T� then there exists a function f Wð⋅Þ such that
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jxaðtÞ − xbðtÞj ≤ f WðtÞ (48)

with

f WðtÞ∶ = LwΘ +Merr

Lx
ðeLxt − 1Þ (49)

where Merr is defined by the following:

jf ðx, u, 0Þ − f NLðx, uÞj ≤ Merr , ∀x ∈ Ωρ̂ and u ∈ U . (50)

Proof. From the statement of Proposition 1, xað0Þ = xbð0Þ = x0. From Eqs 46 and 47, we

obtain the following:

xaðtÞ = x0 +
Z

t

0
f ðxaðsÞ, uðsÞ,wðsÞÞds

xbðtÞ = x0 +
Z

t

0
f NLðxbðsÞ, uðsÞÞds (51)

Then,

xaðtÞ − xbðtÞ =
Z

t

0
½f ðxaðsÞ, uðsÞ,wðsÞÞ − f NLðxbðsÞ, uðsÞÞ�ds���xaðtÞ − xbðtÞ

��� = ����
Z

t

0
½f ðxaðsÞ, uðsÞ,wðsÞÞ − f NLðxbðsÞ, uðsÞÞ�ds

����
≤
Z

t

0
j f ðxaðsÞ, uðsÞ,wðsÞÞ − f NLðxbðsÞ, uðsÞÞ jds

=
Z

t

0
j f ðxaðsÞ, uðsÞ,wðsÞÞ − f ðxbðsÞ, uðsÞ, 0Þ

+ f ðxbðsÞ, uðsÞ, 0Þ − f NLðxbðsÞ, uðsÞÞjds (52)

From Eq 16, which holds in the region Ωρ̂ under consideration, we obtain the

following:

jxaðtÞ − xbðtÞj ≤
Z

t

0
½LxjxaðsÞ − xbðsÞj + LwjwðsÞj

+ j f ðxbðsÞ, uðsÞ, 0Þ − f NLðxbðsÞ, uðsÞÞ j�ds
(53)

for all times between t0 = 0 and t. Because jwðtÞj ≤ Θ, the last inequality can be written as

follows:

jxaðtÞ − xbðtÞj ≤
Z

t

0
½LxjxaðsÞ − xbðsÞj + LwΘ

+ j f ðxbðsÞ, uðsÞ, 0Þ − f NLðxbðsÞ, uðsÞÞ j�ds (54)

From the definition of Merr > 0 in Eq 50, we obtain

jxaðtÞ − xbðtÞj ≤
Z

t

0
½LxjxaðsÞ − xbðsÞj + LwΘ +Merr� ds (55)

≤ ðLwΘ +MerrÞt +
Z

t

0
½LxjxaðsÞ − xbðsÞj �ds (56)
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for times between t0 = 0 and t. From the Gronwall-Bellman inequality [52], we obtain

the following:

jxaðtÞ − xbðtÞj ≤
LwΘ +Merr

Lx
ðeLxt − 1Þ (57)

Proposition 2. [53] Consider the Lyapunov function V̂ð⋅Þ of the nominal system of Eq 9

under the controller hNLðxÞ that meets Eqs 10–13. There exists a quadratic function f V ð⋅Þ
such that

V̂ðxÞ ≤ V̂ðxÞ + f Vðjx − xjÞ (58)

for all x, x ∈ Ωρ̂ with

f VðsÞ∶ = α̂4ðα̂−11 ðρ̂ÞÞs +Mvs2 (59)

where Mv is a positive constant.

Proposition 3. Consider the closed-loop system of Eq 9 under hNLðx̂Þ that satisfies the
inequalities of Eqs 10–13 in sample-and-hold. Let Δ > 0, ϵ̂W > 0, and ρ̂ > ρ̂e > ρ̂min >

ρ̂s > 0 satisfy

−α̂3ðα̂2−1ðρ̂sÞÞ + LLMLΔ ≤ −ϵ̂W=Δ (60)

and

ρ̂min∶ =maxfV̂ðx̂ðt + ΔÞÞ∶V̂ðx̂ðtÞÞ ≤ ρ̂sg: (61)

If x̂ð0Þ ∈ Ωρ̂, then:

V̂ðx̂ðtk+1ÞÞ − V̂ðx̂ðtkÞÞ ≤ −ϵ̂W (62)

for x̂ðtkÞ ∈ Ωρ̂=Ωρ̂s and the state trajectory x̂ðtÞ of the closed-loop system is always bounded

in Ωρ̂ for t ≥ 0 and is ultimately bounded in Ωρ̂min
.

Proof. We obtain from Eq 11 that

∂V̂ðx̂ðtkÞÞ
∂x̂

ðf NLðx̂ðtkÞ, hNLðx̂ðtkÞÞÞÞ ≤ −α̂3ðjx̂ðtkÞjÞ (63)

For t ∈ ½tk, tk+1Þ, the following inequalities are obtained:

∂V̂ðx̂ðtÞÞ
∂x̂

ðf NLðx̂ðtÞ, hNLðx̂ðtkÞÞÞÞ

=
∂V̂ðx̂ðtÞÞ

∂x̂
ðf NLðx̂ðtÞ, hNLðx̂ðtkÞÞÞÞ

+
∂V̂ðx̂ðtkÞÞ

∂x̂
ðf NLðx̂ðtkÞ, hNLðx̂ðtkÞÞÞÞ

−
∂V̂ðx̂ðtkÞÞ

∂x̂
ðf NLðx̂ðtkÞ, hNLðx̂ðtkÞÞÞÞ

≤ −α̂3ðjx̂ðtkÞjÞ + LLjx̂ðtÞ − x̂ðtkÞj (64)

where the last inequality follows from Eqs 63 and 15. For t ∈ ½tk, tk+1Þ, the continuity of x̂
and Eq 14 lead to the following bound:
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jx̂ðtÞ − x̂ðtkÞj ≤ MLΔ (65)

From Eqs 64 and 65, we obtain the following bound on the time derivative of the Lyapunov

function:

∂V̂ðx̂ðtÞÞ
∂x̂

ðf NLðx̂ðtÞ, hNLðx̂ðtkÞÞÞÞ ≤ −α̂3ðjx̂ðtkÞjÞ + LLMLΔ (66)

for t ∈ ½tk, tk+1Þ. When x̂ðtkÞ ∈ Ωρ̂=Ωρ̂s , then from Eq 10, ρ̂s ≤ α̂2ðjx̂ðtkÞjÞ, which gives the

following:

∂V̂ðx̂ðtÞÞ
∂x̂

ðf NLðx̂ðtÞ, hNLðx̂ðtkÞÞÞÞ ≤ −α̂3ðα̂−12 ðρ̂sÞÞ + LLMLΔ (67)

for t ∈ ½tk, tk+1Þ. If Eq 60 is satisfied, then

∂V̂ðx̂ðtÞÞ
∂x̂

ðf NLðx̂ðtÞ, hNLðx̂ðtkÞÞÞÞ ≤ −ϵ̂W=Δ (68)

for t ∈ ½tk, tk+1Þ. Integrating the bound in Eq 68 for t ∈ ½tk, tk+1Þ gives the following:

V̂ðx̂ðtk+1ÞÞ ≤ V̂ðx̂ðtkÞÞ − ϵ̂W , (69)

V̂ðx̂ðtÞÞ ≤ V̂ðx̂ðtkÞÞ,∀t ∈ ½tk, tk+1� (70)

when x̂ðtkÞ ∈ Ωρ̂=Ωρ̂s . When x̂ðtkÞ ∈ Ωρ̂s , then from Eq 61, x̂ðtk+1Þ ∈ Ωρ̂min
. Therefore,

when the empirical system of Eq 9 is controlled using hNLðxÞ in sample-and-hold, the

Lyapunov function will decrease for each sampling time until the closed-loop state reaches

Ωρ̂min
, within which it will remain thereafter.

It is noted that Eq 61 defines ρ̂min as the largest possible value of V̂ within one sam-

pling period if x̂ðtkÞ ∈ Ωρ̂s , for any u ∈ U . The conditions under which the closed-loop

state of Eq 1 under the LEMPC of Eqs 39–45 is bounded in Ωρ̂ and ultimately bounded in

Ωρ̂min
are next presented.

Theorem 1. Consider the closed-loop system of Eq 1 under the LEMPC of Eqs 39–45

based on the controller hNLðxÞ that satisfies the inequalities in Eqs 10–13. Let ϵW > 0,

Δ > 0, N ≥ 1, and ρ̂ > ρ̂e > ρ̂min > ρ̂s > 0 satisfy:

−α̂3ðα̂−12 ðρ̂eÞÞ + α̂4ðα̂−11 ðρ̂ÞÞMerr + L 0
xMΔ + L 0

wΘ ≤ −ϵW=Δ (71)

ρ̂e ≤ ρ̂ − f Vðf WðΔÞÞ (72)

If xð0Þ ∈ Ωρ̂, and Proposition 3 is satisfied, then the state trajectory xðtÞ of the closed-loop
system is always bounded in Ωρ̂ for t ≥ 0. Furthermore, if t > t 0 and

−α̂3ðα̂−12 ðρ̂sÞÞ + α̂4ðα̂−11 ðρ̂ÞÞMerr + L 0
xMΔ + L 0

wΘ ≤ −ϵW=Δ (73)

then the state trajectory xðtÞ of the closed-loop system is ultimately bounded in Ωρ̂min
.

Proof. The proof is divided into two parts. In the first part, the feasibility of the LEMPC

optimization problem will be discussed when the state is maintained in Ωρ̂. Then, in the
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second part, it will be proven that the closed-loop state under the LEMPC of Eqs 39–45 is

always bounded in Ωρ̂ and is ultimately bounded in Ωρ̂min
.

Part 1. From Proposition 3, the controller hNL in sample-and-hold can maintain the

closed-loop state of the system of Eq 40 withinΩρ̂. BecauseΩρ̂ has been defined as a region

within which the state constraints are met, Eq 42 is therefore met under hNL in sample-

and-hold. The input constraint (Eq 43) is also feasible because hNLðxÞ ∈ U from Eq 13.

Furthermore, from Proposition 3, hNLðx̂ðtqÞÞ, q = k, : : : , k + N − 1, t ∈ ½tq, tq+1Þ, main-

tains the closed-loop state in Ωρ̂e when xðtkÞ ∈ Ωρ̂e for ρ̂e > ρ̂min because it does not allow

the Lyapunov function to increase until xðtÞ ∈ Ωρ̂s and then it maintains the closed-loop

state in Ωρ̂min
. Therefore, hNL in sample-and-hold satisfies the constraint of Eq 44. Finally,

Eq 45 is trivially satisfied by hNLðx̂ðtkÞÞ, such that hNL in sample-and-hold also ensures

feasibility of this constraint. Feasibility of each constraint of Eqs 39–45 is thus established

at every sampling time under hNL in sample-and-hold, regardless of the values of δi,

i = 1, 2, 3, 4, 5.

Part 2. We now prove that if xðt0Þ ∈ Ωρ̂, xðtÞ ∈ Ωρ̂, ∀t ≥ 0. We proceed by devel-

oping results on the trajectory xðtÞ, t ∈ ½tk, tk+1Þ, given xðtkÞ ∈ Ωρ̂, and assuming

δ4 = δ5 = 0. We then extend the results to the case that xðt0Þ ∈ Ωρ̂ and δ4 or δ5 or both

can be 1 for some samplings periods.

If xðt0Þ ∈ Ωρ̂=Ωρ̂e and δ4 = δ5 = 0, then

∂V̂ðxðtkÞÞ
∂x

ðf NLðxðtkÞ, uðtkÞÞÞ

≤
∂V̂ðxðtkÞÞ

∂x
ðf NLðxðtkÞ, hNLðxðtkÞÞÞÞ ≤ −α̂3ðjxðtkÞjÞ (74)

which follows from Eqs 45 and 11. A bound on the time derivative of the Lyapunov func-

tion at tk along the closed-loop state trajectory of the nominal system of Eq 1 under

hNLðxðtkÞÞ can also be developed as follows:

∂V̂ðxðtkÞÞ
∂x

ð f ðxðtkÞ, hNLðxðtkÞÞ, 0ÞÞ

=
∂V̂ðxðtkÞÞ

∂x
ðf NLðxðtkÞ, hNLðxðtkÞÞÞÞ

+
∂V̂ðxðtkÞÞ

∂x
ð f ðxðtkÞ, hNLðxðtkÞÞ, 0ÞÞ

−
∂V̂ðxðtkÞÞ

∂x
ð f NLðxðtkÞ, hNLðxðtkÞÞÞÞ

≤ −α̂3ðjxðtkÞjÞ+
���� ∂V̂ðxðtkÞÞ∂x

����jf ðxðtkÞ, hNLðxðtkÞÞ, 0Þ

− f NLðxðtkÞ, hNLðxðtkÞÞÞj (75)

∀xðtkÞ ∈ DNL. Applying the definition of Merr in Eqs 50 and 12 to Eq 75, we obtain the

following:

∂V̂ðxðtkÞÞ
∂x

ð f ðxðtkÞ, hNLðxðtkÞÞ, 0ÞÞ ≤ −α̂3ðjxðtkÞjÞ + α̂4ðjxðtkÞjÞMerr (76)

for any xðtkÞ ∈ Ωρ̂. The time derivative of the Lyapunov function along the state
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trajectory of the closed-loop nonlinear system of Eq 1 under hNL implemented in

sample-and-hold is

∂V̂ðxðτÞÞ
∂x

ð f ðxðτÞ, hNLðxðtkÞÞ,wðτÞÞÞ

=
∂V̂ðxðτÞÞ

∂x
ð f ðxðτÞ, hNLðxðtkÞÞ,wðτÞÞÞ

−
∂V̂ðxðtkÞÞ

∂x
ð f ðxðtkÞ, hNLðxðtkÞÞ, 0ÞÞ

+
∂V̂ðxðtkÞÞ

∂x
ð f ðxðtkÞ, hNLðxðtkÞÞ, 0ÞÞ

≤
���� ∂V̂ðxðτÞÞ∂x

ð f ðxðτÞ, hNLðxðtkÞÞ,wðτÞÞÞ

−
∂V̂ðxðtkÞÞ

∂x
ð f ðxðtkÞ, hNLðxðtkÞÞ, 0ÞÞ

����
− α̂3ðjxðtkÞjÞ + α̂4ðjxðtkÞjÞMerr (77)

for τ ∈ ½tk, tk+1Þ, where the last inequality follows from Eq 76 and the triangle inequality.

From Eq 17, Eqs 10–12, the bound on w, Eq 8 and the continuity of x, and considering

that xðtkÞ ∈ Ωρ̂=Ωρ̂e , we obtain from Eq 77 that for τ ∈ ½tk, tk+1Þ

∂V̂ðxðτÞÞ
∂x

ð f ðxðτÞ, hNLðxðtkÞÞ,wðτÞÞÞ (78)

≤ L 0
xjxðτÞ − xðtkÞj + L 0

wjwj − α̂3ðjxðtkÞjÞ + α̂4ðjxðtkÞjÞMerr (79)

≤ L 0
xMΔ + L 0

wΘ − α̂3ðα̂−12 ðρ̂eÞÞ + α̂4ðα̂−11 ðρ̂ÞÞMerr (80)

We seek an upper bound on ˙̂V along the closed-loop state trajectories of the system of

Eq 1 under uðtkÞ computed by the LEMPC of Eqs 39–45 and applied for t ∈ ½tk, tk+1Þ. We

first obtain an expression for ˙̂V in this case if wðtÞ ≡ 0. Following similar steps as in Eq 75,

we obtain

∂V̂ðxðtkÞÞ
∂x

ð f ðxðtkÞ, uðtkÞ, 0ÞÞ

=
∂V̂ðxðtkÞÞ

∂x
ðf NLðxðtkÞ, uðtkÞÞÞ

+
∂V̂ðxðtkÞÞ

∂x
ð f ðxðtkÞ, uðtkÞ, 0ÞÞ

−
∂V̂ðxðtkÞÞ

∂x
ðf NLðxðtkÞ, uðtkÞÞÞ

≤ −α̂3ðjxðtkÞjÞ+
���� ∂V̂ðxðtkÞÞ∂x

ð f ðxðtkÞ, uðtkÞ, 0ÞÞ

−
∂V̂ðxðtkÞÞ

∂x
ðf NLðxðtkÞ, uðtkÞÞÞ

���� (81)

where the last inequality follows from Eq 74 and the triangle inequality. Using similar steps

as in Eqs 75 and 76, we obtain the following:
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∂V̂ðxðtkÞÞ
∂x

ð f ðxðtkÞ, uðtkÞ, 0ÞÞ ≤ −α̂3ðjxðtkÞjÞ + α̂4ðjxðtkÞjÞMerr (82)

This inequality can be used in the following with similar steps as were taken to arrive

at Eq 80:

∂V̂ðxðτÞÞ
∂x

ð f ðxðτÞ, uðtkÞ,wðτÞÞÞ

=
∂V̂ðxðτÞÞ

∂x
ð f ðxðτÞ, uðtkÞ,wðτÞÞÞ

+
∂V̂ðxðtkÞÞ

∂x
ð f ðxðtkÞ, uðtkÞ, 0ÞÞ

−
∂V̂ðxðtkÞÞ

∂x
ð f ðxðtkÞ, uðtkÞ, 0ÞÞ

≤ −α̂3ðjxðtkÞjÞ + α̂4ðjxðtkÞjÞMerr

+
���� ∂V̂ðxðτÞÞ

∂x
ð f ðxðτÞ, uðtkÞ,wðτÞÞÞ

−
∂V̂ðxðtkÞÞ

∂x
ð f ðxðtkÞ, uðtkÞ, 0ÞÞ

����
≤ −α̂3ðα̂−12 ðρ̂eÞÞ + α̂4ðα̂−11 ðρ̂ÞÞMerr + L 0

xMΔ + L 0
wΘ (83)

for τ ∈ ½tk, tk+1Þ. From Eqs 83 and 71, the following statement holds:

V̂ðxðtk+1ÞÞ − V̂ðxðtkÞÞ ≤ −ϵW
V̂ðxðτÞÞ ≤ V̂ðxðtkÞÞ,∀τ ∈ ½tk, tk+1� (84)

when xðtkÞ ∈ Ωρ̂=Ωρ̂e , and the Lyapunov function value will decrease over a sampling

period, and xðtÞ ∈ Ωρ̂, ∀t ∈ ½tk, tk+1�. This indicates that if the constraint of Eq 45 is ap-

plied for consecutive sampling periods, then in a finite number of sampling periods, xðtÞ
will re-enter the region Ωρ̂e .

When xðtkÞ ∈ Ωρ̂e and δ4 = δ5 = 0, then, assuming that xðtÞ ∈ Ωρ̂ for t ∈ ½tk, tk+1Þ,
the following holds from Propositions 1 and 2 and Eq 44:

V̂ðxðtÞÞ ≤ V̂ðx̂ðtÞÞ + f VðjxðtÞ − x̂ðtÞjÞ
≤ ρ̂e + f Vðf WðΔÞÞ (85)

for t ∈ ½tk, tk+1Þ. If Eq 72 holds, V̂ðxðtÞÞ ≤ ρ̂ for t ∈ ½tk, tk+1Þ and therefore when

xðtkÞ ∈ Ωρ̂e , xðtÞ ∈ Ωρ̂ for t ∈ ½tk, tk+1Þ as assumed.

We now prove ultimate boundedness of the state trajectories inΩρ̂min
. In Eqs 74–84, it

was proven that when xðtkÞ ∈ Ωρ̂=Ωρ̂e such that the constraint of Eq 45 holds, then

V̂ðxðtk+1ÞÞ < V̂ðxðtkÞÞ. When tk ≥ t 0 and δ4 = δ5 = 0, Eq 45 holds even if xðtkÞ ∈ Ωρ̂e .

Therefore, using a similar series of steps as in Eqs 74–84 but considering

xðtkÞ ∈ Ωρ̂=Ωρ̂s , and with Eq 73, we obtain that Eq 84 holds for all xðtkÞ ∈ Ωρ̂=Ωρ̂s , in-

dicating that when tk ≥ t 0 and δ4 = δ5 = 0, the closed-loop state is driven into Ωρ̂s ⊂ Ωρ̂min

in finite time. Once the closed-loop state enters Ωρ̂min
, then from the definition of Ωρ̂min

in

GIULIANI AND DURAND ON DATA-BASED NONLINEAR MODEL ID IN EMPC 81

Smart and Sustainable Manufacturing Systems

 



Eq 61, the closed-loop state remains in Ωρ̂min
because if xðtkÞ ∈ Ωρ̂s , then xðtk+1Þ ∈ Ωρ̂min

,

and if xðtkÞ ∈ Ωρ̂min
=Ωρ̂s , then Vðxðtk+1ÞÞ < VðxðtkÞÞ, and therefore xðtk+1Þ ∈ Ωρ̂min

.

To complete the proof, we first note that whether xðtkÞ ∈ Ωρ̂=Ωρ̂e , xðtkÞ ∈ Ωρ̂e , or

xðtkÞ ∈ Ωρ̂min
, it was demonstrated that xðtÞ ∈ Ωρ̂ for t ∈ ½tk, tk+1Þ. This indicates that

if xðt0Þ ∈ Ωρ̂, the closed-loop state cannot leave Ωρ̂ within any subsequent sampling

period, and therefore xðtÞ ∈ Ωρ̂ for all t ≥ 0, if δ4 = δ5 = 0.

Finally, we note that the results of Eq 84 when xðtkÞ ∈ Ωρ̂=Ωρ̂s depend only on ac-

tivation of the constraint of Eq 45. Therefore, if δ4 or δ5 is 1, which causes Eq 45 to hold

regardless of whether xðtkÞ ∈ Ωρ̂e , their effect is to cause Eq 84 to hold if xðtkÞ ∈ Ωρ̂=Ωρ̂s or

Eq 61 if xðtkÞ ∈ Ωρ̂s . It was proven previously that when Eqs 84 and 61 hold at a sampling

time and the conditions of Theorem 1 are met, xðtÞ ∈ Ωρ̂ for t ∈ ½tk, tk+1Þ. Furthermore,

the proof of closed-loop stability was independent of the objective function value of Eq 40,

and therefore is unaffected by the values of δ1, δ2, or δ3. Therefore, whether the δi,

i = 1, 2, 3, 4, 5, are 1 or 0, xðtÞ ∈ Ωρ̂, for all t ≥ 0, if xðt0Þ ∈ Ωρ̂.

The following theorem presents the conditions that guarantee the LEMPC formu-

lation of Eqs 39–45 is able to drive the closed-loop state to either a region where

jxiðtkÞj < γi, i = 1, : : : , nf or to Ωρ̂min
when driving the closed-loop state to one of these

regions becomes desirable for the purposes of achieving the goals of an online experiment.

Theorem 2. Consider the closed-loop system of Eq 1 under the LEMPC of Eqs 39–45, and

consider that the conditions of Theorem 1 hold. If δ5 = 1 for at least bthΔ + 1c consecutive

sampling periods, where th = − Δðρ̂min−ρ̂Þ
ϵW

, then it is guaranteed that the closed-loop state is

driven into Ωρ̂min
within th time units for any xðtkÞ ∈ Ωρ̂. Furthermore, if Ωρ̂min

is contained

in the region where jxiðtkÞj < γi, i = 1, : : : , nf , then the state trajectory xðtÞ is guaranteed to
be driven into the region where jxiðtkÞj < γi, i = 1, : : : , nf , within th time units if δ4 = 1 for

at least bthΔ + 1c consecutive sampling periods.

Proof. The proof for this theorem is divided into two parts: the first will prove the result

for δ5 = 1, and the other will prove the result for δ4 = 1.

Part 1. When δ5 = 1, the constraint of Eq 45 is activated, and Eq 83 holds, meaning:

∂V̂ðxðτÞÞ
∂x

f ðxðτÞ, uðtkÞ,wðτÞÞ ≤ −ϵW=Δ (86)

holds for τ ∈ ½tk, tk+1Þ, for any xðtkÞ ∈ Ωρ̂=Ωρ̂s because the conditions of Theorem 1 are

assumed to be satisfied. To develop a worst-case value of th, consider that xðtkÞ is as far
fromΩρ̂min

as possible withinΩρ̂ (i.e., VðxðtkÞÞ = ρ̂). Then the integral of Eq 86 considering

V̂ðxðtkÞÞ = ρ̂ and V̂ðxðtk + thÞÞ = ρ̂min gives th = −Δðρ̂min − ρ̂Þ=ϵW . Because th is not

guaranteed to be an integer multiple of a sampling period, the constraint of Eq 45 must

be activated for bthΔ + 1c sampling periods to ensure that it is activated for no less than the

amount of time required for the closed-loop state to enter Ωρ̂min
. If xðtkÞ ∈ Ωρ̂min

, then

activation of Eq 45 ensures that the closed-loop state remains in Ωρ̂min
by Eq 61 for

the reasons noted in the proof of ultimate boundedness of the closed-loop state in

Ωρ̂min
for Theorem 1.

Part 2. When δ4 = 1, the constraint of Eq 45 is again activated if

jxiðtkÞj ≥ γi, i = 1, : : : , nf , and Eq 86 holds, giving the result that repeated activation of this

constraint will move the closed-loop state into Ωρ̂min
in th time units, or at least bthΔ + 1c

82 GIULIANI AND DURAND ON DATA-BASED NONLINEAR MODEL ID IN EMPC

Smart and Sustainable Manufacturing Systems

 



sampling periods, as demonstrated in Part 1. If the region where jxiðtkÞj < γi, i = 1, : : : , nf
contains Ωρ̂min

, then in a worst-case scenario, the first time that the closed-loop state enters

the region where jxiðtkÞj < γi, i = 1, : : : , nf , is when it reaches the boundary of Ωρ̂min
.

Because it is guaranteed to enter Ωρ̂min
in th time units, the closed-loop state is therefore

also guaranteed to enter the region where jxiðtkÞj < γi, i = 1, : : : , nf , in th time units.

In the following theorem, the conditions under which it is possible to switch the

model for the LEMPC of Eqs 39–45 while maintaining feasibility and closed-loop stability

are characterized.

Theorem 3. Consider the closed-loop system of Eq 1 under the LEMPC of Eqs 39–45 with

hNL meeting Eqs 10–13, where the conditions of Theorem 1 are satisfied, where it is desired

to update the LEMPC of Eqs 39–45 to replace f NL, hNL, V̂ , ρ̂, ρ̂e, and ρ̂min with f 0NL, h
0
NL, V̂

0,
ρ̂ 0, ρ̂ 0

e , and ρ̂ 0
min at ts, where Eqs 10–13 and the conditions of Theorem 1 are satisfied by the

updated parameters and functions, and f 0NLð0, 0Þ = 0. If the update to the LEMPC of

Eqs 39–45 is made when xðtkÞ ∈ Ωρ̂min
, and if Ωρ̂min

⊂ Ωρ̂ and Ωρ̂min
⊂ Ωρ̂ 0 , then closed-loop

stability and recursive feasibility of the LEMPC are guaranteed both before and after the

LEMPC formulation is updated. Furthermore, if ts ≥ t 0 + th, where th is defined in

Theorem 2, then the closed-loop state is driven into Ωρ̂min
by ts and the LEMPC of

Eqs 39–45 can be updated at ts while maintaining closed-loop stability and recursive

feasibility.

Proof. IfΩρ̂min
is defined as in Eq 61, the closed-loop state is guaranteed to be driven into

this region in finite time after t 0 (as demonstrated in the proof of Theorem 1), and spe-

cifically within th time units after t 0 (as follows from the proof of Theorem 2). Therefore, if

ts ≥ t 0 + th, xðtsÞ ∈ Ωρ̂min
. For tk < ts, xðtkÞ ∈ Ωρ̂ because the conditions of Theorem 1 are

met by the LEMPC of Eqs 39–45 utilizing f NL and the associated functions and param-

eters. Closed-loop stability and recursive feasibility then follow from Theorem 1. When

tk = ts, xðtsÞ ∈ Ωρ̂min
, which is a subset of bothΩρ̂ (such that the LEMPC of Eqs 39–45 was

feasible and maintained closed-loop stability until ts) and also of Ωρ̂ 0 (such that the up-

dated LEMPC of Eqs 39–45 is also feasible and maintains closed-loop stability of the proc-

ess of Eq 1 at ts and after from Theorem 1 applied to the updated LEMPC).

Remark 7. The conditions of Theorem 1 requiring satisfaction of Eqs 60–62 and 71–73

by ρ̂, ρ̂e, ρ̂s, ρ̂min, Δ, Θ, and Merr imply that these parameters must be sufficiently small

with respect to one another such that all of the equations can be satisfied simultaneously.

For example, from Eq 60, Δ has to be sufficiently small such that the positive term LLMLΔ
does not overwhelm the negative term −α̂3ðα̂−12 ðρ̂sÞÞ, because, overall, it is required that

the left-hand side of Eq 60 be negative for that inequality to hold. Furthermore, the value of

ρ̂s needs to be sufficiently small according to Eq 61 such that for a chosen ρ̂min, which must

be smaller than a desired value of ρ̂e, Eq 61 holds. This indicates that the sizes of these

various parameters must be sufficiently small with respect to one another in the sense that

as one of them is made larger or smaller, the others have to adjust as well to ensure that

Eqs 60–62 and 71–73 are all simultaneously satisfied. Furthermore, for any parameters

that appear in multiple equations, all equations must be met simultaneously, such that

the most conservative value of the parameters among all equations (i.e., those which cause

all equations to be met at once) must be chosen to obtain the theoretical results. Finally, it

is significant that in Eqs 71 and 72,Δ,Θ, ρ̂, andMerr are all required to be sufficiently small

to ensure that the left-hand sides of these equations are negative. It is not guaranteed that
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Merr for any empirical model or Θ for any disturbance scenario will cause these equations

to hold. However, by obtaining more physics-based models that more closely approximate

the actual underlying physics, it would be expected that Merr would decrease, which may

make it possible to satisfy Eq 71 even when it cannot be satisfied with certain other models.

Furthermore, though the first term in Eq 71 becomes more negative as ρ̂e is increased,

increases in ρ̂e eventually necessitate increases in ρ̂, which appears positively in the second

term of Eq 71. Therefore, making ρ̂e arbitrarily large is not a solution to having a larger

Merr . In fact, asMerr increases, the magnitude of the second term in Eq 71 containing this

term could be decreased by decreasing ρ̂, which would require ρ̂e to decrease according to

Eq 72 unless it was conservatively selected. However, if Merr is small, the second term in

Eq 71 becomes smaller even for a larger ρ̂ and ρ̂e, implying that the stability region can be

enlarged for fixed Δ and Θ to enhance process economic performance if Merr becomes

smaller, which provides a significant motivation for seeking to develop more physics-based

models for EMPC that would be expected to have lowerMerr values than alternative mod-

els. Finally, from Eq 73, to obtain a small ρ̂s (it is desirable to decrease Δ and ρ̂s according

to Eq 61 to decrease ρ̂min and therefore guarantee that the closed-loop state of the system of

Eq 1 under the LEMPC of Eqs 39–45 can be driven to a smaller neighborhood of the

origin), again, Merr , Δ, Θ, and ρ̂ have to be sufficiently small, where again for a fixed

Δ, Θ, and ρ̂s, larger values of ρ̂ can be utilized to seek to enhance process economic per-

formance if Merr is smaller.

Remark 8. Refs. [32] and [31] are two works where nonlinear and linear empirical mod-

els, respectively, have been incorporated in LEMPC, and the resulting control designs are

treated theoretically. Though the proof here follows in a similar fashion to the proofs in

those works, an important difference is the assumptions placed on the Lyapunov-based

controller for the empirical model (equivalent to hNL in this work) as well as the form of

the empirical model treated. Specifically, both Ref. [32] and [31] assume that the

Lyapunov-based controller for the empirical system is exponentially stabilizing for that

system, and this is utilized to first prove that then the Lyapunov-based controller is ex-

ponentially stabilizing for the nominal nonlinear system so that this may be used in deriv-

ing subsequent theoretical results. In the present manuscript, we require only that the

Lyapunov-based controller be asymptotically stabilizing for the empirical system to allow

for greater ease of investigating how the theoretical results can apply to broad classes of

nonlinear empirical systems for which a Lyapunov-based controller meeting the assump-

tions of exponential stability may not be readily found. Furthermore, Ref. [32] assumes

that the empirical model has a polynomial form, and Ref. [31] assumes that the empirical

model has a linear form. This work therefore broadens the results in those articles to not

require any specific form of the nonlinear model beyond the assumptions in the present

manuscript to facilitate the investigation of potentially physically meaningful empirical

models that do not necessarily contain only terms of a specific type.

Application to a Chemical Process Example

To demonstrate the use of an EMPC augmented with data-gathering functionality for

developing or validating physics-based process models and physically relevant constraints

and objective functions for the control design online, we consider an illustrative continu-

ous stirred tank reactor (CSTR) example where an irreversible, second-order, exothermic

reaction occurs. The reactant species A is converted to the product B in a reaction of the
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form A → B. The feed to the reactor contains the species A in an inert solvent at con-

centration CA0 and temperature T0. The feed volumetric flow rate is F. A jacket is used

to heat/cool the reactor at heat rate Q. The density of the liquid ðρLÞ, the heat capacity Cp,

and the volume of the liquid V are constants with the values listed in Table 1. We consider

that the process dynamics are described by the following dynamic model, which is derived

from mass and energy balances:

ĊA =
dCA

dt
=
F
V
ðCA0 − CAÞ − k0e

− E
Rg TC2

A (87)

Ṫ =
dT
dt

=
F
V
ðT0 − TÞ − ΔHk0

ρLCp
e
− E
Rg TC2

A +
Q

ρLCpV
(88)

ĊB =
dCB

dt
= −

F
V
CB + k0e

− E
Rg TC2

A (89)

where CA is the concentration of the reactant species A, T is the temperature of the reactor,

and CB is the concentration of the product species B. The reaction inside the CSTR has

pre-exponential factor k0, enthalpy of reaction ΔH, and activation energy E. Rg represents

the ideal gas constant. The manipulated inputs are CA0 and Q, which are constrained by

actuator limitations to the following ranges: 0.5 ≤ CA0 ≤ 7.5 kmol
m3 and −5 × 105 ≤

Q ≤ 5 × 105 kJ
hr . The process will be operated around the steady-state CAs = 1.22 kmol

m3 ,

Ts = 438.2 K, CB = 2.78 kmol
m3 , CA0s = 4 kmol

m3 , and Qs = 0 kJ
hr . With these steady-state val-

ues, we can develop deviation variable vectors for the states and inputs as follows:

x = ½x1 x2 x3�T = ½CA − CAs T − Ts CB − CBs�T and u = ½u1 u2�T = ½CA0 − CA0s Q − Qs�T .
We consider that only CA and T are measured and therefore we also introduce the vector

of deviation variables for the measured states as follows: x = ½x1 x2� = ½x1 x2�T .
The control objective is to operate the system of Eqs 87–89 in an economically op-

timal fashion, where the process economics are considered to be dependent on the time-

averaged production rate of the product B, while respecting process constraints and main-

taining closed-loop stability. These process constraints include the bounds on the two

manipulated inputs. We would also like to include a constraint on the concentration

of CB in the reactor requiring the concentration of this product to be upper bounded be-

cause we consider that the product poses safety hazards and therefore we prefer to produce

TABLE 1
CSTR example model parameters.

Parameter Value

T0 300 K

V 1 m3

k0 8.46 × 106 m3

hr kmol

Cp 0.231 kJ
kg K

ρL 1, 000 kg
m3

F 5 m3

hr

E 5 × 104 kJ
kmol

ΔH −1.15 × 104 kJ
kmol

Rg 8.314 kJ
kmol K
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it in low concentrations (specifically, we consider that we would like CB ≤ 4.277 kmol
m3 for

as much of the time of operation as possible, where this upper bound was chosen to pro-

vide a constraint that impacts the closed-loop state trajectories computed under an EMPC

containing this constraint, as will be demonstrated in what follows).

We consider that we do not know ΔH or the form or parameters of the reaction rate

law in Eqs 87–89 (though we consider that we have used chemical engineering judgment to

postulate the form of the other terms in this model and to measure T0, V , Cp, ρL, and F).

Because we do not know key terms and parameters in the first-principles model, we must

initially control the process using an alternative model in the control design. We assume

that standard industrial techniques for obtaining adequate data for developing a linear

empirical model for control design have been performed, and that the following continu-

ous-time linear empirical model from Ref. [31] has been developed:

ẋ1 = −34.5x1 − 0.473x2 + 5.24u1 − 8.09 × 10−6u2 (90)

ẋ2 = 1, 430x1 + 18.1x2 − 11.6u1 + 4.57 × 10−3u2 (91)

To seek to maintain closed-loop stability, Lyapunov-based stability constraints will be

added to the EMPC. Because of the lack of availability of the process model of Eqs 87–89, we

will develop the Lyapunov-based stability constraints based on the model of Eqs 90 and 91.

Specifically, we utilize the Lyapunov function V̂ = xTPx from Ref. [31], where the matrix P

is as follows:

�
1,060 22
22 0.52

�
(92)

We define ef = ½ef 1 ef 2 �T , where ef 1 and ef 2 are the terms in Eqs 90 and 91, respectively,

that do not contain the inputs, and eg = ½eg1 eg2�, where eg1 = ½5.24 −11.6�T andeg2 = ½−8.09 × 10−6 4.57 × 10−3�T . Utilizing this notation, we consider the Lyapunov-based
controller hNL from Ref. [31], where hNLðxÞ = ½hNL,1ðxÞ hNL,2ðxÞ�T = ½0 hNL,2ðxÞ�T , and
hNL,2ðxÞ is given by the following function [54]:

hNL,2ðxÞ =

8>><
>>:

−
L
f
∼V̂+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
f
∼V̂2+L

g
∼
2
V̂4

q
L
g
∼
2
V̂

, if Lg∼2 V̂ ≠ 0

0, if Lg∼2 V̂ = 0

(93)

where L
f
∼V̂ and Lg∼2 V̂ signify the Lie derivatives of V̂ with respect to ef and eg2. Following

Ref. [31], ρ̂ = 64.3 and ρ̂e = 55 were chosen. We assume that based on past experience with

this process, we expect CB to remain below its desired threshold value of 4.277 kmol
m3 in Ωρ̂.

A discretization of state-space within the stability region and an assessment of the steady-

state value of CB according to Eq 89 at the discretized points indicated that the steady-state

value of CB at the various CA − T combinations tested is below 4.277 kmol
m3 , indicating that

the assumption that CB would primarily be below its threshold in this region without an

explicit constraint being required in the LEMPC is reasonable if CA and T are primarily

driven to steady-state values by the LEMPC over time.

A difficulty with regard to the design of an LEMPC based on the information assumed

to be available for the control design is that though the time-averaged production rate of B
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dictates the process economics, it is not measured continuously. Applying chemical en-

gineering fundamentals, one may consider that the production rate of B is the same as the

rate at which A is reacting because we consider that only one reaction occurs in the CSTR.

However, we also do not know the reaction rate of A. Therefore, it is not possible to design

an EMPC with an objective function that reflects the process economics based on the

available information. Because of the lack of information on an equation that can

adequately describe the process economics resulting from a lack of knowledge of the proc-

ess model, we initially utilize the following quadratic stage cost function:

Le = xTQx + uTRu (94)

whereQ = diagð104, 100Þ and R = diagð104, 10−6Þ were chosen based on the magnitudes of

x1, x2, u1, and u2. We enforce the constraint of Eq 44 numerically by imposing it at the end

of each sampling period. When Eq 45 is activated at tk, we impose Eq 44 at the end of

sampling periods 2 to N to constrain the inputs after tk. Therefore, the initial LEMPC

design is as follows:

min
uðtÞ∈SðΔÞ

Z
tk+N

tk

x̂ðτÞTQx̂ðτÞ + uðτÞTRuðτÞ dτ (95)

s:t: ˙̂xðtÞ =ef ðx̂ðtÞÞ + eguðtÞ (96)

x̂ðtkÞ = xðtkÞ (97)

−3.5 ≤ u1ðtÞ ≤ 3.5, ∀ t ∈ ½tk, tk+NÞ (98)

−5 × 105 ≤ u2ðtÞ ≤ 5 × 105, ∀ t ∈ ½tk, tk+NÞ (99)

V̂ðx̂ðtÞÞ ≤ ρ̂e, for t = tq, where q = k + 1, : : : , k + N , if xðtkÞ ∈ Ωρ̂e ,

or q = k + 2, : : : , k + N , if xðtkÞ ∈= Ωρ̂e

(100)

∂V̂ðxðtkÞÞ
∂x̂

ðef ðxðtkÞÞ + eguðtkÞÞ
≤

∂V̂ðxðtkÞÞ
∂x̂

ðef ðxðtkÞÞ + eghNLðxðtkÞÞÞ if xðtkÞ ∈= Ωρ̂e (101)

No explicit safety-based constraint on CB is included in this control design.

The state trajectories resulting from controlling the process of Eqs 87–89 with the

LEMPC of Eqs 95–101 for 15 operating periods each of a length tp = 1 hr are plotted

in Fig. 1 and indicate that the LEMPC enforced steady-state operation. A prediction hori-

zon N = 10 was utilized, with a sampling period Δ = 0.01 hr. The empirical model of

Eqs 90 and 91 was integrated within the EMPC with an integration step of 10−4 hr,

and the first-principles model of Eqs 87 and 88 was numerically integrated with the same

integration step to simulate the process to which the EMPC-computed inputs were ap-

plied. The input hNL was applied without saturation at its bounds in the LEMPC or setting

it to zero at the steady-state, but the inputs applied to the process were required to meet the

bounds. The simulations were performed utilizing the default (interior point) solver of the

MATLAB function fmincon in MATLAB R2016 (MathWorks, Natick, MA). Exit flags

indicating that a local minimum was found or that it was possible were accepted because

of the reasonableness of the closed-loop state trajectories under the resulting inputs given
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the objective function. The bounds on u2 were divided by 105 to scale the problem so that

u1 and u2 would be on more comparable orders of magnitude at their bounds. The default

tolerance of fmincon was utilized, with the initial guess at every sampling time being the

steady-state values of the inputs. The simulations were initialized from x1 = −0.4 kmol
m3

and x2 = 20 K and performed using an Intel(R) Xeon(R) CPU E-3 1240 v5 at 3.50GHz

(Intel, Santa Clara, CA), with 32.0 GB of memory and a 64-bit operating system with an

x64-based processor running Windows 10 Enterprise (Microsoft, Redmond, WA).

We would like to update the control design online to account for process economic

performance in the objective function and the desired constraint on CB. We therefore

undertake to practically design and update an EMPC online by augmenting the controller

of Eqs 95–101 with data-gathering functionalities in the spirit of those described in this

manuscript and utilizing techniques for extracting models from the gathered data. We first

demonstrate the utility of a data-gathering LEMPC for generating nonroutine operating

data that can help an engineer to detect when a model developed with the intent of it being

physics-based is not correct. Specifically, we consider that the following model with an

incorrect rate law form has been postulated:

ĊA =
dCA

dt
=
F
V
ðCA0 − CAÞ − k0e

− E
Rg T (102)

Ṫ =
dT
dt

=
F
V
ðT0 − TÞ − ΔHk0

ρLCp
e
− E
Rg T +

Q
ρLCpV

(103)

where k0, E, and ΔH are unknown coefficients. Because this model is incorrect, it is not

considered to be an improvement over Eqs 90 and 91, but rather it is a postulated model

for which the data-gathering LEMPC will be used to show whether it is an acceptable or

unacceptable process description.

To estimate the values of k0, E, and ΔH, we will, inspired by the method in Ref. [15],

develop a matrix containing estimates of ĊA and Ṫ at various times throughout the first 15

operating periods, where these estimates come from a backward finite difference approxi-

mation of the derivatives using measurements of CA and T that are already available from

50 10 15

–0.4

–0.3

–0.2

–0.1

0

50 10 15

0

10

20

FIG. 1

Profiles for x1 and x2 for 15

operating periods for the

process of Eqs 87 and 88

operated under the LEMPC of

Eqs 95–101. The initial condition

for the simulations is xinit = ½ xinit,1
xinit,2�T = ½−0.4 kmol=m3 20 K�T , for
which VðxinitÞ = 25.6 (i.e., the

initial condition is in Ωρ̂e ).
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the data collected throughout the operating periods, captured every 0.0001 hr. To identify

the coefficients through a linear regression, we can move terms of known value to the left-

hand side of the differential equations of Eqs 102 and 103 to obtain the following system of

linear algebraic equations:

2
66666666666666666664

lnð−ðĊAðet1Þ − F
V ðCA0ðet1Þ − CAðet1ÞÞÞÞ

lnðṪðet1Þ − F
V ðT0 − Tðet1ÞÞ − Qðet1Þ

ρLcpV
Þ

lnð−ðĊAðet2Þ − F
V ðCA0ðet2Þ − CAðet2ÞÞÞÞ

lnðṪðet2Þ − F
V ðT0 − Tðet2ÞÞ − Qðet2Þ

ρLcpV
Þ

..

.

lnð−ðĊAðetqÞ − F
V ðCA0ðetqÞ − CAðetqÞÞÞÞ

lnðṪðetqÞ − F
V ðT0 − TðetqÞÞ − QðetqÞ

ρLcpV
Þ

3
77777777777777777775

=

2
66666666666666666664

1 0 1

Tðet1Þ
1 1 1

Tðet1Þ
1 0 1

Tðet2Þ
1 1 1

Tðet2Þ
..
.

1 0 1

TðetqÞ
1 1 1

TðetqÞ

3
77777777777777777775

2
64
c1

c2

c3

3
75 (104)

where theeti, i = 1, : : : , q, represent the times corresponding to the available measurements

of CA, T , Q, and CA0 which are utilized in Eq 104. et1 represents the first time utilized in

specifying the matrices and vectors in Eq 104. The smallest possible value ofet1 is 0.0001 hr

to account for the fact that ĊAðt0 = 0 hrÞ and Ṫðt0 = 0 hrÞ cannot be computed with a

backward finite difference. The largest possible value ofetq is 14.9999 hr to account for the

fact that CA0 andQ are computed in sample-and-hold over time intervals ½tk, tk+1Þ; because
this interval is open, neither input has been given a value at 15 hr. The coefficients c1, c2,

and c3 correspond to lnðk0Þ, lnð− ΔH
ρLCp

Þ, and −E=Rg in Eqs 102 and 103. We note that

because A is being consumed in the reaction, we expect −k0e−E=ðRgTÞ to be negative.

Therefore, to allow logarithms of positive terms to be taken, we move the negative in this

equation to the left-hand side of the differential equation before taking the natural log-

arithm. Similarly, if we calculate ðṪ − F
V ðT0 − TÞ − Q

ρLcpV
Þ based on the data, we would

expect it to be positive, and therefore the natural logarithm of this term may be readily

taken. Based on the form of the matrix in Eq 104, it can be seen that it is important to

utilize data from times that do not correspond only to steady-state operation, or else the

third column will contain the same number in every row, and the matrix will be singular.

Data from the first 10,001 integration steps of the 15 hrs of operation was utilized to

form the matrices and vectors in Eq 104 (q = 10, 000 to discard ĊAð0Þ and Ṫð0Þ). The
terms within the logarithms in Eq 104 took the expected signs (positive or negative)

for these data points. The resulting system of equations was solved for c1, c2, and c3
in MATLAB using the command “\”. This gave c1 = −8.6999, c2 = 3.9075, and

c3 = 4, 960.15, which correspond to k0 = 0.000167 m3

hr kmol , ΔH = −11, 498.28 kJ
kmol , and

E = −41, 238.71 kJ
kmol . Comparing these values with those in Table 1, we can see that k0

and E are quite far off from the true values; however, the rate law has also been guessed

incorrectly, which is contributing to the mismatch. An engineer without knowledge of

the true parameter values in Table 1 might check how well the identified empirical model

captures the data by numerically integrating the identified process model of Eqs 102 and

103 starting from the initial condition xinit = ½ xinit,1 xinit,2 �T = ½−0.4 kmol=m3 20 K�T and

utilizing the input trajectories computed by the EMPC for the 15 operating periods. A

comparison of the data generated by the process and the predictions developed from
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the empirical model are presented in Fig. 2. From this figure, it appears that the identified

model provides a good fit to the data (it should be noted that changes in the data supplied

to Eq 104 can have a large effect on the identified parameters [e.g., using the first 101 data

points in setting up Eq 104 gives k0 = 40, 807.98 m3

hr kmol , ΔH = −11, 390.74 kJ
kmol , and

E = 31, 113.01 kJ
kmol , which are very different than the values obtained with the first

10,001 data points and give significant mismatch between the simulated and plant data]).

Despite the apparent success in the model fit in Fig. 2, its prediction accuracy must

still be validated with different data than has been utilized to fit the model. Therefore, we

can utilize the LEMPC to obtain additional data beyond the data available under routine

operation (which for this case would be more steady-state data, which we already see the

model is able to fit well in Fig. 2) to aid in verifying the more physics-based process model.

To introduce the desired variation in the input trajectories, we operate the process for

another hour and modify the objective function of the EMPC such that in the operating

period between t = 15 hr and t = 16 hr, we add one of the following terms to the stage cost

at certain sampling times:

104ð10,000ðx1 − x1,f ixÞ2 − 10,000ðu1 − u*1ðtk−1ÞÞ2 + ðu2 − u*2 ðtk−1ÞÞ2Þ (105)

104ð1010ðx1 − x1,f ixÞ2 − 10,000ðu1 − u*1ðtk−1ÞÞ2 + 10−6ðu2 − u*2ðtk−1ÞÞ2Þ (106)

where u*1 ðtk−1Þ and u*2ðtk−1Þ represent the values of u1 and u2 implemented at the prior

sampling time. The stage cost of Eq 94 with the added terms in Eqs 105 or 106 encourages

the EMPC to select control actions that move x1 toward a specified value x1,f ix and that

change the value of u1 at each sampling time in the prediction horizon compared to its

value at the prior sampling time while discouraging such changes in u2. The reason for this

is that we want to verify whether the rate law has a zero-order dependence on CA. We can

seek to achieve this by recognizing that if the postulated rate law is correct, then changes in

T should be independent of the changes in CA and CA0 but should depend onQ. Therefore,

if we attempt to make minimal changes in Q but more significant changes in CA and CA0,

FIG. 2

Profiles for x1 and x2 measured

from the process and predicted

by the empirical model of

Eqs 102 and 103 for 15 operating

periods. The initial condition for

the simulations is xinit =

½ xinit,1 xinit,2 �T=
½−0.4 kmol=m320 K�T .
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we would not expect T to change significantly. At the 20th, 21st, and 22nd sampling peri-

ods in the operating period between t = 15 hr and t = 16 hr, we added the term of Eq 105

to Eq 94 with x1,f ix = 0.2; at the 50th, 51st, and 52nd sampling periods in this operating

period, we added the term of Eq 105 to Eq 94 with x1,f ix = 0.4; at the 60th, 61st, and 62nd

sampling periods in this operating period, we added the term of Eq 106 with x1,f ix = 0; at

the 90th, 91st, and 92nd sampling periods in this operating period, we added the term of

Eq 105 with x1,f ix = 0.2. At sampling times besides those noted, the stage cost of Eq 94 was

utilized without modifications. The results are plotted in Figs. 3–5. The data is only shown

for the 16th operating period, since the prior 15 operating periods are already shown in

Fig. 2. Figs. 4 and 5 present the x2 plots from the process and from the identified em-

pirical model of Eqs 102 and 103 against changes in the two inputs. From these figures, it

kJ

FIG. 3

Profiles for x1 from the process

and predicted by the empirical

model of Eqs 102 and 103 for the

16th operating period (top plot)

and for u2 computed by the

LEMPC of Eqs 95–101 with the

modifications of Eqs 105 and

106 for the 16th operating

period (bottom plot).
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FIG. 4

Profiles for x2 from the process

and predicted by the empirical

model of Eqs 102 and 103 for the

16th operating period (bottom

plot) and for u2 computed by

the LEMPC of Eqs 95–101 with

the modifications of Eqs 105

and 106 for the 16th operating

period (top plot; the reader is

referred to Fig. 3 for the full

u2 profile in the 16th operating

period, but a close-up of the

profile is presented here to

allow more ready comparison

of the times of changes in the

x2 profiles with respect to

changes in u2).
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can be seen that CA0 seems to have an impact on x2, refuting the hypothesis that a physics-

based model for this process has a reaction rate with a zero-order dependence on CA.

Specifically, in Fig. 4, the change in Q slightly after 15.2 hr corresponds to a change in

T in the empirical model, but a change in T in the actual process begins to occur before

the change in Q. A similar effect is observed slightly after 15.9 hr when Q changes, precipi-

tating a change in T according to the empirical model; however, the value of T for the actual

process begins to change before this change in Q. Fig. 5 indicates that these changes in T in

the actual system that did not correspond to noticeable changes in Q may be related to

changes in CA. Based on this data, we can postulate that Eqs 102 and 103 does not contain

a correct form for the rate law, and we will need to perform further analysis to develop a

physics-based model to replace Eqs 90 and 91 in the LEMPC design for the process of

Eqs 87–89. Specifically, Figs. 3–5 demonstrate that the rate law should contain some term

indicative of changes in CA or CA0 though it is not yet clear what that form should be.

In an experimental (laboratory) setting, the determination of the form of the manner in

which the rate law depends on CA could be performed [50] in a batch reactor, where the

reaction rate could be measured from concentration changes over time of a reactant, and

then the reaction rate could be plotted against the concentration of the reactant at each time

with other variables fixed to seek to better understand the functional relationship between

only the reactant concentration and the reaction rate. For the reaction at hand, we assume

that we expect that CB does not play a role given that we expect the reaction to be irreversible

(so we neglect it as we seek to determine the form of the rate law), but that we expect that T

and CA may influence the reaction rate. Ideally, we would like to understand the expected

type of dependence of the reaction rate on CA and on T so that we may guess an appropriate

form for the rate law and then utilize regression to determine its parameters. To do this,

however, we would need to, as in the classical batch-type experiments, fix CA while changing

T to analyze the dependence of the reaction rate on temperature, and fix T while changing

CA to analyze the dependence of the reaction rate on the reactant concentration. This is

another case where specific types of data have been identified as “desirable,” and we can

attempt to utilize a data-gathering LEMPC to obtain this data.
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FIG. 5

Profiles for x2 from the process

and predicted by the empirical

model of Eqs 102 and 103 for the

16th operating period (bottom

plot) and for u1 computed by

the LEMPC of Eqs 95–101 with

the modifications of Eqs 105

and 106 for the 16th operating

period (top plot).
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Specifically, after the 16th operating period, we utilized the objective function of Eq 94

to drive the closed-loop state back to the steady-state and then replaced Eq 94 with the

following stage costs at certain times over 8 hr of operation to attempt to obtain data with

T fixed and CA varying:

Le=104ð100ðx2 − x2,f ixÞ2Þ (107)

Le=104ð100ðx2 − x2,f ixÞ2 + 1, 000ðx1 − x1,f ixÞ2Þ (108)

where x2,f ix = 2.203 and x1,f ix was adjusted in different operating periods. Specifically, for

the 18th operating period, Eq 107 was used. In the 19th, 20th, 21st, 22nd, 23rd, 24th, and

25th operating periods, Eq 108 was used with x1,f ix = 0.15, 0.14, 0.13, 0.12, 0.11, 0.12, and

0.12, respectively. Fig. 6 depicts the closed-loop state trajectories over the 8 hr of operation

from the 18th to the 25th operating periods and demonstrates that the LEMPC was able to

approximately hold T constant over that time while CA was varied.

After the 26th hour of operation, during which the objective function of Eq 94 was

utilized, Eq 94 was replaced by the following stage costs at various times throughout the

subsequent 8 hr to attempt to maintain CA constant while varying T :

Le=104ð100ðx2 − x2,f ixÞ2 + 1,000ðx1 − x1,f ixÞ2Þ (109)

Le=104ð100ðx2 − x2,f ixÞ2 + 10,000ðx1 − x1,f ixÞ2Þ (110)

where x1,f ix = 0.12 and x2,f ix was adjusted in different operating periods. Specifically,

for the 27th, 28th, 29th, 30th, 31st, 32nd, 33rd, and 34th operating periods,

x2,f ix = 2.203, 4, 5, 2, 1, 0, −1, and −2, respectively, and Eq 110 was utilized except in

the 27th operating period in which Eq 109 was utilized. Fig. 7 depicts the closed-loop

state trajectories over the 8 hr of operation from the 27th to the 34th operating periods

and demonstrates that the LEMPC was able to approximately hold CA constant over this

time while T was varied.
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FIG. 6

Profiles for x1 and x2 for the

process of Eqs 87–89 for the

18th–25th operating periods

under the inputs computed by

the LEMPC of Eqs 95–101 with

the modifications of Eqs 107

and 108.
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Because the controller was able to approximately achieve the desired effect of fixing

one state while varying another, we can seek to develop a plot of how the reaction rate

varies only with CA and how it varies only with T to seek to propose a reasonable form of

the reaction rate law expression using standard techniques for such analysis (e.g., plotting

the logarithm of the reaction rate against the logarithm of CA [50]). Regression can be

utilized because a reaction rate is associated with every time that CA and T are measured

because this rate is an algebraic function of the two states. Therefore, we can solve for the

reaction rate at a number of different times using a method similar to that in Eq 104.

Specifically, we set up the following matrices:

2
6666666666666666664

lnð−ðĊAðet1Þ − F
V ðCA0ðet1Þ − CAðet1ÞÞÞÞ

lnðṪðet1Þ − F
V ðT0 − Tðet1ÞÞ − Qðet1Þ

ρLcpV
Þ

lnð−ðĊAðet2Þ − F
V ðCA0ðet2Þ − CAðet2ÞÞÞÞ

lnðṪðet2Þ − F
V ðT0 − Tðet2ÞÞ − Qðet2Þ

ρLcpV
Þ

..

.

lnð−ðĊAðetqÞ − F
V ðCA0ðetqÞ − CAðetqÞÞÞÞ

lnðṪðetqÞ − F
V ðT0 − TðetqÞÞ − QðetqÞ

ρLcpV
Þ

3
7777777777777777775

=

2
66666666666664

0 1 0 · · · 0

1 1 0 · · · 0

0 0 1 · · · 0

1 0 1 · · · 0

..

.

0 0 0 · · · 1

1 0 0 · · · 1

3
77777777777775

2
66666664

c1

c2

c3

..

.

cq+1

3
77777775

(111)

where the notation follows that in Eq 104. The coefficient c1 corresponds to lnð−ΔHρLCp
Þ, and

coefficients c2, : : : , cq+1 correspond to the logarithms of the reaction rates associated with

each timeeti, i = 1, : : : , q (where these reaction rates will be denoted by r1ðetiÞ). The size of q
used for the regression both for analyzing the dependence of r1 on CA and its dependence

on T was 400. Fifty values of the states, inputs, and derivatives of the states were utilized

from approximately halfway through each of the eight operating periods between the 18th

and 25th for obtaining the CA dependence of r1, and fifty values of the states, inputs, and

derivatives of the states were utilized from approximately halfway through each of the

26 27 28 29 30 31 32 33 34
–0.5
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FIG. 7

Profiles for x1 and x2 for the

process of Eqs 87–89 for the

27th–34th operating periods

under the inputs computed by

the LEMPC of Eqs 95–101 with

the modifications of Eqs 109

and 110.
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eight operating periods between the 27th and 34th for obtaining the T dependence of r1.

The scatter plots showing the variations of the regressed values of the reaction rates with

temperature and concentration are plotted in Figs. 8 and 9. This information might be

utilized in guessing appropriate terms in the rate law. For example, it is reasonable to

postulate that there is a power of CA in the rate law based on the linearity in a plot

of lnðr1Þ against lnðCAÞ (Fig. 8) and that there is an exponential (Arrhenius) dependence

of the reaction rate on temperature based on the linearity in a plot of lnðr1Þ versus 1=T
(Fig. 9).

Based on the analysis just performed, we can now postulate that the rate law contains

a term with a form like k0e
−E=ðRgTÞCd

A and perform a regression that finds the coefficients

k0, E, and d, as well as the value of ΔH. Specifically, we set up the following matrices:

FIG. 9

Scatter plot of regression

estimates of r1 versus T (top

plot) and of lnðr1Þ versus 1=T

(bottom plot) for the process of

Eqs 87–89 for the 27th–34th

operating periods under the

inputs computed by the

LEMPC of Eqs 95–101 with

the modifications of Eqs 109

and 110.

1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.4 1.41
17
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19

20

0.28 0.29 0.340.330.3 0.31 0.32
2.85

2.9

2.95

3

FIG. 8

Scatter plot of regression

estimates of r1 versus CA (top

plot) and of lnðr1Þ versus lnðCAÞ
(bottom plot) for the process of

Eqs 87–89 for the 18th–25th

operating periods under

the inputs computed by the

LEMPC of Eqs 95–101 with

the modifications of Eqs 107

and 108.
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2
6666666666666666664

lnð−ðĊAðet1Þ − F
V ðCA0ðet1Þ − CAðet1ÞÞÞÞ

lnðṪðet1Þ − F
V ðT0 − Tðet1ÞÞ − Qðet1Þ

ρLcpV
Þ

lnð−ðĊAðet2Þ − F
V ðCA0ðet2Þ − CAðet2ÞÞÞÞ

lnðṪðet2Þ − F
V ðT0 − Tðet2ÞÞ − Qðet2Þ

ρLcpV
Þ

..

.

lnð−ðĊAðetqÞ − F
V ðCA0ðetqÞ − CAðetqÞÞÞÞ

lnðṪðetqÞ − F
V ðT0 − TðetqÞÞ − QðetqÞ

ρLcpV
Þ

3
7777777777777777775

=

2
6666666666666666664

1 1

Tðet1Þ lnðCAðet1ÞÞ 0

1 1

Tðet1Þ lnðCAðet1ÞÞ 1

1 1

Tðet2Þ lnðCAðet2ÞÞ 0

1 1

Tðet2Þ lnðCAðet2ÞÞ 1

..

.

1 1

TðetqÞ lnðCAðetqÞÞ 0

1 1

TðetqÞ lnðCAðetqÞÞ 1

3
7777777777777777775

2
6664
c1

c2

c3

c4

3
7775 (112)

where the notation follows that in Eqs 104 and 111. Here, c1 corresponds to lnðk0Þ, c2
corresponds to −E=Rg , c3 corresponds to d, and c4 corresponds to lnð−ΔHρLCp

Þ. In performing

this regression, data from the first 9,501 integration steps was utilized (i.e., q = 9, 500). The

results estimated that k0 = 8,977, 447.8 m3

hr kmol , ΔH = −11, 498.19 kJ
kmol , E = 50, 223.73 kJ

kmol ,

and d = 2.01. The similarities between these values and those in Table 1 are notable.

Also, though the rate law was not postulated to have d = 2 (as it is in the actual model

of Eqs 87–89), d ≈ 2 arose from the regression.

To validate this model, we utilized the data generated until this point but also some

additional data generated utilizing the controller by augmenting the stage cost of Eq 94

with the following terms in the 35th operating period:

108ðx1 − x1,f ixÞ2 − 102ðu1 − u*1 ðtk−1ÞÞ2 − 10−8ðu2 − u*2ðtk−1ÞÞ2 (113)

where x1,f ix = 0.2 for the 10th, 11th, and 12th sampling times of the 35th operating period,

x1,f ix = 0.4 for the 20th, 21st, and 22nd sampling times, x1,f ix = 0 for the 30th, 31st, and

32nd sampling times, x1,f ix = 0.1 for the 40th, 41st, and 42nd sampling times, x1,f ix = −0.1
for the 50th, 51st, and 52nd sampling times, x1,f ix = −0.2 for the 60th, 61st, and 62nd

sampling times, x1,f ix = 0 for the 70th, 71st, and 72nd sampling times, x1,f ix = 0.2 for

the 80th, 81st, and 82nd sampling times, and x1,f ix = −0.1 for the 90th, 91st, and 92nd

sampling times. Figs. 10 and 11 show the relatively good agreement between the measured

data and the results generated by the identified empirical model from Eq 112 initiated from

xinit with the same inputs as were applied to the system of Eqs 87–89 throughout the 35

operating periods, with a close-up of the results from the last operating period. The as-

sociated input trajectories are depicted in Fig. 12.

Because the newly identified model from Eq 112 is physics-based, it allows us to

redesign the LEMPC online to meet our control objectives. Specifically, now that an ex-

pression for the reaction rate of A is known, this can be utilized to represent the instanta-

neous production rate of B, allowing us to change the objective function of the LEMPC so

that it is representative of the profit of our process. Furthermore, we would like to update

hNL, ρ̂, and ρ̂e to enlarge the allowable region of operation based on the new model.

Therefore, utilizing the nonlinear empirical model from Eq 112, we analyze the regions

in state-space where a controller of the form h 0
NL = ½0 h 0

NL,2ðxÞ�T , with h 0
NL,2ðxÞ determined

from Eq 93 with respect to the model from Eq 112 and saturating at the input constraints,

renders ˙̂V negative along the closed-loop state trajectories of the empirical system. To do
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this, the CA values between 0 kmol=m3 and 4 kmol=m3 were discretized in increments of

0.01 kmol=m3, and the T values between 340 K and 560 K were discretized in increments

of 1 K. For every combination of CA and T at the discretized points, the value of ˙̂V was

checked under h 0
NL. Fig. 13 shows the discretized region, with the points where ˙̂V is neg-

ative in gray, and the points where it is non-negative in white. Two stability regions in the

region where ˙̂V is negative are also presented—the smaller region has an upper bound on

V̂ of 64.3 (i.e., ρ̂), whereas the larger has an upper bound of 180 (ρ̂ 0). For simplicity, we

have not changed V̂ , though for an online process, changing V̂ could also be examined for

attempting to enlarge the region of state-space in which time-varying operation is
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FIG. 10

Profiles for x1 from the process

and predicted by the empirical

model from Eq 112 throughout

the 35 operating periods (top

plot) and with a close-up of the

results throughout the 35th

operating period (bottom plot;

the empirical model results

almost overlay the process

data).
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FIG. 11

Profiles for x2 from the process

and predicted by the empirical

model from Eq 112 throughout

the 35 operating periods (top

plot) and with a close-up of the

results throughout the 35th

operating period (bottom plot;

the empirical model results

almost overlay the process

data).
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allowable even further. Because the updated empirical model is unlikely to be fully accu-

rate, some conservatism in selecting the stability region may still be warranted. The value

of ρ̂e 0 (140) selected is about 78% of the value of ρ̂ 0 (though this rather ad hoc selection of

the value of ρ̂e 0 does not necessarily produce the theoretical guarantees described in the

section titled “Data-Gathering LEMPC Stability Analysis”). Because the updated stability

region allows the closed-loop state to operate in a larger region of state-space, it is im-

portant to ensure that the safety consideration with respect to CB is accounted for in the

EMPC. Because we have identified the reaction rate and expect, from chemical engineering

first-principles modeling, that the equation for CB includes
−F
V CB and the reaction rate, we

are able to develop a dynamic equation for CB to utilize within the LEMPC to enable us to

then constrain this quantity (i.e., it has the form of Eq 89 but with the parameters identified

10 15 20 25 30 35
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105

FIG. 12

Profiles for u1 (top plot) and u2

(bottom plot) throughout the

35 operating periods.

FIG. 13

Plot showing locations in

state-space where
˙̂
V is negative

under the controller h
0
NL (gray

points), as well as locations

where it is non-negative (white

points), as computed using the

empirical model from Eq 112.

The smaller of the two ellipses

plotted represents Ωρ̂ , whereas

the larger represents Ωρ̂ 0 .
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from Eq 112). Fig. 14 shows the regions where the steady-state value of CB is within its

desired bound at the various values of T and CA corresponding to the discretized points

described previously but where the steady-state value is computed utilizing the actual

process model (i.e., the parameters of Table 1). The figure indicates that accounting

for the constraint on CB is important in Ωρ
0 . It is significant that though CB is still

not measured, we have been able to utilize the LEMPC to develop a physics-based model

that helps us to add constraints on unmeasured states to the controller to seek to enhance

process operational safety.

Incorporating the previous considerations, the updated LEMPC formulation is as

follows:

min
uðtÞ∈SðΔÞ

Z
tk+N

tk

k0e−E=ðRðx̂2ðτÞ+TsÞðx̂1ðτÞ + CAsÞ2 dτ (114)

s:t: ˙̂x = f 0NLðx̂ðtÞ, uðtÞÞ (115)

x̂iðtkÞ = xiðtkÞ, i = 1, 2 (116)

x̂3ðtkÞ = ex3ðtkÞ (117)

−3.5 ≤ u1ðtÞ ≤ 3.5, ∀ t ∈ ½tk, tk+NÞ (118)

−5 × 105 ≤ u2ðtÞ ≤ 5 × 105, ∀ t ∈ ½tk, tk+NÞ (119)

x̂3ðtÞ ≤ 1.5, ∀t ∈ ½tk, tk+NÞ (120)

V̂ðx̂ðtÞÞ ≤ρ̂e 0 , for t ∈ ½tk, tk+NÞ, if xðtkÞ ∈ Ωρ̂
e
0 ,

or t ∈ ½tk+1, tk+NÞ, if xðtkÞ ∈= Ωρ̂
e
0 (121)

FIG. 14

Steady-state values of CB − CBs

at a variety of state-space

points. Points where CB − CBs ≤

1.5 kmol=m3 are shown in gray,

whereas points where CB −

CBs > 1.5 kmol=m3 are shown in

white.

GIULIANI AND DURAND ON DATA-BASED NONLINEAR MODEL ID IN EMPC 99

Smart and Sustainable Manufacturing Systems

 



∂V̂ðxðtkÞÞ
∂x̂

f 0NLðxðtkÞ, uðtkÞÞ

≤
∂V̂ðxðtkÞÞ

∂x̂
f 0NLðxðtkÞ, hNLðxðtkÞÞÞ if xðtkÞ ∈= Ωρ̂ 0

e
(122)

where f
0
NLðx̂, uÞ represents the physics-based model with the form of Eqs 87–89 but with

parameters derived from Eq 112 (the parameters in Eq 114 are similarly derived from

Eq 112), and f
0
NLðx̂, uÞ represents this physics-based model but only with Eqs 87 and

88 because the Lyapunov-based constraints of this system are derived based only on T

and CA (from the form of Eq 89, driving CA and T to a steady-state value also drives

CB to a steady-state value). h
0
NL was not saturated in the constraint of Eq 122. The con-

straints of Eqs 120 and 121 were enforced at the end of every integration step in the time

periods over which the constraints were applied. ex3 represents an estimate of x3 utilized to

set the initial condition for x̂3 in Eq 115. The method by which this estimate was obtained

will be further clarified in what follows. Again, the optimization problem was solved using

the default solver of fmincon, the bounds on u2 scaled by 105, N = 10, Δ = 0.01, and an

integration step of 10−4 hr to simulate the model of Eq 115 and the process of Eqs 87–89.

The maximum number of iterations and function evaluations allowed by MATLAB was

increased in the operating period during which the LEMPC of Eqs 114–122 was used so

that the solution to the optimization problem at each sampling time was stated by fmincon

to be either a local minimum or to possibly be a local minimum. The initial guess for

fmincon was the solution for each decision variable from the prior sampling period, except

for the last sampling period of the prediction horizon in which no corresponding solution

was available from the prior sampling period so that the steady-state values of u1 and u2
were used.

The state and input trajectories resulting from switching the LEMPC design from that

of Eqs 95–101 to Eqs 114–122 for the 37th operating period are presented in Figs. 15 and

16. Specifically, in the 36th operating period, the LEMPC of Eqs 95–101 is utilized to drive

the closed-loop state to the steady-state before the model is switched. Then, at the begin-

ning of the 37th operating period, the LEMPC is changed to the design of Eqs 114–122,

FIG. 15

Profiles for x1 and x2 for the

process of Eqs 87–89 for the

37th operating period under the

inputs computed by the LEMPC

of Eqs 114–122.
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and the process is operated under the resulting LEMPC for a subsequent operating period.

To enforce the constraint on the unmeasured state x3 in Eqs 114–122, the value of x3 was

assumed to be zero at the beginning of the 37th operating period because the process had

been driven to the operating steady-state in the 36th operating period. The assumed model

of Eqs 87–89 with the parameters from Eq 112 was numerically integrated between

sampling periods using control actions returned by the EMPC for the first sampling

period of the prediction horizon to develop the estimate ex3ðtkÞ at every sampling time in

Eqs 114–122 (i.e., no feedback was truly available for this state at any time). However, the

value of CB was also simulated over time using Eqs 87–89 with the parameter values in

Table 1 for comparison with the estimates, initialized at 2.289 kmol=m3 at t0. Fig. 17

shows the bound on CB − CBs, as well as the predicted and actual values of CB during

the 37th operating period. It indicates that the estimates of CB developed from the

FIG. 16

Profiles for u1 and u2 for the

process of Eqs 87–89 for the

37th operating period

computed by the LEMPC of

Eqs 114–122.

FIG. 17

Profiles for the actual value of

CB − CBs (developed from the

model of Eqs 87–89 with the

parameters in Table 1 and

denoted by x3 in the figure)

and for the estimated value of

CB − CBs (developed from the

model of Eqs 87–89 with the

parameters from Eq 112 and

denoted by ex3 in the figure).

The upper bound of 1.5 kmol
m3 on

CB − CBs is denoted by x3,max in

the figure.
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empirical model did well at approximating the actual value of CB and that the LEMPC of

Eqs 114–122 was able to prevent CB from going above its threshold value through the

constraint of Eq 120. Furthermore, Figs. 18 and 19 show the state-space profiles for

the system of Eqs 87–89 (parameters in Table 1) over the 37 periods of operation.

Specifically, Fig. 18 shows the state-space profiles for the first 36 operating periods with

respect to Ωρ̂ and Ωρ̂e , while Fig. 19 shows the profiles for the last operating period with

respect toΩρ̂ 0 andΩρ̂
e
0 . These figures indicate that both the LEMPC of Eqs 95–101 and the

LEMPC of Eqs 114–122 computed input trajectories that maintained the closed-loop state

within Ωρ̂ and Ωρ̂ 0 as applicable based on the constraints of the given operating period.

The following profit measure was assessed for the process operated under the LEMPC

of Eqs 114–122 and for steady-state operation:

FIG. 18

CA − T trajectory in state-space

for the system of Eqs 87–89

with the parameters of Table 1

throughout the first 36

operating periods (i.e., under

the inputs computed by the

LEMPC of Eqs 95–101 with the

modifications to Eq 95

according to Eqs 105–110 and

113) with respect to Ωρ̂ and Ωρ̂e :

FIG. 19

CA − T trajectory in state-space

for the system of Eqs 87–89

with the parameters of Table 1
throughout the 37th operating

period (i.e., under the inputs

computed by the LEMPC of

Eqs 114–122) with respect to Ωρ̂ 0

and Ωρ̂
e
0 .
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Je =
1
tp

Z
37 hr

36 hr
k0e

−E=ðRgTðτÞÞðCAðτÞÞ2dτ (123)

where the parameters are those in Table 1. The value for the closed-loop process under the

LEMPC was 21.98, while for the process operated at steady-state, it was 13.88, indicating

that developing a physics-based empirical model online to enable the objective function to

be related to the production rate of the product as desired based on the process economics,

rather than retaining the original objective function of Eq 94 that enforced steady-state

operation, was able to enhance the process economics for the last operating period.

Despite the success observed in the specific simulations discussed, many challenges

remain to be addressed for the presented methodology. One challenge is the difficulty of

seeking to find the forms of the terms to be included in a physics-based model when these

terms may depend on unmeasured states. In cases where, for example, the reaction rate

depends on an unmeasured state, more work needs to be performed to analyze how an

engineer might guess whether the reaction rate depends on the unmeasured state, and if so,

how (e.g., is the dependence through the denominator, or numerator, or both). A benefit of

the data-gathering EMPC, however, is that the controller can be utilized to test the final

derived physics-based model once it is obtained, which can provide greater confidence in

the model if the data is fit well for a variety of different inputs, even if some assumptions

are used when deriving the model. In the example, we assumed that we had measured a

number of the parameters (e.g., F, V) so that we could easily place the model in the form of

a linear regression with some tweaking to the form of the equations. Further work must be

performed to better analyze how the nonlinear models that appear in chemical engineering

might be identified without requiring so many parameters to be known a priori. So far also,

we have required good engineering judgment in selecting the majority of the terms of the

model. Ideally, the controller combined with methods for obtaining models from data

would be able to also bring out terms in the model that perhaps an engineer is not aware

exist in the physics of the process. It should also be able to develop models that recognize

well-established constraints from physics and chemical engineering (e.g., conservation of

mass and energy [14,55]).

Another challenge is the lack of ability to design a controller like LEMPC in the tradi-

tional manner when the process model is unknown. In the literature, it is traditional [28]

to suggest that ρ̂e be designed with respect to ρ̂ utilizing closed-loop simulations that test a

variety of scenarios with disturbances and inputs within the bounds to attempt to select a

ρ̂e that is expected to ensure that the closed-loop state is maintained within Ωρ̂ even in the

presence of these disturbances and with the sample-and-hold implementation of the in-

puts. However, when no process model is available except the empirical model, it is not

obvious how one could design a reliable closed-loop simulation technique to evaluate an

adequate value of ρ̂e. This was reinforced by Theorem 1, where it was seen that the error

between the actual and empirical models, which it is not straightforward to know, dictates

the size of ρ̂e. This indicates that developing techniques or control designs for obtaining

guaranteed closed-loop stability from an explicitly characterizable region of state-space

with robustness to disturbances, but when the actual process model is not known, is im-

portant to address to enable next-generation manufacturing and, in particular, the online

implementation and development of EMPC in a reliable manner. This can be particularly

important when trying to develop methods for obtaining physics-based models online, as

the plant-model mismatch may contribute to feasible inputs being selected that drive the
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closed-loop state out of the stability region, and when performing the experiments and

therefore generating nonroutine operating situations, it may be difficult to tell what types

of objective functions or other changes to the LEMPC design for the purpose of exper-

imentation might lead to such problematic inputs being generated.

It should also be noted that the objective functions utilized in this example for data-

gathering purposes were obtained through extensive trial-and-error. It is not necessarily

obvious how to weight the various terms added to the objective function to aid in gathering

data with respect to one another to achieve effects like forcing one variable to be constant

while another moves, or preventing the control actions generated from driving the closed-

loop state out of Ωρ̂. Therefore, though the example suggests that if a well-designed tuning

for an LEMPC could be developed, it might give desirable results, it can be difficult to

obtain such a desirable tuning in practice. More work must be done to try to develop

reliable methods for generating desirable types of data online that retain the simplicity

of the suggested method but that also alleviate the tuning difficulties.

Another practical challenge that remains open for future work is the issue of how to

determine what experiments to perform, when, and for how long. The method presented

in this example takes an engineer’s intuition to determine the next steps to perform

in order to obtain or validate a model. Ideally, the process of obtaining physics-based

models should be automated like current model identification methods that do not require

a physics-based model to be identified can be. Furthermore, running experiments online

throughout many hours of operation as in this example might be undesirable unless it does

not cause off-specification product to be produced throughout that time period. Ideally, a

strategy would be developed where the experiments could be performed in a manner that

allows the process to continuously produce on-specification product throughout their du-

ration, but also avoids having changes in the underlying dynamics before the full model is

identified. Additionally, disturbances must be looked at in the context of this method. As

demonstrated in the section titled “Data-Gathering LEMPC Stability Analysis,” the

LEMPC itself is robust to sufficiently small disturbances; however, how these affect the

fidelity of the data for the model identification and therefore how to handle such effects

within the context of the data-gathering EMPC implementation strategy needs further

investigation. Finally, the details of the implementation of the proposed methodology

in the context of a larger-scale process remain to be examined.

Remark 9. Though the theoretical results of this work require f NLð0, 0Þ=
f ð0, 0, 0Þ = 0, in practice, one might identify a physics-based model that does not have

exactly the same steady-state as the actual model for a given set of steady-state input val-

ues. Though the theoretical results would not rigorously hold then as written in this work,

the EMPC designs in this work could still be utilized.

Remark 10. Though the use of linear regression based on approximations of derivatives

for obtaining the parameters in the example was originally inspired by Ref. [15], the

present work uses a data-gathering EMPC to seek to obtain enough information before

performing the regression to postulate the possible terms for which parameters should be

identified in the regression (and then the parameters of all of them are determined),

whereas Ref. [15] uses regression to attempt to identify a physically meaningful model

from a large selection of available terms which are not necessarily all in the model

(and therefore the coefficients of some such terms might be neglected).

104 GIULIANI AND DURAND ON DATA-BASED NONLINEAR MODEL ID IN EMPC

Smart and Sustainable Manufacturing Systems

 



Remark 11. The focus in this work is on the development of a controller that can help in

picking the model form in a manner that is physically meaningful. Once a model form has

been chosen, there are a variety of methods that could be utilized for seeking to fit the

model parameters. One could consider, for example, seeking to estimate and adapt them

online, as in Ref. [56]. Such an approach would need to be further investigated, however,

because without obtaining the parameters of the model before beginning to utilize the

model in control, it may be difficult to validate that the model form selected is reasonable.

For example, Eqs 102 and 103 formed an incorrectly guessed model form and therefore

could not capture essential physical phenomena in Figs. 3–5. Because the parameters of

the model were identified before the model was implemented within the EMPC, this error

in the proposed terms of the model could be caught through the generation of the non-

training data and the plotting of the actual data against that predicted with the empirical

model before the EMPC was updated to include a model that was fundamentally flawed

from a physics perspective. If the parameters are not estimated until after the model within

the EMPC is updated, it may be more difficult to determine whether the model is physi-

cally meaningful, which might make it more difficult to appropriately design constraints

and the objective function of the EMPC.

Remark 12. Though a motivation for updating the stability region after the model from

Eq 112 was available was to seek to enhance process profits by allowing the process state to

vary within a larger region of state-space than Ωρ̂, no attempt was made, either when the

model of Eqs 90 and 91 or the model from Eq 112 were used, to determine the largest

possible region in state-space that could be utilized in an LEMPC to enhance process eco-

nomic performance because this was considered secondary to the demonstration of the

functionality of the data-gathering LEMPC for aiding in online EMPC design. For an ac-

tual process, it is advisable to investigate the stability region size and shape more rigorously

before choosing a value, as this may impact process economic performance. A large sta-

bility region (ideally, the full null controllable region [57]) gives greater flexibility to the

EMPC in optimizing the process economics. In Ref. [57], a technique is developed for

generating Lyapunov functions for which the level sets are the null controllable region,

which will be a larger set than any stability region generated with a technique that relies

on an explicit stabilizing controller as explored in the example presented previously. An

EMPC that takes advantage of such Lyapunov functions may be economically beneficial

for this and other processes. For example, when V̂ = 1, 200x21 + 10x1x2 + 0.1x22, ρ̂
0 = 320,

ρ̂e 0 = 250, and hNL is given by Eq 93 with respect to this new V̂ in the 37th operating

period, Je = 22.56, which is higher than the value reported for the 37th operating period

with a different stability region, as shown previously. Therefore, modifying the stability

region for this example may enhance process economic performance.

Conclusion

In this work, a new data-gathering EMPC design has been developed that activates certain

hard and soft constraints for short periods of time to seek to obtain data from an online

process that may be helpful in developing a physically meaningful empirical model for a

process. An example formulation of a data-gathering EMPC with Lyapunov-based stability

constraints was developed with guaranteed feasibility and closed-loop stability properties
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under sufficient conditions. This constitutes a difference between the proposed technique

and other techniques such as bump tests or set-point changes of linear controllers at a

plant [22] that might be utilized to obtain data but for which closed-loop stability guar-

antees might not be developed. A chemical process example was used to demonstrate the

potential of a data-gathering LEMPC to drive the closed-loop states to desired values that

provide the data needed to suggest a model structure for an identification algorithm and to

subsequently validate the model obtained while maintaining closed-loop stability.
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