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State Measurement Spoofing Prevention
through Model Predictive Control Design ⋆

Helen Durand ∗

∗ Department of Chemical Engineering and Materials Science, Wayne
State University, Detroit, MI 48202, USA (e-mail:

helen.durand@wayne.edu).

Abstract: Security of chemical process control systems against cyberattacks is critical due
to the potential for injuries and loss of life when chemical process systems fail. A potential
means by which process control systems may be attacked is through the manipulation of the
measurements received by the controller. One approach for addressing this is to design controllers
that make manipulating the measurements received by the controller in any meaningful fashion
very difficult, making the controllers a less attractive target for a cyberattack of this type. In this
work, we develop a model predictive control (MPC) implementation strategy that incorporates
Lyapunov-based stability constraints and can allow several potential control laws to be available
to apply to the process, one of which can be randomly selected at each sampling time, potentially
making the response of the controller to a false state measurement more difficult to predict
a priori. We investigate closed-loop stability and recursive feasibility of the resulting control
design, and utilize a benchmark chemical process example to demonstrate the difference in the
control actions computed by such a randomized MPC implementation strategy compared with
those for the same process by the same MPC design utilized at every sampling time.

Keywords: Cybersecurity, model predictive control, process control.

1. INTRODUCTION

In recent years, cyberattackers have targeted a petrochem-
ical plant (Perlroth and Krauss, 2018), a wastewater treat-
ment plant (Clark et al., 2017), and a uranium enrichment
plant (Langner, 2011). Chemical process safety relies on
the controllers and safety system to prevent accidents.
However, if a cybersecurity breach occurs in a process
control system, it may no longer be available to prevent ac-
cidents. Even worse, it may be utilized to drive the process
state to an unsafe condition that it would not otherwise
approach. Randomization has been considered as a cyber-
attack prevention technique (through, for example, chang-
ing network settings (Chavez et al., 2015) or randomly
selecting encrypted data from sensors to compare with the
information received by operators (Linda et al., 2013)).
Due to the criticality of cybersecurity (Smith, 2013) from
a safety perspective, it is a topic of significant interest with
respect to process control systems. For example, (Rosich
et al., 2013) discussed a method for detecting an attack on
a controller where it is assumed that the attacker is able
to adjust the controller outputs. (Cárdenas et al., 2011)
analyzes the potential for an unsafe state to be reached in a
system in which the measurements received by a controller
are compromised. The present work takes an approach to
cybersecurity that uses a randomly selected control law at
every sampling time to make the outcome of a cyberattack
difficult to predict and therefore to seek to reduce the
desirability of performing such attacks. Specifically, we
utilize a model predictive control approach that takes ad-

⋆ Financial support from Wayne State University is gratefully ac-
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vantage of Lyapunov-based stability theory in the design of
the constraints to ensure that among all control laws which
may be randomly selected at a given sampling time, all will
maintain closed-loop stability and be feasible if selected.
A chemical process example demonstrates that this ran-
domized controller implementation strategy can maintain
closed-loop stability of a nonlinear process operated under
the control design and create very different trajectories
for the states and inputs than would be observed if one
controller was utilized.

2. PRELIMINARIES

2.1 Notation

The notation | · | denotes the Euclidean norm of a vector.
A function α : [0, a) → [0,∞) is of class K if α(0) = 0
and α is strictly increasing. The notation xT represents
the transpose of a vector x. The symbol “ / ” denotes set
subtraction (i.e., x ∈ A/B = {x ∈ Rn : x ∈ A, x /∈ B}).

2.2 Class of Systems

The class of nonlinear systems under consideration is:

ẋ(t) = f(x(t), u(t), w(t)) (1)

where f is taken to be a locally Lipschitz nonlinear vector
function of the state vector x ∈ X ⊂ Rn, input vector
u ∈ U ⊂ Rm, and disturbance vector w ∈ W ⊂ Rl, where
W := {w ∈ Rl : |w| ≤ θ}. We consider that f(0, 0, 0) = 0
and assume that the system of Eq. 1 is stabilizable in the
sense that there exist explicit stabilizing control laws hi(x)



with corresponding sufficiently smooth positive definite
Lyapunov functions Vi : Rn → R+, and functions αj,i,
j = 1, . . . , 4, of class K such that the following inequalities
hold for all x ∈ Di ⊂ Rn:

α1,i(|x|) ≤ Vi(x) ≤ α2,i(|x|) (2a)

∂Vi(x)

∂x
f(x, hi(x), 0) ≤ −α3,i(|x|) (2b)∣∣∣∣∂Vi(x)

∂x

∣∣∣∣≤ α4,i(|x|) (2c)

hi(x) ∈ U (2d)

for i = 1, . . . , np, where Di is an open neighborhood of
the origin. We define a level set of Vi contained within
Di where x ∈ X as a stability region Ωρi of the nominal
(w(t) ≡ 0) system of Eq. 1 under the controller hi(x)
(Ωρi := {x ∈ X ∩Di : Vi(x) ≤ ρi}). It holds that:
|f(x1, u, w)− f(x2, u, 0)| ≤ Lx|x1 − x2|+ Lw|w| (3a)∣∣∣∣∂Vi(x1)

∂x
f(x1, u, w)−

∂Vi(x2)

∂x
f(x2, u, 0)

∣∣∣∣
≤ L′

x,i|x1 − x2|+ L′
w,i|w| (3b)

|f(x, u, w)| ≤M (3c)

for all x, x1, x2 ∈ Ωρi
, i = 1, . . . , np, u ∈ U , and w ∈ W ,

where Lx > 0, Lw > 0, and M > 0 are selected so that
Eqs. 3a and 3c hold regardless of the value of i.

2.3 Lyapunov-based Model Predictive Control

Lyapunov-based model predictive control (LMPC) (Hei-
darinejad et al., 2012; Mhaskar et al., 2006) is given by:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (4a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (4b)

x̃(tk) = x(tk) (4c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N ) (4d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (4e)

V1(x̃(t)) ≤ ρe,1, ∀ t ∈ [tk, tk+N ),

if x(tk) ∈ Ωρe,1
(4f)

∂V1(x(tk))

∂x
f(x(tk), u(tk), 0)

≤ ∂V1(x(tk))

∂x
f(x(tk), h1(x(tk)), 0)

if x(tk) ∈ Ωρ1/Ωρe,1 (4g)

where u(t) ∈ S(∆) signifies that the input trajectories are
members of the class of piecewise-constant vector functions
with period ∆. The nominal (i.e., w(t) ≡ 0) model of
Eq. 1 (Eq. 4b) is utilized by the LMPC of Eq. 4 to
develop predictions x̃ of the process state, starting at a
measurement at tk (Eq. 4c), which are then used in com-
puting the value of the stage cost Le over the prediction
horizon of N sampling periods (Eq. 4a) and evaluating
the state constraints (Eq. 4d). The inputs are required
to meet the input constraint (Eq. 4e). Eq. 4f requires
that the computed inputs maintain the predicted state
within the set Ωρe,1 throughout the prediction horizon, and
Eq. 4g requires that the closed-loop state move toward a
neighborhood of the origin. Ωρe,1

is chosen to make Ωρ1

forward invariant under the LMPC of Eq. 4. h(x̃(tq)),
q = k, . . . , k + N − 1, t ∈ [tq, tq+1), is a feasible solution

to the optimization problem of Eq. 4 at every sampling
time if x(tk) ∈ Ωρ1 . Furthermore, the LMPC of Eq. 4 is
guaranteed to maintain the closed-loop state within Ωρ1

when ρe,1, ∆, and θ are sufficiently small (Heidarinejad
et al., 2012). Additionally, V decreases along the closed-
loop state trajectory throughout a sampling period when
Eq. 4g is activated at tk.

3. RANDOMIZED LMPC DESIGN

The LMPC design of Eq. 4 computes inputs using a
deterministic process model and a limited number of
constraints, so that a cyberattacker who knew the control
law of Eq. 4 might be able to predict what input might be
computed by the controller for a given state measurement
x(tk) and thereby effectively gain control over the process
actuators by manipulating the value of x(tk) received
by the controller. Potentially, a cyberattacker could then
adjust x(tk) to apply control actions to the process that
he or she believes will cause harm from a safety or
economics viewpoint. One method for trying to prevent
a cyberattacker from gaining control over the actuators in
this manner would be to seek to prevent the cyberattacker
from understanding how a given value of x(tk) may impact
the inputs computed by the controller, making it difficult
for the attacker to achieve his or her goals and thereby
discouraging attacks of this type. An idea for achieving
this is to develop a set of controllers that maintain closed-
loop stability for a process, and to allow one of these to
be randomly selected at every sampling time, potentially
preventing a cyberattacker from being able to map a value
of x(tk) to a single process input.

3.1 Randomized LMPC Formulation

Motivated by these considerations, we propose the devel-
opment of np controllers with the following form:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (5a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (5b)

x̃(tk) = x(tk) (5c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N ) (5d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (5e)

Vi(x̃(t)) ≤ ρe,i, ∀ t ∈ [tk, tk+N ),

if x(tk) ∈ Ωρe,i
(5f)

∂Vi(x(tk))

∂x
f(x(tk), u(tk), 0)

≤ ∂Vi(x(tk))

∂x
f(x(tk), hi(x(tk)), 0)

if x(tk) ∈ Ωρi
/Ωρe,i

or δ = 1 (5g)

where Vi, ρe,i, ρi, and hi, i = 1, . . . , np, play the roles in
Eq. 5 of V1, ρe,1, ρ1, and h1, respectively, from Eq. 4.
Each combination of Vi and hi is assumed to satisfy
Eq. 2 ∀x ∈ Ωρi and Ωρe,i ⊂ Ωρi . For j = 2, . . . , np,
the Ωρj should be subsets of Ωρ1 for reasons that will be
clarified in Section 3.3. To introduce an additional aspect
of randomness at each sampling time, the parameter δ is
introduced in Eq. 5g. It can take a value of either 0 or 1,
and one of those two values is randomly selected for it at
each sampling time. δ = 1 corresponds to activation of the
constraint of Eq. 5g even when x(tk) ∈ Ωρe,i

.



3.2 Randomized LMPC Implementation Strategy

With the np controllers of the form of Eq. 5 and the two
possible values of δ in each of these LMPC’s at every
sampling time, Eq. 5 represents 2np potential controllers
which may be selected at every sampling time. One could
consider other potential control options in addition, such
as the Lyapunov-based controllers hi(x), i = 1, . . . , np.
However, though all of these controllers are designed
and are available in principle, they could cause closed-
loop stability issues that require that not all of them
be available to be randomly selected between at each
sampling time. The conditions which determine which
controllers are possibilities at a given sampling time should
rely on the position of x(tk) in state-space and specifically
whether x(tk) ∈ Ωρi

for the i − th controller to be
considered as a candidate. To exemplify this, consider
the two level sets Ωρ1

and Ωρ2
and their subsets Ωρe,1

and Ωρe,2
shown in Fig. 1. Two potential values of x(tk)

are presented (xa and xb) to exemplify the role that the
state-space location of x(tk) should play in determining
which of the np controllers of the form of Eq. 5 or the
Lyapunov-based controllers of the form hi(x(tk)) should
be considered as candidates to randomly select between
at a given sampling time. Consider first that x(tk) =
xa. In this case, x(tk) ∈ Ωρ1

/Ωρe,1
, and therefore, as

described in Section 2.3, the LMPC of Eq. 5 with i = 1
would be able to maintain the closed-loop state in Ωρ1

throughout the subsequent sampling period. It is also true
that x(tk) /∈ Ωρe,2

, so it may at first seem reasonable
to consider that if the LMPC of Eq. 5 is used with
i = 2, the constraint of Eq. 5g could be activated to
decrease the value of the Lyapunov function between two
sampling periods and thereby drive the closed-loop state
toward the origin using the properties of the Lyapunov-
based controller and the constraint of Eq. 5g. However, the
closed-loop stability properties delivered by the constraint
of Eq. 5g are developed with the requirement that Eq. 2
must hold within the stability region and that x(tk) must
be in this stability region. When x(tk) /∈ Ωρ2 , these
properties are not guaranteed to hold. Therefore, when
x(tk) = xa in Fig. 1, the LMPC of Eq. 5 with i = 2 would
not be a wise choice to randomly select at a given sampling
time. Similarly, h2(x(tk)) is guaranteed to maintain closed-
loop stability when x(tk) ∈ Ωρ2

, but if h2(x(tk)) is applied
when x(tk) = xa, x(tk) /∈ Ωρ2

and therefore the stability
properties are not guaranteed to hold.

In contrast, consider the potential initial condition x(tk) =
xb. In this case, x(tk) ∈ Ωρ1 and Ωρ2 . Consequently, Eq. 5
with i = 1 or i = 2 (for δ = 1 or δ = 0), h1(x(tk)),
and h2(x(tk)) can all maintain closed-loop stability of the
process of Eq. 1, and therefore all could be considered
as potential control designs between which to randomly
select at tk. This indicates that the location of x(tk) in
state-space should be checked with respect to Ωρi , i =
1, . . . , np, before developing a candidate set of controllers
to randomly select between at tk. However, if Ωρi , i =
2, . . . , np, are subsets of Ωρ1 , then at each sampling time,
Eq. 5 with i = 1 and δ = 0, Eq. 5 with i = 1 and
δ = 1, and h1(x(tk)) are all candidate controllers that can
maintain closed-loop stability. If x(tk) is in the intersection
of additional level sets, there are additional candidate
controllers which could be randomly selected between.

Ωρ1
Ωρe,1
Ωρ2
Ωρe,2

xa

xb

1

Fig. 1. Intersecting stability regions with two different
potential initial conditions x(tk) = xa and x(tk) = xb.

Therefore, the minimum number of candidate controllers is
3, with more potentially being possible, especially as more
stability regions with more intersections are developed.

Accounting for the above considerations, the following im-
plementation strategy for the LMPC of Eq. 5 is proposed:

Step 1. At tk, a random integer j between 1 and 2np is
selected, and δ is randomly selected to be zero or one.

Step 2. If j ∈ {2, . . . , np}, set i = j. If j ∈ {np+2, . . . , 2np},
set i = j − np. Verify that Vi(x(tk)) ∈ Ωρi

. If yes, move to
Step 3. If not, return to Step 1.

Step 3. If j is a number between 1 and np, utilize the
LMPC of Eq. 5 with i = j and the selected value of δ. If
j = np + d, d = 1, . . . , np, set u = hd(x(tk)).

Step 4. Apply the control action to the process of Eq. 1.

Step 5. tk ← tk+1. Return to Step 1.

3.3 Randomized LMPC Stability Analysis

In this section, we present the results regarding closed-
loop stability of the nonlinear process of Eq. 1 operated
under the implementation strategy in Section 3.2 and the
feasibility of any LMPC of Eq. 5 selected for determin-
ing control actions via this strategy, beginning with two
propositions that are utilized in proving the main results.

Proposition 1. (Mhaskar et al., 2013; Heidarinejad et al.,
2012) Consider the systems

ẋa(t) = f(xa(t), u(t), w(t)) (6a)

ẋb(t) = f(xb(t), u(t), 0) (6b)

with initial states xa(t0) = xb(t0) ∈ Ωρ1
. There exists a

function fW of class K such that:

|xa(t)− xb(t)| ≤ fW (t− t0) (7)

for all xa(t), xb(t) ∈ Ωρ1
and all w(t) ∈W with:

fW (τ) =
Lwθ

Lx
(eLxτ − 1) (8)

Proposition 2. (Mhaskar et al., 2013; Heidarinejad et al.,
2012) Consider the Lyapunov function Vi(·) of the system
of Eq. 1. There exists a quadratic function fV,i(·) such
that:

Vi(x) ≤ Vi(x̂) + fV,i(|x− x̂|) (9)



for all x, x̂ ∈ Ωρi with

fV,i(s) = α4,i(α
−1
1,i (ρi))s+Mv,is

2 (10)

where Mv,i > 0 is a constant.

Proposition 3. (Muñoz de la Peña and Christofides, 2008)
Consider the Lyapunov-based controller hi(x) that meets
Eq. 2 with Lyapunov function Vi(·), applied in sample-and-
hold to the system of Eq. 1. If ρi > ρe,i > ρmin,i > ρs,i,
and θ > 0, ∆ > 0, and ϵw,i > 0 satisfy:

−α3,i(α
−1
2,i (ρs,i)) + L′

x,iM∆+ L′
w,iθ ≤ −ϵw,i/∆ (11)

then ∀x(tk) ∈ Ωρi
/Ωρs,i

,

Vi(x(t)) ≤ Vi(x(tk)) (12)

for t ∈ [tk, tk+1) and x(t) ∈ Ωρi . Furthermore, if ρmin,i is
defined as follows:

ρmin,i = max{Vi(x(t+∆)) : Vi(x(t)) ≤ ρs,i} (13)

then the closed-loop state is ultimately bounded in Ωρmin,i

in the sense that:

lim sup
t→∞

|x(t)| ∈ Ωρmin,i
(14)

Theorem 4. Consider the system of Eq. 1 in closed-loop
under the implementation strategy of Section 3.2 based
on controllers hi(x) that satisfy Eq. 2, and consider that
the conditions in Proposition 3 hold. Let ϵw,i > 0, ∆ > 0,
ρi > ρe,i > ρmin,i > ρs,i satisfy:

ρe,i ≤ ρi − fV,i(fW (∆)) (15)

and Eqs. 11 and 13, for i = 1, . . . , np, and Ωρe,j ⊂ Ωρe,1 ,
j = 2, . . . , np. If x(t0) ∈ Ωρ1 and N ≥ 1, then the state
x(t) of the closed-loop system is always bounded in Ωρ1 .

Proof. The proof consists of two parts related to 1)
characterizable control actions and 2) closed-loop stability.

Part 1. To demonstrate that an input with characterizable
properties is returned by the implementation strategy of
Section 3.2 at every sampling time to be applied to the
process, we note that one of two inputs is returned at every
sampling time: a) a control action computed by the LMPC
of Eq. 5 with i = j where x(tk) ∈ Ωρj

or b) a Lyapunov-
based controller hj(x(tk)) where x(tk) ∈ Ωρj

.

In case a), a solution to the LMPC of Eq. 5 must have
the characterizable property that it met the constraints of
the LMPC because the LMPC always has at least one
feasible solution. Specifically, hi(x̃(tq)), q = k, . . . , k +
N − 1, t ∈ [tq, tq+1), with i = j, is a feasible solution
to the optimization problem of Eq. 5 when x(tk) ∈ Ωρj

.
It causes the constraint of Eq. 5d to be met because
hi(x̃(tq)), q = k, . . . , k + N − 1, t ∈ [tq, tq+1), maintains
the closed-loop state in Ωρj

⊆ Ωρ1
by Proposition 3, and

the state constraint of Eq. 5d is met for all states in Ωρ1
.

hi(x) in sample-and-hold also satisfies the input constraint
of Eq. 5e by Eq. 2d. From Proposition 3, it causes the
constraint of Eq. 5f to be met when x(tk) ∈ Ωρj

, and
it trivially satisfies the constraint of Eq. 5g. Notably, the
feasibility of hi(x) in sample-and-hold is true regardless of
whether δ = 1 or δ = 0 because this is a feasible solution
to all constraints of the optimization problem.

In case b), the control action applied to the process is also
characterizable because it meets Proposition 3. Therefore,
the control action applied at tk has characterizable proper-
ties which can be used in establishing closed-loop stability.
Furthermore, whenever Eq. 5 is utilized to determine an

input at a given sampling time, a feasible solution to this
optimization problem always exists because it is ensured
that x(tk) ∈ Ωρi before the solution is obtained, and the
feasibility of hi(x̃(tq)), q = k, . . . , k +N − 1, t ∈ [tq, tq+1)
was demonstrated to hold above as long as x(tk) ∈ Ωρi .

Part 2. In this part, we prove that even with a control
law randomly selected at every sampling time according to
the implementation strategy in Section 3.2, the closed-loop
state is maintained within Ωρ1

for all times if x(t0) ∈ Ωρ1
.

To demonstrate this, we first consider the case that at
tk, a control law of the form of Eq. 5 with i = j when
x(tk) ∈ Ωρj

is selected. In this case, either the constraint
of Eq. 5f is activated (if x(tk) ∈ Ωρe,i), the constraint of
Eq. 5g is activated (if x(tk) ∈ Ωρi/Ωρe,i or δ = 1), or both
are activated (for example, if δ = 1 but x(tk) ∈ Ωρe,i).

Consider first the case that Eq. 5f is activated so that from
Proposition 2 (assuming that x(t) ∈ Ωρi

for t ∈ [tk, tk+1)):

Vi(x(t)) ≤ Vi(x̃(t)) + fV,i(|x(t)− x̃(t)|) (16)

for t ∈ [tk, tk+1). With Eq. 5f and Proposition 1, we obtain:

Vi(x(t)) ≤ ρe,i + fV,i(fW (∆)) (17a)

for t ∈ [tk, tk+1). When Eq. 15 holds, Vi(x(t)) ≤ ρi, for
t ∈ [tk, tk+1), which validates the assumption used in
deriving this result and guarantees that x(t) ∈ Ωρi

for
t ∈ [tk, tk+1) when x(tk) ∈ Ωρe,i

and the LMPC of Eq. 5
is used to determine the input to the process of Eq. 1.
Because Ωρi

⊆ Ωρ1
, x(t) ∈ Ωρ1

for t ∈ [tk, tk+1).

Consider now the case that Eq. 5g is activated. In this
case, we have from this constraint and Eq. 2b that

∂Vi(x(tk))

∂x
f(x(tk), u(tk), 0)

≤ ∂Vi(x(tk))

∂x
f(x(tk), hi(x(tk)), 0) ≤ −α3,i(|x(tk)|)

from which we can obtain:
∂Vi(x(t))

∂x
f(x(t), u(tk), w(t))

≤ L′
x,iM∆+ L′

w,iθ − α3,i(α
−1
2,i (ρs,i)) (18a)

for t ∈ [tk, tk+1), where the last inequality follows from

adding and subtracting ∂Vi(x(tk))
∂x f(x(tk), u(tk), 0) and us-

ing the triangle inequality, Eqs. 3b-3c, and x(tk) ∈
Ωρi/Ωρs,i with Eq. 2a. If Eq. 11 holds, then

∂Vi(x(t))

∂x
f(x(t), u(tk), w(t)) ≤ −ϵw,i/∆ (19)

Integrating Eq. 19 gives that Vi(x(t)) ≤ Vi(x(tk)), ∀t ∈
[tk, tk+1), such that if x(tk) ∈ Ωρi/Ωρs,i , then x(t) ∈ Ωρi ,
∀t ∈ [tk, tk+1).

If instead x(tk) ∈ Ωρs,i
⊂ Ωρi

, then from Eq. 13, x(t) ∈
Ωρmin,i

⊂ Ωρi
for t ∈ [tk, tk+1). Therefore, if Eq. 5 is used

to compute the input trajectory at tk and x(tk) ∈ Ωρi
and

Eq. 5g is applied, x(t) ∈ Ωρi
for t ∈ [tk, tk+1) (regardless

of whether Eq. 5f is applied). Because Ωρi
⊆ Ωρ1

, this
indicates that when the LEMPC of Eq. 5 is used with
Eq. 5g activated to determine the control action at tk when
x(tk) ∈ Ωρi

, then x(t) ∈ Ωρ1
for t ∈ [tk, tk+1).

Finally, consider that x(tk) ∈ Ωρi
and hi(x(tk)) is used

to control the process of Eq. 1 from tk to tk+1 so that
Eq. 2b holds at tk. From similar steps as in Eq. 18 and if
x(tk) ∈ Ωρi

/Ωρs,i
and Eq. 11 holds, then we can use similar

steps as for Eq. 19 to derive that Vi(x(t)) ≤ Vi(x(tk)),



∀t ∈ [tk, tk+1), such that if x(tk) ∈ Ωρi
/Ωρs,i

, then
x(t) ∈ Ωρi

, ∀t ∈ [tk, tk+1). If x(tk) ∈ Ωρs,i
, then when

Eq. 13 holds, we obtain that x(t) ∈ Ωρmin,i
, t ∈ [tk, tk+1),

so that x(t) ∈ Ωρi
for t ∈ [tk, tk+1). Since Ωρi

⊆ Ωρ1
,

we obtain that if x(tk) ∈ Ωρi
and hi(x(tk)) is applied for

t ∈ [tk, tk+1), then x(t) ∈ Ωρ1
, ∀ t ∈ [tk, tk+1). The above

results indicate that the closed-loop state never leaves Ωρ1

in a sampling period if the conditions of Theorem 4 hold.

4. APPLICATION TO A CHEMICAL PROCESS
EXAMPLE

To demonstrate the application of a set of LMPC’s that
are randomly selected at every tk, we present a chemical
process example involving a continuous stirred tank reac-
tor (CSTR) in which the reaction A → B proceeds. The
model parameters (feed and outlet volumetric flow rates
F , feed temperature T0, liquid density ρL, heat capacity
Cp, liquid volume V , activation energy E, pre-exponential
constant k0, gas constant Rg, and enthalpy of reaction
∆H) are given in (Alanqar et al., 2015). The inputs are
the feed concentration CA0 and heat rate Q added to or
removed from the reactor, resulting in the model:

ĊA =
F

V
(CA0 − CA)− k0e

− E
RgT C2

A (20a)

Ṫ =
F

V
(T0 − T )− ∆Hk0

ρLCp
e
− E

RgT C2
A +

Q

ρLCpV
(20b)

where CA and T represent the concentration and tempera-
ture in the reactor. Deviation variable vectors for the states
and inputs are as follows: x = [x1 x2]

T = [CA − CAs T −
Ts]

T and u = [u1 u2]
T = [CA0 − CA0s Q − Qs]

T , where
CAs = 1.22 kmol

m3 , Ts = 438.2 K, CA0s = 4 kmol
m3 , and

Qs = 0 kJ
hr are the steady-state values of CA, T , CA0, and

Q at the operating steady-state. The control objective is
to maximize the following economics-based stage cost for
the process of Eq. 20 representing the production rate of
B while computing control actions which meet the input
constraints 0.5 ≤ CA0 ≤ 7.5 kmol

m3 and −5×105 ≤ Q ≤ 5×
105 kJ

hr and maintain closed-loop stability:

Le = k0e
− E

RgT C2
A (21)

We first develop the set of LMPC’s to be utilized to
control the process of Eq. 20 in a manner that prevents
a certain value of x(tk) from being as easily mapped to a
specific input as it would be if a single LMPC were utilized
throughout the time of operation. We begin by developing
seven (i.e., np = 7) potential combinations of Vi, hi, Ωρi ,
and Ωρe,i

. The form of each Vi is xTPix, where Pi is a
symmetric positive definite matrix of the following form:[

P11 P12

P12 P22

]
(22)

Sontag’s control law (Lin and Sontag, 1991) was used to
set the u2 component of every hi = [hi,1 hi,2]

T as follows:

hi,2(x) =

−
Lf̃Vi +

√
Lf̃V

2
i + Lg̃2V

4
i

Lg̃2Vi
, if Lg̃2Vi ̸= 0

0, if Lg̃2Vi = 0
(23)

where if hi,2 fell below or exceeded the upper or lower
bound on u2, hi,2 was saturated at the bound. In Eq. 23,

f̃ represents the vector containing the terms in Eq. 20
(after it has been rewritten in deviation variable form in
terms of x1 and x2) that do not contain any inputs, and g̃
represents the matrix that multiplies the vector of inputs
u1 and u2 in this equation. Lf̃Vi and Lg̃kVi represent the

Lie derivatives of Vi with respect to f̃ and g̃k, k = 1, 2. For
simplicity, hi,1 was taken to be 0 kmol/m3 for i = 1, . . . , 7.
Using the values of the entries of each Pi associated with
each Vi in Table 1 and the associated hi, i = 1, . . . , 7,
the stability regions in Table 1 were obtained. Subsets of
these regions were selected to be Ωρe,i

to allow a number
of different control laws to be developed. The value of ρe,i
was not more than 80% of ρi in each case.

Table 1. i− th controller parameters

i P11 P12 P22 ρi ρe,i
1 1200 5 0.1 180 144

2 2000 -20 1 180 144

3 1500 -20 10 180 144

4 0.2 0 2000 180 144

5 1200 5 0.1 180 100

6 1200 5 0.1 180 130

7 1200 5 0.1 180 30

The process was initialized from xinit = [−0.4 kmol/m3

20 K]T and was controlled under an LMPC with the form
of Eq. 4 at all sampling times. We also initialized it from
xinit but controlled it utilizing a randomized LMPC imple-
mentation strategy, where the implementation strategy in
Section 3.2 was followed with the exception that δ was set
to 0 at every sampling time, and only h1(x) was considered
as a candidate controller at a given sampling time as an
alternative to the controllers in Table 1. Therefore, at
every sampling time, both the LMPC of Eq. 5 with i = 1
and h1(x) were allowable control actions, and the i − th
controller in Table 1 was also allowable if x(tk) ∈ Ωρi .
The simulations were implemented in MATLAB R2016a
by MathWorks R⃝ using fmincon and the seed rng(5) and
random integer generation function randi when the ran-
domized LMPC implementation strategy was used. The
integration step for the model of Eq. 20 was set to 10−4 hr,
N = 10, and ∆ = 0.01 hr, with 1 hr of operation utilized.
The Lyapunov-based stability constraint activated when
x(tk) ∈ Ωρe,i

was enforced at the end of every sam-
pling period in the prediction horizon, and whenever the
Lyapunov-based stability constraint involving the time-
derivative of the Lyapunov function was enforced, the
other Lyapunov-based constraint was implemented at the
end of the sampling periods after the first.

Fig. 2 shows the state-space trajectories resulting from
controlling the process with one LMPC throughout the
time of operation, and Fig. 3 shows the results of con-
trolling the LMPC with one of the eight potential control
laws selected at every sampling time, but depending on the
position of the state measurement in state-space. Both the
single LMPC and the randomized LMPC implementation
strategy were able to maintain the closed-loop state within
Ωρ1 . The time-integral of Eq. 21 for the process of Eq. 20
was 32.2187 for the single LMPC and 27.7536 for the
randomized LMPC implementation strategy. It is possi-
ble to consider an alternative implementation strategy in
which the randomization only occurs at certain times (or
potentially at random times) to seek to deter attackers but
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Fig. 2. State-space trajectories under the single LMPC for
the CSTR of Eq. 20. The figure indicates that the
closed-loop trajectory settled on the boundary of Ωρe,1

to optimize Le while meeting the constraints.

without requiring that the process always be operating in
such a mode if it lowers profits. Despite the decrease in
profits due to the randomization, both the single LMPC
and the LMPC’s implemented with the randomized imple-
mentation strategy outperformed steady-state operation,
which had a value of the time-integral of Eq. 21 of 13.8847.

5. CONCLUSION

This work developed a randomized control implementation
strategy with the goal of discouraging cyberattacks in
which false state measurements are fed to an MPC. The
implications of using the randomized control implementa-
tion strategy during normal operation (i.e., in the absence
of a cyberattack) were studied. Future work will explore
more deeply the properties of the control strategy in the
presence of a cyberattack (e.g., design considerations for
the randomized controllers which make the strategy create
the most different potential input policies for the same
measurement through the different controllers, conditions
when the proposed strategy may be unfavorable, and alter-
native randomized control approaches for such situations).
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