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Economic Model Predictive Control Design
via Nonlinear Model Identification ⋆

Laura Giuliani ∗ Helen Durand ∗∗

∗ Department of Industrial and Information Engineering and
Economics, University of Study of L’Aquila, L’Aquila 67100, Italy.

∗∗ Department of Chemical Engineering and Materials Science, Wayne
State University, Detroit, MI 48202, USA (e-mail:

helen.durand@wayne.edu)

Abstract: Increasing pushes toward next-generation/smart manufacturing motivate the de-
velopment of economic model predictive control (EMPC) designs which can be practically
deployed. For EMPC, the constraints, objective function, and accuracy of the state predictions
would benefit from process models that describe the process physics. However, obtaining first-
principles models of chemical process systems can be time-consuming or challenging such that it
is preferable to develop physics-based process models automatically from process operating data.
In this work, we take initial steps in this direction by suggesting that because experiments that
are used to characterize first-principles models often target specific types of data, an EMPC may
be utilized to gather non-routine operating data that ideally provides insights on the process
physics and thereby allows physics-based process models to be developed on-line. These models
can then be used to update the model, objective function, and constraints of the controller.
Closed-loop stability and recursive feasibility considerations are discussed for the proposed
EMPC design, and the controller’s application is illustrated through a chemical process example.

Keywords: Economic model predictive control, nonlinear model identification, regression,
process control

1. INTRODUCTION

System identification (Ljung, 1999) has been an important
technique in the process industries for obtaining linear
process models for use in tracking model predictive control
(MPC) (Qin and Badgwell, 2003). The development of
EMPC (Ellis et al., 2014; Rawlings et al., 2012; Müller
and Allgöwer, 2017), in which the objective function of the
MPC can be non-quadratic and economics-based, raises
questions on the continued effectiveness of traditional
empirical models in EMPC such as: 1) how to prevent
the profit from being potentially highly restricted by the
accuracy of linear empirical models in possibly only a
relatively small neighborhood of the steady-state (Alanqar
et al., 2015b); 2) how to develop a profit-based objective
function for a process for which the dynamics are not
understood (i.e., the freedom introduced into MPC by not
requiring a pre-specified quadratic objective function form
may also necessitate a greater understanding of the process
physics so that an appropriate objective function form
can be selected); and 3) how to ensure that appropriate
constraints can be developed on physical quantities, given
that an EMPC does not necessarily confine the closed-loop
state to a neighborhood of the origin and therefore state
constraints can be critical from a safety standpoint.

Motivated by the above considerations, we seek to develop
a methodology for on-line EMPC development that focuses

⋆ Financial support from Wayne State University is gratefully ac-
knowledged.

on obtaining a more physically-meaningful model than
can be provided with traditional system identification
techniques for use in developing the required objective
function, constraints, and model of the EMPC from on-line
operating data. Specifically, an EMPC design is developed
with terms in the objective function and constraints that
can be turned on or off for short periods of time to facilitate
the collection of non-routine (and ideally, very specific and
targeted) operating data which can be used for better
understanding the underlying physics of the process to aid
in the development of appropriate process models with
which to update the EMPC design. The flexibility of the
proposed approach derived from the generality of EMPC
(e.g., the ability to utilize any objective function and
constraints and to enforce time-varying operating policies
that maintain closed-loop stability) is intended to be
utilized to develop input policies for model identification
that are distinct from policies which seek to excite the
process dynamics on-line to identify the parameters of
an assumed model or aid in state estimation with an
assumed model (Heirung et al., 2015; Marafioti et al., 2014;
Houska et al., 2017; Larsson et al., 2013). Specifically, the
proposed strategy ideally can be utilized to seek to force
the data generated under the input policies to have certain
structures (e.g., by forcing the data to be obtained from
a case where one variable is at an approximately fixed
value while another is varied) that may be conducive to
better understanding relationships between variables and
measured quantities in the process model and for therefore



proposing and verifying mathematical forms for the terms
in the model that are consistent with the resulting data.

2. PRELIMINARIES

2.1 Notation

The Euclidean norm of a vector is denoted by | · |. The
function α(·) : [0, a) → [0,∞) belongs to class K if it
is strictly increasing and α(0) = 0. We define Ωρ :=
{x ∈ Rn : V (x) ≤ ρ} where V is a sufficiently smooth,
positive definite function and the symbol S(∆) denotes
the family of piecewise constant functions with period ∆.
Set subtraction is signified by / (i.e., x ∈ A/B := {x ∈
A : x ̸∈ B}). The notation diag(x) with x ∈ Rn represents
an n × n matrix with the entries of the vector x on its
diagonal. The transpose of the vector x is denoted by xT .

2.2 Class of Systems

The class of nonlinear systems considered is:

ẋ(t) = f(x(t), u(t), w(t)) (1)

where f is a nonlinear locally Lipschitz vector function
of the state vector of the system x ∈ X ⊂ Rn, the
manipulated input vector u ∈ Rm and the disturbance
vector w ∈ Rl, where X represents the state constraint set.
The inputs are constrained in U := {u ∈ Rm : ui

min ≤
ui ≤ ui

max, i = 1, ...,m}, while w ∈ W := {w ∈ Rl :
|w(t)| ≤ Θ,Θ > 0}, W ⊂ Rl. We will refer to Eq. 1 as the
nominal system when w(t) ≡ 0. We consider f(0, 0, 0) = 0.
The state is measured at each sampling time tk = k∆
where k = 0, 1, . . . , and ∆ is the sampling period. We
consider stabilizable nonlinear systems (i.e., there exists
an explicit stabilizing Lyapunov-based controller h(x) that
is locally Lipschitz and renders the origin asymptotically
stable in the sense that there exists a sufficiently smooth
Lyapunov function V : Rn → R+ such that:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2a)

∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|) (2b)

h(x) ∈ U (2c)

for all x ∈ D ⊂ Rn, where D is an open neighborhood
of the origin and the αi(·), i = 1, 2, 3, 4, are functions of
class K). We define Ωρ ⊂ D to be the stability region of
the nominal closed-loop system under the controller h(x)
and require that it be chosen such that x ∈ X, ∀x ∈ Ωρ.
The following inequality holds:∣∣∣∣∂V (x1)

∂x
f(x1, u, w)−

∂V (x2)

∂x
f(x2, u, 0)

∣∣∣∣
≤ L′

x|x1 − x2|+ L′
w|w|

(3)

∀x1, x2 ∈ Ωρ, u ∈ U and w ∈ W , where L′
x > 0 and

L′
w > 0. Moreover, there exists M > 0 such that:

|f(x, u, w)| ≤ M (4)

∀x ∈ Ωρ, u ∈ U , and w ∈ W for bounded M .

We assume that only an empirical model is available:
˙̂x(t) = fNL(x̂(t), u(t)) (5)

where fNL is assumed to be a locally Lipschitz nonlinear
vector function with fNL(0, 0) = 0. We consider empirical
models for which the origin can be rendered asymptotically

stable by a locally Lipschitz explicit stabilizing controller
hNL(x) in the sense that:

α̂1(|x|) ≤ V̂ (x) ≤ α̂2(|x|) (6a)

∂V̂ (x)

∂x
fNL(x, hNL(x)) ≤ −α̂3(|x|) (6b)∣∣∣∣∂V̂ (x)

∂x

∣∣∣∣≤ α̂4(|x|) (6c)

hNL(x) ∈ U (6d)

for all x ∈ DNL, where V̂ : Rn → R+ is a sufficiently
smooth Lyapunov function and α̂i, i = 1, 2, 3, 4, are class
K functions. We define Ωρ̂ ⊂ DNL as the stability region
of the system of Eq. 5 and require that x ∈ X, ∀x ∈ Ωρ̂.
There exist ML > 0 and LL > 0 such that:

|fNL(x, u)| ≤ ML (7a)∣∣∣∣∂V̂ (x1)

∂x
fNL(x1, u)−

∂V̂ (x2)

∂x
fNL(x2, u)

∣∣∣∣
≤ LL|x1 − x2| (7b)

∀x, x1, x2 ∈ Ωρ̂ and u ∈ U . Furthermore:

|f(x1, u, w)− f(x2, u, 0)| ≤ L̄x|x1 − x2|+ L̄w|w| (8a)∣∣∣∣∂V̂ (x1)

∂x
f(x1, u, w)−

∂V̂ (x2)

∂x
f(x2, u, 0)

∣∣∣∣
≤ L̄′

x|x1 − x2|+ L̄′
w|w| (8b)

∀x1, x2 ∈ Ωρ̂, u ∈ U , and w ∈ W , and L̄x, L̄w, L̄
′
x, and

L̄′
w as positive constants.

3. DATA-GATHERING LYAPUNOV-BASED EMPC
FORMULATION

In this section, we present the concept that an EMPC
may be able to operate the process of Eq. 1 in a non-
routine fashion for short periods of time to seek to obtain
data for developing and validating physics-based empirical
models. It seeks to do this through the addition of terms
in the objective function or activation conditions for the
constraints that can be turned on for short periods of time.
An example of such a data-gathering EMPC is:

min
u(t)∈S(∆)

∫ tk+N

tk

[Le(x̂(τ), u(τ)) + δ1

nk∑
j=1

αwj(uj(τ)− ud,j)
2

+ δ2

ns∑
i=1

αyi(x̂i(τ)− xd,i)
2]dτ (9a)

s.t. ˙̂x = fNL(x̂(t), u(t)) (9b)

x̂(tk) = x(tk) (9c)

x̂(t) ∈ X, ∀ t ∈ [tk, tk+N ) (9d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (9e)

V̂ (x̂(t)) ≤ ρ̂e, ∀ t ∈ [tk, tk+N ) if x(tk) ∈ Ωρ̂e

(9f)

∂V̂ (x(tk))

∂x
(fNL(x(tk), u(tk)))

≤ ∂V̂ (x(tk))

∂x
(fNL(x(tk), hNL(x(tk)))),

if x(tk) /∈ Ωρ̂e or δ3 = 1 (9g)

where u(t) ∈ S(∆) signifies that the optimization variable
of Eq. 9 is a piecewise-constant vector function with period



∆. This formulation is a form of Lyapunov-based EMPC
(LEMPC) (Heidarinejad et al., 2012) using an empirical
process model (Alanqar et al., 2015b,a). Le (Eq. 9a) is a
measure of the process economics to be minimized during
routine operation (i.e., when δ1 = δ2 = δ3 = 0). The
empirical model of Eq. 9b with the initial condition in
Eq. 9c obtained from a measurement of the process state
at tk is used in evaluating whether the inputs computed by
the LEMPC will optimize the objective function of Eq. 9
and whether they will cause the state constraints in Eq. 9d
to be met. The input trajectories returned by the LEMPC
must furthermore meet the input constraint in Eq. 9e.

δ1, δ2, and δ3, are parameters in Eq. 9 that take a value of
either zero or one, which allows them to be used to either
enforce routine operation (when they all take values of
zero) or non-routine operation (when one or more of them
takes a value of 1 at a given sampling time). They do not
depend on the process state or inputs, and therefore can be
turned on (set to 1) for arbitrarily long or short periods of
time to facilitate a type of on-line experimentation focused
on gathering data that aids in better understanding the
physics of a process or validating an empirical model with
specific data expected to verify whether certain terms of
the model have been correctly developed. For example,
when δ1 = 1, the first nk input vector components uj

may be driven toward desired values ud,j if the penalty
term αwj is appropriately selected since setting δ1 to 1
activates the soft constraint on uj , j = 1, . . . , nk, in the
objective function of Eq. 9. Similarly, when δ2 = 1, a
soft constraint is imposed on the difference between the
predictions x̂i of the first ns components of the state vector
and their desired values xd,i, weighted in the objective
function with penalty αyi. The constraint of Eq. 9f requires
the LEMPC to maintain the predictions of the closed-
loop state obtained from the empirical model of Eq. 9b
in the level set Ωρ̂e

⊂ Ωρ̂ of V̂ . The constraint of Eq. 9g

drives the closed-loop state to level sets of V̂ with a lower
upper bound. Though the constraints of Eqs. 9f-9g are
activated under routine operation by the location of x(tk)
in state-space, when δ3 = 1, Eq. 9g is activated repeatedly
regardless of whether x(tk) ∈ Ωρ̂e or not. If δ3 = 1 for
a sufficient number of subsequent sampling periods, the
closed-loop state is driven to a neighborhood of the origin
under sufficient conditions such as a sufficiently small ∆
and Θ. After the LEMPC of Eq. 9 is used to obtain
non-routine process data that may help with developing
and validating more physically-based process models, then
fNL, ρ̂, ρ̂e, V̂ , and hNL in Eq. 9 can be updated.

4. DATA-GATHERING LEMPC STABILITY
ANALYSIS

In this section, we prove recursive feasibility and closed-
loop stability of the process of Eq. 1 under the LEMPC of
Eq. 9. We begin with three propositions and then introduce
the main results that use them in a theorem.

Proposition 1. (Alanqar et al., 2015a) Consider the sys-
tems

ẋa = f(xa(t), u(t), w(t)) (10a)

ẋb = fNL(xb(t), u(t)) (10b)

with initial states xa(t0) = xb(t0) ∈ Ωρ̂ with t0 = 0, u ∈ U ,
and w ∈ W . If xa(t), xb(t) ∈ Ωρ̂ for t ∈ [0, T ] then there

exists a function fW (·) such that:

|xa(t)− xb(t)| ≤ fW (t) (11)

with:

fW (t) :=
L̄wΘ+Merr

L̄x
(eL̄xt − 1) (12)

where Merr is defined by:

|f(x, u, 0)− fNL(x, u)| ≤ Merr (13)

∀x ∈ Ωρ̂ and u ∈ U .

Proposition 2. (Mhaskar et al., 2013) Consider the Lya-

punov function V̂ (·) of the nominal system of Eq. 5 under
the controller hNL(x) that meets Eq. 6. There exists a
quadratic function fV (·) such that:

V̂ (x) ≤ V̂ (x̄) + fV (|x− x̄|) (14)

for all x, x̄ ∈ Ωρ̂ with

fV (s) = α̂4(α̂
−1
1 (ρ̂))s+Mvs

2 (15)

where Mv is a positive constant.

Proposition 3. (Muñoz de la Peña and Christofides, 2008)
Consider the closed-loop system of Eq. 5 under hNL(x̂)
that satisfies the inequalities of Eq. 6 in sample-and-hold.
Let ∆ > 0, ϵ̂W > 0, and ρ̂ > ρ̂e > ρ̂min > ρ̂s > 0 satisfy:

−α̂3(α̂
−1
2 (ρ̂s)) + LLML∆ ≤ −ϵ̂W /∆ (16)

and

ρ̂min := max{V̂ (x̂(t+∆)) : V̂ (x̂(t)) ≤ ρ̂s}. (17)

If x̂(0) ∈ Ωρ̂, then:

V̂ (x̂(tk+1))− V̂ (x̂(tk)) ≤ −ϵ̂W (18)

for x̂(tk) ∈ Ωρ̂/Ωρ̂s
and the state trajectory x̂(t) of the

closed-loop system is always bounded in Ωρ̂ for t ≥ 0 and
is ultimately bounded in Ωρ̂min

.

Theorem 4. Consider the closed-loop system of Eq. 1
under the LEMPC of Eq. 9 based on the controller hNL(x)
that satisfies the inequalities in Eq. 6. Let ϵW > 0, ∆ > 0,
N ≥ 1, and ρ̂ > ρ̂e > ρ̂min > ρ̂s > 0 satisfy:

− α̂3(α̂
−1
2 (ρ̂e)) + α̂4(α̂

−1
1 (ρ̂))Merr + L̄′

xM∆

+ L̄′
wΘ ≤ −ϵW /∆

(19)

ρ̂e ≤ ρ̂− fV (fW (∆)) (20)

If x(0) ∈ Ωρ̂, and Proposition 3 is satisfied, then the state
trajectory x(t) of the closed-loop system is always bounded
in Ωρ̂ for t ≥ 0.

Proof. From Proposition 3 and Eq. 6d, Eqs. 9d, 9e, and
9f are met under hNL in sample-and-hold because that
control law maintains the closed-loop state in Ωρ̂e

when
x(tk) ∈ Ωρ̂e

for ρ̂e > ρ̂min and then it maintains the
closed-loop state in Ωρ̂min

. Eq. 9g is trivially satisfied by
hNL(x̂(tk)). Feasibility of each constraint of Eq. 9 is thus
established at every sampling time for any δi, i = 1, 2, 3.
Therefore, we now prove that if x(t0) ∈ Ωρ̂, x(t) ∈ Ωρ̂,
∀t ≥ 0. If x(tk) ∈ Ωρ̂/Ωρ̂e

, then from Eqs. 9g and 6b:

∂V̂ (x(tk))

∂x
(fNL(x(tk), u(tk)))

≤ ∂V̂ (x(tk))

∂x
(fNL(x(tk), hNL(x(tk)))) ≤ −α̂3(|x(tk)|)

(21)

A bound on ∂V̂ (x(tk))
∂x (f(x(tk), hNL(x(tk)), 0))

can also be developed by adding and subtracting
∂V̂ (x(tk))

∂x (fNL(x(tk), hNL(x(tk)))) from it giving:



∂V̂ (x(tk))

∂x
(f(x(tk), hNL(x(tk)), 0))

≤ −α̂3(|x(tk)|) + α̂4(|x(tk)|)Merr

(22)

for any x(tk) ∈ Ωρ̂, which follows from Eqs. 13 and 6c.
∂V̂ (x(τ))

∂x (f(x(τ), hNL(x(tk)), w(τ))) for τ ∈ [tk, tk+1) is:

∂V̂ (x(τ))

∂x
(f(x(τ), hNL(x(tk)), w(τ))) (23a)

≤ L̄′
xM∆+ L̄′

wΘ− α̂3(α̂
−1
2 (ρ̂e)) + α̂4(α̂

−1
1 (ρ̂))Merr

(23b)

for τ ∈ [tk, tk+1), which follows from Eqs. 22, 8b, and 6,
the bound on w, Eq. 4, and the continuity of x. Following
similar steps as in Eq. 22 but adding and subtracting
∂V̂ (x(tk))

∂x (fNL(x(tk), u(tk))) and using Eq. 21, we obtain:

∂V̂ (x(tk))

∂x
(f(x(tk), u(tk), 0))

≤ −α̂3(|x(tk)|) + α̂4(|x(tk)|)Merr

(24)

Eq. 24 can be used in the following with similar steps as
were taken to arrive at Eq. 23b:

∂V̂ (x(τ))

∂x
(f(x(τ), u(tk), w(τ)))

≤ −α̂3(α̂
−1
2 (ρ̂e)) + α̂4(α̂

−1
1 (ρ̂))Merr + L̄′

xM∆+ L̄′
wΘ
(25)

for τ ∈ [tk, tk+1). From Eqs. 25 and 19:

V̂ (x(tk+1))− V̂ (x(tk)) ≤ −ϵW

V̂ (x(τ)) ≤ V̂ (x(tk)), ∀τ ∈ [tk, tk+1]
(26)

when x(tk) ∈ Ωρ̂/Ωρ̂e , and the Lyapunov function value
will decrease over a sampling period, and x(t) ∈ Ωρ̂,
∀t ∈ [tk, tk+1]. This indicates that if the constraint of
Eq. 9g is applied for consecutive sampling periods, then
in a finite number of sampling periods, x(t) will re-enter
the region Ωρ̂e . When x(tk) ∈ Ωρ̂e , the following holds from
Propositions 1-2 and Eq. 9f if x(t) ∈ Ωρ̂ for t ∈ [tk, tk+1):

V̂ (x(t)) ≤ ρ̂e + fV (fW (∆)) (27)

for t ∈ [tk, tk+1). If Eq. 20 holds, V̂ (x(t)) ≤ ρ̂ for
t ∈ [tk, tk+1) and therefore when x(tk) ∈ Ωρ̂e , x(t) ∈ Ωρ̂

for t ∈ [tk, tk+1) as assumed. Because x(t) ∈ Ωρ̂ for
t ∈ [tk, tk+1) if x(tk) ∈ Ωρ̂/Ωρ̂e or x(tk) ∈ Ωρ̂e , x(t) ∈ Ωρ̂

for all t ≥ 0 if x(t0) ∈ Ωρ̂. This proof was independent of
the value of δi, i = 1, 2, 3. This completes the proof.

Remark 5. An important goal of the assumptions in Sec-
tion 2.2 and of the results of the proof above is that
they allow characterization of conditions under which the
proposed EMPC can maintain closed-loop stability of a
nonlinear process. This is important for understanding re-
lationships among tuning parameters of the control design
(e.g., various parameters in Eq. 19 such as ∆ must be
sufficiently small to guarantee closed-loop stability). This
provides intuition on which parameters to adjust and how
to adjust them when designing a controller of the proposed
type even if all equations used in developing the theory
(e.g., h(x) and α̂i, i = 1, . . . , 3) are not known.

5. APPLICATION TO A CHEMICAL PROCESS
EXAMPLE

To demonstrate the use of an EMPC with data-gathering
functionality, we consider an illustrative continuous stirred

tank reactor (CSTR) example where the reaction A → B
occurs. The feed to the reactor (with volumetric flow rate
F ) contains A in an inert solvent at concentration CA0 and
temperature T0. A jacket is used to heat/cool the reactor
at rate Q. The liquid density (ρL), heat capacity Cp and
liquid volume V are constants with the values in (Alanqar
et al., 2015b). The process dynamics are given as follows:

dCA

dt
=

F

V
(CA0 − CA)− k0e

− E
RgT C2

A (28a)

dT

dt
=

F

V
(T0 − T )− ∆Hk0

ρLCp
e
− E

RgT C2
A +

Q

ρLCpV
(28b)

where CA is the concentration of A and T is the temper-
ature of the reactor. The reaction inside the CSTR has
pre-exponential factor k0, enthalpy of reaction ∆H, and
activation energy E. Rg is the ideal gas constant. The ma-
nipulated inputs CA0 and Q are constrained: 0.5 ≤ CA0 ≤
7.5 kmol

m3 and −5 × 105 ≤ Q ≤ 5 × 105 kJ
hr . The process is

operated around the steady-state CAs = 1.22 kmol
m3 , Ts =

438.2 K, CA0s = 4 kmol
m3 , and Qs = 0 kJ

hr . We define the

following deviation variable vectors: x = [x1 x2]
T = [CA−

CAs T − Ts]
T and u = [u1 u2]

T = [CA0 − CA0s Q−Qs]
T .

The control objective is to operate the system of Eq. 28 in a
manner that maximizes the production rate of the desired
product, respects the input constraints, and maintains
closed-loop stability. However, we assume that the reaction
rate law in Eq. 28 is unknown; therefore, it is not possible
to design an LEMPC that maximizes the production rate
because the equation for the production rate is not known.
We assume that we know that the process model has the
form in Eq. 28, but we do not know the form of the
reaction rate expression and therefore do not have the first-
principles model available. Instead, the following linear
empirical model from (Alanqar et al., 2015b) is available:

˙̂x1 = −34.5x̂1 − 0.473x̂2 + 5.24u1 − 8.09× 10−6u2 (29a)

˙̂x2 = 1430x̂1 + 18.1x̂2 − 11.6u1 + 4.57× 10−3u2 (29b)

This model is used to design constraints for an LEMPC
with V̂ = xTPx (alternative Lyapunov functions
could also be explored in the proposed context), where
P = [1060 22; 22 0.52]. The Lyapunov-based controller
from (Alanqar et al., 2015b) is used, which sets hNL(x) =
[hNL,1(x) hNL,2(x)]

T = [0 hNL,2(x)]
T , where hNL,2(x)

is determined from Sontag’s control law (Sontag, 1989)
applied to the system of Eq. 29 and ρ̂ = 64.3 and ρ̂e = 55.

Due to the unavailability of a production rate model for
designing Le, we initially utilize a quadratic stage cost:

Le = x̂TQx̂+ uTRu (30)

where Q = diag(104, 100) and R = diag(104, 10−6). The
constraint of Eq. 9f is imposed at the end of each sampling
period. When Eq. 9g is activated at tk, we impose Eq. 9f
at the end of sampling periods 2 to N .

We would like to modify the objective function of Eq. 30
for short periods of time to seek to obtain non-routine op-
erating data that may aid in obtaining a more physically-
based process model. To do this, we introduce the concept
of an operating period with length tp = 1 hr for use in
characterizing the time periods over which the objective
function modifications are used, and operate the process
under LEMPC but with the stage cost of Eq. 30 replaced
for certain time periods with the following stage costs:



Le = x̂TQx̂+ uTRu+ 104(10000(x̂1 − x1,fix)
2

− 10000(u1 − u∗
1(tk−1))

2 + (u2 − u∗
2(tk−1))

2) (31a)

Le = x̂TQx̂+ uTRu+ 104(1010(x̂1 − x1,fix)
2

− 10000(u1 − u∗
1(tk−1))

2 + 10−6(u2 − u∗
2(tk−1))

2)
(31b)

Le = 104(100(x̂2 − x2,fix)
2) (31c)

Le = 104(100(x̂2 − x2,fix)
2 + cT (x̂1 − x1,fix)

2) (31d)

where cT is a constant. The stage cost of Eq. 31a was
used at the 20th, 21st, and 22nd sampling periods in
the operating period between t = 15 hr and t = 16 hr
with x1,fix = 0.2 (u∗

1(tk−1) and u∗
2(tk−1) represent the

values of u1 and u2 implemented at the prior sampling
time), and at the 50th, 51st, and 52nd sampling periods
in the operating period with x1,fix = 0.4. At the 60th,
61st, and 62nd sampling periods in the operating period
between t = 15 hr and t = 16 hr, Eq. 31b was used
with x1,fix = 0. At the 90th, 91st, and 92nd sampling
periods in the operating period between t = 15 hr and
t = 16 hr, Eq. 31a with x1,fix = 0.2 was used. For the
18th operating period, Eq. 31c was used with x2,fix =
2.203. In the 19th, 20th, 21st, 22nd, 23rd, 24th, and 25th
operating periods, Eq. 31d was used with x2,fix = 2.203
and x1,fix varying so that in the seven operating periods,
it was set to 0.15, 0.14, 0.13, 0.12, 0.11, 0.12, and 0.12,
respectively. For the 27th, 28th, 29th, 30th, 31st, 32nd,
33rd, and 34th operating periods, Eq. 31d was used with
x2,fix = 2.203, 4, 5, 2, 1, 0, −1, and −2, respectively, and
x1,fix = 0.12. cT was set to 1000 in Eq. 31d in the 19th-
25th and 27th operating periods, and to 10000 in the 28th-
34th operating periods. In the simulations, N = 10 and
∆ = 0.01 hr. The empirical model of Eq. 29 was integrated
within the EMPC with an integration step of 10−4 hr,
and the first-principles model of Eqs. 28a-28b representing
the process was numerically integrated with the same
integration step. The input hNL was not saturated at its
bounds in the LEMPC or set to zero at the steady-state.
The simulations were performed utilizing the interior point
solver of the MATLAB function fmincon in MATLAB
R2016a by MathWorks R⃝. Exit flags indicating that a local
minimum was found or that it was possible were accepted.
The simulations were initialized from x1 = −0.4 kmol

m3 and
x2 = 20 K.

The series of stage costs in Eq. 31 allowed T to be
approximately constant while CA varied from the 19th
to the 25th operating periods, and allowed CA to be
approximately constant while T was varied from the 27th
to 34th operating periods. This means that if the reaction
rate at various times in these operating periods can be
obtained, the acquired data is in a form suitable for
examining how the temperature and concentration affect
the reaction rate individually (and thus for proposing a
form of the reaction rate law; for this example, this type
of structure to the data was determined to be desirable
for identifying the mathematical form of the rate law and
therefore was targeted using Eqs. 31a-31d). To obtain the
reaction rate at various times in the operating periods, we
utilized the state and input measurements assumed to be
available every 10−4 hr, and a backward finite difference
approximation of ĊA and Ṫ with the measured values of
CA and T , to determine the reaction rates at various times

from a linear regression on the obtained data in the spirit
of the work in (Brunton et al., 2016) by setting up the
following matrices:

ln(−(ĊA(t̃1)−
F

V
(CA0(t̃1)− CA(t̃1))))

ln(Ṫ (t̃1)−
F

V
(T0 − T (t̃1))−

Q(t̃1)

ρLcpV
)

...

ln(−(ĊA(t̃q)−
F

V
(CA0(t̃q)− CA(t̃q))))

ln(Ṫ (t̃q)−
F

V
(T0 − T (t̃q))−

Q(t̃q)

ρLcpV
)



=


0 1 0 · · · 0
1 1 0 · · · 0

...
0 0 0 · · · 1
1 0 0 · · · 1




c1
c2
c3
...

cq+1



(32)

where the t̃i, i = 1, . . . , q, represent the times correspond-
ing to the measurements of CA, T , Q, and CA0 which are
utilized in Eq. 32 (t̃1 represents the first time utilized). c1
corresponds to ln(−∆H

ρLCp
), and c2, . . . , cq+1 correspond to

the logarithms of the reaction rates associated with each
time t̃i, i = 1, . . . , q (where these reaction rates will be
denoted by r1(t̃i)). q was set to 400 in Eq. 32. Fifty values
of the states, inputs, and derivatives of the states were
utilized from approximately halfway through each of the 8
operating periods between the 18th and 25th for obtaining
the CA dependence of r1, and fifty values of the states,
inputs, and derivatives of the states were utilized from
approximately halfway through each of the 8 operating
periods between the 27th and 34th for obtaining the T
dependence of r1. Scatter plots of the variations of the
regressed values of the reaction rates with temperature and
concentration gave a relatively linear relationship between
ln(r1) against ln(CA) when T was fixed and a relatively
linear plot of ln(r1) versus 1/T when CA was fixed, leading
to the postulate that a reasonable form of the rate law
would be k0e

−E/(RgT )Cd
A, with d a parameter to be fit.

With the postulated rate law form, a regression similar to
that in Eq. 32 can be performed but with the matrix and
vector on the right-hand side as follows:

1
1

T (t̃1)
ln(CA(t̃1)) 0

1
1

T (t̃1)
ln(CA(t̃1)) 1

...

1
1

T (t̃q)
ln(CA(t̃q)) 0

1
1

T (t̃q)
ln(CA(t̃q)) 1



c1c2c3
c4

 (33)

c1, c2, c3, and c4 correspond to ln(k0),
−E
Rg

, d, and

ln(−∆H
ρLCp

), respectively. Data from the first 9501 integration

steps was utilized for the regression (i.e., q = 9500

since ĊA and Ṫ are not considered at t0). The results

(k0 = 8977447.8 m3

hr kmol , ∆H = −11498.19 kJ
kmol , E =

50223.73 kJ
kmol , and d = 2.01) are close to the actual values.
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Fig. 1. Profiles for x1 (top plot) and x2 (bottom plot) from
the process and predicted by the empirical model of
Eq. 33 in the 35th operating period (the empirical
model results almost overlay the process data).

To validate this model, we utilized the data generated
until this point as well as additional data generated by
the controller by augmenting the stage cost of Eq. 30 with
the following terms in the 35th operating period:

108(x̂1−x1,fix)
2−102(u1−u∗

1(tk−1))
2−10−8(u2−u∗

2(tk−1))
2

(34)
where x1,fix = 0.2 for the 10th, 11th, and 12th sampling
times of the 35th operating period, x1,fix = 0.4 for the
20th, 21st, and 22nd sampling times, x1,fix = 0 for the
30th, 31st, and 32nd sampling times, x1,fix = 0.1 for the
40th, 41st, and 42nd sampling times, x1,fix = −0.1 for the
50th, 51st, and 52nd sampling times, x1,fix = −0.2 for the
60th, 61st, and 62nd sampling times, x1,fix = 0 for the
70th, 71st, and 72nd sampling times, x1,fix = 0.2 for the
80th, 81st, and 82nd sampling times, and x1,fix = −0.1
for the 90th, 91st, and 92nd sampling times. Fig. 1 shows
the relatively good agreement between the measured data
and the results generated by the identified empirical model
of Eq. 33 initiated from xinit with the same inputs as
were applied to the system of Eq. 28 throughout the 35
operating periods, with a close-up of the results from the
last operating period to indicate the agreement with the
variations in the stage cost according to Eq. 34. This
indicates the potential of an LEMPC with the ability to
operate a process in a non-routine fashion for some period
of time to aid in obtaining data that is expected to allow
properties of the underlying physics to be ascertained or to
allow models to be verified using data different from that
used in building the model, before updating an LEMPC
to reflect the new model. The identified model for the
example includes a term for the production rate of the
desired product (k0e

−E/(RgT )Cd
A) which can be used to

redesign the EMPC with a profit-based objective function.

6. CONCLUSION

A data-gathering EMPC design has been developed that
activates hard and soft constraints for short periods of time
to seek to obtain data from an on-line process that may
be helpful in developing a physically-meaningful empirical
model. Future work must explore methods for obtaining
aspects of the proposed control law (e.g., V̂ ) on-line, for

determining how to reliably design objective functions or
constraints that are conducive to obtaining desired data,
and for determining on-line what type of data is desirable.
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