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ON OPTIMAL ERGODIC CONTROL OF
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European Organization for Nuclear Research

CERN, CH - 1211
Geneva 23, Switzerland

(e-mail: maurice.robin@cern.ch)

Abstract

Our purpose is to study an optimal ergodic control problem where the state of the
system is given by a diffusion process with jumps in the whole space. The correspond-
ing dynamic programming (or Hamilton-Jacobi-Bellman) equation is a quasi-linear
integro-differential equation of second order. A key result is to prove the existence
and uniqueness of an invariant density function for a jump diffusion, whose lower
order coefficients are only locally bounded and Borel measurable. Based on this in-
variant probability, existence and uniqueness (up to an additive constant) of solutions
to the ergodic HJB equation is established. Key words and phrases: Jump diffu-
sion, interior Dirichlet problem, exterior Dirichlet problem, ergodic optimal control,
Green function, Girsanov transformation.

1991 AMS Subject Classification. Primary: 35J25, 60J60, 60J75. Secondary:
45K05, 46N20, 49A60, 93D05, 93E20.

Introduction

We are interested in controlling a diffusion process with jumps in the whole space. The
controller can access only the drift term of the state equation, so that the state of the
system is defined via the Girsanov transformation. The programming equation is an ergodic
quasi-linear integro-differential equation. Solving this equation an optimal feedback can
be obtained.

∗Stochastic Analysis, Control, Optimization and Applications (A Volume in Honor of W.H. Fleming),
Eds.: W.M. McEneaney, G. Yin, and Q. Zhang, Birkhauser, Boston, 1999, Chapter 26, pp. 439-456.
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Most of the ergodic properties of diffusion processes and their relation with partial
differential equations are well know in the classic literature. However, similar questions for
diffusion processes with jumps are not so popular, only recently some attention was given,
cf. [18], Garroni and Menaldi [8] and reference therein.

Due to applications in stochastic control (in particular the action of a feedback func-
tion), we have to be able to treat diffusions with jumps with only locally bounded and
Borel measurable lower order coefficients (where the control is applied). Moreover, since
we are interested in the whole space, an assumption related to the existence of a Liapunov’s
function is needed. We assume the drift is of linear growth at infinity, but the existence and
regularity of the Green function or transition density function (even in the purely partial
differential equations case) as proved in Garroni and Menaldi [8] does not applied.

To show the existence of an invariant measure, many arguments are based on the so-
called Doeblin’s condition, which in turn is based on the strict positivity of the Green
functions deduced from the strong maximum principle. The technique, to solve an elliptic
second (order linear) equation (without zero order term) in the whole space, is based on the
construction of an ergodic operator. For instance, we refer to the books of Bensoussan [1]
and Khasminskii [12]. Related discussions can be found in the books of Borkar [4] and
Ethier and Kurtz [6].

Now we are going to describe, without all the technical assumptions, the ergodic prob-
lem we will consider. Let v(x) be a Borel measurable function from IRd into a compact
metric space V (i.e., a measurable feedback). The dynamic of the system (for a given feed-
back) follows a diffusion with jumps in IRd, i.e. a (strong) Markov process (Ω, P,Xt, t ≥ 0)
with semigroup (Φv(t), t ≥ 0) and infinitesimal generator Av, as discussed in the next
section. A long run average cost is associated to the controlled system by

J(v) = lim inf
T→∞

1

T

∫ T

0

Φv(t)fdt,

where f = f(x, v(x)) is the running cost of the system under the feedback v. Our purpose
is to give a characterization of the optimal cost

λ = inf{J(v) : v(·)}

and to construct an optimal feedback control v̂. Notice that the dynamic equation is given
later by (4.1) and that we expect λ to be a constant.

A formal application of the dynamic programming principle (as described in Fleming
and Soner [7]) yields the following Hamilton-Jacobi-Bellman equation

inf
v
{Avu(x)} = λ in IRd,

where the infimum is calculated for each fixed x, and v in V . An optimal feedback control
is obtained as the minimizer v̂(x) in the HJB equation.

In order to study this Hamilton-Jacobi-Bellman equation we need some previous discus-
sion. In Section 1, we give some details on the construction of the diffusion with jumps in
the whole space IRd, under convenient assumptions. Next we recall some results (cf. [19])
related to the invariant probability measure µv, for any measurable feedback v. Finally,
we consider the above HJB equation under appropriate assumptions

2



1. Ergodic Control Problem

Before setting the optimal ergodic control problem, we need to recall some facts about
diffusions with jumps in the whole space. To that effect, we consider an integro-differential
operator of the form

I0ϕ(x) =

∫
IRd
∗

[ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)]M0(x, dz), (1.1)

where ∇ is the gradient operator in x, the Levy kernel M0(x, dz) is a Radon measure on
IRd
∗ = IRd \ {0} for any fixed x, and satisfies∫

|z|<1

|z|2M0(x, dz) +

∫
|z|≥1
|z|M0(x, dz) <∞, ∀x ∈ IRd. (1.2)

It is clear that this operator is associated with a jump process in IRd, e.g., Gikhman and
Skorokhod [9].

Similarly, let L0 be a second order uniformly elliptic operator associated with a diffusion
process in the whole space, i.e.

L0 =
d∑

i,j=1

aij(x)∂ij +
d∑
i=1

bi(x)∂i, (1.3)

where the coefficients (aij) are bounded and Lipschitz continuous, i.e. for some c0,M > 0 c0|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ c−10 |ξ|2 ∀x, ξ ∈ IRd,

|aij(x)− aij(x′)| ≤M |x− x′|, ∀x, x′ ∈ IRd,

(1.4)

aij = aji, and the first order coefficients (bi) are Lipschitz continuous, i.e. for some M > 0,{
|bi(x)− bi(x′)| ≤M |x− x′|, ∀x, x′ ∈ IRd

bi(0) = 0, i = 1, . . . , d.
(1.5)

The fact that b = (bi) vanishes on the origin and the additional assumption

−
d∑
i=1

bi(x)xi ≥ c1|x|2, ∀x ∈ IRd, |x| ≥ r1, (1.6)

for some constants c1, r1 > 0, will allow us to show some “stability” on the system.
The Levy kernel M0(x, dz) is assumed to have a particular structure, namely

M0(x,A) =

∫
{ζ:j(x,ζ)∈A}

m0(x, ζ)π(dζ), (1.7)

where π(·) is a σ-finite measure on the measurable space (F,F), the functions j(x, ζ) and
m0(x, ζ) are measurable for (x, ζ) in IRd × F , and there exist a measurable and positive
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function j0(ζ) and constants C0 > 0, 1 ≤ γ ≤ 2 [γ is referred to as the order of M0 or I0]
such that for every x, ζ we have |j(x, ζ)| ≤ j0(ζ), 0 ≤ m0(x, ζ) ≤ 1,∫

F

|j0(ζ)|p(1 + j0(ζ))−1π(dζ) ≤ C0, ∀p ∈ [γ, 2],
(1.8)

the function j(x, ζ) is continuously differentiable in x for any fixed ζ and there exists a
constant c0 > 0 such that for any (x, ζ) we have

c0 ≤ det(1 + θ∇j(x, ζ)) ≤ c−10 , ∀θ ∈ [0, 1], (1.9)

where 1 denotes the identity matrix in IRd,∇ is the gradient operator in x, and det(·)
denotes the determinant of a matrix.

Depending on the assumptions on the coefficients of the operators L0, I0 and on the
domain O of IRd, we can construct the corresponding Markov-Feller process. The reader
is referred to the books Bensoussan and Lions [3], Gikhman and Skorokhod [9] (among
others) and references therein. Usually, more regularity on the coefficients j(x, ζ) and
m0(x, ζ) is needed, e.g.{

|m0(x, ζ)−m0(x
′, ζ)| ≤M |x− x′|, ∀x, x′ ∈ IRd,

|j(x, ζ)− j(x′, ζ)| ≤ j0(ζ)|x− x′|, ∀x, x′ ∈ IRd,
(1.10)

for some constant M > 0 and the same function j0(ζ) as in assumption (1.8). Thus the
integro-differential operator I0 has the form

I0ϕ(x) =

∫
F

[ϕ(x+ j(x, ζ))− ϕ(x)− j(x, ζ) · ∇ϕ(x)]m0(x, ζ)π(dζ). (1.11)

It is possible to show that the Markov-Feller process associated with the infinitesimal
generator L0 + I0 (which is referred to as the “diffusion with jumps”) has a transition
probability density function G0(x, t, y), which is smooth in some sense (cf. Garroni and
Menaldi [8]).

Since our purpose is to treat control problems, we remark that (in general) the optimal
feedback is not smooth. This forces us to consider some coefficients (e.g. those of first
order) which are only measurable. To that effect, we will use the so-called Girsanov
transformation.

Let Ω = D([0,+∞), IRd) be the canonical space of right continuous functions with
left-hand limits ω from [0,+∞) into IRd endowed with the Skorokhod topology. Denote
by either Xt or X(t) the canonical process and by Ft the filtration generated by {Xs :
s ≤ t} (universally completed and right-continuous). Now let (Ω, P 0, Ft, Xt, t ≥ 0) be the
(homogeneous) Markov-Feller process with transition density functionG0(x, t, y) associated
with the integro-differential operator L0 + I0, i.e. the density w.r.t. the Lebesgue measure
of P 0{X(t) ∈ dy | X(s) = x} is equal to G0(x, t − s, x). For the sake of simplicity, we
will refer to (P 0

x , X(t), t ≥ 0) as the above Markov-Feller process, where P 0
x denote the

conditional probability w.r.t. {X(0) = x}.
Hence, for any smooth function ϕ(x) the process

Yϕ(t) = ϕ(X(t))−
∫ t

0

(L0 + I0)ϕ(X(s))ds (1.12)
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is a Px-martingale. This follows immediately from the representation
Ex{ϕ(X(t))} =

∫
IRd

G0(x, t, y)ϕ(y)dy+

+

∫ t

0

ds

∫
IRd

G0(x, t− s, y)(L0 + I0)ϕ(y)dy,
(1.13)

and the Markov property. Moreover, it is also possible to express the process Xt as follows

dX(t) = a1/2(X(t))dw(t) +

∫
IRd
∗

zµX(dt, dz) + b(X(t))dt, (1.14)

where (w(t), t ≥ 0) is a standard Wiener process in IRd, a1/2(x) is the positive square
root of the matrix (aij(x)) and b(x) is the vector (bi(x)). The process µX is the martingale
measure associate with the process (X(t), t ≥ 0), i.e. if ηX(t, A) denotes the integer random
measure defined as the number of jumps the process X(·) on (0, t] with values in A ⊂ IRd

∗
(recall that IRd

∗ = IRd \ {0}) then

µX(dt, A) + πX(dt, A) = ηX(dt, A), (1.15)

where µX(t, A) is a square integral (local) martingale quasi-left continuous and πX(t, A) is
a predictable increasing process obtained via the Doob-Meyer decomposition, and

πX(dt, dz) = M0(X(t−), dz)dt, (1.16)

where M0(x, dz) is the Levy kernel used to define the integro-differential operator I0 given
by (1.1), see e.g., Bensoussan and Lions [3].

Let g(x) = (g1(x), . . . , gd(x) and c(x, z) be functions defined for x in IRd, z ∈ IRd
? such

that {
gi, c are bounded, measurable and,
0 ≤ c(x, z) ≤ C0(1 ∧ |z|), ∀x, z, (1.17)

where C0 is a constant.
Consider the exponential martingale (e(t), t ≥ 0) as the solution of the stochastic

differential equation de(t) = e(t)[rX(t)dw(t) +

∫
IRd

?

γX(t, z)µX(dt, dz)],

e(0) = 1,
(1.18)

where{
rX(t) = a−1/2(X(t))g(X(t)),
γX(t, z) = zc(X(t), z),

(1.19)

i.e., 

e(t) = exp{
∫ t

0

rX(s)dw(s)−
∫ t

0

|rX(s)|2ds+

+

∫ t

0

∫
IRd

?

γX(s, z)µX(ds, dz)−

−
∫ t

0

∫
IRd

?

[γX(s, z)− ln(1 + γX(s, z))]πX(ds, dz)}.

(1.20)
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If we denote by

L = L0 +
d∑
i=1

gi(x)∂i (1.21)

and

Iϕ(x) = I0ϕ(x) +

∫
IRd

?

[ϕ(x+ z)− ϕ(x)]c(x, z)M0(x, dz), (1.22)

then, by means of Itô’s formula one can prove that for any smooth function ϕ, the process

Zϕ(t) = ϕ(X(t))−
∫ t

0

(L+ I)ϕ(X(s))ds (1.23)

is a Px-martingale, where the new probability measure Px on Ω is defined as

dPx = e(t)dP 0
x on Ft. (1.24)

Notice that the probability measures P 0
x and Px are absolutely continuous, one with

respect to the other. Also, a representation of the form (1.14) is valid under the new
probability measure Px, i.e. dX(t) = a1/2(X(t))dw(t) + [b(X(t)) + g(X(t))]dt+

+

∫
IRd

?

zµ(dt, dz),
(1.25)

where (w(t), t ≥ 0) is again a standard Wiener process and µ is the martingale measure
associate with the (canonical) process X(t) under the new measure Px.

Remark 1.1 Due to the linear growth of the coefficients bi(x), i = 1, . . . , d, we can not use
directly the construction in Garroni and Menaldi [8] of the Green function (or transition
density). 2

Now we are ready to formulate our optimal ergodic control problem. Let f(x, v),
g(x, v) = (g1(x, v), . . . , gd(x, v)), and c(x, v, z) be functions defined for (x, v) in IRd × V , z
in IRd

? such that
f, gi, c are bounded, measurable,
and continuous in the control variable v,
0 ≤ c(x, v, z) ≤ C0(1 ∧ |z|), ∀x, v, z,

(1.26)

where C0 is a constant and V is a compact metric space.
We consider the Markov-Feller process (Px, X(t), t ≥ 0) defined on the canonical space

D([0,∞[, IRd) described above, corresponding to the integro-differential operator L0 + I0
in the whole space.

An admissible control is a stochastic process (v(t), t ≥ 0) with values in V , adapted
to the filtration Ft. For any admissible control (v(t), t ≥ 0) we can use the Girsanov
transformation (1.18),(1.24) to define an exponential martingale e(t) = ev(t) and a new

6



probability measure denoted by Px = P v
x such that (P v

x , X(t), t ≥ 0) represents the state
of the system. Notice that in this case, ev(t) is given by (1.20) with{

rX(t) = a−1/2(X(t))g(X(t), v(t)),
γX(t, z) = z c(X(t), v(t), z).

(1.27)

A cost is associated with the controlled system (P v
x , X(t), t ≥ 0) by

Jx(v) = lim
T→∞

Ev
x{

1

T

∫ T

0

f(X(t), v(t))dt}. (1.28)

Our purpose is to give a characterization of the optimal cost

λ = inf{Jx(v) : v(·)} (1.29)

and to construct an optimal control v̂(t).
It is useful to remark that we expect to obtain an optimal Markovian control, i.e.

v̂(t) = v̂(X(t)), ∀t ≥ 0, (1.30)

for some feedback function v̂(x) and to prove that the optimal cost λ is constant, i.e.,
independent of the initial condition X(0) = x.

For a given feedback control v = v(x), the controlled state of the system (P v
x , X(t), t ≥

0) is a Markov-Feller process with infinitesimal generator of the form L + I, as in (1.21)
and (1.22), with{

g(x) = g(x, v(x)),
c(x, z) = c(x, v(x), z).

(1.31)

2. Dirichlet Problem

Denote by v(x) any measurable feedback. Let L = Lv and I = Iv be the second order
differential operator (1.21) and the integro-differential operator (1.22) as before. Also we
set f(x) = f(x, v(x)) given by (1.26). For a given bounded and smooth domain O, we
consider first the interior Dirichlet problem{

−(L+ I)u = f in O,
u = h in IRd \ O, (2.1)

and next the exterior Dirichlet problem{
−(L+ I)u = f in IRd \ O,

u = h in O, (2.2)

where f and h are given measurable and bounded functions.
Notice the fact that there is not zero-order coefficient and the non-local character of

the integro-differential operator I. So that for the interior problem [exterior problem] we
need the solution u to be defined in a neighborhood of the closure O [IRd \O, respectively].
Thus, we seek the solution as defined in the whole space IRd.
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A natural way to handle the non-homogeneous boundary conditions is to pursue the
following two-steps. First we suitably extend the boundary (or exterior) data h to the whole
space, for instance if h is defined in IRd\O then we extend h to the whole IRd preserving its
regularity properties. Next, we solve an homogeneous problem (interior Dirichlet problem
with h = 0) for u − h, where we use the zero-extension to define the non-local operator
I. With this in mind, we can re-consider the interior Dirichlet problem [or the exterior
Dirichlet problem] as{

−(L+ I)u = f in O,
u = h in ∂O. (2.3)

Notice that if we modify the function h outside of O then the value Iu may change (since
it uses the values of u outside of O). Then, we understand the solution u of the above
equation as u = v + w where v solves a non-homogeneous Dirichlet boundary conditions
second-order differential equation{

−Lv = 0 in O,
v = h in ∂O, (2.4)

and w solves an homogeneous (interior) Dirichlet problem{
−(L+ I)w = f + Iv in O,

w = 0 in IRd \ O, (2.5)

for the whole integro-differential operator L + I. Sufficient conditions to solve the PDE
(2.4) are well known (cf. Gilbarg and Trudinger [10], Ladyzhenskaya and Uraltseva [14]) so
we will state results concerning the existence, uniqueness and regularity for the solutions of
the homogeneous interior Dirichlet problem (i.e., with h = 0) with an integro-differential
operator of the above form. Actually, we will need a weak formulation of this problem.
An excellent treatment of the interior Dirichlet problem for this class of integro-differential
operators can be found in Gimbert and Lions [11] and, based on Garroni and Menaldi [8],
some natural extensions to the exterior Dirichlet problem are detailed in [19].

Notice that if u denotes the solution of the non-homogeneous interior Dirichlet problem
(2.1) with f(x) = f(x, v(x)) then we expect to have the following stochastic representation

u(x) = Ev
x{
∫ τ

0

f(X(t), v(X(t)))dt+ h(X(τ))}, (2.6)

where τ = τv is the first exit time of the process X(t) from the closed set O, i.e.

τ = inf{t ≥ 0 : X(t) 6∈ O}, (2.7)

Ev
x{·} is the mathematical expectation with respect to the measure P v

x , and (P v
x , X(t), t ≥

0) is the diffusion with jumps corresponding to Lv + Iv. Sometimes it is convenient to
call a probabilistic solution of the interior (exterior) Dirichlet problem a measurable and
bounded (locally bounded, for the exterior) function u satisfying: u(X(t))1(t<τ) +

∫ τ∧t

0

f(X(s))ds+ h(X(τ))1(t≥τ)

is a Ft − (local) martingale,
(2.8)
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with the exit time τ = τ(O) for the interior problem and τ = τ(IRd \ O), where

τ(D) = inf{t ≥ 0 : X(t) /∈ D}, (2.9)

where τ = ∞ if X(t) ∈ D, ∀t ≥ 0. Certainly, for a probability solution, the above
stochastic representation is valid.

Let us turn our attention to the variational formulation of the (homogeneous) interior
Dirichlet problem (2.1), i.e. a solution in W 1,p

0 (O). The key point here is to establish that
L + I preserves Sobolev spaces, i.e. it maps W 1,p

0 (O) into W−1,p(O), and that a weak
version of the maximum principle holds. We need to assume that j(x, ζ) has a bounded
second derivative in x, i.e. there exist δ > 0 such that for some constant C > 0, and with
Fδ = {ζ ∈ F : j0(ζ) < δ} we have

‖∇2
xj(·, ζ)‖L∞(IRd) ≤ C, ∀ζ ∈ Fδ (2.10)

as well as assumption (1.10) to make sense of I0ϕ for a test function ϕ not necessary
smooth. Next, a version of the Maximum Principle is necessary to show that the bilinear
form

a(ϕ, ψ) = −〈Lϕ, ψ〉 − 〈Iϕ, ψ〉 (2.11)

is continuous and coercive in H1
0 (O). We state the main results in this direction.

Theorem 2.1 (Interior) Let the assumptions (1.4), (1.5), (1.8), (1.9), (1.10), (1.26) and
(2.10) hold. Then there exists a unique probability solution u of the (homogeneous, i.e.
h = 0) interior Dirichlet problem (2.1) in W 1,p

0 (O), for any 1 < p < ∞. Moreover, u
belongs to W 2,p

loc (O) and for some constant C (independent of the feedback) we have

‖u‖L∞ ≤ C‖f‖L∞ . 2 (2.12)

The above results for j(x, ζ) = j(ζ), independent of x, have been proved in Bensoussan
and Lions [3] and extended later to W p

0 in Gimbert and Lions [11]. We refer to [19] for
details. The general case with h 6= 0, can be treated by means of the PDE problem (2.4).

The exterior Dirichlet problem presents some extra difficulties and it is not easily found
in the literature. Notice that in our setting, the first order coefficient b(x) has a linear
growth, so that standard arguments do not apply and the meaning of the boundary con-
ditions becomes an issue. Here we adopt the probability solution sense and the variational
formulation with a weight (Liapunov’s type) function of the form

ψq(x) = (2 + |x|2)q/2, q > 0. (2.13)

Under the assumption (1.6), for any q > 0 there exist αq, cq > 0 and a ball Bq such that{
Lψq(x) + Iψq(x) ≤ −αqψq(x), ∀x ∈ IRd \Bq,
|Lψq(x)|+ |Iψq(x)| ≤ cqψq(x), ∀x ∈ IRd \Bq,

(2.14)

provided we suppose that the function j0(ζ) of (1.8) satisfies∫
F

[j0(ζ)]q(1 + j0(ζ))−1π(dζ) <∞, (2.15)

which is always true if q ≤ 1.
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Theorem 2.2 (Exterior) Let the assumptions (1.4), . . . , (1.10), (1.26) and (2.10) hold.
Suppose O a smooth bounded domain containing the ball Bq given by (2.14). Then there
exists one and only one probability solution u of the (homogeneous, i.e. h = 0) exterior
Dirichlet problem (2.2) in W 1,p

loc (IRd) ∩ L∞(IRd), for any 1 < p < ∞. Moreover, u belongs
to W 2,p

loc (IRd \ O) and

‖uψ−q‖L∞ ≤
1

αq
‖fψ−q‖L∞ , (2.16)

where αq is given by (2.14). 2

3. Invariant Measure

As in the previous section, we assume given a Borel measurable feedback control and we
denote by L+I the corresponding integro-differential operator. Now, let O be a sufficiently
large smooth and bounded domain (e.g. a ball) so that the following non-homogeneous
exterior Dirichlet problem{

(L+ I)u = 0 in IRd \ O,
u = ϕ in O, (3.1)

can be solved inW 2,p
loc (IRd\O)∩W 1,p

loc (IRd)∩L∞(IRd) for non-negative ϕ inW 1,p(O)∩L∞(IRd).
Now, consider the non-homogeneous interior Dirichlet problem in a larger domain (ball)
B ⊃ O,

{
(L+ I)v = 0 in B,

v = u in IRd \B, (3.2)

which can be solved in W 2,p
loc (B)∩W 1,p(B)∩L∞(IRd), for any v in W 1,p

loc (IRd \O)∩L∞(IRd).
Therefore we can define the linear operator{

P : W 1,p(O) ∩ L∞(IRd)→ W 1,p(O) ∩ L∞(IRd),
Pϕ = v,

(3.3)

where the solution u of (3.2) has been restricted to the domain O. Notice that we are
using weak solutions of problems (3.1) and (3.12). Strong solutions, i.e. u in W 2,p(IRd \O)
and v in W 2,p(B), require some extra assumptions on the integro-differential opearator I,
c.f. Gimbert and Lions [11] and [19].

By means of the weak maximum principle, we can prove that

ϕ ≥ 0 implies Pϕ ≥ 0. (3.4)

Since Pϕ = 1 for ϕ = 1, the operator P can be identified with a (one-step) transition
probability measure on (O,B), so that P : B(O)→ B(O),

Pϕ(x) =

∫
O
ϕ(y)P (x, dy),

(3.5)
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where B(O) is the space of bounded Borel measurable functions on O. Moreover, it can
be proved (cf. [19]) that P is an ergodic operator, i.e. defining

λ(x, y, F ) = P1F (x)− P1F (y), (3.6)

for any x, y in X and any Borel subset F of O, where 1F is the characteristic function of
the set B, we have

∃δ > 0 / λ(x, y, F ) ≤ 1− δ, ∀x, y ∈ O, ∀F ∈ B. (3.7)

Hence, based on Doob’s ergodicity theorem, there exists a unique probability measure on
(O,B), denoted by ν, such that

|P nϕ(x)−
∫
O
ϕdν| ≤ Ke−ρn‖ϕ‖, ∀n = 1, 2, . . . (3.8)

where ρ = − ln(1− δ), K = 2/(1− δ). The measure ν is the unique invariant probability
for (P,O,B), i.e. the unique probability on O such that∫

O
ϕdν =

∫
O
Pϕdν, ∀ϕ ∈ B(O). (3.9)

At this point we consider the interior and exterior Dirichlet problems{
−(L+ I)u0 = f in IRd \ O,

u0 = 0 in O, (3.10)

and {
−(L+ I)v = f in B,

v = u0 in IRd \B. (3.11)

Based on the results of the previous section, we can define the operator

T : L∞q (IRd) −→ W 1,p
loc (IRd) ∩ L∞q (IRd), T f = v0 (3.12)

with possesses the property (3.4). Thus we can define a positive measure µ̃ on IRd (un-
normalized) by∫

IRd

f(x)dµ̃(dx) =

∫
O
Tf(x)ν(dx) (3.13)

Next define the probability measure µ by

µ(F ) =
µ̃(F )

µ̃(IRd)
, ∀F ∈ B(IRd). (3.14)

Theorem 3.1 (Invariant Measure) Let the assumptions (1.4)—(1.10), (1.26) and (2.10)
hold. Then µ, given by (3.14), is an invariant probability measure for the diffusion with
jumps in IRd, i.e. for any bounded and Borel measurable function f we have∫

IRd

Ex{f(X(t))}µ(dx) =

∫
IRd

f(x)µ(dx). (3.15)

11



Moreover, the invariant probability measure µ is unique and

lim
T→∞

1

T

∫ T

0

Ex{f(X(t))}dt =

∫
IRd

f(x)µ(dx), (3.16)

for any bounded and Borel measurable function f . Furthermore, the measure µ is absolutely
continuous w.r.t. the Lebesgue measure, i.e. we can write∫

IRd

f(x)µ(dx) =

∫
IRd

f(x)m(x)dx, (3.17)

where the invariant density m(x) satisfies

m ≥ 0,

∫
IRd

m(x)dx = 1. 2 (3.18)

Now we can discuss the ergodic linear equation. Consider the space

L∞q (IRd) = {ϕ : ϕψ−q ∈ L∞(IRd)}, (3.19)

for q > 0 and ψ−q(x) = (2 + |x|2)−q/2. The linear equation is then{
u ∈ W 2,p

loc (IRd) ∩ L∞q (IRd), p ≥ d, q > 0,

−(L+ I)u = f a.e. in IRd.
(3.20)

Theorem 3.2 (Linear Equation) Let assumptions (1.4)—(1.10), (1.26) and (2.10) hold.
Then the linear integro-differential equation (3.20) has a solution u (unique up to an addi-
tive constant) if and only f has a zero-mean, i.e.

µ(f)
.
=

∫
IRd

f(x)µ(dx) = 0, (3.21)

where µ(dx) is the unique invariant probability measure defined by (3.14). Moreover, under
the above zero-mean conditon, there exists a solution of (3.20) for which we have the a priori
estimate

‖uψ−q‖L∞(IRd) ≤ Cq‖fψ−q‖L∞(IRd) (3.22)

for some positive constant Cq depending only on q, d and the bounds imposed by the as-
sumptions on the coefficients of the operators L and I. 2

Remark 3.3 Notice that the discounted linear equation{
u ∈ W 2,p

loc (IRd) ∩ L∞q (IRd), p ≥ d, q > 0,

−(L+ I)uα + αuα = f a.e. in IRd.
(3.23)

with α > 0 has a unique solution under the assumption of the previous theorem. Moreover,
based the estimate (3.22), one can prove that ∇uα and ∇2uα remain uniformly bounded in
Lploc(IR

d) as α→ 0, for any finite p. 2
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4. Programming Equation

Let v be a given Borel measurable function from IRd into V, referred to as a measurable
feedback. The dynamic of the system follows the stochastic integro-differential equation dX(t) = a1/2(X(t))dw(t) + [b(X(t)) + g(X(t), v(X(t)))]dt+

+

∫
IRd

?

zµ(dt, dz),
(4.1)

on the canonical probability space Ω = D([0,∞), IRd), with the probability P = P v
x satisty-

ing

P{X(0) = x} = 1, (4.2)

and where w(t) = wv(t) is a standard Wiener process in IRd and µ(dt, dx) = µv(dt, dx) is an
integer random (martingale) measure associated with a Poisson measure with characteristic
Levy kernels

M0(x, dz), c(x, v(x), z)M0(x, dz). (4.3)

Then (Ω, P x, Xv) defines a Markov-Feller process on IRd (so-called diffusion with jumps)
with infinitesimal generator Av, which is an extension of the integro-differential operator
L0 + I0 + Lv, cf. (1.3), (1.11), and where Lv is given by

Lvϕ(x) =
∫
F

[ϕ(x+ j(x, ζ))− ϕ(x)]c(x, v(x), j(x, ζ))×

×m0(x, ζ)π(dζ) +
d∑
i=1

gi(x, v(x))∂iϕ(x)
(4.4)

At this point, we can re-formulate our optimal ergodic problem as in the introduction
i.e., for a given measurable feedback control v(x) there exists a unique invariant probability
measure µv(dx) in IRd of the Markov-Feller process (Ω, P x, Xv) as above. The long run
average cost associated with the controlled system is given by

J(v) =

∫
IRd

f(x, v(x))µv(dx). (4.5)

Recall our assumptions on the data (1.4)—(1.10), (1.26) and (2.10). Our purpose is to give
a characterization of the optimal cost

λ = inf{J(v) : v(·)} (4.6)

and to construct an optimal feedback control v̂.
Denote by H(x, ϕ(x)) the Hamiltonian

H(x, ϕ(x)) = inf{Lvϕ(x) + f(x, v) : v ∈ V }, (4.7)

where the operator Lv is given by (4.4), f satisfies (1.26) and ϕ belongs to the Sobolev
space W 1,p

loc (IRd) ∩ L∞q (IRd), cf. (2.13) and (3.17). It can be proved that H(x, ϕ(x) belongs

to L∞q (IRd) for every ϕ in W 1,p
loc (IRd) ∩ L∞q (IRd).
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As mentioned in Remark 3.3, we can adapt the techniques used in Theorem 3.2 (cf.
[19]) to show that the discounted nonlinear equation{

u ∈ W 2,p
loc (IRd) ∩ L∞q (IRd), p ≥ d, q > 0,

(L0 + I0)uα +H(·, uα) = αuα a.e. in IRd.
(4.8)

with α > 0 possesses a unique solution and that ∇uα and ∇2uα remain uniformly bounded
in Lploc(IR

d) as α→ 0, for any finite p.
The limiting Hamilton-Jacobi-Bellman equation can be expressed as{

u ∈ W 2,p
loc (IRd) ∩ L∞q (IRd), p ≥ d, q > 0,

(L0 + I0)u+H(·, u) = λ a.e. in IRd.
(4.9)

where the unknowns are the function u and the constant λ.
Essentially based on results for the linear equation, as in Bensoussan [1], we select a

discounted optimal feedback, i.e.

vα(x) ∈ Argmin H(x, uα(x)), ∀x ∈ IRd, (4.10)

where uα is the solution of the nonlinear equation (4.8).

Theorem 4.1 (HJB equation) Let the assumptions (1.4)—(1.10), (1.26) and (2.10) hold.
Define

ũα = uα − µα(uα), α > 0, (4.11)

where µα is the invariant probability measure corresponding to the integro-differential op-
erator L0 + I0 + Lv, with v = vα as given by (4.11). Then there exist a constant λ and a
function u in W 2,p

loc (IRd) ∩ L∞q (IRd) such that

αuα → λ, ũα ⇀ u weakly* (4.12)

as α goes to zero. The couple (λ, u) is a solution of the HJB equation (4.9). Moreover, λ
is equal to the optimal cost (4.6) and any stationary feedback v̂ satisfying

v̂ ∈ Argmin H(x, u(x)), ∀x ∈ IRd, (4.13)

produces the optimal cost, i.e. λ = J(v̂). 2

Notice that if the couple (λ, u) is a solution of the HJB equation (4.9) then λ is the
optimal cost (4.6), and if v is a stationary optimal feedback (i.e. (4.13) holds for v), then
u solves the linear equation

−(L0 + I0 + Lv)u+ λ = fv a.e. in IRd, (4.14)

where fv(x) = f(x, v(x)). By means of the Itô’s formula we get for every x ∈ IRd, T > 0

u(x) = Ev
x{
∫ T

0

[f(X(t), v(X(t)))− λ]dt}+ Ev
x{u(X(T ))}. (4.15)
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Now, if the feedback and its invariant measure are such that

Ev
x{u(X(T ))} → µv(u) as T →∞ (4.16)

then we deduce for every x ∈ IRd, T > 0,

u(x) = Ev
x{
∫ ∞
0

[f(X(t), v(X(t)))− λ]dt}+ µv(u). (4.17)

This is a representation of u, and gives uniqueness (up to a constant) for the potential
function u. Actually, we conjecture that the transition density is strictly positive (for any
stationary feedback), and therefore the strong mixing property holds, which in turn implies
the convergence (4.16). To the best of our knowledge this has not been proved so far.
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