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Abstract

Objectives

Primary brain tumors are composed of tumor cells, neural/glial tissues, edema, and vascula-

ture tissue. Conventional MRI has a limited ability to evaluate heterogeneous tumor patholo-

gies. We developed a novel diffusion MRI-based method—Heterogeneity Diffusion Imaging

(HDI)—to simultaneously detect and characterize multiple tumor pathologies and capillary

blood perfusion using a single diffusion MRI scan.

Methods

Seven adult patients with primary brain tumors underwent standard-of-care MRI protocols

and HDI protocol before planned surgical resection and/or stereotactic biopsy. Twelve

tumor sampling sites were identified using a neuronavigational system and recorded for

imaging data quantification. Metrics from both protocols were compared between World

Health Organization (WHO) II and III tumor groups. Cerebral blood volume (CBV) derived

from dynamic susceptibility contrast (DSC) perfusion imaging was also compared with the

HDI-derived perfusion fraction.

Results

The conventional apparent diffusion coefficient did not identify differences between WHO II

and III tumor groups. HDI-derived slow hindered diffusion fraction was significantly elevated

in the WHO III group as compared with the WHO II group. There was a non-significantly
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Citation: Wang Q, Pérez-Carrillo GJG, Ponisio MR,

LaMontagne P, Dahiya S, Marcus DS, et al. (2019)

Heterogeneity Diffusion Imaging of gliomas: Initial

experience and validation. PLoS ONE 14(11):

e0225093. https://doi.org/10.1371/journal.

pone.0225093

Editor: Ulas Bagci, University of Central Florida

(UCF), UNITED STATES

Received: May 3, 2019

Accepted: October 29, 2019

Published: November 14, 2019

Copyright: © 2019 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The dataset contain

the patients’ clinical information which will

compromise confidentiality. At Washington

University in St. Louis, human subject approvals

allow open data sharing of coded data with

qualified investigators who would be willing to

guarantee the confidentiality of the data. We have

established a simple process for sharing the

source imaging data, which has been successfully

employed for many other studies. Please see www.

oasis-brains.org for an example. Data of this study

has been stored in the online archive system CNDA

http://orcid.org/0000-0002-5585-0964
http://orcid.org/0000-0001-5593-5098
https://doi.org/10.1371/journal.pone.0225093
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225093&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225093&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225093&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225093&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225093&domain=pdf&date_stamp=2019-11-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225093&domain=pdf&date_stamp=2019-11-14
https://doi.org/10.1371/journal.pone.0225093
https://doi.org/10.1371/journal.pone.0225093
http://creativecommons.org/licenses/by/4.0/
http://www.oasis-brains.org
http://www.oasis-brains.org


increasing trend of HDI-derived tumor cellularity fraction in the WHO III group, and both

HDI-derived perfusion fraction and DSC-derived CBV were found to be significantly higher

in the WHO III group. Both HDI-derived perfusion fraction and slow hindered diffusion frac-

tion strongly correlated with DSC-derived CBV. Neither HDI-derived cellularity fraction nor

HDI-derived fast hindered diffusion fraction correlated with DSC-derived CBV.

Conclusions

Conventional apparent diffusion coefficient, which measures averaged pathology properties

of brain tumors, has compromised accuracy and specificity. HDI holds great promise to

accurately separate and quantify the tumor cell fraction, the tumor cell packing density,

edema, and capillary blood perfusion, thereby leading to an improved microenvironment

characterization of primary brain tumors. Larger studies will further establish HDI’s clinical

value and use for facilitating biopsy planning, treatment evaluation, and noninvasive tumor

grading.

Introduction

Gliomas account for the majority of primary brain tumors in adults; they represent 26.5% of

primary brain tumors and 80.7% of malignant brain tumors [1]. Typically, malignant gliomas

contain heterogeneous pathologies that reflect regional diversity in tumor cell proliferation

[2], immune infiltration, tumor vessel density, necrosis, and cystic degeneration. This hetero-

geneity makes clinical diagnosis and management very challenging.

Current standard-of-care imaging for newly diagnosed patients with brain tumors includes

anatomical magnetic resonance imaging (MRI) with and without contrast to identify general

characteristic features of the tumor, including its location, size, and extent. However, anatomi-

cal MRI techniques alone are limited for the evaluation of tumor heterogeneity, especially in

tumors that demonstrate little or no enhancement. Advanced MRI techniques such as diffu-

sion MRI [3, 4], MR spectroscopy [5, 6] and MR perfusion [7] provide more pathophysiologic

information, and they have demonstrated the potential to characterize tumor types and to dif-

ferentiate recurrent tumor from pseudo progression. Among these advanced techniques, diffu-

sion MRI holds a unique position due to its sensitivity when probing the microenvironment of

biological tissues at a cellular level. Clinically, apparent diffusion coefficient (ADC) maps have

been used to grade primary brain tumors [8, 9], to define tumor cellularity [10], and to assess

brain tumor response to therapy [11, 12]. However, conventional ADC measures average the

diffusivity of multiple pathologies coexisting within each tumor voxel, which significantly lim-

its the accuracy and specificity of this method for characterizing neoplastic pathologies.

Perfusion MRI provides important diagnostic information about microvascularity within

brain tumors, and it can be used to differentiate tumor types and tumor grades [7, 13]. Quanti-

tative and physiologic information provided by diffusion and perfusion MRI are complimen-

tary, and the integration of these two techniques could significantly improve diagnostic

confidence [14]. However, imaging properties examined by different imaging techniques may

suffer mislocalization [15], which could increase registration errors and decrease diagnostic

accuracy. The accurate and simultaneous imaging and quantification of tumor pathological

heterogeneity and vascularity—in one session—will be highly favored to reduce registration

error, thereby improving clinical diagnosis, treatment, and management.

Evaluation of gliomas with Heterogeneity Diffusion Imaging
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In this article, we present and examine a novel diffusion MRI technique called Heterogene-
ity Diffusion Imaging (HDI), which is capable of characterizing heterogeneous tumor composi-

tion and microvascularity simultaneously from a single clinical diffusion MRI scan. HDI

employs a multiple diffusion compartment model, which was developed based on diffusion

basis spectrum imaging (DBSI) [16, 17]. By modeling the confounding effects of anatomical

complexities and neuropathologies, this approach is able to disentangle the heterogeneous

pathological components that are mixed in one imaging voxel [16–20]. In the current study,

HDI was employed to quantify tumor cellularity, slow versus fast hindered diffusion fraction,

and perfusion effect in each tumor voxel. We hypothesized that HDI would be more sensitive

for the characterization of gliomas’ heterogeneous microenvironments as compared with con-

ventional ADC.

Materials and methods

Patient selection

This prospective single-center pilot study was approved by the Washington University in

St. Louis Institutional Review Board. Seven adults with primary brain tumors were recruited

from the Washington University School of Medicine between 2015 and 2016. They underwent

the standard-of-care imaging protocol and HDI diffusion MRI before planned standard-of-

care surgical resection and/or stereotactic biopsy. The study was carried out in accordance

with the guidelines of the institutional review board of the Washington University Human

Research Protection Office. Written informed consent was obtained from all participants. The

age range, patient tumor type, and tumor grade are summarized in Table 1. There were four

female and three male subjects in this study. Areas of tumor sampling were identified intrao-

peratively using the Stealth neuronavigational system (Medtronic, Minneapolis, MN, USA);

the location and spatial coordinates of tissue sampling sites were recorded to align with HDI

results. Each subject had at least one recorded tissue sampling site. Twelve tumor samples were

prepared for this study. The entire HDI analysis was performed blinded to all other data (i.e.,

clinical data and information about patient surgeries and outcomes).

MRI data acquisition

MRI scans were performed on a 3-Tesla positron emission tomography (PET)/MRI system,

the Siemens Biograph mMR (Siemens Health Care, Erlangen, Germany). MR images were

acquired via the Comprehensive Neuro-Oncology Data Repository (CONDR) imaging proto-

col used for brain tumors [21]. The protocol included pre-gadolinium and post-gadolinium

T1-weighted (T1W) imaging (TR = 18 ms, TE = 4.38 ms, in-plane resolution = 1.0 × 1.0 mm2,

Table 1. Characteristics of patients and tumor grades detected by biopsy.

Patient No. Age Range (years) Tumor Pathology Tumor Grade IDH Mutant

S1 40s Oligodendroglioma WHO III Yes

S3 60s Oligodendroglioma WHO II Yes

S4 30s Oligodendroglioma WHO II Yes

S6 30s Anaplastic astrocytoma WHO III Yes

S7 30s Astrocytoma WHO II Yes

S8 30s Oligodendroglioma WHO II Yes

S9 40s Oligodendroglioma WHO III Yes

IDH, Isocitrate dehydrogenase; WHO, World Health Organization.

https://doi.org/10.1371/journal.pone.0225093.t001
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slice thickness = 1.0 mm); magnetization-prepared rapidly acquired gradient echo (TR = 2300

ms, TE = 2.95 ms, TI = 900 ms, in-plane resolution = 1.0 × 1.0 mm2, slice thickness = 1.0 mm);

dynamic susceptibility contrast (DSC) perfusion-weighted imaging (TR = 1930 ms, TE = 36

ms, in-plane resolution = 2.2 × 2.2 mm2, slice thickness = 5.0 mm); T2-weighted (T2W) fluid-

attenuated inversion recovery (FLAIR) (TR = 8500 ms, TE = 133 ms, flip angle = 130 degrees,

in-plane resolution = 0.9 × 0.9 mm2, slice thickness = 5.0 mm); and standard diffusion tensor

imaging (DTI) (TR = 9000 ms, TE = 91 ms, in-plane resolution = 2.2 × 2.2 mm2, slice thick-

ness = 3.0 mm). Clinical DTI scans were acquired using a 12-direction gradient scheme with a

maximum b value of 1000 s/mm2.

We also designed and incorporated a diffusion scheme for HDI data acquisition that was

used in addition to the clinical DTI scan. The new diffusion protocol included 74 diffusion

directions distributed uniformly in the three-dimensional space, with 74 different b values; it

was administered across four separate sessions to improve patient tolerance. Each diffusion

gradient had a unique b value, and all of the b values were uniformly distributed between 0

and 2000 s/mm2. The maximum b value for each session was 2000 s/mm2. The imaging

parameters were as follows: TR = 9500 ms; TE = 93 ms; in-plane resolution = 2.0 × 2.0 mm2;

and slice thickness = 2.0 mm.

MRI image processing

MRI preprocessing. For each individual subject, all MRI sequences were coregistered to a

target post-contrast T1W image using the Multimodal Glioma Analysis (MGA) pipeline [22].

Each subject’s T1W image was registered to a T1W atlas template image, and other T1W and

T2W sequences were coregistered with the subject’s T1W target image. T1W! T1W registra-

tion used the maximization of spatial correlation [23], whereas cross-modal registration (e.g.,

T2W! T1W) used the alignment of intensity gradients [24]. Perfusion and diffusion parame-

ter maps were transformed to the T1W target space using a transformation matrix obtained

from coregistering respective sequences. The coregistration quality was verified using built-in

MGA quality control metrics.

Diffusion and perfusion processing. After the acquisition and registration steps were

completed, each subject’s raw diffusion and perfusion data were processed. The MGA pipeline

was used for diffusion and perfusion processing. MGA precedes perfusion modeling by cor-

recting signal intensity across slices and registering all frames to a middle time frame. Perfu-

sion modeling is initialized by the automatic estimation of a local arterial input function and

the selection of a convolution/deconvolution method. The arterial input function is defined

using the Bayesian tissue model [25]. Diffusion data were processed based on the standard

DTI model [26]. With the use of these methods, MGA computed the cerebral blood volume

(CBV), mean transit time, and cerebral blood flow maps for the DSC scans. For diffusion-

weighted scans, the ADC was computed.

HDI processing. Diffusion data acquired with the use of our new diffusion protocol were

analyzed using the HDI method. HDI was developed based on the multiple tensor formula-

tions used in the DBSI model [16, 17]. Briefly, HDI modeled the diffusion-weighted signal

from each imaging voxel using a combination of anisotropic and isotropic tensor components,

as described by Eq (1). Each of the tensor components is described as a standard diffusion ten-

sor formulation in the diagonal coordinate system [27]:

Sk ¼
R NAniso
i¼1

f ie
� jbk
!
j�λ⏊ i e� jbk

!
j�ðλk i � λ⏊ iÞ�cos2ψik þ

R b
a f ðDÞe

� jbk
!
jDdD ðk ¼ 1; 2; . . . ;KÞ ½1�
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In Eq (1), |bk| is the b value of the kth diffusion gradient (k = 1, 2, . . ., K). Sk is the measured

diffusion-weighted signal that corresponds with the kth diffusion gradient. HDI anisotropic

components (i.e., the first term on the right side of Eq (1)) were used to model the complex

neuronal structures invaded by tumor. NAniso is the number of anisotropic tensors in the imag-

ing voxel; ψik is the angle between the kth diffusion gradient and the principal direction of the

ith anisotropic tensor; λ||_i and λ⏊_i are the axial and radial diffusivities, respectively, of the ith

anisotropic tensor; and fi is the signal intensity fraction for the ith anisotropic tensor. The HDI

isotropic spectrum (i.e., the second term on the right side of Eq (1)) was divided into several

nonoverlapping windows on the basis of previously published reports of ADC ranges for dif-

ferent tumor stages [8, 9], and a and b are the low (0 μm2/ms) and high (40 μm2/ms) diffusivity

limits, respectively, for the isotropic diffusion spectrum f(D). The number of anisotropic and

isotropic diffusion components and the signal intensity fractions that correspond with all dif-

fusion components are the key parameters to be solved. The unavoidable measurement and

modeling noise will make the direct solution of Eq (1) unstable due to its ill-posed nature [16,

17]. A regularization technique that incorporated the non-negativity of the solution was

employed previously in DBSI to stabilize the solution [16, 17], and the same regularization

technique was employed in this work. Specifically, isotropic diffusion components with diffu-

sivity between 0 and 0.3 μm2/ms were associated with cellularities [16, 17], and those that ran-

ged between 0.3 and 0.8 μm2/ms were associated with the slow extracellular diffusion of water

trapped between tumor cells, thereby reflecting the packing density of the tumor cells. The iso-

tropic diffusion components with diffusivity that ranged between 0.8 and 2.5 μm2/ms were

associated with fast extracellular water diffusion, thereby reflecting edema. HDI also acquired

diffusion-weighted images with small b values to capture the ultrafast isotropic diffusion

between 5 and 40 μm2/ms. This ultrafast diffusion has been previously described as the intra-

voxel incoherent motion (IVIM) effect and associated with capillary blood perfusion [28].

Within each imaging voxel for each tumor, the following HDI-derived metrics were quanti-

fied: cellularity fraction (CF), slow hindered diffusion fraction (sHF), fast hindered diffusion

Fig 1. Schematic figure of the isotropic spectrum signals from Heterogeneity Diffusion Imaging. Isotropic diffusivity is used to

define each pathological component within a brain tumor. The isotropic diffusivity cutoffs for each of the pathological components

were selected from previous diffusion magnetic resonance imaging studies of brain tumors. Specifically, the isotropic diffusion

components with diffusivity that ranged between 0.3 and 0.8 μm2/ms were associated with the dense packing of tumor cells. The

components with diffusivity that ranged between 0.8 and 2.5 μm2/ms were associated with extracellular water edema. The

components with diffusivity that ranged between 5 and 40 μm2/ms were associated with capillary blood perfusion within tumors.

https://doi.org/10.1371/journal.pone.0225093.g001
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fraction (fHF), and perfusion fraction (PF). The detailed partition of the isotropic spectrum by

HDI is shown in Fig 1.

Surgical treatment

After the MRI, patients underwent stereotactic biopsy followed by partial or complete resec-

tion. For each patient, at least one tumor sample was obtained with a stereotactic screen cap-

ture taken with the Stealth station. The neuronavigation-guided T1W images of the biopsy

tissue-sampling sites were shown on axial, coronal, and sagittal views (Fig 2). T1W contrast-

enhanced, T2W, and FLAIR images were co-registered by MGA and loaded into the 3D Slicer

software platform (http://www.slicer.org) [29] to produce 5-mm diameter spheres that were

centered at each surgical tumor sampling site.

Regions of interest and statistical analysis

Volumetric tumor regions of interest (ROIs) were drawn manually from the FLAIR images.

All manual regions of interest (mROIs) were approved by a board-certified neuroradiologist

(G.G.). HDI model analysis was performed on the selected mROIs. The ROIs at the tissue sam-

pling sites (tsROIs) were also colocalized on HDI images to quantify the HDI findings. A two-

sample t-test was performed to compare ADC, CBV, and HDI metrics between the World

Health Organization (WHO) II and III tumor groups at tsROIs. The average HDI-derived PF

was correlated with the DSC perfusion MRI-derived CBV index. The Pearson correlation coef-

ficient was used to evaluate the association between CBV- and HDI-derived metrics. P values

of less than .05 were considered significant. Statistical analysis was performed using SAS 9.4

software (SAS Institute Inc., Cary, NC, USA).

Fig 2. Neuronavigation-guided anatomic images of biopsy tissue sampling sites. Neuronavigation-guided

T1-weighted images of the biopsy tissue sampling site at (A) axial, (B) coronal, and (C) sagittal views. (D) The tissue

sampling site is labeled on the T2-weighted fluid attentuation inversion recovery image. Purple arrows indicate the

passive biopsy needle.

https://doi.org/10.1371/journal.pone.0225093.g002
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Results

In all patients, HDI metrics demonstrated heterogeneous spatial distributions within tumors.

Fig 3 shows a representative case from the low-grade tumor group for a woman in her 70s

who had been diagnosed with WHO grade II oligodendroglioma. The subject underwent stan-

dard-of-care imaging and HDI scanning. The T1W post-contrast MRI demonstrated

decreased signal intensity in the tumor region (Fig 3A). Elevated FLAIR signal intensity (Fig

3B) and increased ADC (Fig 3C) were also found in the tumor region. Elevated cellularity frac-

tion was found in the HDI-CF map, and the cellularity distribution was heterogeneous within

the tumor (Fig 3E). No increased hindered diffusion fraction was identified in the HDI-sHF

map (Fig 3F). An elevated hindered diffusion fraction was found in the HDI-fHF map (Fig

3G). A lack of elevated perfusion based on the CBV (Fig 3D) and HDI-PF (Fig 3H) maps was

observed in this patient.

Another representative case for the high-grade tumor group is shown in Fig 4 for a man in

his 50s who was diagnosed with WHO grade III oligodendroglioma. Representative MRI

images of this patient are shown in the figure. T1W post-contrast MRI demonstrated decreased

signal intensity in the tumor (Fig 4A). Elevated signal intensity (Fig 4B) and increased ADC

(Fig 4C) were also found in the tumor. Elevated cellularity fraction was found in the HDI-CF

map, and the cellularity distribution was heterogeneous within the tumor (Fig 4E). Elevated

sHF (Fig 4F) and fHF (Fig 4G) were observed in this patient. Elevated perfusion based on the

CBV (Fig 4D) and HDI-PF (Fig 4H) maps was found in the high-grade brain tumor lesion.

Fig 3. Imaging from a woman in her 70s diagnosed with World Health Organization grade II recurrent

oligodendroglioma. (A) The T1-weighted post-contrast image shows a lesion with decreased signal intensity. (B) The

fluid-attenuated inversion recovery image and (C) the diffusion magnetic resonance imaging-derived apparent

diffusion coefficient show a lesion with an increased signal. (D) The dynamic susceptibility contrast-derived cerebral

blood volume map and the Heterogeneity Diffusion Imaging-derived (E) cellularity fraction, (F) slow hindered

diffusion fraction, (G) fast hindered diffusion fraction, and (H) perfusion fraction maps were generated on manually

defined tumor regions and overlaid on the fluid-attenuated inversion recovery image. No elevated cerebral blood

volume and Heterogeneity Diffusion Imaging-derived slow hindered diffusion fraction and perfusion fraction are

shown in the tumor region. The elevated Heterogeneity Diffusion Imaging-derived cellularity fraction and fast

hindered diffusion fraction are shown in the tumor region.

https://doi.org/10.1371/journal.pone.0225093.g003
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Fig 4. Imaging from a man in his 50s diagnosed with World Health Organization grade III oligodendroglioma.

(A) The T1-weighted post-contrast image shows a lesion with decreased signal intensity. (B) The fluid-attenuated

inversion recovery image and (C) the diffusion magnetic resonance imaging-derived apparent diffusion coefficient

show a lesion with an increased signal. (D) The dynamic susceptibility contrast-derived cerebral blood volume map

and the Heterogeneity Diffusion Imaging-derived (E) cellularity fraction, (F) slow hindered diffusion fraction, (G) fast

hindered diffusion fraction, and (H) perfusion fraction maps were generated on manually defined tumor regions of

interest and overlaid on the fluid-attenuated inversion recovery image. The elevated cerebral blood volume and

Heterogeneity Diffusion Imaging-derived cellularity fraction, slow hindered diffusion fraction, fast hindered diffusion

fraction, and perfusion fraction are shown in the tumor region.

https://doi.org/10.1371/journal.pone.0225093.g004

Fig 5. Boxplots of imaging metrics. There is no group significant difference in (A) apparent diffusion coefficient or

(B) Heterogeneity Diffusion Imaging (HDI)-derived cellularity fraction between the World Health Organization

(WHO) II and III groups. (C) The HDI-derived slow hindered diffusion fraction is significantly higher in the WHO III

group as compared with the WHO II group. (D) There is no group significant difference in HDI-derived fast hindered

diffusion fraction between the WHO II and III groups. (E) The cerebral blood volume is significantly higher in the

WHO III group as compared with the WHO II group. (F) The HDI-derived perfusion fraction is significantly higher

in the WHO III group as compared with the WHO II group. Boxes indicate 25th to 75th percentiles, and thin lines

indicate 5th and 95th percentiles. �, P< .05.

https://doi.org/10.1371/journal.pone.0225093.g005
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Imaging metrics including ADC, CBV, and HDI-derived indices were compared between

the WHO II and III groups at the tissue sampling sites, and details are shown in Fig 5. No

group significant difference was found in ADC between the WHO II and III groups (Fig 5A).

The increasing trend of HDI-derived CF was observed in the WHO III group (Fig 5B). The

HDI-derived sHF was significantly elevated in the WHO III group as compared with the

WHO II group (Fig 5C). HDI-fHF was not significantly different between the WHO II and III

groups (Fig 5D). The CBV generated from DSC perfusion imaging was statistically signifi-

cantly higher in the WHO III group as compared with the WHO II group (Fig 5E). Similar to

the CBV metrics, the HDI-derived perfusion index (PF) was statistically significantly higher in

the WHO III group as compared with the WHO II group (Fig 5F).

The correlation coefficients between the DSC perfusion imaging and HDI metrics were

evaluated, as shown in Fig 6. A statistically significant positive correlation was seen between

CBV and HDI-derived PF (Pearson’s r = 0.77, P = .003) (Fig 6A). A significant positive correla-

tion between CBV and HDI-sHF (Fig 6B) was also noted (Pearson’s r = 0.83, P< .001). CBV

was not correlated with HDI-CF or HDI-fHF (Fig 6C and 6D).

Discussion

Tumor heterogeneity is ubiquitous, especially in malignant tumors [30], which can contain

different grades of tumor cells, edema, and vascular structures within each imaging voxel and

across the entire tumor. The complexity of the tumor microstructure imposes serious chal-

lenges for diagnosis, treatment planning, and post-treatment evaluation. HDI was developed

as a novel diffusion MRI technique to characterize tumor heterogeneity by separating and

quantifying multiple pathological components.

Although conventional diffusion-weighted imaging (DWI) and DTI have been employed to

characterize tumors and to evaluate treatment response in patients with primary brain tumors

Fig 6. The associations between dynamic susceptibility contrast-derived cerebral blood volume and Heterogeneity

Diffusion Imaging-derived indices. Scatter plots showing the significant correlations between (A) dynamic

susceptibility contrast perfusion imaging-generated cerebral blood volume (CBV) and Heterogeneity Diffusion

Imaging (HDI)-derived perfusion fraction and (B) CBV and HDI-derived slow hindered diffusion fraction in all

subjects at the tissue sampling regions. No significant correlations were found between (C) CBV and HDI-derived

cellularity fraction or (D) CBV and HDI-derived fast hindered diffusion fraction.

https://doi.org/10.1371/journal.pone.0225093.g006
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[9, 12], these methods are not capable of detecting multiple tumor pathologies due to their sin-

gle diffusion tensor assumption. ADC measures from DWI have been widely used in diagnos-

tic oncology, and the reduced ADC of some tumors has been associated with a high density of

tumor cells [9]. However, the sensitivity and specificity of ADC for detecting malignant

tumors may be decreased by the edema and/or tumor necrosis that coexists in the lesions [31].

The development of advanced models and model-free diffusion MRI techniques has dem-

onstrated improvements in tumor detection and characterization. For example, by making no

assumptions about tissue composition, diffusion kurtosis imaging provides a model-free way

to quantify non-Gaussian water diffusion [32]. This type of imaging has demonstrated its sen-

sitivity for grading tumors [33] as well as its high diagnostic accuracy for separating low- from

high-grade gliomas through meta-analysis [34]. Similarly, the stretched exponential method—

developed to describe diffusion-related signal decay as a continuous distribution, with no

assumptions made about the number of participating sources [35]—has demonstrated better

performance for differentiating tumor grades as compared with ADC and DTI [36]. Although

both the diffusion kurtosis imaging and stretched exponential methods show that non-Gauss-

ian diffusion effects can be used as general heterogeneity biomarkers, it is unknown whether

the non-Gaussian diffusion effects are mainly contributed by tumor cells or by the neuronal

structures invaded by the tumor. Generalized q-sampling imaging derives complex intravoxel

and intervoxel fiber alignment in tissue [37]. A rodent and human glioblastoma study has indi-

cated that q-sampling imaging detected unique intratumor structural features that correlate

with both intratumor biological heterogeneity and overall survival [38]. However, no isotropic

diffusion components directly associated with tumor cells were included in the present study.

Restriction spectrum imaging is an advanced DWI modeling technique that allows for the

more direct measurement of tumor cells due to its ability to distinguish among different pools

of water within tumor tissues [39]. Previous studies have demonstrated that the restriction

spectrum imaging index has increased sensitivity and specificity as compared with ADC for

the assessment of brain tumors [39]. Model-based advanced diffusion methods have the

advantage of providing more specific subvoxel information. HDI was developed on the basis

of the data-driven multicompartment model DBSI [16–20], with the extension of the full iso-

tropic diffusion spectrum to 40 μm2/ms. This pilot study demonstrated that HDI is capable of

imaging and quantifying multiple tumor pathological components and microvascularity per-

fusion simultaneously within brain tumors in a single clinical diffusion scan, which distin-

guishes it from previous models.

In this study, HDI employed CF and sHF images to characterize the spatial distributions of

tumor cellularity and its packing density, which cannot be revealed from conventional ADC

maps and other advanced diffusion methods. The representative images from one low-grade

tumor patient with WHO II oligodendroglioma (see Fig 3) and one high-grade tumor patient

with WHO III oligodendroglioma (see Fig 4) showed very heterogeneous tumor cellularity dis-

tributions. The conventional ADC measurements were incapable of differentiating between

patients with WHO II and III tumors (see Fig 5A), thereby demonstrating ADC’s limited capa-

bility for characterizing heterogeneous tumor microenvironments. HDI-CF showed an

increased trend in the WHO III group as compared with the WHO II group, but no statisti-

cally significant difference was found (see Fig 5B), probably due to the small sample size. Inter-

estingly, HDI demonstrated that the WHO III group had a much higher HDI-sHF than that

found in the WHO II group (see Fig 5C), which suggests that there are more densely packed

tumor cells in the WHO III group as compared with the WHO II group. The HDI-fHF find-

ings (see Fig 5D) demonstrated that the extracellular water fractions are comparable between

the two groups. These findings suggest that HDI parameters can better quantify the micro-

structural heterogeneity within tumors and that these parameters may provide higher
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sensitivity for categorizing tumors as compared with conventional ADC. In this pilot study, we

demonstrated the feasibility of using HDI to analyze heterogeneous brain tumors. No auto-

matic method was used to classify the tumor grades based on the HDI findings due to the

small sample size. A larger study will enable us to better define the relationship between tumor

grade and HDI distribution, which will allow for an automatic tumor grade evaluation.

The discovery of gadolinium tissue deposition [40] and the uncertainty surrounding its

effects compel the imaging community to find alternative methods for quantifying perfusion.

The conventional IVIM method [28] employs a simple biexponential model to quantify perfu-

sion (fast diffusion) and diffusion (slow diffusion) effects in biological tissue. Although con-

ventional IVIM-derived perfusion metrics have improved the diagnostic performance of

arterial spin labeling-derived cerebral blood flow and have a strong correlation with cerebral

blood flow [41], their accuracy and reliability have not been well accepted, at least partially due

to the associated overly simplified biexponential computation model for complex biological

tissues. To address this limitation of conventional IVIM, HDI incorporates the “ultrafast”

IVIM component associated with capillary blood perfusion [41] into the comprehensive

modeling of neuronal components, tumor cellularity, and extracellular water (Eq (1)). In this

study, the HDI perfusion component was compared with clinical DSC perfusion imaging in all

subjects. The strong correlation between HDI-derived perfusion and DSC-derived CBV (Fig

6A) and the similar spatial distribution patterns between those measures (see Fig 3D and 3H

and Fig 4D and 4H) suggest that the HDI-derived perfusion index holds great promise as a

complementary noninvasive method for accurately quantifying tumor CBV for patients who

cannot receive contrast material for clinical DSC scans. The findings that CBV correlated with

HDI-sHF (see Fig 6B) suggest that blood perfusion increases with an increased packing density

of tumor cells.

The results of the biopsy evaluation of tumors highly depends on the location of the tissue

sampling. The suboptimal selection of the biopsy site may lead to underdiagnosis, undertreat-

ment, and higher tumor recurrence rates. Conventional T1W or T2W imaging has been previ-

ously employed for MRI-guided biopsy [42], and DWI has also been used to optimize biopsy

target selection [43]. However, those imaging contrasts may not distinguish tumors from

other pathologies such as regions with edema or tumor necrosis. This study has demonstrated

that HDI could be a promising noninvasive tool for the guidance of biopsy, surgery, and

radiotherapy.

Each biopsy site represents a different region of tumor that is localized by the Stealth neuro-

navigational system and superimposed on both anatomical maps and maps of HDI-derived

indices. Spatial heterogeneity is a fundamental feature of brain tumors [44]. Different sampling

regions within one tumor usually have different characterizations, which is evidenced by the

diffusion and perfusion data from the same subject (see Fig 4). Thus, including multiple sam-

ples from the same subject will increase statistical power without biasing the analysis.

There are several limitations of this pilot study. First, the sample size is small. Future studies

with larger numbers of patients will be needed to further validate the HDI technique. Second,

the isotropic diffusivity thresholds were selected based on results from previously published

DBSI studies. More patient data and histology studies are needed to further refine and opti-

mize the threshold selection. Third, the fixed diffusion time employed in this study could lead

to potential overlapping among different isotropic components. Incorporating multiple diffu-

sion time measurement [45] could potentially improve HDI’s accuracy when characterizing

the tumor microenvironment.
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Conclusions

HDI was developed in this pilot study to noninvasively characterize brain tumor heterogene-

ity. The preliminary data demonstrate the capability of HDI to quantify the microenvironment

heterogeneity of brain tumors, including tumor cell fraction, packing density, edema, and cap-

illary blood perfusion in a single diffusion MRI examination. The HDI results are consistent

with pathology assessments of biopsy tissues and DSC measurements of blood perfusion.

Larger studies will be needed to further validate HDI and to establish its role in the clinical

management of patients with brain tumors.
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