
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

2019 

Co-registered photoacoustic and ultrasound imaging of human Co-registered photoacoustic and ultrasound imaging of human 

colorectal cancer colorectal cancer 

Guang Yang 

Eghbal Amidi 

William C. Chapman Jr. 

Sreyankar Nandy 

Atahar Mostafa 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F8517&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Guang Yang, Eghbal Amidi, William C. Chapman Jr., Sreyankar Nandy, Atahar Mostafa, Heba Abdelal, 
Zahra Alipour, Deyali Chatterjee, Matthew Mutch, and Quing Zhu 



Co-registered photoacoustic and
ultrasound imaging of human
colorectal cancer

Guang Yang
Eghbal Amidi
William C. Chapman, Jr.
Sreyankar Nandy
Atahar Mostafa
Heba Abdelal
Zahra Alipour
Deyali Chatterjee
Matthew Mutch
Quing Zhu

Guang Yang, Eghbal Amidi, William C. Chapman, Jr., Sreyankar Nandy, Atahar Mostafa, Heba Abdelal,
Zahra Alipour, Deyali Chatterjee, Matthew Mutch, Quing Zhu, “Co-registered photoacoustic and ultrasound
imaging of human colorectal cancer,” J. Biomed. Opt. 24(12), 121913 (2019),
doi: 10.1117/1.JBO.24.12.121913.

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 09 Dec 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Co-registered photoacoustic and ultrasound imaging
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Abstract. Colorectal cancer is the second most common malignancy diagnosed globally. Critical gaps exist in
diagnostic and surveillance imaging modalities for colorectal neoplasia. Although prior studies have demon-
strated the capability of photoacoustic imaging techniques to differentiate normal from neoplastic tissue in the
gastrointestinal tract, evaluation of deep tissue with a fast speed and a large field of view remains limited. To
investigate the ability of photoacoustic technology to image deeper tissue, we conducted a pilot study using a
real-time co-registered photoacoustic tomography (PAT) and ultrasound (US) system. A total of 23 ex vivo
human colorectal tissue samples were imaged immediately after surgical resection. Co-registered photoacoustic
images of malignancies showed significantly increased PAT signal compared to normal regions of the same
sample. The quantitative relative total hemoglobin (rHbT) concentration computed from four optical wavelengths,
the spectral features, such as the mean spectral slope, and 0.5-MHz intercept extracted from PAT and US spec-
tral data, and image features, such as the first- and second-order statistics along with the standard deviation of
the mean radon transform of PAT images, have shown statistical significance between untreated colorectal
tumors and the normal tissue. Using either a logistic regression model or a support vector machine, the best
set of parameters of rHbT and PAT intercept has achieved area-under-the-curve (AUC) values of 0.97 and 0.95
for both training and testing data sets, respectively, for prediction of histologically confirmed invasive carcinoma.
© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.24.12.121913]
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1 Introduction
Photoacoustic imaging (PAI) is an emerging technique that can
provide high optical absorption contrast images at reasonable
microscale resolution and clinically relevant depths.1 Several
studies have established that optical absorption parameters are
important biomarkers directly related to the tissue microvascu-
lature, tumor angiogenesis, or tumor hypoxia.2–4 In general, PAI
is classified into photoacoustic microscopy (PAM) and photo-
acoustic tomography (PAT).1 Previously, PAM and photoacous-
tic endoscopy have demonstrated the capability of detecting
human colorectal cancer.5,6 However, the low imaging speed
(limited by the laser repetition rate and scanning scheme), small
imaging area, and moderate penetration depth created obstacles
for clinical applications.

Compared with PAM, PAT is able to penetrate deeper with a
faster data acquisition speed and a larger field of view due to the
use of ultrasonic arrays and a wide optical beam. Several studies
have demonstrated that a PAT/US dual-modality imaging sys-
tem can provide anatomical and functional information in
tumors,7–13 but no prior applications in the human distal GI tract
have been reported using PAT/US dual-modality imaging.

Adenocarcinoma of the colon and rectum is the second most
common malignancy diagnosed globally and the fourth leading
cause of cancer mortality, with more than 100,000 new cases

diagnosed annually in the U.S.14,15 Accurate staging and
post-treatment surveillance of this prevalent disease are critical
because treatment strategies are predicated upon the stage at pre-
sentation and response to therapy—in some instances, detailed
imaging allows certain patients to avoid surgery altogether.
Although colonoscopy and biopsy are the gold-standard diag-
nostic tests for colorectal cancers,16 multiple imaging modalities
including optical imaging,17,18 endoscopic ultrasound (EUS),
pelvic magnetic resonance imaging (MRI), computed tomogra-
phy (CT), and positron emission tomography (PET) are also
utilized.

Unfortunately, each of these modalities has critical weak-
nesses when evaluating colorectal tumors. White light endos-
copy only detects macroscopic morphology and provides no
functional assessment of the imaged tissue. MRI has limited
between-slice resolution and is often unable to differentiate
early tumors from benign neoplasia, committing patients to
potentially more invasive treatment regimens than needed.19,20

Monitoring of tumors after chemotherapy and radiation with
MRI is often confounded by fibrotic reaction and edema, which
can appear similar to residual tumor.21 CT has poorer resolution
of the bowel wall layers in comparison to MRI, subsequently
limiting its ability to describe circumferential resection margin
status or serosal invasion in locally advanced cases.
Additionally, CT also cannot distinguish induration or peritu-
moral fibrosis from frank malignant disease with a high degree
of specificity, further limiting its application in local tumor
staging.19 PET imaging is also plagued by poor resolution, and
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EUS remains highly user-dependent and unable to resolve small
islands of the tumor.19 Therefore, a critical need exists for pre-
cise imaging modalities of colorectal tumors for both staging
and therapeutic response evaluations.

PAT, in contrast, uniquely provides functional imaging at
high resolution using hemoglobin as an endogenous contrast
agent. By detecting the abnormal vasculature that accompanies
colorectal malignancies, we hypothesized that this modality
might be able to identify malignant or residual tumors, other-
wise, undetectable by current clinical imaging. We, therefore,
performed the following pilot study to test a real-time co-regis-
tered PAT/US system prototype and assess its ability to delineate
differences between benign and malignant tissue. To the best of
our knowledge, this study is the first utilizing co-registered PAT/
US to evaluate human colon samples.

2 Methods

2.1 Human Sample Preparation

Freshly resected colon and rectum samples obtained from
patients undergoing surgery at Washington University School
of Medicine were imaged immediately after surgery. Patients
with known benign neoplasia (polyps) as well as malignancies
(adenocarcinoma) were eligible for imaging. Cancer patients
who had received preoperative treatment with chemotherapy
and /or radiation were also included. The study was approved
by the Institutional Review Board at Washington University
(#201707066). Informed consent was obtained from all patients.
Specimens were obtained from the operating room as previously
described.6

A total of 23 tissue samples were imaged in the pilot study
using the PAT/US system. This included untreated colorectal
adenocarcinomas (n ¼ 12), precancerous polyps (n ¼ 6), colo-
rectal cancer following chemotherapy or radiation and chemo-
therapy (n ¼ 4), and postpolypectomy (n ¼ 1). Two treated
patients have achieved complete pathological response and two
partial response. The majority of patients underwent hemicolec-
tomy for cancer and were found to have malignancy on histo-
logic analysis (Table 1).

2.2 Co-Registered Ultrasound-Guided
Photoacoustic Tomography System

Details of the real-time, co-registered PAT/US system used in
this study were discussed previously.11,22 The system consists
of three main parts: a Ti:sapphire laser (Symphotics TII, LS-
2134, Symphotics, Camarillo, California) optically pumped
with a Q-switched Nd: YAG laser (Symphotics TII, LS-2122),
an optimized optical fiber-based light delivery system,23 and a
commercial US system (EC-12R, Alpinion Medical System,
Republic of Korea) used for acquiring the corresponding US and
PAT data. With this system, pulsed laser light (pulse duration:
10 ns, pulse repetition rate: 15 Hz, 20 mJ∕pulse at 750 nm
wavelength) was delivered to tissue placed on a two-dimen-
sional motorized scanning stage. B-scan images were acquired
for four wavelengths (730, 780, 800, and 830 nm) at each area of
imaged tissue among the 23 specimens. The overall scanning
area varied from 1 to 3 cm while image acquisition time for
a region of interest (ROI) was 12 to 15 s with a frame rate
of 15 frames per second. For most of the samples, care was taken
to acquire images from abnormal tissues as well as correspond-
ing normal areas, as marked by a trained pathologist.

2.3 Extraction of Functional, Spectral, and Textural
Features

Several functional, spectral, and textural features were extracted
from the PAT and US data and images as given in Table 2.

2.3.1 Functional features

The relative oxy-hemoglobin (rHbO2) and deoxy-hemoglobin
(rHb) at each pixel can be calculated using the following
equations:

EQ-TARGET;temp:intralink-;e001;326;638rHbO2ðr; θÞ ¼ Cðr;ΔÞHbO2ðr; θÞ; (1)

EQ-TARGET;temp:intralink-;e002;326;594rHbðr; θÞ ¼ Cðr; θÞHbðr; θÞ; (2)

where Cðr; θÞ ¼ ΓC0ðr; θÞ∅ðr; θÞ, Γ is the tissue’s Grüneisen
parameter, C0ðr; θÞ is the system acoustic operator, and
∅ðr; θÞ is the local fluence, which can be approximated as wave-
length independent at the narrow wavelength window we have
used. Based on these equations, deriving rHbO2 and rHb
requires a known tissue fluence distribution. Since this distribu-
tion is difficult to determine in human tissue due to wide varia-
tion in composition, we computed relative rHbO2 and rHb
values instead. By summing the rHbO2 and rHb at each pixel,
the relative total hemoglobin (rHbT) for each pixel is computed;
the average rHbT for an ROI was then calculated by averaging
the rHbTs of all pixels in that ROI with a value at least half of the
maximum rHbT. All PAT images in the co-registered US and
PAT images were rHbT without any normalization.

2.3.2 Spectral features

Ultrasound images were employed to select a proper ROI cor-
responding to the lesion for PAT spectral feature calculations.9,24

First, PAT beam lines with a maximum value close to the back-
ground noise level of our co-registered US/PAT system (60 mV)
were ignored. The rest of the beam lines were gated by a ham-
ming window, and then their FFT in −10-dB frequency range
were calculated. Moreover, to cancel the frequency response of
the transducer and electrical receiving system,24 the spectra of
PAT beams were normalized to the spectra of an approximate
point-like target (a 250-μm black thread orthogonal to PAT im-
aging place with a varied distance to transducer from 0.5 to 7 cm
and a step of 0.25 cm).

After calibrating our data, each of the calibrated PAT spectra
was fitted linearly. The mean spectral slope (SS), midband fit
(MBF), and 0.5-MHz spectral intercept [0.5-MHz SI (PAT)]
were then calculated (Fig. 1). We chose 0.5-MHz spectral inter-
cept as a feature instead of 0 MHz because the lower bound of
our transducer in PAT mode is ∼0.5 MHz.

US spectral features were also calculated. To do this, similar
method as PAT spectral features extraction was followed. The
only differences were: first, the analysis was performed in the
frequency range of 3.5 to 7 MHz, which is the −10-dB fre-
quency range of the transducer in US mode. Second, the cali-
bration was performed using a reference gelatin-based phantom
constructed in our lab.25

2.3.3 PAT image features

After visual inspection of PAT frames of malignant and normal
colon samples, we noticed that the textures of these images
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looked different between the two types of samples. To confirm
our observation, we extracted PAT image features from available
image frames. To do so, a proper ROI was first chosen. To find
the center of this ROI, the region surrounding the lesion was
determined based on the US image, and the Radon transforms
at the two angles of 0 deg and 90 deg of the PAT image in this
region were calculated. Each of these Radon transforms was
then normalized to its own maximum values and a Gaussian
curve was fitted to each of them. The center of the square
ROI where the image analysis was performed was determined
by the means of these two Gaussian curves, and its size was
assumed to be 1 cm for all cases (Fig. 2).

Textural features of the normalized PAT images were calcu-
lated in the specified ROI.24 The first step in calculating these

features is to construct a gray-level co-occurrence matrix
(GLCM).26 GLCM quantifies how the pixels are connected in
the image. The size of this matrix was chosen as 16 × 16 pixels.
The value of pixel ði; jÞ of this matrix was chosen to be the num-
ber of times that gray levels i and j are adjacent to each other in
the PAT image. Note that we assumed that the two gray levels g1
and g2 are adjacent if g1 is positioned at the immediate left of
g2. After constructing the GLCM matrix, four textural features
were calculated for each PAT image frame using the following
equations:

EQ-TARGET;temp:intralink-;e003;326;109contrast ¼
XN−1

ji−jj¼0

ji − jj2
XN

i¼1

XN

j¼1

cði; jÞ; (3)

Table 1 Summary of specimens.

Patient ID Surgery Pathology

1 Total colectomy Moderately differentiated adenocarcinoma (T3)

2 Right hemicolectomy Tubular adenoma (precancerous polyp)

3 Right hemicolectomy Moderately differentiated adenocarcinoma (T2)

4 Sigmoid colectomy Treated moderately differentiated adenocarcinoma (T3); postchemotherapy

5 Right hemicolectomy Tubular adenoma (precancerous polyp)

6 Low anterior resection Complete pathologic response-no residual tumor after radiation and chemotherapy

7 Left colectomy Moderately differentiated adenocarcinoma (T2)

8 Low anterior resection Complete pathologic response-no residual tumor following radiation and chemotherapy

9 Low anterior resection Tubulovillous adenoma (precancerous polyp)

10 Right hemicolectomy Moderately differentiated adenocarcinoma (T3)

11 Right hemicolectomy Moderately differentiated adenocarcinoma (T2)

12 Right hemicolectomy Moderately differentiated adenocarcinoma (T4)

13 Right hemicolectomy Tubular adenoma (precancerous polyp)

14 Left colectomy Moderately differentiated adenocarcinoma (T4)

15 Left hemicolectomy Tubulovillous Adenoma (precancerous polyp)

16 Low anterior resection No residual tumor following prior polypectomya

17 Sigmoidectomy Moderately differentiated adenocarcinoma (T3)

18 Transverse colectomy Moderately differentiated adenocarcinoma (T2)

19 Low anterior resection Treated moderately differentiated adenocarcinoma (T3); postradiation and chemotherapy

20 Low anterior resection Moderately differentiated adenocarcinoma (T3)

21 Total colectomy Moderately to poorly differentiated adenocarcinoma (T3)

22 Right hemicolectomy Moderately differentiated adenocarcinoma (T3)

22 Sigmoid colectomy Tubular adenoma with a small invasive moderately

23 Right hemicolectomy Differentiated adenocarcinoma (mixed polyp and adenocarcinoma)

Note: T is the primary tumor depth of invasion per TNM guidelines.
aNo residual tumor was found after polypectomy. We have grouped this case with the complete responders.
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EQ-TARGET;temp:intralink-;e004;63;454correlation ¼
P

N
i¼1

P
N
j¼1ði − μiÞðj − μjÞcði; jÞ

σiσj
; (4)

EQ-TARGET;temp:intralink-;e005;63;405energy ¼
XN

i¼1

XN

j¼1

cði; jÞ2; (5)

EQ-TARGET;temp:intralink-;e006;326;741homogeneity ¼
XN

i¼1

XN

j¼1

cði; jÞ2
1þ ji − jj ; (6)

where cði; jÞ is the value of the ði; jÞ pixel of the GLCM, N is
the dimension of this matrix, and σ and μ are the standard
deviation and mean for row i or column j of the GLCM.

The standard deviation of the mean radon transform
(Sig_rad) was the last image feature that was calculated in this
study. To calculate this feature, the radon transform of the non-
normalized PAT image at angles 0 deg to 90 deg with a step of
1 deg were calculated and an average was taken over these trans-
forms. Then a Gaussian curve was fitted to this mean radon
transform and the standard deviation of this curve was
measured.

2.4 Feature Selection and Classification

A two-step approach was used to select features most likely to
differentiate normal from untreated malignant tissue. In the first
step, all previously discussed PAT/US features were tested in
univariate analysis between untreated cancer and normal
regions, and p values were generated by two-sample two-sided
Student’s t tests. The features where p > 0.05—which we con-
cluded a priori not to be significantly associated with malig-
nancy—were excluded from the classification model (Table 3).

Next, logistic a general logistic mode (GLM) and a support
vector machine (SVM) were used to evaluate the strength of
association of each feature with the ultimate tissue diagnosis,
and a prediction model was then constructed with significant
covariates. In total, 18 areas selected from 18 specimens and
12 malignant areas from 12 untreated cancer specimens were
used to construct and evaluate the prediction models. Out of
these, 12 normal and 8 malignant areas were used for prediction

Fig. 1 (a), (b) Co-registered rHbT and US images of (a) a cancerous and (b) a normal colon sample. (c),
(d) Calibrated PAT power spectra along with their fitted lines in the regions marked with the angular
dashed lines.

Table 2 Abbreviations.

Abbreviation Description

rHbT Relative total hemoglobin

SS (PAT) Mean PAT spectral slope

0.5-MHz SI (PAT) 0.5-MHz spectral intercept from PAT spectra

MBF (PAT) Mid-band fit from PAT spectra

SS (US) Mean US spectral slope

0.5-MHz SI (US) 0.5-MHz spectral intercept from US spectra

MBF (US) Mid-band fit from US spectra

Sig_rad Standard deviation of the mean radon transform

Homogeneity The homogeneity of image textures

Energy The grayscale distribution homogeneity of
images and texture crudeness

Contrast The sharpness of images and the depth of
texture grooves

Correlation The consistency of image texture

Journal of Biomedical Optics 121913-4 December 2019 • Vol. 24(12)

Yang et al.: Co-registered photoacoustic and ultrasound imaging of human colorectal cancer

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 09 Dec 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



model derivation and the rest (6 normal and 4 malignant areas)
for internal model validation. The receiver operating curve
(ROC) and the area under the curve (AUC) were used to evaluate
the accuracy of the model. Finally, a second prediction model

was constructed without rHbT to determine how limiting the
PAT/US device to a single wavelength would affect identifica-
tion of malignancies.

3 Results

3.1 Qualitative Analysis: Baseline Characteristics of
US and PAT Images

The colorectal tissues are composed primarily of fluid, lipid, col-
lagen, and muscle. The general architecture (from superficial to
deep) in a normal specimen is mucosa (fluid-filled cells sur-
rounded by lipid bilayers), submucosa (largely composed of
extracellular collagen matrix and some muscle fibers), muscu-
laris propria (muscle), and adipose tissue (lipid). In malignancy,
the individual cell types are similar but the architecture is dis-
torted as cancerous cells of mucosal origin penetrate into the
deeper layers of the organ. As these cells invade, the organized
structure of the tissue is lost.

Figure 3 shows specimen photographs, US images, co-
registered PAT/US rHbT maps as well as histologic images from
two representative regions of normal colon samples [Figs. 3(a)–
3(d) and 3(e)–3(h)] and two colorectal malignancies [Figs. 3(i)–
3(l) and 3(m)–3(p)]. The white arrows indicate the scanning
direction along which B-scans were recorded at four different
wavelengths (the imaging plane is perpendicular to the scanning
direction). In the standalone ultrasound images, the normal
layered structure of the colorectal wall is clearly delineated

Fig. 2 ROI selection for image analysis. The region covering the lesion is determined (left), and the
normalized Radon transforms at 0 and 90 deg are calculated. A Gaussian curve is then fitted to each
Radon transform. The center of the square ROI where the image analysis is performed is determined by
the means of these two Gaussian curves and its size is 1 cm.

Table 3 Significance testing of individual covariates as related to tis-
sue diagnosis.

Feature p-value

rHbT <0.001

SS (PAT) <0.001

0.5-MHz SI (PAT) 0.002

0.5-MHz SI (US) 0.01

Homogeneity 0.01

Energy 0.02

Sig_rad 0.03

MBF (PAT) 0.12

MBF (US) 0.23

SS (US) 0.55
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[Figs. 3(b) and 3(f)]. In the presence of malignancy, however,
this organized structure is distorted by the tumor and loses the
clear delineation of mucosal, submucosal, and muscular layers.
These findings mirror the differences in histology among the
specimens; in contrast to the ordered layering of the normal
colonic wall [images 3(d) and 3(h)], the tumors appear

disorganized with destruction of the underlying colonic archi-
tecture [images 3(l) and 3(p)].

Additionally, the rHbT maps computed from coregistered
PAT/US images of benign regions show significantly lower
rHbT signal [Figs. 3(c) and 3(g)] compared to the malignant
lesions [3(k) and 3(o)]. As demonstrated in these representative

Fig. 3 Color photograph, US image, rHbT map, and H&E image from representative areas of (a)–(h) two
normal regions and (i)–(p) two malignant regions of pretreatment colorectal cancer tissue. Red arrows
identify blood vessels within the histologic images.
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images, normal tissue was found to have almost no detectable
rHbT signal. In contrast, malignant tissue showed much higher
concentrations of hemoglobin around the tumor bed. Again,
these findings appear corroborated by histologic examination.
In comparison to the relative paucity of large blood vessels
in normal tissue, the malignancies were more vascular and

contained large blood vessels [red arrows in images 3(l)
and 3(p)].

It is interesting to note that fatty tissues have limited PAT
signals in the outer portions of the specimens. This is not sur-
prising since we are specifically targeting hemoglobin—which
is not concentrated in fatty tissue—as our chromophore of

Fig. 4 Color photograph, US image, rHbT map, and H&E image from representative areas of (a)–(d) a
pretreatment colorectal cancer, (e)–(h) a post-treatment colorectal cancer tissue with residual disease,
and (i)–(l) a post-treatment colorectal cancer tissue without residual disease.
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interest and therefore image within the 730- to 830-nm wave-
length range. Additionally, all PAT images are displayed with
the same dynamic range of −10 dB, so anything below this level
is not displayed. The fatty tissue, due to its lack of vascular
structures, falls below this range.

3.2 Evaluation of Treated Tumors

Figure 4 shows corresponding images from a representative
untreated colon cancer sample [Figs. 4(a)–4(d)], a colon tumor

treated with preoperative chemotherapy [Figs. 4(e)–4(h)], and
a rectal malignancy that received radiation and chemotherapy
prior to surgical resection [Figs. 4(i)–4(l)]. The untreated tumor
displayed findings consistent with other untreated colorectal
cancers: loss of layered wall structure, increase in rHbT signal,
and increased vascularity throughout the tumor bed. However,
treatment appears to reverse these changes. For example, PAT
signal appears to diminish with chemotherapy [image 4(g)]
and even disappear altogether with complete destruction of
the tumor [image 4(k)]. Additionally, ultrasound imaging

Fig. 5 Boxplots of (a) total hemoglobin, (b) the mean SS fromPAT spectra, (c) 0.5-MHz spectral intercept
from PAT spectra, (d) 0.5-MHz spectral intercept from US spectra, (e) energy from the second-order
statistics of PAT images, (f) homogeneity from the second-order statistics of PAT images, and (g) stan-
dard deviation of the mean radon transform.
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demonstrated a return to the normal wall structure with complete
tumor destruction [image 4(j)]. Histologic comparison among
specimens also correlated with these findings; reduction in vas-
culature along with return to a semiorganized mucosal structure
was noted throughout the treated specimens.

3.3 Quantitative Analysis

In addition to the above qualitative comparisons, a total of 23
areas obtained from 12 untreated malignant tumors, 6 polyps
(one has a small invasive component), 2 post-treatment com-
plete responders, 1 no residual tumor cell following prior poly-
pectomy, and 2 post-treatment nonresponders, as well as 18
normal areas from specimens of normal regions were used for
quantitative feature extraction. Thus a total of 41 areas were
used in Fig. 5. Note that one tumor area was selected from each
specimen. Five specimens did not have normal regions or nor-
mal regions were too close to the tumor for imaging, therefore,
18 normal areas were selected from 18 specimens. All tumor and
normal regions were identified by the attending pathologist.

Figures 5(a)–5(g) show the boxplots of the seven features
calculated from the functional, spectral, and image differences
between the different types of colorectal tissue. The n number
given in the plots corresponds to the total number of areas. The
malignant regions demonstrated elevated rHbT, 0.5-MHz SI
(PAT), and 0.5-MHz SI (US) score smaller (less negative) com-
pared to normal and precancerous regions. For SS (PAT), the
malignant regions score below normal and precancerous polyps.
Treated tumors with complete response were found to have sim-
ilar scores to normal tissue, whereas treated regions with
residual cancer have scores similar to untreated cancers. Due
to the limited number of treated cancers, statistics were not per-
formed for these two treated categories.

To distinguish untreated malignant from normal colon tis-
sues, GLM and SVM classifiers were established. These clas-
sifiers were developed using the independent features with a
p-value <0.05 between malignant and normal colon tissues.
To determine if two features are independent, a spearman’s cor-
relation was calculated between each pair of features (Table 4).
To train each classifier, we first used the feature with the lowest
p-value and then added other features to the feature set one by
one. We continued inclusion of the features to the feature set
until no increase in the AUC value for the testing data set was
observed. We found that when rHbT is included in the feature
set, the best performance of both GLM and SVM classifiers (the
highest AUC value for the testing data set) is achieved when
rHbT and 0.5-MHz SI (PAT) are employed to train the classifier

although SS (PAT) has a lower p-value than 0.5-MHz SI (PAT).
Adding other features did not improve the AUC for the testing
data set.

Figure 6 shows the ROC curves and AUC values of the train-
ing (left) and testing (right) data sets using GLM (top) and SVM
(bottom) classifiers. As shown in this figure, when the features
set include just rHbT, the AUC value for the training and testing
data sets are 0.95 and 0.93 for both classifiers, respectively.
Adding 0.5-MHz SI (PAT) to the features set, results in a sig-
nificant improvement in the AUC values for both training and
testing data sets (0.97 and 0.95 for the training and testing data
sets for both classifiers, respectively). The three image features
(Sig_rad, homogeneity, and energy) did not improve the AUC
values for both training and testing data sets.

Finally, the performance of GLM (top) and SVM (bottom)
classifiers without rHbT (the single-wavelength model) are pre-
sented in Fig. 7. Note that although the difference between some
of the PAT image features in malignant and normal samples is
statistically significant, none of these features improve the AUC
for the testing data sets. The best performance of GLM classifier
is achieved when the only spectral feature of SS(PAT) is
included in the feature set. The best performance of SVM clas-
sifier is achieved when spectral features of SS(PAT), 0.5-MHz
SI(PAT), and 0.5-MHz SI(US) are included in the feature set.
The testing AUC in this case is 0.89 for the GLM classifier and
0.91 for the SVM classifier.

4 Discussion and Summary
In this pilot study of co-registered ultrasound and PAT, we found
significant qualitative and quantitative differences between
malignant tumors and normal tissue within human colorectal
specimens. Specifically, the parameters rHbT, 0.5-MHz SI
(PAT), 0.5-MHz SI (US), and SS (PAT) differ between the two
tissue types imaged, suggesting that PAT may be able to differ-
entiate malignant from normal tissue in the colon and rectum.
Combined with the PAT system’s tissue penetration depth of
over 4 to 5 cm (depending on the background tissue optical
properties), these findings suggest that PAT may be able to aug-
ment extant radiographic technology in the diagnosis, manage-
ment, and surveillance of colorectal cancer.

As demonstrated by Xu et al.27 and Kumon et al.,28 PAT spec-
tral features are related to the size and concentration of the opti-
cal absorbers. The slope decreases (more negative) as PA
absorber sizes increase and the intercept increases (less nega-
tive) as the sizes and concentrations of the absorbers increase.
We believe that malignant lesions have larger absorber sizes and
higher concentrations compared with normal colorectal tissues

Table 4 The correlation between significant features used in this study.

SS (PAT) 0.5-MHz SI (PAT) 0.5-MHz SI (US) Homogeneity Energy Sig_rad

rHbT 0.65 0.45 0.27 0.34 0.41 0.37

SS (PAT) 0.67 0.23 0.42 0.46 0.29

0.5-MHz SI (PAT) 0.21 0.49 0.41 0.4

0.5-MHz SI (US) 0.41 0.37 0.31

Homogeneity 0.79 0.91

Energy 0.82
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due to their increased microvessel networks. As introduced by
Lizzi et al.,29 US SS depends on acoustic scatter size, whereas
spectral intercept depends on scatter sizes, concentrations, and
acoustic impedances of tissue scatter matrix. These parameters
have been found valuable to characterize liver, eye,29 prostate,30

and breast lesions.31 We believe that the distorted tissue archi-
tecture and abundance of cancerous cells are the source of the
US spectral contrast between malignant and normal colorectal
tissues. However, the findings of the PAT and US spectral fea-
tures of colorectal diseases may or may not be applicable to dis-
eases of other organs.

Several technical limitations must be considered with our
data. First, we imaged colorectal specimens obtained from rou-
tine surgeries and these tissues were typically with large patho-
logic components that often appeared malignant by visual
inspection after specimens were open. These lesions may or may
not need advanced PATand US features for diagnosis. However,
these lesions are excellent examples for identifying PAT and US
feature characteristics that differ between cancerous and normal
tissue. With this information known, we can target less obvious
lesions as we look to test the utility of the device in identifying
cancer margins and residual tumors after chemoradiation treat-
ment in patient.

The second limitation of this study is the low image resolu-
tion of our prototype. The image resolution is only ∼250 μm
due to the commercial endocavity ultrasound transducer array
(6-MHz central frequency, 80% bandwidth). Because this res-
olution will impact future clinical applications of the device,
we plan to upgrade the ultrasound system with a transducer

array of more than 15 MHz to address this problem in future
studies. Third, hemoglobin oxygen saturation (sO2) was not cal-
culated in this study since all specimens were imaged after
resection, resulting in significantly altered oxygen saturation
compared to normal living tissue. sO2 is a significant biomarker
for characterization of cancer11 and assessment of treatment
response.

Third, the limited sample size could lead to overfitting of the
classifiers if enough care is not taken to develop the classifiers.
As a rule of thumb, overfitting is least possible to occur if the
number of samples is 10 times or higher than the number of
independent predictors.32 Based on this rule, as we have a total
of 30 samples (18 normal colorectal tissues and 12 untreated
malignant colorectal tissues) for ROC analysis, the maximum
number of the predictors that should be used to avoid overfitting
would be three. Figure 6 shows that when rHbT is present in the
feature set, the best performances of both GLM and SVM are
achieved when rHbTand 0.5-MHz SI (PAT) are the only features
used to train the classifiers. Adding SS (PAT) to these feature
sets neither changes the value of the AUC for training data sets,
nor increases the AUC for the testing data set. Moreover, when
rHbT is not included in the feature set, employing the combi-
nation of SS (PAT), 0.5-MHz SI (PAT), and 0.5-MHz SI
(US) features for developing the classifiers would result in the
best performance of SVM classifier and SS (PAT) only would
result in the best performance of GLM classifier (Fig. 7).
Although adding Sig_rad increases the AUC value for the train-
ing data set, it decreases the AUC values for the testing data set
in both classifiers. This would mean that our classifiers have

Fig. 6 The ROC curve and their associated AUC values for the training and testing data sets in the
presence of rHbT in the feature set. (a), (b) GLM classifier performance. (c), (d) SVM classifier
performance.
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most probably been overfitted when four features have been
used. In this study, to further protect our classifiers from over-
fitting, repeated rounds (100 times) of cross validation were
applied by randomly selecting 2/3 of the samples for training
and 1/3 of the samples for testing. The average ROC and
AUC values were reported as the results.

In summary, a real-time co-registered PAT/US system was
used to image and characterize colorectal masses ex vivo in this
pilot study. Twenty-three colon and rectum samples (nineteen
colon and four rectums) were imaged, rHbTwas computed from
four wavelength data, and seven quantitative features were
extracted from PAT and US power spectra and images. In pre-
treated malignant colorectal tumors, we found the cross-section
structure to be highly disorganized with a significantly higher
rHbT concentration compared to normal and precancerous
regions. We performed classifications on the malignant and nor-
mal colon regions using GLM and SVM classifiers both with
and without tHb in the feature set. When rHbT was employed
to construct the classifiers with 0.5-MHz SI (PAT), GLM and
SVM classifiers achieved optimal AUC values for the training
and testing data sets (0.97 and 0.95, respectively). The small
number of treated tumors included in this dataset limits the stat-
istical power of the analysis, but the functional, spectral, and
image parameters do appear more similar to normal colorectal
tissue in tumors that have experienced complete responses com-
pared to partial responders. These results indicate potential of
using PAT/US for future cancer screening and post-treatment
surveillance of the colon and rectum. Moving forward, we plan

to increase the resolution of our system using a high-frequency
US array and then adapt the technology to an endorectal probe,
which will allow us to test the functional and spectral feature
differences in in vivo human tissue.
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