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Abstract 

A kinetic study of ethanol steam reforming was conducted with a commercial nickel-based catalyst. The 

reaction was studied at atmospheric pressure, with temperatures varying from 550 to 650°C, and 

residence times up to 25 h·g/Nm3. From the analysis of the product distribution, a scheme of reactions 

was proposed and used to simulate a pseudohomogeneous reactor and fit the kinetic parameters. Results 

show good fitting with the measured data. The kinetic expressions were profited towards the design of 

an integrated process of H2 production from ethanol which includes a parallel-plates reactor, a shell-and-

tubes membrane unit and auxiliary units. Results showed satisfactory thermal integration with 

efficiencies from 43 to 47% based on LHV values and from 52 to 57% based on HHV values. For three 

different simulation scenarios, outlet streams of about 10 molH2/h were obtained. The proposed scheme 
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showed robustness, accepting significant variations in the set conditions, and still maintaining the 

process operability. 

 

1. Introduction 

In the search of renewable energy sources, hydrogen is presented as an interesting alternative to fossil 

fuels, especially when it proceeds from biological raw materials 1. The main problem of this energy 

vector is its difficulty to be stored both in gas or liquid state, mainly for mobile applications, turning it 

into a technical bottleneck in the development of non-stationary fuel cell technologies 2. The use of a 

liquid fuel from which produce hydrogen directly on-demand could contribute to the solution of this 

technological issue. Concerning this, ethanol appears as an auspicious raw material since it presents easy 

storage, low toxicity and it possesses high energy density 3. First-generation bioethanol is achieved from 

fermentation of cereals, sugar cane or beetroot, among others 4,5. Interestingly, second-generation 

bioethanol can be obtained from non-food sources as non-food energy crops grown on marginal land 

unsuitable for crop production or from lignocellulosic biomass. This second-generation bioethanol is 

much more appealing than the first-generation one in terms of environmental issues and human health 6. 

Furthermore, the bioethanol introduction as a carrier of energy could reduce the carbon dioxide 

emissions about 30% 7. Catalytic ethanol steam reforming (ESR) is pointed as an excellent candidate to 

produce hydrogen/syngas, looking for diminishing the use of non-renewable sources, as natural gas. 

Some first approaches to this reaction were done in the early 1990s 8, and since then, a considerable 

effort has been put into intensifying the knowledge about the mechanism of the ethanol steam reforming 

reaction and avoiding/mitigating catalyst deactivation 9–11. Several different catalysts have been tested to 

develop optimal process implementations 12. Then, it is necessary for each ESR catalyst, to study its 
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3 

performance and mechanism, and to propose and adjust a reaction rate expression useful at the time of 

either design the reactor or optimize the global process. 

On the other hand, the global process integration represents itself another key point in the design of a 

fuel cell system. With the idea of achieving self-sustainability and minimize the use of external 

resources, fuel cell systems could present highly energetic integration if they are optimally designed 13. 

Through an energetic optimization, the process has been reported to achieve an energetic efficiency of 

38% 14, including, in this case, the efficiency of the fuel cell itself. A general layout for these kind of 

processes includes a fuel processor, hydrogen purification, the fuel cell itself, combustion system, and 

heat exchanger networks 12. It is reported that the efficiency could be incremented an extra 5% if the H2 

purification is made with membrane-based systems 15. 

This work presents reaction experiences of ethanol steam reforming over a commercial nickel-based 

monolithic catalyst under relevant and realistic operating conditions. Based on the results, a scheme of 

reactions satisfying the experimental observations is proposed and the data are used to fit the kinetic 

parameters of power–law-type expressions of the reaction rates. Subsequently, the adjusted kinetic 

model is profited towards the design and simulation of a complete ethanol processor for clean hydrogen 

production including evaporation, reaction, hydrogen permeation and thermal integration to feed a PEM 

fuel cell with a stream of 10 molH2/h. 

 

2. Material and methods 

2.1 Catalyst 

A monolithic commercial catalyst (ceramic, square channels, 400 cspi) was selected to carry out the 

ethanol steam reforming reaction. A washcoat thickness of about 40 µm in the central zone was 

estimated via SEM images (JEOL 35 CF), as presented in Figure 1. XRF (Magi´X with rhodium anode, 
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crystals of FLi 200, LiF220, Ge, PX1, PX4, PE, and detectors of flow and scintillation) and XRD 

(Philips PW 1710, cupper anode and graphite monochromator) analyses were performed towards a 

preliminary characterization of the washcoat. The results revealed that nickel is the active metal (ca. 

23% w/w) over a support of CeO2/Al2O3. 

 

Figure 1. SEM image of the washcoat. 

 

To evaluate the catalyst performance in reaction conditions, the catalytic washcoat was mechanically 

extracted from the monolith. The particle size distribution of the obtained powder was measured in 

homogenized suspensions by laser light diffraction using a Horiba LA-950 V2 device. The average 

particle size was 10.8 µm and the D90 parameter resulted 14.4 µm, i.e., 90% of the sample is below this 

value.  

The load of washcoat in the original monolith is of ca. 3.96 mg/cm2, which was estimated from the 

weight difference between the original commercial monolith and a fresh cordierite sample (same 

geometrical characteristics). This value is profited below towards the reactor design and simulation. 

 

2.2 Catalytic runs 
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All the reaction tests were conducted in a fully-automated kinetic unit (Microactivity Effi, Fig. 2). The 

experimental system includes the injection and evaporation of the liquid mixture (ethanol/water), 

electrical heating, and effluents collection, both gaseous and liquid. The liquid feed mixture was injected 

with a HPLC pump (Gilson 307). An electrical oven with electronic temperature control was used to 

thermostat the stainless-steel reactor (inner diameter 9 mm) where the powder catalyst was disposed. A 

K-type thermocouple was placed directly inside the catalytic bed to register and control the reaction 

temperature. The condensable compounds exiting the reactor were separated and collected by means of 

a condenser at 10°C using a Peltier-based device. The non-condensable fraction was quantified by 

gaseous chromatography (HP 4890D) using Porapak QS-AW and Molecular Sieve 5Å columns, and 

TCD. Moreover, the total volumetric flowrate of the gaseous stream and the liquid condensation rate 

were quantified in order to close element balances and ensure the reliability of the experiments.  

 

Figure 2. Experimental setup. 

 

50 mg of powder catalyst was used to evaluate the catalytic performance in the ESR reaction. The 

samples were diluted with quartz in a ratio 7:1 (quartz:catalyst, w/w) in order to diminish the thermal 
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effects of the reaction. All experiences were performed at a pressure of 1.13 bar. Before the runs, the 

catalyst was reduced at 600°C (heating rate 10°C/min) for 1 hour, in 10% H2/N2, with a total flowrate of 

100 mL/min. In all cases, the reactions were carried out with a molar ratio of water to ethanol of 6, to 

avoid or minimize carbon formation and subsequent catalyst deactivation. The experiments were 

performed at temperatures in the range 550-650°C, and with residence times up to 25 h·g/Nm3 (see 

definition in Eq. 1). For each test, steady state was reached after about 45 minutes and the operation was 

maintained for at least 2 hours to ensure stability and repeatability. The results of the catalytic tests are 

expressed in terms of ethanol or water conversion (Xi, Eq. 2) and products yield (Yi, Eq. 3). 

� = ���   (1) 

�� = �	
��	�	
 ∙ 100	             � = ������,��� (2) 

�� = �	�������
                      � = ������,���,��, ���, ���, ��, ����� (3) 

where �� is the molar flowrate of species � (mol/min), � is the mass of catalyst (g) and  �  is the 

volumetric flowrate of the inlet stream (Nm3/h).  

 

2.3 Kinetic model and parameters fitting 

According to references in literature 16, experimental observations regarding the ethanol steam 

reforming over Ni-based catalysts can be represented by ethanol dehydrogenation (EDH), ethanol 

decomposition (ED), acetaldehyde decomposition (AD), acetaldehyde steam reforming (ASR), methane 

steam reforming to CO2 (MSR) and water gas shift (WGS): 

EDH: ������ → ����� + �� (4) 

ED: ������ → 0.5	�� + 1.5	��� (5) 

AD: ����� → �� + ��� (6) 
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7 

ASR: ����� + ��� → 2	�� + 3	�� (7) 

MSR: ��� + 2	��� ↔ ��� + 4	�� (8) 

WGS: �� + ��� ↔ ��� + �� (9) 

A steady-state 1-D pseudohomogeneous mathematical model was implemented here to represent the 

laboratory reactor aiming the kinetic parameter fitting of the already presented reaction system (Eqs. 4-

9). Mass transfer limitations were initially neglected to accomplish the kinetic fitting. Once the reaction 

rates were available, they were used along with the size of the catalyst particles to check the original 

assumption according to theoretical criteria developed by Gonzo 17. A power-law model was selected to 

represent the kinetic mechanism. The model is assumed to be isothermal and isobaric. The system of 

simultaneous equations is the following: 

)��)� =* +,�- ∙ .-/-  (10) 

.012 = 3012 ∙ 4�2�5�� (11) 

.01 = 301 ∙ 4�2�5�� (12) 

.51 = 351 ∙ 4�2�4� (13) 

.567 = 3567 ∙ 4�2�4� ∙ 42�8 (14) 

.967 = 3967 ∙ :4;2< ∙ 42�8� − 4;8� ∙ 42��>?@,967 A (15) 

.�B6 = 3�B6 ∙ :4;8 ∙ 42�8 − 4;8� ∙ 42�>?@,�B6 A (16) 

3- = 3-C ∙ exp G−H-I ∙ J1K − 1KL?MNO (17) 

873.15 K was selected here as temperature of reference (Tref). The equilibrium constants are taken from 

literature 18 and are expressed as follows: 
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8 

logSC+>?@,967/ = 1910K − 11650K + 11.292 (18) 

logSC+>?@,�B6/ = 1910K − 1.784 (19) 

The kinetic constants and activation energies were adjusted with gPROMS 19. The objective function of 

the fitting procedure is: 

Φ = Y2 ln[2\] + 12min` a** * bln+c�-d� / + +ê�-d − e�-d/�c�-d� gh9	i
djS

h�	
-jS

h0
�jS k (20) 

where N is the total number of measurements taken throughout the experiments, θ is the set of model 

parameters to be estimated, NE is the number of performed experiments, NVi is the number of measured 

variables in the ith experiment, NMij is the number of measurements of the jth variable in the ith 

experiment, c�-d�  is the variance of the kth measurement of variable j in experiment i, ẑijk is the kth 

measured value of variable j in experiment i, and zijk is the kth model-predicted value of variable j in 

experiment i. 

 

3. Reaction Results 

For the selected experimental conditions, the observed reaction products were H2, CO2, CH4 and CO. 

For experiences at high temperature and/or residence times, total absence of acetaldehyde was measured 

in the outlet stream. Conversely, experiences with low residence times evidenced minor amounts of 

acetaldehyde. Only few experiences (at low T and τ) showed negligible quantities of ethylene; therefore, 

it was excluded from the kinetic scheme. As not carbon depositions were expected for the selected 

operating conditions (i.e., elevated temperatures and great excess of water), ethanol, water and 

acetaldehyde amounts were calculated for the condensate phase by closure of elements balance. Results 

are presented in Figures 3A, B and C, respectively. As shown, both ethanol and water conversions 
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9 

increase with temperature and residence time. Complete ethanol conversion is achieved for all 

temperatures with residence times high enough. Acetaldehyde is formed very fast, but its consumption is 

even faster, and the yield of this species remains low in all cases (YC2H4O < 0.01 mol/molC2H5OH).  

 

Figure 3. Ethanol (A) and water (B) conversion, and acetaldehyde yield (C). Continuous lines 

represent the results of the mathematical model of the reactor. 

 

Figures 4A to 4D show the evolution of the H2, CO2, CH4 and CO yields with residence time and 

temperature. While production of H2 seems to increase monotonically with both residence time and 
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10 

temperature, the CH4 yield present a maximum which is coincident with experiences where the ethanol 

consumption is not complete. The maximum in the CO yield at low temperatures is due to the CO 

formation from the ED or AD reactions and its consumption through WGS reaction. At higher 

temperature, CO yield augments monotonically since WGS reaction proceeds backwards due to its 

exothermic nature. This effect is also appreciated in the CO2 yield, which seems to have a maximum 

with respect to the temperature at about 625°C. 

 

 

Figure 4. Evolution of (A) H2, (B) CO2, (C) CH4, (D) CO. Continuous lines represent the results 
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11 

of the mathematical model of the reactor. 

 

The experimental studies described above were complemented with a 24-h stability test (see Figure 5). 

The experience was performed in 4 stages of 6-h each, maintaining an inert atmosphere (N2) among 

each operative day. The results show a remarkably stable operation, with high repeatability of the 

measurements. Ethanol conversion was complete along the whole test and low dispersion was found in 

the yields to the gaseous products. 

 

 

Figure 5. Stability test (yield to products, ethanol conversion) at T = 600°C and 

τ = 16 h·g/Nm3. Continuous lines represent the results of the mathematical model of the reactor. 

 

The results of the parameter estimation procedure, along with their correspondent standard deviations, 

are presented in Table 1. Two of the proposed reactions (ED and ASR) were omitted in the final scheme 

since the values of the kinetic constants were statistically non-different from 0. Moreover, the parity 

chart of molar flows (calculated vs. measured) is shown in Figures 6A and 6B. 
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Reaction 3-C [mol/(h·g·barn)] H- [kJ/mol] 

EDH (n: 1) 35.6 ± 1.0 101.2 ± 6.2 

AD (n: 1) 15130 ± 4200 388.4 ± 35.1 

MSR (n: 3) 119.8 ± 6.8 75.0 ± 11.7 

WGS (n: 2) 55.1 ± 4.7 64.0 ± 9.9 

R2: 0.988 

Table 1. Results of the parameter estimation. 

 

As seen in Figures 3-6, the achieved results present an overall reliable approximation to the 

experimental data. The values of the fitted activation energies were found to be in the range of those 

reported in the literature, as exposed in Tables 2 to 5. 

 

 

Figure 6. Parity plots of (A) C2H5OH, CO, CH4, CO2 and C2H4O, and (B) H2 and H2O. 
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lmnopn → lmnqp+nm Catalyst r [kJ/mol] 

This work 

Palma et al. (2014) 20 

 Morgenstern and Fornago (2005) 21 

García et al. (2009) 22 

Ni/Al2O3-CeO2 

Ni-Pt/CeO2 

Ni-Cu 

SnO2 

101.2 

74.0 

149.0 

66.0 

Table 2. Comparison of EEDH from different authors. 

lmnqp → lp + lnq Catalyst r [kJ/mol] 

This work 

Palma et al. (2014) 20 

Ni/Al2O3-CeO2 

Ni-Pt/CeO2 

388.4 

181.0 

Table 3. Comparison of EAD from different authors. 

lnq + m	nmp ↔ lpm + q	nm Catalyst r [kJ/mol] 

This work  

Mas et al. (2008) 23  

Hou et al. (2001) 24  

Wei and Iglesia (2004) 25 

Ni/Al2O3-CeO2 

Ni-Al-O 

Ni/Al2O3 

Ni/MgO 

75.0 

123.5 

109.4 

102.0 

Table 4. Comparison of EMSR from different authors. 

lp +nmp ↔ lpm +nm Catalyst r [kJ/mol] 

This work 

López et al. (2012) 26  

Sahoo et al. (2007) 27  

Xu and Froment (1989) 28 

Ni/Al2O3-CeO2 

Pd/Al2O3 

Co/Al2O3 

Ni/MgAl2O4 

64.0 

59.9 

71.3 

67.3 
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Table 5. Comparison of EWGS from different authors. 

The experience presenting the highest reaction rate (T = 650°C and τ = 1.67 h·g/Nm3) was selected to 

check the criteria to neglect mass transport limitations. The highest reaction rate was found to be for 

MSR reaction. Gonzo’s criteria17 establish that kinetic control is satisfied if the following relation 

applies: 

.967 ∙ Is�t? ∙ �;2< ≤ 0.9c  (21) 

For our case, the left-hand side of Eq. 21 was found to be 0.12 while the right-hand side was 0.79. 

Therefore, mass transport limitations can be neglected.  

As already stated, the adjusted kinetic parameters must be adapted to the monolithic geometry for 

subsequent modelling purposes. Considering the value of 3.96 mg/cm2, Table 6 shows the equivalent 

parameters which should be used to model a monolithic reactor. These equivalent values assume null 

internal diffusion limitations due to the low thickness of the washcoat 29. 

 

Reaction vwx [mol/(h·m
2
·bar

n
)] 

EDH 1408.4 

AD 599200 

MSR 4744.1 

WGS 2180.1 

Table 6. Equivalent parameters to be used in the monolithic reactor model. 

 

4. Process integration 

The obtained kinetic parameters were employed to design and simulate a complete ethanol processor 

including evaporation, reaction and hydrogen purification, aiming to feed a PEM fuel cell with a 
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15 

flowrate of 10 molH2/h, saturated in water. A simplified scheme of the simulated process (slight 

modification from ref. 12) is presented in Figure 7. 

 

 

Figure 7. Scheme of the simulated process. 

 

4.1 Parallel-plates reactor 

A one-dimensional heterogeneous model is selected to represent a parallel plates reactor where the 

hydrogen generation is intended. Figure 8A presents a schematic representation of the simulated reactor. 

The unit is constituted of alternated sections of monolithic structures which are separated by a metallic 

wall of thickness LW. Ceramic monolithic catalysts washcoated with the active phase studied in Section 

3, with square channels of width LX and length LR, are disposed inside the sections devoted to ethanol 

steam reforming. Conversely, while a stream of hot gases flowing co-currently through bare cordierite 
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monolith disposed in the alternate sections supplies the reaction heat through the metallic walls. The 

reactor is considered to be perfectly isolated from the environment (i.e., adiabatic reactor). 

Steady state operation along with neglectable pressure drop and perfectly distributed flux in all channels 

are assumed. Axial thermal conduction through the monoliths is neglected, based on both the low cross-

sectional area and the low conductivity of the ceramic material at hand. 

 

 

Figure 8. A) Parallel plates reactor. B) Shell and tubes membrane separator. 

 

The mathematical model that represents the reactor includes the following equations: 

ESR side 

Mass balance in the gas phase 

)��)e = yz ∙ 3{	� ∙ |} ∙ [��~ − ��], ��[0] = ��C	,
� = ������,���,��, ���, ���, ��, ����� 

(22) 

Mass balance in the catalyst 

3{	� ∙ |} ∙ [��~ − ��] =* +,�,d ∙ .d/d , � = ������,���,��, ���, ���, ��, ����� (23) 
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Energy balance in the gas phase 

)K)e = ℎ ∙ |} ∙ [K~ − K]�z ∙ �� , K[0] = KC (24) 

Energy balance in the catalyst 

[� ∙ |}] ∙ ℎ ∙ [K~ − K] + �� = −[� ∙ |}] ∙* [.d ∙ ∆�d]d  (25) 

Hot gas side 

Energy balance in the gas phase 

)K2B)e = ℎ2B ∙ |} ∙ [K2B~ − K2B]�z,2B ∙ ��,2B , K2B[0] = K2BC  (26) 

Energy balance in the ceramic 

[� ∙ |}] ∙ ℎ2B ∙ [K2B~ − K2B] + �� = 0 (27) 

Metallic wall 

Energy balance  

��K��e� + ��K���� = 0 (28) 

Heat transferred  

��	2B = |},� ∙ �� ∙ �K��� [∀e, � = 0] (29) 

��	067 = −|},� ∙ �� ∙ �K��� [∀e, � = ��] (30) 

K�[� = 0] = K2B~  (31) 

K�[� = ��] = K~ (32) 

The reaction rate expressions (rk) accounting for the ethanol steam reforming are those reported in 

Section 3. Transport coefficients (ℎ and 3{) are obtained from correlations reported in literature 30. 

Additional details and description on this model can be found elsewhere 31. 
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4.2 Hydrogen purification unit 

A membrane separator is intended here towards H2 purification (Fig. 8B). The unit comprises concentric 

membrane tubes inside an adiabatic shell where superheated steam is fed as sweep gas (stream 14) 32. 

The use of water as sweep gas enables an easy way of separating the permeated hydrogen through 

refrigeration and flash units (see Fig. 7). Moreover, in this way, a significant amount of the required 

water can be recovered and reused. The membrane tubes consist of a dense Pd layer over a porous 

ceramic support. The permeation process is assumed to be infinitely selective towards hydrogen. A one-

dimensional model has been selected to simulate the steady-state operation of the permeation unit, with 

the consideration of isobaric axial evolution. It is important to remark that the model is non-isothermal, 

which is not a frequent assumption in membrane models. This allows to consider the activation by 

temperature of the Pd-based membrane along the axial coordinate. The mathematical model that 

represents the membrane separator comprises the following equations: 

 

Shell side 

Mass balance 

� )��)e = 0)�2�)e = −�z ∙ \ ∙ ) ∙ �2� �
(3

3) 

Energy balance 

)K)e = −�z ∙ \ ∙ ) ∙ � ∙ [K − K�]�z ∙ �� , K[0] = K[�7] (34) 
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Tubes side 

Mass balance  

��
�)�2��)e = �z ∙ \ ∙ ) ∙ �2� �2�� [0] = 0)�2�8�)e = 0 �2�8� [0] = �2�8�,C  (35) 

Energy balance  

)K�)e = �z ∙ \ ∙ ) ∙ � ∙ [K − K�]�z� ∙ ��� , K�[0] = K�,C (36) 

 

The hydrogen permeation flux through the membrane is quantified by the Sievert’s Law 33: 

�2� = �C ∙ exp �− H�I ∙ K�� ∙ J�42� − �42�� N (37) 

The heat transfer coefficient (�) and permeation parameters (�C, H� and �) were evaluated according to 

ref. 34. 

 

4.3 Combustion chamber, heat exchangers and water separator 

A combustion chamber is included in the process both to preheat the reactor feed and to provide the 

reaction heat by taking advantage of the calorific value of the components in the retentate stream exiting 

the membrane separator (i.e., CH4, CO, retentate H2 and unconverted ethanol and acetaldehyde). The 

unit is modeled as an adiabatic chamber in which the retentate (stream 4) is co-fed with air in excess 

(stream 11) already preheated using the hot exhaust of the reactor (stream 8). The stream exiting the 

chamber (stream 6) is profited to evaporate and preheat the reactor process inlet stream (stream 2) up to 

the desired thermal level (HEX1). Then, the outlet stream of the heat exchanger (stream 7) enters in the 

alternate channels to provide the reaction heat through the metallic walls of the reactor.  
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The heat exchangers (HEX1, HEX2 and HEX3) are designed and simulated through enthalpy balances 

between the streams. The water recuperator is a simple isothermal flash unit, which was also simulated 

through enthalpy balances. 

 

4.4 Process simulation 

The proposed process was simulated with gPROMS 35,36. The system is fed with a stream of 29 mol/h of 

a solution of water and ethanol with a molar ratio of 6:1, pressure of 1.13 bar and temperature of 25°C 

(stream 1, Fig. 7) aiming to achieve a production of H2 of 10 mol/h to be fed into a fuel cell (stream 17, 

Fig. 7). Both fresh water and air streams (streams 12 and 10, respectively) are fed to the process at a 

pressure of 1.13 bar and temperature of 25°C. The steam flowrate fed to the membrane unit (stream 14) 

is calculated to fulfill a molar ratio of 1.5 in relation to the reformate flowrate exiting the reactor (stream 

3). In fact, the aim here is to ensure a low hydrogen partial pressure in the permeation side of the 

membrane unit. On the other hand, air flowrate (F10) is calculated by setting an air excess of 40% in the 

combustion chamber to ensure a complete conversion of fuels and to obtain an outlet stream of the 

combustion chamber with an energetic content (F6·h6) high enough to heat up the stream 1 up to the 

reaction condition and avoid an excessive cooling in the parallel plates reactor. The inlet temperature of 

the hot gases to the reactor (stream 7) is controlled by means of a by-pass in the heat exchanger HEX3 

which regulates the preheating of stream 11 (see Fig. 7). 

Thermal efficiencies for the overall process was defined as follows, with respect to lower heating values 

(LHV) and higher heating values (HHV): 

�� = �2�	�s	�09 ∙ �� 2��;�2�82C ∙ �� ;�2�82 (38) 

�2 = �2�	�s	�09 ∙ �� 2��;�2�82C ∙ �� ;�2�82 (39) 
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where �2�	�s	�09 is the flowrate of H2 fed to the PEM fuel cell, �� 2� and �� 2� are the lower and 

higher heating values of hydrogen, �;�2�82C  is the ethanol flowrate fed to the process, and �� ;�2�82 and 

�� ;�2�82 are the lower and higher heating values of ethanol.  

The hydrogen permeation effectiveness is quantified by means of a recovery factor, R, which represents 

the ratio of permeated to fed hydrogen flowrates in the membrane unit: 

I2� = ��2���2 ∙ 100 (40) 

The design parameters of the parallel plates reactor and the membrane unit are presented in Tables 7. 

Parallel plates reactor Membrane separator 

n 300 nT 30 U 15 W/m2·K 

LX 1.1 mm d 13.4 mm Q0 7.7·10-5 mol/(s·m·bar0.5) 

LR 0.18 m LM 0.18 m EP 16300 J/mol 

LW 1.0 mm DM 0.11 m δ 60 µm 

 Table 7. Design parameters of the parallel plates reactor and the membrane unit. 

 

Figure 9 shows results of the simulation of the integrated H2 production process for one of the studied 

cases (Case A). In addition, Table 8 presents the main results of the complete process simulation with 

the above-specified operating conditions. The selected reactor design, operating with KC 	= 	600°� and 

K2BC = 700°�, leads to a high degree of thermal integration. In fact, as can be observed, in less than 2 

cm from the reactor entrance, the temperature of the process and hot gases are completely coupled, 

letting the reactor transfer heat with minimal ∆K between adjacent sections but with high values of qw 

(heat per unit area). This design also avoids a high ∆K���?��s���?� inside the reactor. The theoretical 

adiabatic temperature drop is of about 125	> due to the high endothermicity of the ESR reaction, while 
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a �K ≅ −50	> is observed here for the process stream. In the membrane unit, the operation is performed 

using superheated steam as sweep gas, which is profited not only for refrigerating the process gas 

stream, but mainly for lowering the hydrogen partial pressure to promote the permeation process. 

Besides, vapor condensation is intended at the exit of the membrane unit to recover a water-saturated 

hydrogen stream, and to minimize the required fresh water flowrate (stream 12) which amounts only 

11.5% of the feed to the separator.
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Stream [#] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

T [°C] 25.0 600.0 551.3 402.6 402.1 1352. 700.0 552.0 506.4 25.0 11.4 25.0 73.5 300.0 79.9 79.9 79.9 

F [mol/h] 29.00 29.00 41.35 31.40 71.97 77.87 77.87 77.87 77.87 49.70 49.70 7.14 62.02 62.02 71.97 54.88 17.08 

C2H5OH [%] 14.29 14.29 0.10 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

H2O [%] 85.71 85.71 43.30 57.01 86.18 35.11 35.11 35.11 35.11 0.00 0.00 100. 100. 100. 86.18 100. 41.78 

H2 [%] 0.00 0.00 36.76 16.73 13.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.82 0.00 58.22 

CO2 [%] 0.00 0.00 11.81 15.55 0.00 10.64 10.64 10.64 10.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CH4 [%] 0.00 0.00 4.91 6.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CO [%] 0.00 0.00 3.12 4.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C2H4O [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

O2 [%] 0.00 0.00 0.00 0.00 0.00 3.83 3.83 3.83 3.83 21.00 21.00 0.00 0.00 0.00 0.00 0.00 0.00 

N2 [%] 0.00 0.00 0.00 0.00 0.00 50.42 50.42 50.42 50.42 79.00 79.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table 8. Stream conditions from process simulation (Case A). The whole process is considered isobaric at P = 1.13 bara. 
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Figure 9. Temperature (A) and hydrogen yield (B) axial profiles in the reactor and membrane 

units, for Case A. 

 

Additionally to Figure 9, Table 9 sums up the main indexes of the process performance for Case A. As 

seen, ethanol conversion in the reactor is slightly below 100%. This is based on the global 

endothermicity of the reaction which makes the temperature drop, slowing the reaction rate down. 

However, the desired H2 production is achieved satisfactorily under the selected conditions. 

Furthermore, thanks to the use of steam as sweep gas, stream 17 is saturated in water at about 80°C, 

which is a desired condition to feed a PEM fuel cell 37. For this case, the permeated hydrogen yield is 
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2.40 ¡¢£2�/¡¢£0�82 (I2� = 65.4%), which is below the value of �2� = 3.67 obtained in the reactor, 

but, on the other hand, the membrane separator delivers a pure hydrogen stream to be fed directly to the 

cell. The achieved thermal efficiencies are in the range of those reported in literature 14,15, although the 

fuel cell efficiency was not included in our calculation. This points a satisfactory performance of the 

hydrogen production system. Moreover, the energetic content of the off-gas (stream 9) would still be 

high enough to preheat an extra air stream to be fed to the fuel cell since it is at about 500°C. 

Results from two more simulation scenarios are presented in Table 9. Case B reports results of a system 

simulation fed with a lower flowrate of stream 1 (50% of Case A) aiming to achieve a closer approach to 

equilibrium in the ESR reaction and a higher residence time in the permeation unit. On the other hand, 

Case C comprises the same conditions of Case A, except for the temperature of the hot gases feeding the 

reactor (stream 7), which is increased from 700°C up to 750°C to transfer heat at a higher thermal level, 

looking for an increase in the reaction rates. 

The proposed process conditions showed good performance in terms of hydrogen production and 

thermal integration, achieving self-sufficiency in terms of energy for the three exposed cases. Case B 

shows an improved ethanol conversion in the reactor than Case A, with minimum augment in hydrogen 

yield and but a significant improvement in thermal efficiency due to the permeation performance. The 

augment of YH2 in the reactor is not as relevant as it could be since H2 production via the MSR reaction 

is equilibrium-limited. Case C, instead, leads to a similar conversion of ethanol than in Case B, but the 

production of hydrogen improves regarding the other cases due to a higher thermal level in the reactor. 

Besides, in Case C, stream 9 (i.e., the off-gas) is obtained at a lower temperature while the hydrogen 

yield is augmented, which is another indicator of a higher degree of thermal integration. 
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The almost-constant temperature of stream 17 and the low variability in the membrane recuperation for 

the hydrogen, for the different cases A-C, is a clear indication of the process robustness since, despite 

the system conditions, the design can still fulfill the required goals. 

 

Variable Case A Case B Case C 

��2�5�� after reaction [%] 99.04 99.7 99.7 

�2�  after reaction [¡¢£2�/¡¢£0�82] 3.67 3.69 3.92 

�2�  after permeation [¡¢£2�/¡¢£0�82] 2.40 2.58 2.58 

I2�  [%] 65.4 70.0 65.7 

�2�  to PEM [¡¢£2�/ℎ] 9.94 5.31 10.69 

K to PEM (stream 17) [°C] 79.9 79.2 79.9 

�2�8 (fresh) required (stream 12) [ % of total] 11.5 11.7 12.2 

K¦§§�¨©ª (stream 9) [°C] 506.4 458.7 446.4 

�2 [%] 52.8 56.4 56.8 

�� [%] 43.3 46.2 46.6 

Table 9. Main results of process simulation. 

 

5. Conclusions 

This work presents the study of a complete ethanol processor for hydrogen production through the 

kinetic study of a nickel-based catalyst and integrated process simulation. The selected structured 

catalyst showed satisfactory reaction performance operating at realistic process conditions (P = 1.13 

bara, T = 550 – 650°C, τ = 0 – 25 h·g/Nm3, undiluted feed). In all reaction experiences negligible 
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amounts of ethylene were observed in the gas phase. Additionally, carbon balances pointed a non-

relevant carbon deposition.  

A phenomenological reaction system based on power-law-type expressions was used to describe the 

reaction behavior of the structured catalyst. The proposed scheme of reactions involves the 

decomposition of ethanol to acetaldehyde and water with the subsequent decomposition of acetaldehyde 

to CO and CH4, followed by the methane steam reforming and the water gas shift reactions. The 

collected experimental data were used to fit the kinetic parameters of the power-law reaction expressions 

(preexponential constants and activation energies). Moreover, activation energies were found to be in 

the range of those exposed by other authors. 

The achieved reaction system was profited towards the simulation of the complete pure hydrogen 

generation process, including the ESR reactor, a hydrogen purification membrane unit, a combustion 

chamber and auxiliary heat exchangers. Results showed satisfactory thermal integration with efficiencies 

in the range from 43 to 47% based on LHV values and from 52 to 57% based on HHV values. For three 

different simulation scenarios, outlet streams of about 10 mol/h of pure hydrogen were obtained, aiming 

the feed of a PEM fuel cell. The proposed scheme showed robustness in terms of hydrogen recuperation 

in the membrane, temperature to the fuel cell, fresh water required, accepted significant variations in the 

operating conditions, and it still maintained the process operability. 

 

6. Nomenclature 

yz  Cross-sectional area of flux in the parallel plates reactor. ¡� 

|} Specific area of the monolithic structure in the PPR. ¡�/¡« 

|},� Specific area of heat transfer between zones in the PPR. ¡�/¡« 

�� Concentration of species i, in the gas phase. ¡¢£/¡« 
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��~ Concentration of species i, in the catalytic phase. ¡¢£/¡« 

�� Heat capacity of gaseous streams in the parallel plates reactor. �/¡¢£ ∙ ℃ 

) Diameter of tubes of the membrane separator. ¡ 

t?  Effective diffusivity ¡/ 

H- Activation energy of reaction j. �/¡¢£ 
H� Activation energy of the membrane. �/¡¢£ 
�� Molar flow of species i. ¡¢£/ 

��C Fed molar flow of species i. ¡¢£/ 

ℎ Heat transport coefficient. �/¡�> 

∆� Enthalpy change of reaction. �/¡¢£ 
�2�  Flux of permeated hydrogen in the membrane separator. ¡¢£/ ∙ ¡� 

3{	� Mass transport coefficient of species i. ¡/ 

3- Kinetic constant of reaction j, at temperature T. See units in Tables 1 and 6. 

3-C Preexponential constant of reaction j. See units in Tables 1 and 6. 

>?@,- Equilibrium constant of reaction j. ¡ 

�9 Length of the membrane separator ¡ 

�7 Length of the parallel plates reactor ¡ 

�� Width of the metallic wall of the parallel plates reactor. ¡ 

�� Width of the channel of the monolith. ¡ 

� Number of channels of the monolith in the parallel plates reactor. - 

�z  Number of tubes in the membrane separator. - 

4� Partial pressure of species i. ®|. 
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�C Preexponential coefficient of permeation. ¡¢£/ ∙ ¡ ∙ ®|.C.� 

�� Heat transferred between zones in the parallel plates reactor. �/¡� 

I2�  Hydrogen recovery factor % 

.- Rate of reaction j. ¡¢£/¡� ∙  

I Universal constant of gases. �/¡¢£ ∙ > 

Is  Radius of catalyst particle ¡ 

K Temperature of gas phase. > 

K� Temperature of gas phase (permeated stream). > 

K~ Temperature of catalytic phase in the parallel plates reactor. > 

KL?M Temperature of reference. > 

K~ Temperature of metallic phase in the parallel plates reactor. > 

� Global heat transfer coefficient in the membrane separator. �/¡� ∙ > 

 �  Volumetric flow. Y¡«/ℎ 

� Mass of catalyst. ¡¯ 

� Transversal coordinate in the metallic wall of the parallel plates reactor. ¡ 

�� Conversion of reactant i. % 

�� Yield to product i. ¡¢£/¡¢£ 
e Axial coordinate. ¡ 

� Thickness of membrane. ¡ 

�� Process thermal efficiency based on higher heating values. % 

�2  Process thermal efficiency based on lower heating values. % 

�� Metallic wall thermal conductivity in the of the parallel plates reactor. �/¡> 
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,�- Stoichiometric coefficient of species i in the reaction j. - 

c  Parameter used to check mass transport limitation. See ref. 17 for more information. 

� Residence time. ℎ ∙ ¯/Y¡« 
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