
This version is available at https://doi.org/10.14279/depositonce-9391

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

© ACM 2019. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of the 2019 Workshop on
Network Meets AI & ML - NetAI’19, http://dx.doi.org/10.1145/3341216.3342206.

Shukla, A., Hudemann, K. N., Hecker, A., & Schmid, S. (2019). Runtime Verification of P4 Switches with
Reinforcement Learning. Proceedings of the 2019 Workshop on Network Meets AI & ML - NetAI’19.
https://doi.org/10.1145/3341216.3342206

Apoorv Shukla, Kevin Nico Hudemann, Artur Hecker, Stefan Schmid

Runtime Verification of P4 Switches with
Reinforcement Learning

Accepted manuscript (Postprint)Conference paper |

Runtime Verification of P4 Switches
with Reinforcement Learning

Apoorv Shukla
TU Berlin

Kevin Nico Hudemann
TU Berlin

Artur Hecker
Huawei Technologies

Stefan Schmid
Faculty of Computer Science, University of Vienna

ABSTRACT

We present the design and early implementation of p4rl, a system
that uses reinforcement learning-guided fuzz testing to execute the
verification of P4 switches automatically at runtime. p4rl system
uses our novel user-friendly query language, p4q to conveniently
specify the intended properties in simple conditional statements
(if-else) and check the actual runtime behavior of the P4 switch
against such properties. In p4rl, user-specified p4q queries with the
control plane configuration, Agent, and the Reward System guide
the fuzzing process to trigger runtime bugs automatically during
Agent training. To illustrate the strength of p4rl, we developed
and evaluated an early prototype of p4rl system that executes
runtime verification of a P4 network device, e.g., L3 (Layer-3) switch.
Our initial results are promising and show that p4rl automatically
detects diverse bugs while outperforming the baseline approach.

KEYWORDS

Network Verification; P4; Machine Learning; Fuzzing

1 INTRODUCTION

With the emergence of P4 [1] programmable data planes, it has
become possible for the network operators to develop and deploy
their customized and flexible packet processing programs to achieve
fine-grained custom capabilities. P4 allows the programmers to
define how a data plane device should process the packets and
thus, break free from the vendor-specific expensive hardware and
proprietary software. P4 allows programmers to define the multiple
pipeline stages of packet processing: the packet parser, the packet
processing (ingress and egress), and the deparser that dictate the
packet processing behavior of the data plane switch.

With the programmability, however, the verification of the run-
time network behavior has become increasingly complex. Run-
time bugs or faults may cause serious network outages or security
threats, which is why the network verification is critical. Current ap-
proaches focus mainly on the static analysis [2–5] of P4 programs.
We, however, realize that static program analysis is insufficient
when it comes to extensively and automatically verifying the run-
time behavior of a P4 switch as P4 programs alone do not determine
the forwarding behavior. Indeed, the actual forwarding rules pro-
vided by the control plane at runtime or statically when the P4
program is deployed as well as the switch-dependent components
determine the network forwarding behavior. Thus, there is a dire
need for runtime verification.

An interesting solution is fuzz testing or fuzzing [6, 7], a well-
known dynamic program analysis technique that generates semi-
valid, random inputs which trigger abnormal program behavior.

However, in order for fuzzing to be efficient, intelligence needs to be
added to input generation, to maximize the number of bugs found
while providing minimal inputs. This becomes crucial especially
in networking, where the input space is huge and complex, e.g.,
a 32-bit destination IPv4 address field in a packet header has 232
possibilities and with the 5-tuple flow, the input space gets even
more complex. In order to make fuzzing more effective, we consider
the use of machine learning, to guide the fuzzer to generate smart
inputs which trigger abnormal program behavior. In recent years,
artificial intelligence and machine learning have gained attention to
solve very complex problems, also in the area of networking [8, 9].
A variety of algorithms and approaches exist, which can be mainly
categorized into supervised, semi-supervised, unsupervised and
reinforcement learning [10]. In contrast to the other approaches,
reinforcement learning aims at enabling an agent to learn how to
interact with an environment, based on a series of reinforcements,
meaning rewards or punishments received from the target environ-
ment. The agent observes the environment and chooses an action
to be executed. After the action is executed, the agent receives a
reward or punishment from the environment. While the goal of
learning is to maximize the rewards, we argue it is equally crucial
to design a machine learning model which is general enough for
any kind of target environment.

This paper presents our novel approach for P4 switch verifica-
tion, p4rl, a system that relies on the combination of fuzzing and
reinforcement learning techniques to automatically and efficiently
verify P4 switches at runtime. Using Double Deep Q Networks
(DDQN) [11], we ensure that the evaluation of an action is inde-
pendent of the selection of an action. Thus, we avoid the problem
of overfitting for a given target environment. Furthermore, the
prioritized experience replay [12] helps to avoid oscillations or
divergence of parameters in the machine learning Agent. In ad-
dition, to specify the intended network behavior, e.g. P4 switch,
we provide an easy-to-use query language, p4q, so that users can
conveniently specify the expected packet processing behavior in
the conditional if-else statements and verify such behavior against
the actual behavior. p4q works in conjugation with p4rl.

The three main challenges in the design of p4rl are: 1) care-
ful selection of a suitable machine learning solution in a scenario,
where provisioning of training data in desired quality and quantity
is not feasible. 2) designing a general machine learning model for
any kind of target environment. 3) dealing with the problem of
smart input generation, especially crucial for the initial phase of
the fuzzing process.
Our contributions in this paper are:
•We introduce a novel machine learning-guided fuzzing system,

1

, ,

Ingress
Match-Action PREParser

IPv4 w/
options

Egress
Match-Action

Parser MyParser(...){
(…)

state parse_ipv4 {
pkt.extract(hdr.ipv4);
transition accept;
}
(...)

}

(...)
update_checksum(
 (...)

{ hdr.ipv4.version,
 …
hdr.ipv4.dstAddr },

 (…);)
(...)

Figure 1: Example of a target device-independent bug.

p4rl that performs automatic runtime verification of P4 switches
to detect diverse runtime bugs;
• We design a novel and user-friendly query language, p4q, for
expressing the intended P4 switch behavior;
• We develop an early prototype of p4rl and evaluate it on a P4
network running real P4 application [13]. Our initial results show
that p4rl can detect different bugs, while outperforming the base-
line approach by around 4 times;
• p4rl software is publicly available at: https://gitlab.inet.tu-berlin.
de/apoorv/P4ML.

2 MOTIVATING EXAMPLES

Software bugs or errors can occur at any stage in the P4 processing
pipeline: parser, ingress match-action, packet replication engine
(PRE), egress match-action and deparser. Note all stages except the
PRE, are P4 programmable while PRE remains as a vendor specific,
fixed function component.

There can be, however, bugs in the parser code, e.g., when not or
incorrectly checking the header fields, such as IPv4 header length
(ihl) or TTL field. As an example, consider the scenario in Figure 1
that illustrates part of the implementation of L3 (Layer-3) switch,
provided in the P4 language tutorial solutions [13]. Here, the parser
accepts any kind of IPv4 packets and does not check if the IPv4
header contains IPv4 options or not, i.e., if IPv4 ihl field is not
or is equal to 5. When updating the IPv4 checksum of the packets
during egress processing, IPv4 options are not taken into account,
hence for those IPv4 packets with options, the resulting checksum
is wrong causing such packets to be incorrectly forwarded instead
of getting dropped. This leads to anomaly in the network behavior.
Currently, the detection of such runtime bugs is non-trivial. We call
such errors as target device-independent bugs, as these only result
from programming errors involving one of the P4 programmable
stages.

These are, however, not the only kind of bugs that can occur.
The interaction of the P4 program with the PREmay result in an un-
intended behavior as well, which we call as target device-dependent
bugs. The PRE is responsible for carrying out several forwarding
actions, such as clone, multicast, resubmit or drop. The pro-
grammer uses standard metadata to communicate the forwarding
action to the PRE, which interprets it and executes the actions ac-
cordingly. It is, however, very common to have situations where
conflicting forwarding actions are selected. Consider a scenario
where a P4 program implementing at least two tables, where one
could be an IPv4 longest prefix match (LPM) table and a following
table an access control list (ACL). If packets are matched by the
LPM table and a clone decision is made, those packets later, get

P4 Switch

P4Runtime

Control
Plane P4 Network

User written
queries (p4q)

P4RL

AgentReward
System

1. Get CP
config

3. Send packets & monitor

4. Get Reward

2. Select fuzz action

Figure 2: p4rl SystemWorkflow.

dropped by the ACL table. In such a case, the forwarding behavior
depends on the implementation of the PRE, which is target device-
dependent. The implementation of PRE of the simple switch target
in the behavioral model (Bmv2) would drop the original packet,
however, incorrectly forward the cloned copy of the packet. Sim-
ilar runtime bugs can be seen, if instead of clone, multicast or
resubmit actions are chosen.

Target device-independent or -dependent bugs are present in
many real-world P4 applications. Currently, the aforementioned
runtime bugs cannot be detected by the existing static analysis
approaches [2–5].

3 p4rl: SYSTEM DESIGN

3.1 Overview

To address the limitations of current verification approaches il-
lustrated by the previous example scenario (§2), we propose our
novel verification system, p4rl (P4 Reinforcement Learning). Our
approach is based on mutation-based fuzzing in combination with
reinforcement learning techniques. We also provide a language, p4q
for expressing the expected P4 switch behavior conveniently and
check the actual runtime behavior of the P4 switch against such
behavior.

Figure 2 illustrates an overview of the p4rl system. First, the user
specifies the behavioral properties of the network to be verified.
Together with the configuration of the control plane, it is the input
for the Reward System, providing the basis for the verification. The
reinforcement learning Agent defines the mutation actions to be
applied for each individual packet to be generated. Agent adjusts
its future action selection using the information returned by the
Reward System, about the processing of packets done by the P4
switch/es.

We, now provide details on the brain of p4rl system:Agent (§3.2),
p4q query language (§3.3), and p4rl workflow (§3.4).

3.2 Machine Learning-guided Fuzzing

In contrast to the static program analysis, dynamic program anal-
ysis can be used to test the forwarding behavior of a data plane
device at runtime. Executing the program verification as a runtime
task may lead to high costs in the dynamic network environment,

2

https://gitlab.inet.tu-berlin.de/apoorv/P4ML
https://gitlab.inet.tu-berlin.de/apoorv/P4ML

Runtime Verification of P4 Switches
with Reinforcement Learning , ,

Insert random
bytes at position X

Insert byte from
dict at position X

2. Select fuzz action
based on current state

Available mutation actions:

State: Packet header, e.g.:

Ethernet IPv4 TCP/UDP

3. Apply action
to packet

1. Observe

P4 Switch

4. Send packet

Check behavior
& generate

reward

5. Receive
Reward

Agent

Figure 3: Reward System (green) and Agent (yellow) interactions.

if done naively. Fuzz testing or fuzzing [6, 7] is a popular dynamic
testing approach, relying on generating or mutating inputs for the
program under test. In the case of P4 programs or data plane de-
vices in general, the number of possible inputs for the different
header fields is huge and complex, e.g., just for one IPv4 destina-
tion address field there are 232 possibilities, and with the 5-tuple
flow, the input space gets even more complex. Hence, a solution
for verifying P4 data plane devices, relying on fuzzing as dynamic
testing technique needs to tackle these problems. The incorpora-
tion of feedback generated by the target system guides and adds
intelligence to the fuzzing process. Feedback-driven fuzzing is also
widely adopted, e.g., by afl [6], but current feedback-driven fuzzers
lack the ability to reason about the relation of mutation actions and
states. We, however, realized that awareness of the relationship be-
tween actions and states is highly important to reduce the number
of inputs needed to trigger bugs, even though this might introduce
higher complexity for the fuzzing process.

Using state of the art machine learning techniques, it is possible
to create complex models and enable efficient reasoning about
the connection of mutation actions and states. Relying solely on
neural networks, or other common classification techniques, would
require a lot of input data or training data. Together with the need
for knowing the kind of packets that trigger bugs in the program,
it does not prove to be a viable solution. In contrast, reinforcement
learning approaches are widely adopted in the area of artificial
intelligence, e.g., learning to play complex games like Go, making
it apt for enabling intelligence to the fuzzing process.
p4rl Reinforcement Learning: Our novel methodology aims
at overcoming the problems discussed by interpreting mutation-
based fuzzing as reinforcement learning problem. Furthermore, we
aim at designing a solution able to generalize for different target
environments. Feedback is generated using the control plane con-
figuration and queries defined with p4q (§3.3). The control plane
configuration contains not only the forwarding table contents but
also information about the P4 program generated by the compiler.
Doing so enables the system to determine if the data plane device
behaves as expected or a bug was triggered. To formalize mutation-
based fuzzing as a reinforcement learning problem, states, actions

and rewards are defined. States: The states are defined as the se-
quence of bytes forming the packet header. Actions: The set of
actions is defined as the set of mutation actions for each individual
header field. It can be either inserting random bytes or bytes from a
pre-generated dictionary. Reward: The reward can be immediately
received by the Agent, after the mutated packet was sent to the
data plane device (switch) and the results of the execution are eval-
uated. In any scenario, it is likely to experience sparse rewards, so
to send a lot of packets that will not trigger any bug. Accordingly,
the reward is defined as 0 if the packet did not trigger a bug and 1
if the packet successfully triggered a bug to avoid divergence and
oscillations during Agent training.

The pre-generated dictionary (dict) is generated using the con-
trol plane configuration and queries defined with p4q. The control
plane configuration comprises the table contents, target-dependent
configuration and the compiled P4 program in JSON format. From
these, the packet header fields and layouts can be derived. Available
boundary values for the header fields are extracted from the p4q
queries (§3.3). Figure 3 illustrates the combination of reinforcement
learning and mutation-based fuzzing. First, the Agent observes the
current state of the environment, hence, the current packet header.
The observed state is the input for the algorithm of theAgent, which
outputs the fuzz action. The selected action is applied for the given
packet, and the packet is sent to the P4 network. After the packet
is processed, the behavior is evaluated and the reward is generated
and returned to the Agent. The Agent uses the received reward to
improve the action selection in subsequent executions.

3.2.1 Agent. The Agent houses our novel reinforcement learn-
ing algorithm (§3.2.2), which is inspired by Double Deep Q Net-
work (Double DQN) [11], an improved version of Deep Q Networks
(DQN) [14]. The key idea of the algorithm is to feed the current
state of the environment to a neural network, to predict the action
the Agent shall select to maximize future rewards. We used Double
DQN algorithm [11] as it splits the selection of an action in a certain
state, from the evaluation of that action. To realize this, it uses two
neural networks. The online network executes the action selection
and the target network evaluates that action. Doing so, significantly
reduces the problem of overoptimism in action selection during
learning. Overoptimism means, to overestimate the future rewards
of certain actions. Accordingly, reducing overoptimism improves
the learning process of the Agent, helps in avoiding overfitting and
thus, help in creating a model able to generalize for different tar-
get environments. In order to apply the algorithm to our scenario,
several customizations and improvements were necessary.

Experience replay [15] is a technique used to eliminate problems
of oscillation or divergence of parameters, resulting from correlated
data. Experiences of the Agent, hence, a tuple comprising the cur-
rent state, predicted action, reward received and resulting state are
saved in the memory of Agent. For learning by experience replay,
random samples from past experiences are selected to update the
neural network model. Problems arise in the case of sparse rewards,
meaning when the Agent only receives rewards in a small number
of trials. When randomly selecting experiences in such a case, most
likely an experience that did not generate reward is returned. To
overcome this, we apply a simple form of prioritized experience
reply, inspired by [12]. In a nutshell, we sort the memory of the

3

, ,

Agent by absolute reward, and weight (prioritize) each experience
by a configurable factor and the index.

3.2.2 Agent Training Algorithm: Now, we will present the train-
ing algorithm of the Agent in p4rl system. As a first step, the
weights of online and target networks are initialized. For each trial
of the Agent, a packet header in byte representation is chosen from
a pre-generated set of packet headers randomly. This byte sequence
will then be converted to a series of float representations. To ensure
diverse action selection, the Agent either selects the action for the
current state randomly with a configurable probability or uses its
online network to predict the action to be executed. The next step
is to execute the selected action, observe and save the result in
the experience memory. A sample is selected out of memory M to
calculate a value, which is used to calculate the categorical cross
entropy loss and perform the stochastic gradient descent step for
updating the network weights.

3.3 Query Language: p4q
Together with the goal of automating the P4 network verification
process, it is indispensable to provide a language to query the
P4 network behavioral properties. To this end, we propose p4q,
a query language to specify the expected network behavior and
check it against the actual behavior. One of the major design goals
of p4q was to provide a user-friendly interface for p4rl. To achieve
this, the p4q syntax is kept simple. Each property to be checked
is described as a tuple, in an if-then-else conditional statement.
The user specifies the conditions to be fulfilled by the packet at
switch ingress (if), together with conditions the packet should
fulfill at egress (then). Optionally, the user can describe alternative
conditions e.g., when the conditions in the “then” branch are not
fulfilled at egress (else). Each of these conditions are defined by
using the specified p4q syntax and grammar.

The p4q grammar allows common boolean expressions and re-
lational operators as they can be found in many programming
languages like C, Java or Python, to ease the work for the program-
mer. The boolean expressions and relational operators have the
same semantics as common logical operators and expressions. Vari-
ables can either be integers, header fields, header field values, or
the evaluation result of the primitive methods, e.g., calcChksum()
and table_val(). Each header has a prefix (ing. or egr.) indicating
whether the packet is arriving at the ingress or exiting the switch
at the egress.

Figure 4 illustrates an example of how the packet processing
behavior of an IPv4 layer 3 (L3) switch, written in P4, can be queried
easily using p4q. Query 1 (lines 1-3), defines that incoming packets
with a wrong IPv4 checksum are expected to be dropped. Similarly,
the following four queries (lines 4-13) express the validation of
the IPv4 version field, the IPv4 header length, the packet length
and the IPv4 time-to-live (TTL) field for packets at ingress of the
switch respectively. However, there are also conditions for pack-
ets at the egress of the switch. These conditions are described by
Query 6 (lines 14-19). Namely, changing source and destination
mac addresses to the correct values, decrementing the TTL value
by 1, recalculating the IPv4 checksum and emitting the packet out
the correct port as instructed by the control plane.

Figure 4: p4q L3 (Layer 3) Switch Example.

3.4 p4rlWorkflow

As illustrated in Figure 2, to initialize p4rl, the intended behavior
of the P4 switch is described using p4q. The queries are imported
by the Reward System to determine the boundary values for certain
header fields and later on, enable the verification. If a query specifies
to compare a header field with a specific value, the boundary val-
ues are slightly below and slightly above the specified value. Note
boundary values have a higher probability to trigger bugs: they are
valid enough to pass through the parser, but invalid enough to trig-
ger problems further. In addition, the control plane configuration
or the table contents as well as target-dependent configuration, e.g.,
clone or multicast, is used as well. The control plane configurations
contain the compiled P4 program in JSON representation, so the
Reward System can determine the supported header layouts.

With the available information, the Reward System generates
two sets of packets. The first set comprises packets with mostly
valid headers. It is used as a sample for the initial environment states
(seeds). The second set contains packets with headers containing
available boundary values. This set is the dictionary (dict) used by
the Agent if action of inserting bytes from dict is chosen.

As soon as the initialization is done, theAgent observes the initial
state of the environment. A packet header is randomly chosen
from the set of initial environment states. The Agent uses this as
input for its online network to predict an action to be selected, or
an action is selected randomly, to ensure diverse action selection.
The Reward System executes the action on behalf of the Agent, and
sends the packet with the mutated packet header, to the ingress
port of the P4 switch. The Reward System monitors the ports of
the switch to capture the packet after it is processed. It uses the
imported queries and a copy of the packet which was sent to the
P4 switch to determine if the processing was as expected. In case
a bug was triggered, the corresponding packet is saved to help
the user find the source of the bug. Based on that information,

4

Runtime Verification of P4 Switches
with Reinforcement Learning , ,

Reward System generates the reward and returns it to the Agent.
The reward is then used by the Agent to update its neural networks
and the process is executed again. After a configurable timeout, if
no bug is detected anymore, the process ends and the bug-triggering
packets will be returned together with the violated properties to
guide the programmer in localizing the potential faults, e.g., faulty
header fields.

4 PROTOTYPE & EVALUATION

4.1 p4rl Prototype

We implemented a prototype of p4rl using Python version 3.6.
The implementation of the Agent uses Keras [16] library with Ten-
sorflow backend. The monitoring and packet generation is imple-
mented using Scapy [17]. Currently, Agent is trained individually
for every condition of each query. In addition, the individual train-
ing runs are executed sequentially, however, it could be parallelized.
behavioral model (Bmv2) [18] with simple switch target, for P416
programs, is executed using Mininet. P4Runtime [19] implements
the control plane module. For sending the control plane configu-
rations to the Reward System, we provide a module to be imported
and invoked by the control plane module. Currently, the P4 switch
runs in a Virtual Box VM [20]. All experiments were conducted
on an 8 core 1.80 GHz Intel Core I7 CPU machine, with 24 GB of
RAM and running Ubuntu 18.04.2 LTS operating system. The P4
switch (P416, Bmv2 simple switch target) deployed in Mininet [21],
the control plane component (P4Runtime), as well as the monitor-
ing instances, run in a Virtual Box VM on the same machine. The
Reward System and Agent are executed on the host machine na-
tively. The Virtual Box VM runs Lubuntu (Light version of Ubuntu)
16.04.4 LTS operating system, using 2 Cores of the CPU and 2 GB
RAM.

4.2 Evaluation

To evaluate p4rl, the verification of an L3 switch implementation
in P416 [22] is executed, but the P4 network is initially limited to a
single P4 switch only. We rely on the openly available L3 switch
example, provided as part of the P4 language tutorial solutions [13].
For querying the P4 switch behavior, we implement the queries
defined in Figure 4. Furthermore, we limit the maximum number
of packets to be sent for each training run to 200. We execute
the experiment 10 times, to account for its stochastic nature. Our
metrics for evaluation are:mean cumulative reward (MCR) and bug
detection time. Note p4rl Agent uses exactly the same set of hyper-
parameters and neural network architecture during the experiment,
as we are aiming for a generalized model.
Baseline:We compare p4rl against the baseline of anAgent relying
on random action selection. Similar but not as intelligent as p4rl
Agent, i.e., it can still execute the same mutation actions without
learning which actions lead to reward.

Figure 5a, 5b show the mean cumulative reward (MCR) of p4rl
compared to the baseline, for Query 3 and 6 (line 15) in Figure 4.
In total, 7 distinct and target device-independent bugs were found by
p4rl, violating the queries defined by Query 1-5, and the conditions

defined in lines 17, 18 of Query 6. Two of them, violating Query 1
and Query 6 (line 18), are checksum related bugs, current solutions

could not have detected. Four bugs, violating the queries defined
by Query 2-5, are related to wrong IPv4 header validation. Namely,
not validated IPv4 version, TTL, header length and total length
fields. The remaining bug is about the wrong IPv4 TTL decrement
in case of TTL = 0, violating Query 6 (line 17). The baseline was
also able to detect these bugs, due to the availability of the smart
inputs. Note the purely random packet generation approach was not

able to trigger any bug, given the number of packets was limited
to 200 for each run, and the huge state space of IPv4 destination
address field, i.e., 232. Therefore, we decided to omit the results as
the cumulative reward remained 0 over all executions. Our results
demonstrate that p4rl Agent is able to learn a strategy for trigger-
ing the runtime bugs. Note the motivating example (§2), describing

target device-dependent bugs involving clone, resubmit or multicast

operations, cannot be detected by p4rl.

Figure 5c shows the cumulative distribution function (CDF) for
the speedup (Baseline/p4rl bug detection time) to quantify the gains
of the intelligence of trained p4rl Agent. We observe that p4rl is
up to 4.42× faster than the baseline. For about 57% of the time, p4rl
was able to perform 3.3× faster than the baseline. For about 28%,
p4rl only provided a speedup of 1.3×, which are the cases when
no bug was present. Since, p4rl Agent chose to send packets with
IPv4 destination address outside of the accepted subnet ranges less
frequently, it was able to complete the runs faster.

Other results, not included due to space constraints, show that p4rl

consistently outperforms baseline in MCR and bug detection time

over other queries mentioned in Figure 4.

5 RELATEDWORK

Recently, multiple approaches for the P4 program verification have
been proposed. Majorly, the existing tools are based on static analy-
sis [2–5] of the P4 program and thus, fail to detect the runtime bugs
or faults. Considering the example of a target device-independent
or -dependent bugs illustrated in §2, the current solutions [2–5]
are not able to detect such bugs, as they rely on static analysis and
thus, executing runtime verification to observe the device behavior
on various inputs is not feasible. In particular, if the parser in a P4
switch fails to check the IPv4 ihl field, the checksum is updated in-
correctly leading to anomaly in the network behavior. For instance,
the runtime verification of hash computations cannot be supported
by the symbolic execution solutions [2, 4, 5]. Similarly, if the parser
in a P4 switch fails to check the IPv4 ihl field, the checksum is
updated incorrectly leading to anomaly in the network behavior.
To detect such a problem is non-trivial, especially if the verification
tools assume the faulty programs to be correct. p4rl detects such
runtime faults. In-band network telemetry (INT) [23] only collects
the data plane information, such as the traversed path of a packet,
the ports taken, queue lengths or latency, however, unlike p4rl,
INT cannot verify the correct forwarding behavior. Cocoon [24]
aims at iterative verification as a part of the software design process
using stepwise refinement approach. While this approach leads to
programs matching their specification, it requires huge amount
of additional and manual user input. In dynamic environments,
where requirements can change quickly, such a manual approach
is cumbersome and error-prone. [25–27] perform modelling of the

5

, ,

(a) Query 3 in Fig. 4 (b) Query 6 (line 18) in Fig. 4 (c) p4rl speedup against the baseline

Figure 5: Evaluation Results

network from the control plane to check the reachability, loop free-
dom, and slice isolation. ATPG [28] generates test packets based
on control plane configuration for functional and performance
verification in traditional networks and SDNs. [25–28], however,
assume that control plane has consistent view of the data plane.
[29–31] use different machine learning approaches for finding vul-
nerabilities or compiler specific-bugs which cause crashes, however,
they are insufficient for network-related verification. p4rl executes
verification to identify the bugs in a P4 switch.

6 DISCUSSION

Generalization: In order to greatly reduce the chance of overfit-
ting, we train p4rl Agent using a single algorithm, the same set
of hyper-parameters, as well as neural network architecture, for
detecting different kinds of bugs or errors. Otherwise, it would
not be possible to apply p4rl system to other P4 applications and
packet headers.
LearningNewReward Functions:Reinforcement learning agents
are only able to learn if the defined reward function reflects the
learning goal correctly. In case of training the Agent for each query
individually, a simple reward function was shown to be sufficient
for effective learning. We consider adjusting parts in the developed
model, e.g., reward function to optimize the Agent.
Improvement in the guiding of fuzzing process: Reinforce-
ment learning and p4q guide the fuzzing process and make it fo-
cused. There is, however, still room to improve the guiding of the
fuzzing process to make it even more effective. Fuzzing process can
be augmented with software testing techniques like static analysis
to reduce the huge and complex input search space.

7 CONCLUSION & FUTUREWORK

Wehave presented p4rl, a system for executing runtime verification
of P4 switches automatically. p4rl via machine learning-guided
fuzzing detects complex runtime bugs which cannot be detected
by static analysis techniques. Through experiments on existing P4
applications, we show that p4rl outperforms the baseline approach.

As a part of the future work, processing of the queries defined
using p4q and optimizations to p4rl Agent will be studied. We plan
to extend the device-dependent queries to the p4q repertoire. The

localization of the faults detected by p4rl and the corresponding
corrective measures lays the groundwork of our future work.

8 ACKNOWLEDGEMENT

We thank Anja Feldmann, Georgios Smargadakis, Bhargava Shastry,
and our anonymous reviewers for their helpful feedback. This work
and its dissemination efforts were conducted as a part of Verify
project supported by the German Bundesministerium für Bildung
und Forschung (BMBF) Software Campus grant 01IS17052 and by
the European Research Council (ERC) grant ResolutioNet (ERC-
StG-679158).

REFERENCES

[1] P4 Language Consortium. https://p4.org/specs/.
[2] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu. Debugging

P4 programs with Vera. In ACM SIGCOMM, 2018.
[3] J. Liu,W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H.Wang, C. Caşcaval,

N. McKeown, and N. Foster. P4v: Practical verification for programmable data
planes. In ACM SIGCOMM, 2018.

[4] M. Neves, L. Freire, A. Schaeffer-Filho, and M. Barcellos. Verification of P4
Programs in Feasible Time Using Assertions. In ACM CoNEXT, 2018.

[5] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and M. Barcellos.
Uncovering Bugs in P4 Programs with Assertion-based Verification. In ACM

SOSR, 2018.
[6] Michal Zalewski. American fuzzy lop: a security-oriented fuzzer. URl:

http://lcamtuf. coredump. cx/afl/(visited on 06/21/2017), 2010.
[7] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: whitebox fuzzing for security

testing. Comm. of the ACM, 55(3), 2012.
[8] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis. In-network Com-

putation is a Dumb Idea Whose Time Has Come. In ACM HotNets, 2017.
[9] S. Salman, C. Streiffer, H. Chen, T. Benson, and A. Kadav. DeepConf: Automating

Data Center Network Topologies Management with Machine Learning. In ACM

NetAI, 2018.
[10] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall

Press, 3rd edition, 2009.
[11] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double q-learning. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[12] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[13] P4 Tutorial. https://github.com/p4lang/tutorials.
[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[15] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical
report, CMU PA School of Computer Science, 1993.

[16] Keras: The Python Deep Learning library. https://keras.io/.
[17] Scapy. https://scapy.net/.
[18] P4 Behavioural model. https://github.com/p4lang/behavioral-model.
[19] P4Runtime. https://p4.org/p4-runtime/.
[20] VirtualBox. https://www.virtualbox.org/.

6

https://p4.org/specs/
https://github.com/p4lang/tutorials
https://keras.io/
https://scapy.net/
https://github.com/p4lang/behavioral-model
https://p4.org/p4-runtime/
https://www.virtualbox.org/

Runtime Verification of P4 Switches
with Reinforcement Learning , ,

[21] Mininet. http://mininet.org/.
[22] P4 Language Consortium. P416 language specs, version 1.1.0, 2018.
[23] Changhoon Kim et al. Inband Network Telemetry (INT). Technical specification,

Barefoot Networks, Jun 2016.
[24] Leonid Ryzhyk, Nikolaj Bjørner, Marco Canini, Jean-Baptiste Jeannin, Cole

Schlesinger, Douglas B Terry, and George Varghese. Correct by construction
networks using stepwise refinement. In 14th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 17), pages 683–698, 2017.
[25] Peyman Kazemian, George Varghese, and NickMcKeown. Header Space Analysis:

Static Checking for Networks. In Proc. USENIX NSDI, 2012.
[26] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick Mcke-

own, and Scott Whyte. Real Time Network Policy Checking Using Header Space
Analysis. In Proc. USENIX NSDI, 2013.

[27] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. VeriFlow: Verifying Network-Wide Invariants in Real Time. In NSDI,

2013.
[28] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Auto-

matic test packet generation. In Proceedings of the 8th international conference on

Emerging networking experiments and technologies, pages 241–252. ACM, 2012.
[29] Mohit Rajpal, William Blum, and Rishabh Singh. Not all bytes are equal: Neural

byte sieve for fuzzing. arXiv preprint arXiv:1711.04596, 2017.
[30] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning

for input fuzzing. In Proceedings of the 32nd IEEE/ACM International Conference

on Automated Software Engineering, pages 50–59. IEEE Press, 2017.
[31] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. Com-

piler fuzzing through deep learning. In Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis, pages 95–105. ACM,
2018.

7

http://mininet.org/

	Abstract
	1 Introduction
	2 Motivating Examples
	3 p4rl: System Design
	3.1 Overview
	3.2 Machine Learning-guided Fuzzing
	3.3 Query Language: p4q
	3.4 p4rl Workflow

	4 Prototype & Evaluation
	4.1 p4rl Prototype
	4.2 Evaluation

	5 Related Work
	6 Discussion
	7 Conclusion & Future Work
	8 Acknowledgement
	References

