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Abstract
Objective. State-of-the-art experiments for studying neural processes underlying visual cognition
often constrain sensory inputs (e.g., static images) and our behavior (e.g., fixed eye-gaze, long
eye fixations), isolating or simplifying the interaction of neural processes. Motivated by the non-
stationarity of our natural visual environment, we investigated the electroencephalography
(EEG) correlates of visual recognition while participants overtly performed visual search in non-
stationary scenes. We hypothesized that visual effects (such as those typically used in human–
computer interfaces) may increase temporal uncertainty (with reference to fixation onset) of
cognition-related EEG activity in an active search task and therefore require novel techniques for
single-trial detection. Approach. We addressed fixation-related EEG activity in an active search
task with respect to stimulus-appearance styles and dynamics. Alongside popping-up stimuli,
our experimental study embraces two composite appearance styles based on fading-in,
enlarging, and motion effects. Additionally, we explored whether the knowledge obtained in the
pop-up experimental setting can be exploited to boost the EEG-based intention-decoding
performance when facing transitional changes of visual content. Main results. The results
confirmed our initial hypothesis that the dynamic of visual content can increase temporal
uncertainty of the cognition-related EEG activity in active search with respect to fixation onset.
This temporal uncertainty challenges the pivotal aim to keep the decoding performance constant
irrespective of visual effects. Importantly, the proposed approach for EEG decoding based on
knowledge transfer between the different experimental settings gave a promising performance.
Significance. Our study demonstrates that the non-stationarity of visual scenes is an important
factor in the evolution of cognitive processes, as well as in the dynamic of ocular behavior (i.e.,
dwell time and fixation duration) in an active search task. In addition, our method to improve
single-trial detection performance in this adverse scenario is an important step in making brain–
computer interfacing technology available for human–computer interaction applications.
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1. Introduction

Information gathering in active visual search is guided by eye
trajectory—a sequence of eye fixation positions that we make
while performing a visual search task. Cognitive neural

Journal of Neural Engineering

J. Neural Eng. 13 (2016) 016015 (12pp) doi:10.1088/1741-2560/13/1/016015

Content from this work may be used under the terms of the
Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1741-2560/16/016015+12$33.00 © 2016 IOP Publishing Ltd Printed in the UK1

mailto:marija.uscumlic@gmail.com
mailto:marija.uscumlic@gmail.com
mailto:marija.uscumlic@gmail.com
http://stacks.iop.org/jne/13/016015/mmedia
http://dx.doi.org/10.1088/1741-2560/13/1/016015
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2560/13/1/016015&domain=pdf&date_stamp=2016-01-04
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2560/13/1/016015&domain=pdf&date_stamp=2016-01-04
http://creativecommons.org/licenses/by/3.0/


processes in active viewing are typically studied in relation to
the fixation onset, which requires simultaneous recording of
electroencephalography (EEG) and eye tracking (see [1]). The
emerging research on eye fixation-related potentials (EFRPs)
[2–5] has shown that when the eye is fixating on the object of
search, the event-related EEG potential (ERP) resembles the
one in the classical visual oddball paradigm with the con-
strained gaze—e.g., the visual speller [6–8] and the search
under the rapid serial visual presentation (RSVP) protocol [9–
15]. Likewise, fixation-related EEG potentials are shown to
be discriminative with respect to the attended object (target
versus non-target depending on the search task).

Methods for the discriminative EEG analysis, inherited
from studies on gaze-constrained paradigms, mainly operate
in a temporal domain with the assumption that the potentials
are evoked in an event-locked manner [16, 17]. In other
words, it is assumed that a minimal trial-by-trial variation of
ERP latency (i.e., minimal temporal uncertainty) occurs.
Justification for this assumption is found in highly controlled
experiments relating to stimulation timing, stimuli type, and
subjects’ behavior. Up-to-date EEG studies on active viewing
therefore mainly use simplified stimuli (e.g., static scenes
consisting of scattered artificial objects) and/or impose lim-
ited ocular behavior (e.g., longer fixations). While this con-
trolled approach is successful in generating precise results
concerning fundamental neurocognitive processes, it ignores
some aspects of our natural viewing behavior that are of
pivotal importance for a shift towards investigations in real-
world conditions. For general human–computer interaction
applications, in particular, the approach needs to be relaxed in
several aspects—to include, for example, free viewing,
diverse natural stimuli, and non-stationary scenes.

In this study, we specifically investigated the EEG cor-
relates of visual recognition while participants overtly per-
form a search task in non-stationary scenes. To model scene
non-stationarity, we rendered stimuli into the scene using
several composite visual effects consisting of fading-in,
enlarging, and motion. Visual effects made it so that no
sudden-onset stimuli appear in subjects’ visual fields. Instead,
the appearance was smooth and gradual, mimicking our nat-
ural visual environment. We hypothesized that visual effects
might enhance temporal uncertainty in recognition events
with respect to fixation onset, affecting the latency and/or
morphology of the corresponding EEG activity. To this end,
we find particularly noteworthy the recent finding of a
domain-independent decision signal in an EEG when per-
forming a perceptual decision task [18–20]. Specifically, the
evolution of a decision-signal was found to trace the
dynamics of the evidence accumulation process, driven by
sensory input.

Relatively little research has been conducted on EEG
decoding in active viewing when facing more realistic visual
stimuli. In an EEG study on active visual searches of the
target face [21], the authors ensured original complexity of
natural scenes by using images of crowds at stadiums as
stimuli. Prior to the experiment, however, subjects were

trained to carry out a certain behavior that promoted longer
fixations. Visual recognition in a driving scenario was
recently addressed in a joint EEG and eye tracking study for
the efficient navigation of 3D naturalistic environments [22].
The results demonstrated that ocular data (i.e., dwell time,
pupil dilation) may complement the EEG, improving target
object detection in free-view tasks. Recently, a replica of
previous statistical EEG studies on active search tasks was
conducted using a more ecological paradigm [23]. Natural
indoor and outdoor pictures appeared as stimuli, while no
constraints on subjects visual behavior were imposed. The
authors addressed the overlap issue of the EEG activity eli-
cited by consecutive fixations with various duration, in part-
icular, as concerns the interpretation of the EEG potentials.
Neither of these studies, however, addressed the temporal
uncertainty of the recognition event caused by content
diversity or continuous scene changes.

On the other hand, a recent EEG study [24] addressed the
recognition of time-evolving visual events. As stimuli, the
authors used videos of an actor/avatar imitating several real-
life human behaviors (e.g., leave/take a bag, wave). Videos
were presented in the narrow field of view so that minimal
changes in the gaze occurred. Regardless of the necessary
integration of static and dynamic visual features for behavior
recognition, the presence of robust, discriminative evoked
EEG responses was observed. A decline in EEG decoding
performance, however, was reported for one type of the
events where a greater variation in the locking time of the
event occurred.

The significance of modeling temporal variability for
EEG decoding was previously demonstrated in an experiment
on a short video RSVP search with a manual response upon
target recognition [25, 26]. Designing a classification method
that accounts for temporal variability in the neural response,
the authors showed an improvement in the decoding perfor-
mance compared to the state-of-the-art classification method.

In our study on active visual search in non-stationary
scenes, we used modified Landolt rings as stimuli, which
allowed the control of the semantic level of the search
throughout the experiment. This is particularly important
because a variability in the content semantic level is a
potential source of temporal uncertainty in EEG responses
[27, 28]. We applied discriminant analysis to evaluate the
EEG-based decoding of recognition (i.e., target versus non-
target). We further explored how in non-stationary scenes the
performance could be preserved despite visual effects,
knowing that state-of-the-art EEG decoding approaches are
challenged by ERP’s temporal uncertainty. This is of high
significance for a potential symbiosis of brain–computer
interface technology with real-world human–computer inter-
action that aims at constant performance irrespective of scene
dynamics. As an illustration, intuitive human computer
interfaces (HCIs) involve interactive entertainment and
computer games in which visual effects are found strongly
entangled.
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2. Materials and methods

2.1. Experimental setup

In this study, EEG and eye movements were recorded
simultaneously while subjects were performing a task. The
eye movements were recorded with a remote eye tracker
(RED 250, SMI, Teltow, Germany; sampling frequency of
250 Hz), attached to the protocol presentation screen. The
screen resolution was 1680 by 1050 pixels (47.2 by 29.6 cm),
corresponding to a visual angle of ∼42° by 27°. A chin rest
was used to reduce head movements while keeping the dis-
tance between eyes and screen constant ( 61~ cm). Physiolo-
gical signals were recorded with two EEG amplifiers with 63
active EEG electrodes in total (BrainAmp, ActiCap, Brain-
Products, Munich, Germany; sampling frequency of
1000 Hz). The EEG signals were re-referenced to the linked
mastoid. We conducted the experimental study with sixteen
healthy participants (13 male, 3 female, age 19–48). Ethical
approval for the experiment was granted by the local ethic
committee—Ethikkommission des Instituts für Psychologie
und Arbeitswissenschaft (IPA) der TU Berlin. Following the
ethical requirements, the participants gave informed written
consent to take part in the study.

2.2. Experimental protocols

We used eight broken Landolt rings corresponding to the
eight different directions of their openings as stimuli. While a
traditional Landolt ring is uniformly colored (figure 1(a)), we
modified the rings with a black/gray pattern (the intensity
value of gray was set to 0.5) as illustrated in figure 1(b) (for
more details, see the supplementary material). A target
Landolt ring (with respect to the direction of its opening) was
shown to the subject at the beginning of each stimuli
sequence and he/she was instructed to (silently) count how
many times it occurred. At the end of the sequence, the
subject reported the corresponding number. The chance of a
target appearing in the stimuli sequence was 25%. Target-
stimulus frequency was higher than the frequency of indivi-
dual non-target stimuli which was about 10.7%. We raised the
probability of targets to 25%, since 12.5% was considered too
little and using only four directions too small variability in
stimuli.

Three different conditions of stimuli presentation were
considered: ‘pop-up’ (PU), ‘smooth appearance’ (SA), and
‘motion appearance’ (MA). Stimuli presentation in these
conditions is illustrated in figure 1(c).

PU. Stimuli pop up one by one with a random time
interval between them (1–1.5 s).

SA. Stimuli appear smoothly, fading in one-by-one, lin-
early increasing their size and opacity. Stimulus disclosure in
the full size and opacity therefore takes 1 s and 2 s respec-
tively. Stimuli appear at fixed positions on the screen with a
random interval between them (1–1.5 s).

In both PU and SA conditions, each presented stimulus
starts to slowly fade out 5 s after appearing. The next stimulus
appears at a random position, but in a limited screen area with

respect to the position of its predecessor. The distance
between two successive stimuli was in the range of 170–480
pixels, corresponding to a visual angle from 4.5° to 12°.
Following a stimuli sequence of random length (50–80 sti-
muli), the screen was erased and the next task was set.
Variable-length sequences were used to discourage anticipa-
tion of the end of sequences.

MA. In regard to motion appearance, stimuli move in
either top-down or bottom-up direction. All stimuli start in
minimized size (dots) at the top or bottom central location and
move slowly downwards or upwards. Movement directions
were counterbalanced across sequences. The velocity of the
stimuli ranges from 1.85 to 2.25°/s. While its vertical
component was constant across the stimuli (1.85°/s), its
horizontal component depends on the initial horizontal posi-
tion of the stimuli from the central top or bottom position
(within +/−10% of the screen width), resulting in a velocity
range of 0 to 1.4°/s. Stimuli were continuously enlarged and
their transparency continuously decreases until they reach the
center of the screen height (i.e., the complete stimulus
enclosure requires 6 to 7.5 s depending on its initial horizontal
position in the screen) when their transparency starts being
modified in the opposite manner while the size was preserved.
Hence, compared to the SA condition, the manipulation of the
size and intensity of the stimuli was slower.

Finally, the level of the background gray color of the
screen was set to 0.58 for PU and SA, and 0.7 for the MA
condition. Consequently, in the MA condition the contrast
between the gray pattern (the level of 0.5) and the background
is higher, facilitating perception. The length of the sequences
ranged from 50 to 80 stimuli for the PU and SA conditions,
while it was set to 100 stimuli for the MA condition.

The experiment was organized in blocks of six sequences
(i.e., two search tasks for each condition). On average, sub-
jects performed twelve search tasks per condition.

2.3. Data preprocessing and EFRP extraction

2.3.1. Ocular data. We used the SMI high speed event
detection algorithm of BeGaze2 (peak velocity threshold:
40 s, min fixation duration: 50 ms) to detect eye-movement
events, i.e., fixations, saccades, and blinks (IDF Event
Detector, SensoMotoric Instruments, Teltow, Germany,
http://www.smivision.com, 2014). In addition, we analyzed
ocular behavior by comparing gaze response and dwell time
across different experimental conditions and stimulus types
(target versus non-target). To this end, the region of interest
(ROI) was introduced because stimuli recognition requires
foveal vision. We defined the ROI as the area enclosed by a
circle with a diameter of 100 pixels centered on a stimulus,
corresponding to the visual angle of ∼2.5° at viewing
distances of ∼61 cm. First, we look into duration histograms
of the fixations within ROI. We compared the distributions
between the first fixations on target and non-target stimuli for
each condition separately. We measured the gaze response as
the time between the stimulus appearance in the scene until
the first fixation to the corresponding ROI. Additionally, we
measured the dwell time as the time duration of attending to
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the ROI between the first fixation to it and the gaze shift to the
ROI of the next stimulus that is attended. Finally, we
inspected to see whether there was a significant difference in
these measures between target and non-target stimuli. To this
end, we applied Wilcoxon rank-sum and Bonferroni
correction for testing across conditions, for each subject
independently.

2.3.2. Fixation-related EEG potentials. First, the EEG signals
were filtered between 1 and 30 Hz (Butterworth filter) and
downsampled to 250 Hz. Then, single trial EEG activity was
extracted with respect to the fixation. Specifically, we
considered only the first fixation on the ROI after the
appearance of a stimulus on the screen.

2.3.3. Eye movement artifacts. Eye movements, as an
inseparable aspect of free-viewing tasks, represent a
significant source of artifacts in the corresponding EEG
data. Therefore, we applied the ‘interference subtraction’
method to reduce eye-related artifacts in the EEG data [16].
Contaminated EEG data prior to the start of the experiment
were used instead of the calibration session. In particular, we
considered saccadic intervals. Eye-tracker data were used for
detecting the time intervals of the contamination. Following
the linear model, i.e., the linear relation between the scalp
potentials and the sources, the activity generated by eye

movements was subtracted from the recorded EEG activity.
To this end, the forward matrix corresponding to the source of
artifacts was estimated as a component that captures the
maximum difference in the signal during the contaminated
period (left versus right horizontal, up versus down vertical
movements figure 9).

2.4. Discriminative analysis

2.4.1. LDA-based classification methods. Numerous
successful classification approaches in brain–computer
interfacing (BCI) are based on linear discriminant analysis
(LDA), despite its remarkable simplicity. Here, we will
consider two of them (i) shrinkage LDA, and (ii) hierarchical
discriminant component analysis (HDCA), where both
demonstrated good performance in a high-dimensional-data
low-sample-size setting.

In contrast with classical LDA, shrinkage LDA implies
the regularization of the empirical covariance matrix by
shrinkage, while retaining LDAʼs simplicity [17]. On the
other side, HDCA reduces the complexity of the classification
problem by disregarding correlations of single-channel
potential values across different time intervals. Additionally,
it uses a more complex (nonlinear) classification step for
combining classifier outputs from individual time intervals.
HDCA classifiers therefore consist of two steps. First, one
individual LDA classifier was trained per each of the non-

Figure 1. (a) A standard Landolt broken ring. (b) Eight modified Landolt rings that we used in our study. (c) Illustration of the stimuli
presentation flow for different conditions. (top-left) Three intermediate steps of stimulus evolution in time are presented for the SA condition,
followed by a completely revealed stimulus. (bottom-right) The dashed line indicates the order of stimuli appearance in the PU and SA
conditions. (bottom-left) Several intermediate steps of the evolution of two successive stimuli are illustrated for the MA condition. The
arrows indicate the direction of their continuous motion. This illustration is simplified, since multiple objects were present on the screen in the
MA condition (see section 2.2). Note: stimuli are enlarged, compared to the real screen dimension.
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overlapping time intervals within a trial. Then, the LDA
classifiers’ outputs were combined by a logistic regression
classifier to produce a final interest score for the given trial.
The HDCA classifier has been successfully applied for single
trial EEG analysis in visual BCI paradigms [9, 22, 29].

Concerning the temporal uncertainty (i.e., trial-to-trial
temporal variability ) of the EEG activity, the sliding HDCA
(sHDCA) has been proposed [30]. It can be interpreted as an
extension of the HDCA classifier with an additional level.
First, the score space was obtained by applying an HDCA
classifier, trained for a specific time interval, in a sliding
manner i.e., with different time shifts with respect to the event
onset. Then, in the decision space, the logistic regression that
was trained to combine the obtained scores (i.e., the outputs
of the HDCA for different shifts) was applied for the final
decision.

2.4.2. Spatio-temporal localization of the discriminant
activity. A shrinkage LDA was applied for each EEG
channel independently, using a time window between 100
and 800 ms of the fixation onset. As a result, a spatial
distribution of classification performance in the ten-fold
cross-validation setting indicates the most informative
locations of the EEG channels for the discrimination
between the target and non-target fixation. On the other
hand, the most informative time intervals for discrimination
were detected by estimating the peak classification
performance on a time window of 50 ms in a sliding
manner over a trial (with a temporal shift of 20 ms) by
exploiting all EEG channels.

We also visualized a separability measure (target versus
non-target) for each pair of channels and time points over a
trial. As a separability measure we considered a signed
squared value ( rsign 2) of point-biserial correlation coeffi-
cients between the EEG activity and the stimuli type labels
(target versus non-target).

2.4.3. Intra- and inter-protocol EEG decoding. We based our
discriminative analysis on the shrinkage LDA and the
classical HDCA as explained further in the text.
Additionally, we suggest a novel approach for dealing with
the temporal uncertainty motivated by sHDCA classification
method and transfer learning principle.

Intra-protocol decoding approach—We estimated clas-
sification performance of an HDCA classifier for each of the
protocols separately, in a ten-fold crossvalidation setting. To
this end, the classification interval spanned from 100 to
800 ms of the fixation onset (non-overlapping windows of
100 ms).

Inter-protocols decoding approach—Assuming that
sufficient degree of phase locking of the EEG activity appears
in the ‘PU’ condition, we trained an HDCA classifier on the
most discriminant time interval (see section 2.4.2) using only
the data from that condition. Then, we applied the classifier in
a sliding manner with a step size of 50 ms, to the data from
the other two conditions independently. The starting position
was at 200 ms. For each position of a sliding window (seven

positions in total) the posterior probability that target
recognition happens was estimated. The final decision was
made considering only the maximum of the obtained posterior
probability estimates per trial.

Compared to the sliding HDCA, in our inter-protocol
decoding approach, we preserved the same principle for
creating the score space—a single HDCA was applied in a
sliding manner. In contrast to sHDCA, however, we use the
classifier trained on data of different origin (another
experimental paradigm) than the actual data to be classified.
Furthermore, in our approach, no additional training was
required in the decision space because the final decision is
based on the maximum of the estimated scores.

Intra-protocol decoding with a sliding time window—
The inter-protocol decoding approach was motivated by
transfer learning. Yet, it additionally relaxes the requirement
of temporal locking of the ERP by introducing a sliding
window. We therefore also performed the intra-protocol
decoding in a sliding manner to support our hypothesis—the
major advantage of the proposed inter-protocol approach
originates in transferring the knowledge from the PU
paradigm to the other paradigms.

Electrical activity caused by eye movements interferes
with EEG, but predominantly in the frontal scalp regions.
Hence, as eye-movement data in active viewing are linked to
visual cognition, we also compared the intra-protocol
classification results when exploiting all the EEG channels
with the case when [Fp1, Fp2, F9, F10 and AF7, AF8]
channels are excluded.

The area under the receiver operating characteristic curve
(AUC) was used as a measure of classification performance.
The chance level of the classifier was estimated using a
random permutation procedure, where the data labels were
randomly permuted in the training step in ten-fold cross-
validation setting.

3. Results

3.1. Eye movements and behavioral data analysis

Subjects were engaged in the search task by counting the
appearance of the target Landolt symbol and reporting the
final score. Subjects correctly responded (i.e., the percentage
of runs in which the correct number of targets was reported)
to 89.55% (PU), 88.18% (SA), and 46.89% (MA) stimuli
sequences. Considering only the incorrect responses, the
differences between the subjects’ responses and the actual
number of targets were on average −0.61+/−1.08 (PU),
−0.077+/−2.24 (SA) and −1.25+/−1.06 (MA). Note that
the average error in responses was low in all three conditions.

In all the three visual presentation protocols, the
appearance of a new stimulus (i.e., the change in the content
of non-stationary scene) drives our gaze allocation. When the
gaze is shifted to the ROI, as a response to the last presented
stimulus, multiple fixations may be detected within it. We
present, first, the fixation duration histograms distinguishing
the fixation orders (figures 2(a)–(c)). Ocular-related artifacts
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were induced in the EEG prior the onset of succeeding fixa-
tions. Therefore, a general characterization of this behavioral
aspect is of interest for the analysis of the later EFRPʼs
components. The first peak in all of the distributions across
the protocols appears earlier than 100 ms. In the PU and SA
conditions, however, the distribution of the first fixation
duration was characterized by the second peak appearing after
1 s. The histograms of the first fixation durations, distin-
guishing fixations at target and non-target, are given in
figures 2(d)–(f). A statistically significant difference between
the fixation durations was found for 4 (PU), 5 (SA), and 9
(MA) subjects (out of 16 subjects) by applying the non-
parametric Wilcoxon rank-sum test at 5% significance level
(with the Bonferroni correction for testing across the three
conditions).

Gaze response distributions across experimental condi-
tions and stimuli types are presented in figure 3(a). The gaze
shift happens most rapidly in the PU condition (the median
gaze response time of 240 ms) with the smallest inter-trial
variability. This is in line with the experimental design since a
stimulus was entirely disclosed at the moment of appearance
in the PU condition. In the SA condition, the visual effects

delay the gaze response (the median gaze response time being
590 ms). The most prolonged gaze response (the median gaze
response time, 1.32 s) with the largest inter-trial variability
was observed in the MA condition. No difference in gaze
response between the stimuli types was observed in any
condition.

Dwell time distributions across experimental conditions
and stimuli types are presented in figure 3(b). The biggest
difference in dwell time between the stimuli types was
observed in the MA condition, where longer mean dwell time
corresponds to target stimuli. The difference was found to be
significant for 5 (PU), 6 (SA), and 15 (MA) subjects (out of
16 subjects). To this end, we applied the non-parametric
Wilcoxon rank-sum test at a significance level of 5% (with the
Bonferroni correction for testing across the three conditions).

3.2. Discriminative analysis

Grand average fixation-related EEG potentials are presented
in figure 6, distinguishing target and non-target fixations.
Scalp maps show the spatial distribution of the EEG com-
ponents in the selected time intervals, indicated as two-tone

Figure 2. Histograms of the fixation duration: (a)–(c) distinguishing the order of the fixations within the ROI starting not later than 1 s from
the stimulus onset, (d)–(f) the first fixations within the ROI distinguishing target and non-target stimuli (the total number of corresponding
fixations is specified).
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gray bars. The separability measure (signr2) for each pair
channel and time point is presented in figure 5. Scalp maps
correspond to the peaks of the separability measures.

The single-trial classification performance in the intra-
protocol setting, is presented across presentation conditions and
subjects in figure 7(a). Overall, the decoding of the EEG cor-
relates of visual recognition locked to the fixation onset is
above the chance level for all the presentation protocols (the
Wilcoxon signed-rank test, at a 5% significance level). The
highest decoding performance was observed in the PU condi-
tion. The AUC values are similar between the other two con-
ditions. The intra-protocol classification performance,
estimated in a sliding-window manner, is presented in figure 8.

The single-trial classification performance obtained in the
inter-protocol setting (i.e., using the knowledge transfer

approach) is given across subjects in figures 7(b)–(c), for the
SA and MA conditions respectively. The hierarchical classi-
fier was trained on the most discriminant time interval from
200 to 600 ms (see figure 4), corresponding to four non-
overlapping windows of 100 ms. Along with the final clas-
sification results (given in red), these plots contain the inter-
mediate classification results for each time shift of the HDCA
classifier (given in black). The peak performance across the
time shifts (the intermediate classification results) appears at
100–150 ms, for SA and MA.

Finally, for all three conditions (PU, SA, MA) no sig-
nificant difference in the classification performance was found
when the very frontal EEG channels were excluded from the
analysis (the Wilcoxon Signed-Rank test at the 1% sig-
nificance level).

Figure 3.Ocular data (target versus non-target): (a) gaze response (GR) distribution—the time needed for orienting the gaze to the ROI of the
new stimulus in the scene. Median GR values across protocols were 0.24 s (PU), 0.59 s (SA) and 1.32 s (MA); (b) dwell time distribution—
the time eye-gaze resides within the ROI of the presented stimulus.

Figure 4. (a) Temporal localization of the discriminant activity—classification performance using the shrinkage LDA in a sliding manner (a
time window of 50 ms with a temporal shift of 20 ms), exploiting all the EEG channels. (b) Spatial distribution of the classification
performance in ten-fold cross-validation setting (single-channel based classification), exploiting the whole time interval from 100 to 800 ms.
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4. Discussion

Static images are an inadequate replica of our visual sur-
roundings. By way of illustration, HCI involves a dynamic
visual content—the screen is constantly updated with the new
information using various visual effects (e.g., changes in its
opacity and size). Likewise, in driving scenarios, objects enter
our visual scene by gradually becoming visible as we pass
them. Additionally, beyond objects in reality we often look
for events that extend in time (e.g., actions).

In our study on active visual searching, we investigated
the EEG correlates of decision making about the content in
dynamic scenes. It should be recognized that the aim of our
experimental design was not to study the EEG correlates for
isolated visual effects (e.g., the fading−in effect alone). On
the contrary, we selected stimuli with composite appearance
styles and design the protocols to represent several effects that
may appear in real-world applications. Our research concerns
whether scene dynamics might intensify the temporal ERP’s
uncertainty in active search with respect to the fixation onset.

4.1. Behavioral data

Our study is based on three experimental protocols: ‘PU’,
‘SA’ and ‘MA’. All three protocols were designed in such a
way that stimuli appearance guides shifts of visual attention
and the gaze. In contrast with the ‘PU’ protocol, the other two
include composite visual effects comprising fading-in,
enlarging and motion.

The detected fixations are predominantly shorter in the
MA condition (figure 2(c)) while in the PU and SA conditions
a significant part of the fixations were of longer duration (see
the peak in distributions around 1 s in figures 2(a) and (b)).
This may be partly a result of a slow disclosure dynamic (i.e.,
fading—in and enlarging effects) and motion in the MA
condition. Namely, in this scenario subjects overtly track
stimuli upon their disclosure, which requires smooth-pursuit
eye movements.

The time distributions of gaze responses (figure 3(a))
confirm that humans react faster to instant changes in the scene
(such as in the PU condition) than to transient ones (such as in
the SA and MA conditions). In the MA condition, a delayed
gaze response due to slow stimuli disclosure results in the
presence of multiple unattended objects in the scene. The next
shift of attention is challenged by this situation, causing more
variability in gaze responses. The lack of difference in gaze
response between the stimuli types in all three conditions
suggests that foveal vision is needed to judge the stimuli.

In the MA condition, a difference in dwell time between
the target and non-target stimuli was found for the majority of
subjects, in contrast with the other two conditions. We cannot
exclude silent counting of targets as a potential origin of the
longer mean dwell time of target stimuli. Although the task
was identical in all three conditions, the explanation could be
a sufficient inter-stimuli time to complete the task in the PU
and SA conditions. Thus, in these two conditions, the

Figure 5. Spatial distribution of sign r2 values. Note, that the
subplots have individual ranges for the colormap. The absolute value
of r2 cannot be compared across conditions. The temporal
distribution of discriminative information is quite focused in PA and
more scattered in SA and MA. Interestingly, the maps of
discriminative information are quite similar across the three
conditions.
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observed dwell time might not reflect the difference in the
processing time. At the same time, in the MA condition, as
already mentioned, multiple as-yet-unattended stimuli could
be simultaneously present in the screen competing for atten-
tion. The observed difference between conditions implies that
the potential of exploiting ocular data for discrimination
between the target and non-target content might be restrained
by scene content (i.e., its dynamic, as well as sparsity
regarding task-relevant content). Finally, the larger variance
in dwell time for the MA condition may be explained by
subjects’ behavior, which ranges from either repositioning the
gaze to a stimulus as soon as it is visible in the scene and
overtly tracking it until enough evidence is accumulated for
making a decision to repositioning the gaze when the stimulus
is already mostly uncovered.

The trend of the average error rate of the subjects’
responses with regard to the presentation protocols indicates
the ‘MA’ protocol as the most challenging (see section 3.1).
We explain this by the motion effect that makes the distance
between the subsequent stimuli to change over time. The
changes in relative positions between the stimuli can escalate
the challenge to track and attend all stimuli in the sequence,
likely causing the low percentage of sequences in which all
the target stimuli were detected. Importantly, the percentage
of the missed stimuli is still relatively low although higher
than in the PU and SA presentation protocols (see
section 3.1).

4.2. Discriminant EEG analysis

The single-trial classification performance significantly above
the chance level (AUC=0.5) supports the presence of the
recognition-related EEG activity when fixating on the target
stimuli in any of the conditions.

In the PU condition, the most discriminative activity
corresponds to the centro-parietal positivity elicited by target
stimuli around 450 ms of the fixation onset (figures 4(a) and
6(a)). This EFRP’s component resembles the spatio-temporal
signature of the P300 activity in the fixed-gaze visual oddball
paradigm [31, 32]—the target-related positivity over the
centro-parietal scalp area at ∼400 ms. This positivity is pre-
ceded by the discriminative negative EEG activity at
∼250 ms within the same scalp region. In the MA condition,
a similar pattern (i.e., the centro-parietal positivity) is also
seen, but shifted in time for ∼100 ms, peaking at ∼550 ms of
the fixation onset. This centro-parietal positivity is visible in
‘Smooth appearance’ around ∼600 ms, although more spread
out in time. The strong resemblance between the discriminant
EEG activity across different conditions becomes more
obvious when inspecting signr2 measure (see figure 5). The
peaks of signr2 measure within a trial correspond to a centro-
parietal positivity preceded by a centro-parietal negativity in
all the conditions. The temporal location with respect to the
fixation onset and their relative appearance time varies across
conditions as discussed above.

Comparable classification performances over time are
observed in the SA and MA protocols (figure 4). We found
this reduced performance compared to the PU condition to be

indicative of temporal uncertainty of the recognition-related
EEG components with reference to fixations onset. Interest-
ingly, additional evidence supporting our hypothesis is found
in the results of the proposed inter-protocol classification
method (see section 2.4), where we transferred the knowledge
about the recognition-related EEG activity from the ‘PU’ to

Figure 6. Grand average eye-fixation related potentials.
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the other two presentation protocols. The proposed method
improved the single-trial classification performance with
respect to the case when the data are treated individually for
each condition (figures 7(b) and (c)). Furthermore, the trends
of the intermediate classification results in the proposed
method, peaking at 100–150 ms, indicate the delays in the
most discriminant activity compared to the PU condition.

In the intra-protocol setting, the classification using the
sliding window improved performance only slightly
(figure 8). This result shows that the performance improve-
ment in the inter-protocol setting compared to the intra-pro-
tocol setting mainly originates in the transference of
knowledge from PU to the other paradigms.

A relatively low classification gain in the inter-protocol
approach for the MA condition suggests the presence of some
additional phenomena besides stronger temporal variability.
One perspective on decoding challenges in our MA condition
comes from perceptual decision-making theory, which posits
that the rate of stimuli disclosure may affect the accumulation
of evidence by directly influencing the build-up rate of the

centro-parietal positivity corresponding to the recognition
event [18–20]. Hence, the classifier trained on the ERPs
evoked in the PU condition might not optimally explain the
ones in the MA condition even if an exact timing would be
known because of the slow disclosure. This concern requires
further investigation i.e., a systematic study on the effects of
stimuli disclosure rate on the ERP decoding. On the other
side, our ocular behavior in free active search is driven by

Figure 7. Classification performance (target versus non-target): (a) intra-protocol classification performance; (b) and (c) inter-protocol single-
trial classification performance; the results for SA and MA protocols respectively. Note that zero shift value corresponds to 200 ms of fixation
onset.

Figure 8. Intra-protocol classification with an HDCA, applied in a sliding manner on the testing dataset. The HDCA was trained on the
training data on the fixed time interval as indicated in each plot. The intermediate results of the testing dataset, obtained for different positions
of the sliding window, are presented with reference to the starting time of the window (i.e., time positions in the plot).

Figure 9. The estimated scalp projection (a.u.), averaged accross
subjects, of sources for horizontal (left) and vertical right eye-
movements.
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scene content and dynamic. Thus, the presence of multiple
yet-unattended stimuli in the MA condition might influence
subjects’ behavior by motivating faster judgment about the
attended content in order to avoid missing new stimuli. As a
result the decision criterion might be changed, which might
influence the amplitude of the centro-parietal positivity [18].
Finally, free active viewing permits larger diversity in sub-
jects’ ocular behavior (see section 4.1). If subjects gaze at
stimuli when their task-relevant features are disclosed, we
would expect that the recognition task more closely resembles
the PU condition. In contrast, earlier gaze repositioning to the
novel stimulus may require longer tracking to accumulate the
evidence for making the decision about the stimuli. Thus, the
choice of the very first fixations might not be always optimal,
considering that the analysis is done in a limited interval in
relation to it.

Regarding the slow motion effect alone, a recent study
suggests that overt tracking itself likely does not influence
EEG decoding [33]. The authors demonstrated that if the
exact time of the event is known, the overt tracking of objects
moving at slow speed does not lessen the EEG decoding
performance compared to the fixed-stimuli condition using
the state-of-the-art methods.

5. Conclusion

We demonstrated that composite visual effects consisting of
fading-in, enlarging, and motion may increase temporal
uncertainty of the recognition-related EEG components with
respect to the fixation onset in active viewing task. In the
context of decoding users’ intentions from the EEG, the
temporal uncertainty introduces an extra challenge for the
classical decoding approaches resulting in decreased classi-
fication performance. We showed, however, that the knowl-
edge transferred from the paradigm characterized by less
temporal uncertainty can be exploited to boost the EEG
decoding performance in the more challenging conditions.
We believe that these results point to the desirability of fur-
ther research on applying knowledge gained from controlled
experimental paradigms to real-world scenarios.

Finally, to the best of our knowledge, previous EEG
studies on free-view search task have paid no attention on the
dynamic of scenes and the presence of objects in motion. Our
results show that enhanced scene’s dynamic results in a larger
variability in both behavioral and neural responses while
performing an active visual search task.
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