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Abstract: In the present paper we propose an implementation of the Kalman filter algorithm,
which allows simultaneous recovery of the absorption coefficient, the reduced scattering coefficient
and the thicknesses of multi-layered turbid media, with the deepest layer taken as semi-infinite.
The approach is validated by both Monte Carlo simulations and experiments, showing good
results in structures made up of four layers. As it is a Bayesian algorithm, prior knowledge can
be included to improve the accuracy of the retrieved unknowns. One of the most promising
applications of this approach is the capability of real-time monitoring of living organs by near
infrared spectroscopy. In particular, determination of blood perfusion in the adult head is one
of the desired goals, allowing continuous control of stroke patients. This demands accurate
measurement of the optical properties, especially absorption, of the head layers, from scalp to the
cortex.
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1. Introduction

During the past twenty years, Near Infrared Spectroscopy (NIRS) has become an increasingly
interesting tool for Biomedical applications, due to the ability of light in this spectral region
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(between 600 nm and 900 nm), to penetrate several centimeters into biological tissue before
being absorbed, in contrast to light of other wavelengths, outside this window. [1–4].
Using this property, NIRS has found many applications in the field of Biomedical Optics,

becoming a valuable complementary technique to other well established ones, such asMRI, X-Ray
Tomography and Ultrasound. Its most important applications range from tumor localization and
characterization in mammography [5, 6] to real time monitoring of vital organs [7–10], with the
advantage of providing a relative inexpensive and portable equipment for functional analysis. For
example, for the case of the brain, this can be achieved by means of the detection and monitoring
of blood perfusion in the cortex [11].

Generally speaking, obtaining useful information from experimental data requires modelling
of the light propagation in the tissue of interest, which corresponds to a multiple scattering
problem [12] usually modeled by the Diffusion Approximation (DA), a simplified option to the
more complete theoretical approach given by the Radiative Transfer Equation (RTE) [13]. In
particular, it is possible to design models which take into account light interaction with tissue
made out of several layers, each of these presenting their own absorption and scattering properties.
These parameters, namely µa for the absorption coefficient and µ′s for the reduced scattering
coefficient [13], are needed in order to mimic photon propagation in the human head, which is
build up from different media such as scalp, skull, cerebrospinal fluid, white matter and gray
matter. However, this kind of modelling is not always an easy task. The first and simplest models
of the human head considered this region of the body as an optically homogeneous medium [14].
This is, of course, a rather unreal approximation. Since then, several multilayered models have
been introduced which take into account the presence of layers of different optical properties
and thicknesses [2, 15, 16]. In a recent work [17] some of the authors presented a model for light
propagation in layered, turbid cylinders in which the last layer is semi-infinite. This geometry is
more similar to the biological system we wish to simulate, and having an analytical model for
this geometry helps reducing time calculations when compared to other models.
But, even having an appropriate model, if the purpose is to simultaneously recover several

parameters from a given set of boundary measurements, we face the so-called inverse problem.
Because of the ill-posedness of this kind of problems and due to the unavoidable presence of
noise, traditional parameter estimation techniques can not be used and some regularization is
needed. In deterministic inverse problems, such as Tikhonov regularization [18], this problem can
be tackled. Nevertheless, there may be situations when it is possible to use prior information, and
Bayesian techniques provide a framework where this information can be naturally incorporated.

Several authors [19–23] have considered differentmodelling approaches to recover simultaneous
information of multi-layered media using, generally, a Levenberg-Marquardt approach [19,20,22],
and a Weighted Maximum Likelihood Estimation [21] and a Moment-based reconstruction [23].
However, these approaches correspond to deterministic-like ones, which are limited in the
information retrieved, i.e., the provided result are, usually, point estimates, while in the Bayesian
case the resulting solutions are given as probability distributions.

The main goal of this work is thus to propose and validate an algorithm based on the Extended
Kalman Filter (EKF) [24, 25], which is a Bayesian method for Observation-Evolution problems
that has been adapted for use in Optical Tomography as a parameter estimation tool [26]. It
can incorporate information about the measurement noise, as well as prior knowledge about the
variables of interest. As will be shown, it is capable of simultaneously retrieving the optical
(absorption and reduced scattering), as well as geometrical (thickness), parameters in layered
structures. A multivariate distribution of all the parameters of interest is obtained, which allows to
perform different statistical analysis, such as marginalization, from which it is possible to obtain
information regarding one or more parameters. Also, interval estimation is possible, allowing
the acquisition of information about the credibility of a specific parameter. It is also shown that
information about correlation between layers and parameters can be obtained in this way.
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The proposal is tested with both, Monte Carlo (MC) simulations and multi-distance diffuse
reflectance experiments on phantoms consisting of four layers (three slices of different thickness
and a semi-infinite one). Simultaneous retrieval of all optical parameters, namely [µa, j , µ′s, j ],
j = 1, 2, 3, 4, as well as the thicknesses l j , for all layers but the last semi-infinite one, is achieved.
It is also shown how the inclusion of prior knowledge improves the results.
This publication is structured as follows: Section 2 introduces the theoretical model used to

describe light diffusion in layered, turbid media, as well as the EKF formalism. In Section 3 we
describe the most important features of the MC simulations and the experimental considerations
for the construction of the layered phantoms; the setup used for the validation experiments is
also shown. Section 4 presents the results of applying our algorithm to both, simulations and
experiments. In the last Section we summarize the main conclusions, together with some ideas
for future work. For the seek of clarity in the main text we have included the detailed derivation
of the probability distributions in an Appendix.

2. Theory

2.1. Light diffusion in a semi-infinite turbid cylinder

We consider an N-layered turbid cylinder of radius R, where layer j = 1, · · · , N has absorption
coefficient µa, j , reduced scattering coefficient µ′s, j , refractive index nj and thickness l j , except for
the last layer, which is considered to be of infinite thickness (lN = ∞). The whole construction
contains thus a given number of layers of different thicknesses on top of a semi-infinite one, as
sketched in Fig. 1. The origin of the coordinates system is located at the center of the top surface.
A beam-like source impinges on the cylinder at the point (ρ, φ, z) = (0, 0, 0); according to the
diffusion approximation, together with the extrapolated boundary condition (EBC) [1], it can
be considered as an isotropic point source at a depth z0 = 1/µ′

s,1, i.e., the actual point source
position is r0 = (0, 0, z0). The diffusion equation (DE) for the fluence Φj(ρ, z, ω) within the j th

layer, in frequency domain and in cylindrical coordinates is given by:[(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+
∂2

∂z2

)
−

(
µa,1

D1
+ i

ω

D1c1

)]
Φ1 (ρ, z, ω) = −

δ (z − z0)
D1ρ

, 0 ≤ z ≤ L1 (1)[(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+
∂2

∂z2

)
−

(
µa, j

Dj
+ i

ω

Djcj

)]
Φj (ρ, z, ω) = 0, Lj−1 ≤ z ≤ Lj (2)

where j = 2, · · · , N − 1, Dj = 1/
[
3(µ′s, j + µa, j)

]
, cj are the diffusion coefficient and the speed

of light in the j th layer, respectively, ω is the modulation frequency of the light source and

Lj =
j∑

i=1
l j where L1 > z0. We have omitted the angular dependence in Eqs. (1) and (2) because of

the cylindrical geometry. Applying the EBC together with the zero-order Hankel transform [27]
and calling Φ̂i to Φi after the Hankel transform, it is possible to convert the previous system of
partial differential equations into a system of ordinary differential equations of the form:(

d2

dz2 − α
2
1

)
Φ̂1 = −

1
D1

δ (z − z0) , 0 ≤ z ≤ L1 (3)(
d2

dz2 − α
2
j

)
Φ̂j = 0, Lj−1 ≤ z ≤ Lj (4)

being α2
j =

µa, j
D j
+ s2

n + i ω
D j c j

, while sn satisfies the relation J0 (REBsn) = 0 for the Bessel
function of the first kind and order zero and for the extrapolated radius REB = 2AD1 where A is
a coefficient that takes into account air-media refractive index mismatch [28].
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Fig. 1. Scheme for the modelling of light diffusion in a multi-layered cylinder with the last
layer of infinite thickness.

The problem reduces now to solving Eqns. (3) and (4), together with the following boundary
conditions:

Φ̂1
(
sn, z = −zb,1, ω

)
= 0 (5)

n2
j+1Φ̂j

(
sn, z = Lj, ω

)
= n2

j Φ̂j+1
(
sn, z = Lj, ω

)
(6)

D2
j

dΦ̂j (sn, z, ω)
dz

�����
z=L j

= D2
j+1

dΦ̂j+1 (sn, z, ω)
dz

�����
z=L j

(7)

Φ̂N (sn, z →∞, ω) = 0. (8)

Since we are interested in the diffuse reflectance on the top surface, the corresponding Green’s
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function for that specific layer is:

G1 (sn, z, ω) =
e−α(z−z0) − e−α(z+z0+zb,1)

2D1α1
+ (9)

+
sinh

[
α1

(
z0 + zb,1

) ]
sinh

[
α1

(
z + zb,1

) ]
D1eα1(l1+zb,1) ×

×
(
D1α1n2

1β3 − D2α2n2
2γ3

)
×

×
(
D1α1n2

1β3 cosh
[
α1

(
l1 + zb,1

) ]
+

D2α2n2
2γ3 sinh

[
α1

(
l1 + zb,1

) ] )−1
,

where β3 and γ3 can be calculated from the quantities βN and γN :

βN = DN−1αN−1n2
N−1 cosh [α1 (αN−1lN−1)]+ (10)

+ DNαNn2
N sinh [α1 (αN−1lN−1)]

γN = DN−1αN−1n2
N−1 sinh [α1 (αN−1lN−1)]+ (11)

+ DNαNn2
N cosh [α1 (αN−1lN−1)]

and the recurrence relations:

βk = Dk−1αk−1n2
k−1 cosh [α1 (αk−1lk−1)] βk+ (12)

+ Dkαkn2
k sinh [α1 (αk−1lk−1)] γk

γk = Dk−1αk−1n2
k−1 sinh [α1 (αk−1lk−1)] βk+ (13)

+ Dkαkn2
k cosh [α1 (αk−1lk−1)] γk

with k = 3, 4, .., N − 1. Please note that this minimum value of k is required by the recurrence
expressions. For the particular case of a single layer (semi-infinite homogeneous medium), the
second term in Eq. (9) vanishes; for the case of two layers, γ3 and β3 must be set to 1 [29].
Finally, the reflectance R(ρ, ω) at the surface z = 0 and at a distance ρ from the light source

can be obtained as follows [17]:

R (ρ, ω) = 1
4Aπ2R2

EB

∞∑
n=1

G1 (sn, z = 0, ω) J0 (snρ)
J2

1 (snREB)
, (14)

where A is a factor that takes into account the index mismatch between the cylinder and the
surrounding medium [3].

2.2. Parameter estimation procedures

In this subsection, we present the methodologies used to perform the estimation of optical
properties.

2.2.1. Extended Kalman filter

The EKF [24] is a technique for state-estimation in observation-evolution problems. It is a
non-linear extension to the linear Kalman Filter [30], which has been used, for example, in
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estimation of physiological parameters [31]. In [26], the EKF was employed to perform optical
tomography on phantoms with good results. Considering a state-evolution model written in the
form:

xt+1 = F(xt, ut ) + ηt, ηt ∼ N(0,Qt ) (15)
yt+1 = G(xt, ut ) + νt, νt ∼ N(0, Rt ) (16)

where F is the state-transition operator, G is the observation operator, ηt and νt are noise terms
following a Normal distribution N(0, X) with mean 0 and covariance matrix X and ut is a control
variable. The EKF uses a linearization of the non-linear operators F and G, and it is suitable for
problems with weak non-linearities. The method consist of two steps: the prediction step, where
the unknown xt+1 evolves according to the transition operator F, and the updating step, where the
update is performed according to the predicted state and corrected by the observation operator
G. The entire process contemplates the presence of additive Gaussian noise, in the evolution as
well as in the measurement. However, it is also possible to consider non-additive noise [24]. The
expressions for the predict and update equations for step t ≥ 1 are given by [25]:

Predict step:
xt+1 |t = F(xt |t ) +Qt

Γt+1 |t = F ′t Γt |t (F ′t )T

Update step:

Kt = Γt+1 |tH ′k
(
H ′t Γt+1 |t (H ′t )T + Rt

)−1

xt+1 |t+1 = xt+1 |t + Kt

[
yt − H(xt+1 |t )

]
Γk+1 |k+1 = (I − KtH ′t )Γt+1 |t

where F ′t =
∂F
∂x (xt |t ), H ′t =

∂G
∂x (xt+1 |t ) and Γ is the evolution covariance matrix, which evolves

by accumulating information of prior steps given that the evolution relates the transition and
observation operators (specifically, linearizations of them). The subscript ∗|t is reserved for
variables in the prediction step, while the subscript ∗|t + 1 is used for variables in the update step.

2.2.2. Parameter scaling

In order to improve the parameter estimation procedure, several transformations are employed to
reduce the condition number of the matrices Rt and Γt . These transformations where suggested
in [32]. First, we must consider that the inputs of our model are µa, j,Dj —although the parameter
of interest is µ′s, the EKF will be performed on the parameter D and then we will revert the
transformations to obtain information on µ′s— and Li for j = 1, · · · , N and i = 1, · · · , N − 1
where N is, as before, the number of layers. We perform the following transformations:

xa, j = log
(
µa, j

µa, j,0

)
(17)

xD, j = log
(

Dj

Dj,0

)
(18)

xL,i = log
(

li
li,0

)
(19)

where xη, j,0 (η = a,D, l) corresponds to the initial point of the corresponding variable in the
j th layer. For the data transformations, as we are using a frequency-domain model, we use the
conventional data divided into logarithm of the amplitude and phase for each source-detector

                                                                       Vol. 9, No. 8 | 1 Aug 2018 | BIOMEDICAL OPTICS EXPRESS 3959 



separation. The model can be seen as an operator in the form:

Ĥ(x, x0) = H(x0 exp(x))

The matrix Γ defined in the previous section can be adjusted to incorporate prior knowledge
about the parameters of interest. However, the parameters of the EKF are scaled and the prior
knowledge must be scaled as well, in order to be used in our framework. It can be seen [25] that
this methodology is equivalent to finding a Gaussian approximation of the non-linear inverse
problem, i.e. at step k, the resulting distribution is normal with mean xk+1 |k+1 and covariance
Γk+1 |k+1.

2.2.3. Distribution characterization

After updating the extended Kalman Filter, we obtain the posterior distribution:

p(x |y) ∝ exp
(
−1

2

(
| |H(x, x0) − y | |2Rt+1

)
− 1

2
| |x − xt+1 |t+1 | |2Γt+1|t+1

)
, (20)

where | |x | |A = xT A−1x.
If we wish to study the parameters marginally, i.e. each parameter separately or by pairs, we

have to consider that the Kalman Filter output is a joint distribution. Nevertheless, it is possible
to obtain the marginal distribution [25], which is also Gaussian, where the probability density
function (pdf) can be written as:

π(xi) ∝ exp
(
−1

2
(xi − x̂i)2
Γt+1 |t+1(i, i)

)
(21)

for the univariate marginal distribution (in the appendix the multivariate distribution is shown)
where Γt+1 |t+1(i, i) is the i-th element of the diagonal of the covariance matrix Γt+1 |t+1 obtained
in the Kalman Filter. To retrieve the marginal distribution for the original parameters, we perform
the inverse transformation by steps and see how the distribution changes. First, we see that as
x (the scaled parameter) follows a normal distribution, x ∼ N(xk+1, Γk+1), then exp(x) follows
a log-normal distribution with the same parameters, exp(x) ∼ LN(xk+1, Γk+1). Finally, it is
straightforward to check that if exp(x) ∼ LN(xk+1, Γk+1) then the posterior density is:

π(µa |yN ) =
1
µa,0

πexp(xa )

(
µa
µa,0

)
(22)

π(l |yN ) =
1
l0
πexp(xl )

(
l
l0

)
(23)

π(µ′s |yN ) =
µa,0 + µ

′
s,0

(µa + µ′s)2
πexp(xs )

(
µa,0 + µ

′
s,0

µa + µ
′
s

)
(24)

where πexp(x. ) is the density of the log-normal distribution of each parameter. Using these
functions, and the information of the log-normal distribution, it is possible to calculate point
estimators, which the most popular is the mode, also called Maximum a Posteriori estimator
(MAP). However, for µ′s, it is not possible to get an analytical expression for the mode and, for
this reason, numerical methods should be used instead. The MAP for the parameters are:

µ̂a = µa,0 exp(xa − σ2
a) (25)

l̂ = l0 exp(xl − σ2
l ) (26)

µ̂′s = argmax
µ′s>0

π(µ′s) (27)
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In the Bayesian paradigm, the solution is given by the resulting distributions (22), (23) and (24),
in this case, the ones obtained via the Kalman Filter. Interval estimators can also be described
using the distributions obtained before. If we use a false positive probability of α percent and
denoting by P the cumulative distribution function, then:

1 − α = P(a < x − µ < b) (28)
= P(exp(a + µ) < exp(x) < exp(b + µ)) (29)
= P(x0 exp(a + µ) < x0 exp(x) < x0 < exp(b + µ)). (30)

Therefore, the interval estimates for µa and l can be described by using the interval estimates of
the Gaussian distribution, scaled accordingly. For µ′s , further transformations are needed and the
resulting distribution is:

1 − α = P

(
exp(−b − µ)
µa,0 + µ

′
s,0
− µa < µ′s <

exp(−a − µ)
µa,0 + µ

′
s,0
− µa

)
(31)

In this way, it is possible to analyze the state of information regarding the parameters and how
the information we may have is updated in the light of data. It is also possible to determine the
initial distributions using the calculations shown in the appendix. There, we use the standard
deviations of the scaled parameters to approximate our knowledge regarding the unknowns.

It is also possible to obtain a posteriori information about the correlation of different properties
by studying the a posteriori bivariate marginal distribution among different sets of optical
parameters. The bivariate distribution for two parameters is:

π(x1, x2 |yk) = g1(x1)g2(x2) fX (h1(x1), h2(x2)|x1, x2,D1,2) (32)

where the functions gi, hi, i = 1, 2 depends on the chosen parameter and f is the multivariate
log-normal distribution with mean and covariance obtained in the Kalman Filter (see Appendix).
For each parameter, the functions are

gi(µa, j) =
1

µa, j,0
, hi(µa, j) =

µa, j

µa, j,0
(33)

gi(l j) =
1

l j,0
, hi(l j) =

l j
l j,0

(34)

gi(µ′s, j) =
1

3κ0(µa, j + µ′s, j)2
, hi(µ′s, j) =

1
3κ0(µa, j + µ′s, j)

(35)

where κ0 = 1
3(µa,0+µ′s,0)

. For example, if we consider estimation in µa,1 and µa,2, the resulting
bivariate distribution is

π(µa,1, µa,2 |yk) =
1

µa,1,0µa,2,0
fX

(
µa,1

µa,1,0
,
µa,2

µa,2,0
|x1, x2,D1,2

)
(36)

3. Materials and methods

3.1. Monte Carlo simulations

In order to validate our algorithm, Monte Carlo (MC) simulations were carried out on a laterally
infinite medium —the radius of the corresponding analytical solution used was of R = 200mm—
for eight different source-detector distances (ranging from ρ = 10 mm to 45 mm in steps ∆ρ of 5
mm), over four-layered media. The geometrical aspects are shown in Fig. 3 and the details of
their thicknesses and optical properties can be found in Table 1. These parameters were taken
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Fig. 2. Normalized Log-reflectance of a Monte-Carlo simulation vs. the corresponding
analytical model. The optical and geometrical properties correspond to those presented in
Table 1 and the source-detector distance is ρ = 30mm.

from several different sources [20, 22, 33–37]. There is little agreement in the literature about the
proper choice of parameters that best suits the behavior of light propagation in biological systems
like the human head. Whether our choice may not be appropriate, it is still useful as a proof of
concept to validate our methodology.

Table 1. Optical properties and thicknesses of the four layers construction for the MC
simulations.

Layer # µa[mm−1] µ′s[mm−1] l[mm]
1 0.009 0.86 8
2 0.003 1 3
3 0.0075 2 4
4 0.005 1.1 ∞

In each simulation, 2 × 109 photons where launched at the top surface, and the corresponding
distributions of times of flight (DTOFs) were acquired at several distances from the source. To
accelerate the calculations, we used CUDA [38] technology with a NVIDIA GTX 480 graphics
card, each simulation taking between three and four hours, depending on the geometrical and
optical parameters. The used code is a customized version of that presented in [39]. An example
of MC DTOF is shown in Fig. 2, together with a theoretical DTOF calculated from Eq. (14)
(after applying the proper Fourier antitransform), for ρ = 30 mm and optical and geometrical
parameters corresponding to those of Table 1. Please note that these DTOFs were plotted in
order to show that both agree very well over a large range of times. For both, theory and MC it is
possible to represent many orders of magnitude for the Diffuse Reflectance.

3.2. Phantom experiments

Time-resolved reflectance experiments were performed on a four-layered phantom, as shown
in Fig. 3. Note that in order to make the measurements compatible with our model, a Fourier
transform on the data was performed. A pulsed diode laser Becker & Hickl BHLP-700 (λ = 785
nm, P = 1 mW, FWHM = 270 ps, 50 MHz repetition rate, acquisition time = 30 s) impinged
onto the upper surface of the phantom, and the diffusely reflected radiation was collected by a
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fiber connected to a photomultiplier (Hamamatsu PCM-100-20), which sent the signal to a Time
Correlated Single Photon Counting (Becker&Hickl SPC-130) card. In this way, corresponding
DTOFs were acquired at several separations between source and detector ranging from ρ = 35
mm to ρ = 70 mm, in steps of ∆ρ = 5 mm. For these measurements, we tried to avoid changing the
collection parameters and/or configuration between them; for example, collection times adequate
for ρ = 70 mm, will produce signal levels which are too high for source-detector distances shorter
than 35 mm. In Fig. 4 we show an example of a DTOF acquired at a interoptode distance of
ρ = 70 mm using the Tikhonov deconvolution procedure described in the appendix. Please note
that, although the shown DTOF has a very low signal-to-noise ratio, the deconvolution procedure
is able to retrieve useful information from it.

Fig. 3. Scheme showing the geometry used for DTOF acquisition in both, MC simulations
and phantom experiments. For the case of MC simulations, the input pulse is taken as a
Dirac delta.

The four-layered phantom was prepared with a mixture of water (carrier agent), milk (scattering
agent) and ink (absorbing agent). In this case the optical and geometrical parameters were
prepared using the sames references cited in the previous Subsection. Solidification was achieved
by adding agarose to the liquid solution [40], heating up to 95º C and stirring while cooling.
The first layer was prepared with a specific proportion of these components and poured over

the bottom of a cuvette while still liquid. Once it was solid, we prepared the solution for the
second layer, with different concentrations of the mentioned components, and poured over the
first, solid, layered. The same process was repeated for layers three and four.
In order to retrieve the reference optical parameters of the four layers, we measured the

corresponding DTOFs on homogeneous phantoms prepared from the same mixture used to
produce each layer. These results, as well as the thicknesses, are shown in Table 2. Actual
thicknesses were measured directly from the phantom by cutting it along the Z-axis after
acquisition of the DTOF. The effect of the IRF is being considered, as for the passage from
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Fig. 4. Information retrieved by the deconvolution procedure. a) IRF with its FWHM of
270 ps. b) DTOF obtained from the four layers medium, at ρ = 70 mm. c) Deconvolution
solution using Eq. (42) with the information defined in a) and b).

the Time-Domain measurement to the Frequency-Domain measurement, it is necessary to
deconvolve the signal in order to apply the Fourier Transform, this was approached by a Tikhonov
regularization, the regularization parameter takes into account the noise level of the measurement,
here we used the L-Curve method but, the Morozov’s principle [25] also works well (see
Appendix).

Table 2. Optical properties and thicknesses of the four layers construction for the phantom
experiments.

Layer # µa[mm−1] µ′s[mm−1] l[mm]
1 0.0124 0.51 5
2 0.0023 0.67 4
3 0.0077 1.29 7
4 0.0060 0.82 50

4. Results

4.1. Monte Carlo simulations results

For the Monte-Carlo simulations, several reconstruction schemes were considered, considering a
semi-infinite medium with four layers of optical properties and layer thicknesses given in Table 1
and different source-detector separations. The input of the Kalman Filter is an initial distribution,
which is completely described by its mean and covariance. This covariance matrix can be used
to describe the a priori knowledge about the variables of interest. We assume that there is no
correlation between different optical properties and different layers. This is represented by a
diagonal matrix, with the entries of the diagonal representing the a priori variance of each
parameter.
This information corresponds to the scaled parameters, defined in Eqns. (17), (18) and (19),

which we assumed are normal. However, it is possible to translate the initial distribution into
the scaled parameter using Eqns (29) and (31), where the mean value is the initial value in the
unscaled space of parameters. Then, in the normalized space the mean is zero, according to Eqns
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(22), (23) and (24) with the initial values µa,0, µ′s,0, L0. Besides, the initial 1 − α credibility
interval [41] is a = −Z1−α/2 and b = Z1−α/2 where Zβ = F−1(β) and F denotes the normal
cumulative distribution with zero mean and a given covariance. The chosen initial distributions
can be seen in Fig. 5 which represents our initial knowledge. It is important to observe that we
can use this information for a wide range of situations, if we let the covariance tend to zero for
a given parameter, the distribution tends to an hyperplane with a fixed value. However, this is
not recommended because the Kalman gain matrix could become numerically singular if not
treated properly, leading to undesired results. This can be avoided in two ways: first, one can
use the matrix Qt as a regularizer; second, the parameter can be fixed in the model to reduce
the dimensionality and disregarding the known parameter. By letting the variance of a given
parameter tend to infinity, the Gaussian model resembles more to a uniform distribution. The
Kalman Filter updates the covariance matrix using the information provided by the user, the data
and the model. The scaling is used in order to improve the condition number of the Jacobian
matrix used in the Extended Kalman Filter, but also of the covariance matrix.
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Fig. 5. Initial distributions for each parameter and each layer. The shaded area represents the
99% credibility area. The blue dots represents the true value of the parameter.

Since we are working in a parameter estimation problem (instead of a time-series one), the
EKF will stop after reaching a predefined maximum number of iterations or after a given stopping
criterion of the form:

εk+1 =
| |xk+1 − xk | |∞
| |xk | |∞

< tol, or εk+1 ≥ εk, (37)

where “tol” is the desired tolerance, set by the user. After about 600 iterations, the algorithm
converges to a solution, as can be seen in Fig. 6, where the MAP of every iteration is shown in real
(unscaled) parameters. Using Eqns (25), (26) and (27) with the corresponding 0.99 credibility
interval limits, the Kalman Filter evolves marginally. In Fig. 7 we show the distribution of the last
iteration with the 0.99 credibility intervals where the reference values are highlighted to show
that they are contained in every a posteriori interval (we call it a posteriori because our state of
knowledge was improved by the presence of data).
In Fig. 8, we can see how our knowledge evolved after applying the filtering algorithms. In

Fig. 9 the relevance on the amount of information is shown. By using more source-detector
separations, our state of knowledge gets improved and this can be seen as a reduction of the width
of the intervals. This may be used to determine how many source-detector separations should be
used, given a certain level of credibility in the recovery.
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Fig. 6. Evolution of the distributions with respect to the iteration number for each parameter
and each layer. The green line corresponds to the reference value.
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Fig. 7. Final distributions for each parameter and each layer. The shaded area represents the
99% credibility area. The x axis was preserved from Fig. 5, in this way, the effect of the
algorithm can be better visualized.

In Fig. 13 joint distributions for different combinations of parameters are shown. This can be
extended to the three dimensional case or even more dimensions (see Appendix).

4.2. Phantom experiments results

The EKF was also used for retrieving the optical properties and thicknesses of the four-layered
phantom introduced in Section 3.2. Figure 10 shows the initial distributions of l, µa and µ′s
for each layer used to recover every parameter, while Fig. 11 shows the corresponding final
distributions. In each case the colored regions represent the 99% credibility area, while the blue
dots represent the reference values. Figure 12 merges both plots to show the evolution of the
distributions for each parameter. It can be seen that these values always lay inside the credibility
interval of the final distributions. This figure only shows the results obtained using all of the eight
interoptode distances. Should we use more distances, the distributions would tend to sharpen, as
it happens in the case of MC simulations.
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Fig. 8. Comparison of the initial and final distributions for each parameter and each layer.
The final distribution contains the reference value in its 99% credibility interval.
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Fig. 9. Distributions obtained using an increasing number of source-detector separations for
each parameter and each layer. The red dot corresponds to the reference value.

Finally, the EKF algorithm permits to study how correlated are the retrieved parameters. Figure
13 shows marginalized bivariate distributions for l3 vs. l1, µa,3 vs. µa,1, µ′s,3 vs. µ

′
s,1 and µ

′
s,2 vs.

µa,1, which where chosen as examples. These distributions provide information about both, the
degree of correlation and dispersion of the involved parameters. For example, Fig. 13(a) shows
that l1 and l3 present low correlation and Fig. 13(b) indicates that µa,1 and µa,3 are correlated in
such a way that if µa,1 increases, µa,3 tends to decrease and Fig. 13 (c) shows that when µs,1
increases, so does µs,1 with higher correlation.

As shown in the Appendix, it is possible to obtain distributions of higher dimensions, depending
on the needs of the user. Moreover, an analytical expression for the joint distribution for any pair
of parameters was derived. This allows to study the degree of correlation between parameters of
different layers, such as, for example, µa,1 and µ′s,3, as shown in Fig. 13(d). Finally, in the case
where this methodology should be used in another scheme, such as tomographic reconstruction
— which could need an initial guess provided by these type of techniques —, it is important to
analyze the importance of the punctual estimator. Although the MAP is usually used, some other
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Fig. 10. Initial distributions of the optical properties and thicknesses of the four-layered
phantom. The blue dots represent the reference values listed in Table 2.
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Fig. 11. Final distributions of the retrieved optical properties and thicknesses of the four-
layered phantom using eight source-detector separations. The blue dots represent the reference
values listed in Table 2. The x axis is preserved from Fig. 10, in order to better visualize the
effect of the algorithm.

estimation may be taken in consideration, such as the median or the mean.

5. Discussion

Determination of optical properties in multi-layered media is challenging because of the intrinsic
ill-posedness of the operators modelling light propagation through turbid media translating in
multiple outputs that are almost equal for very different combination of optical and geometrical
parameters. In this study, we proposed a method that allows to provide prior information and is
also able to update the information retrieved (for example, if the statistics of the measurement
equipment is better characterized). We take advantage of that information to obtain factibility
regions for each parameter, as well as different combinations of them, coded in the full covariance
matrix. The presented inverse method is flexible in the sense that, should we obtain another model
(for example, a Monte Carlo simulator or a numerical scheme, such as the Finite Element Method),
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Fig. 12. Initial and final distributions of the optical properties and thicknesses of the four-
layered phantom using eight source-detector separations. The red dots represent the reference
values listed in Table 2.

Fig. 13. Bivariate distribution contours for, from left to right and up to down: a) l1 and l3, b)
µa,1 and µa,3, c) µ′s,1 and µs,3, and d) µa,1 and µ′

s,3.

its incorporation to the scheme is straightforward, as an observation operator. This also applies
for situations where we know the evolution of a related parameter, as it may be, for example, the
case of fluorescence, where the evolution can be seen in terms of the pharmacokinetics of the
fluorescent molecule, such as Indocyanine green.
Our method was tested on Monte Carlo simulations in order to avoid the so-called inverse

crime, in which the same model is used for both, data generating and reconstruction, and also on
phantoms. The success of the methodology can suggest studies to be performed in ex-vivo or
in-vivo situations.

The solutions of our method are probability distributions, this means that it is not necessary to
perform multiple reconstructions in order to obtain statistics for the parameters, they are already
calculated in a single recovery. However, we must remark that this probability distributions are
conditional in the data collected as well as the prior information stated by the user, meaning that
different prior information will probably lead to a different posterior distribution.
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Although we collect data in the Time-Domain, we take it to the Frequency-Domain because, as
we have stated, the EKF allows the use of different observation operators. However, there are some
numerical issues that must be taken case of: if we used the entire DTOF, which contains all the
information regarding photon times of flight, the jacobian matrix of the corresponding operator
would be of sizeO(N2), where N is the number of time channels, increasingmemory requirements,
as we would also need to calculate this matrix where, for the central finite-difference scheme,
would be of complexity of O(2N2) . For analytical problems, this may not seem expensive but, if
we were to use a numerical solver or a Monte Carlo simulation, calculation times become critical,
as well as memory requirements. The Time-Domain measurement can also be transformed to
Frequency-Domain using multiple modulation frequencies, in this sense we can choose the size
of our measurement and it may be possible to reduce the amount of source-detector separations.
Any observation model can be used, such as a time-gated or even CW measurement models,

but its implementation must be appropriately studied. In the case of CW measurements, given the
high ill-posedness of the CW operator, the prior knowledge (especially with the reduced scattering
coefficients) must be quite certain (if not knowing the exact values of the "known" variables)
in order to guarantee a convergence, and this may not even be the case. For Time-Domain
observation models, we must consider the computational burden as stated before, especially for
the numerical models. In that case, a Frequency-Domain numerical implementation (in the sense
of, for example, Finite Element Methods) is cheaper than its Time-Domain counterpart —an
elliptic PDE against a parabolic PDE—. As a proof of concept, we decided to implement the
Frequency-Domain approach and leave the implementation of Time-Domain models for future
work. Another important aspect in the use of the Frequency-Domain instead of the Time-Domain
regime, is the elimination of the "time zero" (t0) parameter. In TD, it must be estimated in order
to perform the search of the optical properties (simultaneously, leading to non-uniqueness of the
resulting operator); in FD it is a scale factor which can be eliminated through an appropriate
calibration.
Regarding the credibility intervals, the results show (for example, Fig. 7) that, for the µa

parameter on the first layer we have a rough uncertainty. As our update of information lies in the
observation operator, the prior information and the measurement, and, the prior information is
being corrected by the data, the main provider of updating is the measurement and the model.
The results might suggest that we can not improve further the information of the first layer,
considering that our minimum source-detector distance is of 35 mm. A deep knowledge of the
model is necessary in order to obtain better results but also to interpret them; most importantly,
the method stabilizes and does not diverge, as it gives all the information it can. This can be
compared to the Monte-Carlo simulation where we had lower source-detector distances and the
information of the first layer is more certain.
Regarding the limitations of the method, as a Bayesian inverse problem that relies on prior

information, the quality of this information, as well as the data collected, influence on the posterior
distribution retrieved. This can be translated in that if we do choose, as a starting distribution, one
that is way too far from the objective distribution, there is no guarantee of the convergence of it
to the true distribution. This may be due to the existence of multiple local modes of the resulting
distribution which can appear because of the model (which is the other source of information).
It also needs proper tuning of the a priori distributions as well as the measurement covariance,
which information may, or may not, be available. It can be adapted to allow for broader areas
by extending the methodology to a non-parametric approach such as Particle Filter or Gaussian
Sums [24], which, also, does not depend on the assumption of Gaussian distributions in the noise
as well as the parameter uncertainty.

One of the conclusions that can be achieved while comparing the results from the Monte-Carlo
simulations and the experimental results is that the incorporation of information, by itself, may
not be enough to achieve better credibility intervals, not only by amount of information (more
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source-detector distances) but also the kind of retrievable information provided by that new
information. It can be seen, for example, that when smaller distances are incorporated in the MC
simulation (see Fig. 9), we were able to obtain much more and precise results than the counterpart
in the experimental setup, where we do not have that kind of short distance measurement. In
conclusion, it’s not only the amount, but the quality of the information (to incorporate information
that complements our knowledge, but not that much to become redundant with what we already
have). It must be studied, according to the experimental setup, the number of unknowns, and the
model to decide an appropriate number of source-detector distances, as well as their location,
used in order to optimize the posterior distribution in the sense that the marginalized variance is
minimized for each unknown.

6. Conclusions

In this paper, we have developed an inverse problem methodology, based on the extended
Kalman filter, for the retrieval of the optical and geometrical parameters in multi-layered turbid
media. This approach allowed us to incorporate measurement noise information as well as
prior knowledge about the parameters of interest. As it is a Bayesian method, the obtained
solutions are distributions of the parameters of interest. Their analytical expressions allow for
fast determination of moments and estimators, providing more information than deterministic
methods, which usually provide only punctual estimators. Using this distributions, it is possible
to show how the state of information improves when there is more information available, such as
more source-detector distances. This methodology also allows to perform correlation analysis
of different pairs of parameters; this is because the solutions are joint distributions of all the
parameters, which can be marginalized to analyze the parameters of interest. We have validated
the proposed approach in four-layered media with a semi-infinite bottom layer by both, Monte
Carlo simulations and phantom experiments, showing that it is possible to simultaneously retrieve
all the parameters (i.e, four absorption coefficients, four reduced scattering coefficients and
three thicknesses) within the credibility interval. These results suggest that our method could be
successfully applied to biological systems such a the human head, consisting of several layers, in
order to study blood activity in the cortical region of the brain.
It is important to remark that, given an adequate theoretical model, there are no limitations

concerning the number of layers or the number of parameters to recover. However, an appropriate
analysis of the number of source-detector distances must be performed to achieve better results, as
could be seen in this work. Given the measured data, the resulting distributions of the parameters
can be seen as a first order approximation of the actual ones. In this work, the information
provided to the method was codified via the model (to incorporate interoptode distances), or
through the description of the initial distributions represented by the distribution parameters.
Nevertheless, if we had precise information of the layer thickness (for example, tomographic
reconstructions of the head of a patient), it could be excluded from the inverse model. This implies
a reduction of the dimensionality of the problem, which improves the resulting distributions and
reduces calculation times as well. In a future work we will adapt the extended Kalman Filter to a
Gaussian sum in order to improve the speed and convergence of the algorithm.

Appendix

Derivation of the distributions

In the univariate case, as the transformations for µa and L are analogous, we will derive it
directly:

Let X ∼ N(µ, σ) then exp(X) ∼ LN(µ, σ) we wish to determine the distribution of αX , where
α > 0. In this case, we can write this as Y = r(X) where r(X) = αX , by using the method of
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transformations for monotone functions [42] the probability distribution is

fY (y) = fX (r−1(y))
����d(r−1)

dy

���� (38)

using the distribution of the variable X . Then the distribution is

fY (y) =
1
α

fX
( y
α

��� x̂, σ
)

(39)

which leaves the argument of the log-normal distribution unitless. For µ′s the function isY = g(X)
with g(X) = 1

3(κ0X) − µa which is also monotone. Using the identity (38), the resulting distribution
is

fY (µ′s) =
1

3κ0(µa + µ′s)2
fX

(
1

3κ0(µa + µ′s)

���� x̂, σ
)

(40)

For the multidimensional case, the distribution is obtained in a similar fashion by stating

fY (y1, · · · , yn) = fX (g−1
1 (y1), ..., g−1

n (yn)|xt+1, Γt+1 |t+1)| det J(y)| (41)

where J(y) = ∂g−1

∂y is the Jacobian of the inverse function. In our case, X corresponds to the
exponential of the output of the Kalman Filter.

Deconvolution procedure

The problem of deconvolution is ill-posed [25], but this can be tackled with the Tikhonov
regularization whose expression for our problem is:

fλ = F−1
(

F[g]F[y]
|F[g]|2 + λ |F[l]2 |

)
(42)

where the regularization parameter λ was found using the L-curve criterion [43].

About the initial distributions

The initial distribution is a Normal distribution with zero mean and covariance diag(σa, σD, σl).
The mean is zero because we are working in the scaled parameter space and, as we start
from the initial guess we get x0 = log(p0/p0) where p0 = [µa,0,D0, l0]′ the logarithm is taken
component-wise. For the initial covariance, we assumed that the scaled parameters follow a
Normal distribution which is independent of the other parameters. In this sense, we know that

P(−3σa < xa < 3σa) = 0.95 (43)

where σa is the standard deviation to translate this into our original space we perform the
calculations made in Eqs. (28) - (30), leading to

P(µa,0 exp(−3σa) < µa < µa,0 exp(3σa)) = 0.95 (44)

Becausewe performedmonotonic transformations only. Then,we can state our prior information
by finding σa such that µa,0 exp(−3σa) < µa < µa, 0 exp(3σa) better represents our knowledge.
Note that our information is stated only as a one single parameter (σa) problem and, as our
distribution is non-symmetrical, we might not be able to incorporate the prior information
exactly, but only approximately. The prior information for the other parameters can be described
analogously.
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