
Author’s Accepted Manuscript

Oxidative stress and mitochondrial adaptive shift
during pituitary tumoral growth

Maria Eugenia Sabatino, Ezequiel Grondona,
Liliana d.V. Sosa, Bethania Mongi Bragato, Lucia
Carreño, Virginia Juarez, Rodrigo A. da Silva,
Aline Remor, Lucila de Bortoli, Roberta de Paula
Martins, Pablo A. Pérez, Juan Pablo Petiti, Silvina
Gutiérrez, Alicia I. Torres, Alexandra Latini, Ana
L. De Paul

PII: S0891-5849(18)30122-9
DOI: https://doi.org/10.1016/j.freeradbiomed.2018.03.019
Reference: FRB13666

To appear in: Free Radical Biology and Medicine

Received date: 1 November 2017
Revised date: 9 March 2018
Accepted date: 12 March 2018

Cite this article as: Maria Eugenia Sabatino, Ezequiel Grondona, Liliana d.V.
Sosa, Bethania Mongi Bragato, Lucia Carreño, Virginia Juarez, Rodrigo A. da
Silva, Aline Remor, Lucila de Bortoli, Roberta de Paula Martins, Pablo A. Pérez,
Juan Pablo Petiti, Silvina Gutiérrez, Alicia I. Torres, Alexandra Latini and Ana
L. De Paul, Oxidative stress and mitochondrial adaptive shift during pituitary
tumoral growth, Free Radical Biology and Medicine,
https://doi.org/10.1016/j.freeradbiomed.2018.03.019

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com

http://www.elsevier.com
https://doi.org/10.1016/j.freeradbiomed.2018.03.019
https://doi.org/10.1016/j.freeradbiomed.2018.03.019


1 

 

Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth 

Sabatino, Maria Eugenia1*; Grondona, Ezequiel1*; Sosa, Liliana d.V.1; Mongi Bragato, Bethania1; 

Carreño, Lucia1; Juarez, Virginia1; da Silva, Rodrigo A.2; Remor, Aline2; de Bortoli, Lucila2; de Paula 

Martins, Roberta2; Pérez, Pablo A. 1; Petiti, Juan Pablo1; Gutiérrez, Silvina1; Torres, Alicia I.1; Latini, 

Alexandra2; De Paul, Ana L1#. 

1Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía 

Electrónica. Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Argentina. 

2Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de 

Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil. 

*Sabatino, Maria Eugenia and Grondona, Ezequiel contributed equally to this work. 

# Corresponding Author and person to whom reprint request should be addressed: 

Dr. Ana Lucía De Paul. 

e-mail: adepaul@cmefcm.uncor.edu 

Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-

CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. 

Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, 5000 Córdoba, Argentina.  

Tel/fax: +54-351-4333021 



2 

 

ABSTRACT 

The cellular transformation of normal functional cells to neoplastic ones implies 

alterations in the cellular metabolism and mitochondrial function in order to provide the 

bioenergetics and growth requirements for tumour growth progression. Currently, the 

mitochondrial physiology and dynamic shift during pituitary tumour development are not well 

understood. Pituitary tumors present endocrine neoplastic benign growth which, in previous 

reports, we had shown that in addition to increased proliferation, these tumours were also 

characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear 

evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria 

during tumour development, associated with augmented biogenesis and an increased fusion 

process. An activation of the Nrf2 stress response pathway together with the attenuation of the 

oxidative damage signs occurring during tumour development were also observed which will 

probably provide survival advantages to the pituitary cells. These neoplasms also presented a 

progressive increase in lactate production, suggesting a metabolic shift towards glycolysis 

metabolism. These findings might imply an oxidative stress state that could impact on the 

pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate 

their metabolism to adapt to different energy requirements and signaling events in a 

pathophysiological situation to obtain protection from damage and enhance their survival 

chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a 

critical role in pituitary tumour progression. 
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Graphical Abstract 
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HIGHLIGHTS 

 Bigger mitochondria with increased fusion evidence were seen in pituitary tumours.  

 Pituitary tumours showed increased ROS levels and signs of oxidative damage. 

 The Nrf2 pathway was activated in pituitary tumours as an antioxidant response. 

 Glycolysis may favour cell growth and survival in experimental pituitary tumours. 

Abbreviations 

8OH-G: 8-hydroxyguanine, CK: Creatine kinase, 2 , CS: citrate synthase, DNMT1-3A-3B: DNA 

methyltransferase 1, 3A, 3B, DRP1: dynamin-related protein 1, p-DRP1: dynamin-phosphorylated 
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related protein 1, ETC: electron transport chain, HO-1: heme oxygenase, MFF1 and MFN2: 

mitofusin 1 and mitofusin 2, MMP: mitochondrial membrane potential, NRF1 and NRF2: nuclear 

respiratory factor 1 and nuclear respiratory factor 2, Nrf2: nuclear factor erythroid- related factor 

2, p-Nrf2: phosphorilated nuclear factor erythroid- related factor 2, OGG1: 8-Oxoguanine DNA 

glycosylase/AP lyase 1, OPA1: Optic atrophy 1 gene protein, OXPHOS: oxidative phosphorylation, 

PCC: protein carbonyl group content, ROS: reactive oxygen species, TFAM: transcription factor A 

mitochondrial, γ H2AX: phosphorilated histone H2AX, TET1-3: ten-eleven translocation 1-3. 

 

Introduction 

Pituitary tumours are trophically stable benign neoplasms that typically show relatively 

little change in size over many years and may be the main basis of endocrine dysfunction. The 

current understanding of the molecular pathogenesis of pituitary adenomas is considered as a 

multifaceted process that involves the participation of both extrinsic and intrinsic factors. 

Recently, a substantial improvement has been made in the recognition of the mechanisms and 

agents implicated at the beginning and during the evolution of pituitary tumours. These tumours 

do not present the typical oncogene mutations often found in nonendocrine neoplasms and the 

particular aspects that contribute to the initiation and promotion of their development have 

already been characterized [1, 2]. These factors, such as cell cycle deregulation, growth factor 

overexpression, hormonal overstimulation, epigenetically silenced tumour suppressor genes, 

oncogene overexpression, defective signalling pathways and an altered intrapituitary 

microenvironment, act as mitogenic stimuli that can lead to sustained tumour growth [1, 3-8]. 

However, an alternative approach based on data derived from the mitochondrial role during 

pituitary tumorigenesis has not yet been fully considered. Mitochondria influence cell function and 

adaptation by dynamic fluctuations, and due to their participation in numerous critical outgrowths 

of cell function, they are important contributors to intracellular signalling and can affect 

homeostasis in several interconnected manners. Mitochondrial dysfunction can directly provoke 

several of the adverse cellular outcomes related to chronic stress, including oxidative stress, 

inflammation, telomere shortening, epigenetic dysregulation, altered gene expression and cellular 

senescence [9]. In addition, recent advances in molecular biology have provided innovative ways 

to interpret the role of the cellular metabolism and mitochondrial function in the development 

and progression of tumours.  
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Cellular transformation of normal and functional cells to neoplastic ones implies 

alterations in the cellular metabolism and mitochondrial function in order to provide the 

bioenergetics and growth requirements for tumour growth progression [10, 11]. Thus, without 

metabolic transformation, the neoplastic cell will not be able to attain an unregulated growth 

potential. Therefore, it is critical to establish the role of the mitochondria during pituitary 

tumorigenesis. 

The ultrastructure, composition and function of mitochondria diverge significantly from 

tumoral to normal cells. For instance, an increased rate of glycolysis (Warburg effect) has been 

described as an inherent property of tumoral cells [12]. Also, rapidly growing tumours may show 

fewer and smaller mitochondria with scarcer cristae than those from slowly growing tumours, 

which tend to present characteristics resembling normal cells [11]. Additional differences between 

the mitochondria of normal vs. transformed cells have similarly been described with regard to 

preference for substrates, mitochondrial membrane potential, protein synthesis, organelle 

turnover and reactive oxygen species (ROS) production [10]. 

Mitochondria are key components of the stress response owing their role in energy 

production and their ability to generate signals that promote cellular adaptation [13]. For example, 

mitochondrial biogenesis can modify the number of organelles to adapt the total cellular energy 

capacity. Also, mitochondrial network can undergo fission or fusion as a response that could 

promote survival in the context of cellular stress signals.  

Metabolic processes may result in an increase in the ROS production [14]. When 

production of ROS exceeds the cell antioxidant capacity, oxidative stress and oxidative damage to 

biomolecules (proteins, DNA and RNA) may take place, and this may have a causative role in the 

progression of tumorigenesis [15]. Adaptive responses to environmental and endogenous stresses 

involve the activation of the Keap1-nuclear factor erythroid-related factor 2 (Nrf2) signalling 

pathway, which regulates the expression of an extended group of cytoprotective genes [16]. 

Few attempts to elucidate mitochondrial health in pituitary tumours have been made [18-

22], with currently little being known about mitochondrial behaviour during endocrine tumour 

development. The pituitary gland mostly develops benign proliferative injuries with the 

coexistence of mitotic events together with cellular senescence arrested cells and practically null 

apoptotic rates [17-26]. As a dynamic and plastic tissue the pituitary gland constantly adapts 

hormonal and metabolic responses to the changing environments [27]. Thus, we have interpreted 
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the existence of a pituitary senescent barrier as being a failsafe mechanism that may allow the 

survival of the gland, complementing its relevant role in organism homeostasis. Here, we focused 

our attention on how the mitochondrial fitness outcome supports these tumoral features, 

implying an adaptation of the mitochondrial structure and dynamics, energy production 

mechanisms and detoxification processes. As little is known about mitochondria behaviour and 

energy metabolism in pituitary tumours [28-31], in the present work we analysed a wide range of 

parameters, which were taken into account during the development of in vivo experimental 

pituitary tumours. This helped us to conceive an overview of the progressive mitochondrial 

switches needed for the survival of pituitary cells in order to cope with neoplastic injury. 
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2. Materials and methods 

2.1 Animals and experimental models 

Three-month-old Wistar strain male rats were maintained at controlled temperature (21±3 °C) and 

lighting conditions (14 h light: 10 h darkness cycle), with free access to commercial laboratory 

chow and tap water. Taking into account that exogenous estrogen excess induces pituitary 

tumours [17, 32], intact animals were treated with estradiol benzoate (Sigma Aldrich, St. Louis, 

MO, USA) for 10, 20, 40, and 60 days (E10, E20, E40, and E60). Estrogen was implanted 

subcutaneously in slow releasing silastic brand capsules (Dow Corning, Medical grade, Midland, 

MI, USA) filled with 10 mg of estrogen crystals and sealed with silastic cement. The control group 

was implanted with empty capsules. Rats were decapitated within 10 s after being removed from 

their cage, thus avoiding any stress or external stimuli. The animals were kept in accordance with 

the Guide for the Care and Use of Laboratory Animals, published by the United States National 

Institutes of Health (1996), and the experiments were approved by the Institutional Animal Care 

Committee of the School of Medicine, National University of Córdoba. 

 

2.2 Pituitary cell dissociation 

The protocol for pituitary cell dissociation has been previously described [33]. Briefly, rat pituitary 

glands were placed in minimal essential medium, and then minced and digested with 0.4 % w/v 

trypsin at constant slow agitation at 37°C. The cell suspension was gently dispersed using flame-

rounded Pasteur pipettes. Cell viability, tested with Trypan blue exclusion, was always better than 

90%. Cell dispersions were transferred to 1.5 ml eppendorf tubes and centrifuged at 400 g for 

5min. 

 

2.3 Cellular fractionation 

The subcellular fractionation was performed as described by Mongi Bragato and coworkers (2016). 

Briefly, pituitary glands from control or estrogenized animals were homogenized in cytoplasmic 

extract buffer [10 mM Hepes pH 7.5, 60 mM KCl, 1 mM EDTA, 1 mM dithiothreitol (DTT), 1 mM 

NaVO4, 1 mM phenylmethanesulfonyl fluoride (PMSF), 1 μg/mL Aprotinin, 1 μg/mL Leupeptin, 1 

μg/mL pepstatin, 0.075% Nonidet P40 (NP40)], and centrifuged at 2000 xg for 5 min at 4°C to 

pellet out THE nuclei fraction. Supernatants were centrifuged at 10000 xg for 10 min at 4°C, and 

the resulting ones were used as cytoplasmic extracts. Nuclear pellets were resuspended in nuclear 

extract buffer (20 mM Tris HCl pH 8, 420 mM NaCl, 60 mM KCl, 1 mM EDTA, 1 mM NaVO4, 1mM 
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PMSF, 25% glycerol, 1 μg/mL Aprotinin, 1 μg/mL Leupeptin, 1 μg/mL pepstatin), and centrifuged at 

10000 g for 10 min at 4°C. The resulting supernatants were used as nuclear extracts. Aliquots of 

each sample were used for total protein quantification according to the Bradford method (Bio-Rad 

Protein Assay, Bio-Rad). 

 

2.4 Western blotting analysis 

Protein (40ug) from the subcellular fractionation was separated by SDS-PAGE and transferred to a 

nitrocellulose membrane and blocking was performed using bovine serum albumin (BSA) (Sigma 

Aldrich) 5% in TBS 1X/tween-20 0.1 %. To estimate the corresponding molecular weights, the 

Precision Plus Protein Standards molecular weight marker was used (Bio-Rad). Membranes were 

incubated overnight at 4°C with the corresponding primary antibody: goat polyclonal anti-OPA-1 

(1/200), rabbit polyclonal anti-MFN-2 (1/250), rabbit polyclonal anti-phosphorilated-DRP-1 serine 

637 (1/500; Cell Signaling), mouse monoclonal anti-8-hydroxyguanine (8OH-G) (1/100), mouse 

polyclonal anti- phosphorilated Histone H2AX (p-H2AX) (1/2000, Cell Signaling), rabbit 

monoclonal anti-Nrf-2 (1/500, Abcam) rabbit monoclonal anti-phosphorilated Nrf-2 serine 637 (p-

Nrf-2) (1:500, Abcam), mouse monoclonal anti- tubulin (1:2500; Sigma Aldrich), rabbit anti-Lamin 

B (Lam B) (1/500; Cell Signaling), rabbit polyclonal anti-Heme Oxygenase 1 (HO-1) (1/200, Santa 

Cruz Biotecnology), anti-DNA methyltransferase-1 (DNMT-1) (Cell Signaling, 1/1000) or anti-β-

Actin (1/4000; Sigma-Aldrich). After washing, blots were incubated with a peroxidase-conjugated 

(HRP) goat anti-rabbit (1/5000; BioRad), goat anti-mouse (1/3000; Jackson Laboratories) or mouse 

anti-goat (1/1000, Santa Cruz Biotechnology), diluted in blocking buffer, rinsed in TBS 1X/Tween 

0.1 %, and revealed with an ECL detection system (Amersham Biosciences). Emitted light was 

captured on Hyperfilm (Amersham Pharmacia Biotech). The -tubulin, β-actin or Lam B antibodies 

were used as loading controls, and values were expressed as the percentage of the control. Semi-

quantitative signals were derived from densitometric analysis using the ImageJ software (1.51o 

Wayner Rasband National Institute of Health, USA). 

 

2.5 Transmission electron microscopy (TEM) 

With the objective of evaluating the mitochondrial ultrastructural features of pituitary cells, 

normal and estrogen-induced tumoral pituitaries were fixed in a mixture of 4 % formaldehyde and 

2 % glutaraldehyde in 0.1 M cacodylate buffer, before being treated with 1% OsO4 as previously 

described [34]. Then, the Araldite-embedded pituitary thin sections were cut with a diamond knife 
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on a JEOL JUM-7 ultramicrotome (Nikon, Tokyo, Japan) and examined using a Zeiss Leo 906 E 

electron microscope equipped with the digital camera Megaview III (Oberkochen, Germany). For 

quantitative analysis of the mitochondrial number and morphology, three glands from each 

experimental condition were used, and fifty random micrographs of the same slide region were 

acquired at a 10000X magnification (50 micrograph/experimental condition/per animal) and 

analysed using Image J software (1.51o Wayner Rasband National Institute of Health, USA), to 

determine the mitochondria number/field, area, circularity (4π x [area/(perimeter)2) and 

elongation (mayor axis/minor axis) [35-37]. 

 

2.6 Immunohistochemistry 

Paraffin-embedded pituitary glands were processed by immunohistochemistry for 8-OHG as 

described previously [17]. Briefly, an antigen retrieval method using a hot antigen unmasking 

solution was performed (0.01 M citrate buffer; pH 6), and in order to inhibit endogenous 

peroxidase, sections were treated with 3 % v/v hydrogen peroxide in methanol for 15 min. 

Subsequently, these sections were incubated for 30 min in 10 % v/v normal serum (Sigma–Aldrich) 

to block nonspecific binding, followed by overnight incubation with monoclonal anti-8-OHG 

antibody (1/200). Next, sections were incubated with biotinylated secondary antibody (1/300; 

Amersham; Buckinghamshire, England) and ABC complex (Vector Laboratories, Burlingame, CA, 

USA) with 3,3’-diaminobenzidine tetrahydrochloride being used as a chromogenic substrate 

(Sigma Aldrich). Finally, sections were rinsed in running water and counterstained with 

hematoxylin (Sigma Aldrich). Controls were performed by applying the same protocol, but 

omitting primary antibodies. Slides from three animals of each experimental condition were 

photographed in randomly chosen fields at 400 X. 

 

2.7 Immunofluorescence 

To assess DMNT 1 localization, additional sets of slides from different experimental conditions 

were processed for fluorescence microscopy. LR White-embedded pituitary glands (London Resin 

Corporation, Berkshire, UK) were processed as described elsewhere [34]. Briefly, thin sections 

were cut with a diamond knife on a Porter-Blum MT2 and JEOL JUM-7 ultramicrotome and then 

incubated for 2 h in glicine (100 mM/Buffer Tris pH 7.4) in order to reduce auto-fluorescence 

according to Baschong, Suetterlin and Laeng [38]. After the pituitary sections had been incubated 

with anti-DMNT1 (1/100 Cell signalling) overnight, these slices were washed, and further 

incubated with Alexa 594 anti-rabbit secondary antibodies (1/2000; Invitrogen; Carlsbad, USA) for 
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1 hour. Images were then obtained using the confocal microscope Axioplan (Carl Zeiss, Jena, 

Alemania) and collected with a 60 X objective. The analysis of these images was carried out using 

ImageJ software (1.51o Wayner Rasband National Institute of Health, USA). 

 

2.8 Sequential RNA and DNA co-extraction 

Total RNA was extracted with TRIzol reagent (Invitrogen, Carlsbad, CA) according to the 

manufacturer's instructions. Sequential DNA co-extraction was performed from the interphase 

and organic layer obtained after centrifugation. Then, the genomic DNA (gDNA) was precipitated 

with 100 % ethanol and the pellet was washed with sodium citrate/ethanol buffer (0.1 M sodium 

citrate in 10% ethanol, pH 8.5) and 70 % ethanol and dissolved in 50 μl of NaOH 8 mM, with the 

RNA and gDNA integrity and concentration being measured using a NanoDrop spectrophotometer 

(Thermo Scientific, Uniscience, USA). 

 

2.9 Semiquantitative RT-PCR analysis 

Total RNA was extracted with TRIzol reagent (Invitrogen, Carlsbad, CA) according to the 

manufacturer's instructions. Thereafter, 1 μg of total RNA was used as a template for reverse 

transcription using EpiScript™ Reverse Transcriptase (Epicentre, Madison, WI) with random 

hexamer primers (Thermo Fisher Scientific, Waltham, MA USA). The cDNA obtained was subjected 

to PCR amplification using GoTaq DNA Polymerase (Promega, Madison, WI), and following this,  

PCR protocols were performed according to the manufacturer’s instructions. PCR amplification 

was performed in 10 μl using a specific primers sets (Table 1), and the PCR amplified products 

were visualized by electrophoresis onto 2% agarose gels by GelSampleRedTM (Biotium) staining, 

whit the band densitometric analysis being carried out using ImageJ software. 

 

2.10 Global DNA methylation analyses whit with MspI/HpaII endonucleases 

Global DNA methylation was evaluated by restriction endonuclease digestion of 1000 μg of 

genomic DNA digested with 10 μl of reaction mixture of restriction endonucleases MspI or HpaII 

(10 U; Fermentas, St. Leon-Rot, Germany) in separate reactions in appropriate buffers and 

digested at 37 °C for 16 h. Both endonucleases have the same restriction site (CCGG), although 

HpaII is also sensitive to DNA methylation. The reaction products were resolved by electrophoresis 

onto 0.8 % agarose gel. Band densitometric analysis was carried out using ImageJ software, and 

the percentage of methylation was calculated using the formula: global DNA methylation content 

= (HpaII-MspI) x 100/ undigested genomic DNA [39]. 
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2.11 TP53 promoter methylation analysis by methylation-sensitive restriction enzymes  

To evaluate the TP53 promoter methylation status, firstly gDNA samples were digested with 

methylation sensitive HpaII restriction endonuclease (New England Biolabs, Ipswich, MA, USA), 

which can recognize unmethylated CCGG motifs, at 37 °C for 4 h in a 10 µl reaction volume. This 

was followed by inactivation at 65°C for 20min. Afterwards, the digested gDNA samples were 

amplified with primers (Table 1) flanking the CCGG motifs in the promoter region of the P53 gene. 

The PCR amplified products were analysed by electrophoresis onto 2 % agarose gel with 

undigested gDNA with amplification control, and band densitometric analysis was obtained using 

ImageJ software. The percentage of promoter methylation was calculated considering that the 

value of the undigested gDNA sample quantification represented the total amplified DNA template 

(100 % of the initial template copies were amplified) and, tha the value of HpaII-digested samples 

represented the total amplified DNA. The percentage of methylation was calculated using the 

formula: promoter methylation content = (HpaII) x 100/ undigested gDNA [40]. 

 

2.12 Measurement of creatine kinase activity 

Creatine kinase (CK) activity was determined in pituitary homogenates by measuring creatine 

formation by the colorimetric method [41] using a commercial kit of CK (Doles, Goiania, Brazil) 

according to the manufacturer's instructions. The results from pituitary homogenates of 3 animals 

per experimental group were expressed as µmol of creatine/min/mg protein. 

 

2.13 Protein carbonyl content 

The protein oxidative damage was measured by determining the of protein carbonyl group 

content (PCC), based on the reaction with dinitrophenylhydrazine (DNPH) [42]. Normal and 

tumoral pituitary gland supernatants were treated with 4 mmol DNPH dissolved in 2.5 N HCl or 

with 2.5 N HCl (blank control) and left in the dark for 1 h. Samples were then precipitated with 20 

% TCA and centrifuged for 5 min at 10000 xg. Next, pellets were washed with 1 ml ethanol: ethyl 

acetate (1:1 v/v) and re-dissolved in 6 M guanidine prepared in 2.5 N HCl, and samples were 

incubated at 37 °C for 5 min to assure complete dissolution of the pellet, with the resulting sample 

being examined at 360 nm. Differences between DNPH-treated and HCl-treated samples were 

used to estimate the PCC. Results were calculated as pmol of carbonyls groups/mg protein, using 

the extinction coefficient of 0.022 µM-1cm-1 for aliphatic hydrazones. 
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2.14 Mitochondrial membrane potentials and ROS production 

JC-1 (MitoProbe™ JC-1 Assay Kit for Flow Cytometry-M34152) is a lipophilic cation, which 

selectively accumulates, either within the mitochondrial matrix as a green (527 nm) fluorescent 

monomer at depolarized membrane potentials, or as J-aggregates with orange-red (590 nm) 

fluorescence at hyperpolarized membrane potentials [43]. DCFH-DA (Molecular Probes™ Reactive 

Oxygen Species Detection Reagents-mp36103) is a cell-permeant dye that once inside the cell is 

cleaved by intracellular esterase into its non-fluorescent form DCFH. This probe, which is no longer 

membrane permeant, may be further oxidized by ROS to its fluorescent form DCF [44]. Here, 

fluorescence emission from DCF (green) was detected at a wavelength of 530 nm.  

In order to determine the mitochondrial membrane potential and ROS production, dispersed 

pituitary cells from normal and estrogen-treated animals were incubated with 500 µl of DMEM 

supplemented with 10 % foetal bovine serum (150000 cells / treatment). Then, 0.5 µl of JC-1 

(Stock solution 2 µM) or 2.5 µl DCFH-DA (Stock solution 10uM) were added to each sample and 

incubated at 37 °C for 30 min under 5 % CO2, after which, pituitary cells were washed twice at 

37°C with filtrate phosphate buffer saline (PBS), resuspended in a 100 µl final volume and analysed 

by flow cytometry (BD FACS Canto II). The accumulation of JC-1 in pituitary cells, measured by an 

increase in fluorescence, together with the intensity ratio of orange J-aggregates to green 

monomers were used to monitor the mitochondrial membrane potential change induced during 

estrogen-induced pituitary tumoral development. CCCP (0.5 µl/ Stock solution 50 µM) and H2O2 

(2.5 µl/ Stock solution 100 µM) were used as positive controls for membrane polarity and for 

stimulating ROS production, respectively. 

 

2.15 Measurement of the respiratory chain enzyme activities 

Complex I activity was measured by the rate of NADH-dependent ferricyanide reduction at 420 nm 

(1 mM−1cm−1) [45] with the cytochrome c oxidase activity (complex IV) being also determined 

spectrophotometrically measuring cytochrome c oxidation at 550 nm [46, 47]. The above-

mentioned methods were slightly modified, as detailed in a previous report [48]. The activities of 

the respiratory chain complexes were calculated as nmol/min -1/mg protein, and measured using a 

temperature-controlled Varian Cary 50 spectrophotometer (Varian, Inc., Palo Alto, CA, USA). 

 

2.16 Reduced Glutathione Determination 

Reduced Glutathione levels were measured according to Browne and Armstrong [49] in tissue 

homogenates after protein precipitation with 20 % trichloroacetic acid. Pituitary samples were 
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diluted in 100 mM PBS pH 8, containing 5 mM EDTA, and incubated with Ortho-fhthalaldehyde (1 

mg/ml methanol) at room temperature for 15 min. Fluorescence was measured using 350 nm 

excitation and 420 nm emission in pituitary homogenates from 5 animals for each experimental 

group. A standard curve of reduced glutathione was used for concentration determination, and 

the results were expressed as nmoles GSH/mg of protein. 

 

2.17 Citrate synthase activity 

Citrate synthase (CS) was measured at 410 nm at room temperature as described previously [50]. 

Pituitary homogenates from normal and estrogen-treated animals were incubated in the reaction 

buffer containing 100 mM Tris-HCl pH 8, 0.1 mM acetyl-CoA, 0.2 mM DTNB, and 0.1 (v/v) Triton X-

100. The assay was initiated by the addition of 10 ml of 20 mM oxalacetate and, 10 min later, the 

absorbance was read on amicroplate reader (Bio-Rad, Hercules, CA, U.S.A.). 

 

2.18 Lactate determination 

Normal and estrogen-induced tumoral pituitaries were suspended in 4X volumes of lactate assay 

buffer using a homogenizer sitting on ice, and centrifuged at 13000 g at 4 °C to remove any 

insoluble material. Then, supernatants were collected and endogenous LDH, which could degrade 

lactate, was removed by sample deproteinization using trichloroacetic acid and centrifuged at 

13000 xg at 4 °C. Finally, the pH solution (pH 7.4) was adjusted with 1 M of cold Tris solution (pH 

8.8), and lactate levels were immediately determined using the colorimetric assay LACT2 (Roche 

Diagnostic GmBH, Mannheim, German). To obtain detectable levels of lactate was 0.2 mmol/l and 

also for statistical purposes, the pituitary glands from 4 animals were pooled for each 

experimental condition. In addition, muscle tissue (10 mg) from the same animals was processed 

in parallel and used as an internal control of lactate determination. 

 

2.19 Statistical analysis 

Statistical analysis was carried out using an analysis of variance with Fisher’s post-test (InfoStat 

version 2015; Grupo InfoStat, Facultad de Ciencias Agropecuarias, Universidad Nacional de 

Córdoba, Argentina). The results were given as the means ± SEM, and the data were obtained 

from at least in three replicates measured from three independent experiments. The significance 

levels were chosen at P< 0.05. Graphical design was performed using the Prism 5 software (Graph-

Pad, La Jolla, CA, USA). 
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3. Results 

3.1. Modifications in mitochondrial mass, dynamics and morphology emerged during the 

pituitary tumour development. 

Cellular proliferation is an energy-consuming process, making very interesting to 

understand how the mitochondrial function is altered in tumoral growth. Therefore, our interest 

was focused on the evaluation possible mitochondrial adaptations that occur during the estrogen-

induced pituitary tumour development. 

An essential process that modifies the mitochondrial mass is biogenesis, which can adjust 

energy production by synthesis of new organelles and their components. This cellular program is 

stimulated by the enhancement of NRF-1, NRF-2 (nuclear respiratory factors 1 and 2) and TFAM 

(transcription factor A, mitochondrial) transcriptional activity, which are the main factors 

responsible for mitochondrial gene expression [51]. The transcript levels of all of these 

mitochondrial biogenesis promoters were markedly induced and sustained during tumour 

development (Figure 1A-D). In addition, as the mitochondrial number, structure and function are 

continuously modified by functional requirements to adapt to different cell demands, we also 

analysed the ultrastructural mitochondrial features. As shown in Figure 1E, an enlargement in the 

mitochondrial area was detected from the earliest stages of pituitary tumoral development, which 

was also accompanied by a sustained and significant rise in CS activity, as a mitochondrial mass 

marker, with tumour development from 20 to 60 days (Figure 1F). However, the morphometric 

analysis of mitochondria in normal and tumoral pituitaries revealed a slight increase in the number 

of mitochondria per area only for the E10 condition, when examined by TEM (p<0.05 Figure 1G-H).  

Mitochondrial morphology is tightly regulated by the coordination of fusion and fission 

events, so that variations in their balance can cause excessive mitochondrial fragmentation or 

elongation. These processes involve dynamin-related protein 1 (DRP1) and mitochondrial fission 

factors MFF and FIS1, which constitute the core of mitochondrial fission machinery, and the 

dynamin-like GTPases, mitofusin 1 and 2 (MFN 1 and MFN2), and optic atrophy type 1 (OPA1) 

proteins, which mainly regulate mitochondrial fusion processes [52]. Thus, to try to understand 

the mitochondrial dynamics implications, we evaluated the expression of the fusion proteins MFN-

2 and OPA-1 by Western blot (WB). The expression of both proteins was progressively intensified 

during pituitary tumour development (Figure 1I; Suppl Figure 1), in association with a prevalence 

of a circular shape at the expense of a decreased mitochondrial elongation, as detected by 

ultrastructural analysis (p<0,05; Figure 1J-L). We found an increased protein level of DRP-1 
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phosphorilated serine 637 (Figure 1I), indicating the inhibition of mitochondrial fission [53]. These 

results, supported also by our previous findings regarding MFN-1 and DRP-1 proteins suggest an 

imbalance of the protein involved in mitochondrial dynamics, thereby favouring fusion processes 

[17]. 

3.2.  Adaptation of the mitochondrial functionality occurred during experimental pituitary 

tumour development 

It has been frequently supposed that tumoral cells may show defective OXPHOS [54]. 

Thus, we next evaluated the enzymatic activity of complexes I (NADH: ubiquinone oxidoreductase) 

and IV (cytochrome c oxidase), which comprise two complexes of the three energy-conserving 

core of the electron transport chain (ETC). As shown in Figure 2A, the Complex I activity was 

mainly unaltered, showing a rise only at the beginning of tumour progression (E10), in agreement 

with the increased mitochondrial number. In contrast, a marked increase in Complex IV activity 

was detected, starting from E20 and continuing over time (p<0.05; Figure 2B). These results may 

suggest that OXPHOS activity is not compromised during tumour development. 

The enzyme Creatine Kinase (CK) also plays a main role in cellular energy buffering and 

transport, thereby balancing its availability between the cell compartments [55]. The 

determination of CK activity showed a significant increase of its enzyme activity, practically for all 

the pituitary tumour growth periods analysed (Figure 2C). These data may reveal that, despite 

presenting functional ETC complexes as mentioned above, the pituitary tumoral cells may need 

energy buffering between compartments. 

A common feature of tumoral cells is the enhanced rate of glycolysis [56, 57]. As shown in 

Figure 2D, a sustained increment in lactate production was detected during pituitary tumour 

development (p<0.05). The data strongly suggest a shift to a glycolytic metabolism. Furthermore, 

this finding might indicate that glycolysis and OXPHOS are both essential for pituitary tumour 

progression, or also may suggest that glycolysis must provide further advantages, probably  

resulting in rapidly ATP supply or providing carbons for biomass generation [58]. 

 The assessment of the mitochondrial membrane potential (MMP) is also frequently used 

to indicate mitochondrial health, as a sign of proton circuit efficiency in OXPHOS [9]. 

Consequently, we analysed the time-course changes in the red/green fluorescence ratio of the JC-

1 mitoprobe during pituitary tumour development. Significant differences in this ratio were 

detected, showing an increase in the MMP from E40 (Figure 2E), which is consistent with several 
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reports on other tumors [59-63], and may suggest an accumulation of proton force that could 

possibly be related to a detrimental effect on ATP synthesis.  

3.3. ROS production and oxidative damage in pituitary tumour development 

Through different approaches we analysed the oxidative stress status during the pituitary 

tumour development. As shown in Figure 3A, the cellular ROS levels progressively increased from 

E20, reaching a 2 fold increase at the E60 endpoint. ROS can harm almost all classes of subcellular 

components, so we investigated whether the higher ROS production detected under our 

experimental conditions was accompanied by oxidative damage of relevant biomolecules. With 

regard to proteins, carbonylation is considered to be the main modification occurring after severe 

oxidative damage [64] and, as shown in Figure 3B, a notable increase in the amount of carbonyl 

groups was detected from the early stages of tumoral progression (E10-E20), with values attaining 

a 3 fold increase compared to basal pituitaries. Interestingly, these protein damage signals were 

not sustained until the last stages evaluated, as a recovery in the basal values was detected (Figure 

3B). 

Another relevant biomolecule susceptible to oxidative damage is DNA. Hence, we initially 

evaluated p-γH2AX protein expression as a hallmark of DNA damage, which demonstrated gradual 

increases from the start of tumoral development, but recovering to normal levels at E60 (Figure 

3C; Suppl Fig 2). Concerning ROS damage to DNA, 8-OHG is one of the most common markers used 

for the evaluation of oxidative DNA lesions [65]. Therefore, we detected a striking increase 8-OHG 

protein expression levels by WB from the early stages of pituitary tumour development (Figure 3C; 

Suppl Fig 2). This result was also supported by immunohistochemistry, as a noticeable rise was 

recorded in the amount of pituitary cells displaying an augmented nuclear 8-OHG protein level 

(Figure 3D). Moreover, this assay also revealed relevant cytoplasmic 8-OHG protein localization, 

probably indicating oxidized mitochondrial DNA. 

 In the context genetic integrity, the enzyme 8-Oxoguanine DNA glycosylase/AP lyase 1 

(OGG-1) plays an important role in protection against cellular damage by ROS [66]. Consequently, 

a significant rise in mRNA OGG1 levels was detected from E10 (Figure 3E), indicating the activation 

of oxidative repair responses during the development of pituitary tumours. 

The maintenance of a cell proliferation rhythm and cell survival depends on the redox 

homeostasis between ROS production and elimination [67]. In fact, cells have a variety of 

antioxidant defense systems, with one of the most common being glutathione, which acts as 

central sensor of oxidative stress and is considered to be the major non-enzymatic antioxidant 



17 

 

[68]. The determination of the quantity of glutathione revealed a significant decrease in its 

availability from E10 to E40, although basal values gradually recovered by E60 (Figure 3F). These 

data may show an increased glutathione detoxification activity, yet also with a decreased capacity 

in order to replenish the glutathione pool that usually maintains the reducing cycle. 

3.4.  Oxidative stress response is activated in pituitary tumour cells 

Several of the above-mentioned oxidative damage kinetics returned to basal values, 

suggesting the re-establishment of healthy biomolecules levels and an antioxidant system at E60, 

indicating the activation of a cellular detoxification signalling pathway as a response to oxidative 

injuries. In this regard, the transcription factor Nrf-2, is a master regulator of the cellular response 

under oxidative agents and has a coordinator role in the regulation of redox balance [16]. 

Subsequent to our observations related to the oxidative stress in the pituitary tumour, we 

evaluated the total and phosphorylated Nrf-2 (p-Nrf-2) protein expression levels in nuclear 

fractions from normal and tumoral pituitary glands. It can be observed in Figure 3G that a gradual 

increase in both protein levels was detected during the pituitary tumour growth (p<0.05; Suppl Fig 

2), with this response also being accompanied by a significant rise in mRNA Nrf2 levels starting 

from E10 up to E40 (p<0.05, Figure 3H). Additionally, we evaluated the expression of an Nrf-2 

downstream effector, the oxidative stress-associated HO-1, which revealed increases at E10 and 

E60 (Figure 3I; Suppl Fig 2). These findings showed a clear activation of the oxidative stress 

response during pituitary tumour development, probably leading to the extensive surviving 

capabilities of pituitary cells.  

3.5.  Hypermethylation of the p53 promoter accompanied energetic and metabolic shifts in 

pituitary tumours 

Epigenetic control of nuclear gene expression is highly sensitive to the mitochondrial 

function [69, 70]. Therefore, an intriguing question was whether metabolism alteration in the 

pituitary gland could be accompanied by changes in the epigenetic status. Thus, to assess whether 

cellular adaptation during pituitary tumour development also involved epigenetic modifications, 

we initially compared global DNA methylation profiles during pituitary tumour development. By 

restriction endonuclease digestion of DNA pituitary extracts, a decrease was observed in the 

overall DNA methylation during tumour progression (Figure 4A-B). Then, a decrease in the protein 

expression levels of DNMT1 (DNA methyltransferase 1) was detected from E20 (Figure 4C-D), 

together with a reduction in its levels of mRNA in E60 (Figure 4E-F) 
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Hypomethylation is a common feature of the tumorogenesis epigenome. However, it also 

frequently harbours hypermethylation of specific tumour growth regulator promoters [71, 72]. 

Several genes linked to the most important tumour suppressors Rb and p53 were previously found 

to have been inactivated in pituitary tumours by epigenetic mechanisms [73-75]. In this regard, 

p53 is a relevant transcription factor that also regulates a metabolic rewiring in order to suppress 

proliferation pathways of stressed or damaged cells, suggesting that p53 may contribute to global 

metabolic functions distinct from its well-characterized responses to specific cellular stresses [76, 

77]. Through the evaluation of the TP53 promoter methylation status, we detected significant 

signs of hypermethylation (Figure 4H) accompanied by a gradual restoration of mRNA p53 basal 

levels during tumoral progression (Figure 4I). These results may indicate that a progressive 

expression loss can be sustained by epigenetic modification in order to help maintain a metabolic 

adaptation status through gene expression modulation in pituitary tumour progression regulation. 
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Discussion 

A deep understanding of how mitochondrial alterations contribute to cell growth and 

tumorigenesis is an underexplored research area beyond Warburg effect, regarding its significance 

in tumoral development behaviour. We have previously described that experimental pituitary 

tumours are characterized by a benign growth which involves, in addition to proliferation, an 

increased cellular senescence as evidence of a cell arrest mechanism together with no apoptosis 

signs [17]. In this context, it is important to mention that despite the large number of metabolic 

aberrations thus far identified for tumorigenesis, apparently none of these is common to all 

tumour types. Hence, to have a clear understanding of the physiological basis of pituitary 

adenoma pathogenesis, we studied several aspects of mitochondrial morphology and energy 

metabolism through different approaches during the in vivo development of experimental 

pituitary tumours. It was found that pituitary cells showed clear evidence of oxidative stress in 

association with oxidative damage, accompanied by bigger and round mitochondria probably 

related to an increased fusion process and augmented biogenesis. These events took place in 

unison with an important Nrf2 stress response pathway activation, which may have led to the 

attenuated oxidative damage found during tumour development, providing survival advantages to 

pituitary cells. These neoplasms also presented a progressive increase in lactate production, 

suggesting a metabolic shift towards glycolysis. Furthermore, data obtained from epigenetic 

analysis might suggest that pituitary neoplasm harbours features of the cancer epigenome, due to 

a global hypomethylation and focal hypermethylation of p53. We envisage that these data may 

reflect pituitary cell metabolism regulation by adapting to different energy requirements and 

signalling events in a pathophysiological situation in order to obtain protection from damage and 

to enhance survival chances. We propose that the mitochondria function and oxidative stress or 

damage might play critical a role in pituitary tumour progression, thus targeting mitochondrial 

alterations and signalling could be a promising strategy for the development of selective anti-

tumoral therapy in the case of endocrine tumours. 

Distinct subpopulations of cancer cells coexist in tumours and contribute to functional 

heterogeneity. Each subpopulation seems to rely on different metabolic programs to maintain 

their energy. In experimental pituitary tumours, the coexistence of proliferative events together 

with the activation of growth control mechanisms may surely result in a particular combination of 

cell signalling pathways. As a greater amount of energy must be needed to carry out the initial 

burst observed in pituitary tumour proliferation [17], this might explain the increase in 
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mitochondrial mass, biogenesis and ETC complex functionality [78]. In addition, the rapid 

production of ATP by glycolysis may be an optimal energy source in the growing context [57]. 

However, our present results also revealed an important oxidative stress effect with a 

concomitant oxidative damage induction during pituitary tumour development. Whereas it is 

known that excessive damage accumulation can lead to cell death [79], during pituitary tumour 

development a relevant increase in the Nrf2 detoxification pathway was seen in the current study. 

Hence, it is possible that attenuation of damage could contribute to the survival of pituitary cells 

[80, 81], thereby requiring an alternative energetic metabolism that may even support the 

senescent cellular arrest we have previously described [17].  

The extent to which the control of dynamics, mass and subcellular spatial mitochondrial 

organization is deregulated has been less explored than other mitochondrial aspects in 

tumorigenesis [10]. Also, the mitochondrial structure alterations are heterogeneous and not 

specific to any neoplasm or microenvironment conditions, even more research about 

mitochondrial mass in primary tumours in vivo is scarce. Here, a rise in energetic demand due to 

proliferative stimulus, and also the possibility of mitochondrial damage may explain the increase in 

biogenesis [82, 83] in association with the augmented mitochondrial mass revealed by the CS 

analysis during pituitary tumour progression. Despite the increased mitochondrial biogenesis and 

mass, there was only a slight increase in the mitochondria number. Concomitantly, a gradual 

promotion of the mitochondrial fusion process was detected, suggesting that new mass may 

constantly be incorporated by fusion during tumour development, implying modifications 

reflected in bigger and rounded mitochondria as the pituitary tumour developed, as was also 

reported by others authors [28, 29, 31].  

Whereas mitochondrial fission permits renewal and redistribution inside the cells [84, 85]; 

fusion allows cell interaction and communication. In addition, fusion has also been associated with 

higher a mitochondrial efficiency [86, 87] since it may promote more a rapid diffusion of the 

matrix metabolites required to drive more efficient OXPHOS and also stimulate complementation 

of mtDNA mutations [88]. Additionally, the so-called “stress-induced mitochondrial hyperfusion” 

[89, 90] may also prevent the mitochondrial fragmentation and dismantling of the mitochondrial 

network, which sensitizes cells to death via apoptosis [89, 91] as a response to damage. Since an 

enduring overall shift toward fusion events may lead to the establishment of arrested cellular 

senescent cells [92], therefore, from a functional standpoint, we believe that -in pituitary tumours- 
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a profuse and long-term mitochondrial fusion might promote survival of this master gland by 

avoiding dysfunctions in injured mitochondria while preserving a suitable bioenergetic capacity. 

The tumour cell metabolism also differs from that of normal cells, but a comprehensive 

examination of the metabolic status of pituitary tumours has not yet been performed. Here, we 

demonstrated that pituitary tumours had functional ETC activity, yet displayed a progressive 

increased in the glycolysis rate compared with normal cells. In particular, glycolysis seems to be 

the main energy pathway involved in slow-growing solid tumours [93, 94]. The Warburg effect is 

considered to be a mandatory metabolic change that allows cells to divide and proliferate [12], 

which sustains growth rates through rapidly increasing ATP levels and supports biomass 

generation [58, 95]. Thus, the progressive rise in lactate production may provide carbons to 

generate biomass [57], since we have already reported that pituitary tumour cells become 

hypertrophic and covered with organelles engaged in protein synthesis [96]. In this regard, it has 

been reported that the majority of untreated pituitary tumours have an increased HIF- 1α 

expression [97], which could be related with the expression of glycolytic genes [98], and also 

linked to decreased p53 [76]. 

Defects in mitochondrial respiration are not necessarily the cause of tumour glycolysis, as 

it has been reported that OXPHOS is not impaired in most tumoral cells [99-101]. Thus, a more 

extensive analysis of either energy production or consumption and substrate preferences needs to 

be performed to determine whether mitochondrial respiration is defective in pituitary cells. 

However, in our study, these cells seemed to be quite active as both I and IV complex activities 

rose during pituitary tumor growth, which we interpreted as a functional MRC state. The increase 

in complex I activity, particularly at E10, might be mainly associated with a first line of response to 

a bigger energy demand, together with an elevation in the mitochondrial number.    

Considering MRC efficiency, complex IV has been suggested to be a major regulation site 

for oxidative phosphorylation [102] Hence, the higher complex IV activity demonstrated here may 

support our suggestion of an active respiration rate in pituitary tumors. However, it has been 

reported that at high intramitochondrial ATP/ADP ratios can inhibit cytochrome c oxidase [103]. 

Thus, even when MRC substrates continue to be oxidized, this does not imply a concomitant ATP 

production. Several studies have suggested that enhancing respiratory rates without ATP synthesis 

is advantageous under some conditions [104-107].  
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The inhibition of proton flux through ATP synthase may lead to an increase in MMP. Those 

increased complex IV activity might suggest the existence of functional MRC pumping protons into 

the interspace membrane, thereby contributing to maintain elevated MMP hyperpolarized 

organelles, rather than causing depolarization and possibly leading to apoptosis. In the present 

work, we noted a gradual increase in MMP polarization in pituitary cells during tumoral 

development, in agreement with other reports for different tumours [59-63, 108-110], and this 

alteration may result in a sub-optimal value for ATP production [111]. In this context, we propose 

that sustained growth rates and ATP levels during pituitary tumor growth could be preferentially 

attributable to a concurrent increase in glycolysis [57] and CK buffer activity [55, 112] , while 

pituitary tumors may accumulate damaged or defective mitochondria. Consequently, we believe 

that the mitochondrial integrity in pituitary tumors might be in part a consequence of the balance 

toward mitochondrial fusion processes, which are probably will be coupled with the 

hyperpolarized MMP when chronic damage could be attained at E40 and E60. 

It is probable that tumoral cells do not use aerobic respiration and MMP in the same way 

as normal cells. In fact, MMP maintenance is particularly significant for mitochondrial health, 

because depolarized potentials could lead to apoptosis and avoiding cell death is a central tumour 

ability acquisition [113, 114]. As we have previously reported that pituitary tumours exhibited 

almost null apoptotic figures [17], it is possible to argue that maintaining hyperpolarised MMP 

[113, 115, 116]; which is also related to the increased mitochondrial size detected [117] or 

elevated fusion [118, 119], might help prevent cell death Consequently, the increased MMP 

polarization in pituitary tumours above mentioned could be the outcome response of a 

conjunction of some of the respiration mechanisms that might confer selective survival advantage 

in addition to rapid ATP generation. Conversely, this choice may also lead to an increase in ROS 

production, but the activation of the Nrf-2 antioxidant pathway detected in our study, would make 

the pituitary tumour cells more tolerant to oxidative stress [120]. Summing up, we postulate that 

sustained changes in tumour cellular bioenergetics together with the damage accumulation 

detected during tumoral progression, lead to a metabolic reprogramming in the pituitary gland, 

with stronger adaptive responses that seemingly work as a survival program. Nevertheless, further 

analysis must be carried out to elucidate if the MRC is working properly and whether the rate of 

ATP is accurate. 

ROS can contribute to mitochondrial signalling in cell growth, cellular senescence and 

differentiation [121]. However, ROS may also have a causative role in the progression of 
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tumourigenesis [15, 122, 123], as they increase under tumoral contexts [124, 125]. In agreement, 

in this investigation, a progressive rise in ROS production was detected during pituitary tumour 

development, which may have been primarily derived from mitochondria [14]; although 

ineffectiveness in ETC, greater metabolic demand, incomplete ROS scavenging, replicative stress 

and affected mitochondrial dynamics cannot be discarded [121, 126, 127]. 

In the present work, we detected clear signs of oxidative damage in different 

biomolecules. Among these, we showed an increased protein oxidative damage, DNA damage 

signals and an augmented oxidized DNA during pituitary tumour development, which could imply 

important mutagenic lesions and can cause genomic instability [65, 128]. Also, the 8OH-dG 

cytoplasmic signs of DNA damage detected suggest that mtDNA, whose vulnerability is prone to 

proto-oncogenic mutations [129], may be compromised in pituitary tumours. In particular, 

oxidative damage was detected earlier in proteins and DNA than the increase in ROS levels. A 

plausible explanation for this could be that additional sources of reactive species, not specifically 

those detected by DCF, inflict oxidative damage to biomolecules from the start of tumour 

induction [130]. 

 We speculate that the oxidative damage detected throughout pituitary tumoral 

development sets the platform for early cell transformation in these adenomas, and at the same 

time may contribute to triggering the growth arrest through cellular senescence [131, 132], 

thereby setting a status of oxidative stress that may have an impact on the pathogenesis of 

pituitary tumorigenesis. 

Redox homeostasis is a central process for cell survival and antioxidant enzymes have 

been shown to have altered levels in tumours, with most of these found to be deficient [133, 134]. 

Under the present experimental conditions, the decrease in GSH levels during the initial days of 

tumour progression suggests that the GSH pool might not be replenished concomitantly, which 

may also be an additional signal of oxidative stress [68]. However, the GSH levels were in fact 

gradually restored by the end of tumoral progression in our model.  

GSH production is supported by Nrf2 expression through the control of GSH synthesis 

[135]. Remarkably, we observed a solid trigger of Nrf2 expression and activation with an up-

regulated expression of stress response genes, such as HO-1 [136]. This Nrf2 pathway stimulation 

might be a response to oxidative insults and may support cellular detoxification through metabolic 

rewiring to sustain the antioxidant systems in pituitary tumorigenesis. An oxidative damage 
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restoration kinetic during pituitary tumour development has been seen in protein damage, also 

connected with Nrf2 activity, as it enhanced the recognition, repair, and removal of damaged 

proteins [137]. In parallel, we detected an increased expression of the repair enzyme OGG1 

involved in the removal of 8-OHG from DNA [138] from the beginning of tumour development. As 

OGG1 expression is also susceptible to Nrf2 activation [139], Nrf2 may influence the pituitary cells 

fate by guiding them into antioxidant response pathways for the replacement and repair of 

damaged components. 

It is intriguing how cells can balance the requirements of growth and homeostasis, with 

the redox balance strongly influencing cell proliferation rhythm [67]. Many Nrf2-regulated 

metabolic pathways confer growth advantages to tumour cells [137, 140] and constitutive 

activation of the Nrf2 pathway has been detected in human tumours [141, 142]. This activation is 

associated with a poor prognosis [143] and has also been considered to be a resistance 

mechanism to chemo- or radiation therapy because it eliminates therapy-induced ROS, thereby 

promoting cell survival [144]. In the present study, we observed that the main signs of oxidative 

damage appeared during the first 10 days of tumoral induction. Then, the restoration kinetics 

observed suggest that after 20 days the cells might undergo a detoxification response, probably 

through a readjustment of their metabolism. The Nrf2-mediated antioxidant response activation 

during the progression of pituitary tumour development can result in damage alleviation which 

might help to confer pituitary cells a non-lethal condition that may, at least in part, explain the 

decrease in proliferation and upsurge of cellular senescence [141].  

Despite activation of the Nrf2 stress response pathway, the ROS levels in pituitary tumors 

still increased even at E60. However, the fact that ROS tends to accumulate during pituitary 

tumour development, does not necessarily imply any further oxidative damage, as defences 

systems may not have been overcome [120]. As ROS are needed for signalling [120] for example 

they can mediate Nrf2 stabilization [145] , an emerging model is proposed that tumoral cells raise 

the production of ROS to trigger localized pro-tumorigenic signalling, but stabilize the increased 

ROS with a higher antioxidant activity to preserve the redox balance [120]. In this regard, ROS level 

detection and oxidative damage during pituitary tumour growth may not have a linear correlation. 

Instead, the relative contribution of the antioxidant equipment and the rate of removal of ROS 

may also need to be taken into account [146-148]. Hence, the antioxidant response resulting from 

Nrf2 activation in pituitary tumours could be considered to be a relevant event that may 

contribute to the slow and benign characteristics of pituitary neoplastic growth. 
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Tumor suppressor p53 is able to regulate certain metabolic pathways, promoting 

respiration while constraining glycolysis in order to achieve tumour growth prevention [76]. Thus, 

the glycolysis rise detected in pituitary tumours might be promoted by a loss of p53 function due 

to the gradual reversion to mRNA p53 basal levels observed after E10 in the present work, in 

agreement with data we have previously reported for p53 protein expression [17]. Related to this, 

we also have previously suggested that an increased activity of p53 at the beginning of 

experimental pituitary tumour development may be associated with the cellular senescence arrest 

trigger, which reduces afterwards to be replaced by p21 accumulation, as previously proposed by 

others [149]. Concomitantly, a detoxification process may appear as new requirement for survival.  

Interestingly, when p53 is strongly up-regulated, the antioxidant response genes are 

down-regulated [150]. Hence, the weak p53 induction observed in the present work might result 

in Nrf2 stabilization by p21, thus arresting the cell [151] and allowing the induction of DNA 

damage-repair and an attempt to lower intracellular ROS, leading to a general cytoprotective 

response [152, 153]. Previously, we have described an accumulation of p21 expression occurring 

together with growth deceleration during pituitary tumour development, which -in this context- 

could also be related to the Nrf2 antioxidant response. It is possible that critical cross-talk 

interactions between Nrf2 and the inhibition of proliferation induced by oxidative-stresmay occur 

during pituitary tumour development [150]. These results suggest that these adaptation 

mechanisms during tumorigenesis may not be limited to alterations in enzyme activity, but also 

involve gene expression regulation [154]. This discovery contributes significantly to an emerging 

network of signalling between p53 and Nfr2, and supports the idea that pituitary tumour cells may 

have a low p53 activity that promotes redox homeostasis, repair and cell survival [155]. 

Mitochondrial function and metabolism affect gene expression by epigenetic regulation 

[69, 70]. Studies have demonstrated that epigenetic alterations are another force affecting the 

expression of genes implicated in neoplastic development [156, 157], thereby comprising pituitary 

tumorigenesis [74, 75, 158]. Here, we found a global hypomethylation of DNA probably due to a 

deregulation of DMNT 1, suggesting a methylation loss by a passive mechanism during pituitary 

tumour progression [159]. In addition, as previously suggested by Pease, Ling, Mack, Wang and 

Zada [73], we detected an increased TP53 promoter methylation in pituitary tumours, which might 

be associated with p53 mRNA regulation as described. These results may imply that pituitary 

neoplasm harbours features of the cancer epigenome which might present global 

hypomethylation and focal hypermethylation [160, 161]. However, this regulation mechanism is 
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not a simple on-off switch, but rather responds in a continuous manner to the changing metabolic 

needs of the cell. Hopefully, our pituitary tumour development model might permit us to reach 

conclusions about time-lapse regulation and switches. Although the functional consequences of 

this epigenetic modification are unclear, we propose that via epigenetic adjustment, pituitary cells 

could maintain a new metabolic state and thus favour cell survival even in the presence of a 

hostile oxidative microenvironment. 
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Conclusions 

In summary, our data suggest that the mitochondrial metabolism plasticity that takes 

place in pituitary tumours leads to an improved fitness of the resulting cells in order to cope with 

the damage in the context of tumoral development. The metabolic shift might be an important 

mechanism to support the remarkable ‘‘growth advantage’’ that a tumour cell needs to overgrow 

its contemporaries which favours cells that have increased resistance to the disadvantageous 

oxidative microenvironment. 

From the collective data presented, we propose that cooperative actions of p53 and Nrf2 

might lead to cell repair and evasion of apoptosis during pituitary tumour development. Certain 

gene features may alter a set of different signalling pathways alone or in conjunction with each 

other, leading to pituitary tumoral cells exhibiting redox homeostasis restoration in an attempt to 

avoid further damage and support cell survival, thereby consolidating a strategy of cell death 

evasion. 
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Table 1 Primer sequences for gene expression and promoter methylation analysis 

 

LEGENDS OF FIGURES  

Figure 1. Alterations in mitochondrial features in experimental pituitary tumours  

(A-D) Representative image of NRF1, NRF2 and TFAM RNA relative expression during tumoral 

pituitary development determined by RT-PCR. (E) Mitochondrial size by TEM. (F) Citrate synthase 

content determined by absorbance from control and estrogen-treated animals. (G) Mitochondrial 

morphometry by TEM. (H) Representative electron micrographs of normal and tumoral pituitary 

glands (E10): symbols highlight the mitochondria present in the area. (I) Fission (p-DRP1) and 

fusion (MFN2 and OPA-1) protein expression from cytosolic extracts of control and tumoral glands. 

(J) Mitochondrial circularity by TEM. (K) Representative electron micrographs from normal and 

tumoral pituitaries depicting mitochondrial morphological alterations after 60 days of estrogen 

stimulation. (L) Mitochondrial elongation from control and estrogen-treated animals. The β-actin 

mRNA and -tubulin protein expression confirmed that equal loading occurred in all lanes. Data 

are from a representative experiment from a total of three independent experiments with similar 

results. Values are expressed as mean ± SEM. p<0.05, *vs Basal. ANOVA followed Fischer post hoc 

test. Scale bar: 2 µm. 

Figure 2. Modification in mitochondrial functionality during pituitary tumours. 

(A-B) Respiratory chain complexes I and IV enzymatic activity during pituitary tumoral 

development. (C) CK levels from control and estrogen-induced pituitary tumors assessed by a 

colorimetric assay. (D) Lactate concentration from control and tumoral pituitaries analysed by a 

colorimetric assay; skeletal muscle was used as positive control. (E) Mitochondrial membrane 

potential determined by JC-1 assay in pituitary cells during estrogen-induced tumoral 

development. CCCP (carbonyl cyanide 3-chlorophenylhydrazone) was used as positive control. 

Values are expressed as mean ± SEM. p<0.05, *vs Basal, ANOVA followed Fischer post hoc test. 

Figure 3. Signs of oxidative stress and DNA oxidation in pituitary tumours. 

(A) Reactive species production in normal and tumoral pituitary cells; H2O2 was used as positive 

control. Data are expressed as percentage of control. (B) The oxidative damage to proteins was 

measured by quantifying carbonyl groups during tumoral development. (C) 8OHdG and p-γH2AX 

protein expression levels in nuclear extracts from normal and tumoral pituitaries. (D) Paraffin 
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embedded adenohypophysis sections depicting nuclear 8OHdG immunocytochemical detection in 

control and tumoral pituitaries (E10 and E60). (E) OGG1 mRNA expression levels and (F) Reduced 

glutathione expression from control and tumoral pituitary cells determined by a colorimetric 

assay. (G) Nrf2 and p-Nrf2 protein expression from nuclear fractions determined by WB. (H) Nrf2 

RNAm expression levels during estrogen-induced pituitary tumour development. (I) HO-1 protein 

expression from cytosolic extracts evaluated by WB. The β-actin mRNA and -tubulin and Lamin B 

protein expression confirmed equal loading occurring in all lanes. Images correspond to a 

representative experiment from a total of three with similar results. Values are expressed as mean 

± SEM. p<0.05, * vs Basal, ANOVA followed Fischer post hoc test. Scale bar: 20 µm. 

 

Figure 4: Analysis of global DNA and p53 gene promoter methylation during experimental 

pituitary tumour development. 

(A-B) Representative electrophoresis and densitometric analysis of non-undigested DNA (-), MspI- 

and HpaII-digested DNA samples are shown. (C-D) Representative image and analysis of DNMT1 

protein expression during pituitary tumoral development are shown. (E) Representative 

electrophoresis of DNMTs (1, 3A and 3B) and TET (1, 2, 3) mRNA expression levels evaluated by 

RT-PCR is presented. (F) Densitometric analysis of DNMT1/β-actin mRNA ratio. (G) DNMT1 

subcellular localization in normal and tumoral cells. DNMT1 immunolabeling depicts a punctuate 

staining at nuclear level (arrowheads) with a diffuse cytosolic staining in basal and at E10. A lack of 

DNMT1 nuclear localization was observed at E60. (H) Representative electrophoresis and 

densitometric analysis of TP53 gene promoter methylation is shown. The (–) symbol indicates 

undigested DNA samples and (+) HpaII-digested DNA samples. (I) Representative image and 

densitometric analysis of p53/β-actin mRNA ratio determined by RT-PCR. Data are expressed as 

mean ± SEM. * p<0.05 vs Basal, ANOVA followed by Fischer post hoc test. Bar: 10µm. 

Supplemental Figure 1: Mitochondrial dynamic protein expression during experimental pituitary 

tumour development 

(A-B-C) Representative images and densitometric analysis of OPA-1, MFN-2 and p-DRP1/α tubulin 

ratio, determined by WB. Data are expressed as mean ± SEM. * p<0.05 vs Basal, ANOVA followed 

by Fischer post hoc test. 

Supplemental Figure 2: Oxidative stress and DNA damage markers in pituitary tumours. (A-B-C-

D-E) Representative images and densitometric analysis of 8OHdG, p-H2AX, Nrf2, p-Nrf2 and HO-
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1/Lam B ratio, determined by WB. Data are expressed as mean ± SEM. * p<0.05 vs Basal, ANOVA 

followed by Fischer post hoc test. 

 

Table 1: Primer sequences for gene expression and promoter methylation analysis 

Gene Accession No. Note Sequence (5' to 3') Amplicon (bp) 

NRF1 NM_001100708.1 Gene expression  
(F) ACG ATG GGC GGG AGG ACC TT 

500 
(R) TCC AAC GGC TGC TGC GGT TT 

NRF2 NC_005110.4  Gene expression  
(F) TAA GCC AGG CCA TAG ACA TC 

292 
(R) CGA GGA ACC CCC TGA AA 

TFAM NM_031326.1 Gene expression  
(F) AAA TGG CTG AAG TTG TTC TAAT TG 

120 
(R) AGC TTC TTG GTG CCC AAT CCC AATG 

OGG1 NC_005103.4 Gene expression  
(F) CTA AGA AGA CAG AAG GCT AGG TAG 

210 
(R) TGA CTT TGA TTT GGG ATG TTT GC 

Nrf2 NM_031789.2 Gene expression  
(F) CAG TCT TCA CCA CCC CTG AT 

100 
(R) CCA AAC TTG CTC CAT GTC CT 

DNMT1 NM_053354.3  Gene expression  
(F) AGG ACC CAG ACA GAG AAG CA 

240 
(R) GTA CGG GAA TGC TGA GTG GT 

DNMT3A NM_001003958.1  Gene expression  
(F) AGG AAG CCC ATC CGG GTG CTA 

88 
(R) AGC GGT CCA CTT GGA TGC CC 

DNMT3B NM_001003959.1  Gene expression  
(F) GTG AAG CGG ATG ATG GAG AT 

230 
(R) CCT CCG AGA CTT GGT AGC TG 

TET 1 XM_006223880.2 Gene expression  
(F) TGT CAC CTG TTG CAT GGA TTT   

208 
(R) TTG GAT CTT GGC TTT CAT CC 

TET 2  XM_006224264.2 Gene expression  
(F) AAT CGC CTT CGG ATT CAG ACA CTC 

370 
(R) CTT GAC CTC CGA TAC ACC CAT TTA GC 

TET 3  XM_006236793.2 Gene expression  
(F) TGG CTG CAG ACT TGA TCT TCC 

210 
(R) ACC CGG CTC TAT GAA ACC TT 

p53 NM_030989.3 Gene expression  
(F) CTT CGA GAT GTT CCG AGA GC 

100 
(R) CTT CGG GTA GCT GGA GTG AG 

β-actin NM_031144 Gene expression  
(F) ACC CAC ACT GTG CCC ATC TA 

200 
(R) CGG AAC CGC TCA TTG CC 

TP53 NC_005109.4 
Promoter  (F) CGT AGC TCC TCC GAC GTC TT 

200 
methylation analysis (R) GCG AGC CTA TCG GAA GGT G 
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