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Abstract

Simulation models for perennial energy crops such as switchgrass (Panicum virgatum L.) and Miscanthus (Mis-
canthus x giganteus) can be useful tools to design management strategies for biomass productivity improvement

in US environments. The Agricultural Production Systems Simulator (APSIM) is a biophysical model with the

potential to simulate the growth of perennial crops. APSIM crop modules do not exist for switchgrass and Mis-
canthus, however, re-parameterization of existing APSIM modules could be used to simulate the growth of these

perennials. Our aim was to evaluate the ability of APSIM to predict the dry matter (DM) yield of switchgrass

and Miscanthus at several US locations. The Lucerne (for switchgrass) and Sugarcane (for Miscanthus) APSIM

modules were calibrated using data from four locations in Indiana. A sensitivity analysis informed the relative

impact of changes in plant and soil parameters of APSIM Lucerne and APSIM Sugarcane modules. An indepen-

dent dataset of switchgrass and Miscanthus DM yields from several US environments was used to validate these

re-parameterized APSIM modules. The re-parameterized modules simulated DM yields of switchgrass [0.95 for

CCC (concordance correlation coefficient) and 0 for SB (bias of the simulation from the measurement)] and Mis-
canthus (0.65 and 0% for CCC and SB, respectively) accurately at most locations with the exception of switch-

grass at southern US sites (0.01 for CCC and 2% for SB). Therefore, the APSIM model is a promising tool for

simulating DM yields for switchgrass and Miscanthus while accounting for environmental variability. Given our

study was strictly based on APSIM calibrations at Indiana locations, additional research using more extensive

calibration data may enhance APSIM robustness.
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Introduction

Many studies throughout US have reported the extraor-

dinary potential for high biomass production of switch-

grass (Panicum virgatum L.) (Vogel et al., 2002; Kiniry

et al., 2012; Burks, 2013; Arundale et al., 2014; Trybula

et al., 2014) and Miscanthus (Miscanthus x giganteus)

(Heaton et al., 2004, 2008; Khanna et al., 2008; Jain et al.,

2010; Kiniry et al., 2012; Mishra et al., 2013; Trybula

et al., 2014), both perennial rhizomatous grasses with C4

photosynthesis. Stakeholders involved in developing

biomass crops for bioenergy are therefore increasingly

interested in estimating potential yields of both species

over large geographical domains (Clifton-Brown et al.,

2004). Direct measurements of dry matter (DM) yields

of these species are scarce relative to corn (Zea mays L.),

soybean (Glycine max [L.] Merr.) and other grain crop

species, and this lack of data over large geographies

and at a fine spatial resolution remains a limitation to

informed decision making (Clifton-Brown et al., 2004).

Satisfactory predictions of switchgrass biomass pro-

duction were achieved with models like ALMANAC in

Texas, Arkansas and Louisiana (Kiniry et al., 2005) and

SWAT in Indiana (Trybula et al., 2014). Stampfl et al.

(2007) achieved satisfactory simulations of Miscanthus

biomass production across diverse climate and soil
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conditions in Europe using the MISCANMOD model

developed by Clifton-Brown et al. (2000, 2004). Like-

wise, European studies for renewable energy used a

FORTRAN version of MISCANMOD (Hastings et al., 2008) and

showed satisfactory simulation of Miscanthus biomass

production derived by model improvements in the

drought stress function, temperature effect in radiation

use efficiency (RUE) and the inclusion of photoperi-

odism effects (Hastings et al., 2009). Parameterization of

WINOWAC was also performed for Miscanthus

(Miguez, 2007). Other examples of modelling growth/

adaptation of these species include the use of the STELLA

software (Pallipparambil et al., 2015) to identify Ohio,

Missouri, Arkansas and Illinois as suitable locations for

Miscanthus, as well as to determine sensitive parameters

for biomass production. In a recent study (Strullu et al.,

2015) the STICS crop-soil model accurately predicted

Miscanthus biomass production and environmental

impacts in various environments in France and the UK.

Despite this important progress in the calibration, devel-

opment, and modification of several simulation models,

the ability to predict DM yield both of switchgrass and

Miscanthus by a single model has not yet been achieved.

In this context, a model scaled for a large geographic

region and demonstrating adequate performance to pre-

dict DM yield is needed. The Agricultural Production

Systems Simulator (APSIM) (Keating et al., 2003) is a

biophysical model with potential to simulate growth of

annual and perennial crops. The APSIM model has been

developed in Australia to simulate, on a daily time step,

the main biophysical processes of a generic plant in

response to management and weather (Keating et al.,

2003; Holzworth et al., 2014). However, without pre-

existing APSIM crop modules to simulate switchgrass

and Miscanthus, the re-parameterization of other APSIM

crop modules such as the APSIM Lucerne (Robertson

et al., 2002) and APSIM Sugarcane modules (Keating

et al., 1999) could act as alternatives to simulate growth

of both crops. In order to allow the use of APSIM for

this purpose, a supervised calibration with a detailed

data base and an evaluation of its predictive ability over

a broad range of soils and environments is required.

Our objectives were to (i) calibrate APSIM Lucerne mod-

ule for switchgrass and APSIM Sugarcane module for

Miscanthus using experimental field data collected in

several locations across Indiana and (ii) validate these

re-parameterized APSIM modules with independent

data from numerous US locations where the accuracy

and biases were evaluated.

Materials and methods

The calibration of the APSIM Lucerne and APSIM Sugarcane

modules was made using the following steps: (i) data on

climate, soil, and management were collected for model inputs;

(ii) soil parameterization by location; (iii) adaptation of original

plant modules to model switchgrass and Miscanthus growth

using actual data from literature or field experiments and (iv)

sensitivity analysis to evaluate parameter influence on LAI and

the DM yield. Outcomes of the sensitivity analysis by succes-

sive iterations directed the compilation of existing data and

additional field measurements used to develop model parame-

ters. The model was calibrated through graphical comparison

and statistical analyses of observed and modelled leaf area

index (LAI) and DM yield data from IN locations with the

objective to increase the concordance correlation coefficient

(CCC, Tedeschi, 2006) and decrease the bias of the simulation

from the measurement (SB, Kobayashi & Us Salam, 2000).

These data included not only detailed measurements of LAI

and DM yields at the final harvest, but also during crop growth

and development. Model validation was made by using graph-

ical comparisons and statistical analyses of observed and mod-

elled DM yield data from 35 locations across the US. Data for

switchgrass were grouped by region (southern vs. northern

locations) and ecotype (upland vs. lowland). A complete

description of datasets used for calibration and validation are

provided in the supplementary information (Tables S3 and S4).

Data for model simulations

The data used for model calibration were obtained from field

trials across IN (Table 1). For switchgrass model calibration,

data from the Water Quality Field Station at Purdue University

Agronomy Center for Research and Education (ACRE) near

West Lafayette (40°28011.99″N; 87°0036.00″W) and Throckmor-

ton Purdue Agricultural Center (TPAC) five miles south of

Lafayette in Tippecanoe County (40°17059.99″N; 86°5400.00″W)

(Table 1). The Miscanthus calibration included two additional

IN locations: Northeast Purdue Agricultural Center (NEPAC)

in Whitley County between Fort Wayne and Columbia City

(41°8024.00″N; 85°29023.99″W), and the Southeast Purdue Agri-

cultural Center (SEPAC) six miles east of North Vernon in Jen-

nings County (39° 1048.00″N; 85°31011.99″W) (Table 1). A

complete description of datasets used for calibration and vali-

dation of the model is shown in the supplementary information

(Tables S3 and S4 for switchgrass and Miscanthus, respectively).

Subsequent model validation used data of DM yields gathered

across the US, which were collected from published and

unpublished studies from 34 dryland locations and one irri-

gated location (Davis, CA) in 16 states (Fig. 1; Table 1).

Climate data sources

Daily meteorological data for each location were derived from

two data sources. Maximum and minimum air temperatures

and rainfall were obtained from National Climatic Data Center

(NOAA, http://www.ncdc.noaa.gov), while daily solar radia-

tion was obtained from the NASA Prediction of Worldwide

Energy Resource (POWER) - Climatology Resource for Agrocli-

matology (http://power.larc.nasa.gov). This long-term data-

base also was used as a secondary source of maximum and

minimum air temperatures to replace missing values from the
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NOAA database. Interestingly, recent evaluations of the

NASA-POWER solar radiation data indicate very good agree-

ment with measured solar radiation data in areas with flat

topography (White et al., 2011; Wart et al., 2013) and with maxi-

mum and minimum air temperatures across the US (White

et al., 2008). Our evaluations demonstrated a similar fit for

daily solar radiation (n = 59031 daily observations) and maxi-

mum and minimum air temperatures (n = 69505 daily observa-

tions) using measured data from 19 weather stations near the

experimental locations used in this study (Fig. 2; Table S1). The

number of air temperature data corrections/filled data was

always lower than 2% for all variables.

Long-term monthly mean minimum air temperature ranged

from �19.7 to 23.3 °C and the monthly mean maximum air

temperature between �10.7 to 32.5 °C. The mean annual rain-

fall varied from 452 to 1340 mm for Munich, ND and Milan,

TN respectively. A summary of climate information by location

is reported in Table 1.

Soil parameterization

APSIM requires several soil parameters to adequately reflect

the variability among locations (Probert et al., 1998; www.ap-

sim.info). As the soil database of both the 7.3 and 7.5 release

versions do not include the soils where these biophysical

experiments were conducted, new APSIM soil profiles were

created using the following process. First, dominant soil series

were identified for each location based on data provided in the

literature and in consultation with agronomists and local scien-

tists (Table 1). Second, for each soil series actual soil data (tex-

ture, organic carbon [OC] and pH) were obtained from the

National Cooperative Soil Survey Soil Characterization Data-

base (NCSS, http://ncsslabdatamart.sc.egov.usda.gov) (see

actual data in Table 2). Estimates of the drained upper limit

(DUL) and the drained lower limit (LL) were estimated using

the HYDRAULIC PROPERTIES CALCULATOR Software developed by Sax-

ton & Rawls (2006) based on soil texture and OC data obtained

from NCSS. The estimating equations reported by Saxton &

Rawls (2006) were developed by correlation of an extensive

data set (1722 samples) provided by the USDA/NRCS National

Soil Survey Laboratory. As measured data of soil water param-

eters were not available for each evaluated location, the accu-

racy of the HYDRAULIC PROPERTIES CALCULATOR Software (Saxton &

Rawls, 2006) to predict soil water parameters was gauged using

the observed data of LL (mm mm�1) and DUL (mm mm�1)

from soil series near the locations used in this study. An exam-

ple of the soil parameterization for Drummer soil series at

Water Quality Field Station, West Lafayette IN is presented in

Table 2. A complete description of actual and estimated soil

parameters used for the calibration/validation of APSIM are

provided in the supplementary information for all location

evaluated in this study (Table S5).

The APSIM modules were configured for soil N and C

(APSIM SoilN), crop residue dynamics (APSIM Surface Organic

Matter) and soil water (APSIM SoilWat). Actual OC (%) values

were used for initialization (Table S5). To initialize the soil

nitrogen pool for the simulations a 10-year simulation of previ-

ous management at the experimental locations (corn-soybean

rotations), the location-specific climate and soil physical data

were used. Crop growth data from these simulations were

excluded from subsequent analysis.

For each soil, organic matter (OM, %, OM = OC*1.72; Dal-

gliesh & Foale, 1998); soil pH 1 : 5 (pH measured for a ratio of 1

part soil and 5 parts water solution according to GlobalSoilMap,

2012; estimated by Libohova et al., 2014); texture class; air dry

(AD, mm mm�1) corresponding to the moisture limit for dry

evaporation of the soil; saturated volumetric water (SAT, mm

mm�1); bulk density (BD, Mg m�3); hydraulic conductivity (ks,

mm day�1); total porosity (PO, 0–1 calculated as 1-BD/2.6); drai-

nage coefficient (SWCON, day�1) were estimated (Table S5).

Fig. 1 Experimental sites included in the dry matter yield database for APSIM calibration/validation for switchgrass ( ), switch-

grass-Miscanthus ( ) and Miscanthus ( ). The data used for switchgrass validation were grouped in northern and southern locations.

Northern locations: Indiana (IN), Illinois (IL), Tennessee (TN), Nebraska (NE), Iowa (IA), South Dakota (SD), New York (NY) and

North Dakota (ND). Southern locations: Texas (TX), Virginia (VA), Oklahoma (OK), Louisiana (LA) and Arkansas (AR).

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384
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Saturated water content was calculated from BD as described by

Dalgliesh & Foale (1998). The parameter AD was estimated as 0.5

9 LL in 0–0.15 m soil layer, 0.9 9 LL in 0.15–0.3 m soil layer and

equal to LL at depths >0.3 m (Cresswell et al., 2009). The

SWCON, the rate at which water drains, was estimated from

DUL and BD (Jones & Kiniry, 1986). For each soil layer within

each soil series the water extraction coefficient (KL, mm day�1)

was set at 0.08 mm day�1 (Robertson et al., 1993a,b; Dardanelli

et al., 1997, 2004). The root exploration factor (XF, 0–1) was set to

1 for up to 1 m depth and then decreased exponentially to 0.6 at

the maximum soil depth (Monti & Zatta, 2009). The maximum

rooting depth was set according to maximum soil depth when

there were no impediments to crop rooting. A complete descrip-

tion of actual and estimated soil parameters used for the calibra-

tion/validation of APSIM are provided in the supplementary

information for each location (Table S5).

Initial soil water values were not available at most locations.

Hence, an analysis of soil moisture data at sowing in some

locations was performed. The data of seven climate monitoring

stations (Lincoln, NE; Bedford and Lafayette, IN; Ithaca, NY;

Crossville, TN; Bronte and Palestine, TX) were obtained from

US Climate Reference Network (USCRN, http://

www.ncdc.noaa.gov [Diamond et al., 2013; Bell et al., 2013]).

The average of soil moisture at 0.2 m depth from these loca-

tions, from January to late April, was compared with the DUL

of the 36 soils used in this study. With the exception of the TX

sites, the initial soil water moisture in spring was always close

to DUL. Based on this analysis, 100% of the initial soil water

content was used at the onset of all simulations (not shown).

APSIM configuration

Without pre-existing APSIM modules for simulating switch-

grass and Miscanthus we re-parameterized the APSIM Lucerne

(Robertson et al., 2002) and Sugarcane (Keating et al., 1999)

modules to simulate the growth of switchgrass (Table 4) and

Miscanthus (Table 5) respectively. Switchgrass and Miscanthus

simulations were undertaken using a daily time-step of the

APSIM Version 7.5 and 7.3 respectively (Keating et al., 2003;

Holzworth et al., 2014). After exhaustive and comparative anal-

ysis of plant modules, the re-parameterized APSIM Lucerne

module best simulated switchgrass growth in terms of pheno-

logical and physiological functions (Table 4). Similarly, the

phylogenetic proximity between Saccharum officinarum and Mis-

canthus, and similarity in physiology, phenology and growth,

was the main justification for using the Sugarcane module as a

starting point for re-parameterizing APSIM for predicting DM

yield of Miscanthus. All the changes in the APSIM Lucerne and

Sugarcane modules were implemented through changing

parameterization in the initialisation file in extensible mark-up

language (XML) format. Different management rules (i.e. sow-

ing, harvesting, fertilization, irrigation, plant density, row spac-

ing, etc.) were created according to practices used in the field

and are reported in detail in the supplementary information for

switchgrass (Table S3) and Miscanthus (Table S4). The harvest-

ing rules were set to remove the biomass up to 0.03 m (Ojeda

et al., 2016). When the dates of management interventions were

not available, local average dates for the application of these

practices were used. A complete description of management

practices used in the simulations is reported in the supplemen-

tary information (Tables S3 and S4 for switchgrass and

Fig. 2 Observed (a) daily incident solar radiation, (b) daily

maximum air temperature and (c) daily minimum air tempera-

ture measured at 19 meteorological stations across United

States plotted against daily data estimated from NASA-

POWER. Solid black line represents the function y = x (i.e. 1 : 1

relationship), dotted line represents � 20% of 1 : 1 relationship

and solid grey line represent the linear fit to the data.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384
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Miscanthus, respectively). The used model output from each

simulation was crop DM yield (kg ha�1). The simulations in

West Lafayette IN included the additional analysis of LAI as

another model output. The cultivars used in the field experi-

ments were created as two generic switchgrass genotypes (gen-

eric lowland and generic upland) and one Miscanthus genotype

(generic) differing in thermal time requirements needed to

attain specific phenological stages (Table S6).

Sensitivity analysis

A sensitivity analysis enables users to determine the responses

of key model outputs (e.g., harvestable biomass, hereafter DM

yield) to variations in selected input parameters. Hence, as part

of model calibration, a sensitivity analysis of the APSIM

Lucerne and Sugarcane module’s to plant and soil parameters

(Table 3) was performed using the one-at-a-time method to

evaluate parameter influence on LAI and DM yield. Three soil

datasets were chosen to represent a range in relevant soil tex-

tures (silty, loamy and sandy). We used these soils to analyse

the sensitivity of the model parameters through a large range

of plant available water capacity (PAWC).

Based on an exhaustive review of the literature, and field-

measured data, and in order to adequately predict the growth

of switchgrass and Miscanthus with the APSIM Lucerne and

Sugarcane modules, the most sensitive plant parameters for

switchgrass (Fig. 3; Fig. 6) and Miscanthus (Fig. 3; Fig. 9) were

identified (Tables 4 and 5 for switchgrass and Miscanthus,

respectively). Thereafter, in extensible mark-up language

(XML) format, these parameters were modified (Tables 4 and 5

for switchgrass and Miscanthus, respectively). In all cases, the

modified parameters were calculated as an average of reported

values in the literature or field measurement based on the range

of each parameter. For all locations, we used the same values of

parameters to simulate the DM yield in the re-parameterized

modules. We followed the same parameterization process for

both crops, although there were more sensitive parameters for

switchgrass than for Miscanthus, which explain the differences

in the number of parameters listed in Tables 4 and 5. It should

be noted that we only showed the modified parameters, since

default (original) values might be easily obtained from the XML

file available in the free APSIM version.

In the APSIM Sugarcane module crop growth is divided into

two sections, plant and ratoon crop. The parameters in the

plant and ratoon crop sections determine the crop growth for

the first and second harvests onwards. Hence, the model modi-

fications were made in both sections of XML file (plant and

ratoon crop). To assess potential errors in soil datasets, after

plant model modifications, a sensitivity analysis was under-

taken for PAWC (Fig. 4a for switchgrass and Fig. 4b for Mis-

canthus). The maximum variation (%) in the parameters that

determine the maximum PAWC in the soil - AD, LL, DUL and

SAT - was determined based on the 36 soils used in this study

(Table S2). Therefore, for the sensitivity analysis AD, LL, DUL

and SAT were modified in �29%, �23%, �10% and �5%,

respectively, in order to provide realistic boundaries. Second,

sensitivity of KL, XF and initial OC was evaluated by modify-

ing the range �50% of initial values (Fig. 4c,e,g for switchgrass

and Fig. 4d, f, h for Miscanthus). Using the same approach

explained previously, the maximum pH variation (%) was

determined (Table S2). Model sensitivity to pH change was

evaluated by increasing and decreasing soil pH by 14% of the

actual soil values of switchgrass (Fig. 4i) and Miscanthus

(Fig. 4j). The total number of simulations necessary to complete

the sensitivity analysis of soil parameters was 958.

Re-parameterization of switchgrass plant module

Crop phenology in APSIM is controlled by the sum of heat units

from sowing to maturity. Accordingly, the parameter y_tt (ther-

mal time requirements needed to attain specific phenological

stages) was set to the growth habit of switchgrass (Kiniry et al.,

Table 2 Soil parameters for Drummer soil series at Water Quality Field Station, West Lafayette IN. Estimated data were obtained

from actual data using pedotransfer functions

Depth

Actual data Estimated data

Texture

OC pH OM pH
AD LL DUL SAT

BD ks PO SWCON

Sand Silt Clay

Mg m�3 mm day�1 (0–1) day�1cm % % % % 1 : 1 % 1 : 5 mm mm�1

0–23 15 56 30 2.49 6.0 4.3 5.8 0.095 0.189 0.361 0.483 1.24 165 0.52 0.277

23–43 12 56 32 0.96 6.3 1.7 6.2 0.180 0.200 0.371 0.490 1.22 152 0.53 0.270

43–71 9 60 31 0.71 6.6 1.2 6.5 0.194 0.194 0.373 0.493 1.21 165 0.53 0.268

71–94 14 62 23 0.34 7.2 0.6 7.1 0.152 0.152 0.342 0.478 1.25 232 0.52 0.292

94–109 65 26 9 – 8.0 – 8.0 0.075 0.075 0.174 0.441 1.35 1317 0.48 0.575

109–190 64 29 6 – 8.0 – 8.0 0.075 0.075 0.177 0.441 1.35 1292 0.48 0.565

190–244 41 41 18 – 8.1 – 8.1 0.126 0.126 0.269 0.447 1.33 439 0.49 0.372

244–330 42 42 16 – 8.1 – 8.1 0.126 0.126 0.267 0.446 1.33 445 0.49 0.375

OC, organic carbon; pH (1 : 1), pH in a 1 : 1 suspension of soil in water; pH (1 : 5), pH in a 1 : 5 suspension of soil in water; OM,

organic matter; AD, air dry; LL, lower limit; DUL, drained upper limit or field capacity; SAT, saturated volumetric water content; ks,

hydraulic conductivity; BD, bulk density; PO, total porosity; SWCON, drainage coefficient.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384
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2005). Similarly, the stage_stem_reduction_harvest parameter was

modified so that, after harvest, switchgrass starts a new

regrowth. In order to achieve this initial point of growth,

stage_stem_reduction_harvestwas reduced from 4 to 3 (Table 4).

The LAI and, hence, DM yield in APSIM are defined directly

by the RUE and the transpiration efficiency coefficient (Kc)

parameters both fixed in each phenological stage. Modifications

of the physiological parameters reported elsewhere for the

APSIM Lucerne module (Dolling et al., 2005; Brown et al., 2006;

Chen et al., 2008) were also used here to simulate switchgrass

DM yields. After sensitivity analysis, RUE (coded by y_rue;

Madakadze et al., 1998; Kiniry et al., 1999, 2012; Heaton et al.,

2008; Jain et al., 2010; Trybula et al., 2014) and Kc (coded by

transp_eff_cf; Byrd & May, 2000) were set based on switchgrass

values obtained in the literature (Table 4). For all locations, we

used the same RUE and Kc value. In addition, two other

parameters (the temperature response of photosynthesis,

y_stress_photo, and the extinction coefficient, y_extinct_coef)

directly associated with DM yield were modified as follows.

The temperature response of photosynthesis was modified

based on previous corn studies (Andrade et al., 1993; Louarn

et al., 2008) validated for switchgrass (Grassini et al., 2009)

(Table 4). Similarly, y_extinct_coef was modified based on the

differences in leaf structure between lucerne vs. switchgrass

(Kiniry et al., 1999; Trybula et al., 2014).

Re-parameterization of Miscanthus plant module

Several researchers have reported wide differences in RUE val-

ues for Miscanthus. Kiniry et al. (2012) reported a low value of

RUE (1.3 g MJ�1) in central TX. In contrast, the same authors

reported a value of 3.7 g MJ�1 in the north-eastern MO

whereas Heaton et al. (2008) reported a high value of RUE

(4.1 g MJ�1) in IL. Other studies reported RUE values of 2.2,

2.4 and 2.3–3.0 g MJ�1 in Italy (Cosentino et al., 2007), UK (Clif-

ton-Brown et al., 2001) and IL (Dohleman & Long, 2009),

respectively. Hence, given these discrepancies in RUE values

among studies, the parameter y_rue was modified from 1.8 g

MJ�1 to 3.0 g MJ�1 for all phenological stages (Table 5). This

used value of RUE was calculated from these studies as an

average of the ratio between accumulated yield (from emer-

gence to peak biomass) and total annual incident radiation. For

all locations, we used the same RUE value (3.0 g MJ�1).

The light extinction coefficient (coded by y_ extinct_coef)

through the leaf cover of the crop provides a measurement of

the absorption of light by leaves (Zub & Brancourt-Hulmel,

2010). Miscanthus achieves y_ extinct_coef values between 0.45

(Trybula et al., 2014) to 0.68 (Clifton-Brown et al., 2000). Based

on the insensitivity to the changes of this parameter in the

range reported in the literature (Fig. 3d), the y_ extinct_coef

default value for Miscanthus (0.38) was unchanged. Miscanthus

partition biomass has been parameterized for the WIMOVAC

model using data from Beale & Long (1997) and has been vali-

dated using data from European studies (Miguez, 2007). Based

on the data collected by Burks (2013) and Trybula et al. (2014)

in West Lafayette IN, the ratio_root_shoot parameter was modi-

fied in APSIM for all phenological stages (Table 5). These

authors measured the Miscanthus aboveground and root bio-

mass in different crop growth stages. Therefore, we used these

data to re-parameterize the ratio_root_shoot into the Sugarcane

Table 3 Plant and soil parameters evaluated through the sensitivity analysis for the APSIM re-parameterization to simulate the DM

yield of switchgrass and Miscanthus with their description, acronym/abbreviation. Note that some parameters vary according with

the crop

Definition

Acronym/Abbreviation

Switchgrass Miscanthus

Plant Thermal time calculation y_tt y_tt

Stem reduction effect on phenology stage_stem_reduction_harvest –

Radiation use efficiency y_rue y_rue

Transpiration efficiency coefficient transp_eff_cf transp_eff_cf

Temperature response of photosynthesis – RUE* y_stress_photo y_stress_photo

Water stress on phenology y_swdef_leaf swdf_pheno_limit

y_swdef_pheno y_swdef_pheno

y_swdef_pheno_flowering y_swdef_pheno_flowering

y_swdef_pheno_start_grain_fill y_swdef_pheno_start_grain_fill

Water stress on photosynthesis – swdf_photo_limit

Water stress during photosynthesis to leaf senescence rate – sen_rate_water

Frosting stress frost_fraction –

Extinction coefficient y_extinct_coef extinction_coef

Biomass partitioning ratio_root_shoot ratio_root_shoot

Soil Plant available water capacity PAWC PAWC

Water extraction coefficient KL KL

Root exploration factor XF XF

Initial organic carbon OC OC

pH pH pH

*RUE, radiation use efficiency.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384
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APSIM module for emergence, juvenile and flowering stages.

A complete description of ratio_root_shoot values obtained by

these authors are provided in the supplementary information

(Table S7).

Evaluation of model performance

Initially, model performance was visually assessed by compar-

ing scatter plots of observed values in the y-axis vs. modelled

values in the x-axis (Pi~neiro et al., 2008). When multiple data

points were available for a particular treatment in an experi-

ment, standard deviations are included as an estimate of error.

The evaluation of model performance described in Tedeschi

(2006) and Kobayashi & Us Salam (2000) were used to statisti-

cally evaluate model performance. The parameters used were:

observed and modelled mean and standard deviation of the

DM yield, the concordance correlation coefficient (CCC), and

mean square error (MSE). The CCC integrates precision

through Pearson’s correlation coefficient, which represents the

proportion of the total variance in the observed data that can

be explained by the model, and accuracy by bias which indi-

cates how far the regression line deviates from the concordance

(y = x) line. Similarly, the MSE was partitioned into bias (SB,

%, the bias of the simulation from the measurement) and mean

square variation (MSV, %, the difference between the simula-

tion and the measurement with respect to the deviation from

the means), using IRENE software (Fila et al., 2003). Bias and

MSV are orthogonal and, consequently, can be analysed inde-

pendently (Kobayashi & Us Salam, 2000). Model calibration

was deemed complete when the CCC and SB were higher than

0.7 and <30%, respectively, for the LAI and DM yield of both

crops.

In both crops, the growth period from sowing was simulated

including the establishment phase, during which time rhizome

biomass, root depth, and DM yield are increasing, and the

post-establishment phase, in which perennial organs and root

system are fully developed and the DM yield is fairly constant.

This is influenced more by variation in weather than changes

in plant establishment/underground organ development.

However, only the observed DM yield from the post-establish-

ment phase was included in this analysis to evaluate the accu-

racy of the model to predict DM yield with the established

crop. The duration of the establishment phase varied from two

to four years, depending on the experimental site (Tables S3

and S4). For switchgrass validation, the data sets were grouped

by northern locations (IN, Indiana; IL, Illinois; TN, Tennessee;

NE, Nebraska; IA, Iowa; SD, South Dakota; NY, New York;

ND, North Dakota) and southern locations (TX, Texas; VA, Vir-

ginia; OK, Oklahoma; LA, Louisiana; AR, Arkansas). The same

grouping was not applied to Miscanthus, because DM yields in

southern US locations are extremely low and difficult to find in

the literature. Therefore, the capability of APSIM to simulate

the Miscanthus DM yield was not evaluated in southern US

locations.

Results

Switchgrass

The most sensitive parameters of plant module were

RUE and the light extinction coefficient coded by y_rue

and y_ extinct_coef parameters, respectively. The sensi-

tivity of the model to the modification of these parame-

ters (Fig. 3a,c) was high in the selected soils. The largest

change in DM yield (29% and 44%) occurred when

y_rue was increased from 1.7 to 4 g MJ�1 and 4.9 g

MJ�1 in the loamy and silty soils, respectively (Fig. 3a).

In contrast, increasing y_rue to 4.9 g MJ�1 reduced

switchgrass DM yield by ~15% in the sandy soil

(Fig. 3a). The trend in DM yield to decreased y_extinct_-

coef was similar for these soils with declines 5–11% and

25–34% when y_extinct_coef was decreased from 0.8 to

0.5 and 0.8 to 0.2, respectively (Fig. 3c).

The sensitivity analysis carried out to identify possi-

ble effects of changing soil parameters in the re-parame-

terized model (Fig. 4) on switchgrass DM yields also

showed soil-specific responses with the greatest

responses in DM yield occurring in the sandy soil. For

example, when PAWC was decreased, predicted DM

yield declined 1%, 7% and 11% for silty, loamy and

Fig. 3 Relative change in predicted dry matter yield of switch-

grass and Miscanthus vs. relative change of plant parameters

for three contrasting soil textures. Switchgrass and Miscanthus

were modelled using APSIM Lucerne and APSIM Sugarcane

modules, respectively. The plant parameters analysed were:

y_rue, radiation use efficiency (a, b) and y_extinct_coef, extinc-

tion coefficient (c, d). The value 1 on the x-axis corresponds to

the model default values used in the sensitivity analysis. Bro-

ken lines indicate the baseline parameter and no changes in

dry matter yield, respectively.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384
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sandy soils, respectively (Fig. 4a). When PAWC was

increased, the DM yield was enhanced 3%, 4% and 5%

for silty, loamy and sandy soils, respectively (Fig. 4a).

The highest DM yield response to changes in XF, KL

and pH also occurred in the sandy soil (13%, 14% and

21%, respectively; Fig. 4e,c,i). By comparison, the model

was less sensitive (<4%) to the changes in the initial OC

(Fig. 4g).

The model with the default settings demonstrated a

poor ability to simulate LAI and DM accumulation of

switchgrass. Summary statistics comparing observed

and modelled LAI from original and modified model

parameters at the Water Quality Field Station in West

Lafayette IN demonstrated the improvement in LAI

predictions, as indicated by the increased CCC values (0

to 0.81) and a reduction in the SB (93 to 30%) (Fig. 5a;

Table 6). Similarly, and as expected, when modified

plant parameters (Fig. 6; Table 4) were introduced into

the APSIM Lucerne module, prediction of switchgrass

DM yield at the same location was improved, as indi-

cated by the increase CCC (0.11 to 0.96) and the reduc-

tion in SB (57 to 4%) (Table 6).

The APSIM Lucerne module showed excellent accu-

racy for predicting the accumulated DM yield at IN

locations used for switchgrass model calibration

(Fig. 10a) as evidenced by the values of 0.93 for the

CCC and 0% for the SB (Table 7). The APSIM Lucerne

module also predicted DM yields when validated using

yield data from trials conducted at northern locations

(Fig. 11a), but model accuracy at southern locations was

unsatisfactory. In fact, the CCC = 0.95 from compar-

isons using data from northern locations contrasted

with the CCC = 0.01 for comparisons using data from

southern locations (Table 7). Remarkably, SBs obtained

for northern and southern locations were similar, 0 vs.

2%. The observed switchgrass DM yield during

validation ranged from 5329 kg DM ha�1 in SD to

10668 kg DM ha�1 in IN, with the average discrepancy

in DM yield being 1%. The modelled DM yield ranged

from 1391 kg ha�1 in VA to 10786 kg ha�1 in TN. The

better DM yield predictions in the northern locations

were in IL, TN, NE, IA and SD. In contrast, in NY, IN,

and ND the switchgrass DM yield was simulated with

less precision (Table 7). By comparison, the modelled

DM yields at southern locations were, on average, 10%

less than observed values. When data were clustered by

ecotype at northern locations, the DM yield was better

predicted for upland ecotypes (0.96 for the CCC and 0%

for the SB) than for lowland ecotypes (0.64 for the CCC

and 9% for the SB). The variation of DM yield was well

predicted by the re-parameterized model irrespective of

stage of establishment of the crop.

Better estimates of soil water parameters (LL and

DUL) were obtained from the HYDRAULIC PROPERTIES CAL-

CULATOR Software (Saxton & Rawls, 2006) for northern

locations (CCC = 0.92–0.98 and SB = 0–14%) than for

southern locations (CCC = 0.75–0.92 and SB = 0–37%)

(Table 8; Fig. 7).

Results of regression analysis of observed DM yields on

accumulated annual rainfall revealed a poor fit at south-

ern US locations (R2 = 0.18 and slope regression �4.43;

Fig. 8a). In contrast, the rainfall regression at northern

locations showed a greater R2 value (0.43) than the south-

ern locations, and a positive slope (6.18) (Fig. 8b).

Miscanthus

As with the Lucerne plant module, the most sensitive

parameter of the Sugarcane plant module was y_rue.

However, unlike y_rue, the model was not sensitive to

changes in y_extinct_coef (Fig. 3d). Model sensitivity to

modification of y_rue (Fig. 3b,d) varied depending on

Table 5 Parameterization of APSIM Sugarcane module plant module for Miscanthus simulation. List of the modified parameters with

their section into the XML file, definitions, acronym, units, default (original), used values (modified) and range of values found in the

literature and references

Definition Acronym Units Default value/s Used value/s Range/References

Plant and

ratoon crop*

Stage

dependent

RUE†

stage_code 0–6 1 2 3 4 5 6 1 2 3 4 5 6 1.3–4.1/Clifton-Brown

et al., 2001 Cosentino et al., 2007

Heaton et al., 2008 Dohleman & Long,

2009 Jain et al., 2010 Kiniry et al., 2012

Trybula et al., 2014

rue g MJ�1 0 0 1.8 1.8 1.8 0 0 0 3 3 3 0

Biomass

partitioning

stage_code 0–6 1 2 3 4 5 6 1 2 3 4 5 6 0.2–0.8/Burks, 2013 Trybula et al., 2014

ratio_root_

shoot

0–1 0 0 0.2 0.2 0.1 0 0 0 0.85 0.37 0.22 0

*The modifications shown in this table made in the plant section into the XML file also were made in the ratoon crop section.

†RUE, radiation use efficiency.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384

APSIM SIMULATING PERENNIAL BIOENERGY CROPS 11



soil type. The largest change in DM yield (increment of

15–32%) occurred when y_rue was increased from 1.8 to

4 g MJ�1 (Fig. 3b). Reducing y_rue from 1.8 to 1.25 g

MJ�1 resulted in 8–19% lower DM yields when com-

pared to initial model conditions (Fig. 3b).

The sensitivity analysis carried out to identify possi-

ble effects of soil parameters (Fig. 4) on Miscanthus DM

yield showed differential responses depending on soil

type and parameter. When PAWC was increased,

changes in DM yield were higher for the loamy soil

(18%) than for the silty and sandy soils (6% and 3%

respectively; Fig. 4b). Similarly, when PAWC was

decreased, the reductions in DM yield were greater for

the loamy soil (17%) than for the silty and sandy soils

(12% and 5%, respectively; Fig. 4b). When initial OC

was increased by 50% from default values, predicted

increases in DM yield on sandy soil (48%) were higher

than the silty soil (17%) and the loamy soil (4%; Fig. 4h).

In contrast, the model exhibited low sensitivity of DM

yield to soil pH, KL and XF with changes in DM yield

predicted to be no >5%, 9% and 12% for the respective

parameters (Fig. 4j,d,f).

The original APSIM Sugarcane model with the default

plant parameters could not accurately predict Miscant-

hus LAI and accumulated DM yield. Summary statistics

comparing observed to predicted LAI with the re-para-

meterized model using data from the Water Quality

Field Station in West Lafayette, IN demonstrated

improvement in LAI predictions as indicated by the

high CCC (0.69) and low SB (<30%) (Fig. 5b; Table 9).

Similarly, and as expected, when modifications of plant

parameters (Fig. 9; Table 5) were introduced into the

model, the prediction of Miscanthus DM yield, at the

same location was improved as indicated by the excel-

lent CCC (0.94) and low SB (<30%) (Table 9).

The re-parameterized APSIM Sugarcane module

showed excellent accuracy for predicting Miscanthus

Fig. 4 Relative change in dry matter yield of switchgrass and

Miscanthus vs. relative change of soil parameters using APSIM

Lucerne and APSIM Sugarcane modules, respectively, for three

contrasting soil textures. The soil parameters analysed were

PAWC, plant available water capacity (a, b); KL, water extrac-

tion coefficient (c, d); XF, root exploration factor (e, f); OC,

initial organic carbon (g, h) and pH (i, j). The value 1 on the

x-axis corresponds to the default values used in the sensitivity

analysis. Broken lines indicate the baseline parameter and no

changes in dry matter yield, respectively.

Fig. 5 Modelled pre- ( ), post-APSIM modification ( )

and observed (�) LAI of (a) switchgrass and (b) Miscanthus at

Water Quality Field Station (West Lafayette, IN) during two

seasons. Vertical bars represent the standard deviation of

observed values.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384
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DM yield at IN locations used for model calibration

(Fig. 10b) as evidenced by the values of 0.92 and 13%

for the CCC and SB respectively (Table 10). The model

validation was acceptable for most locations (0.65 and

0% for CCC and SB, respectively; Fig. 11b). However,

the model accuracy at KY and NJ was unacceptable as

indicated by the low CCC values of 0.38 and 0.46,

respectively (Table 10). However, the SB obtained dur-

ing validation was similar and <30%. The observed DM

yield of Miscanthus for validation ranged from 8398 kg

DM ha�1 in VA to 33980 kg DM ha�1 under irrigated

conditions in CA (Fig. 11b). The modelled DM yield for

calibration was 9% higher than observed DM yield. This

difference, however, was negligible (0.5%) when com-

pared to the observed and modelled DM yield associa-

tion done for validation (Table 10). The modelled DM

yield ranged from 13883 kg DM ha�1 in VA to 20518 kg

DM ha�1 in NE.

Discussion

The main objective of this study was to evaluate the

ability of APSIM to simulate the growth and DM yields

of switchgrass (using the re-parameterized Lucerne mod-

ule) and Miscanthus (using the re-parameterized Sugar-

cane module) at several locations across the US. The

modelling approach was based on an exhaustive sensi-

tivity analysis of plant and soil parameters using the

one-at-a-time method followed by a detailed model cali-

bration using field data from experiments in IN, and

ending with a model validation using data from numer-

ous US locations. Results indicate that these re-parame-

terized APSIM Lucerne and Sugarcane modules can

accurately simulate growth and yield of switchgrass

and Miscanthus respectively. Further considerations,

specific to each crop, are discussed below.

Switchgrass

The original APSIM Lucerne module was developed and

extensively tested in many environments for its ability

to predict the phenology and DM yield of lucerne

(Robertson et al., 2002; Dolling et al., 2005; Chen et al.,

2008; Pembleton et al., 2011; Moot et al., 2015; Ojeda

et al., 2016). However, in its original format with ther-

mal parameters for a C3 species, the module is not able

to adequately simulate switchgrass DM yield. Therefore,

several modifications in plant module parameters were

needed to improve the prediction of switchgrass DM

yield. The range of modelled DM yield in this study for

northern locations (5392 to 10 668 kg ha�1) was coinci-

dent with modelled DM yields of the upland ecotype

(Wang et al., 2015) in the marginally saline soil of north-

east Fort Collins, CO (5200 to 9600 kg ha�1), as well as

with the observed DM yield described by Schmer et al.

(2008) on marginal cropland on ten farms in ND, SD

Table 6 Summary statistics indicating the cumulative improvement that resulted from re-parameterization of the APSIM Lucerne

model for predicting LAI (n = 11) and dry matter yield (n = 20) of switchgrass at Water Quality Field Station, West Lafayette, IN. The

parameters modified were y_tt, thermal time requirements needed to attain specific phenological stages; y_rue, radiation use

efficiency; transp_eff_cf, transpiration efficiency coefficient; y_stress_photo, temperature response of photosynthesis and y_extinct_coef,

extinction coefficient. CCC, SB and MSV are the concordance correlation coefficient, bias of the simulation from the measurement and

mean square variation, respectively

Original model y_tt y_rue transp_eff_cf y_stress_photo y_extinc_coef

LAI

Mean (Observed) 6.1 6.1 6.1 6.1 6.1 6.1

Mean (Modelled) 0.0 4.7 5.2 5.4 5.5 5.5

SD (Observed) 1.7 1.7 1.7 1.7 1.7 1.7

SD (Modelled) 0.0 0.9 1.6 1.4 1.3 1.5

Testing parameters

CCC 0.00 0.66 0.60 0.67 0.76 0.81

SB (%) 93 60 26 23 23 30

MSV (%) 7 40 74 77 77 70

Dry matter yield (kg ha�1)

Mean (Observed) 5908 5908 5908 5908 5908 5908

Mean (Modelled) 411 2324 5503 7435 6263 6154

SD (Observed) 4939 4939 4939 4939 4939 4939

SD(Modelled) 1774 1920 4094 4929 4543 4530

Testing parameters

CCC 0.11 0.65 0.85 0.94 0.96 0.96

SB (%) 57 58 3 45 7 4

MSV (%) 43 42 97 55 93 96

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384
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and NE (5200 to 11 100 kg ha�1) and by Wullschleger

et al. (2010) for 25 upland cultivars in the northern US.

The re-parameterization was based on sensitivity of

DM yield when parameters were modified to values

obtained in published studies (Table 4). In addition, dif-

ferential effects of soil parameters on switchgrass DM

yield were observed (Fig. 4). Soil water availability is

one of the key soil parameters that explained most of

the differences in switchgrass growth and yield

(Fig. 4a). Similarly, the low PAWC due to high sand

contents in the soil (Saxton & Rawls, 2006) reduced the

canopy expansion decreasing the light interception and

photosynthesis, thus, reduced plant growth (Durand

et al., 1995) in tall fescue. In addition, our results

showed highest sensitivity of DM yield to parameter

changes in the sandy soil that had the lowest PAWC.

Although the re-parameterized model substantially

improved the prediction of DM yield at northern loca-

tions, a poor DM yield prediction at southern US loca-

tions was found (Figs 10 and 11a). This poor validation

was associated with difficulty in accurately estimating

PAWC at southern locations (Fig. 7), specifically esti-

mates of LL and DUL by the HYDRAULIC PROPERTIES CALCU-

LATOR Software (Saxton & Rawls, 2006) (Table 8). This

was evidenced by the statistical analysis performed on

observed and estimated LL and DUL at ten soil series

near selected southern and northern locations evaluated

in this study (Table 8). For example, the over and under

estimation of PAWC at OK and VA (Fig. 7) respectively,

would explain the over and under prediction in DM

yield at both locations. In contrast, good agreement was

found between observed and estimated LL and DUL in

two soil series at northern sites in IN and IL (Table 8;

Fig. 7). This observation suggests a new line of research

that should be addressed to clarify to what extent the

under or over estimation of these soil water parameters

affects the outcome of predicted DM yield in APSIM.

Previous modelling efforts for predicting DM yield of

switchgrass were reported. While Grassini et al. (2009)

demonstrated similar trends in the DM yield predic-

tions (CCC = 0.77), these results were obtained based

on a limited number of observations (8) from two north-

ern US environments (Ames, IA and Mead, NE). Addi-

tionally, the accuracy of the ALMANAC model (Kiniry

et al., 2005) and APSIM to predict DM yield were simi-

lar differing by <7%. However, yield values reported by

these authors was nearly double what we observed in

our study (ca. 17000 vs. 8000 kg DM ha�1) despite com-

parable dryland conditions. While ALMANAC

accounted for 47% of the variability in observed DM

yields (Kiniry et al., 2005), when the CCC was calcu-

lated from the published results, both models (APSIM

and ALMANAC) were poor predictors of DM yield

(CCC<0.50) at southern locations (with the exception of

Stephenville TX). These authors also observed high

year-to-year variability in measured yields at southern

locations in the US (TX, LA and AR) and reported that

this was not closely associated with variation in rainfall.

The lack of fit for the southern locations was evaluated

here using our complete dataset. The results showed

that the southern locations showed poor fits for

observed DM yield as a function of accumulated annual

rainfall (Fig. 8a), in contrast with northern locations

(Fig. 8b). An additional explanation for the low fit

between observed and modelled DM yield at these loca-

tions is that the observed DM yields used to validate

the model in TX, AR, and LA were derived from the

mean of nine cultivars (Cassida et al., 2005; Table S3) in

each location. The absence of genotypic parameters for

Fig. 6 Modelled pre- ( ), post-APSIM Lucerne modification

( ) and observed dry matter yield (�) of switchgrass cultivar

Shawnee at Water Quality Field Station (West Lafayette, IN).

The modified parameters shown in each panel are y_tt, thermal

time requirements needed to attain specific phenological stages

(a); y_rue, radiation use efficiency (b); transp_eff_cf, transpiration

efficiency coefficient (c); y_stress_photo, temperature response of

photosynthesis (d) and ratio_root_shoot, ratio root/shoot (e).

The effect on dry matter yield was only due to the modification

of each individual parameter. Vertical bars represent the stan-

dard deviation of observed values.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384
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each cultivar of switchgrass used by these authors, did

not allow us to re-parameterize/calibrate/validate the

model at the cultivar level. Although the model

predicted DM yield of upland switchgrass cultivars bet-

ter than that of lowland cultivars, the limited number of

observations and locations evaluated for lowland

ecotypes in this study did not allow us to demonstrate

differences in APSIM accuracy by ecotype.

Table 8 Summary statistics indicating the performance of HYDRAULIC PROPERTIES CALCULATOR Software (Saxton & Rawls, 2006) in pre-

dicting the soil water parameters of ten soil series from different states. Southern locations: Virginia (VA), Texas (TX), Kentucky (KY),

Arkansas (AR), Oklahoma (OK) and Louisiana (LA). Northern locations: New Jersey (NJ), Illinois (IL), Indiana (IN) and New York

(NY)

Southern locations Northern locations

State VA TX KY AR OK LA NJ IL IN NY

Series Cecil Windthorst Maury Bowie Parsons Dexter Holmdel Flanagan Chalmers Collamer

Observations # 16 16 16 18 20 22 20 16 14 14

Testing parameters

CCC 0.75 0.77 0.80 0.87 0.91 0.92 0.92 0.96 0.97 0.98

SB (%) 37 0 30 0 3 19 13 7 0 14

MSV (%) 63 100 70 100 97 81 87 93 100 86

Fig. 7 Drained lower limit (LL, solid lines) and drained upper

limit (DUL, dotted lines) observed (thick lines) and estimated

(hair lines) by the HYDRAULIC PROPERTIES CALCULATOR Software

(Saxton & Rawls, 2006) for the soil series (a) Cecil in VA, (b)

Windthorst in TX, (c) Maury in KY, (d) Bowie in AR, (e) Par-

sons in OK, (f) Dexter in LA, (g) Holmdel in NJ, (h) Flanagan

in IL, (i) Chalmers in IN and (j) Collamer in NY.

Fig. 8 Relationship between observed dry matter yield of

switchgrass vs. accumulated annual rainfall for (a) southern

locations and (b) northern locations in US. Northern locations:

IN, Indiana; IL, Illinois; TN, Tennessee; NE, Nebraska; IA,

Iowa; SD, South Dakota; NY, New York; ND, North Dakota.

Southern locations: TX, Texas; VA, Virginia; OK, Oklahoma;

LA, Louisiana; AR, Arkansas. Solid grey lines represent linear

equation fit to the data. Vertical bars represent the standard

deviation in observed values.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384
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Miscanthus

Accurate prediction of Miscanthus DM yield using the

APSIM Sugarcane module required fewer model re-para-

meterizations when compared to changes made in the

APSIM Lucerne module parameters to predict DM yield

of switchgrass. Sugarcane (Saccharum officinarum) shares

phenological and physiological attributes with Miscant-

hus due to their close polyphyletic relationship at the

subtribe level (Hodkinson et al., 2002), so it is not sur-

prising that this APSIM module predicted the DM yield

of Miscanthus. As with switchgrass, the main plant

parameter modified was the RUE. Model DM yield pre-

diction improved when y_rue was increased (Fig. 9a).

Unlike switchgrass, no change occurred in Miscanthus

DM yield prediction from changes in y_extinct_coef in

the three soils evaluated (Fig. 3d). Similarly, DM yield

was not sensitive to change in y_extinct_coef using

SWAT in IN (Trybula et al., 2014). In addition, Davey

et al. (2016) demonstrated that the time period in which

increases in the y_extinct_coef value had a greatest

impact on light interception, and consequently on DM

yield, is at the beginning of the growing season before

Table 9 Summary statistics indicating the cumulative

improvement that resulted from re-parameterization of the

APSIM Sugarcane model for predicting LAI (n = 12) and dry

matter yield (n = 20) of Miscanthus at Water Quality Field Sta-

tion, West Lafayette, IN. The parameters modified were y_rue,

radiation use efficiency and ratio_root_shoot, biomass partition-

ing. The CCC, SB and MSV are the concordance correlation

coefficient, bias of the simulation from the measurement and

mean square variation, respectively

Original

model y_rue ratio_root_shoot

LAI

Mean (Observed) 7.6 7.6 7.6

Mean (Modelled) 7.9 7.8 7.3

SD (Observed) 1.2 1.2 1.2

SD (Modelled) 0.2 0.2 0.9

Testing parameters

CCC �0.15 �0.03 0.69

SB (%) 5 2 17

MSV (%) 95 98 83

Dry matter yield (kg ha�1)

Mean (Observed) 10 825 10 825 10 825

Mean (Modelled) 9252 11992 9337

SD (Observed) 10 213 10 213 10 213

SD (Modelled) 7970 10 185 7952

Testing parameters

CCC 0.88 0.90 0.94

SB (%) 12 7 27

MSV (%) 88 93 73

Fig. 9 Modelled pre- ( ), post-APSIM Sugarcane modifica-

tion ( ) and observed dry matter yield (�) of Miscanthus at

Water Quality Field Station (West Lafayette, IN). The modified

parameters shown in each panel are y_rue, radiation use effi-

ciency (a) and ratio_root_shoot, ratio root/shoot (b). The effect

on dry matter yield was due to the independent modification

of each individual parameter. Vertical bars represent the stan-

dard deviation in observed values.

Fig. 10 Scatter plot showing observed vs. modelled dry mat-

ter yield for the Indiana sites with calibration data resulting

from the re-parameterization of the APSIM model for (a)

switchgrass and (b) Miscanthus. WQFS, Water Quality Field

Station; TPAC, Throckmorton Purdue Agricultural Center;

NEPAC, Northeast Purdue Agricultural Center and SEPAC,

Southeast Purdue Agricultural Center. Solid black line, dotted

line and solid grey line represent 1 : 1 fit (i.e. y = x), � 20% of

curve 1 : 1 value and linear equation fit to the data, respec-

tively. Vertical bars represent the standard deviation in

observed values where such data were available. The CCC is

the concordance correlation coefficient.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12384
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LAI≥4. Therefore, after this stage, further increases in

y_extinct_coef have little effect on DM yield. Thus, the

low sensitivity to this parameter in our study may be

based on the constant values of y_extinct_coef used for

all crop stages.

In a recent study (Zhao et al., 2014) the modelled root

biomass of wheat (Triticum aestivum L.) was improved

trough re-parameterization of the ratio_root_shoot

parameter using APSIM in China. Likewise, biomass

partitioning between roots, rhizomes and shoots for

Miscanthus has been parameterized for the WIMOVAC

model using data from Beale & Long (1997) and this

trait has been validated using data from Europe

(Miguez, 2007). Based on the mentioned studies, and

using data collected by Burks (2013) and Trybula et al.

(2014) in West Lafayette, IN, the ratio_root_shoot parame-

ter was changed in APSIM for all stages, which led to

an accurate prediction of DM yield (Fig. 9b;

CCC = 0.94).

Similar to switchgrass, sensitivity analysis demon-

strated definite trends associated with soil PAWC

changes. However, this response differed from switch-

grass in that DM yield was greater for the loamy soil

than the silty and sandy soils. While the cause is not

clear at this time, one plausible explanation is genotypic

differences in root exploration between species depend-

ing on soil type (Monti & Zatta, 2009). These authors

found that Miscanthus roots were more concentrated in

the top layers of the soil profile as compared with

switchgrass, which led to the crop water capture was

close and negatively related to root distribution.

Most Miscanthus studies for US locations have pre-

dicted peak autumn yield (17 500–48 000 kg DM ha�1)

and assumed adequate soil moisture and nutrient

availability (Heaton et al., 2004; Khanna et al., 2008;

Jain et al., 2010; Mishra et al., 2013). However, our

predicted DM yields from the validation work for this

same region (17 000 kg ha�1 at IN to 20 500 kg ha�1

at NE) are lower because Miscanthus was grown under

water and/or nutrient-limiting dryland conditions,

(except in CA).

The APSIM Sugarcane module was able to satisfacto-

rily predict Miscanthus DM yields at IN locations (cali-

bration) and for most locations evaluated (validation)

with the exception of NJ and KY. As was discussed

for switchgrass, the poor ability of the model to pre-

dict DM yield of Miscanthus at these two locations

was associated with the inaccurate estimation of

PAWC. An over-estimation of DUL was found in the

Maury soil series at KY (Fig. 7c). In fact, the estimated

soil water parameters were not in a satisfactory range

as compared with the observed values (0.80 for CCC

and 30% for SB) at this site when compared with the

soils at IL, IN and NY (0.96–0.98 for CCC and 0–14%
for SB). Similarly, a poor fit was found between

observed and estimated DUL in the soil layers from

0.5 to 1.5 m in the Holmdel soil series in NJ (Fig. 7g);

however, the prediction level of the LL and DUL

using the HYDRAULIC PROPERTIES CALCULATOR Software

developed by Saxton & Rawls (2006) was acceptable

in this soil (0.92 for CCC and 13% for SB).

APSIM model: a promising tool to simulate DM yield for
switchgrass and Miscanthus in several US environments

This work was the first attempt to re-parameterize two

current APSIM plant modules (Lucerne and Sugarcane)

for predicting the DM yield of switchgrass and Miscant-

hus. Such re-parameterization was conducted based on

an extensive literature review and using detailed experi-

mental datasets. We initially focused on the re-parame-

terization of plant and soil modules and on predicting

Table 10 Summary statistics indicating the performance of the Agricultural Production Systems Simulator (APSIM) model in pre-

dicting the dry matter yield (kg ha�1) of Miscanthus. The data was divided in calibration and validation datasets. IN, Indiana; CA,

California; NE, Nebraska; IL, Illinois; VA, Virginia; NJ, New Jersey; KY, Kentucky. The CCC, SB and MSV are the concordance

correlation coefficient, bias of the simulation from the measurement and mean square variation, respectively

Calibration
Validation

IN CA NE IL VA NJ KY Total

Observations # 45 8 15 44 12 17 12 108

Mean (Observed) 15 475 20 421 20 352 18 354 14 926 16 087 17 269 17 927

Mean (Modelled) 17 032 20 101 20 518 18 195 13 883 17 536 16 079 17 841

SD (Observed) 9631 8548 4865 4540 3747 3074 3054 4789

SD (Modelled) 10 924 5213 5321 4025 3469 3488 5442 4653

Testing parameters

CCC 0.92 0.85 0.69 0.58 0.57 0.46 0.38 0.65

SB (%) 13 1 0 0 10 16 6 0

MSV (%) 87 99 100 100 90 84 94 100
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the direction and the magnitude of the DM yield

responses.

The study demonstrates:

• The simulation of switchgrass DM yield in northern

locations of the US using the re-parameterized

APSIM Lucerne module had greater accuracy than in

southern ones. The improved predictions were asso-

ciated with a strong, positive association between

DM yield and accumulated annual rainfall.

• The original version of the APSIM Sugarcane module

can be used to accurately simulate the growth and

yield of Miscanthus in a broad range of geographies

and ecosystems within the US that differ in local

weather, soil characteristics, and crop management.

• The predictions of the DM yield for Miscanthus

improved substantially when the physiological

parameters (rue and ratio_root_shoot) of the model

were modified.

• PAWC parameterization in a soil profile was critical

for explaining DM yield differences for both crops.

This study represents an advance with respect to pre-

vious ones to simulate switchgrass and Miscanthus

because: (i) the DM yield predictions were carried out

with the same model (ii) the re-parameterization was

started from two existing APSIM plant modules, (iii) the

modelled DM yields have been compared against inde-

pendent datasets, which include contrasting cultivars of

switchgrass and environments, and (iv) the average

errors associated with the predictions of DM yield at

northern locations of switchgrass and Miscanthus were

extremely low for both the calibration and the validation

(26–57 kg ha�1 and 1557–86 kg ha�1, respectively). To

improve the APSIM accuracy under these environments

additional agronomic studies are needed, since only a

limited number of locations were utilized for each spe-

cies. In addition, as our study was based on APSIM cali-

brations at IN locations, further calibrations of the model

using data obtained from other environments is recom-

mended. Nevertheless, these re-parameterized APSIM

modules hold promise as tools for predicting switchgrass

and Miscanthus yields in several US environments.
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