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Codon usage clusters correlation: 
towards protein solubility 
prediction in heterologous 
expression systems in E. coli
Leonardo Pellizza, Clara Smal, Guido Rodrigo & Martín Arán

Production of soluble recombinant proteins is crucial to the development of industry and basic research. 
However, the aggregation due to the incorrect folding of the nascent polypeptides is still a mayor 
bottleneck. Understanding the factors governing protein solubility is important to grasp the underlying 
mechanisms and improve the design of recombinant proteins. Here we show a quantitative study of 
the expression and solubility of a set of proteins from Bizionia argentinensis. Through the analysis of 
different features known to modulate protein production, we defined two parameters based on the 
%MinMax algorithm to compare codon usage clusters between the host and the target genes. We 
demonstrate that the absolute difference between all %MinMax frequencies of the host and the target 
gene is significantly negatively correlated with protein expression levels. But most importantly, a 
strong positive correlation between solubility and the degree of conservation of codons usage clusters 
is observed for two independent datasets. Moreover, we evince that this correlation is higher in codon 
usage clusters involved in less compact protein secondary structure regions. Our results provide 
important tools for protein design and support the notion that codon usage may dictate translation rate 
and modulate co-translational folding.

Heterologous protein expression has become one of the central fields in biochemistry, being both the scientific 
research and the biotechnology industry dependent on its success. Remarkable advances in genetic engineering 
have resulted in the development of bacterial expression systems capable of producing large amounts of proteins 
from cloned genes1–3. However, efficient expression of genes in heterologous systems is actually a major bottle-
neck. In fact, one of the main problems often occurring during recombinant protein production in bacteria is 
undoubtedly the incorrect folding of the nascent polypeptides, resulting in their aggregation and accumulation 
as insoluble inclusion bodies, making the purification process a laborious or impossible task. As a result, approx-
imately 50% of proteins are not soluble when expressed in E. coli4.

During the last decade, computational methods have provided interesting tools to address heterologous 
protein production obstacles5,6. However, the predictive power of algorithms is still limited in many cases, and 
developers run into the challenge of extracting reliable datasets in terms of the nature of the data source5. Most 
prediction tools are based on datasets generated from E. coli proteome7,8. In consequence, they are not specifically 
developed to predict the solubility of proteins expressed heterologously in E. coli. In addition, even when datasets 
are gathered by integrating heterogeneous available databases, the experimental details are often not consistent 
and without proper annotations9. In this scenario, it becomes clear that improvements in protein expression and 
solubility prediction algorithms should be associated with the generation of more diverse datasets with standard-
ized solubility measurements.

In this context, the bacterium Bizionia argentinensis represents an interesting source of new protein datasets 
to expand our current view on the factors that direct heterologous protein expression in E. coli. B. argentinensis is 
a psychrotolerant bacterium, defined as a mesophilic organism that can tolerate low temperatures, with optimal 
growth temperature between 22 and 25 °C10. In addition, this bacterium is phylogenetically distant from E. coli, 
since it is classified in a different phylum (Bacteroidetes). We here present a study of the heterologous expression 
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in E. coli of a set of selected proteins form B. argentinensis. We show for the first time a quantitative study of the 
total expression and solubility of thirty proteins from a psychrotolerant organism. We found that 50% of the 
expressed proteins could be classified as soluble, being this value remarkably similar to that previously described 
for proteins of thermophilic and mesophilic organisms11,12. In addition, we evaluated the influence of differ-
ent factors, known to modulate heterologous protein production, on the experimental expression and solubility 
of our dataset. A significant positive correlation was found between the Codon Adaptation Index (CAI) and 
the total expression of the selected targets (r = 0.464, p = 0.017). In search of other unknown features related to 
the experimental solubility, we relayed on the concept of “codon harmonization” to apply the %MinMax algo-
rithm. We defined Δ%MinMax and %MinMax Correlation as two novel parameters to quantify the differences 
in %MinMax profiles between the host and the target genes. We found that the Δ%MinMax showed a significant 
negative correlation (r = −0.645, p = 7.10−4) with total expression levels. But most importantly, a strong positive 
correlation (r = 0.787, p < 1.10−4) between the solubility of the selected proteins and the %MinMax Correlation 
was observed. Further analysis on the predicted secondary structure of the selected ORFs showed that %MinMax 
Correlation in codon clusters specifically involved in coil and β-sheet structures displayed the highest correlation 
with solubility. The predictive capacity of these parameters in the expression and solubility of an independent 
dataset of mesophilic prokaryotic proteins was evaluated.

Our results provide novel tools to study the factors governing protein solubility and support the notion that 
codon usage may dictate translation rate and modulate co-translational folding. Moreover, we here evince that 
the conservation of codon usage clusters in less compact protein secondary structure regions (coils or β-sheets) is 
one of the most important factors that determine recombinant protein solubility.

Results
The solubility yields of B. argentinensis proteins produced in E. coli are comparable with those 
of thermophilic and mesophilic organisms.  One of the most challenging steps in heterologous protein 
expression is predicting which protein or protein fragment will express in a soluble form and purify. Considerable 
achievements have been made by several structural genomics (SG) initiatives where target selection was mainly 
based on a standardized bioinformatics pipeline which eliminates proteins bearing trans-membrane segments, 
signal peptides and large disordered regions13. In this context, to subsequently compare our results on the expres-
sion and solubility of proteins of B. argentinensis with those of previous studies, we selected 30 open reading 
frames (ORFs) that met the following characteristics: (i) low sequence relatedness to proteins of known function, 
but presenting counterparts in the genomes of other organisms (so-called “conserved hypothetical proteins”), (ii) 
without homologous of known structure deposited in the Protein Data Bank (PDB) and (iii) predicted cytosolic 
or extracytoplasmic localization (Supplementary Table S1).

In order to evaluate the expression and solubility of recombinant proteins, the 30 selected ORFs from B. 
argentinensis were cloned and expressed in E. coli BL21 (DE3) cells at different induction temperatures, as 
detailed in Materials and Methods. After induction, soluble and insoluble protein fractions were prepared and 
visualized by SDS-PAGE. Bands with the expected molecular masses were clearly evident for all expressed ORFs 
(Supplementary Fig. S1).

To further analyze the behavior of selected targets from a quantitative point of view, total expression levels and 
percentages of solubility were estimated using densitometric analysis of the induced bands present in the pellet 
and supernatant of SDS-PAGE (Fig. 1). Overall, we found that most selected targets increased their proportion in 
the soluble fraction when the induction temperature was set at 20 °C. In contrast, when induced at 37 °C recom-
binant proteins were mainly present in the insoluble extract (Fig. 1). Therefore, taking into account the solubility 
at 20 °C and establishing a 30% threshold value, as previously reported by Niwa et al.14, 15 of the 30 proteins were 
classified as soluble. Interestingly, the value of 50% of solubility was in line with those typically reported by struc-
tural genomics projects based on E. coli expression systems of mesophilic and thermophilic organisms15.

Contrary to the behavior observed for solubility, we were unable to find a clear relationship between total 
expression levels and the induction temperature (Fig. 1). The expression levels of half of the expressed proteins 
were increased at 20 °C, when compared with 37 °C. In contrast, 17% of the targets analyzed exhibited higher 
expression levels at 37 °C. The remaining 33% of ORFs showed no differences in their total expression levels, 
regardless of the induction temperature used.

Taken together, these results clearly indicated that total expression levels and solubility were no correlated in 
our dataset. Moreover, in contrast to total expression, protein solubility showed an evident dependence on the 
induction temperature. In addition, the loss of half of the targets highlighted the main obstacle in the expression 
of soluble heterologous proteins.

Solubility prediction algorithms have a limited predictive power on B. argentinensis proteins.  
Several attempts have been made to predict the solubility of recombinant proteins based on sequence7–9,16. Most algo-
rithms have shown some predictive success for E. coli proteins and use several features to predict protein solubility such 
as: type of amino acid, protein length, isoelectric point (pI) and hydropathy index, among many others5.

In this context, to evaluate the predictive capacity of available tools on the solubility of our experimental dataset, 
we selected four freely prediction online programs: Protein-Sol7, CCSOL8, SOLpro9 and Recombinant protein solu-
bility prediction17. The performances of these tools were tested by measuring the Matthews Correlation Coefficient 
(MCC) and the prediction accuracy. Table 1 shows the values obtained using three different test datasets: (i) the 
reported original datasets7–9,17, (ii) a merged dataset from multiple sources previously described by Chang et al.6 and 
(iii) our dataset. Interestingly, the accuracy values obtained for our experimental dataset were between 50 and 57%, 
in contrast to those reported for each program, which were between 74 and 87%. Accordingly, the calculated MCC 
values were clearly lower than those previously reported (Table 1). However, the prediction accuracy and MCC val-
ues obtained with our independent dataset were strikingly similar to those reported by Chang et al.6.
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Collectively, the results obtained with these prediction programs, which are mainly based on physicochemical 
properties of amino acids, revealed a limited predictive power not only for our set of proteins from a psychrotol-
erant organism, but also for other independent dataset with most mesophilic and thermophilic organisms6.

Figure 1.  Quantitative analysis of the total expression and solubility of the selected targets. Total expression 
levels and percentages of solubility were estimated using densitometric analysis of the induced bands present 
in the pellet and supernatant of SDS-PAGE. Bars plot of total expression and solubility of the selected targets 
induced at 37 °C (red bars) or 20 °C (blue bars) are shown.

Tool RPSP Protein Sol CCSOL SOLpro

Original references

PA (%) 87.0 82.8 (*) 76.1 74.2

MCC n/a n/a 0.519 0.487

Chang et al.6

PA (%) 51.45 n/a 54.20 59.9

MCC 0.029 n/a 0.084 0.202

This paper

PA (%) 56,6 53.3 50 50

MCC 0.151 0.089 0 0

Table 1.  Predictive capacity of available tools on the solubility of different experimental data sets. The 
performances of four freely prediction online programs: Protein-Sol7, CCSOL8, SOLpro9 and Recombinant 
protein solubility prediction (RPSP)17 were evaluated. Three different test datasets were used: (i) the reported 
original datasets7–9,17, (ii) a merged dataset from multiple sources previously described by Chang et al.6 and 
(iii) the dataset from this paper. PA: Prediction accuracy; MCC: Matthews Correlation Coefficient; n/a: not 
available; *PA using 58% solubility prediction threshold.
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The Codon Adaptation Index, but not the mRNA stability, correlates with total expression lev-
els of B. argentinensis proteins.  Codon usage bias and mRNA structural stability have been identified 
as two of the most important factors that influence heterologous protein expression and solubility in E. coli18,19.

Codon bias occurs from the different frequencies of synonymous codons in the coding DNA sequences that 
often mirrors the amount of the cognate tRNAs. Various estimators were developed in order to quantify the 
codon bias between a coding sequence and a set of reference sequences. One of the most widespread parameters 
is the CAI20. However, although high CAI has been associated to high expression levels21,22, some contradictory 
reports have been published23. In addition, several studies in heterologous protein expression systems using CAI 
on codon optimization of individual genes have not addressed protein solubility24,25. In this context, we calcu-
lated the CAI for all selected ORFs in order to analyze the influence of codon usage in protein expression and 
solubility of our dataset. We found a significant positive correlation between the CAI and the total expression 
levels (r = 0.464, p = 0.017) (Fig. 2). On the other hand, no significant correlation was observed between CAI and 
solubility (Fig. 2).

Among other factors proposed as primary determinants of gene expression, mRNA stability has been of par-
ticular interest26,27. Therefore, we estimated mRNA stability from both the predicted folding free energy of the 
mRNA and the GC content for the native coding sequences. We next analyzed the relationship between these two 
global parameters and the total expression level and solubility of our dataset. Notably, neither the GC content nor 
the mRNA folding energy were significantly correlated with total expression or solubility of the protein targets 
(Fig. 2).

Two novel parameters derived from the %MinMax algorithm are strongly correlated with solu-
bility and total expression levels of recombinant proteins.  From the results described in the preced-
ing sections, we were unable to find any significant correlation between the experimental solubility of the selected 

Figure 2.  Analysis of primary determinants of gene expression. The total CAI, GC content and mRNA folding 
energy are plotted as a function of the experimental total expression (blue circles) and solubility (red circles). 
The linear regression (dashed line), the Pearson’s correlation coefficient and the p-value (two tailed) are shown.
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targets and the properties evaluated from their sequences. In search of other unknown features related to the 
experimental solubility, we relayed on the concept of “codon harmonization”. This strategy involves identifying 
significant patterns of synonymous codon usage in the host organism and replicating these patterns using the 
codon usage frequencies of the heterologous expression host28. It have been reported that soluble expression 
of the “harmonized” genes exceeded that of the native genes by 4- to 1,000-fold29. In this sense, the %MinMax 
algorithm serves as a useful tool in “codon harmonization” strategies, since it evaluates synonymous codon usage 
patterns for any coding sequence28. Therefore, we applied the %MinMax algorithm30 to selected ORFs in order 
to investigate the relationship between codon bias and the experimental solubility and expression levels. We 
calculated the %MinMax using B. argentinensis codon usage frequency (%MinMaxBA) or E. coli codon usage 
frequency (%MinMaxEC) for all selected ORFs, as described under Materials and Methods. In Fig. 3 six repre-
sentative graphs are displayed, where the %MinMaxBA and %MinMaxEC for each ORF are superimposed and 
plotted as a function of the codon cluster. Notable, we found that the average %MinMaxBA was higher than the 
average %MinMaxEC for most ORFs analyzed. However, in some cases, such as for the ORF 169_10 (Fig. 3), both 
profiles were found to be remarkably similar to each other, not only considering the %MinMax average, but also 
the %MinMax for each particular cluster.

We next evaluated whether the absolute difference between %MinMaxBA and %MinMaxEC (Δ%MinMax) 
for each ORF correlated with its solubility and total expression levels. Interestingly, we found that the Δ%MinMax 
showed a significant negative correlation with total expression levels (Fig. 4a). This result was in line with the pre-
viously observed for the CAI, as in both cases the smaller the differences between the codon frequencies of the 

Figure 3.  %MinMax profiles of protein targets. The %MinMaxBA (red circles) and the %MinMaxEC 
(green circles) for six representative ORFs are plotted and superimposed as a function of the codon cluster. 
%MinMaxBA and %MinMaxEC were calculated using B. argentinensis and E. coli codon usage frequency, 
respectively.
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host and the target gene, the higher the expression levels of the heterologous proteins. However, we were unable 
to find any significant correlation between the experimental solubility and the Δ%MinMax. At this point, from a 
detailed inspection of the %MinMax profiles, we noted that those ORFs that showed similar landscapes between 
%MinMaxBA and %MinMaxEC (i.e. in relative but not absolute terms) were expressed mostly soluble. The ORFs 
169_10 and 42_3 were good examples (Fig. 3), being highly soluble at 20 °C and showing matching landscapes 
between the host and the target genes (Fig. 3). Consequently, in order to quantify these observations, we ana-
lyzed the correlation between %MinMaxBA and %MinMaxEC (%MinMax Correlation) for each ORF using the 
Pearson’s correlation coefficient as detailed in Materials and Methods. Surprisingly, a strong positive correlation 
was observed between the solubility of the selected proteins and the %MinMax Correlation (Fig. 4a). In other 
words, the greater the similarity between %MinMaxBA and %MinMaxEC landscapes (regardless of the magni-
tude of Δ%MinMax), the greater the proportion of the proteins found in the soluble fraction. In consequence, 
in contrast to the physicochemical properties of the polypeptide chain and other characteristics associated with 
mRNA stability analyzed, our results revealed that %MinMax Correlation was the only parameter that signifi-
cantly correlated with the experimental solubility of our set of selected proteins.

The correlation between protein solubility and %MinMax Correlation is higher in codon clusters  
associated to coil structures.  Previously, the role of rare codons has been explored in relation to the 
structure of proteins. It was shown that optimal codons are preferentially used in gene regions that encode 
well-structured protein domains (mainly in α-helical regions) and more non-optimal codons are used in 

Figure 4.  Analysis of %MinMax-derived parameters and their relationship with the solubility, total expression 
and predicted secondary structures elements of recombinant proteins. (a) The %MinMax Correlation and the 
Δ%MinMax calculated for each protein are plotted as a function of the experimental solubility (red circles) and 
total expression levels (blue circles). (b) The secondary structure content of all selected proteins was predicted 
using the JPred33. The %MinMax Correlation calculated for α-helices, β-sheets and coils are plotted as function 
of the experimental solubility. In A and B the linear regression (dashed line), the Pearson’s correlation coefficient 
and the p-value (two tailed) are shown.
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disordered/weakly structured regions (including coil, β-sheet and intrinsically disordered structures)31,32. In light 
of these results, we wondered if %MinMax Correlation and protein solubility could be related to the structure of 
the selected proteins. Therefore, we first predicted the secondary structures of all selected proteins using JPred33. 
This web server classifies each amino acid residue as belonging to α-helix, β-sheet or not α-helix or β-sheet sec-
ondary structures. In particular, we classified amino acids within this latter group as coil, also including residues 
in intrinsically disordered regions. We next differentiated the %MinMax Correlation in each protein accordingly 
to its secondary structure prediction. Finally, the Pearson’s correlation between %MinMax Correlation for the 
three classes of secondary structures and the experimental solubility was evaluated. Surprisingly, a strong posi-
tive correlation (r = 0.875, p < 1.10−4) was found between solubility and %MinMax Correlation in coil regions 
(Fig. 4b). In addition, a modest but significant positive correlation (r = 0.561, p < 1.10−2) was also observed 
between solubility and %MinMax Correlation in β-sheet structures (Fig. 4b). However, no significant correlation 
was detected between %MinMax Correlation and solubility in α-helical regions. These results were not biased due 
to the relative content of secondary structure in the target proteins, since the total percentage for coils, α-helices 
and β-sheets were 45%, 38% and 17%, respectively. Therefore, these data suggested that the greater the similarity 
between %MinMaxBA and %MinMaxEC landscapes in codon clusters specifically involved in coil (and to a lesser 
extent in β-sheet) structures, the greater the proportion of the proteins found in the soluble fraction.

The use of Δ%MinMax and %MinMax Correlation in the study of an independent dataset of 
mesophilic prokaryotic proteins supports the results obtained for B. argentinensis proteins.  
On virtue of the results detailed in the previous section, we wondered if the %MinMax Correlation and 
Δ%MinMax could be applied to predict the solubility and total expression levels of other independent datasets. 
In this regard, we performed a search of heterologous proteins produced in E. coli with experimental expression 
and solubility values reported. After an exhaustive exploration, we only found a few public databases provid-
ing experimental information on the solubility of recombinant proteins. Among them, the SPINE system for 
structural proteomics, is a complete database that offers experimental information about expression systems, 
purification conditions and analytical measure of the solubility (http://spine.nesg.org)34. Based on the SPINE 
database, we generated a new dataset of 30 mesophilic prokaryotic proteins with reported expression values and 
known structure (see Supplementary Table S2). We next calculated the %MinMax Correlation and Δ%MinMax 
for all selected ORFs and analyzed their relationship with solubility and expression levels. Interestingly, in line 
with our previous results, the Δ%MinMax showed a significant negative correlation with total expression levels 
(r = −0.511, p = 7.10−3) (Supplementary Fig. S2). But most importantly, a strong positive correlation between 
the solubility of this independent dataset and the %MinMax Correlation was observed (r = 0.642, p < 1.10−4) 
(Supplementary Fig. S2).

Finally, we analyzed the relationship between %MinMax Correlation and protein solubility as a function of 
the secondary structure of the selected proteins. Surprisingly, the experimental solubility and the %MinMax 
Correlation were positively correlated for the three classes of secondary structures (Supplementary Fig. S1). 
In this case, differently from what was observed for the Bizionia argentinensis dataset, %MinMax Correlation 
in β-sheet regions showed the highest correlation with solubility (r = 0.696, p < 1.10−4), followed by α-helix 
(r = 0.567, p < 2.10−3) and coil regions (r = 0.472, p < 8.10−3).

Collectively, these results support the idea that there is a positive correlation between the solubility of recom-
binant proteins produced in E. coli and the %MinMax Correlation parameter. Moreover, they show that this cor-
relation is higher if certain regions of secondary structure are taken into account. In addition, they reinforce the 
notion that there is a negative correlation between protein expression levels and Δ%MinMax.

Discussion
Numerous methods have been proposed to predict the solubility of recombinant proteins overexpressed in E. coli 
merely from amino acid sequences. Although some of these models have acceptable prediction performances5,6, 
we found a poor predictive power of the four available algorithms tested. Moreover, our results were consistent 
with a previous analysis performed with an independent dataset6. Bearing in mind these observations and con-
sidering the influence of the codon bias on the solubility of our dataset (see below), we hypothesized that the lack 
of predictive capacity of these programs may be based on two main arguments. First, most algorithms are princi-
pally developed on information from E. coli proteins, whose codon frequency is already optimized to be produced 
with the same machinery6. Therefore, the weight of the physicochemical properties in the prediction of solubility 
could be relatively overestimated. And second, the solubility information provided by the majority of databases it 
is not generated using a single reliable protocol and different criteria are taken by developers to classify proteins 
into soluble and insoluble categories. Consequently, not only misclassification of proteins in this binary system 
(soluble-insoluble) could arise, but also valuable information concerning diverse “degrees of solubility” for each 
molecule could be lost.

In this work, we define Δ%MinMax and %MinMax Correlation as two novel parameters to quantify the dif-
ferences in %MinMax profiles between the host and the target genes. To our knowledge, this is the first time that 
these parameters are employed in the study of protein expression in a heterologous system. Our results suggest 
that total expression and solubility of prokaryotic proteins produced in E. coli can be studied independently by 
specific parameters.

On the one hand, the absolute difference of the mathematical average of all codon usage frequencies between 
the host and the target gene seems to be a relevant parameter to predict total expression levels. This assumption is 
in agreement with our results with total CAI and supports the notion that the more codons that a gene contains 
that are rarely used in the expression host, the less likely is that the heterologous protein will be expressed at rea-
sonable levels. There are several studies on gene expression of codon-optimized sequences, including mammalian 
proteins, which support this idea21.
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On the other hand, the solubility appears to be associated to the magnitude of the correlation between the 
%MinMax profiles of the host and the target gene. On this basis, it can be predicted that an overall increase of 
high-frequency-usage codons in the target gene, in favor of enhanced total expression, may be detrimental to the 
solubility of the encoded protein, since such increment will be not necessarily associated with an improvement 
in %MinMax Correlation. In line with this assumption, the aggregation of several recombinant proteins has 
been effectively observed when “one amino acid-one codon” strategy was applied in order to optimize protein 
expression19,35. In contrast, a strategy aimed at increasing high-frequency-usage codons in the target gene while 
maximizing %MinMax Correlation would generate higher levels of total expression without affecting, or even 
improving, the amount of the recombinant protein in the soluble fraction. In this regard, in the codon harmo-
nization strategy29 any change in the codon usage frequencies of the target gene necessarily mirrors the wild 
type %MinMax profile and, consequently, it would have less negative effects on the solubility of the recombi-
nant proteins. This strategy has been successfully applied to express several proteins in E. coli, including protein 
based vaccines36–38. Further experiments will be needed, however, in order to determine the effect of increasing 
high-frequency-usage codons in the target gene, while maximizing %MinMax Correlation, but above the harmo-
nized %MinMax profile.

Generally, rare codons are associated with slower rates for protein synthesis, and are typically considered dele-
terious for efficient protein production20. The predominant view holds that selection favors common codons, but 
a low level of rare codons is incorporated due to random mutational drift and weak selection39. However, recently 
reports suggest that clusters of synonymous rare codons are non-randomly widespread in the coding sequences of 
most prokaryotic and eukaryotic species30,40 and are conserved within homologous genes41. Altering synonymous 
codon usage has been shown to influence the expression level42, solubility43, co-translational modifications44 and 
targeting of encoded proteins45. Further, codon usage can also indirectly impact the translational efficiency of 
coding sequences by affecting mRNA structure at 5′ ends of transcripts23,46. In this scenario, our results clearly 
reinforce the view that synonymous codons clusters distribution in coding sequences is subjected to evolutionary 
pressures. But most importantly, here we show that, alternatively to the relative frequency of the codons (i.e. if 
they are rare or highly frequent) at point positions in the coding sequence, the conservation of the entire codon 
cluster profile seems to be crucial for the solubility of recombinant proteins.

Protein synthesis is coordinated by maintaining the nascent polypeptide in a folding-competent conformation 
both by direct ribosome effects47 and the translation rate as dictated by codon usage48. In general, reducing trans-
lation rate will increase the time available for N-terminal portions of a protein to fold to a stable structure prior to 
the appearance of more C-terminal regions22,28,38. Changes in codon usage frequency in a heterologous expression 
host can lead to alterations in local protein synthesis rates49. From this perspective, our results are congruent 
with the notion that the conservation of %MinMax profiles between the host and the target gene may enhance 
the chances of achieving native local protein synthesis rates, thus preventing the appearance of unstable folding 
intermediates that could lead to inclusion bodies formation. In consonance with this idea, it has been shown that 
the protein translation rate and silent codon substitution can affect protein folding of expressed heterologous 
proteins48,50. In addition, a correlation between translationally optimal codons and structurally sensitive51 and 
aggregation-prone sites52 in proteins has been described. However, more studies are needed in order to unveil 
the specific forces that determine the rate of translation of each codon and its impact in co-translational folding 
in vivo.

Computational analysis of the available E. coli genome and protein structure databases identified that 
high-frequency-usage codons are mainly associated with structural elements such as α–helices, whereas clusters 
of lower frequency usage codons are more likely to be associated with β-sheets, coils, and disordered regions31,32. 
In this context, we here show that coils regions (and to a lesser extent β-sheets) of the most soluble proteins in 
our dataset display the highest %MinMax Correlation. Furthermore, in an independent dataset (composed of 
mesophilic organisms) β-sheet regions of the most soluble proteins exhibit the highest %MinMax Correlation. 
Therefore, our results indicate that the degree of conservation of wild type %MinMax profiles in less compact sec-
ondary structure regions (coils or β-sheets) is an important factor that could determine the solubility of recom-
binant proteins.

Studies of the prokaryotic ribosomal tunnel during protein synthesis support its role as an active modulator of 
nascent peptide secondary structure formation53. A range of structural and biophysical studies have indicated that 
certain nascent chains can form secondary-structure and even simple tertiary-structure motifs within the ribo-
some exit tunnel: the dimensions of the exit tunnel permit the formation of α-helices within the central and lower 
tunnel53. In this regard, our results are consistent with the idea that the elongation rates of α-helices regions are 
less influential in the general pathway that leads to a native co-translational folding. On the other hand, our data 
support the notion that elongation rates of secondary structures elements that are dependent on other regions 
of the nascent chain to stabilize (e.g. coils and β-sheets), need to follow an exquisite folding kinetics to explore 
the energy landscape to reach a native co-translational folding. Moreover, the relationship between %MinMax 
profiles in coil regions and solubility of B. argentinensis proteins may reflect the particular characteristics of these 
structures in cold-adapted organisms. Since coils tend to be more flexible in psychrophiles than in mesophilic and 
thermophilic counterparts54 and the flexibility of these structural elements is commonly involved in the catalytic 
cycle of psychrophilic enzymes55.

Understanding the factors governing protein solubility is important to grasp the underlying mechanisms and 
improve the efficiency of designing soluble proteins. Moreover, they may provide insight into protein aggregation 
and misfolding related diseases. Sequence-based methods can be considered as valuable tools to predict recom-
binant protein overexpression results before performing real laboratory experiments, thus saving time, labor and 
cost. Generating more accurate datasets, working on organisms other than E. coli and discovering novel influen-
tial features, are some considerations for future directions in the protein solubility prediction field.
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Materials and Methods
Target selection.  In a first step, we selected those ORFs from B. argentinensis genome56 that belonged to a 
Pfam family of unknown function. For this purpose, the HMMER program57, that implements hidden Markov 
models and compares them with the sequences provided, was used. As a result, 979 ORFs encoding proteins of 
low sequence identity with proteins of known function were selected. Subsequently, from this group, we selected 
those ORFs without homologous of known structure deposited in the PDB. In this sense, we performed a search 
with the BLASTp program (https://blast.ncbi.nlm.nih.gov) against the PDB and discarded the ORFs with signifi-
cant hits (E-value ≤ 0.001). Next, we analyzed the existence of orthologous sequences of selected ORFs in KEGG 
GENES (http://www.genome.jp/kegg/genes.html). To this end, the Bidirectional Best Hits (BBH) method was 
used58, and those sequences presenting hits with E-values ≤ 0.00001 were selected. We next discarded the ORFs 
with predicted signal peptides and membrane localization, using the SignalP59 and PSORTdb programs, respec-
tively. Finally the ORFs were filtered by size between 80 and 500 amino acids. As a result, 30 of the 3195 ORFs 
identified in the genome of B. argentinensis were selected (Supplementary Table S1).

Cloning.  All target genes were amplified by PCR using B. argentinensis genomic DNA as template and the prim-
ers listed in Supplementary Table S3. The PCR products were purified and subsequently amplified in a second PCR 
with the forward primer 5′-GGGACAAGTTTGTACAAAAAAGCAGGCTCGGAGAACCTGTACTTTCAG-3′ 
and the reverse primer 5′-GGGGACCACTTTGTACAAGAAAGCTGGGTTA-3′. Next, the final PCR products 
were recombined using the Gateway® BP Clonase® II enzyme mix into the pDONR-201 vector (Invitrogen). 
The plasmid DNA from positive clones were purified, confirmed by DNA sequencing and recombined into the 
pDest-527 expression vector using the Gateway® LR Clonase® II enzyme mix. pDest-527 was a gift from Dominic 
Esposito (Addgene plasmid #11518). This protein expression system allows the production of recombinant pro-
teins in E. coli as fusions with a His6 tag at their N-terminal. In addition, the tobacco etch virus (TEV) protease 
digestion site was introduced in order to subsequently remove the N-terminal fusion tag.

Protein expression and solubility screening.  Small-scale expression assays were conducted in order 
to determine the solubility and total level of recombinant proteins. Chemically competent BL21 (λDE3) E. coli 
cells were transformed with 5 ng of each expression plasmid and grown overnight on agar plates with ampicillin 
(100 μg ml−1). 10 ml cultures in LB medium with ampicillin were started from isolated colonies and grown over-
night at 37 °C. The day after, 10 ml of fresh LB medium were inoculated at a final OD600nm of 0.05 with the starter 
cultures. The cells were grown at 37 °C for 2–3 h up to OD600nm ≈ 0.5. Then, heterologous protein expression was 
induced by addition of 0.5 mM IPTG. After 4 h (37 °C) or 16 h (20 °C) of continuous growth, the final OD600nm 
was recorded. Cells were centrifuged (5000 g, 10 min) and the pellet resuspended in 1 ml lysis buffer (20 mM 
Tris-HCl, 0.5 M NaCl, 40 μg ml−1 phenylmethylsulphonyl fluoride, pH 7.5) per unit of OD600nm. Cell suspensions 
were disrupted by sonication for 5 min on ice until complete cell lysis was achieved. After centrifugation (10000 g, 
30 min, 4 °C), the supernatants were separated and analyzed for protein concentration by a standard procedure60. 
Supernatant samples containing 20 μg of total protein were analyzed by SDS-PAGE. Pellets were resuspended in 
the same amount of lysis buffer as the supernatants and equivalent volumes loaded onto the electrophoresis gels. 
In order to estimate protein molecular weight, the BenchMarkTM Protein Ladder (Life Technologies) was used.

Expression levels and solubility quantification.  The quantification of SDS-PAGE bands corresponding 
to recombinant proteins was carried out with the ImageJ program61. Gel bands were selected and the average 
grey value (M) and total area (A) were measure for each expressed protein. Protein intensity (I) in each band was 
calculated by multiplying M by A. The solubility of each ORF at a given temperature was calculated as follows:

Isf
Isf Iif( ) (1)+

where Isf is the intensity of the protein in the soluble fraction and Iif, the intensity of the protein in the insoluble 
fraction.

The total expression was estimated using the BenchMarkTM Protein Ladder (Life Technologies). In each case, 
we compare de intensity of one selected band of the marker (according to the size of the target protein) with the 
intensity of the band corresponding to the protein of interest.

Solubility prediction tools.  All prediction tools used provide open accessibility. The URL addresses to 
access Protein-Sol7, CCSOL8, SOLpro9 and Recombinant Protein Solubility Prediction17 were https://protein-sol.
manchester.ac.uk/, http://tartaglialab.crg.cat/ccsol.php, http://scratch.proteomics.ics.uci.edu and http://www.
biotech.ou.edu, respectively. The performance of each tool was assessed by the Prediction Accuracy and the 
Matthews Correlation Coefficient (MCC) using the following equations,

=
+

+ + +
Prediction Accuracy TN TP

TN FP FN TP (2)

MCC TP TN FP FN
TP FP TP FN TN FP TN FN( )( )( )( ) (3)

=
× − ×

+ + + +

where TP is the number of true positives, TN the number of true negatives, FP the number of false positives and 
FN the number of false negatives.

https://blast.ncbi.nlm.nih.gov
http://www.genome.jp/kegg/genes.html
https://protein-sol.manchester.ac.uk/
https://protein-sol.manchester.ac.uk/
http://tartaglialab.crg.cat/ccsol.php
http://scratch.proteomics.ics.uci.edu
http://www.biotech.ou.edu
http://www.biotech.ou.edu
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The tools were evaluated by setting the threshold value for classification of soluble class at 30% for our experi-
mental data solubility, as previously reported by Niwa et al.14 and 50% for the prediction tools.

Codon adaptation index (CAI).  The CAI for each ORF was calculated using the GenScript Rare Codon 
Analysis Tool (available at https://www.genscript.com/tools/rare-codon-analysis). The CAI was estimated using 
the equation given by Sharp and Li20 as follows:

CAI exp
L

lnw1
(4)k

L

c k
1

( )∑=
=

where L is the number of codons in the gene and wc(k) is the relative adaptiveness value (ω) for the kth codon in 
the gene. CAI is usually used to measure the ω of the codon usage of a gene towards the codon usage of highly 
expressed genes. For this analysis, the coding sequence of each ORF, excluding the additional 5′-end encoding a 
His6 tag and a TEV protease digestion site, was used.

Analysis of the mRNA folding energy.  The minimum free energy of mRNA secondary structure was 
predicted with the NUPACK web application62. For this analysis, the coding sequence of each ORF, excluding 
the additional 5′-end encoding a His6 tag and a TEV protease digestion site, was used. All predictions were per-
formed at the selected expression temperature of 20 °C.

%MinMax calculation.  %MinMax was calculated using the Rare Codon Calculator (http://www.codons.
org/)30. Absolute codon frequencies were tabulated using codon usage data for each organism. For all organisms, 
with the exception of B. argentinensis, codon usage data were extracted from KazUSA (http://www.kazusa.or.jp/
codon/)63. In the case of B. argentinensis the codon usage data were generated with the Countcodon program 
(http://www.kazusa.or.jp/codon/countcodon.html) from 1000 ORFs. Δ%MinMax was calculated for each ORF 
as follows:

MinMax
x y
n

% (5)
i
n

i i1Δ =
∑ | − |=

where n corresponded to the total number of windows for each ORF (i.e. the total number of aminoacids minus 
18), xi was the %MinMax obtained with B. argentinensis codon usage frequency (%MinMaxBA) and yi was the 
%MinMax obtained with E. coli codon usage frequency (%MinMaxEC) for the ith window in each ORF. The 
Δ%MinMax for other organisms was calculated as mentioned above, but using the %MinMax obtained with the 
codon usage frequency according to each organism as x.

The secondary structure prediction for each protein was obtained from the sequence using Jpred4 (http://
www.compbio.dundee.ac.uk/jpred/).

Correlation analysis.  The correlation between the different features and the experimental expression and 
solubility values was evaluated accordingly to the Pearson’s correlation method. Given two variables x and y, the 
Pearson’s correlation coefficient r can be calculated as follows:

=
∑ − −

∑ − ∑ −

=

= =

r
x x y y

x x y y

( )( )

( ) ( ) (6)

i
n

i i

i
n

i i
n

i

1

1
2

1
2

where n is the sample size, xi and yi are the independent variables, and x and y are the mean values.
In order to calculate the %MinMax Correlation for each ORF, we applied the Pearson’s correlation equation 

using the %MinMaxBA as x and the %MinMaxEC as y. The sample size n corresponded in this case to the total 
number of windows for each ORF (i.e. the total number of aminoacids minus 18). The %MinMax Correlation 
for other organisms was calculated as mentioned above, but using the %MinMax obtained with the codon usage 
frequency according to each organism as x.

The ORFs that presented values of Δ%MinMax and %MinMax Correlation greater than 3 times the 95% 
confidence interval of the linear regression fit were excluded from the analysis. When %MinMax Correlation was 
analyzed as a function of the predicted secondary structure, only those ORFs containing more than 5% of the 
evaluated secondary structure were included.

Target generation from the SPINE dataset.  In order to generate an independent dataset, 30 ORFs from 
different prokaryotic mesophilic organisms were selected using the SPINE server (http://spine.nesg.org)34. The 
targets were filtered by expression system, including the ORFs reported to be cloned in the wild type form into the 
expression vector pET-21 and expressed in E. coli BL21 (DE3) at 37 °C.

The values of expression and solubility in the SPINE database are reported as discrete values from 0 (no 
expression or insoluble protein) to 5 (high expression or soluble protein)64. Consequently, for targets with more 
than one expression or solubility value reported, the final values of solubility and total expression were averaged.

Data availability.  The datasets generated during the current study are available from the corresponding 
author on reasonable request.

https://www.genscript.com/tools/rare-codon-analysis
http://www.codons.org/
http://www.codons.org/
http://www.kazusa.or.jp/codon/
http://www.kazusa.or.jp/codon/
http://www.kazusa.or.jp/codon/countcodon.html
http://www.compbio.dundee.ac.uk/jpred/
http://www.compbio.dundee.ac.uk/jpred/
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