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We present new, fully nonlinear numerical solutions to the static, spherically symmetric Einstein-
Klein-Gordon system for a collection of an arbitrary odd number N of complex scalar fields with
an internal U(N) symmetry and no self-interactions. These solutions, which we dub ℓ-boson stars,
are parametrized by an angular momentum number ℓ = (N − 1)/2, an excitation number n, and a
continuous parameter representing the amplitude of the fields. They are regular at every point and
possess a finite total mass. For ℓ = 0 the standard spherically symmetric boson stars are recovered.
We determine their generalizations for ℓ > 0, and show that they give rise to a large class of new
static configurations which might have a much larger compactness ratio than ℓ = 0 stars.

PACS numbers: 95.30.Sf, 04.20.q, 98.80.Jk

I. INTRODUCTION

Boson stars composed of massive scalar fields are among the most promising exotic objects that may populate the
universe. They were originally proposed by Kaup [1] and Ruffini and Bonazzola [2] in the late sixties, and explored
in more detail during the subsequent decades in e.g. Refs. [3–8] (see also [9–12] for reviews). Even though they
remain hypothetical, boson stars are frequently considered as candidates for black hole mimickers [13–15], massive
compact objects made of axions [16–18], or even the core of the galactic halos [19, 20] in the context of fuzzy dark
matter [21, 22].
It is within this line that we present a new class of static solutions to the Einstein-Klein-Gordon (EKG) system

which generalize the known boson stars by considering a collection of an arbitrary odd number N of free complex
scalar fields of the same mass. For N = 1 these configurations reduce to the standard, spherically symmetric boson
star configurations. For N > 1, new static configurations are obtained which are still spherically symmetric if the
collection of scalar fields are excited in an appropriate way.
Our approach is to consider that spacetime curvature is sourced by a collection of classical fields that compound

a spherically symmetric configuration. The construction is based on a method introduced in Ref. [23], where it was
shown that for the case in which the fields are real and massless, and as long as all the harmonics with given angular
momentum number ℓ = (N − 1)/2 are excited with equal amplitude, the total stress energy-momentum tensor is
spherically symmetric. In this way, it is possible to study the dynamics of scalar fields which, individually, have
angular momentum, while keeping the spherical symmetry of the spacetime. As remarked in [23] this resembles a
spherically symmetric kinetic gas where the individual particles may rotate but the configuration is spherical. The
authors of Ref. [23] used this technique to study a possible effect of the angular momentum on the critical collapse of
scalar field configurations.
In the present work we show that their method still works for a collection of complex, non-interacting massive

scalar fields. The situation is similar to that in standard boson stars, where an internal U(1) symmetry “hides”
the time dependency of the field avoiding Derrick’s theorem [24, 25]. If we extend the group of symmetry to higher
values of N , then not only the time evolution, but also the angular dependency of the non-trivial harmonics with
angular momentum number ℓ = (N − 1)/2 can be accommodated in the internal field space, leading to new static
and spherically symmetric solutions to the EKG system. We refer to these objects as ℓ-boson stars in this paper. The
main goal of this work is to determine their domain of existence and to compare their properties with the standard
ℓ = 0 boson stars.
The remainder of this article is organized as follows. In Sec. II we derive the spherically symmetric field equations

for the particular collection of scalar fields belonging to a fixed angular momentum number ℓ. Next, in Sec. III we
demonstrate the local existence of solutions to the EKG system in the vicinity of the center. Based on a shooting
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algorithm starting from the local solution at the center, in Sec. IV we numerically solve the field equations to find the
globally regular solutions describing the ℓ-boson stars, and discuss their behavior, including their density profile and
mass curves for different values of ℓ. Conclusions and an outlook to future work are drawn in Sec. V, and relevant
identities involving spherical harmonics that are needed in this article are derived in the Appendix at the end of the
paper.
We use the signature (−,+,+,+) for the spacetime metric, and natural units such that ~ = c = 1. The numerical

solutions presented below are in Planck units, where we have also taken the gravitational constant equal to 1, G = 1.

II. FIELD EQUATIONS

In this section, we present the spherically symmetric EKG system that describes a collection of an arbitrary odd
number of complex, non-interacting scalar fields Φi, i = 1, . . . , N , of mass µ each, which are excited in an appropriate
way consistent with the spacetime symmetries.
The stress energy-momentum tensor associated with such a collection of scalar fields is

Tµν =
1

2

∑

i

[∇µΦ
∗

i∇νΦi +∇µΦi∇νΦ
∗

i

−gµν
(

∇αΦ
∗

i∇αΦi + µ2Φ∗

iΦi

)]

. (1)

Here Φ∗

i denotes the complex conjugate of the field component Φi, and ∇µ is the covariant derivative with respect to
the spacetime metric gµν . Notice that since the mass is the same for the N fields, and they do not interact between
themselves, this expression is invariant under U(N) transformations in the internal field space. We assume that the
different fields in the configuration satisfy the Klein-Gordon equation individually, such that (∇µ∇µ − µ2)Φi = 0.
Following [23] we now consider solutions of the form

Φℓm(t, r, ϑ, ϕ) = φℓ(t, r)Y
ℓm(ϑ, ϕ), (2)

where the angular momentum number ℓ = (N − 1)/2 is fixed in the configuration and m, which plays the role of the
index i in Eq. (1), takes values m = −ℓ,−ℓ+1, . . . , ℓ. As usual Y ℓm denotes the standard spherical harmonics, and the
amplitudes φℓ(t, r) are the same for all m. As shown in the Appendix this leads to a total stress energy-momentum
tensor which is spherically symmetric. (The authors of Ref. [23] show a similar result valid for a collection of scalar
fields which are, however, real and massless; for this reason we include here an independent proof.)
Representing the spacetime metric in terms of the Misner-Sharp mass M(t, r) and the lapse function α(t, r), the

line element is written as

ds2 = −α2dt2 + γ2dr2 + r2dΩ2, γ2 :=
1

1− 2M
r

, (3)

with r the areal radial coordinate and dΩ2 the standard line element on the unit two-sphere. With this notation and
the assumption in Eq. (2), the EKG system yields

Ṁ = −κℓr
2

2

α

γ
j(ℓ), (4a)

M ′ =
κℓr

2

2
ρ(ℓ), (4b)

α′

α
= γ2

(

M

r2
+
κℓr

2
S(ℓ)

)

, (4c)

φ̇ℓ = αΠℓ, (4d)

Π̇ℓ =
1

r2γ

(

r2
α

γ
φ′ℓ

)

′

+
κℓr

2
αγj(ℓ)Πℓ

− α

(

µ2 +
ℓ(ℓ+ 1)

r2

)

φℓ, (4e)
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where κℓ := (2ℓ+ 1)G is the (rescaled) gravitational coupling constant and where the source terms are given by1

ρ(ℓ) = |Πℓ|2 + |χℓ|2 +
(

µ2 +
ℓ(ℓ+ 1)

r2

)

|φℓ|2, (5a)

S(ℓ) = |Πℓ|2 + |χℓ|2 −
(

µ2 +
ℓ(ℓ+ 1)

r2

)

|φℓ|2, (5b)

j(ℓ) = −2Re(Π∗

ℓχℓ). (5c)

Here Πℓ := α−1φ̇ℓ is the conjugate momentum associated with the scalar field, χℓ := γ−1φ′ℓ, and a dot and a prime
denote partial derivatives with respect to t and r, respectively.
In the following, we look for solutions with a harmonic time-dependency,

φℓ(t, r) = eiωtψℓ(r), (6)

with some real frequency ω (taken to be positive without loss of generality) and a real-valued function ψℓ(r). This
provides a nonlinear eigenvalue problem for the quantities (M,αγ, ψℓ) which can be written as

M ′ =
κℓr

2

2

[

ψ′2
ℓ

γ2
+

(

µ2 +
ω2

α2
+
ℓ(ℓ+ 1)

r2

)

ψ2
ℓ

]

, (7a)

(αγ)′

αγ3
= κℓr

[

ψ′2
ℓ

γ2
+
ω2

α2
ψ2
ℓ

]

, (7b)

1

r2αγ

(

r2α

γ
ψ′

ℓ

)′

=

(

µ2 − ω2

α2
+
ℓ(ℓ+ 1)

r2

)

ψℓ. (7c)

For the particular case of N = 1, i.e. ℓ = 0, these equations reduce to the ones describing static boson stars with a
zero angular momentum scalar field. These configurations have been studied extensively in the literature, and may
be parametrized by the central value of the field and an excitation number [9–12].
In the following, we study the solutions for N > 1, i.e. ℓ > 0. In this case the presence of the centrifugal term

ℓ(ℓ + 1)/r2 in the EKG system requires ψℓ to vanish at the center of the configuration and to decay with a specific
rate as r → 0. This is analyzed next.

III. LOCAL SOLUTIONS NEAR THE CENTER

For ℓ = 0, a full proof for the existence of regular solutions of finite mass was given by Bizoń and Wasserman in
Ref. [26]. Although it would be very interesting to generalize their results to arbitrary values of ℓ, a full existence
proof clearly lies beyond the scope of this work. However, for the purpose of this paper we found it useful to generalize
one partial result given in [26] (see Proposition 3.1 of that paper), regarding the local existence of solutions near the
center. This provides a rigorous discussion for the existence and behavior of the solutions in the vicinity of r = 0, and
allows us to set up the correct boundary conditions to start the numerical integration scheme described in the next
section.
In order to discuss the solutions in the vicinity of r = 0, it is convenient to introduce the following dimensionless

quantities:2

x := µr, f(x) :=
√
κℓψℓ(r), (8a)

B(x) := 2µM(r)/x2, Q(x) :=
µ

ω
α(r)γ(r), (8b)

1 Note that when multiplied by the constant factor (2ℓ + 1)/(8π), these quantities correspond to the energy density, ρ = nµnνTµν , the
radial stress S = Pµ

r P ν
r Tµν , and the radial momentum flux j = −Pµ

r nνTµν , respectively, of matter as measured in a local orthonormal
frame by the Eulerian observers moving along the direction normal to the spatial hypersurfaces, where nµ is the unit normal vector to
these hypersurfaces, and Pµ

r the orthogonal projection operator onto them.
2 In [26] the quantities A := γ−2 and C := γ2/Q are used instead of γ and Q.
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in terms of which the system (7) can be rewritten as

d

dx
(x2B) = x2

[

f2
x

γ2
+

(

1 +
γ2

Q2
+
ℓ(ℓ+ 1)

x2

)

f2

]

, (9a)

d

dx
logQ = x

[

f2
x +

γ4

Q2
f2

]

, (9b)

1

x2Q

d

dx

(

x2Q

γ2
fx

)

=

(

1− γ2

Q2
+
ℓ(ℓ+ 1)

x2

)

f. (9c)

Here we have used the shorthand notation fx = df/dx, and it is understood that γ2 should be substituted by
[1− xB(x)]−1.
For ℓ = 0, it was shown in Ref. [26] that for each positive values of Q0 and a0, there exists a local solution of the

form

B(x) = O(x), (10a)

Q(x) = Q0 +O(x2), (10b)

f(x) = a0 +O(x2), (10c)

near the center x = 0. In the following, we generalize this local existence result to arbitrary values of ℓ. As mentioned
above, the presence of the centrifugal term ℓ(ℓ + 1)/x2 drastically modifies the behavior of the fields close to the
center. In fact, a heuristic approximation assuming B → 0, Q→ const. gives

− d

dx
(x2fx) + ℓ(ℓ+ 1)f ≃ 0, (11)

which has solutions of the form f ∼ xℓ or f ∼ x−ℓ−1. Since we require regularity a the center, we discard the second
possibility. We now show the existence of a two-parameter family of solutions for which

B(x) = O(x2ℓ−1), (12a)

Q(x) = Q0

[

1 +O(x2ℓ)
]

, (12b)

f(x) =
a0

2ℓ+ 1
xℓ

[

1 +O(x2)
]

. (12c)

This implies α = αc[1 + O(x2ℓ)], with αc = Q0ω/µ, and M = O(x2ℓ+1), in terms of the original variables. Notice
that these expressions are only valid as long as ℓ > 0.
In order to prove the existence of such solutions, we replace f and its first derivative with the new fields (G,H),

such that
(

f(x)
xfx(x)

)

=
xℓ

2ℓ+ 1

(

1 1
ℓ −(ℓ+ 1)

)(

G(x)
H(x)

)

. (13)

Note that (up to a constant 2ℓ+1) the two asymptotic solutions f(x) = xℓ and f(x) = x−ℓ−1 correspond to the fields
(G,H) = (1, 0) and (G,H) = x−2ℓ−1(0, 1), respectively. In terms of the fields u := (B,Q,G,H), the system (9) can
be rewritten in first-order form:

d

dx
(x2B) = x2ℓFB(x, u), (14a)

dQ

dx
= x2ℓ−1FQ(x, u), (14b)

dG

dx
= FG(x, u), (14c)

d

dx
(x2ℓ+1H) = −x2ℓ+1FG(x, u), (14d)
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FIG. 1: Left panel: Total mass vs effective radius for equilibrium configurations of different angular momentum number ℓ.
Right panel: Total mass vs frequency of oscillation for the same configurations as in the left panel.

with the source terms given by

FB =
(x1−ℓfx)

2

γ2
+

[

x2
(

1 +
γ2

Q2

)

+ ℓ(ℓ+ 1)

]

(x−ℓf)2,

FQ = Q(x1−ℓfx)
2 +

γ4

Q
x2(x−ℓf)2, (15)

FG = γ2
{[

x

(

1− γ2

Q2

)

+ ℓ(ℓ+ 1)B

]

(x−ℓf)

+
[

x2ℓ−1
(

x2 + ℓ(ℓ+ 1)
)

(x−ℓf)2 −B
]

(x1−ℓfx)
}

.

In these expressions, γ2 should be replaced with [1 − xB]−1 and the terms x−ℓf and x1−ℓfx should be rewritten in
terms of G and H according to Eq. (13). Note that when rewritten in this way, these terms are regular at x = 0,
which implies that the source terms FB, FQ and FG are regular as well at x = 0 for all ℓ ≥ 1.
Eqs. (14) can be reformulated as a fixed point problem of the form u = Tu, with the nonlinear map Tu =

(T1u, T2u, T3u, T4u) given by

T1u(x) := x−2

∫ x

0

y2ℓFB(y, u(y))dy, (16a)

T2u(x) := Q0 +

∫ x

0

y2ℓ−1FQ(y, u(y))dy, (16b)

T3u(x) := a0 +

∫ x

0

FG(y, u(y))dy, (16c)

T4u(x) := x−2ℓ−1

∫ x

0

y2ℓ+1FG(y, u(y))dy. (16d)

Introducing the function space X of continuous, bounded functions u on some interval [0, x0] with the sup-norm, and
the closed subspace Y ⊂ X consisting of those fields u ∈ X whose distance to the point u0 := (0, Q0, a0, 0) is no
greater than 1, it is not difficult to show that T leaves Y invariant and defines a contraction on Y , provided x0 is small
enough. According to the contraction mapping principle, T possesses a unique fixed point in Y , and this fixed point
provides the required solution. The solution may be constructed by means of the iteration u0, u1 := Tu0, u2 := Tu1,
. . ., from which one easily finds the asymptotic behavior (12).

IV. GLOBAL SOLUTIONS

In this section, we present numerical solutions to the EKG system described by Eqs. (7), that extend the local
solutions of the previous section to provide global configurations that are regular everywhere and posses a finite mass.



6

From this point onwards, and in order to simplify the numerical analysis, we set G = 1, such that all quantities are
dimensionless and measured in Planck units.
To proceed, we solve numerically the EKG system (7) expressed in the alternative form

γ′ =
2ℓ+ 1

2
rγ

[(

ω2

α2
+
ℓ(ℓ+ 1)

r2
+ µ2

)

γ2u2ℓr
2ℓ + (u′ℓr

ℓ + ℓuℓr
ℓ−1)2

]

−
(

γ2 − 1

2r

)

γ, (17a)

α′ =
2ℓ+ 1

2
rα

[(

ω2

α2
− ℓ(ℓ+ 1)

r2
− µ2

)

γ2u2ℓr
2ℓ + (u′ℓr

ℓ + ℓuℓr
ℓ−1)2

]

+

(

γ2 − 1

2r

)

α, (17b)

u′′ℓ =

(

µ2 − ω2

α2

)

γ2uℓ −
(

γ2 + 2ℓ+ 1
) u′ℓ
r

+ ℓ2
(

γ2 − 1
) uℓ
r2

+ (2ℓ+ 1)

(

µ2 +
ℓ(ℓ+ 1)

r2

)

γ2 (ru′ℓ + ℓuℓ)u
2
ℓr

2ℓ, (17c)

where uℓ := ψℓ/r
ℓ. The choice of appropriate boundary conditions must guarantee that the solutions are regular and

asymptotically flat. Demanding regularity at the origin, i.e.

uℓ(r = 0) = u0ℓ , (18a)

u′ℓ(r = 0) = 0, (18b)

α(r = 0) = 1, (18c)

γ(r = 0) = 1 (18d)

(see Sec. III for details), and a vanishing field amplitude at infinity, i.e. uℓ(r → ∞) = 0, one obtains a nonlinear
eigenvalue problem for the mode-frequency ω. Here u0ℓ is an arbitrary positive constant, and with no loss of generality
we have fixed the value of the lapse function at the origin to one. Notice that since the system of equations is
invariant under the transformation (α, ω) 7→ λ(α, ω), with some positive arbitrary constant λ, one can always rescale
the value of the lapse function at the end of the numerical integration in such a way that α(r → ∞) = 1, providing an
asymptotic flat coordinate system at infinity. We always perform such a rescaling when reporting our results below.
A word about our numerical algorithm is on order here. The integration of the system is performed using a shooting

algorithm to find the frequencies ω. Notice that, as mentioned above, we have rescaled the field as uℓ := ψℓ/r
ℓ, and

we solve for uℓ instead of ψℓ. The reason for this is that, for ℓ > 1, one finds that ψℓ and its first ℓ − 1 derivatives
vanish at the origin, which results in a numerically ill behaved set of boundary conditions. On the other hand, uℓ
has a constant value at the origin and only its first derivative vanishes, which results in a numerically well behaved
system of equations plus boundary conditions.
To find the solution one then integrates the system of Eqs. (17) outwards from the origin, with initial conditions

given by Eqs. (18), and searches for the values of the frequency that match the required asymptotic behavior of the
field (the solution should decay exponentially), until the shooting parameter converges to the desired accuracy. Notice
that this process is somewhat delicate as for arbitrary ω there is always a solution that grows exponentially, and the
shooting parameter must be precise enough to eliminate the growing solution. In practice we start with the outer
boundary fairly close in, find a good initial guess for ω, and then slowly move the boundary outward, adjusting the
value of ω to high numerical precision as we do so. We have in fact constructed two independent codes, with a fourth
order and a fifth order Runge-Kutta numerical integration, and we have checked that the solutions of both codes
converge with numerical resolution as expected, and that these solutions match.
For simplicity, in all our solutions we take the mass parameter µ = 1, although the solutions can be rescaled to an

arbitrary value of µ using the invariance of the equation system under the transformation

µ 7→ λµ, ω 7→ λω, r 7→ λ−1r, uℓ 7→ λℓuℓ, (19)

with the metric coefficients α and γ unchanged.
We characterize the total mass of an ℓ-boson star in terms of the asymptotic value of the Misner-Sharp mass function,

which is approximated by evaluating the metric coefficient γ(r) at the last grid point rmax of the computational domain,
such that

M ≈ rmax

2

[

1− 1

γ2(rmax)

]

. (20)

Although ℓ-boson stars extend to infinity and do not posses a surface at a finite radius like usual fluid stars, one can
associate to them an effective radius R(99%) defined as the areal radius of the object which contains 99% of the total
mass.
For a given angular momentum number ℓ, the equilibrium configurations are labeled by a continuous parameter

representing the field amplitude, i.e. the constant u0ℓ in Eq. (18), and a discrete number n that labels the solutions



7

0 3 6 9 12 15 18
0

0.021

0.042

0.063
ψ

1

0 3 6 9 12 15 18
r

0

0.001

0.002

ρ

0 3 6 9 12 15 18

0.969

1.02

1.071

1.122

1.173

γ

0 3 6 9 12 15 18
r

0.765

0.816

0.867

0.918

0.969

α

FIG. 2: Self-gravitating ℓ-boson star corresponding to point B in Fig. 1. Left panel: wave-function ψ1(r), and energy density

ρ(r) = (2ℓ + 1)ρ(ℓ)(r)/(8π), as functions of the radial coordinate. Right panel: the metric coefficients γ(r) and α(r), also as a
function of the radial coordinate. Notice that even though the wave-function vanishes at the origin, the energy density takes a
value different from zero at that point. This is a characteristic of the ℓ = 1 configurations. See Fig. 3 for energy density profiles
in the cases of ℓ = 0, 1 and 2. The regularity of these objects at the origin in evident in the profiles for the metric coefficients.

Configuration M R(99%) ω M/R(99%)

A (ℓ = 0) 0.63 7.89 0.854 0.08

B (ℓ = 1) 1.18 12.75 0.836 0.09

C (ℓ = 2) 1.72 15.35 0.832 0.11

D (ℓ = 3) 2.25 17.22 0.820 0.13

E (ℓ = 4) 2.78 19.80 0.819 0.14

TABLE I: Main characteristics of some ℓ-boson stars with different angular momentum number, reported in Planck units. The
labels A, B, C, D and E make reference to those in Fig. 1. Notice that the objects with a non-trivial angular momentum
number are more compact than standard boson stars with ℓ = 0.

to the eigenvalue problem. In this paper we restrict our attention to ground state configurations only, n = 1,
corresponding to the solutions with the lowest possible value of the frequency ω for a given angular momentum
number and field amplitude.
Each of these configurations have an associated frequency ω, a total mass M , and an effective radius R(99%). In

Fig. 1 we show, for the equilibrium configurations with ℓ = 0, 1, 2, 3, 4, a plot for the total mass as a function of the
effective radius (left panel) and frequency (right panel), respectively. Notice that the mass increases monotonically
with the effective radius up to a maximum value, and then decreases, in analogy with what is known for standard
ℓ = 0 boson stars. The configurations that correspond to this maximum value of the mass for the different values of
ℓ have been labeled as A, B, C, D, and E in the figure. The main characteristics of those configurations are shown
in Table I. Notice also that the compactness of these objects, defined as the ratio of the total mass to the effective
radius, grows with the angular momentum number, at least for the first five possible values of ℓ considered in this
paper. The relation of the mass with the frequency resembles some of the characteristics of rotating boson stars.
Notice that since the centrifugal term decreases with increasing areal radius, the global characteristics of these objects
approach those of standard bosons stars when they grow in size, the differences being only close to the center of the
configuration.
A representative ℓ-boson star configuration appears in Fig. 2, where we show, for the configuration B of Fig. 1, the

profile of the wave-function ψ1(r), introduced in Eq. (6), the energy density ρ(r) = (2ℓ+1)ρ(ℓ)(r)/(8π), where ρ(ℓ) was
given in Eq. (5a), and the metric coefficients γ(r) and α(r) of Eq. (3), as functions of the areal radius. Notice that,
contrary to what happens for the standard ℓ = 0 boson stars and perfect fluid configurations, the energy density at
the origin does not take a maximum value that decreases monotonically to zero when the angular momentum number
is non-trivial. This is a consequence of the regularity conditions discussed in Sec. III. In particular, the energy density
takes a local minimum at the origin for the configurations with ℓ = 1, and vanishes if ℓ > 1. See Fig. 3 for details.
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FIG. 3: Left panel: Profile of the energy density ρ(r) = (2ℓ + 1)ρ(ℓ)(r)/(8π) for the configurations A, B, and C in Fig. 1,
respectively. Notice that the vertical scale changes between the plots. It is interesting to emphasize that ρ(0) 6= 0 if ℓ = 0 or
1, but ρ(0) = 0 if ℓ > 1. Only if ℓ = 0 the energy density takes its maximum value at the origin. Right panel: Same profiles
as in left panel, but multiplied by the square of the areal radius. Even if the amplitude of the energy density decreases as the
angular momentum number increases, the configurations become more extended, and then the combination ρr2 grows, leading
to more massive objects; see Table I for details.

V. DISCUSSION AND CONCLUSIONS

We have introduced new solutions to the static EKG system of equations that describe regular self-gravitating
objects of finite mass. These configurations incorporate some of the effects of angular momentum while keeping the
spherical symmetry of the spacetime metric, generalizing standard non-rotating boson stars. The technique requires
an arbitrary odd number N of massive, complex, non-interacting scalar fields with an internal U(N) symmetry, and
are labeled by an angular momentum number, ℓ = (N − 1)/2, and the usual field amplitude and excitation number.
This motivates the name ℓ-boson star. In this paper we have restricted our attention to ground state configurations
only, although this can be easily generalized to the case of excited states.
We have shown that these objects possess similar properties to those of standard N = 1, ℓ = 0, boson stars.

Specifically, for a given angular momentum number, the equilibrium configurations exhibit a maximum value of the
mass, and this maximum grows as ℓ increases, leading to more compact objects. For the case of ℓ = 0, it is well known
that the maximum mass configuration divides the stable and unstable branches. We have done some preliminary
numerical evolutions for the case with ℓ = 1 and have found that the same appears to be true: for a given mass below
the maximum, configurations with a large effective radius and higher frequencies (those to the right of the maximum in
both panels of Fig. 1) remain stable when perturbed, while those with smaller effective radius and smaller frequencies
(to the left of the maximum in Fig. 1) either collapse rapidly to a black hole, or oscillate with a very long period
around a less compact state (depending on the precise way in which they are perturbed). We will report on the results
of these simulations and those for ℓ > 1 elsewhere.
Even if in this paper we restricted our attention to the ground state n = 1 and only one single value of ℓ at a

time in the configurations, the system of Eqs. (7) can easily be generalized to the case when several different modes
(n, ℓ) are present simultaneously. This can be achieved by summing over all the excited states in the right hand side
of Eqs. (7a) and (7b), similarly to the multi-state configurations constructed in [27, 28] for ℓ = m = 0. Under the
classical approach that we assume in this paper, this requires the inclusion of more fields, making it possible to use
not only odd, but also even values of N , and to obtain more general density profiles than those reported here. We
leave a more detailed analysis for a companion paper.
The main implication of this work is that the solution space of spherically symmetric, static boson stars is much

larger and has a much richer structure when a collection of scalar fields is considered instead of a single complex scalar
field that necessarily requires of the harmonic ℓ = m = 0. An alternative interpretation for the collection of scalar
fields considered here, and potential applications for dark matter observations, will be explored in another paper.
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Appendix A: Stress energy-momentum tensor for the collection of scalar fields given in Eq. (2)

The purpose of this appendix is to provide a proof for the statement regarding the fact that the stress energy-
momentum tensor associated with a collection of scalar fields of the form in Eq. (2) is spherically symmetric. For an
alternative proof based on methods from quantum mechanics, see the Appendix in Ref. [23].
The proof here is based directly on the well-known identity

ℓ
∑

m=−ℓ

|Y ℓm(ϑ, ϕ)|2 =
2ℓ+ 1

4π
, (A1)

which upon differentiation and taking into account that (Y ℓm)∗ = Y ℓ−m, yields

ℓ
∑

m=−ℓ

Y ℓm(ϑ, ϕ)∗∇̂AY
ℓm(ϑ, ϕ) = 0. (A2)

Here and in the following, ∇̂A and ĝAB refer to the covariant derivative and standard metric, respectively, on the unit
two-sphere. Taking a further derivative gives

ℓ
∑

m=−ℓ

(∇̂AY
ℓm)∗(∇̂BY

ℓm) = −
ℓ

∑

m=−ℓ

(Y ℓm)∗∇̂A∇̂BY
ℓm. (A3)

Since ∇̂A∇̂AY
ℓm = −ℓ(ℓ+ 1)Y ℓm, the trace of this equation together with Eq. (A1) provide the following identity:

ℓ
∑

m=−ℓ

(∇̂AY ℓm)∗(∇̂AY
ℓm) =

ℓ(ℓ+ 1)(2ℓ+ 1)

4π
. (A4)

On the other hand, taking the divergence on both sides of Eq. (A3), and using Eq. (A2), we obtain

ℓ
∑

m=−ℓ

(∇̂AY ℓm)∗∇̂A∇̂BY
ℓm = 0. (A5)

The previous formula implies that the symmetric trace-free tensor field on the two-sphere

τAB :=

ℓ
∑

m=−ℓ

[

(∇̂AY
ℓm)∗(∇̂BY

ℓm)

−1

2
ĝAB(∇̂CY ℓm)∗(∇̂CY

ℓm)

]

(A6)

is divergence-free. However, all symmetric, trace- and divergence-free tensor fields on the two-sphere are trivial (see,
for instance Lemma 1 in the Appendix of Ref. [29]), such that τAB = 0. This implies

ℓ
∑

m=−ℓ

(∇̂AY
ℓm)∗(∇̂BY

ℓm) =
ℓ(ℓ+ 1)(2ℓ+ 1)

8π
ĝAB. (A7)
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Based on the identities (A1–A7), one easily finds the following expressions for the components of the stress energy-
momentum tensor given in Eq. (1):

Tab =
2ℓ+ 1

4π

[

(∂aφℓ)
∗(∂bφℓ)−

1

2
g̃ab

(

g̃cd(∂cφℓ)
∗(∂dφℓ)

+
ℓ(ℓ+ 1)

r2
|φℓ|2 + µ2|φℓ|2

)]

,

TaB = 0, (A8)

TAB = −2ℓ+ 1

8π
r2

[

g̃cd(∂cφℓ)
∗(∂dφℓ) + µ2|φℓ|2

]

ĝAB,

where here a, b = t, r, A,B = ϑ, ϕ and g̃ab refers to the components of the time–radial part −α2dt2 + γ2dr2 of the
metric.
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