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A B S T R A C T

Firefighters represent one of the riskiest occupations, yet due to the logistic reasons, the respective exposure
assessment is one of the most challenging. Thus, this work assessed the impact of firefighting activities on levels
of urinary monohydroxyl-polycyclic aromatic hydrocarbons (OHPAHs; 1-hydroxynaphthalene, 1-hydro-
xyacenaphthene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene, 3-hydroxybenzo(a)pyrene) and
genotoxic/oxidative-effect biomarkers (basal DNA and oxidative DNA damage) of firefighters from eight fire-
houses. Cardiac frequency, blood pressure and arterial oxygen saturation were also monitored. OHPAHs were
determined by liquid-chromatography with fluorescence detection, while genotoxic/oxidative-effect biomarkers
were assessed by the comet assay. Concentrations of total OHPAHs were up to 340% higher (p≤ 0.05) in (non-
smoking and smoking) exposed workers than in control subjects (non-smoking and non-exposed to combat
activities); the highest increments were observed for 1-hydroxynaphthalene and 1-hydroxyacenaphthene
(82–88% of ∑OHPAHs), and for 2-hydroxyfluorene (5–15%). Levels of biomarker for oxidative stress were in-
creased in non-smoking exposed workers than in control group (316%; p≤ 0.001); inconclusive results were
found for DNA damage. Positive correlations were found between the cardiac frequency, ∑OHPAHs and the
oxidative DNA damage of non-smoking (non-exposed and exposed) firefighters. Evidences were raised regarding
the simultaneous use of these biomarkers for the surveillance of firefighters’ health and to better estimate the
potential short-term health risks.

1. Introduction

Climate changes and global warming have substantially contributed
to increase forest fire episodes, with longer fire season and more potent
fires (de Rigo et al., 2017; San-Miguel-Ayanz et al., 2018). Forest fire
emissions release large amounts of several hazardous gaseous and
particulate pollutants: particulate matter, carbon monoxide, nitrogen
dioxide, and volatile organic compounds (including polycyclic aromatic
hydrocarbons (PAHs), acetaldehyde, formaldehyde, benzene, toluene,
phenol, xylene, acrolein, and ethylbenzene) (Abrard et al., 2019;
Adame et al., 2018; de la Barrera et al., 2018; McClure and Jaffe, 2018;
Wentworth et al., 2018; Oliveira et al., 2015, 2017a; Oliveira et al.,
2017b; Fent et al., 2013, 2014; Fent et al., 2017, 2015; Park et al., 2015;

Keir et al., 2017; Hsu et al., 2011; Pleil et al., 2014). Some of these
compounds are classified by the International Agency for Research on
Cancer (IARC) as potential/possible carcinogens to humans. PAHs are a
large group of ubiquitous compounds formed during combustion pro-
cesses that are included in the US Environment Protection Agency list of
priority pollutants (US Environmental Protection Agency, 2005).
Emissions from forest fires are an important source of PAHs as well as
the burning of fossil fuels, petroleum, coal tar, gas, and wood (Oliveira
et al., 2019). Some PAHs are referred as persistent organic pollutants
and endocrine disrupting chemicals (World Health Organization, 2013)
with benzo(a)pyrene being classified as carcinogen (group 1) by IARC
(2010a); whereas other 9 congeners (naphthalene, benz(a)anthracene,
benzo(b)fluoranthene, benzo(j)fluoranthene, benzo(k)fluoranthene,
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chrysene, dibenzo(a,l)pyrene and dibenz(a,h)anthracene and indeno
(1,2,3-cd)pyrene) are included in group 2A/2B (i.e. probable/possible
carcinogens) (IARC (2010a); IARC, 2002). People are environmentally
and/or occupationally exposed to PAHs through inhalation of polluted
air, dermal contact, and ingestion of contaminated food (Oliveira et al.,
2019). In the human body, PAHs are distributed by blood root to sev-
eral tissues, being primarily metabolized in the liver by cytochrome
P450 enzymes via different oxidative mechanisms to produce a complex
mixture of hydroxylated metabolites that are eliminated through the
urine, milk, and feces (Oliveira et al., 2019). Exposure to PAHs can
cause formation of active carcinogenic intermediary molecules re-
sponsible for the formation of DNA adducts, resulting in mutations,
alteration of gene expression profiles, and tumorigenesis (Alhamdow
et al., 2017; Barth et al., 2017; Kamal et al., 2015; Moorthy et al., 2015;
White et al., 2016; Bocchi et al., 2017; Franken et al., 2017; Jasso-
Pineda et al., 2015). PAHs are also known to cause reproductive, de-
velopmental, hemato-, neuro-, and immune-toxicities in humans
(Agency for Toxic Substances and Disease Registry, 1995). Therefore,
fire emissions represent a public health problem and may cause serious
risks not only for the general population but also for occupationally
exposed workers (Adetona et al., 2016; Alman et al., 2016; Analitis
et al., 2012; Black et al., 2017; Reid et al., 2016; Waldman et al., 2016;
Le et al., 2014; Johnston et al., 2012; Cascio, 2018; Youssouf et al.,
2014; Semmens et al., 2016; Gianniou et al., 2016). Analitis and cow-
orkers (Analitis et al., 2012) reported an increase of 5% in the daily
total number of deaths, in a densely populated area, associated with
exposure to forest fire emissions, and 6 and 15% increase in the number
of cardiovascular and respiratory deaths, respectively.

Firefighters’ occupational exposure is classified as possible carci-
nogen to humans (IARC, 2010b; NIOSH, 2007). During firefighters’
work tasks, exposure to hazardous pollutants may induce the genera-
tion of reactive species and cause the activation of oxidative pathways
that may culminate in pulmonary and cardiovascular inflammatory
processes (Alhamdow et al., 2017; Moorthy et al., 2015; Gianniou et al.,
2016). The regular and active participation in fire combat has been
linked with excess morbidity and mortality among firefighters, being
the cardio-respiratory diseases the leading causes of death (Gianniou
et al., 2016; Gaughan et al., 2014a, b; Soteriades et al., 2011). Some
authors have also associated firefighters’ occupational exposure with a
possibility of increased risk to develop site-specific cancers, such as
leukemia, esophageal, lung, kidney and bladder, skin melanoma, tes-
ticular, and urothelial cancer (LeMasters et al., 2006; Daniels et al.,
2014; Glass et al., 2016; Golka and Weistenhöfer, 2008; Pukkala et al.,
2014; Stec et al., 2018; Youakim, 2006). Furthermore, smoking workers
are at a higher risk of suffering from the potential cumulative health
risks associated with a regular exposure to fire emissions and tobacco
consumption (Fernando et al., 2016; Oliveira et al., 2017c).

Monitoring of firefighters’ exposure during fire combat is a very
complicated task due to unpredictability and challenges of the re-
spective environment (fire locations, atmospheric conditions, dan-
gerous and rapidly changing situations). Thus, biomonitoring re-
presents a crucial tool to overcome some of the logistical difficulties.
Biomonitoring data reflect the individual total internal dose regardless
the exposure source and the route. The combination of biomarkers of
exposure with (bio)markers of effects and/or susceptibility represents a
valuable tool for assessing the potential health effects in the exposed
subjects (Alhamdow et al., 2017; Barth et al., 2017; Dominguez-Ortega
et al., 2016; Zhou et al., 2018; Oliveira et al., 2017d). Some studies
have been emerging regarding characterization of firefighters’ occu-
pational exposure via biomonitoring assays, with emphasis on active
firefighters participation in prescribed burns and/or wildland fires
combat (Fent et al., 2014; Park et al., 2015; Keir et al., 2017; Gaughan
et al., 2014a, b; Fernando et al., 2016; Oliveira et al., 2017c; Edelman
et al., 2003; Abreu et al., 2017; Adetona et al., 2017; Oliveira et al.,
2016; Caux et al., 2002; Wingfors et al., 2018; Andersen et al., 2018a).
Available data come mostly from studies conducted in USA and Canada;

however, the obtained findings may not be directly applicable to Eur-
opean subjects due to the different meteorological conditions, types of
vegetation, and firefighting practices that affect composition of smoke
and consequently human exposure. Only five studies were conducted in
European countries (Oliveira et al., 2017c; Abreu et al., 2017; Oliveira
et al., 2016; Wingfors et al., 2018; Abreu et al., 2017; Adetona et al.,
2017; Oliveira et al., 2016; Caux et al., 2002; Wingfors et al., 2018;
Andersen et al., 2018a) with only one considering the simultaneous
assessment of biomarkers of exposure and of effect (Andersen et al.,
2018a). Thus, this work aimed to contribute to fill this research gap and
assessed the occupational exposure of (non-smoking and smoking)
firefighters during fire combat activities by biomarkers of exposure and
effect. For that purpose, six urinary biomarkers of exposure to PAHs [1-
hydroxynaphthalene (1OHNaph), 1-hydroxyacenaphtene (1OHAce), 2-
hydroxyfluorene (2OHFlu), 1-hydroxyphenanthrene (1OHPhe), 1-hy-
droxypyrene (1OHPy), and 3-hydroxybenzo(a)pyrene (3OHB(a)P)] and
two genotoxicity biomarkers (basal DNA damage and oxidative DNA
damage) were determined in firefighters from eight different stations.
Cardiorespiratory parameters were also monitored and correlated with
the levels of the selected biomarkers.

2. Materials and methods

2.1. Study location and population characterization

The present study was conducted in the district of Bragança (north
of Portugal). During the last five years, this district registered a total of
2 513 fire occurrences, with 43% being forest fires; an area of 60 301 ha
was burnt (Instituto da Conservação da Natureza e das Florestas, 2017).
Subjects that voluntary agreed to participate in this study were fire-
fighters serving at eight units of professional fire stations from the
district of Bragança. All subjects fulfilled a structured questionnaire that
was previously adapted from a validated form (World Health
Organization, 2002). Relevant personal (age, height, general medical
history, existence of diagnosed chronic disease, health status and
weight) and professional (employment duration) information was col-
lected. Firefighters perform different tasks at the fire departments but
not all subjects were directly involved in firefighting. Therefore, ex-
posure duration in active forest fire combat in the last 48 h and the use
of personal protective equipment, as well as information on other re-
levant PAH exposure sources, namely personal smoking habits, recent
environmental exposure to tobacco smoke, and the most frequently
consumed meals within the last week, were also retrieved from the
questionnaire. Only firefighters with a recent diet without the con-
sumption of grilled, barbecued, and smoked foods and with no history
of chronic diseases were selected and considered in this work. A total of
171 firefighters were included in this study and signed an informed
consent form that was previously reviewed and approved by the Ethic
Committee of University of Porto. Based on the data collected from the
questionnaires, firefighters were organized into three different groups
according to their active participation in firefighting activities (within
the 48 h before sample collection) and their smoking habits: (i) non-
smoking and non-exposed subjects (Control group - firefighters that
stayed at the fire stations and did not participate in fire combat), (ii)
non-smoking and exposed subjects (i.e. non-smoking individuals who
were directly involved in firefighting activities; Group A), and (iii)
smoking and exposed subjects (i.e. smoking firefighters exposed to fire
emissions; Group B).

2.2. Firefighters’ biomonitoring

Subjects allowed monitoring of selected cardio-respiratory para-
meters, and sampling of spot urine and venous blood samples.
Procedures and sampling (urine and blood) were performed following
the common health sampling hygiene practices with the help of quali-
fied personnel at the end of the firefighters’ 8 h work-shift. Arterial
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oxygen saturation was monitored with an Oxy-100 pulse oximeter
(Gima, Italy), and the blood (diastolic and systolic) pressure and cardiac
frequency were determined with a monitor for upper arm (Geratherm
Medical AG Desktop, Geschwenda, Germany). Urine samples were
collected by each firefighter in a sterilized polycarbonate container.
Blood samples were collected by venipuncture from an antecubital vein
in ethylenediamine tetra-acetic acid tubes. Blood samples were sus-
pended in an equal amount of 1:4 (v/v) mixture of dimethyl sulfoxide
and RPMI 1640 medium (in 200 μl aliquots) for cryopreservation. After
collection, urine and blood samples were immediately coded. All sam-
ples were adequately transported (within 1–2 h) and immediately
frozen at −20 and −80 °C, respectively.

2.3. Urinary OH-PAHs extraction and chromatographic analysis

Solid-phase extraction of urinary OH-PAHs and the chromato-
graphic analysis were done according to previous works (Oliveira et al.,
2017c, 2016). Briefly, 10mL of urine previously buffered with acetate
buffer (pH 5.0) were incubated during 2 h at 37.0 °C with 80 μl of β-
glucuronidase/arylsulfatase from Helix pomatia (EC 3.2.1.31/EC3.1.6.1;
5.5/2.6 U/ml; Roche Diagnostics, Indianapolis, USA). PAH metabolites
were extracted from the hydrolyzed urine samples using C18 cartridges
(Sep-Pak® Light Plus C18, Waters, Sigma-Aldrich, Steinheim, Germany)
and 20.0 mL of methanol/ethyl acetate (10:90; v/v). After evaporation
till dryness at room temperature ((Büchi R200 rotavapor and a Büchi
Vac V-500 pump), extracts were redissolved in 500 μl of methanol be-
fore chromatographic analysis. OHPAHs were analyzed with a Shi-
madzu LC system (Shimadzu Corporation, Kyoto, Japan) equipped with
a fluorescence detector in a C18 column (CC 150/4 Nucleosil 100–5 C18
PAH, 150× 4.0mm; 5 μm particle size; Macherey–Nagel, Duren, Ger-
many). The optimal chromatographic characteristics and further details
are presented in Table 1S (Supplementary Material).

Calibration curves (calibration points: n ≥6) of 2OHFlu, 1OHPhe,
1OHPy, and 3OHB(a)P were prepared with mixed standards in me-
thanol, whereas a matrix-matched calibration curve was used for
1OHNaph and 1OHAce. The detection (LOD) and quantification (LOQ)
limits of PAH metabolites were determined based on 3 and 10 times the
standard deviation of the analytical response divided by the slope of the
calibration curve for each analyte, respectively (Miller and Miller,
2000). Limits of detection varied between 0.84 ng/l urine (for 2OHFlu)
and 0.19 μg/L urine (for 1OHNaph and/or 1OHAce), with limits of
quantification ranging between 2.8 ng/l urine and 0.65 μg/L urine, re-
spectively. Blank and standards were daily prepared and analyzed to
check instrument performance. The precision of the methodology was
evaluated through relative standard deviation (RSD) with intra- and
inter-day assays during 6 consecutive days. RSD values varied between
1.3% for 2OHFlu and 6.4% for 1OHPhe (intra-precision assays) and
ranged from 1.3% to 8.1% for 1OHNaph+1OHAce, and 1OHPy (inter-
precision assays). Validation of the methodology was achieved with
recovery assays performed on a pooled urine sample. Recovery ex-
periments resulted in values between 70.0% and 117%.

Urinary levels of creatinine were determined by the Jaff colori-
metric method according to the methodology proposed by
Kanagasabapathy and Kumari (2000).

All determinations were performed in triplicate.

2.4. Alkaline comet assay

Before the assay, the frozen blood samples were rapidly thawed at
room temperature and washed twice (centrifugation at 223 g for
10min) with Dulbecco’s Modified Eagle Medium supplemented with
2% fetal bovine serum. The alkaline comet assay was performed as
described by Singh et al. (1988) with minor modifications (Abreu et al.,
2017). A medium-throughput version of the comet assay 12-Gel Comet
Assay Unit ™ (Severn Biotech Ltd) was used. Briefly, two mini-gels were
prepared for each subject in three slides (2☓ 3 slides); one slide to

assess basal DNA damage and two slides to evaluate oxidized purines.
Electrophoresis was carried out for 20min at approximately 1.2 V/cm.
The semi-automated image analysis system Comet Assay IV (Perceptive
Instruments, UK) was used for image capture and analysis. A total of
150 cells were scored for each subject. The DNA damage was measured
as %TDNA (percentage of DNA in the comet tail).

2.5. Enzyme-modified alkaline comet assay

The comet assay enzyme version was performed as described by
Azqueta and Collins (2013). formamidopyrimidine DNA glycosylase
(FPG) was the enzyme selected to measure the amount of DNA oxidized
purines. Briefly, after lysis, slides for enzyme treatment were washed
three times with buffer F (0.1M KCl, 0.5 mM Na2EDTA, 40mM HEPES,
0.2 mg/ml BSA, pH 8). Gels were incubated for 30min (37 °C). Elec-
trophoresis was performed as previously described for alkaline comet
assay. Net FPG-sensitive sites were calculated by subtracting the
%TDNA values of control gels and enzyme-treated gels.

2.6. Statistical analysis

Data were treated with SPSS (IBM Statistics 20) and Statistica (v. 7,
StatSoft Inc., USA) software. Concentrations of OHPAHs were presented
in μg/L of urine and normalized with urinary creatinine levels.
Whenever the concentration of a OHPAH was below its LOD, the value
was substituted with LOD/√2 (Hornung and Reed, 1990). Data were
compared through the Mann-Whitney U test, since normal distribution
was not verified by Shapiro-Wilk´s test. Spearman correlation coeffi-
cients (r) were used to evaluate the possible relation between the
concentrations of individual and total OHPAHs and the dependency
between the levels of biomarkers of exposure with the biomarkers of
effect, and cardiovascular parameters. Statistical significance was de-
fined as p≤ 0.05.

3. Results and discussion

3.1. Subjects characterization

The biometric characteristics of the three groups of firefighters
considered in this study are presented in Table 1. The median age of the
study populations varied between 30–36 years. The firefighters re-
ported a long-term exposure to forest fire emissions, with medians
ranging between 11 (Group A) to 15 (Control group) years (Table 1).
Furthermore, 48 h prior to the sampling campaigns, exposed firefighters
(Group A and Group B) were directly involved in firefighting activities
for a median period of 3 consecutive hours.

Regarding cardio-respiratory parameters, firefighters showed a si-
milar profile regardless of the group. Overall, arterial oxygen saturation
values (97–99%) were within the acceptable range of 95–100% (Booth
et al., 2009). The cardiac frequency of firefighters (68–82 heart beats/
min) were also within the recommended range of values of 60–100
heart beats/min (Booth et al., 2009); less than 10% of firefighters had
cardiac frequency exceeding 100 heart beats/min (Table 1). Diastolic
and systolic blood pressure of the study populations varied between
81–83mmHg and 130–135mmHg (Table 1), being considered as
normal blood pressure levels (≤90mmHg and ≤140mmHg, respec-
tively). However, 21% (Group A) to 33% (Control group) and 14%
(Group A) to 40% (Group B) of firefighters had elevated diastolic and
systolic blood pressure, respectively; 12% of the subjects presented
values of both diastolic and systolic blood pressure higher than the
accepted normal levels. Elevated blood pressure is a major risk factor
for the development and/or aggravation of cardiovascular diseases
(Kales et al., 2009). Positive and moderate to strong Spearman corre-
lation coefficients (0.366 < r < 0.939; p≤ 0.001) were found be-
tween the three cardiovascular parameters determined for the majority
of firefighters, which indicated dependency between individual cardiac
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frequency and blood pressure (diastolic and systolic).

3.2. Biomarkers of exposure

Urinary biomarkers of exposure, namely 1OHNaph and 1OHAce,
were detected in all firefighters while 1OHPhe, 2OHFlu and 1OHPy
were detected in more than 90% of the subjects. 3OHB(a)P was not
detected, thus it was not included in the further results analysis. These
findings are in agreement with previous works as absence of this bio-
marker in the urine of firefighters has been reported (Oliveira et al.,
2017c, d; Oliveira et al., 2016; Wingfors et al., 2018). Regarding other
occupationally exposed workers, 3OHB(a)P has been detected with very
low rates which can be attributed to the complex metabolism of organic
compounds with high molecular weights (Alhamdow et al., 2017;
Fernando et al., 2016; Yamano et al., 2014; Díaz-Merchán et al., 2013;
Barbeau et al., 2014, 2015; Lutier et al., 2016a). Furthermore, ac-
cording to the existent literature, 3OHB(a)P is predominantly elimi-
nated through the feces rather than urine (Li et al., 2012; Marie et al.,
2010).

Individual and total levels of urinary PAH metabolites (∑OHPAHs)
are summarized in Table 2. Since creatinine is eliminated from the
human body at a constant rate, levels of PAH metabolites were nor-
malized with creatinine concentrations in order to compensate for
fluctuations caused by differences in diuresis and to minimize the in-
fluence of individual parameters, such as daily water intake, internal
body temperature, and physical exercise. Moreover, creatinine

concentrations below 0.3 g/l indicate much diluted urine while values
higher than 3 g/l may suggest the existence of some kidney disease
(World Health Organization, 1996). Overall, creatinine levels in the
selected firefighters ranged between 0.70–2.90 g/L, being within the
range of values proposed by the World Health Organization (1996). The
inter-comparison of ∑OHPAH concentrations among the three different
groups was (by decreasing order): Group B (6.96 μmol/mol creati-
nine)>Group A (1.68 μmol/mol creatinine)>Control group
(1.59 μmol/mol creatinine); significant differences were observed
among the three groups (p≤ 0.004) showing the impact of smoking
and fire emissions exposure on ∑OHPAH levels. Similar profiles were
obtained for the urinary levels of 1OHNaph+1OHAce (5.61 versus 1.54
versus 1.40 μmol/mol creatinine, respectively for Group B, Group A and
the Control group; p≤ 0.010) and 2OHFlu (0.62 versus 0.09 versus
0.06 μmol/mol creatinine; p≤ 0.025). Levels of urinary 1OHPhe in
non-smoking exposed firefighters (Group A) were significantly higher
than in control subjects (0.06 versus 0.04 μmol/mol creatinine;
p=0.005; Table 2); no significant differences were found between the
urinary levels of 1OHPhe in firefighters from Group B with the other
individuals, suggesting that this biomarker may not be appropriate or
sufficiently sensitive for assessment of cumulative exposure to tobacco
smoke and fire emissions. Oliveira et al. (2016) also suggested that
urinary 1OHPhe excretion was the less affected PAH metabolite in
firefighters involved in combat activities. Median concentrations of
1OHPy in the urine of all firefighters were similar (0.03-0.04 μmol/mol
creatinine; p > 0.05). Urinary excretion rates of 1OHPhe and 1OHPy

Table 1
Biometric data and characterization of study populations: non-smoking and non-exposed (Control group), non-smoking exposed (Group A), and smoking exposed
(Group B) firefighters.

Control group Group A Group B

Study population (n) 93 48 30
Age (median; range; years) 36 (22–55) 30 (21–52) 32 (26–50)
Occupational exposure to fires
Long-term exposure: years worked as firefighter (median; range; years) 15 (2–30) 11 (2–30) 12 (7–25)
< 10 years (%) 29 40 20
10–20 years (%) 52 47 60
>20 years (%) 19 13 20
Recent exposure (hoursa) 0 3 (2–12) 3 (2–8)
Recent exposure to tobacco smoke (median; rangeb) n.a n.a 20 (10–25)
Cardio-respiratory parameters
Arterial oxygen saturation (median; range; %) 97 (95–99) 98 (88–99) 99 (97–99)
Cardiac frequency (median; range; heart beats/min) 73 (56–105) 68 (54–94) 82 (54–112)
Diastolic blood pressure (median; range; mmHg) 83 (67–122) 81 (49–93) 81 (67–96)
Systolic blood pressure (median; range; mmHg) 134 (108–178) 130 (119–148) 135 (116–156)
Respiratory pathologies including allergies
Yes (n; %) 10 20 10
No (n; %) 90 80 90

n.a. – not applicable.
a number of hours directly involved in firefighting activities within the 48 h before sample collection.
b number of cigarettes smoked per day during the sampling period.

Table 2
Descriptive statistics of PAH biomarkers of exposure (median, percentile 25–75, and range; μmol/mol creatinine) in non-smoking and non-exposed (Control group),
non-smoking exposed (Group A), and smoking exposed (Group B) firefighters.

PAH biomarker* Control Group Group A Group B

Median (P25–P75) Range Median (P25–P75) Range Median (P25–P75) Range
(μmol/mol creatinine)

1OHNaph+1OHAce 1.40 (0.60–1.82)a 0.03–4.14 1.54 (0.85–3.20)b 0.60–121 5.61 (3.61–8.28)c 1.18–47.8
2OHFlu 0.06 (0.04–0.12)a 5.67× 10−4–0.48 0.09 (0.05–0.21)b 5.67×10−4–0.47 0.62 (0.41–1.08) c 0.29–1.61
1OHPhe 0.04 (0.02–0.10)a 6.71× 10−3–0.21 0.06 (0.04–0.08)b 0.02–0.29 0.04 (0.03–0.09)ab 0.02–0.19
1OHPy 0.03 (0.02–0.04) a 1.84× 10−3–0.23 0.04 (0.02–0.07)a 1.84×10−3–0.19 0.04 (0.02–0.10)a 3.69× 10−3–0.85
∑OH-PAHs 1.59 (0.75–2.19)a 0.10–4.27 1.68 (1.09–3.39)b 0.82–121 6.96 (4.32–8.82)c 1.52–48.6

Different superscripts (a, b, c) correspond to statistically different distributions between each group of firefighters (p≤ 0.05).
* 1OHNaph+1OHAce: 1-hydroxynaphthalene and 1-hydroxyacenaphthene; 2OHFlu: 2-hydroxyfluorene; 1OHPhe: 1-hydroxyphenanthrene; 1OHPy: 1-hydro-

xypyrene; ∑OHPAHs – represents the sum of all individual PAH metabolites.
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may help to understand these findings since their median half-life time
(13.8 and 23.5 h, respectively) are much higher than the ones de-
termined for 1OHNaph (6.6 h) and 2OHFlu (8.4 h) (Li et al., 2016). The
American Conference of Governmental Industrial Hygienists proposed a
benchmark level of 0.5 μmol/mol creatinine of 1OHPy as evidence to
occupational exposure to PAHs (American Conference of Governmental
Industrial Hygienists, 2010); this limit was exceeded only in some
smoking and exposed subjects (Group B; Table 2). Some authors as-
sessed firefighters’ occupational exposure to ambient PM2.5-bound
PAHs at different fire stations and reported that compounds with 2–3
rings (including naphthalene, acenaphthene, fluorene, and phenan-
threne) represented more than 64% of total PAHs; compounds with
higher molecular weight (including pyrene) were less abundant in
firefighters’ breading air zone (Oliveira et al., 2017b, d; Wingfors et al.,
2018; Fent and Evans, 2011; Kirk and Logan, 2015). 1OHNaph
+1OHAce were by far the most abundant PAH biomarkers in the
characterized subjects (82–88% of ∑OHPAHs), being followed by
2OHFlu (5–15%); 1OHPhe (0.7–3.8%) and 1OHPy (0.5–2.1%) had very
low contributions to ∑OHPAHs (Fig. 1). Levels of OHPAH are strongly
related with the molecular weight of the un-metabolized congener
compounds, being the highest urinary concentrations associated with
the lower molecular weight compounds (Adetona et al., 2017; Li et al.,
2016).

Urinary levels without creatinine normalization of individual and
∑OHPAHs (in μg/L of urine) in firefighters are presented in Table 2S.
Concentrations of ∑OHPAHs were 6 and 316% higher in exposed non-
smoking (Group A) and smoking (Group B) firefighters, respectively, in

comparison with the control subjects (Table 2; p≤ 0.004). Other au-
thors also observed significantly increased concentrations of OHPAH in
the urine of post-shift firefighters when compared to non-exposed
subjects (Keir et al., 2017; Fernando et al., 2016; Oliveira et al., 2017c;
Adetona et al., 2017; Oliveira et al., 2016; Wingfors et al., 2018).
1OHNaph+1OHAce and 2OHFlu were the compounds with the highest
increments in non-smoking (Group A; 10 and 50%, respectively) and
smoking (Group B; 300 and 930%) exposed subjects comparatively with
Control group (Table 2). Exposure to fire emissions promoted a sig-
nificant increase (p≤ 0.05) in levels of 1OHNaph+1OHAce (1.54
versus 1.40 μmol/mol creatinine; p≤ 0.010), 2OHFlu (0.09 versus
0.06 μmol/mol creatinine; p≤ 0.025), and 1OHPhe (0.06 versus
0.04 μmol/mol creatinine; p≤ 0.05), and as a consequence in ∑OH-
PAHs, in subjects from Group A comparatively with control subjects
(Table 2). These findings are in line with the results reported by other
authors (Oliveira et al., 2017c; Edelman et al., 2003; Adetona et al.,
2017; Oliveira et al., 2016; Robinson et al., 2008; Laitinen et al., 2010).
Regarding exposed firefighters, levels of ∑OHPAHs were 314% higher
in smoking (Group B) than in non-smoking (Group A) subjects
(p≤ 0.001). Since both groups of exposed firefighters reported a si-
milar recent median exposure to fire emissions (3 consecutive hours;
Table 1), the differences found between the urinary levels of individual
and ∑OHPAHs may be attributed to the individual smoking habits
(Group B). Smoking contributed to increments of 260 and 590% in the
urinary concentrations of 1OHNaph+1OHAce and 2OHFlu, respec-
tively (Table 2). Variability in the urinary levels of PAH biomarkers of
exposure among the groups of firefighters is also affected by other
factors. It is known that elimination kinetics of PAH metabolites from
the human body vary from compound to compound and are strongly
dependent on the route of exposure and on the tasks performed by
workers (Li et al., 2012; Brzeznicki et al., 1997; Gendre et al., 2002,
2004; Lutier et al., 2016b).

Despite the similar distribution profile of PAH metabolites among
the three groups of firefighters (Fig. 1), the ratios between various
biomarkers of exposure differed (Table 3). For non-smoking exposed
firefighters (Group A), the ratio of (1OHNaph+1OHAce)/2OHFlu
(23%) was slightly increased while the other ratios were lower (6% for
1OHPhe/1OHPy to 50% for 2OHFlu/1OHPy) in comparison with the
Control group. These findings suggest higher impact and contribution
of fire emissions exposure on urinary levels of 1OHNaph+1OHAce,
1OHPhe and 1OHPy. Cumulative impact of recent exposure to fire
emissions and regular tobacco consumption resulted in a significant
reduction in 1OHNaph+1OHAce/2OHFlu (64–71%; p=0.005) and
significant increases in the other ratios (280 and 380% for 1OHNaph
+1OHAce/1OHPy to 470 and 1000% for 2OHFlu/1OHPy; p≤ 0.001),
except for the ratio 1OHPhe/1OHPy (Table 3). These results may in-
dicate the strong contribution of tobacco smoke to the urinary levels of
PAH biomarkers with augmentation of 1OHNaph+1OHAce, 2OHFlu
and 1OHPy levels. Previously, St. (Helen et al. (2012)) reported 1-, 2-,
and 3OHFlu as the PAH metabolites that exhibited the greatest differ-
ence between non-smoking and smoking individuals, being followed by

Fig. 1. Urinary levels (%) of PAH metabolites (1OHNaph+1OHAce: 1-hydro-
xynaphthalene and 1-hydroxyacenaphthene; 2OHFlu: 2-hydroxyfluorene;
1OHPhe: 1-hydroxyphenanthrene; 1OHPy: 1-hydroxypyrene) in the character-
ized groups: non-smoking and non-exposed (Control group), non-smoking ex-
posed (Group A), and smoking exposed (Group B) firefighters.

Table 3
Ratios between PAH urinary biomarkers of exposure in non-smoking and non-exposed (Control group), non-smoking exposed (Group A), and smoking exposed
(Group B) firefighters.

Ratio Control Group Group A Group B
Median (range) Median (range) Median (range)

(1OHNaph+1OHAce)/2OHFlu 15.5 (0.24–2566)a 19.1 (3.85–1089)ab 5.5 (3.71–71.4)c

(1OHNaph+1OHAce)/1OHPhe 25.7 (0.31–211)a 23.1 (2.44–2698)ab 116 (29.6–4621)c

(1OHNaph+1OHAce)/1OHPy 43.7 (0.49–1222)a 35.0 (5.37–6481)ab 168 (5.95–1172)c

2OHFlu/1OHPhe 2.1 (3.0× 10−3–7.33)a 1.8 (3.0×10−3–5.84)ab 10.8 (5.64–1032)c

2OHFlu/1OHPy 3.2 (0.01–11.4)a 1.6 (0.02–11.5)ab 18.2 (0.48–86.7)c

1OHPhe/1OHPy 1.6 (0.42–6.89)a 1.5 (0.45–22.7)a 1.8 (0.02–5.99)a

1OHNaph+1OHAce: 1-hydroxynaphthalene and 1-hydroxyacenaphthene; 2OHFlu: 2-hydroxyfluorene; 1OHPhe: 1-hydroxyphenanthrene; 1OHPy: 1-hydroxypyrene.
Superscripts (a, b, c) correspond to statistically different distributions between each group of firefighters (p≤ 0.05).
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2-naphthol and 1OHPy. However, (Oliveira et al. (2017c)) observed
that 1OHNap and 1OHAce exhibited more pronounced increments after
tobacco consumption while 2OHFlu was the most affected PAH meta-
bolite by fire combat activities. Determination of these ratios can be an
useful tool, but they may vary greatly according to the performed ac-
tivity and the existent emission sources (Barbeau et al., 2014).

Spearman correlation coefficients were determined among the ur-
inary levels of individual and ∑OHPAHs to estimate the relation among
compounds for each group of firefighters (Table 4). The obtained cor-
relations were all positive, and mostly moderate to strong
(0.220 < r < 0.978; p≤ 0.05) in Control individuals; only correlation
between 1OHNaph+1OHAce with 1OHPhe resulted in low associations
(r= 0.196). These findings point towards a common source of exposure
to PAHs. Correlations between urinary levels of 1OHNaph+1OHAce
with ∑OHPAHs were strong for firefighters from Group A (non-smoking
exposed; r= 0.982; p≤ 0.001); a similar conclusion was found for
1OHPy with 1OHPhe (r= 0.680; p≤ 0.001). Moderate correlations
were also obtained between the concentrations of 2OHFlu with 1OHPhe
(r= 0.327; p≤ 0.05) and with 1OHPy (r= 0.330; p≤ 0.05). How-
ever, some biomarkers of exposure were weakly correlated in subjects
from Group A, thus evidencing the exposure to other PAH sources
(Table 4). For smoking and exposed firefighters (Group B), the obtained
associations were moderate to strong (0.432 < r < 0.994; p≤ 0.05),
with exception of 1OHPy with ∑OHPAHs (r= 0.356; p > 0.05) and
1OHPy with 1OHNaph+1OHAce (r= 0.331; p > 0.05). Once again,
these findings suggest the existence of a major PAH exposure source in
individuals from Group B. Since these subjects were simultaneously
exposed to fire emissions and tobacco smoke, and based on the urinary
PAH ratios, it is assumed that a tobacco median consumption of 20
cigarettes per day exerted a more pronounced effect in the firefighters
from Group B than the respective exposure to fire emissions [3 (2–8) h].

3.3. Biomarkers of effect

Two early genotoxic/oxidative-effect biomarkers (basal DNA da-
mage and oxidative DNA damage) were used to estimate firefighters’
body response to occupational exposure at a cellular and molecular
level. The achieved results for both of these biomarkers in the three
characterized groups are presented in Fig. 2. Median values of the
oxidative stress biomarker (measured as % NET-FPG) was 316% and
112% higher in non-smoking exposed (Group A) and smoking exposed

(Group B) subjects than in Control group [2.7% (Group A) versus 0.64%
(Control group); p≤ 0.001 and 1.4% (Group B) versus 0.64% (Control
group); p > 0.05], respectively (Fig. 2a). Levels of oxidative stress
biomarker were significantly lower in smoking exposed firefighters
(Group B) than in non-smoking exposed subjects (Group A). It is known
that tobacco smoke contains a high number of mutagenic and carci-
nogenic substances, such as benzene, arsenic and PAHs. The influence
of smoking habits on comet assay parameters are yet to be established,
since there are conflicting data (Hoffmann et al., 2005; Collins et al.,
2014). On the other hand, some authors have reported lower DNA
damage (measured as chromosomal breaks) of healthy smokers com-
pared to never-smokers (Lao et al., 2008). Smokers have also showed an
increase on baseline repair capacity (Wei et al., 2000) probably as an
adaptation resulting from the increased demand for repair stimulated
by the continuous damage caused by tobacco carcinogens (Wang et al.,
2013). Therefore, the stimulated repair mechanism in smokers may in
part explain the results obtained. Nevertheless, it is important to note
that the number of smokers and non-smokers in our study limits the
value of the data obtained and restricts possible conclusions, further
studies are necessary to confirm these results. Results for the basal DNA
damage (expressed as %TDNA) were inconclusive since no significant
differences were observed between the three groups (Fig. 2b). Both of
the exposed groups (A–B) showed positive and moderate correlations
between the levels of oxidative stress biomarker with 2OHFlu
(r= 0.456 for Group A and r=0.383 for Group B; p≤ 0.05), 1OHPhe
(r= 0.365 for Group A, p=0.05 and r= 0.359 for Group B,
p > 0.05), and 1OHPy (r= 0.313 for Group A and r=0.451 for Group
B; p≤ 0.05). Moreover, positive and moderate correlations were also
found between the oxidative stress biomarker and the urinary levels of
1OHNaph+1OHAce (r= 0.306; p > 0.05), as well as with ∑OHPAHs
(r= 0.305; p > 0.05) in smoking and exposed firefighters (Group B).
The DNA oxidative damage measured by comet assay is an effective
biomarker of effect, not exposure, and therefore is less specific in
identifying a single causative agent. During firefighting, subjects are
exposed to a complex mixture of hazardous pollutants, which implies
different effects that interact in the organism in different forms that
may be additive, synergistic, antagonistic, or potentiating. Therefore,
these results indicate subclinical changes in subjects recently involved
in fire combat even if for a short period of time. Thus, early genotoxic
effects in firefighters might be much higher once they are regularly
involved in fire combat for long period of many consecutive hours,
sometimes even for days or repetitively during several weeks when the
largest wildland fires occur. There are no occupational exposure limits
for firefighters, and comparisons can be only made with the scarce re-
lated studies. Abreu et al. (2017) reported that firefighting activities
and wood smoke exposure were associated with higher values of oxi-
dative and basal DNA damage. More recently, Andersen et al. (2018a,b)
demonstrated that exposure to PAHs during firefighting activities was
positively linked with genotoxicity in peripheral blood mononuclear
cells. Other authors also found moderate correlations between urinary
levels of 1OHPy and genotoxic effects (Kuang et al., 2013; Siwińska
et al., 2004; Marczynski et al., 2009; Talaska et al., 2014), although
some inconsistency was attributed to the high ratios variability of the
airborne PAH congeners among the workers from different industrial
sectors (Barbeau et al., 2015; Fan et al., 2014; Marczynski et al., 2011).
Urinary biomarkers of exposure to PAHs (mainly 2OHFlu, 1OHPhe and
1OHPy) seem to be appropriate to be used as early markers of genotoxic
effects in exposed firefighters. Still, much more research studies and
data are necessary to confirm these findings.

Principal Component Analysis (PCA) was performed based on the
exposure and genotoxic/oxidative-effect biomarkers of the three
groups. Three models (A, B and C) are presented in Fig. 1S (the
Supplementary Material). The model A allowed the extraction of three
principal components (PC) with eigenvalues ≥1.01 and Kaiser-Meyer-
Olkin sampling adequacy (KMO) of 0.54. Altogether the three PCs re-
presented 76.07% of the original data (Fig. 1S (a) presents PC1 versus

Table 4
Spearman correlations between the concentrations of urinary PAH metabolites
in non-smoking and non-exposed (Control group), non-smoking exposed (Group
A), and smoking exposed (Group B) firefighters.

2OHFlu 1OHPhe 1OHPy ∑OH-PAHs

Control group
1OHNaph+1OHAce 0.220* 0.196 0.233* 0.978**

2OHFlu – 0.526** 0.448** 0.310**

1OHPhe – – 0.784** 0.324**

1OHPy – – – 0.371**

Group A
1OHNaph+1OHAce 0.218 −0.222 −0.115 0.982**

2OHFlu – 0.327* 0.330* 0.276
1OHPhe – – 0.680** −0.127
1OHPy – – – −0.056
Group B
1OHNaph+1OHAce 0.539** 0.620** 0.331 0.994**

2OHFlu – 0.442* 0.608** 0.570**

1OHPhe – – 0.432* 0.622**

1OHPy – – – 0.356

1OHNaph+1OHAce: 1-hydroxynaphthalene and 1-hydroxyacenaphthene;
2OHFlu: 2-hydroxyfluorene; 1OHPhe: 1-hydroxyphenanthrene; 1OHPy: 1-hy-
droxypyrene; ∑OH-PAHs: Total PAH metabolites.
* Statistically significant (p < 0.05).
** Statistically significant (p < 0.001).
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PC2; PC3, data not shown, explained less than 15%). PC1 allowed a
partial separation between non-smoking exposed firefighters (Group A)
from the Control group based on the urinary levels of ∑OHPAHs,
1OHNaph+1OHAce, 2OHFlu, 1OHPhe, and 1OHPy (square cosine
values> 0.461); the biomarker of oxidative stress, NET-FPG, was the
highest loaded variable in PC3 (square cosine= 0.518). The model B
explained the variability of 71.4% of the original data (2 PCs with ei-
genvalues ≥1.83 and KMO=0.54) and shows a moderate separation
between smoking exposed firefighters (Group B) and non-smoking ex-
posed subjects (Group A) (Fig. 1S (b)). PC1 presented the highest
loadings for urinary ∑OHPAHs, 1OHNaph+1OHAce and 2OHFlu
(square cosine values> 0.589) while PC2 was strongly influenced by
1OHPhe, 1OHPy and NET-FPG (square cosines> 0.496). The model C
represented 84.03% of the original data (2 PCs with eigenvalues ≥1.19
and KMO=0.615) and allowed a good separation between smoking
exposed firefighters (Group B) from non-smoking and non-exposed
subjects (Control Group) (Fig. 1S (c)). Urinary ∑OHPAHs, 1OHNaph
+1OHAce, 2OHFlu, 1OHPy (PC1: square cosines ≥0.470), and
1OHPhe (PC2: square cosine=0.473) were the variables that con-
tributed the most for subjects’ differentiation. Altogether, the urinary
PAH biomarkers of exposure principally ∑OHPAHs, 1OHNaph
+1OHAce and 2OHFlu [the Bartlett sphericity test proved the strong
correlation between these biomarkers (0.535 < r < 0.992; p≤
0.05)] and, in a less extent, the biomarker of oxidative stress allowed to
evaluate the impact of: i) firefighting activities in non-smoking subjects
(Model A – Control Group versus Group A); ii) tobacco consumption in
exposed firefighters (Model B – Group A versus Group B); iii) cumulative
effect of fire combat activities and tobacco consumption in exposed
firefighters (Model C – Control Group versus Group B.

3.4. Relation between biomarkers and cardio-respiratory parameters

While on-duty during a fire combat, firefighters are frequently ex-
posed to hazardous pollutants, may have an inadequate nutrition, suffer
from posttraumatic stress disorder, sleep disruption/deprivation, and
imbalance between job demands and decisional latitude, all of which
constitute occupational risk factors for elevated blood pressure, meta-
bolic syndrome, and consequent cardiovascular diseases (Kales et al.,
2009). More than 21 and 14% of firefighters in this study presented,
respectively, diastolic and systolic blood pressures higher than 90 and
140mmHg (Table 1). No association was found between the levels of
blood pressure and the urinary concentrations of PAH metabolites or
the levels of early genotoxic biomarkers. However, significant and

positive correlations were found between the cardiac frequency of
firefighters with the urinary concentrations of ∑OHPAHs (r= 0.431 for
Control group, and r= 0.568 for Group A; p≤ 0.001) and with the
biomarker of oxidative stress (r= 0.382 for Control group, r= 0.393
for Group A; p≤ 0.001); inconclusive data were obtained for subjects
from Group B. Several factors may affect the impact of fire emissions on
the health of exposed firefighters, including levels of gaseous and par-
ticulate pollutants within the air breathing zone, exposure duration,
exertion levels, and individual susceptibility to the associated health
risks (i.e. preexisting and/or predisposition to develop cardio-re-
spiratory diseases). The results achieved in this work suggest that the
urinary PAH biomarkers, the blood biomarker of oxidative stress and
cardiac frequency of non-smoking (non-exposed and exposed) fire-
fighters were correlated, however this cross sectional study could not
conduct causal relationship. A long period of work as wildland fire-
fighter has been significantly associated with high blood pressure and
heart arrhythmia, two well-established risk factors for cardiovascular
diseases (Semmens et al., 2016). Findings from some studies support
the evidence that occupational exposure to fire emissions may induce
local inflammatory response in firefighters with the subsequently in-
itiation of a systemic response that will culminate in adverse health
consequences (Gianniou et al., 2016; Gaughan et al., 2014b; Ferguson
et al., 2016). Regarding other occupationally exposed groups, Singh
et al. (2018) found significant and positive correlations between ur-
inary 9-hydroxyfluorene and 1OHPy with some acute kidney injury
biomarkers (kidney injury molecule 1 and tissue inhibitor of metallo-
proteinases) in Indian male kitchen workers with microalbuminuria,
thus suggesting that occupational exposure to PAHs may cause kidney
injury. Alhamdow et al. (2017) reported that urinary PAH metabolites
of chimney workers were positively associated with diastolic blood
pressure. These exposed workers presented increased levels of homo-
cysteine, cholesterol, and high-density lipoprotein due to their occu-
pational exposure to PAHs in soot (Alhamdow et al., 2017). Brucker
et al. (2013) reported strong associations between the urinary con-
centrations of 1OHPy with pro-inflammatory cytokines and elevated
levels of biomarkers of oxidative damage in occupationally exposed taxi
drivers. More recently, Barth et al. (2017)) also found increased levels
of urinary 1OHPy concentrations and some biological inflammation
markers of DNA damage (% of neutrophilis expressing intercellular
adhesion molecule-1 and NTPDase activity in platelets) and genotoxi-
city biomarkers (% tail in DNA and micronucleous frequency) in taxi
drivers. Evaluation of the potential health risks associated with occu-
pational exposure is a difficult and complex task. Data describing the

Fig. 2. Levels of DNA damage measured by comet assay: a) oxidative DNA damage (NET-FPG, %) and b) primary DNA damage (TDNA, %) among non-smoking and
non-exposed (Control group), non-smoking exposed (Group A), and smoking exposed (Group B) firefighters. Superscripts(a, b, c) represent statistically significant
differences between the groups.
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association between urinary PAH metabolites and cardiovascular risks
on non-occupationally exposed populations have been slowly emerging.
Shiue et al. (Shiue, 2015) reported higher urinary levels of OHPAH in
people with diagnosed cardiovascular disease and cancer; urinary
concentrations of 2-naphthol, 1OHPy and 4OHPhe were associated with
higher rates of cancer, heart attack, and hypertension occurrences.
Ranjbar and colleagues (Ranjbar et al., 2015) concluded that exposure
to PAHs was directly related with obesity and with the expression of
obesity-related cardiometabolic health risk factors such as metabolic
syndrome, type 2 diabetes, hypertension, and dyslipidemia. More re-
cently, Poursafa et al. (2018) found that high concentrations of urinary
PAH metabolites were directly associated with the incidence of some
cardiometabolic risk factors in young children. Based on the available
information, there is a need to minimize exposure to PAHs in occupa-
tionally exposed groups and to promote environmental mitigation po-
licies to protect human health.

4. Conclusions

Considering the lack of current knowledge on the topic, this study
characterized the impact of firefighting activities on firefighters’ occu-
pational exposure based on biological monitoring. Urinary concentra-
tions of ∑OHPAHs, 1OHNaph+1OHAce and 2OHFlu were significantly
higher in exposed (non-smoking and smoking) than in non-exposed
subjects. Moreover, significant increments of the oxidative DNA da-
mage were found in non-smoking exposed subjects. The main findings
of this study suggest that the cardiac frequency, urinary PAH bio-
markers of exposure and the blood biomarker of oxidative stress of non-
smoking (non-exposed and exposed) firefighters correlate well; how-
ever, this cross sectional study could not conduct causal relationship.
More comprehensive studies are needed in a larger group of subjects
directly involved in firefighting activities to validate these findings.
Future studies should include more biomarkers of exposure, cardio-
vascular markers, and biomarkers of early genotoxic/oxidative-effects
to better characterize their interrelation and association with the de-
velopment and/or aggravation of cardiovascular diseases in firefighters.
Surveillance (bio)monitoring programs need to be implemented, prin-
cipally in the countries that have been severely affected by forest fires,
in order to go deeper on the characterization of the health risks and
their direct (short- and long-term) impact along the firefighter´s life.
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