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ABSTRACT ARTICLE HISTORY
The purpose of this study was to assess the maximum oxygen Received 3 April 2019
uptake (VO5may), the total metabolic energy expenditure (Etot), and Accepted 10 June 2019
the energy cost (C) measured as the speed of VO,,qx in swimmers

. Y . . KEYWORDS
with physical impairments. Eleven swimmers performed an Nx200-

Swimming; aerobic power;

m front crawl test from a low to all-out speed and data were energetics; anaerobic
obtained at maximum aerobic power. The oxygen uptake was contribution; physiological
measured breath-by-breath by a telemetric gas exchange system. profile

The Etot was calculated from the aerobic and anaerobic pathways
at maximal intensity. The C was obtained by the ratio of the Etot
and the mean swimming speed. The VO,,qx Was 38.2 + 8.3 mL.kg.
min~", the Etot was 191.9 + 51.7 kJ, and the C was 0.8 + 0.2 kJ.m™".
The energy contribution of the aerobic pathway was higher
(p < 0.001) than that of both the anaerobic pathways, which
were similar (p > 0.05). There was no gender effect on the results
of the energy contributions (p > 0.05). The anaerobic lactic path-
way contribution was higher in male than in female swimmers
(p < 0.05). The VO,max and C were higher in swimmers who were
less affected by physical impairment. The energy contribution of
the aerobic pathways was similar for males and females.

1. Introduction

The physiological parameters related to performance are effectively developed as
a function of each athlete’s potentialities and singularities (Barbosa et al., 2010).
Among the important physiological parameters related to human locomotion used in
the sports performance assessment are the maximum aerobic power (VO,.y), the
total metabolic energy expenditure (Etot), and the energy cost (C) (Fernandes et al,,
2006; Morris, Osborne, Shephard, Jenkins, & Skinner, 2017). These physiological
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parameters might differ between swimmers with physical disabilities and those with-
out, between male and female swimmers, and among classes. Swimmers with phy-
sical disabilities are classified into sports classes by the impact of an eligible
impairment on their ability to perform the specific and fundamental tasks of the
sport (classes S1 to S10 from the highest to the lowest impact) (International
Paralympic Committee [IPC]. World Para Swimming: classification rules and regula-
tions, International Paralympic Committee [IPC], 2017). According to different cases
of disabilities and their relationship with aerobic power, expressions of energy
metabolic rates and C can provide useful information for training strategies and
performance improvement of these swimmers.

Estimates of the Etot and C have been calculated from oxygen uptake and blood
lactate (Barbosa, Fernandes, Keskinen, & Vilas-Boas, 2008; Gonjo et al, 2018).
Therefore, the Etot is the result of the sum of the energy supplied by the aerobic,
anaerobic lactic and alactic pathways. In turn, the C is a bioenergetic predictor of the
performance of human locomotion (Barbosa et al., 2010; Di Prampero, 1986) and can
be described according to Equation 1:

C= — (1)

where C is the energy cost and v represents the speed executed in a given locomotion
task. The C represents the amount of metabolic energy expended in transporting the
body mass of the participant over a unit of distance (Capelli, Pendergast, & Termin,
1998). Thus, competitive swimmers seek to travel a given distance as quickly as
possible. In this sense, the average swimming speed exercised is an important perfor-
mance factor and is associated with the ability to overcome the drag (Barbosa et al.,
2008). The drag is one of the main C determinants (Pendergast et al.,, 2006) and the
technical level can be analysed by the swim speed (Barbosa et al., 2010). In addition, the
increase in C is related to the increase in swimming speed and drag in the aquatic
environment (Toussaint & Hollander, 1994). Among the morphological disadvantages
that can increase drag and affect the speed of locomotion in swimming are, for example,
deformities or amputations of limbs, hemiplegia, and paraplegia (Oh, Burkett,
Osborough, Formosa, & Payton, 2013). These morphological characteristics also influ-
ence different physiological expressions whose scientific knowledge can be deepened
(Bentley, Phillips, McNaughton, & Batterham, 2002; de Souza et al., 2016).

Some studies have investigated the relationship between oxygen uptake, Etot, and
C of non-disabled swimmers (Barbosa et al., 2008; Bentley et al., 2005; Capelli et al.,
1998; Zamparo, Capelli, & Pendergast, 2011). However, few studies have addressed the
physiological profile of swimmers with physical impairments (de Souza et al., 2016;
Rodrigues Junior, De Jesus, Corredeira, Daly, & Fernandes, 2016). In one of the studies
with people with physical disabilities, C was assessed in people who used wheelchairs
(Conger & Bassett, 2011). However, we found no study reporting the VO, Etot, and
C of competitive swimmers with physical impairments. Although there are studies on
the contributions of energy pathways in intermittent tests for non-disabled swimmers
(Ribeiro et al,, 2015; Sousa, Vilas-Boas, & Fernandes, 2014; Troup, 1991), the energy
contributions in addition to the VO,, Etfot, and C measured as speed of VO,ax
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(VWOsmay) for swimmers with physical impairments are still unknown. The study of
these physiological variables and vVOsmax can contribute to the compilation of data to
aid decisions on appropriate actions before and after performance tests.

Through these evaluations it is possible to quantify the Etot and C of swimmers
needed for a particular task, which enables adjustments to be made to the training
programme to improve performance. In addition, such investigations explore the
possible relationships between characteristics of physical disability and their possible
effects on these physiological variables.

Thus, the purpose of this study was to assess the VOsmax the Etot, and C measured
as VVO,pax in swimmers with physical impairments, comparing: (i) swimmers grouped
by sports classes and (ii) males and females. We formulated three hypotheses: (i) the
highest values of VO,p.c occur in swimmers with the lowest impact of physical
disability, even though the Etot and C measured as vV Oypay are highest in swimmers
with the highest impact of physical disability; and (ii) male swimmers have higher
values of Etot, C, and energy contribution (aerobic and anaerobic) than female
swimmers.

2. Methods
2.1. Participants

Seven male and four female swimmers (age 32.4 + 12.4 years; height 1.73 + 0.85 m;
body mass 67.2 + 9.9 kg; training background 6.4 * 3.7 years) participated in the study.
The main disabilities were: hemiplegia, muscle stiffness and poor motor coordination
(n = 1, sport class S5), spinal cord injury (n = 3, T11-L1, T11-T12, and L1-L2, sport
classes S5, S7, and S8), one arm near the shoulder amputation (n = 1, sport class S8),
one forearm amputation (n = 1, sport class S9), one lower limb amputation near the hip
(n = 3, sport class S9), congenital crooked foot sequelae and low ankle mobility (n = 1,
sport class S9), and amputation slightly below the knee (n = 1, sport class S10).
Swimmers with at least 2 years of experience in swimming competitions at any stage
(regional, national, or international) and who had any physical impairments partici-
pated in this research. All of the participants had training sessions at least five times per
week and swam 20 km per week. The exclusion criterion was the presence of contra-
indications for physical tests at maximum intensity, e.g. mental retardation, congenital
or atherosclerotic heart disease, and atlantoaxial instability or any restrictive injury for
training and competition.

The study was approved by the local Ethics Committee and followed the orders of
the Declaration of Helsinki. The aims and methods were thoroughly explained to the
participants who gave their written consent.

2.2. Experimental approach

The swimmers had anthropometric measurements of body mass (SECA® 813, resolution
of 0.1 kg, Hamburg, Germany) and height (SANNY, Personal Caprice, resolution of
0.1 cm, Sao Paulo, Brazil) recorded. Then, they were familiarised over two sessions with
the equipment: the Aquatrainer snorkel (Cosmed, Rome, Italy) and GBK2 pacer (GBK
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Figure 1. Physiological data collection set-up over the Nx200-m protocol.

Electronics, Aveiro, Portugal), and the procedures for physiological data collection in an
intermittent incremental test, oxygen uptake (VO,), heart rate (HR), rate of perceived
exertion (RPE), and blood lactate concentration (La). All swimmers had previously used
snorkels in their regular training programme. A session was held to familiarised
themselves with GBK2 pacer (Fernandes et al., 2008; Keskinen & Keskinen, 1999).
Before the tests and measurements, the swimmers were asked not to take part in
moderate to vigorous physical activity for at least 24 hours.

The tests were carried out individually in a 25-m length indoor swimming pool. The
setup of the data collection is portrayed in Figure 1. A warm-up of 600-m was
developed according to the experience and level of conditioning of the swimmers
(swimming at low-moderate intensity in 200-m freestyle, 200-m with a conventional
snorkel, and 200-m with an Aquatrainer snorkel). A time trial (200-m with encourage-
ments for the best effort) was conducted to decide the speed of the incremental
intermittent test (Nx200-m). The rest period of 24 hours occurred between the 200-m
and Nx200-m tests.

The intermittent incremental test (Nx200-m) had speed increases of 0.05 m.s~~ with
30 second rest intervals between each 200-m stage. The swimming speed during the
Nx200-m was individually controlled by the GBK2 pacer (Keskinen & Keskinen, 1999).
The first programmed speed on the pacer was determined by the average speed of the
200-m test decreased by 0.25 m.s~. However, the VO,,.. was achieved in the 4, 5
and 6™ stages for different swimmers.

1

>

2.3. Data collection

The concentration of gases was measured by the continuous collection of expired gases,
supported by a telemetric gas exchange in a breath-by-breath system (K5; Cosmed) and
respiratory valve system (Aquatrainer; Cosmed) that represent low hydrodynamic
resistance (Keskinen, Rodriguez, & Keskinen, 2003; Ribeiro et al, 2016). The gas
analysis system was calibrated before each collection. The device for respiratory gas
capture along with the snorkel were suspended at a height of 2-m. A double pulley
system and a pair of steel cords passed above the entire length of the pool. The double
pulley along with the K5 and Aquatrainer snorkel were pulled on ropes by two people
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(a rope on each side of the pool), minimising disruption to the movements of the
swimmer (Figure 1).

In order to minimise the noise arising from the acquisition of gases by breath by
breath through the ergospirometric system, errant breaths, e.g. coughing, speaking, and
swallowing, that do not represent the desired breath were excluded. Values between the
mean * four standard deviations (Ozyener, Rossiter, Ward, & Whipp, 2001) were
considered. The VO, data were smoothed by using a moving average of three breaths
(Fernandes et al., 2008) in average periods of five seconds (Sousa et al., 2010), which
increased the validity of the estimated parameter. The VO,,,.x Was obtained at the
minimum swimming speed above which VO, failed to increase further (Poole & Jones,
2017). It was in accordance with primary and secondary criteria (Howley, Bassett, &
Welch, 1995): (i) the occurrence of a plateau in VO, (variation less than 2.1 mL.kg.min’l)
despite increasing swimming speed; (ii) elevated La (= 8 mmolL); and (iii) a high
respiratory exchange rate (r = 1.0), high heart rate (HR > 90% of [220 - age in years]),
and high rate of perceived exertion (visually controlled and case by case).

The La level was measured using an Accutrend Plus portable meter and reagent
strips (Accutrend; Roche, Mannheim, Germany), HR was measured in beats.min™"
using a Polar V800 cardiac monitor with H10 Bluetooth transmitter (Polar Electro
Oy; Kempele, Finland) and RPE on a scale of 15 points (Borg, 1998) was measured at
rest, at 30 s intervals, immediately after the NX200-m, and at 1, 3, 5, and 7 minutes after
the last swim (Sousa et al., 2014). The HR (beats.min™') was converted into
a percentage of HR through the equation [(HRmax-HR swim test).(HRmax)]*100
(Wilmore & Costill, 2004). The use of %HRmax has been recommended for swimmers
with different fitness levels and ages to facilitate the interpretation of the results
(Pfeiffer, Pivarnik, Womack, Reeves, & Malina, 2002; Psycharakis, 2011).

The E,,; was calculated for the aerobic and anaerobic sources (alactic and lactic) at the
VOsmax swim speed (at the lowest velocity at which the VO, pmax Was reached, expressed as
VWi — m.s 1), The E;y was calculated using the net VO,, the difference between the
value measured at the end of the stage and the rest value, adjusted for body mass
(Barbosa et al., 2008; Di Prampero, Pendergast, Wilson, & Rennie, 1978). The VO, values
were determined by the average of the last 60 s of each stage, except for the VO,ap
which was calculated as already described (Howley et al.,, 1995). Additionally, the net
blood lactate level (the difference between the value measured in each two consecutive
stages) was transformed into VO, equivalents using a 2.7 mLO,.kg.mmol~' constant and
by Equation (2) (Di Prampero et al.,, 1978; Thevelein, Daly, & Persyn, 1984).

Etot = VOsnet + (2.7.La — net).t (2)

The Etot (aerobic and anaerobic pathways) was expressed in kJ. The anaerobic
contribution was calculated as the sum of the energies obtained from the blood lactate
concentrations, as estimated from Lab, plus the energy derived from the maximal
depletion of phosphocreatine in working muscles. The t represents the duration of
the effort (Capelli et al., 1998), Equation (3):

Etot anaerobic = (0.418 KJ = Kg_1 + Lab) body mass (3)
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where Etot anaerobic is in kilojoules, body mass of the participant is in kilograms, b is
the energy equivalent of the blood lactate concentration, which was assumed to be equal
to 0.0689 (k].kg.mmol.L_l) (Di Prampero, 1981), and Lab is the peak blood lactate
concentration after exercise above resting (when ALab = 1 mmol.L™}, the net amount
of metabolic energy released by lactate formation was 0.0689 (k].kg.mmol.L_l) (Di
Prampero, 1981). The value of 0.418 kJ.kg™' in Equation 2 coincides with the net splitting
of 18.5 mmol of phosphocreatine per kg of wet muscle in a maximally working muscle
mass equal to 30% of the overall body mass (Capelli et al., 1998).

The C of locomotion was calculated by splitting the Eor by swimming speed (v)
(Barbosa et al., 2008; Di Prampero, 1986; Zamparo et al., 2005). The speed was obtained
from the incremental swimming test at maximal aerobic power (Figueiredo, Zamparo,
Sousa, Vilas-Boas, & Fernandes, 2011). All swimmers were exactly at the speed of the pacer.
The cost values were converted into SI units where 1 mLO, is equivalent to 20.1 ] (Minetti,
1998).

2.4. Statistical analyses

All statistical analyses were performed using the software IMB SPSS Statistics (version
25.0 for Windows, IBM Corp; Armonk, NY, USA). The Shapiro-Wilk test was used to
verify the distribution of the data. Once normality was established, the sample data were
described using the mean + standard deviation (SD). The percentage difference was
calculated for comparisons of the variables between genders. Individual data for sport
class and vVO,00 VOomaw Etot, and C were also determined. To verify if there was
a difference among the energetic pathways (aerobic, anaerobic lactic, and alactic) and
gender interaction, a repeated measures ANOVA with a fixed factor (gender) was used,
with a Bonferroni test. The sphericity of the data was tested using a Mauchly test
(p < 0.05) and the Epsilom Greenhouse-Geisser correction factor was applied
(explained by degrees of freedom). Statistical significance was set at p < 0.05. The
figures were produced using GraphPad Prism (version 8.00 for Windows, GraphPad
Software; La Jolla, California, USA).

3. Results

The results were displayed as the mean, standard deviation, and confidence interval for
the mean of swimmers with physical impairments at the speed of maximum oxygen
uptake for the variables (VO a0 Lapeao G, Etot, HR,,,, and %HR,,,,) obtained with
VVO;max (Table 1). All of the physiological variables showed low-dispersion. The phy-
siological variables for VO, of rest, La of rest, and RPE at the end of the test were,
respectively, 4.7 + 1.1 mLkg.min™’, 2.2 + 0.6 mmolL™", and 18 + 1.9.

The individual values of vVO,a0 VOzmaw and C for sex and sport class are shown
in Figure 2. Female swimmers showed higher values of VO,,.x with physical impair-
ments that had a lower impact on activity. The C of female swimmers was similar
among sports classes. The male swimmers had a tendency for higher values of VO,
and C with increasing VVOsmax except for the sport class S9 (Figure 2).

In the female group, the mean and standard deviation values of YWOsmao VOamax and
C were, respectively, 0.85 + 0.09 m.s ', 31.0 + 4.1 mLkg.min ', and 0.7 + 0.1 kJ.m™'; whereas
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Table 1. Overall mean, standard-deviation, and confidence interval for the mean of swimmers with
physical impairments at the speed of maximum oxygen uptake (n = 11).

Variables Mean + SD 95% Confidence Interval
VVOZmaX (m~571) 093 +0.16 0.81-1.03
VOzmax (mLkg.min™") 382 + 83 32.6-43.8
Lapeak mmol.L™" 9.7 £ 39 7.0-12.3
C (kJ.m_1) 0.80 + 0.21 0.66-0.95
Etot (k) 1919 + 51.7 157.1-226.7
HRmax (beats.min™") 167 £ 143 157.3-176.6
%HR max 889 + 6.6 84.4-93.4
60 -1.5
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Figure 2. Individual values of VVOamaxs VOamax, and C of female (top image, n = 4) and male (bottom
image, n = 7) per sport class. For a description of the sport classes see (International Paralympic
Committee [IPC]. World Para Swimming: classification rules and regulations, International Paralympic
Committee [IPC], 2017).

in the male group, the VWOyma0 VOomaw and C were, respectively, 0.97 + 0.19 ms ),
424 + 7.2 mLkgmin™', and 0.9 + 0.2 kJ.m™". The percentage difference between the
means for males and females for VVO,,., VOamae and C was, respectively, 12.2%, 27.0%,
and 22.2%.

The Etot was 214.0 + 47.3 kJ for males and 153.4 + 36.8 kJ for females (a 28.3%
difference) (Figure 3). The aerobic and anaerobic energy contributions (lactic and
alactic) to VVO,pay are depicted in Figure 3. The energy contribution of the aerobic
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Figure 3. Mean + SD of Ftot and the percentage of aerobic and anaerobic energy
(AnLactic = anaerobic lactic and AnAlactic = anaerobic alactic) contributions at vV/O5pax (n = 11).

pathway was similar for males (69.6 + 7.3%) and females (70.2 £ 8.1%). The energy
contribution of the anaerobic lactic pathway was higher by 3.8% for males (16 + 6.4%)
than females (12.2 £ 7.8%). The anaerobic alactic energy contribution for males was
14.3 + 3.4% and females 17.4 + 2.8% (a 3.1% difference in the mean). The ANOVA
showed that there was a distinct effect of the contribution of the energy pathways on
swimmers [F (1.29-11.65) = 178.9; p < 0.001, n2 = 0.95]. The Bonferroni post-hoc test
showed that the energy contribution of the aerobic pathway was higher than that of the
anaerobic lactic pathway (p < 0.001) and alactic pathway (p < 0.001), however, the
anaerobic alactic and lactic pathway energy contributions did not differ to each other
(p > 0.05).

4. Discussion

This study assessed the VOymax Etot, and C in swimmers with physical impairments.
By assigning females to one group and males to another, we demonstrated that the
VWOsmao VOamaw Etot, and C were higher in the group of male swimmers with
physical impairments than the group of females. The energy contribution of the
anaerobic lactic pathway was higher for male swimmers whereas the alactic energy
contribution was higher for female swimmers.

The highest values of VO,,ax Were obtained for swimmers with the lowest impacting
physical impairment. Among the physical impairments present in this study were
Hemiplegia, Paraplegias, amputation of the arm or forearm, and amputations of the
lower limbs. The amount of activated muscle mass directly influences VO,, La, and HR
(Astrand & Rodahl, 1986; Narang et al.,, 2012; Saltin, Radegran, Koskolou, & Roach,
1998). In our investigation, most participants with high vVO,., reached the highest
levels of VO, .y (except for the male sport class S9 swimmer, vVO,,a, = 0.85 m.s™' and
VOsmax = 47.5 mL.kg.min_l). In addition, there was also a tendency of VVOsmax and
VOymax to be higher in swimmers with physical impairments that had less of an impact.
It is possible to relate higher vVO,,., with better aerobic performance (Di Prampero
et al.,, 1993; Grant, Craig, Wilson, & Aitchison, 1997), even among participants with



INTERNATIONAL JOURNAL OF PERFORMANCE ANALYSIS IN SPORT ‘ 9

similar VO, rates (Santos et al., 2012). However, in swimmers with physical dis-
abilities it is necessary to take into account the ability to perform the specific and
fundamental tasks of the sport (Tweedy & Vanlandewijck, 2011). Therefore, each
physical disability or set of disabilities seem to directly influence the vV O,

Few studies have been carried out with swimmers with physical disabilities on
incremental intermittent tests. When the peak oxygen consumption of Brazilian
Paralympic swimmers at 100% of the athlete’s maximum speed of the best result in
official competitions (6 x 300 m in front crawl) was assessed, the following values were
obtained for each sports class in mL.kg.min_1 (de Souza et al., 2016): S4 (18.40, female),
S5 (35.50, male), S6 (55.80, male), and S7 (37.20, female). In addition, male swimmers
with a physical disability (n = 13) obtained the following sports class values for VO, .y
in rnL.kg.min’1 (7 x 200 m in front crawl) (Rodrigues Junior et al., 2016): S6 (52.1), S7
(41.0), S8 (47.0 = 4.0, n = 4), S9 (48.7 + 6.9, n = 6), and S10 (35.10). These values are
slightly higher than those reported in the present study for: (i) male swimmers
presented by sport class, VOsmax i mL.kg.m_I: S5 (30.6), S7 (34.5), S8 (43), and S9
(47.1 £ 2.7, n = 4); and (ii) female swimmers presented by sport class, VOsax i mL.kg.
m™': S5 (26.8), S8 (28.3), S9 (33), and S10 (35.7). Peak oxygen consumption values
(31.1 £ 8.4 in mLkgm ', n = 12; 33.6 + 7.1 mLkgm ', n = 7) were also found for
handbike athletes with spinal cord injury (T2-T12 injury, paraplegia) in arm cranking
maximal incremental test (arm crank ergometer out of water) (Fischer, Figueiredo, &
Ardigo, 2015; Fischer, Tarperi, George, & Ardigo, 2014). The swimmers with paraplegia
(n = 3, T11-L1, T11-T12, and L1-L2) of the current study reached similar values
(VOsmax 31.1 £ 3.1 in mL.kg.m’l).

The Etot was higher for male swimmers than female swimmers. The duration of
exercise performed by male swimmers (3.63 + 0.36 in decimal minutes) was less than of
female swimmers (3.94 + 0.54 in decimal minutes), except for two males (one swimmer
with paraplegia [4.90 in decimal minutes] and one with amputation of the forearm
[3.92 in decimal minutes]). In our study, YWOsmax ranged from 0.6 to 1.1 m.s~. In
a study of physical disabilities (incremental intermittent test of 7 x 200 m) the speed
reached varied similarly from 0.7 to 1.1 m.s™! (Rodrigues Junior et al., 2016). However,
swimmers with physical disabilities are slower than non-disabled swimmers. Some
studies have shown that the velocity of non-disabled swimmers (n = 8) ranged from
0.96 to 1.42 m.s™! (Capelli et al., 1998); 1.16 + 0.01 m.s* for low-level swimmers
(n = 10) and 1.4 + 0.06 m.s” ' for highly trained swimmers (n = 10) (Fernandes et al.,
2006). In fact, exercise duration is the major determinant of the energy source (Di
Prampero, 2003).

The aerobic pathway provided approximately 70% of energy for both sexes during
the repetition in which the maximum aerobic power was reached. The energy con-
tribution of the anaerobic lactic pathway was higher in male swimmers than female
swimmers. Conversely, the anaerobic alactic contribution was higher in female swim-
mers than in males. These energy contributions might be due to the higher muscle mass
present in male swimmers than females (Ribeiro et al., 2015; Zamparo et al., 2011).
Studies with non-disabled swimmers have shown that during maximal swimming trials
they mainly use the aerobic energy source (61.5%), followed by energy from the
anaerobic lactic (24.7%) and alactic (13.8%) pathways (Zamparo et al, 2011).
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Therefore, the results of this investigation are in accordance with the energy contribu-
tions of swimmers without physical disabilities for both aerobic (65%) and the anaero-
bic pathways (35%) when swimming 200-m in freestyle (Troup, 1991).

Higher C values were coincided with higher values of aerobic power. The C also rose
from S5 to S10 (from the highest to lowest physical impairment to perform specific
sports tasks). When exploring the results, we noticed that the swimmer in class S9
reached high values of VOymax and C despite having a slower swimming speed than the
other swimmers. Swimmers can perform better more easily by reducing the C than by
increasing Etot (in one of its components, aerobic or anaerobic) (Zamparo et al., 2011).
There are a number of possible reasons for this swimmer being less energy-eflicient,
such as amputation of the forearm resulting in a lower swimming speed than that of
other non-disabled upper limbs. However, the male swimmer in sports class S8, who
had an amputation of the right arm near the shoulder, showed a higher vVO,,,, than
the male swimmer in sports class S9. The main difference between the two men is
possibly their training background in years and technical level (Costa, Bragada,
Marinho, Silva, & Barbosa, 2012).

The physical disability of each swimmer and their anthropometric characteristics, for
example, the amount of muscle tissue and adipose tissue, might influence the hydrody-
namic ability of female swimmers to perform the motor actions with a lower underwater
torque (Zamparo et al., 1996). Therefore, C was higher in male swimmers with disabilities
than in female swimmers. In relation to non-disabled swimmers, the literature indicates
that female swimmers have a lower C than male swimmers (Chatard, Lavoie, & Lacour,
1990, 1991; Zamparo, Capelli, Cautero, & Di Nino, 2000). In freestyle, the C has been
reported for elite male swimmers without disabilities to be 0.8 k].m™" at 1.1 m.s~" (Capelli
et al., 1998), for low level swimmers 10.9 + 1.80 Jkgm™" at 1.2 m.s™, for highly trained
swimmers 13.1 + 2.3 I.kg.mf1 at 1.2 m.s ' (Fernandes et al., 2006), and 0.8 KJ.m ' for male
swimmers at 1.3 m.s ' (Barbosa et al., 2008). In our study, the C was 0.8 £ 0.2 in kJ.m™' at
0.9 + 0.1 m.s™! for the full sample, 0.7 + 0.1 in kJ.m™ at 09 + 0.1 m.s™* for female
swimmers, and 0.9 + 0.2 in kJ.m™" at 1.0 + 0.2 m.s™" for male swimmers. Therefore, the
C of swimmers with disabilities appears to be higher than that for non-disabled swimmers,
taking swimming speed into account.

To our knowledge, this study is the first to investigate the Etot and C in swimmers
with physical impairments. The hypotheses formulated in the introduction were par-
tially accepted. The exception was for the second hypothesis (the Etot and C obtained in
VvVO,may are higher in swimmers with a higher impacting physical disability). These
results can be applied in training and competitions, when coaches are able to determine
a swimming series’ duration and intensity in an attempt to better achieve the training
objectives. The monitoring of the aerobic and anaerobic power achieved along with
swimming speed can be used as an important predictor of performance (Ferreira,
Barbosa, Costa, Neiva, & Marinho, 2016; Lacour, Padilla-Magunacelaya, Barthelemy,
& Dormois, 1990). This information can be used in training to simulate the stress levels
of competition in the cardiovascular system (Ferreira et al.,, 2016; Lacour et al., 1990;
Roy, Menear, Schmid, Hunter, & Malone, 2006; Santos et al., 2012).

A small sample of swimmers with physical impairment participated in the current
study. This is a limitation that does not enable the extrapolation of the results for all
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populations of swimmers with physical impairments, given the great variability in
disabilities and possible interactions with physiological characteristics. Although this
study provides useful information in the cases of physical impairment discussed, further
investigations can be undertaken with this population in order to extend the set of data.

5. Conclusion

The values of VO,,.c and C are higher in swimmers with physical impairments that
have less of an impact on activity than those with more impact. The VVOsmaxs VO2max

Etot, and C were higher for the male swimmers with physical impairments than their
female counterparts. The aerobic energy contribution was similar for males and
females. The main energy contribution was aerobic for both genders, but the anaerobic
lactic and alactic pathway contributions differed between male and female swimmers.
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