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Abstract 

Food industry is dedicated in the continuous improvement of products safety and quality, 

satisfying the consumer’s requirements. Thus, this sector has invested in the development of 

new solutions to decrease the amount of used artificial additives and whenever possible, 

replacing them by more innocuous natural counterparts. Colorants are one of the most important 

additives in terms of marketing, since their presence influences consumer’s perceptions, choices 

and preferences, interfering in market success or failure of food products. In this context, there 

are many fruits in which their bio-residue can be used to extract colorant ingredientes. 

Passiflora edulis, known as passion fruit, is native from Brazil and much appreciated by the 

cosumers. The purple passion fruit variety (Passiflora edulis Sims) is the most common variety 

and is cultivated for juice and pulp production. However, the largest portion of the fruit is 

constituted by the epicarp, resulting in a high quantity of bio-waste production. This part of the 

fruit has a dark purple colour, being a rich source of pigmented compounds, namely 

anthocyanins, which could be used as a source of natural ingredients with colourant potential.  

In this work, the extraction methodology of anthocyanins from passion fruit epicarp was 

optimized through a heat assisted extraction (HAE), by applying a response surface 

methodology combining different independent variables of the process. Furthermore, the 

bioactive properties (antioxidant, antimicrobial and cytotoxic activities) of the optimized 

extract and also of the extract obtained by a conventional extraction method (maceration using 

80:20 v/v of acidified ethanol/water at room temperature) were compared. The anthocyanins 

profile was determined by HPLC-DAD-ESI/MS, using 520 nm as the preference wavelength 

and operating in positive mode. The antioxidant activity was evaluated by means of TBARS 

and OxHLIA methodologies; the antimicrobial activity was determined using the microdilution 

method in Gram-positive and Gram-negative bacteria, and in fungi; and finally, the cytotoxic 

properties were studied in four human tumor cell lines: HeLa (cervical carcinoma), HepG2 

(hepatocellular carcinoma), MCF-7 (breast adenocarcinoma) and NCI-H460 (lung carcinoma); 

and in a non-tumor cell line: PLP2 (primary culture of pig liver cells). 

The HAE optimal conditions were established as t= 37.5 min, T= 20 ºC, S= 0 % (ethanol) using 

50 g/L of solid/liquid ratio, conducting to an extraction yield of 37%, with a total anthocyanins’ 

content of 9.02 mg of anthocyanins (A) per g of extract (dried extracted residue-basis) and 3.35 

mg of A per g of dried epicarp basis. Regarding the bioactive properties, the optimized extract 
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rich in anthocyanin compounds was highlighted with higher antioxidant, antimicrobial and 

cytotoxic potential in comparison to the extract obtained by the conventional method. 

Overall, this study has a great interest in the food sector, because it highlights the colorant and 

bioactive potential of this natural ingredient, while enhancing the valorization of a specific bio-

residue, widely produced by the food sector. 

 

Keywords: Passiflora edulis Sims, Extraction optimization, Response surface methodology 

(RSM), Anthocyanins, Bioactivities. 
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Resumo 

A indústria alimentar tem se dedicado à melhoria contínua da segurança e qualidade dos 

produtos, satisfazendo os requisitos do consumidor. Assim, este setor tem investido no 

desenvolvimento de novas soluções para diminuir a quantidade de aditivos artificiais usados e, 

sempre que possível, substituí-los por equivalentes naturais mais inócuos. Os corantes são um 

dos aditivos mais importantes em termos de marketing, uma vez que a sua presença influencia 

as percepções, escolhas e preferências do consumidor, interferindo no sucesso ou no fracasso 

dos produtos alimetares no mercado. Neste contexto, existem muitos frutos cujos seus 

subprodutos podem ser utilizados para extrair ingredientes corantes. 

Passiflora edulis, conhecida como maracujá, é nativa do Brasil e muito apreciada pelo 

cosumidor. A variedade de maracujá roxo (Passiflora edulis Sims) é a mais comum e é 

cultivada para produção de sumo e polpa. Contudo, a maior parte da fruta é constituída pelo 

epicarpo, resultando numa elevada quantidade de produção de bio-resíduos. Esta parte do fruto 

tem uma cor púrpura escura, sendo uma fonte rica em compostos corantes, nomeadamente 

antocianinas, sendo uma fonte de ingredientes com potencial corante.  

Neste trabalho, a metodologia de extração de antocianinas a partir do epicarpo de maracujá foi 

otimizada através da extração assistida por calor (HAE), aplicando uma metodologia de 

superfície de resposta, combinando diferentes variáveis independentes do processo. Além disso, 

foram comparadas as propriedades bioativas (atividades antioxidante, antimicrobiana e 

citotóxicas) do extrato otimizado e também do extrato obtido pelo método de extração 

convencional (maceração usando 80:20 v/v de etanol/água acidificada, à temperatura ambiente). 

O perfil de antocianinas foi determinado por HPLC-DAD-ESI/MS, usando 520 nm como o 

comprimento de onda preferencial e operando em modo positivo. A atividade antioxidante foi 

avaliada através das metodologias TBARS e OxHLIA; a atividade antimicrobiana foi 

determinada usando o método de microdiluição em bactérias Gram-positivas e Gram-negativas, 

e em fungos; e, finalmente, a citotoxicidade foi estudada utilizando quatro linhas celulares 

tumorais humanas: HeLa (adenocarcinoma cervical), HepG2 (carcinoma hepatocelular), MCF-

7 (adenocarcinoma de mama) e NCI-H460 (carcinoma de pulmão); e numa cultura de células 

não tumorais: PLP2 (cultura primária de células de fígado de porco). 
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As condições ótimas de HAE foram estabelecidas com t = 37,5 min, T = 20 ºC, S = 0% (etanol) 

usando 50 g/L de razão sólido/líquido, conduzindo a um rendimento de extração de 37%, com 

um teor total de antocianinas de 9,02 mg de antocianinas (A) por g de extracto (resíduo-base de 

extrato seco) e 3,35 mg de A por g de resíduo (base de epicarpo seco). Quanto às propriedades 

bioativas, o extrato otimizado rico em compostos antociânicos destacou-se com alto potencial 

antioxidante, antimicrobiano e citotóxico, comparativamente com extrato obtido pelo método 

convencional. 

No geral, este estudo tem um grande interesse na área alimentar, pois destaca o potencial corante 

e bioativo de um ingrediente natural, ao mesmo tempo reforçando a valorização de um 

subproduto específico, amplamente produzido pelo setor alimentar. 

 

Palavras-chave: Passiflora edulis Sims, Otimização de extração, Metodologia de superficie de 

resposta (RSM), Antocianinas, Bioatividades. 
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1 INTRODUCTION 

1.1 FOOD ADDITIVES 

The use of food additives comes from ancestral times, especially the use of colorants. Their use 

has been reported in several studies, in which their applications draw back to the 2600 BC in 

China. Also, in Europe the use of these compounds is quite old, reporting to the Bronze age. 

Moreover, and according to literature, around 1500 BC in Egyptian cities, some manufacturers 

used these additives to improve the appearance of various food products (Lakshmi, 2014).  

The World Health Organization (WHO), the International Codex Alimentarius Commission 

(CAC), and the Food and Agriculture Organization (FAO) defines food additivesas “any 

substance not normally consumed as a food by itself and not normally used as a typical 

ingredient of the food, whether or not it has nutritive value, the intentional addition of which to 

food for a technological (including organoleptic) purpose in the manufacture, processing, 

preparation, treatment, packing, packaging, transport or holding of such food results, or may 

be reasonably expected to result (directly or indirectly), in it or its by-products becoming a 

component of or otherwise affecting the characteristics of such foods”. The term does not 

include contaminants or substances added to food for maintaining or improving nutritional 

qualities (“Codex Alimentarius Commission - Procedural Manual”). 

Additives can be applied in numerous processed foodstuffs, namely, in non-perishable food, 

such as, chips, ketchup, sauces, chocolates, puddings, colored candies, powdered drink mix, 

processed meat, dairy products, canned and fermented products, and instant soups (FDA, 2010). 

The application of these compounds by the industry sector has several objectives, especially to 

ensure the quality characteristics of processed foods, to increase the shelf-life of food 

(preservatives and antioxidants) and to improve the presentation of compound feeds (colorants 

and texture agents) (Lakshmi, 2014). 

The Codex Alimentarius Commission (CAC), an international association made up with 190 

countries, presently groups food additives into 27 classes (such as, anti-caking agents, 

antioxidants, colorings, enzymes, mineral salts, vitamins and others), based on their 

functionalities (“Codex Alimentarius Commission - Procedural Manual”).  
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In Europe, together with the nutritional information, these compounds are also listed on product 

labels, being mentioned with the “E” letter, followed by the number corresponding to its 

category. Thus, in the case of coloring agents the identifications are made using numbers 

between 100 and 180, the preservatives are identified with numbers between 200 to 285, the 

antioxidants are identified using numbers between 300 to 321 and for texturing agents, the 

numeric scale range between 322 to 495. The numerical scale of 500 to 1520 comprises acids, 

alkalis, flavour enhancers and sweeteners, as well as additives with various other functions 

(Janiszewska-Turak et al., 2016). 

The use of all food additives is controlled by legislation, which is harmonized across the 

European Union. The legislation, in each member state, is based on the various additive 

directives incorporated into the appropriate national legislation. 

The framework Directive on Additives (89/107/ EEC) provides the “umbrella legislation”, 

under which the individual additives directives are developed. It includes a definition of a food 

additive, exclusions from the scope of the definition and a list of food additive categories, one 

of which is “colour”. The three major detailed directives on additives are “colours” (94/36/EC), 

“sweeteners” (94/35/EC) and “additives” other than “colours and sweeteners” (95/2/EC), the 

latter usually being referred as “The Miscellaneous Additives Directive”. Commission 

Directive 95/45/EC deals with purity criteria for colours, i.e. specifications (Downham and 

Collins, 2000). 

Aiming the application of food additives by the industry, studies must be carried out which 

demonstrat not only their purpose, but also the daily dose of consumption, so as not to endanger 

the health of the consumer. In European Union, the EU's Scientific Committee for Food (CEC) 

is the entity responsible for evaluating all food additives (Pisanello, 2014). The evaluations 

performed by this organization are based on reviews of all available toxicological data, 

including observations in humans and in animal models, making studies in lifetime feeding and 

multigeneration in experimental animals. Thus, the maximum consumption level of an additive 

cannot demonstrate toxic effects in humans (European Parliament and Council., 1994). 
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1.1.1 The relevance of food additives 

Food additives are used in food products following a regulatory framework to control health 

risks. In fact, the use of these compounds is defined by two factors: safety and technological 

need (“Codex Alimentarius Commission - Procedural Manual”).  

Regarding the safety, all food additives are tested and evaluated with an appropriate assessment, 

considering some parameters, such as, any cumulative effects, synergistic or strengthening of 

their functions. The additives should not represent health risk to consumers, at proposed levels 

of application. All food additives are kept under a permanent and reassessed observation, in 

order to know the variations in the conditions of the proposed use levels and new scientific data 

must always be in accordance with the approved specifications and purity (“Codex 

Alimentarius Commission - Procedural Manual”). 

Concerning the technological needs, these compounds are applied for several reasons, such as 

to maintain the food quality and nutritional features, by introducing the necessary constituents 

in foodstuff (beneficiating certain group of consumers with special dietary needs); and for 

keeping quality or stability of a food products and, improving the organoleptic properties (this 

application cannot change the nature, substance or quality of the food product). These changes 

in food products can provide benefits in the manufacture process, preparation, treatment, 

packing, transport or shelf life of foodstuff (“Codex Alimentarius Commission - Procedural 

Manual”). 

In addition, the approval of a food additive is limited as much as possible to a specific food, for 

specific purposes, and under specific conditions (Janiszewska-Turak et al., 2016). Food 

additives could be classified according to its application (Sezgin and Ayy, 2017), such as:  

i) Extending the shelf life by protecting quality - preservatives: antimicrobial substances 

(nitrite, nitrate, benzoic acid, propionic acid, sorbic acid) and antioxidant (BHA, BHT, 

gallates) substances;  

ii) Improving food structure, preparation and cooking: pH regulators, anti-caking agent 

(silicate, magnesium oxide, magnesium carbonate), emulsifiers (lecithin, mono and 

diglycerides), stabilizers, thickeners, sweeteners, fermentation agents, moisture 

regulators, maturing agents, bleaches, fillers, foam conditioners, and polishers; 

iii) Improving colour and flavour: flavour enhancers, condiments (flavour substances), 

colorants (tartrazine and indigotine), protecting and improving nutritional value 
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(nutritional elements), replacing missed nutrients during processing (B1, B2, and niacin), 

adding nutritional elements that might be lacking in the diet (vitamins A and D). 

 

1.1.2 Application of colorants in the food industry 

According to some authors a colorant “is any dye, pigment or substance which when added or 

applied to a food, drug or cosmetic, or to the human body, is capable (alone or through 

reactions with other substances) of imparting colour” (Kumar et al., 2017). In particular, 

colorants play an important role in consumer preferences, because when applied the turn 

products much more attractive, making then catch attention. Thus, colour is often a significant 

factor that will define the food choice and eating desires, being extremely important in the 

selection of competitive products (Ruumpol, 2014). 

Although artificial colours began to dominate the market for paints and textiles, in the 

nineteenth century these pigments started to be highly used in the food industry to improve the 

appearance of certain foods (López et al., 2018). The first artificial colorant (mauveine) was 

developed in 1856, by the researcher Sir William Henry Perkin. Thus, the beginning of that 

century was marked for the major production and recovery of artificial colours obtained from 

petroleum-derived products, such as aniline. These products were called ‘coal-tar’ colours 

because the starting materials were obtained from coal (Lakshmi, 2014). 

The colorants can be divided into 3 groups, such as: i) colorants that their ADI (acceptable daily 

intake) values are determined and allowed for use; ii) colorants permitted to be applied only for 

special purposes (such as surface finishing, CaCO3, aluminum, silver, and gold), and iii) 

colorants that are only allowed to be uses in certain food products (titanium dioxide, vegetable 

carbon, and red beet) (Sezgin and Ayy, 2017). 

Moreover, colour additives can also be divided regarding their origin, into natural and artificial 

additives.  Natural additives are molecules extracted from plants (indigo, saffron, passiflora), 

insects (cochineal beetles, lac scale insects), animals (some species of mollusks, shellfish), and 

minerals (ferrous sulfate, ochre, clay), having importance not only as coloring agent, but also 

due to their medicinal properties (antibacterial and anti-fungal, antioxidant, anti-inflammatory, 

and anti-cancer properties) (Alagusundaram and Chetty, 2010). However, unfortunately these 

compounds have a low stability, because of several factors like low resistance to a higher 

temperature, light, oxygenation, and pH change (Cortez et al., 2017).  

https://en.wikipedia.org/wiki/Acceptable_daily_intake
https://en.wikipedia.org/wiki/Acceptable_daily_intake
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On the other hand, artificial additives are not extracted, but are a result of a chemical or 

enzymatic reaction. They are either completely identical to a natural equivalent, or pure 

creations which do not exist in a natural state (Janiszewska-Turak et al., 2016). They are 

synthesized from raw materials obtained from coal tar or petroleum by-products. Artificial 

colours, namely brilliant blue (E133) are used in dairy products, sweets and drinks. It can cause 

hyperactivity, skin rashes, bronchoconstriction (especially when combined with other artificial 

colours). Indigo carmine (E132), fast green (E143), erythrosine (E127), and Allura red (E129), 

have been linked to behavioural changes, especially in children (Turner et al., 2012). 

Unfortunately, these reactions and their potential connection to artificial food additives have 

been largely dismissed by governmental and the food industry. In 2004, an analysis of fifteen 

studies found evidence that artificial colours worsen the behaviour of children with attention 

deficit hyperactivity disorder (ADHD), which is a diagnosis given to children that exhibit 

symptoms of hyperactivity, impulsivity, and distractibility (Eugene et al., 2012). Other 

symptoms include fidgeting, squirming, inability to listen, forgetfulness, and lack of response 

to discipline. According to the Centers for Disease Control, approximately 5% of children have 

ADHD, although other studies have put the estimate between 8-10% of school-aged children 

(Stevens, 2014).  

The several norms attached to the EU regulations (94/36/EC) set out a list of the permitted 

colours, having been identified 43 colours (17 artificial and 26 natural pigments). In addition, 

a list of basic foodstuffs to which colours must not be added, a list of foodstuffs in which only 

a limited number of colours may be used, a list of colours which have restricted application and 

a list of colours generally permitted and colour with maximum inclusion levels for particular 

food categories is present (Downham and Collins, 2000). 

Additives are added in several stages of food production with two main purposes, one is to 

make food safe by inhibiting bacterial growth, oxidation formation, and other chemical 

changes. The second reason is that addiditves are attracting the consumer, improving by-

products organoleptic properties, such as colour, appearance, flavour and smell (Lakshmi, 

2014). 

 

1.1.3 Advantages of the use of natural colorant additives 

Colour is spread widely in nature in fruit, vegetables, seeds and roots. In our daily diets, we 

consume large quantities of many natural pigments, especially anthocyanins, carotenoids, 

http://www.naturallysavvy.com/pediatric-nutrition/adhd-diet
http://naturallysavvy.com/care/adhd-diagnosis-on-the-rise
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chlorophylls, and betacyanins (Martins et al., 2016). Significant development has occurred with 

natural colorants since their wider commercialization around 25 years ago. The growth in the 

use of natural colours comes from increasing the consumer preference for natural products with 

clean labels (Meghwal and Goyal, 2016). Natural pigments have a surprising number of colours, 

which indicate a degree of sweetness, ripeness or deterioration, type of flavour and visual 

information about phytochemical properties, namely the presence of natural pigments, such as 

anthocyanins, curcumin, betalains, and others (Lakshmi, 2014). 

Regarding the advantages of the use of natural compounds, the risk of toxicity is analysed by 

several processes, in which the structure/activity relationship of the constituent’s present is 

analysed. The same tests do not apply to the artificial compounds, since the active principles of 

natural matrices vary according to several factors: the plant classification family, conditions 

imposed on its growth, the plant part from which the compound is isolated, being also important 

to mention that a particular compound can be isolated from different species (Sharma, 2014; 

Burdock and Wang, 2017). The food additives (namely natural colorants) differ from each other 

according to several properties, such as chemical structures, sources and use purposes. Some 

examples of natural food colorants and their health benefits are presented in Table 1 

(Alagusundaram, 2010). 

Table 1: Some pigmented molecules, possible sources, health benefits and apparent colours. 

Molecule Source Health benefits Colour Reference 

Anthocyanins 

Grape, elderberry, blackcurrant, 

red beets, black carrots, purple 

passion fruit. 

Anti-inflammatory, antiviral, 

antimicrobial and anti-cancer 

benefits and the prevention of 

chronic diseases. 

Red to blue. Khoo, 2017 

β-carotene 
Carrots, pumpkin, sweet potato, 

winter squash. 

Skin protection and cell 

growth. 

Orange, red 

and yellow. 
Burri, 1997 

Curcumin Curcuma longa. 

Prevents cancer formation and 

progression, increases the 

activity of certain enzymes 

responsible for digestion, and 
promotes detoxification of 

liver which acts as an 

antibacterial agent. 

Yellow. Soriano, 2012 

Lycopene 

Tomatoes, watermelon, 

grapefruit, papaya, sweet red 

peppers, persimmon, asparagus, 

red cabbage, and mangos. 

Reducing all types of cancer, 

especially the risk of breast, 

prostate and cervical cancer. 

Orange-red. 
Story et al., 

2010 
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Other 

carotenoids 
 Melon, papaya, orange, mango. 

Antioxidant activity, pre-

substance of vitamin A, also 

protects against oxidative 

damage and is evaluated 

positively for health. 

Golden yellow 

to orange. 

Fiedor and 

Burda, 1997 

 

Thus, the importance of these molecules makes it necessary to develop new techniques and 

processes that allow not only the extraction of substances from natural matrices, but also, to 

stabilize substances already discovered. It is also important to study new species that are the 

source of these substances, taking advantage of all available resources in nature (Martins et al., 

2016). 

 

1.1.4 Anthocyanins and their natural sources 

Anthocyanins are the most important and broad group of natural pigments, after chlorophyll, 

visible to the human eye. These molecules are characterized as polyphenols and are responsible 

for several colours of many fruits and vegetables, varying from a wide range of colours between 

red and blue (Khoo, 2017).  

This group of compounds have been widely used as food additives or dietary supplements, 

because of their multiple health promoting effects, including anti-inflammatory, anti-

proliferative and antioxidant roles. Therefore, the extraction of anthocyanins from natural 

resources has become an important research topic (Mei et al., 2018).  

Anthocyanin is the glycosidic form, while anthocyanidin is known as the aglycone and are 

grouped into 3-hydroxyanthocyanidins, 3-deoxyanthocyanidins, and O-methylated 

anthocyanidins (Khoo, 2017). This pigment belongs to the flavonoid group, although it has a 

positive charge in the oxygen atom of the C-ring of the basic flavonoid structure. It is also called 

flavylium (2-phenylchromenylium) ion (Garcia-Alonso et al., 2009).  

The empirical formula for the flavylium ion of anthocyanin is C15H11O
+, with a molecular 

weight of 207.24724 g/mol. The conjugated bonds of anthocyanins result in red, blue, and 

purple-colored plants (Taylor et al., 2014). The general molecular structure of anthocyanin is 

shown in Figure 1 (Khoo, 2017). 
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Figure 1: The general anthocyanin chemical structure. 

The most common types of anthocyanins are cyanidin, delphinidin, pelargonidin, peonidin, 

malvidin and petunidin (Table 2) and they are largely distributed in fruits, vegetables and 

flowers (Castañeda-Ovando et al., 2009).  

Table 2: Structure of common anthocyanins found in nature (Castañeda-Ovando et al., 2009). 

Anthocyanins R1 R2 Main colour 

Cyanidin OH H Orange-red 

Delphinidin OH OH Bluish-red 

Pelargonidin H H Orange 
Peonidin OCH3 H Orange-red 

Malvidin OCH3 OCH3 Bluish-red 

Petunidin OCH3 OH Bluish-red 

    

In nature, cyanidin is a reddish-purple (magenta) pigment, and it is the major pigment in berries 

and other red-colored vegetables, such as red sweet potato and purple corn (Cevallos-Casals 

and Cisneros-Zevallos, 2003).  

On the other hand, delphinidin has a chemical characteristic similar to most of the 

anthocyanidins. It appears as a blue-reddish or purple pigment in the plants. The blue hue of 

flowers is due to the delphinidin pigment (Katsumoto et al., 2007). Pelargonidin differs from 

most of the anthocyanins, and in nature, it appears as red-colored pigment and it gives an orange 

hue to flowers and red colour to some of the fruits and berries (Jaakola, 2013). 

 The methylated anthocyanidin, such as peonidin is another type of anthocyanin abundantly 

found in plants, it has visible colour magenta. Peonidin is abundantly found in berries, grapes, 

and red wines (Khoo, 2017). Malvidin is another O-methylated anthocyanidin. It has a purple 
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colour, and is abundant in blue colored flowers, especially Summer Wave Blue. Besides, it is 

the major red pigment in red wine; it appears in a darker dusty red colour in matured red wines 

(Barnard et al., 2011). Petunidin is a methylated anthocyanidin, its darker red or purple pigment 

is soluble in water and it has been detected in blackcurrants and purple petals of flower (Yabuya 

et al., 1997).  

Anthocyanins extracted and isolated from natural matrices can be used in different industries, 

being most sought by the food industry, where they are used as colorants in order to enhance 

colour in food products (Carocho et al., 2015).  

These are considered not only as a coloring matter, but also as a class of colorants because more 

than 600 types of anthocyanins have been found and characterized in nature, all of which have 

shades ranging from blue to red (Wrolstad and Culver, 2012; Carocho et al., 2015). The most 

common sources of anthocyanins, the pigment, the kind of industrial application and health 

benefits are present in Table 3.  

Table 3: Sources of anthocyanins, health benefits and industrial applications. 

Source Colour Health benefits Industrial applications Reference 

Blueberries, 
Chokeberries,  

Black raspberries,  

Red/purple Anti-inflammatory  Juice industry  
El-ella D.M.A. 
and, Bishayee. 

A. (2019). 

Rubired Grape Red/purple Antioxidant Wine and juice industry  

Black Carrot Red/orange Antioxidant 
Natural colorant in 
yoghurt 

Bilek, 2016 

Purple sweet potato Magenta 

Antioxidants,  

Anticarcinogenic, 
Antidiabetic  

Sweeteners, beverage, 

noodle production, 

industrial alcohol, and 
derived products as 

maltose 

Jaffer and 

Moothandassery, 
2012 

Purple passion fruit  Purple 
Anti-inflammatory, 
Antimicrobial  

Anticarcinogenic 

Juice industry Fang, 2015 

1.2 OBTAINING FOOD COLORANTS RICH IN ANTHOCYANINS 

Anthocyanins present a high potential to be used as colorants in the industrial sector, due to the 

attractive orange, red, blue and purple colors, and in particular in food industry due to the easy 

solubility in water, that allows their incorporation into aqueous food systems (Mazza and 

Miniati, 1993). The FAO/WHO Expert Committee on Food Additives (JECFA), concluded that 

extracts rich in anthocyanin compounds have a very low toxicity (Bkowska-Barczak, 2005), 
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indicating a safe consumption, even at high doses, compared to artificial colorants. However, 

anthocyanins have not only colorant potential, but also health benefit effects (Khoo, 2005). 

According to some authors, the health benefits are associated with the increase of sight 

acuteness, anti-carcinogenic activity, antioxidant capacity, anti-ulcer activity and the 

maintenance of normal vascular permeability (vitamin C2). Also, the isolated and purified 

anthocyanins from fruit and vegetables may be useful in the treatment of chronic diseases, 

particularly, type 2-diabetes. However, the most significant function of anthocyanin extracts is 

their antioxidant activity (Bkowska-Barczak, 2005). 

All these bioactive properties, give anthocyanins a higher value in the industrial sector, 

especially for the food and nutraceutical industry. However, the extraction of these compounds 

involves complex processes, which require the adjustment of various parameters, such as the 

extraction technique to be applied, solvent type, extraction time, temperature and all the sample 

handling (Pereira and Meireles, 2012). For this, it is necessary to develop and optimize 

extraction methodologies that allow not only the extraction of these molecules, but also to 

guarantee a high yield and quality (Santana et al., 2009).  

 

1.2.1 Anthocyanins extraction techniques 

A huge array of solid-liquid extraction procedures are available to recover compounds of 

interest from natural matrices (Chemat et al., 2017; Zhu et al., 2017). Concisely, the solid-liquid 

extraction consists in keeping the solid sample (usually in powder form) in direct contact with 

a solvent for a specific time, and by applying a certain level of energy (conventional heat, 

ultrasound or microwave radiation, pressure, etc.) (Fattore et al., 2016; Zhu et al., 2016). The 

common solid-liquid procedures comprise the conventional methods, such as Soxhlet and 

maceration extractions. These methods are easy to apply and relatively inexpensive; 

nevertheless several authors have pointed out some disadvantages, which are mainly associated 

with their application at industrial level, i.e. the use of large amounts of solvent and long 

extraction times (Azmir et al., 2013). Thus, the application of different extraction techniques 

may increase the extraction speed and yield, meaning, that it is possible to choose a more 

environmentally friendly extraction system, with a better performance than its conventional 

extraction. However, conventional methods are still important at industrial level, mainly due to 

the lack of comparative results showing the advantages of the alternative modern techniques. 
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The following points will describe the conventional and non-conventional methods applied to 

extract natural colorants, such as maceration, soxhlet extraction (SE), high hydrostatic pressure 

(HHP), pulsed electric field (PEF), and ultrasonic extraction (UE) (Lakshmi, 2014). 

1.2.1.1 Maceration extraction 

Maceration extraction (Figure 2) has been the most common used method for the extraction of 

a diverse number of compounds present in plants, including phenolic compounds. These 

molecules have been extracted from different dry plant parts powders, or only by soaking fresh 

fruits and plants with subsequent solvents (Castañeda-Ovando et al., 2009). 

 

Figure 2: Maceration extraction of anthocyanin compounds 

This technique, in addition to being the simplest system, effectively promotes the extraction of 

active compounds using organic solvents, or water/alcohol mixtures, and can be performed with 

or without temperature and agitation (Albuquerque et al., 2016). 

Anthocyanin compounds are commonly extracted from flowers, berries, black currant, purple-

colored fruits and vegetables. In spite of water to be the typical extraction solvent for isolation 

of these pigments, some food processing industries use alcoholic solutions (such as ethanol, 

methanol, acetone or mixed solvents) to perform the extraction of these compounds. This can 

be justified because anthocyanins are soluble in water and in polar organic solvents (Kahkonen 

et al., 2001).  

However, one of the disadvantages of these compounds is the absence of solubility in the 

nonpolar organic solvent and the instability in alkaline or neutral solutions (Khoo, 2005). 

The extraction methods using acidified methanol or ethanol are the most applied and according 

to some studies, the extraction with methanol is the most efficient, achieving higher yields in 
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comparison to ethanol (Ongkowijoyo et al., 2018; Blackhall et al., 2018), concluded that the 

extraction with methanol is more effective than with ethanol in the anthocyanin extractions. 

However, the food industry prefers the use of ethanol in this process, due to the toxicity 

underlying to methanol (Castañeda-Ovando et al., 2009). 

1.2.1.2 Soxhlet extraction (SE) 

The Soxhlet extractor was invented in 1879 by Franz von Soxhlet and the equipment can be 

seen schematically in Figure 3. The extraction solvent is located in a heated flask and on top 

of that is the main chamber, containing the solid material (usually placed in a filter paper). 

Solvent vapour migrates up a distillation arm and condenses into the sample chamber, which is 

filled with warm solvent. The extraction temperature cannot be changed and is a few degrees 

lower than the boiling point of the solvent. Some of the desired compounds will dissolve and 

when the chamber is filled with solvent, a siphon side arm will automatically empty the extract 

down to the heated flask again.  

 

Figure 3: Schematic representation of a Soxhlet extractor system 

The process restarts, and the desired compound are by this process concentrated at the bottom 

flask. The cycle can be repeated many times, over hours or days. After extraction, the solvent 

is removed, typically through a rotary evaporator, yielding the extracted compound (Petersson, 

2009). Due to the high temperatures used, in combination with long extraction times, soxhlet 

extraction may not be suitable for thermolabile compounds. Soxhlet extraction has been used 

for extraction of acrylamide from foods (Saini and Keum, 2018). 
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There are many factors that influence the Soxhlet extraction process, such as matrix 

characteristics, particle size of samples, and boiling temperature. Temperature does not only 

affect the yield and quality of final products but also reduces the visual colour of the extracted 

compounds. It can be slightly solved by using membrane separation or vacuum (Petersson, 

2009; Di Khanh, 2015; Saini and Keum, 2018). This extraction methodology has been widely 

used for industrial applications with high efficiency and reproductivity. Nevertheless, it is an 

old model and requires longer time and more solvents for the operation, compared with other 

novel fast extraction techniques, such as microwave-assisted and ultrasound-assisted 

extractions. Thus, this technique is mostly applied for the extraction of oil and other phenolic 

compounds, instead of the extraction of anthocyanins from fruits and vegetable (Di Khanh, 

2015). 

 

1.2.1.3 High hydrostatic pressure (HHP) and Pulsed electric field (PEF) 

High hydrostatic pressure (HHP) and pulsed electric fields (PEF) belong to an environment 

friendly category and energy efficient technologies. These methods enhance the mass transfer 

processes within plant or animal cellular tissues, as the permeability of cytoplasmic membranes 

can be increased, which in turn enhances extraction of valuable cell components (Di Khanh, 

2015). 

In addition, the decrease in the dielectric constant of water under HHP combined with 

temperature, leads to a decrease in the polarity of the media, contributing to the higher yield of 

total phenolics and other antioxidants. PEF is reported to enhance mass transfer rates by 

electroporation of plant cell membranes, improving tissue softness and thus influencing the 

textural properties. PEF is reported to be an ideal method to enhance juice production, and 

increase the extraction of valuable components (Lakshmi, 2014). 

 

1.2.1.4 Ultrasonic assisted extraction (UAE) 

One of the extraction techniques that have the potential for speeding up and simplifying sample 

treatment is the ultrasonic assisted extraction (UAE). It can improve the recovery of bioactive 

components, mainly the ones that are sensitive to heat at prolonged extraction times, by keeping 

these variables at low levels (Figure 4). Ultrasonic energy, when imposed into a solution, 
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causes acoustic cavitation – which means bubble formation and subsequent implosion (Renata 

Vardanega et al., 2014). 

 

Figure 4: Representative diagram of an ultrasonic cell disruptor. 

The collapse of bubbles created by the sonication of solutions results in the generation of 

extremely high local temperature and pressure gradients referred to as localized “hot spots”. 

These hot spots contain effective temperatures of around 5000 K, pressures of about 1000 atm, 

and heating and cooling rates above 1010 K/sec. UAE is an effective extraction technique, in 

comparison to conventional methods, because the ultrasound radiation is able to disrupt cellular 

walls allowing better penetration of solvents in the matrix material, thus improving mass 

transfer and increasing cell content release (Bonfigli et al., 2017; Chemat et al., 2017). 

Ultrasonic extraction has been used for the extraction of anthocyanins from foods (Petersson, 

2009). 

 

1.2.2 Stability of natural extracts rich in anthocyanins 

The replacement of artificial colorants by natural pigments is a challenge, due to the higher 

stability of artificial colorants with respect to some parameters, such as light, oxygen, 

temperature and pH, among others (Bukowska-Barczak, 2005). 

The chemical stabilization of anthocyanins is the main focus and preoccupation of recent 

studies, due to their abundant and potential applications, the beneficial effects and their use as 

alternatives to the artificial counterparts (Cortez et al., 2016).  

However, the stability of this natural pigment is determined by numerous factors, including the 

structure and concentration of the pigment, pH, temperature, light intensity, the presence of 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Vardanega%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25125880
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vardanega%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25125880
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copigments, metal ions, enzymes, oxygen, ascorbic acid, sugars, their degradation products, 

and sulfur dioxide (Bkowska-Barczak, 2005). 

Regarding the molecular structure, the stability of anthocyanins is different from other natural 

compounds. The anthocyanin radical is more stable than other radicals generated in the human 

body, so the duration of this radical is longer (Joshi and Preema, 2017). The stability of this 

molecule is also influenced by the B-ring in the structure of this compound, and the presence 

of hydroxyl or methoxy groups.  Hydroxyl or methoxy groups are known to decrease 

anthocyanin stability in solution (Khoo, 2017). So, the stability of anthocyanin is based on 3 

principal factors, such pH, co-pigmentation and temperature. 

 

1.2.2.1 Stability of the anthocyanins’ colour based on pH 

The stability of anthocyanins and their colour is affected by different pH conditions. This can 

be explained because the molecular structure of anthocyanins has an ionic nature (Cortez et al., 

2016). In a strongly acidic condition (pH=1), the red-colored flavylium cation is the 

predominant species. Acylated anthocyanins are only stable at pH values where the flavylium 

cation dominates. Between pH values of 2 and 4, the uncharged blue quinonoid unstable species 

prevails, and if the pH increases, the ionization of the hydroxyl groups forms the anionic blue 

quinonoid unstable species. At pH 5 and 6, acylated anthocyanins are unstable and decolorize 

quickly by hydration at the 2-position of the anthocyanidin skeleton (carbinol pseudobase and 

chalcone structures are formed). Evidence has been provided that the chroma of some 

pelargonidin derivatives increased when the pH was further increased to neutral conditions 

showed that colorants rich in acylated anthocyanins, such as sweet potato and purple carrot, 

were more resistant to the pH solution than colorants rich in non-acylated anthocyanins such as 

red grape. The other researchers confirmed the unusual stability of acylated anthocyanins at pH 

over 5.0 (Khoo, 2017). 

 

1.2.2.2 Stability of the anthocyanin’s colour based on co-pigmentation  

The co-pigmentation is a phenomenon in which the pigments and other colorless organic 

compounds, or metallic ions, form molecular or complex associations, generating a change or 

an increment in the colour intensity (Castañeda-Ovando et al., 2009). 
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In food science, this phenomenon is considered as a fascinating natural process based on 

noncovalent (supramolecular) complexation. It has been shown to be the main mechanism by 

which certain colours, particularly blue, violet, and red, are stabilized and modulated in flowers, 

vegetables, and fruit (in particular, berries), as well as food products derived from them. This 

is very relevant because colour is one of the main quality factors crucial in product acceptance 

(Trouillas et al., 2016). 

The term “co-pigmentation” is commonly reserved for anthocyanins, due to their extended π-

conjugated systems. This phenomenon is known to influence the colour change of anthocyanins 

in a solution in addition to different pH conditions. Co-pigmentation of the anthocyanin 

aglycone is referred to as a phenomenon where anthocyanins are reinforced by metallic ions or 

other flavonoids, helping to stabilize the colour of the leaves, flowers, and fruits of the plant. 

Also, the colour changes of anthocyanins in flower are due to the co-pigmentation of these 

molecules with other flavonoids and phenolic acids, increasing the colour intensity of flowers. 

In addition, glycosylation and acylation increase the colour strength of anthocyanin (Trouillas 

et al., 2016). 

Recent research has shown that anthocyanins with acylating substituents are more stable during 

processing and storage than other natural pigments, so the full colour stabilization is best 

achieved when the anthocyanins are bear aromatic than aliphatic ones (Khoo, 2017).  

 

1.2.2.3 Stability of the anthocyanin’s colour based on temperature 

In addition to the pH and co-pigmentation stability, the temperature is another significant 

parameter that influences the colour of anthocyanin compounds. These molecules are less stable 

at higher solution temperatures. A study performed by West and Mauer (2013) reports that heat 

treatment at a maximum temperature of 35 °C reduces the total anthocyanin content in 50% in 

grapes, comparison to the control berries at 25°C. On the other hand, it was also reported by 

the same authors that up to 40 °C, the anthocyanin colour changes from red to orange, although 

having a low the pH in the solution. 

In addition, mild heat treatment of the extract to up to 50 °C has been shown to inactivate the 

enzymatic reaction (Patras et al., 2010). Therefore, mild heat treatment of raw materials, such 

as blanching, in the food processing industry can prevent oxidation of anthocyanins by 

polyphenol oxidase (Khoo, 2017). 
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1.2.3 Application of anthocyanin colorants in food products 

Anthocyanin pigments are mainly applied with the purpose to give colour to the products which 

do not have colour, or that have lost colour during processing. Due to this, food sensory 

attributes can be improved, resulting in the satisfaction of a majority of consumers, which play 

a key role in the influence of the industrial sector (Thackston, 2013).  

The application of this pigment aims to emphasize the colour of products; however, it is 

important to note that a pigment should not be added to hide the symptoms of food deterioration 

or worsen the quality of food (Janiszewska-Turak et al., 2016). 

The global food coloring market has grown rapidly in recent years and it is expected to continue 

growing by 10% to 15% annually (Carle and Schweiggert, 2016). As demonstrated in other 

studies involving natural colorant extracts with the aim of replacing artificial additives (López 

et al., 2019; Fernandes et al., 2019), the key lies down behind the preservation of the beneficial 

properties of the extracts without altering the organoleptic characteristics of the original 

product. 

The choice of an appropriate colour to food is very challenging and a wrong selection of colour, 

may lead to many problems, like the lack of consumer appeal and the failure of the success of 

the product in the commercial market. Colour suppliers are facing challenges to make an 

effective cost production, higher stability, easy to handle productions, and higher technology in 

the production of colours (Janiszewska-Turak et al., 2016; López et al., 2019; Fernandes et al., 

2019). In this attempt, new technologies/methodologies are welcome in the food industry in 

order to improve and benefit over existing technologies (Petersson, 2009). 

1.3 THE USE OF INDUSTRIAL AGRI-FOOD WASTES 

The food industry is, maybe, one of the most regulated sectors in Europe. Hygiene and safety 

are the principal objectives, which take priority to reduce environmental impacts. In terms of 

wastes, the European Waste Framework Directive (WFD) defines bio-waste as "biodegradable 

garden and park waste, food and kitchen waste from households, restaurants, caterers and 

retail premises and comparable waste from food processing plants" (Pap and Myllykoski, 

2014). The WFD prescribes that member states shall take measures to encourage the separate 

collection of bio-waste, with a view to the composting and digestion of bio-waste and their 
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treatment, in a way that protect the environment and the use of environmentally safe materials, 

produced from bio-waste (Pap and Myllykoski, 2014).  

The wastes resulting from the food processing are solid and liquid. In the fruit case, the amount 

of the obtained by-product during the processing is usually 30-50%, depending on the fruit. In 

this sector, two groups of by-products can be distinguished, such as pre-processing by-products 

that include stems, stalks and rotten fruits from sorting processes, and by-products that occur 

during processing such as seeds, pulp, pomace, and peels (Djilas, 2009). 

Many companies dump the waste near to their installations, since these wastes have high 

nutrient levels, high water content and can support bacterial growth and fermentation, which 

may cause odours and other environmental problems (Van Dyk et al., 2013). Typically, the 

disposal of fruit solid waste may be achieved by incineration or utilization as animal feeds and 

fertilizers. Only in some cases, fruit wastes are used as raw material to produce secondary 

products in industrial scale. For example, in the case of a grape, seeds have long been known 

for their oil-rich characteristics (Waste et al., 2002). Apart from traditional uses as feeds and 

fertilizers, in some developing countries, those wastes may be simply discarded on the outskirts 

of the cities, causing major pollution to the environment, or disposed of in local landfills. The 

disposal of fruit wastes incurs a very high cost to the industry. In the USA, the disposal fee of 

apple pomace has been estimated to be higher than USD 10 million annually (Sawasdee and 

Stathopoulos, 2017). 

Phenolic compounds are found in many fruits and vegetables and have several properties, which 

make them useful as antioxidants, antimicrobials and anticancer compounds, as well as having 

cardio-vascular protective properties. Phenolic compounds may differ according to the source 

of fruit and can be present at different concentrations. Therefore, these compounds could be 

extracted from different waste products, in order to add a higher value to these products (Van 

Dyk et al., 2013).  

 

1.3.1 The waste problematic in the food industry 

According to a report published by the Food and Agriculture Organization, the 2007 production 

volume of fruits and vegetables worldwide was 1,650 million tones, of which approximately 

12% (or 198 million tons) was wasted at processing stage (Figure 5). Geographically, high 

percentages of fruit and vegetable manufacturing wastes (20-25%) were generated in Sub-
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Saharan Africa, North Africa, West, and Central Asia, South and Southeast Asia, and Latin 

America, while those percentages in Europe, North America and Oceania, and in industrialized 

Asia were smaller (2%) (Sawasdee and Stathopoulos, 2017). 

The food loss means the decrease in edible food mass, throughout the food chain. This occurs 

in production, postharvest and processing stages in the Food Supply Chain (FSC). Based on 

this definition, food losses do not include the parts of the merchandise not intended for human 

consumption, such as peels or seeds of fruits and bones of animal origin products. These losses 

can be avoided by a correct action, by maintaining the cold supply chain or ensuring correct 

storage conditions for products. Based on this definition, food loss also occurs if the product 

that was originally intended for human consumption is recovered in the form of feed, fertilizer 

or energy. On the other hand, the term “food waste” is ampler and includes all resources that 

are lost in the different sectors of the food supply chain (Pap and Myllykoski, 2014). 

 

Figure 5: Per capita food losses and waste, at consumption and pre-consumptions stages in different regions 

(Cederberg, 2015). 

With a high volume of production, the beverage industry inevitably generates a large quantity 

of waste. The waste streamed from the fruit juice processing are produced in solid and liquid 

forms. The liquid waste streams are mainly discharge of cleaning water and process water 

which have low-to-medium biological oxygen demand (BOD) values and can be treated by 

aerobic or anaerobic systems. On the other hand, the solid waste is highly polluted and more 

difficult to treat (Allobergenova, 2006). Conventionally these wastes are conducted for using 

as animal feeds or fertilizers. Although they are discarded from the process, because they cannot 

be further used, these solid wastes retain high concentrations of bioactive compounds. It is very 

relevant to refer, that peels of several fruits (for example apple, peach, pomegranate) contain 
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higher amounts of bioactive compounds than the edible parts (Sawasdee and Stathopoulos, 

2017). 

Substantial evidence revealed that all parts of fruit solid wastes are rich in health-benefit 

phytochemicals. Rather than using them conventionally for feeds and fertilizers, an alternative 

valorisation of these materials is to create higher value-added products. This alternative has 

attracted great interest among researchers and the industrial sector, in the last few decades 

(Sawasdee and Stathopoulos, 2017). 

The food and beverage industry is one of the most important industrial sectors in the European 

Union. In Finland, food industry ranks fourth, after the metal, forest and chemical industries, in 

terms of the value of its output. The food supply chain is also a major employer, the entire chain 

provides work for some 300,000 wage and salary earners, 40,000 of whom are employed by 

the food industry (Pap and Myllykoski, 2014). At the same time, they reported that close to 

one-third of the food produced globally would virtually become waste, totalling 1.3 billion tons 

per year. This is clearly unsustainable, since food waste will have serious social, environmental 

and economic impacts. Food wastage also entails the waste of resources used to produce food, 

such as water, energy, land for agricultural production, and other inputs (Wunderlich and 

Martinez, 2018). In addition, the environmental impacts of the food chain would have been 

meaningless if the produced goods became waste. It is for this reason that the waste 

minimization and utilization become a desirable strategy, because the waste streams from the 

food industry are a good source of organic content, usually rich in valuable compounds, such 

as oils, sugars, and others compounds (Pap and Myllykoski, 2014).  

The losses in industrialized countries are so high as in developing countries, however, in 

developing countries, more than 40% of the food losses occur at postharvest and processing 

levels, while in industrialized countries, more than 40% of the food losses occur at retail and in 

consumption. The food waste by the consumer in industrialized countries (222 million tonnes) 

is almost as high, as the total net food production in sub-Saharan Africa (230 million tonnes) 

(Pap and Myllykoski, 2014). 

The environmental legislation has been very important, contributing significantly, to the 

introduction of sustainable waste management practices throughout the European Union. The 

primary aim of waste legislation is the prevention of waste generation. The Waste Framework 

Directive 2008/98/EC defines waste prevention as “measures taken before a substance, 
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material or product has become waste, that reduces the quantity of waste, including re-use or 

extension of life-span, the adverse impacts of the generated waste and the content of harmful 

substances in materials and products. Once waste is formed, it should be recycled or recovered 

for better environmental and economic performance” (Dialogue, 2010). 

 

1.3.2 The particular case of passion fruit bio-residues 

The exotic fruit juice manufacturing is another segment that generates a considerable quantity 

of waste. Pineapple, mango, and passion fruit are among the most important fruits for juice 

industry and have high percentages of inedible/unusable parts (Sawasdee and Stathopoulos, 

2017). 

Passion fruit (Passiflora edulis Sims) (Figure 6) is one of the most economically important 

crops of Passiflora L. genus which due to the quality of the fruit. It is widely cultivated in 

tropical and semi tropical regions all over the world, and it is mainly used for the production of 

concentrated juice and frozen pulp (Chóez-guaranda et al., 2017). 

 
Figure 6: Passion fruit pulp and epicarp. 

In the first months of 2015, Ecuador exported 6,034 tons of juice, only to Netherlands. It can 

be inferred that approximately 4,369 tons of residues that contains epicarp and seeds were 

produced in this period (Chóez-guaranda et al., 2017). One passion fruit has approximately 58% 

of juice and 42% of residues altogether, which correspond to around 34% of epicarp and 8% of 

seeds. However, this fruit residue could be as high as 75% of the raw material, as it has a thick 

rind. Although passion fruit seeds are edible, they are not a part of the final product and are 

removed as waste (Sawasdee and Stathopoulos, 2017).  



34 

Regarding the bio-residues, the major part of the passion fruit bio-residues is the epicarp, 

accounting in more than 50% of the fruit weight, which is obtained in the beverage production, 

being the main destination of the harvested fruits. Brazil is the largest producer of passion fruit 

in the world, being responsible for 85% of the marketed passion fruit in 2012 worldwide (Kelly 

et al., 2014). The passion fruit epicarp (peel) is constituted by the epicarp (purple part) and 

mesocarp (white part), being rich in soluble and insoluble fibers, between other compounds 

(Kelly et al., 2014). 

1.3.3 Chemical compounds in passion fruit epicarps with emphasizes in pigments 

The purple passion fruit (Passiflora edulis Sims) is a delicious fruit with multiple nutritional 

and medicinal benefits. Passion fruit juice and juice concentrate are one of the most popular 

processed fruit products in the world market (Tripathi, 2016). During the processing of this 

fruit, the epicarp is usually disposed, as a solid residue that constitutes approximately, half of 

the fruit mass. The disposal would cause a substantial worry on the environment, and thus, it is 

imperative to convert the waste that is generated in processing into valuable products 

(Lazarevic, 2010). Previous studies, have mainly focused on pectin extraction from the epicarp, 

thus there is limited research about the extraction of other important constituents. Qualitative 

tests revealed that purple passion fruit epicarp have been reported to be rich in bioactive 

constituents, such as flavonoids, phenolic acids and pigments like anthocyanins (Mei et al, 

2018). 

The edible part and by-products of Passiflora fruits have shown high antioxidant capacity 

(Figueiredo et al., 2016). In general, the antioxidant capacity of passion fruits and their by-

products has been attributed to their content in phenolic compounds (Sasikala et al., 2011). The 

extraction of phenolic compounds from Passiflora species has mostly been performed by solid-

liquid extraction using different extraction solvents such as water, methanol, ethanol, and 

mixtures of these solvents sometimes acidified with trifluoroacetic acid and HCl (Betim Cazarin 

et al., 2016; Simirgiotis et al., 2013; Zeraik and Yariwake, 2010).  

Phenolic compounds (Table 4) have scarcely been studied in Passiflora epicarp. Flavanols 

(catechin or epicatechin), flavonols (kaempferol-3-O-glucoside), flavones (luteolin-8-C-

neohesperidoside) and anthocyanins (cyanidin-3-O-glucoside) have been identified in P. edulis 

through HPLC-DAD (Zibadi et al., 2007), as well as, isoorientin and isovitexin in P. edulis 

flavicarpa ericarp extracts (López-Vargas et al., 2013). Additionally, flavones have been 

identified by HPLC-DAD-ESI-MS/MS in P. mollisima and P. edulis epicarp extracts such as 
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isoorientin, orientin, isovitexin, vitexin, schaftoside and vicenin-2 (Simirgiotis et al., 2013; 

Zucolotto et al., 2012). 

Table 4: Some chemical compounds in the Passion fruit epicarps 

Phenolic compound 

Flavanoids Polyphenols 

Flavanols Flavonols Flavones Anthocyanins 

catechin epicatechin kaempferol-3-O 

glucoside 

luteolin-8-C-

neohesperidoside 

cyanidin-3-O-

glucoside 

 

 
 

 

 

Sugars 

Pectin  Glucose  Fructose 
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2 OBJECTIVES AND WORK PLAN 

Approximately one-third of all food produced globally is wasted every year, throughout the 

whole value chain from farmers to consumers. According to the Food and Agriculture 

Organization (FAO), this value represents around 1.3 billion tons per year.  

These wastes can be reused for other processes; they are a potential source of bioactive 

compounds, such as betalains, betacyanins, polyphenols (including anthocyanins), and 

carotenoids, among others. The bioactive compounds extracted from natural matrices have a 

potential application as natural ingredients for the industry, particularly as functional and 

colorant agents. These molecules are known for their healthy properties, especially, antioxidant 

and antimicrobial activity, as well as, for their potential use as natural food colorants. 

The main objective of this study is to characterize the phenolic profile in anthocyanin 

compounds of epicarp of the purple passion fruit (Passiflora edulis Sims), provided by the 

company KiwiCoop, Portugal. Moreover, the extraction optimization will also be explored, to 

obtain extracts rich in anthocyanins, in order to be used as natural ingredients with colorant and 

bioactive properties. 

Thus, the specific objectives were: 

 Evaluation the colour parameters in epicarp of purple passion fruit, before and after freez 

drying by lyophilization process; 

 Characterization of the phenolic profile in anthocyanin compounds of purple passion fruit 

epicarp by conventional method and using chromatographic techniques, specifically 

HPLC-DAD-ESI/MS; 

 Optimization of the anthocyanins’ extraction from purple passion fruit epicarp, using a 

heat-assisted extraction (HAE) system using the surface response methodology (RSM). 

 Evaluation of the bioactive potential of the optimal extract rich in anthocyanins and that 

obtained by the conventional method, thought antioxidant, cytotoxic, anti-inflammatory 

and antimicrobial (antifungal and antibacterial) assays. 

 

Fig. 7 shows the adapted methodology plan in this investigation. 
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Figure 7: Representative scheme of the adopted metholdology plan. 
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3 MATERIAL AND METHODS 

3.1 STANDARDS AND REAGENTS 

Acetonitrile 99,9% and ethanol of HPLC grade quality was purchased from Fisher Scientific 

(Lisbon, Portugal). The cyanidin-3-O-glucoside standard was bought from Polyphenols AS 

(Sandnes, Noruega). Water was treated in a Milli-Q water purification system (TGI Pure Water 

Systems, Greenville, SC, USA). The agar Mueller-Hinton (MH) and the agarmalt extract (MA) 

were obtained from the Institute of Immunology and Virology of Torlak (Belgrade, Serbia), 

and the p-iodonitrotetrazolium chloride (INT) was acquired by Panreac Applichem (Barcelona, 

Spain). Fetal bovine serum (FBS), L-glutamine, Hank’s balanced salt solution (HBSS), trypsin-

EDTA (ethylenediaminetetraacetic acid), penicillin/streptomycin solution (100 U/mL and 100 

mg/mL, respectively), RPMI-1640 and DMEM media were from Hyclone (Logan, UT, USA). 

Acetic acid, formic acid, ellipticine, sulforhodamine B (SRB), trypan blue, trichloroacetic acid 

(TCA) and Tris were from Sigma Aldrich. Trolox (6-hydroxy-2, 5,7,8-tetramethylchroman-2-

carboxylic acid) was purchased from Sigma Aldrich and Tween 80 from Panreac. All other 

solvents and reagents were purchased from scientific retailers. 

3.2 SAMPLE PREPARATION 

The purple passion fruit (Passiflora edulis Sims) was provided by a company named KiwiCoop, 

of Oliveira do Bairro, Portugal (Figure 8). After receiving the samples, the epicarp and pulp 

were separated, and then the epicarp was frozen, lyophilized (FreeZone 4.5, Labconco, Kansas 

City, MO, USA) and reduced to a fine dried powder (~20 mesh). The homogeneous sample 

obtained was stored in dark place keeped from light and temperature, until further analysis. 
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Figure 8: The passion fruit morphology. 

3.3 DETERMINATION OF COLOUR IN FRESH AND DRIED PASSION FRUIT EPICARP 

The colour parameters in the purple passion fruit epicarp were evaluated as previously 

described by (Pereira et al., 2015). The colour was measured by a colorimeter (model CR-400, 

Konica Minolta Sensing, Inc., Osaka, Japan) with an adapter for granular materials (model CR-

A50). The measurements were made in the CIE L*a*b* colour space (L* values represent the 

brightness; a* values represent the range colour of red/green and b* values represent the range 

colour of blue/yellow), using the illuminate C and a diaphragm aperture of 8 mm (Figure 9). 

Data was processed with the “Spectra Magic Nx” (version CM-S100W 2.03.0006) software, 

from Konica Minolta. 

Before starting measurements, the instrument was calibrated against a standard white tile. A 

sampling of 3 epicarps was selected and 3 measurements were performed on each sample. 

 

Figure 9: CIE L* a* b* model. 

(L* = 0 yields black and L* = 100 indicates diffuse white; specular white may be higher; a*, negative 
values indicate green while positive values indicate magenta; b*, negative values indicate blue and 
positive values indicate yellow). 

3.4 DETERMINATION OF ANTHOCYANIN COMPOUNDS IN THE EXTRACT OF PASSION FRUIT 

EPICARP 

3.4.1 Extraction procedure 

The extraction of anthocyanin compounds by conventional methodology (Figure 10) is made 

by maceration. A quantity of 1 g of the dry epicarp was extracted with 20 mL of ethanol/water 

(80:20 v/v; acidified with 0.05% of citric acid), during 1h at room temperature (25 °C). After 

the maceration process the supernatant was filtered (Whatman Nº4 paper) and the plant residue 
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was re-extracted with the same solvent. The ethanolic fraction of the solvent was evaporated at 

40 °C (rotary evaporator Büchi R-210, Flawil, Switzerland) and then the aqueous fraction was 

lyophilized (FreeZone 4.5, Labconco, Kansas City, MO, USA). The obtained lyophilized 

extract was dissolved in a solution of ethanol/water (20:80 v/v) in a concentration of 5 mg/mL 

and filtered (0.2 μm nylon filters) to a vial (1.5 mL) for subsequent HPLC injection (Jabeur et 

al., 2017). 

 

 

Figure 10: Extraction procedure of anthocyanins from passion fruit epicarp. 

3.4.2 Analytical analysis 

3.4.2.1 HPLC analysis 

The chromatographic analysis (HPLC-DAD-ESI/MSn) will be performed using a HPLC 

Dionex Ultimate 3000 UPLC (Thermo Scientific, San Jose, CA, USA) system, equipped with 

a quaternary pump, an automatic injector (at 5 ºC), a degasser and a column compartment with 

automated thermostat. Detection of the compounds will be performed with a diode array 

detector (DAD), using wavelength of 520 nm, coupled to a mass spectrometry detector (Linear 

Ion Trap LTQ XL mass spectrometer, Thermo Finnigan, San Jose, CA, USA) equipped with an 

ESI source, working in positive mode (Bessada et al., 2016).  

Chromatographic separation was performed using a column AQUA® (150 mm x 4.6 mm i.d., 

5 μm, Phenomenex, Torrance, California, EUA) of reverse phase. The mobile phase was 0.1% 

TFA in water (A) and 100% acetonitrile (B). The elution gradient was 10% B up to 3 min, 10 

to 15% B more 12 min, isocratic 15% B more 5 min, 15 to 18% B more 5 min, 18 to 30% B 

more 20 min and 30 to 35% more 5 min. The column was rebalanced for 10 min and the flow 

rate used was 0.5 mL/min. 
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3.4.2.2 Mass spectrometry analysis 

The MS detection was performed by a mass spectrometer Ion Trap Linear LTQ XL (Thermo 

Finnigan), equipped with an electrospray ionization source (ESI). The nitrogen (50 psi) was the 

drag gas used; the system used a spray voltage of 4,8 kV, at an initial temperature of 320 °C 

and capillary tension of 14 V. The voltage of the tube lens offset was maintained at 75 V. The 

spectra were recorded in positive ion mode between 100 and 1500 m/z. The collision energy 

used was 20 (arbitrary units). The data were collected and analyzed using the program 

Xcalibur® (Thermo Finnigan). 

The anthocyanins were characterized according to their UV–Vis and mass spectra, and 

quantification was performed through a calibration curve performed using cyanidin-3-O-

glucoside standard (y=243287x – 1E6; R2 =0.995). The results were expressed as mg/g of dry 

weight. 

 

3.5 OPTIMIZATION OF THE NATURAL COLORANT EXTRACTION PROCESS OF PASSION FRUIT 

EPICARPS USING THE RESPONSE SURFACE METHODOLOGY 

3.5.1 A heat assisted extraction (HAE) 

Heat-assisted extraction (HAE) consists of extracting molecules from a powdered sample using 

an acidified solvent under defined conditions of temperature, time and agitation (Wang et al., 

2016). This technique excels by the ease of employability in the industrial sector, since it is 

characterized by the simplicity and the reduced number of equipment necessary for its 

execution (Roriz et al., 2017; Backes et al., 2018; López et al., 2018). 

The extraction procedure (Figure 11) was carried out in a water bath using a magnetic stirrer 

(CimarecTM, Thermo Scientific) under a fixed speed (5000 rpm) and using closed bottles in 

order to avoid evaporation of the solvent. For the extraction 20 mL of solvant (ethanol/water) 

acidified with 0.05% of citric acid (pH ≈ 3) were added to 1 g of powdered sample (epicarp of 

passion fruit). This procedure was performed following the extraction conditions predefined by 

the established RSM model (time (t or X1, 5 to 69 min), temperature (T or X2, 20 a 90 ºC) and 

ethanol content (S or X3, 0 to 100%). The solid-liquid ratio (S/L or X4) was maintained at 50 

g/L. 
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Figure 11: HAE extraction process of the anthocyanins from passion fruit epicarp. 

3.5.2 Preparation of extracts obtained by HAE 

Subsequent to the extraction process, the extract solutions were centrifuged (5000 rpm, for 10 

minutes at 10 ºC) and filtered through filter paper (Whatman n°4), in order to remove suspended 

solids. The supernatant was collected and divided into two fractions: one for HPLC-DAD 

analysis (Figure 12) and the second for determination of extraction yield. The separate fraction 

for HPLC analysis (1.5 mL) was filtered through LC syringe filter (0,22 μm) and then injected. 

The second fraction was collected to determine the extraction yield (5 mL), followed by a 

drying process at a temperature of 105 ºC for 48 hours, for subsequent weighing of the solids. 

 

 

Figure 12: T The obtained exctact   

3.5.3 Extraction Yield 

The extraction yields (%) were calculated based on the dry weight (crude extract) obtained after 

evaporation, and then 5 ml of acidified water (0.05% citric acid) was added to the extract to 

become dissolvent. The obtained solution was filtrated by a LC filter disk (0.22 µm).  
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In all cases, the filtrates were concentrated at 35 °C in a rotary evaporator (Büchi R-210, Flawil, 

Switzerland) under reduced pressure and the aqueous phase was then freez dried to obtain a 

dried extract. 

 

3.5.4 Identification and quantification of anthocyanin compounds through an HPLC-

DAD-ESI/MS system 

The analysis of the colourant extracts rich in anthocyanin compounds, obtained by the HAE 

method, was performed by a Dionex Ultimate 3000 HPLC system (Thermo Scientific) coupled 

to a DAD and mass spectrometry detector, previously described in section 3.4.2. 

 

3.5.5 Experimental Design, Modelling and Optimization 

3.5.5.1 Experimental Design (RSM) 

An RSM of five-level circumscribed central composite design (CCCD) of 20 runs with 6 

replicated values at centre points was applied to optimize the HAE conditions for the extraction 

of anthocyanin compounds. Coded and natural values of the independent variables X1 

(processing time (t), min), X2 (temperature (T), °C) and X3 (solvent (S), % of ethanol, v/v) are 

presented in Table . 

Table 5: Experimental domain and codification of independent variables in the CCCD 

factorial design with 5 range levels. 

CODED VALUES 
NATURAL VALUES 

t (min) T (ºC) S (%) 

-1.68 5 20 0 

-1 21.2 34.2 20.3 

0 45 55 50 

+1 68.8 75.8 79.7 

+1.68 85 90 100 

 

3.5.5.2 Response used for analytical purposes 

Three response value formats were used as response. The anthocyanin content (in terms of A) 

in the epicarps (P) dry weight material (Y1, mg A/g P dw), the anthocyanin content in extracted 

residue (R) material (Y2, mg A/g R) and extraction yield (Y1/Y2, g R/g P dw). Y1 evaluates the 
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total content in the dry material, Y2 evaluates the A purity in the extract and Y1/Y2 evaluates the 

yield of the extraction. 

 

3.5.5.3 Mathematical Modelling 

The response surface models were fitted by means of least-squares calculation using the 

following second-order polynomial equation with interactive terms (Equation 1). In this 

equation, Y represents the dependent variable (response variable) to be modelled, Xi and Xj are 

the independent variables, b0 is the constant coefficient, bi is the coefficient of linear effect, bij 

is the coefficient of interaction effect, bii is the coefficient of quadratic effect, and n is the 

number of variables. The extraction yield and the individual and grouped anthocyanin 

compounds, 13 individual compounds plus the total anthocyanin content (TAC), were used as 

dependent variables. 

 

Equation 1: Second order polynomial equation. 

3.5.5.4 Maximization of the Responses 

For the optimization of the prediction model a simplex method was used, which solved non-

linear problems, maximizing the extraction yield and the recovery of anthocyanins (Vieira et 

al., 2017). To avoid variables with unnatural and unrealistic physical conditions, some 

limitations were imposed on the coded variables (namely t ≥ 0). 

 

3.5.5.5 Dose-response analysis of the solid-liquid ratio 

The solid-liquid ratio standard is an important parameter to determine, in order to obtain a 

process with greater productivity and sustainability. Thus, after the optimization of the 

experimental conditions (previously defined as X1, X2 and X3), the solid-liquid ratio S/L (or 

X4, expressed in g/L) was studied. For the representation of the response effect, as a function 

of the solid-liquid relationship, a linear equation was used with ordinate at the origin, since the 

points follow a linear distribution as the S/L increases. The parametric slope value (m) was used 

for dose response evaluation. In this evaluation, positive values indicate an increase in the 
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extraction responses, while, negative values indicate a decrease in extraction efficiency, both 

resulting from an increase in S/L. 

 

3.5.5.6 Numerical methods, statistical analysis and graphic illustrations 

Adjustment procedures, coefficient estimates and statistical calculations of the experimental 

results were performed according to a procedure previously described by Prieto and Vázquez 

(2014). So: 

a) For the determination of the coefficients, the non-linear quasi- Newton algorithm (least 

squares) was used, through the macro 'Solver' introduced in Microsoft Excel, to minimize 

the differences between the values obtained and the values predicted by the model; 

b) The significance of the coefficients was evaluated through the macro 'SolverAid', in order 

to determine their intervals (α = 0.05); 

c) The consistency of the model was verified through several statistical criteria applied: i) 

Fisher's F-test (α = 0.05) was used to evaluate the fit of the model to the observed data; 

ii) the 'SolverStat' macro was applied to determine the uncertainties in the prediction of 

parameters and models (Murado and Prieto, 2013); iii) R2 was interpreted as the ratio of 

variability of the dependent variable explained by the model. 

 

3.6 PREPARATION OF THE EXTRACT RICH IN ANTHOCYANIN COMPOUNDS OBTAINED UNDER 

OPTIMUM CONDITIONS FROM THE PASSION FRUIT EPICARP 

In order to obtain extract rich in anthocyanin compounds, particularly cyanidin derivatives, an 

extraction was performed from the purple of passion fruit epicarp, following the procedure 

previously optimized and described. The sample (1g) was placed together with 20 mL of 100% 

water acidified with 0.05% of citric acid (until obtaining pH = 3), in a glass jar with lid. The 

extraction established at temperature conditions (T=20 ºC) and time (37.5 minutes Then, the 

samples were centrifuged (Centurion K24OR, West Sussex, United Kigdom) at 5000 rpm 

during 10 min at 10 ºC. Then, they were filtered through syringe filters (previously mentioned), 

for removal of suspended solids. The separated supernatant, the ethanolic fraction was 

eliminated at a temperature of 35 °C, in order to avoid compounds degradation. Finally, the 

obtained aqueous fraction was frozen and lyophilized (FreeZone 4.5, Labconco, Kansas City, 
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MO, EUA), obtaining an extract rich in anthocyanin compounds. The lyophilized extract was 

stored under darck conditions to avoid light exposure for the further bioactivities analysis. 

 

3.7 EVALUATION OF THE BIOACTIVE POTENTIAL OF OPTIMAL EXTRACT RICH IN 

ANTHOCYANIN COMPOUNDS AND THE EXTRACT OBTAINED BY CONVENTIONAL 

METHOD, FROM PASSION FRUIT EPICARP 

3.7.1 Preparation of the hydroethanolic extract 

The extraction was performed as described previously in section 3.4.1 and 3.5.1. The 

lyophilized extracts were re-dissolved at a concentration of 5 mg/mL in ethanol/water (80:20, 

v/v) for the antioxidant activity assays; in DMSO (10 mg/mL) for analysis of antimicrobial 

activity; and in distilled water at a concentration of 8 mg/mL for cytotoxic evaluation, 

hepatotoxicity and anti-inflammatory activities. 

3.7.2 Antioxidant activity 

3.7.2.1 TBARS 

Lipid peroxidation can be determined by the products of the oxidation that react with 

thiobarbituric acid (TBA) giving rise to pink compounds that are known as thiobarbituric acid 

reactive species (TBARS). One of the products commonly used as a biomarker of lipid 

peroxidation is malodialdehyde (MDA) that associated with TBA in the presence of H+ ions to 

form a chromogen (MDA-TBA) according to the reaction shown in Figure 13. In this 

methodology, the oxidation of a lipid-rich preparation is induced by addition of a metallic ion 

(iron or copper), and the extension of the reaction with thiobarbituric acid is determined by the 

ability of the antioxidants present in the sample to stop the oxidation process, thus inhibiting 

the formation of the chromogen (less pink) (Gutteridge, 1995; Ng et al., 2000). 

 

Figure 13: Formation of the complex MDA-TBA. 
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Porcine (Sus scrofa) brains were obtained from official slaughtered animals, dissected, and 

homogenised with a Polytron in ice-cold Tris-HCl buffer (20 mM, pH 7.4), to produce a 1:2 

(w/v) brain tissue homogenate that was centrifuged at 3000 g for 10 min. An aliquot (0.1 mL) 

of the supernatant was incubated with the different solution concentrations (0.2 mL) in the 

presence of FeSO4 (10 μM; 0.1 mL) and ascorbic acid (0.1 mM; 0.1 mL) at 37 ºC for 1 h. The 

reaction was stopped by the addition of trichloroacetic acid (28% w/v, 0.5 mL), followed by 

thiobarbituric acid (TBA, 2%, w/v, 0.38 mL), and the mixture was then heated at 80 ºC for 20 

min. After centrifugation at 3000 g for 10 min to remove the precipitated protein, the colour 

intensity of the MDA-TBA complex in the supernatant was measured by its absorbance at 532 

nm. The inhibition ratio (%) was calculated using the Equation 2. 

 

Equation 2: Equation of the inhibition ratio determination in TBARS assay. 

Where: A: absorbance of the control and B: absorbance of the compound solution. 

3.7.2.2 OxHLIA 

For the accomplishment of this method, a blood of sheep was harvested. The blood sample was 

centrifuged (Multifuge X1R, Thermo Fisher Scientific; 2900 rpm, 5 min, 10°C) and the 

supernatant was discarded in order to recover only the erythrocytes.These were subjected to a 

first wash with NaCl (150 mM) followed by three washes with phosphate-saline buffer (PBS; 

pH 7.4), with centrifugation and removal of the supernatant at each wash (Evans et al., 2013). 

A solution of erythrocytes at 2.8% was prepared (v/v), resuspending in PBS. In 48-well 

microplate was added 200µL of the erythrocyte solution at 400 µL of PBS (control), of water 

(complete hemolysis) or extract of the passion fruit epicarp dissolved in PBS (20 at 0.625 

mg/mL). The microplates were preincubated with shaking (37°C, 10 min) for further addition 

of 200 µL of dihydrochloride of 2,2'-azobis(2-amidinopropan) (AAPH; 160 mM). After 

measuring the optical density at 690 nm, the microplates were incubated again under the same 

conditions, with measurements every 10 min (Takebayashi et al., 2012). The percentage of the 

erythrocyte population that remained intact (PE) was calculated as follows in the Equation 3. 

Inhibition ratio (%) =  
  (A-B) 

A 
x 100 
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PE (%) = (St - CH0 / S0 - CH0) x 100 

Equation 3: The percentage of the erythrocyte population (PE) in the OXHLIA assys. 

St and S0 correspond to the optical density of the sample at t and 0 min, respectively, and CH0is 

the optical density of complete hemolysis at 0 min. The results were expressed as hemolysis 

delay time (Δt), which was calculated as follows in the Equation 4. 

Δt (min) = Ht50 (sample) – Ht50 (control) 

Equation 4: The hemolysis delay time 

Ht50 is the time corresponding to 50% hemolysis (min) obtained graphically from the hemolysis 

curve for each concentration of antioxidant sample. Subsequently, linear correlations were 

established between the values of Δt and the different sample concentrations (Lockowandt et 

al., 2019). From these, the concentration capable of delaying hemolysis was calculated in 60 

min (EC50 (60 min), mg/mL) and 120 min (EC50 (120 min), mg/mL). 

 

3.7.3 Antimicrobial activity 

3.7.3.1 Antibacterial activity 

The following Gram-negative bacteria were used: Escherichia coli (ATCC (American type 

culture collection) 35210), Salmonella typhimurium (ATCC 13311), Enterobacter cloacae 

(ATCC 35030), and Gram-positive bacteria: Staphylococcus aureus (ATCC 6538) and Listeria 

monocytogenes (NCTC (National collection of type cultures) 7973). These microorganisms 

were obtained from the Mycological laboratory, Department of Plant Physiology, Institute for 

biological research “Siniša Stanković” at the University of Belgrade in Serbia. Fresh overnight 

culture of bacteria was adjusted with a spectrophotometer to a concentration of 1×105 CFU/mL.  

The requested colony forming units (CFU)/mL corresponded to a bacterial suspension 

determined in a spectrophotometer at 625 nm. Dilutions of the inocula were cultured on solid 

medium to verify the absence of contamination and to check the validity of the inoculum. The 

sample solutions were pipetted into the wells containing 100 μL of Tryptic Soy Broth (TSB), 

with 10 μL of inoculum being added to all the wells.  

The microplates were incubated for 24 h at 37 °C. The MIC (minimal inhibitory concentration) 

of the samples was determined by adding 40 μL of iodonitrotetrazolium chloride (INT) (0.2 
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mg/mL) and incubation at 37 °C for 30 min. The lowest concentration that produced a 

significant inhibition (around 50%) of the growth of the bacteria in comparison with the positive 

control was identified as the MIC. The MICs obtained from the susceptibility testing of various 

bacteria to tested samples were also determined by a colorimetric microbial viability assay 

based on reduction of INT colour and compared with a positive control for each bacterial strain 

(CLSI, 2009). MBC (minimal bactericidal concentration) was determined by serial sub-

cultivation of 10 μL into microplates containing 100 μL of TSB. The lowest concentration that 

showed no growth after this sub-culturing was regarded as the MBC. Streptomycin and 

ampicillin were used as positive controls, while 5% dimethyl sulfoxide (DMSO) was used as 

negative control (Soković et al., 2010). The results of MIC and MBC were expressed in mg per 

mL. 

3.7.3.2 Antifungal activity 

The following microfungi were used: Aspergillus fumigatus (ATCC 1022), Aspergillus 

versicolor (ATCC 11730), Aspergillus niger (ATCC 6275), Penicillium funiculosum (ATCC 

36839), Penicillium ochrochloron (ATCC 9112) and Trichoderma viride (IAM 5061). These 

organisms were also obtained from the Mycological Laboratory, Department of Plant 

Physiology, Institute for Biological Research “Siniša Stanković” at the University of Belgrade 

in Serbia. The micromycetes were maintained on malt agar (MA) and the cultures were stored 

at 4 °C and sub-cultured once a month. The fungal spores were washed from the surface of agar 

plates with sterile 0.85% saline containing 0.1% Tween 80 (v/v). The spore suspension was 

adjusted with sterile saline to a concentration of approximately 1.0×105 in a final volume of 

100 μL/well. The inocula were stored at 4 °C for further use. Dilutions of the inocula were 

cultured on solid MA to verify the absence of contamination and to check the validity of the 

inoculum. The MICs determination was performed by a serial dilution technique using 96-well 

microplates. The sample solutions were added to broth malt medium with the fungal inoculum. 

The microplates were incubated for 72 h at 28 °C.  

The lowest concentrations without visible growth (using a binocular microscope) were defined 

as the MIC. The minimum fungicidal concentrations (MFC) were determined by serial sub-

cultivation of 2 μL in microtiter plates containing 100 μL of malt broth per well and further 

incubation for 72 h at 28 °C. The lowest concentration with no visible growth was defined as 

the MFC, indicating 99.5% killing of the original inoculum. 5% DMSO was used as a negative 
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control, while bionazole and ketoconazole were used as positive controls (Soković et al., 2006). 

The results of MIC and MFC were expressed in mg per mL. 

3.7.4 Evaluation of cytotoxicity in tumor cell lines 

Four human tumor cell lines were used: HeLa (cervical carcinoma), HepG2 (hepatocellular 

carcinoma), MCF-7 (breast adenocarcinoma) and NCI-H460 (non-small cell lung cancer). Each 

of the cell lines was plated in a 96-well plate, at an appropriate density (7.5 × 103 cells/well for 

MCF-7 and NCI-H460, and 1.0 × 104 cells/well for HeLa and HepG2) and allowed to attach 

for 24 h. The cells were then incubated in the presence of different extract concentrations during 

48 h. 

Afterwards, cold trichloroacetic acid (TCA 10%, 100 μL) was added in order to bind the 

adherent cells and further incubated for 60 min at 4 ºC. After the incubation period, the plates 

were washed with deionised water and dried, and sulforhodamine B solution (SRB 0.1% in 1% 

acetic acid, 100 μL) was incorporated to each plate well and incubated for 30 min at room 

temperature.  

The plates were washed with acetic acid (1%) in order to remove the unbound SRB and air 

dried, the bounded SRB was solubilised with Tris (10 mM, 200 μL) and the absorbance was 

recorded at 540 nm using an ELX800 microplate reader (Bio-Tek Instruments, Inc; Winooski, 

VT, USA) (Guimarães et al., 2013). Figure 14 shows an example of a microplate ready for 

citotoxicty measurement. 

 

 

Figure 14: Representative image of microplate for cytotoxicity 

measurement 
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3.7.5 Evaluation of hepatotoxicity in non-tumor cells 

A freshly harvested porcine liver, obtained from a local slaughter house, was used in order to 

obtain the cell culture, designated as PLP2. The liver tissues were rinsed in Hank’s balanced 

salt solution containing penicillin (100 U/mL) and streptomycin (100 µg/mL) and divided into 

1×1 mm2 explants. A few of these explants were transferred to tissue flasks (25 cm2) containing 

DMEM medium supplemented with fetal bovine serum (FBS, 10%), nonessential amino acids 

(2 mM), penicillin (100 U/mL) and streptomycin (100 mg/mL), and incubated at 37 ºC with a 

humidified atmosphere (5% CO2). The medium was changed every two days and the cell 

cultivation was continuously monitored using a phase contrast microscope. When confluence 

was reached, the cells were sub-cultured and plated in 96-well plate (density of 1.0×104 

cells/well) containing DMEM medium supplemented with FBS (10%), penicillin (100 U/mL) 

and streptomycin (100 µg/mL) (Guimarães et al., 2013). The growth inhibition was evaluated 

using the SRB assay described in the previous section. 

3.8 EVALUATION OF ANTI-INFLAMMATORY ACTIVITY 

The macrophages mouse cells RAW 264.7 were used to evaluate the anti-inflammatory activity 

according to the procedure of Jabeur et al. (2016). Cell culture was performed in DMEM 

medium supplemented with 10% heat inactivated bovine serum and L-glutamine at 37 ºC with 

5% CO2 in humidified air. Cells with active growth were released with a cell scavenger, the 

experimental density of the cells was established at 5 × 105 cells/mL and the proportion of dead 

cells was less than 1%, according to the Trypan Blue exclusion test. The cells were then 

dispensed into a 96-well plate (150,000 cells/well) and allowed to adhere to the microplate 

overnight. Afterwards, the cells were treated with different concentrations of the passion fruit 

hydroethanolic extract for 1 hour, followed by lipopolysaccharide (LPS) (1 μg/ml) stimulation 

over 18 hours. Controls were prepared without the addition of LPS in order to observe whether 

they induced changes in the basal levels of nitric oxide (NO). 

The presence of nitric oxide was determined using a Griess Reagent Kit (Promega) containing 

sulfanilamide, N- (1-naphthyl) ethylenediamine hydrochloride (NED) and nitrated solutions. 

The cell supernatant (100 μL) was transferred to the plate and mixed with sulfanilamide and 

NED solution, 5 to 10 minutes each, at room temperature. The nitric oxide produced was 

determined by measuring the absorbance at 540 nm (ELX800 Biotek microplate reader) and 

compared to the calibration curve (Jabeur et al., 2016). 
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3.9 STATISTICAL ANALYSIS 

The described assays were performed in triplicate and the results were expressed as mean ± 

standard deviation (SD). The data for the evaluation of the epicarp of purple passion fruit 

epicarp (fresh and dehydrated), in the several assays, were analyzed through the t-student test, 

with the purpose of determining the significant differences between 2 samples, with p-value = 

0,05 (SPSS v. 23.0; IBM Corp., Armonk, Nova Iorque, EUA). 

Fitting procedures, coefficient estimates and statistical calculations were achieved as previously 

described by other authors (Prieto and Vázquez, 2014). In brief, a) the parameters determination 

was accomplished using the quasi-Newton algorithm (least-square) by running the integrated 

macro ‘Solver’ in Microsoft Excel minimizing the differences between observed and predicted 

values; b) the coefficient significance was evaluated using the ‘SolverAid’ macro to determine 

their intervals (= 0.05); and c) the model consistency was proved by means of several 

statistical criteria: i) the Fisher F-test (= 0.05) was used to assess the adequacy of the models 

to describe the observed data; ii) the ‘SolverStat’ macro was used for the assessment of 

parameter and model prediction uncertainties (Murado and Prieto, 2013); and iii) the R² was 

interpreted as the proportion of variability of the dependent variable explained by the model. 
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4 RESULTS AND DISCUSSION 

4.1 DETERMINATION OF COLOUR IN FRESH AND DRIED EPICARP OF PASSION FRUIT 

The colour measurement in food products is an evaluation of great interest in the food industry 

and can be made by visual (for sensorial analysis) or instrumental analysis (Appelhagen et al., 

2018). The results of the chromatic analysis in the colour space CIE L*a*b* of the purple 

passion fruit epicarp are presents in Table 6. The luminosity scale (L*) range between 0 and 

100, and the a* (from green to red) and b* (from blue to yellow) parameters range between -

120 and 120 (Xu et al., 2016). The colour of the fresh epicarp for the L* parameter revealed, on 

average, a value of 34.2 ± 0.9 and to a* and b* parameters showed values of 6.9 ± 0.3 and 5.1 

± 0.2, respetively. Otherwise, in dried epicarp the L* parameter evidenced a value of 34.3 ± 1.5, 

but in the a* and b* parametrs some differences were noticed, showing values of 16.0 ± 0.6 and 

2.8 ± 0.1, respectively. 

According to the obtained results, the influence of dehydration by lyophilization on the epicarp 

colour was evident, showing a statistically significant difference (p-value< 0.05) in fresh and 

dried samples. The a* parameter evidenced a statistically significant increase after 

lyophilization. Otherwise the b* parameter showed a statistically significant decrease, which 

translates into an approximation of the blue tonality. The L* parameter did not show significant 

changes between the two types of passion fruit epicarp. These changes in the coordinates 

indicate that, after freez drying, the passion fruit epicarp acquired a shade closer to purple. For 

better understanding the colour shape, the values obtained were converted to RGB values 

through a program (http://www.easyrgb.com/en/convert.php) and the two types of colouring 

are present in Table 6. 

Table 6: The colour measurement of the passion fruit epicarp samples. 

Samples L* a* b* RGB colour 

Fresh epicarp 34.2 ± 0.9 6.9 ± 0.3 5.1 ± 0.2  

Dried epicarp 34.3 ± 1.5 16.0 ± 0.6 2.8 ± 0.1  

p-value 0.761 <0.01 <0.01  
     

In relation to this fruit, another study was carried out, namely in the determination of the colour 

of the epicarp, using a Konica Minolta colorimeter model CR-400 (Osaka, Japan) operating on 

the CIELAB scale (L*, a* and b*).The evaluation was done in the different states of passion 

fruit maturation (fresh samples) and the values obtained varied between 8.7 and 51.7 for the 

parameter L*, -13.0 and 6.2 for the coordinate a*, and the value of b* ranged between 4.5 and 

http://www.easyrgb.com/en/convert.php
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23.1 (Mercante de Souza et al., 2016). Thus, it is possible to verify that the present study 

presents values of the fresh sample concordant with the values presented by these authors. 

 

4.2 DETERMINATION OF ANTHOCYANIN COMPOUNDS IN THE EXTRACT OBTAINED FROM 

THE PASSION FRUIT EPICARP 

The results for the anthocyanic profile of the hydroethanolic extracts of passion fruit epicarp 

were determined and the results are described in Table. Identification of these compounds was 

obtained according to the retention times (Rt), the UV-Vis spectrum and the mass fragmentation 

patterns.  

Table 7: Retention time (Rt), wavelength of maximum absorption in the visible region (λmax), data of mass 

spectra, identification and quantification of anthocyanin compounds of passion fruit (mean ± SD). 

Peak 
Rt 

(min) 

λmax 

(nm) 
Tentaive identification [M+H]+ 

ESI- MSn 

[intensity 

(%)] 

Quantification 

(mg/g dry 

weight) 

1 10.5 520 Cyanidin-3-O-glucoside 449 287(100) 8.3 ± 0.1 
       

The analysis revealed the presence of one anthocyanin compound, being positively identified 

with a commercial standard (cyanidin-3-O-glucoside). The identified compound ([M+H]+ a m/z 

449) presented one fragment in MS2 with a m/z 287, being identified as cyanidin-3-O-glucoside 

(peak 1) (Figure 15), taking into account the commercial standard charateristics. This 

extraction performed by the conventional method presented a yield of 33.99%, and the detected 

compound (peak 1; Figure 15) revealed a concentration of 8.3 ± 0.1 mg per g of R, i.e., 2.82 

mg per g of DW epicarp. 
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Figure 15: Chromatogram of the anthocyanin compoundcyanidin-3-O-glucoside (1) found in passion fruit obtained at 520 

(B) nm. The numbers of the identified peak correspond to that identified in Table. 

 

Other authors also carried out several studies with the purpose of determining the anthocyanin 

profile of passion fruit. 

KIDØY et al., (1997) studied the anthocyanin pigments in the Passiflora edulis fruit (extracted 

with methanol acidified with 2% trifluoroacetic), using combinations of chromatographic and 

spectroscopic techniques. In this study, in addition to cyanidin-3-O-glucoside (97%), small 

amounts of cyanidin-3-O-(6-malonylglucoside) (2%) and pelargonidin-3-O-glucoside (1%) 

were found in the rind of the passion fruit. 

In another way, Jiménez et al., (2011) also studied the presence of anthocyanins in Passiflora  

Sims edulis peels, through the extraction by maceration, using as solvent methanol acidified 

with acetic acid (19:1, v/v). The presence of anthocyanin cyanidin-3-O-β-D- glucopyranoside 

was confirmed. 

The presence of anthocyanins in the pulp and in by-products of Passiflora edulis Sims fruit was 

also determined by Ribeiro da Silva et al., (2014). The evaluation was made using a 

refrigeration extraction in the dark and with anextraction solution of 1.5 N HCl in 85% 

ethanol.The authors verified the presence of anthocyanin compounds in a concentration of 3.48 

± 0.26 and 3.70 ± 0.39 mg/100 g dry basis for pulp and by-products, respectively. 
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Ramos dos Reis et al., (2018) were other authors that evaluated the presence of anthocyanin 

compounds in pulp, peels and seeds of Passiflora edulis Sims through extraction by 

homogenization in an Ultra-Turrax (T25, IKA, China) with acidified methanol (HCl 1%). The 

results showed the presence of seven anthocyanin compounds in peel, namely kaempferol 

(74.70 ± 1.44 µg/100g dry weight), cyanin (1477.47 ± 20.85 µg/100g dry weight), delphinidin-

3,5-O-glucoside (8679.60 ± 341.32 µg/100g dry weight), cyanidin-3-O-glucoside (2852.92 ± 

177.93 µg/100g dry weight), pelargonidin-3-O-glucoside (1551.94 ± 239.03 µg/100g dry 

weight), aglycone delphinidin (90998.72 ± 5218.53 µg/100g dry weight) and aglycone cyanidin 

(103686.48 ± 542.11 µg/100g dry weight).  

The different extraction solvent and different methodologies used can explain this discrepancy. 

For example, in the case of solvent choice, several authors report that acidified methanol has 

been described as one of the most efficient solvents for the conventional extraction of 

anthocyanin (Jiao and Pour, 2018). However, the present study opted for the use of a 

hydroethanolic solvent acidified with citric acid because it intended to use a friendly and food-

compatibal solvent that is not considered toxic either in the food industry or in clinical practice 

(sectors for which this study is directed). 

For the extraction of these compounds, the solvent must be sufficiently acidified so that the 

anthocyanins do not undergo partial hydrolysis of the acyl moieties and retain their flavylium 

cation form (red colour), which is the most stable form of anthocyanins (Flores et al., 2016; 

Teng et al., 2017). 

4.3 OPTIMIZATION OF THE PROCESS OF OBTAINING A COLOURANT EXTRACT RICH IN 

ANTHOCYANINS FROM THE PASSION FRUIT EPICARP 

The industrial production process of natural based colouring extracts has been established for 

years and consists mainly in conventional heat assisted extractions (HAE, or maceration) using 

mixtures of solvents in water followed by several additional steps. This conventional process, 

although used for large-scale production, is known for  requiring high-energy consumption and 

long extraction times (Wange et al., 2016; Wang et al., 2013; Zhu et al., 2016). 

Therefore, to simplify and reduce the operational extraction processes costs, solvent loss and 

time process, an experimental design using response surface methodology (RSM) criteria, 

devoted to shorten the treatment time, decrease the energy requirements, and reduce the solvent 

consumption is developed (Roriz et al., 2017; Zhu et al., 2016). 
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To obtain anthocyanin extracts it is crucial to consider the factors affecting these compounds, 

among which, their structure and concentration, pH, temperature, light exposure, oxygen levels, 

and extraction solvents (Rodriguez-Amaya., 2016). Thus, the conditions of the different 

extraction variables, are essential to guarantee maximum recovery efficiency (Jiménez et al., 

2018). Additionally, the efficiency is also strongly affected by the discrepancies observed 

among different matrices (Montesano et al., 2008), and therefore, optimizing these variables in 

order to achieve higher yields and lower costsis mandatory.  

Through RSM it is possible to optimize the factors simultaneously, by obtaining polynomial 

models capable of describing within the tested experimental interval, the ideal conditions that 

maximize the used response criteria (Roriz et al., 2017). The response variables applied in the 

development of mathematical models, describing the extraction process (namely individual and 

grouped anthocyanic compounds) were obtained by high-performance liquid chromatography 

coupled to mass spectrometry (HPLC-DAD-ESI/MS). 

 

4.3.1 Response criteria for RSM analysis 

Although there are abundant studies on the extraction of anthocyanins from Passiflora edulis 

Sims epicarp, a small number are available detailing with finding optimal conditions for 

maximizing their extraction. In addition, the compositional diversity of anthocyanins in natural 

sources does not allow to directly extrapolate the extraction conditions of these pigments from 

previously studied sources (Pinela et al., 2019). Therefore, the first approach is to optimize the 

efficiency of the HAE to recover anthocyanins from purple Passiflora edulis Sims epicarp 

consisted of the application of the RSM technique. 

To accomplish these objectives, there are several experimental designs available, each of them 

with different advantages and disadvantages, but in general, its application reduces significantly 

the number of experimental runs needed. 
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Figure 16:Diagram of the different steps carried out for optimizing the conditions that maximize the extraction 

responses. 

In this regard, the CCCD with five levels per factor (Table ) is a popular experimental design 

for RSM and has been applied by a number of researchers for optimization of various food 

processing methods (Oludemi et al., 2018; Pinela et al., 2016). Therefore, for optimization 

purposes the RSM experimental design of CCCD with five levels of variation for the three 

independent variables was used for optimizaing the extraction conditions of anthocyanin using 

the following variable and ranges: t (5-85 min), T (20-90 ºC) and S (0-100%).  

A detailed description of the coded and natural values of the selected variables for each 

extraction method in the CCCD design is presented in Table . Additionally, Figure 16 shows 



61 

a comprehensive summary of the different steps carried out in the optimization recovery of 

anthocyanin compounds. 

 

4.3.2 RSM analysis, statistical verification and effect of the extraction variables on the 

target responses 

The response results used to optimize the anthocyanin extraction were the anthocyanin content 

and the extraction yield according to the CCCD are shown in Table .  

Table 8: Experimental RSM results of the CCCD for the HAE optimization of the three main variables involved 

(X1, X2,and X3). Variables, natural values and ranges are described. The experimental results of the extraction of 

antocyanin compound (A) from the epicarps (P) comprise three response value formats (Y1, mg A/g P dw; Y2, mg 

A/g R dw; and Y1/Y2 g R/g P dw). 
            

 
CODED 

VALUES 
 

NATURAL  

VALUES 
 

EXPERIMENTAL  

RESPONSES 
            

            

 
X1 X2 X3 

 X1: t X2: T X3: S  Y1 Y2 Y1 / Y2 
  min ºC %  mg A/g P dw  mg A/g R g R/g P dw 
            

            

1 -1 -1 -1  21.2 34.2 20.3  2.58 6.54 0.395 

2 -1 -1 1  21.2 34.2 79.7  1.96 9.34 0.210 

3 -1 1 -1  21.2 75.8 20.3  1.48 5.41 0.274 

4 -1 1 1  21.2 75.8 79.7  1.06 3.11 0.342 

5 1 -1 -1  68.8 34.2 20.3  0.74 2.84 0.262 

6 1 -1 1  68.8 34.2 79.7  1.25 7.51 0.166 

7 1 1 -1  68.8 75.8 20.3  1.13 7.88 0.143 

8 1 1 1  68.8 75.8 79.7  1.55 8.39 0.185 

9 1.68 0 0  85 55 50  0.87 4.98 0.174 

10 -1.68 0 0  5 55 50  0.88 7.28 0.121 

11 0 -1.68 0  45 20 50  2.57 9.12 0.282 

12 0 1.68 0  45 90 50  2.17 7.84 0.277 

13 0 0 -1.68  45 55 0  1.95 4.36 0.446 

14 0 0 1.68  45 55 100  0.93 5.74 0.162 

15 0 0 0  45 55 50  2.14 8.56 0.251 

16 0 0 0  45 55 50  2.27 8.38 0.271 

17 0 0 0  45 55 50  2.06 7.93 0.260 

18 0 0 0  45 55 50  2.27 8.27 0.274 

19 0 0 0  45 55 50  2.27 8.46 0.268 

20 0 0 0  45 55 50  2.06 8.55 0.241 
            

            

The parametric values of the second-order polynomial model of Equation 1obtained after 

fitting the extraction response format values and the corresponding statistical information (= 

0.05) are presented in part A and B of Table 9. The fitting procedure of Equation 1 applied to 

the experimental responses was performed using nonlinear least-squares estimations and those 

that were non-significant (ns) values were excluded.  
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Table 9: Part A shows the parametric results after fitting the second-order polynomial equation of Equation 1 to 

the responses used to optimize the HAE according to the CCCD with 5 range levels (Table ). Responses comprise 

the three response value formats (Y1, mg A/g P dw; Y2, mg A/g R dw; and Y1/Y2 g R/g P dw). Analysis of 

significance of the parameters (= 0.05) are presented in coded values. Part B shows a brief statistical information 

of the fitting procedure to the model is presented. Part C shows the variable conditions in natural values that lead 

to optimal response values for RSM for the responses used. 
        

 Y1 Y2 Y2 / Y1 
        

        

A) Parametric information 
        

        

Intercept b0 2.18 ±0.06 8.38 ±0.17 0.26 ±0.01 

Linear effect  
b1 ns  0.70 ±0.14 -0.02 ±0.01 

b2 -0.15 ±0.04 -0.27 ±0.14 ns  
b3 -0.30 ±0.04 0.33 ±0.14 -0.07 ±0.01 

Quadratic effect 
 

b11 -0.47 ±0.04 -0.80 ±0.13 -0.04 ±0.01 
b22 0.06 ±0.04 ns  ns  
b33 -0.27 ±0.04 -1.19 ±0.13 0.02 ±0.01 

Interactive effect 

b12 ns  -1.16 ±0.18 0.05 ±0.01 

b13 0.25 ±0.05 0.58 ±0.18 ns  

b23 0.34 ±0.05 1.66 ±0.18 ns  
        

        

B) Statistical information 
        

        

R² 0.9677 0.9546 0.9542 
R² adjusted 0.962 0.951 0.951 

        

        

C) Optimal variable conditions for response maximization 
        

        

INDIVIDUAL 

Time (min) 34.57 ±1.61 78.14 ±8.20 64.23 ±7.71 
Temperature (ºC) 19.99 ±4.34 19.99 ±3.59 90.01 ±3.14 
Solvent (%) 0.00 ±2.13 29.42 ±3.99 0.00 ±0.91 
       

Response 3.36 ±0.57 11.52 ±1.53 0.29 ±0.04 

GLOBAL 

Time (min) 37.51±3.60 
Temperature (ºC) 20.00±2.14 
Solvent (%) 0.00±2.16 
  

Response 3.35 ±0.52 9.02 ±1.14 0.37 ±0.05 
        

        

Once the models are validated by statistical analysis (Table 9 part A and B), it is possible to 

determine the absolute/relative optimal values of the variable conditions to maximize the 

responses individually and globally in order to obtain the most efficient extraction. Table 9 part 

C shows the HAE individual and global optimal response values and the corresponding 

conditions for the responses assessed. 

Although the parametric values show the responses and can be used to understand the patterns 

of the responses, the best way to express the effects of any independent variable on the 

extraction of any type of response, is to generate 3D surface plots, varying two variables in the 

experimental range under investigation and holding the other two variables at their fixed level. 

In this regard, Figure 17 and Figure 18 show the 3D surface plots parameters on the extraction 
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behaviour. The plots enable to visualize the influence and interaction between the variables. 

Visual analysis of 3D surface and curve plots are in accordance with parametric values derived 

from the multiple regression analysis described in Table 9.  

The extraction results of HAE as function of the combination of the three main variables 

involved (X1-3: t, T, and S) can be observed in Figure 17 and Figure 18. In a more detailed 

form, Figure 17 part A shows the graphical analysis by net surfaces that represents the 3D 

response surface predicted with the second order polynomial of Equation 1. The binary actions 

between variables are presented when the excluded variable is positioned at the individual 

optimum (Table 9). The experimental design and results are described in Table . These 

graphical illustrations are helpful to visualize the tendencies of each response and guide the 

selection of the most favourable conditions, considering simultaneously all responses.  

Additionally, part B of Figure 17 illustrates the capability to predict the obtained results and 

the residual distribution as a function of each of the considered variables. Regarding statistical 

terms, the distribution of residues (Figure 17) presents, for the majority, more than 90% of 

reliability. This result is showing good agreement between experimental and predictive values. 

This is also verified by the high values of R2 (Table 9).  
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Figure 17: Shows the HAE graphical results for the extraction yield of the three response value formats (Y1, mg A/g P dw; Y2, 
mg A/g R dw; and Y1/Y2 g R/g P dw). Each figure is divided in two parts. Part A: Shows the graphical analysis by net surfaces 
that represents the 3D response surface predicted with the second order polynomial of Equation 1. The binary actions between 

variables are presented when the excluded variable is positioned at the individual optimum (Table 9). The experimental design 
and results are described in Table . Part B: To illustrate the goodness of fit, two basic graphical statistic criteria are used. The 
first one, the ability to simulate the changes of the response between the predicted and observed data; and the second one, the 
residual distribution as a function of each of the variables. 
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Figure 18: Shows the optimized isolines projections for the combination of the three main variables involved (X1, X2and X3) 
in the HAE of the three response value formats (Y1, mg A/g P dw; Y2, mg A/g R dw; and Y1/Y2 g R/g P dw) to describe visually 
the tendencies of each response and guide the selection of the most favorable conditions, taken into account simultaneously all 
responses. Each of the contour graphs represents the projection in XY plane of the theoretical three-dimensional response 
surface predicted with the second order polynomial of Equation 1. The binary actions between variables are presented when 
the excluded variable is positioned at the individual optimum of the experimental domain. 

 

4.3.3 Optimum numerical conditions that maximize experimental extraction and 

verification of predictive models 

Based on the experimental results and statistical analysis, numerical optimizations have been 

conducted in order to establish the optimum level of the independent variables with desirable 

response levels. In order to verify the predictive mathematical model of the investigated 

process, the experimental confirmation was performed on the estimated optimal conditions. The 

predicted results matched well with the experimental results obtained at optimal extraction 

conditions, which were validated by the RSM model with good correlation. The values of the 
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variable conditions that lead to optimal response values for RSM using a CCCD for the 

extracting technique assessed are shown in Table 9. The HAE global optimal conditions were 

established as t= 37.5 min, T= 20 ºC, S= 0 % (ethanol). These values were obtained combining 

the information produced by all the responses assessed. This table shows the individual and 

global optimal variable conditions for the HAE extraction technique and the respective amounts 

of the extracted anthocyanin content.  

4.3.4 Dose-response analysis of the effect of solid-liquid ratio under optimum conditions 

The study of S/L was performed in the optimal conditions predicted by the RSM models 

obtained for each response factor (Table 9). The individual S/L study was designed to verify 

the behaviour between 5 to 100 g/L. The maximum value of 100 g/L was used as limit condition 

due to the impossibility of producing a homogenised reaction when higher values were 

introduced.The dose responses of the S/L obtained were consistent with the results obtained in 

the RSM analysis, and could be described by a simple linear relationship (data not showed). All 

experimental points are distributed around the equation with only one independent variable and, 

consequently, the dose response is explained by the slope (m) of the linear relation and intercept 

(b). None of the cases showed positive values of m (the extraction efficiency increases as the 

S/L increases), being in all the other cases the parametric value of m negative (the efficiency 

decreases as the S/L increases). Therefore, intercept (b) of the linear equation represents the 

maximum extraction achievable at the lowest S/L possible. 

Although, at the initial S/L values the results obtained conducted to similar results, these values 

decreased as the S/L increased. Negative m values show that the S/L increase leads to a decrease 

in the extraction ability, obtaining a maximum value of extraction at 5 g/L and a minimum at 

100 g/L. However, the observed decrease is strong, which means that the increase of 1 g/L 

implies the loss of important mg of antocyanin per g of extract. Such values produce losses at 

the maximum tested experimental value (100 g/L) of ~45%, comparatively with the one 

extracted at 5 g/L. Nevertheless, the economic advantages of working at 100 g/L are much 

superior than the possible benefits of extracting at the optimal S/L value. However, from the 

point of view of optimization, the optimal S/L value will be approximately 50 g/L. 
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4.4 EVALUATION OF THE BIOACTIVITIES IN THE OPTIMAL EXTRACT RICH IN ANTHOCYANIN 

COMPOUNDS AND THE EXTRACT OBTAINED THROUGH THE CONVENTIONAL METHOD, 

FROM THE PASSION FRUIT EPICARP 

4.4.1 Antioxidant activity 

The antioxidant activity of the optimal extract rich in anthocyanins (optimal extract) and the 

extract obtained by the conventional method from passion fruits epicarp was evaluated using 

two colorimetric in vitro assays (inhibition of lipid peroxidation – TBARS and oxidative 

hemolysis inhibition assay - OxHLIA) results are showen in Table . 

The results showed that all studied extracts (optimal and normal extract) revealed antioxidant 

potential, presenting statistically significant differences (p-value < 0.01) between both extracts 

in all assays. 

In TBARS assay the EC50 values ranging between115 ± 3 and 136 ± 4 µg/mL to the optimal 

extract and to the normal extract, respectively. Theselower EC50values translate the highest 

antioxidant potential in the optimal extract (115 ± 5 µg/mL), since less amount of extract 

corresponds to 50% of antioxidant activity. 

Likewise, also in the OxHLIA assay, the optimal extract revealed better antioxidant capacity 

(EC50 = 78 ± 3 µg/mL), compared to the extract obtained by the conventional method (EC50 = 

144 ± 4 µg/mL).  

This can be explained by the greater extractability of anthocyanic compounds using the optimal 

conditions, the obtention of a higher concentration of cyanidin-3-O-glucoside. 

Table 10: Antioxidant activity of the optimal extract rich in anthocyanins (optimal extract) and the extract obtained 

by the conventional method (normal extract) from passion fruit epicarp (mean ± SD). 

Antioxidant 

 Activity 

Optimal  

Extract 

Normal  

Extract 

t-Students test 

p-value 

TBARS 
(EC50 values, µg/mL) 

115 ± 3 136 ± 4 < 0.01 

OXHLIA (Δt = 60 min) 

(EC50 values, µg/mL) 
78 ± 3 144 ± 4 < 0.01 

EC50 values: Extract concentration corresponding to 50% of antioxidant activity. EC50values 85 µg/mL. Trolox (positive 

control) EC50 values: 23 µg/mL (TBARS inhibition) and 85 µg/mL (OXHLIA).  
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Several studies were carried out with the purpose of studying the antioxidant potential (through 

in vitro assays) of different parts of passion fruit, and the obtained results are in agreement with 

the present study. 

In a study carried out by Rotta et al., (2019), the antioxidant activity of different varieties of 

passion fruit, namely, the pulp of P. edulis, P. alata and P. ligularis. For this, in vitro assays 

such us DPPH radical and ABTS cation radical were applied, and the results showed a great 

antioxidant potential in all studied varieties. 

Nascimento et al., (2016) also evaluate the antioxidant potential of ethanolic extracts obtained 

from fresh and dried samples of passion fruit peel (Colombian origin). The antioxidant capacity 

was evaluated using the Ferric-Reducing Ability Power (FRAP) assay and the results revealed 

a great antioxidant potential; both in fresh and dehydrated passion fruit peel.  

Janzantti et al., (2012) investigated the influence of the cultivation system on the volatile 

composition of the passion fruit and in the total antioxidant activity. For this, the antioxidant 

potential was determined using the ABTS radical reaction. The organic passion fruit showed 

higher levels of total phenolic compounds and total antioxidant activity than the conventional 

fruit, suggesting that the cultivation system influenced the production of antioxidant bioactive 

compounds. 

Other authors, (Martínez et al., 2012) determine the chemical, technological and in vitro 

antioxidant properties (for ABTS, DPPH and FRAP assays) of the ethanolic extract of passion 

fruit. The obtained results indicate a good correlation between total phenol content and 

antioxidant capacity of the fruit extracts, being a good source of natural compounds. 

 

4.4.2 Antimicrobial activity 

The results of the antibacterial and antifungal activities of the hydroethanolic extracts obtained 

from the passion fruit epicarp are presented in Table  and Table , respectively. 

The samples were tested against a set of five bacterial strains and six fungal strains, specifically 

selected on the basis of their importance for public health. For the evaluation of the antibacterial 

potential the Gram (+) bacteria: Staphylococcus aureus (ATCC 11632), Listeria 

monocytogenes (NCTC 7973) and Gram (-) bacteria Escherichia coli (ATCC 25922), 

Enterobacter cloacae (ATCC 35030) and Salmonella Typhimurium (ATCC 13311) were used. 
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Likewise, for the determination of the antifungal potential the Aspergillus fumigatus (ATCC 

9197), Aspergillus versicolor (ATCC 11730), Aspergillus niger (ATCC 6275), Penicillium 

funiculosum (ATCC 36839), Penicillium ochrochloron (ATCC 9112), Trichodermaviride 

(IAM 5061) strains were used.  

Regarding the antibacterial potential (Table ) of the tested extracts (optimal and normal extract) 

the inhibitory and bactericidal capacity were evident in all the bacterial strains used.  

For the optimal extract, the MIC values varied between 4.00 and 8.00 mg/mL, exhibiting better 

inhibitory potential in Listeria monocytogenes (MIC = 4.00 mg/mL) and Escherichia coli (MIC 

= 4.00 mg/mL) strains. The Minimum Bactericidal Concentration (MBC) presenting values of 

8.00 mg/mL in all tested strains, with no emphasis on any of them. 

The extract obtained by the conventional method (normal extract) also showed efficiency in the 

inhibitory capacity of all tested strains (MIC = 8.00 mg/mL), as well as in the bactericidal 

potential (MBC ≥ 8.00 mg/mL). However, in general, the optimal extract rich in anthocyanins 

revealed better inhibitory and bactericidal activity, compared to the extract obtained by the 

conventional method.  

Table 5: Antibacterial activity (MIC and MBC, mg/mL) of the hydroethanolic extracts (optimal and normal 

extract) obtained from apicarp of passion fruit. 

 
Staphylococcus 

aureus 

Listeria 

monocytogenes 

Escherichia 

coli 

Enterobacter 

cloacae 

Salmonella 

Typhimurium 

Optimal 

extract 

MIC 8.00 4.00 4.00 8.00 8.00 

MBC 8.00 8.00 8.00 8.00 8.00 

Normal 

extract 

MIC 8.00 8.00 8.00 8.00 8.00 

MBC >8.00 >8.00 8.00 >8.00 >8.00 

Ampicillin 
(control) 

MIC 0.012 0.40 0.40 0.006 0.75 

MBC 0.025 0.50 0.50 0.012 1.20 

MIC: Minimal Inhibitory Concentration; MBC: Minimal Bactericidal Concentration.  

In antifungal activity (Table ), the evaluated extracts (optimal and normal extract) demonstrated 

inhibitory and fungicidal efficiency in all tested strains. 

For the optimal extract rich in anthocyanins (optimal extract) the MIC values ranging between 

1.00 and 8.00 mg/mL, exhibiting better inhibitory potential in Penicillium ochrochloron (MIC 

= 1.00 mg/mL) strain, following the Trichoderma viride (MIC = 4.00 mg/mL) and Aspergillus 

niger (MIC = 4.00 mg/mL) strains. The remaining tested strains presented MIC values of 8.00 

mg/mL. 
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Regarding the Minimum fungicidal Concentration (MFC), the values oscillated between 1.00 

and ≥ 8.00 mg/mL, highlighting the Penicillium ochrochloron strain with a better result (MFC 

= 1.00 mg/mL).  

Taking into account the extract obtained by the conventional method (normal extract), the 

results revealed inhibition in all tested strains (MIC ≥ 8.00 mg/mL), as well as in the bactericidal 

potential (MFC ≥ 8.00 mg/mL). Such as in the antimicrobial activity, also in the antifungal 

activity, the optimal extract rich in anthocyanins revealed better efficiency compared to the 

extract obtained by the conventional method. 

Table 6: Antifungal activity (MIC and MFC, mg/mL) of the hydroethanolic extracts (optimal and normal extract) 

obtained from epicarp of passion fruit. 

  
Aspergillus 

fumigatus 

Aspergillus 

versicolor 

Aspergillus 

niger 

Penicillium 

funiculosum 

Penicillium 

ochrochloron 

Trichoderma 

viride 

Optimal 

Extract 

MIC 8.00 8.00 4.00 8.00 1.00 4.00 

MFC >8.00 8.00 8.00 8.00 1.00 8.00 

Normal  

Extract 

MIC >8.00 >8.00 >8.00 >8.00 >8.00 >8.00 

MFC >8.00 >8.00 >8.00 >8.00 >8.00 >8.00 

Ketoconazol 

(control) 

MIC 0.20 0.20 0.20 0.20 0.20 0.20 

MFC 0.50 0.50 0.50 0.50 0.50 0.30 

MIC: Minimal Inhibitory Concentration; MFC: Minimal Fungicidal Concentration.  

Calderon et al., (2019) evaluate the antimicrobial activity of the compounds in the Passiflora 

mollissima (Tumbo) fruit and leaves included also on cultured strains of the microorganisms 

Streptococcus mutans, Streptococcus oralis, Streptococcus sanguinis and Candida albicans. 

This potential was analyzed by the disk diffusion method and evaluated in terms of their zones 

of inhibition, and the results demonstrated the antimicrobial activity of ethanolic Passiflora 

mollissima extract against the cultured strains of Streptococcus mutans, Streptococcus oralis 

and Streptococcus sanguinis with zones of inhibition after the incubation period. 

Also, Bandara et al., (2018) investigated the antimicrobial capacity of several extracts (hexane, 

chloroform, methanol and water) of Passiflora suberosa. L. The antibacterial activity and 

minimum inhibition concentrations were evaluated using three Gram-positive (Bacillus subtilis, 

Staphylococcus aureus and Enterococcus faecium) and three Gram-negative bacteria 

(Pseudumonas aeruginosa, Salmonella typhimuriam and Escherichia coli). The results 

indicated that only the methanol extract of P. suberosa exhibited antibacterial activities against 

all the strains of Gram-negative and Gram-positive bacterial with stronger activity against 

Gram-negative bacteria. 
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4.4.3 Cytotoxic, hepatotoxic and anti-inflammatory activity 

The results of in vitro cytotoxicity, hepatotoxicity and anti-inflammatiry assays, of the optimal 

extract and the extract obtained by the conventional method from the epicarp of passion fruit 

are presented in the Table .  

For the cytotoxic evaluation the NCI H460, MCF7, HepG2 and HeLa tumor cell lines was used. 

Taking into account the obtained results, it was evident that only in the HepG2 cell line it was 

found inhibitory capacity, presenting GI50 values of 363 ± 15 µg/mL. Otherwise, no inhibitory 

potential was observed in the other tumor cell lines tested, with values of GI50> 400 μg/mL. 

Regarding the evaluation of the hepatotoxicity of the two obtained extracts (optimal and normal 

extract), evaluated through the primary non-tumor cell culture PLP2, the absence of toxicity 

was evident (GI50> 400 μg/mL). In relation to the anti-inflammatory potential, in both studied 

extracts no activity was observed.  

Table 7:Cytotoxic, hepatotoxic and anti-inflammatory activity of the hydroethanolic extract, obtained by the 

conventional methodology, from the P. edulis fruits. 

 Optimal Extract Normal extract 

Tumor cell lines (GI50 values; µg/mL) 

NCI H460 >400 >400 
MCF7 >400 >400 
HepG2 363 ± 15 >400 

HeLa >400 >400 

Non-tumor cell lines (GI50 values; µg/mL) 

PLP2 >400 >400 

Anti-inflammatory (GI50 values; µg/mL) 

RAW264,7 >400 >400 

GI50 – concentration that inhibited 50% of cell growth. GI50 values of Ellipticin (positive control): 1.21 μg/mL (MCF-7), 1.03 

μg/mL (NCI-H460), 0.91 μg/mL (HeLa), 1.10 μg/mL (HepG2) and 2.29 μg/mL (PLP2). GI50>400 μg/mL- does not have 

activity. 

 

Several studies have been done to evaluate several properties of passion fruits, however, in the 

literature no studies reported the evaluation of the cytotoxic potential, as well as, hepatotoxicity 

activity. 

In relation to the anti-inflammatory activity, Cavalcanti de Albuquerque et al., (2019) determine 

this capacity in four different water extracts of fruit by-products (peels and seeds, namely from 
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passion fruit). For this assay the RAW 264.7 macrophage cell line was used, and the results 

showed anti-inflammatory potential by decreasing the highest nitric oxide levels. However, of 

all fruits evaluated in this study passion fruit was the one with the lowest anti-inflammatory 

potential. 
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5 CONCLUSIONS 

Colourants are one of the most important additives in terms of marketing, since their presence 

in food products influences the perceptions, choices and preferences of consumers. 

This study describes the extraction of anthocyanins from epicarp of purple passion fruit by 

applying a maceration methodology, valorizing a bio-residue produced in large scale by the 

food industry.  

The colour evaluated in fresh and dried epicarp revealed the positive influence of dehydration 

by lyophilization process, changing the a* and b* parameter and, consequently, the epicarp tone 

to a purple colour.  

In the optimization process different time, temperatures and solvent ratios (ethanol/water; v/v) 

were tested and the extraction optimization was measured by using a response surface 

methodology (RSM). The optimal parameters obtained (t= 37.5 min, T= 20 ºC, S= 0 % (ethanol) 

using 50 g/L of solid/liquid ratio) conducting to an extraction yield of 37%, with a total 

anthocyanins’ content of 3.35 mg of A per g of dried epicarp and 9.02 mg of A per g of extract 

(dried extracted residue-basis). 

It was also possible to verify the bioactive potential of the extracts (optimal extract rich in 

anthocyanic compounds and extract obtained through the conventional method) obtained 

throughout the experimental work, namely through the antioxidant activity, which revealed 

promising EC50 values, principally in the extract rich in anthocyanin compounds. It was also 

evident that both extracts present antibacterial and antifungal efficiency, with MIC, MBC and 

MFC values between 1.00 and 8.00 mg/mL, highlighting, once again, the optimal extract. 

In the evaluation of the cytotoxic and hepatotoxic potential only the optimal extract revealed 

inhibitory potential in the HeLa tumor cell line, being clear the absence of toxicity of both 

extracts tested in the primary non-tumor cell culture PLP2. In contrast, both extracts had no 

effect in the anti-inflammatory activity. 

Based on the obtained results, it is possible to conclude that the epicarp of purple passion fruit 

is a great choice for the extraction of anthocyanin compounds and can be used as an alternative 

to obtain a natural coloring ingredient. 
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Besides of the colourant potential, the studied sample also exhibited some bioactive properties, 

with potential to be incorporated in the food and nutraceutical industry. 

All these results show that waste discarded from the food industry can have a beneficial purpose 

for man and the environment, and the possibility of having high added value when processed 

and transformed. 

In order to continue this experimental work, as future prospects, it would be interesting to study 

different techniques of incorporation of the optimal extract rich in anthocyanins in food 

products. To that end, the use of encapsulation techniques such as microencapsulation, 

liposomes, or nanoemulsions could be a next line of investigation in assessing their stability 

and incorporation of these anthocyanin compounds as well as the influence of the anthocyanin 

compound detected (cyanidin-3-O-glucoside) in food products. 

It would also be pertinent to carry out market studies with the objective of realizing the 

feasibility and advantages of using this bio-waste at an industrial level. 

 



76 

 

 

 

 

 

 

References 

 



77 

References 

Aleyda María Jiménez, Cesar Augusto Sierra, Francisco José Rodríguez-Pulido, María Lourdes 

González-Miret, Francisco José Heredia, Coralia Osório. Physical-chemical 

characterization of gulup fruit (Passifloraedulis Sims. Foedulis) from Colombia during 

ripening. Food Reserach International, 2011, 44, 1912-1918. 

Alagusundaram M., Chetty, C.M. (2010). Medicinal importance of natural dyes- a review. 

International Journal of Pharm Tech Research, 2, 144–154. 

Albuquerque, B. R., Prieto, M. A., Barreiro, M. F., Rodrigues, A., Curran, T. P., Barros, L., 

Ferreira, I.C.F.R. (2017). Catechin-based extract optimization obtained from Arbutus 

unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Industrial 

Crops and Products, 95, 404–415.  

Allobergenova, I. (2006). Anaerobic fermentation of organic waste from juice plant in 

Uzbekistan. 

Appelhagen, I., Wulff-Vester, A.K., Wendell, M., Hvoslef-Eide, A.K., Russell, J., Oertel, A., 

Martens, S., Mock, H.P., Martin, C., & Matros, A. (2018). Colour bio-factories: Towards 

scale-up production of anthocyanins in plant cell cultures. Metabolic Engineering, 48, 

218–232. 

Arnold, L. E., Lofthouse, N., Hurt, E. (2012). Artificial Food Colors and Attention-

Deficit/Hyperactivity Symptoms: Conclusions to Dye for. Neurotherapeutics, 9(3), 599–

609.  

Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., … Omar, 

A.K.M. (2013). Techniques for extraction of bioactive compounds from plant materials: 

A review. Journal of Food Engineering, 117, 426–436. 

Backes, E., Pereira, C., Barros, L., Prieto, M.A., Genena, A.K., Barreiro, M.F., & Ferreira, 

I.C.F.R. (2018). Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by 

heat, microwave, and ultrasound-based extraction techniques. Food Research 

International, 113, 197–209. 

Bandara KRV, Padumadasa C, Peiris DC. Potent antibacterial, antioxidant and toxic activities 

of extracts from Passiflora suberosa L. leaves. PeerJ. 2018, 6, 4804. 



78 

Barczak, A.B. (2005). Acylated anthocyanins as stable, natural food colorants – a review. 

Journal of Food and Nutrition Sciences, 14, 107–115. 

Barnard, H., Dooley, A.N., Areshian, G., et al. (2011). Chemical evidence for wine production 

around 4000 BCE in the Late Chalcolithic Near Eastern highlands. Journal of 

Archaeological Science, 38, 977–984.  

Barros, L., Carvalho, A.M., Morais, J.S., Ferreira, I.C.F.R. (2010). Strawberry-tree, blackthorn 

and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant 

properties. Food Chemistry, 120, 247–254. 

Bessada, S.M.F., Barreira, J.C.M., Barros, L., Ferreira, I.C.F.R., Oliveira, M.B.P.P. (2016). 

Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An 

underexploited and highly disseminated species. Industrial Crops and Products, 89, 45–

51.  

Betim Cazarin, C.B., Rodriguez-Nogales, A., Algieri, F., Utrilla, M.P., Rodríguez-Cabezas, 

M.E., Garrido-Mesa, J., Guerra-Hernández, E., Aparecida de Campos Braga, P., Reyes 

Reyes, F.G., Maróstica, M.R., Gálvez, J. (2016). Intestinal anti-inflammatory effects of 

Passiflora edulis in the dextran sodium sulphate model of mouse colitis. Journal of 

Functional Foods, 26, 565–576. 

Bilek, S.E. (2016). The Effects of Industrial Production on Black Carrot Concentrate Quality 

and Encapsulation of Anthocyanins in Whey Protein Hydrogels. Food and Bioproducts 

Processing, 102, 1-35. 

Bkowska-Barczak, A. (2005). Acylated anthocyanins as stable, natural food colorants – a 

review. Polish Journal of Food And Nutrition Sciences, 14, 107-115. 

Blackhall, M.L., Berry, R., Davies, N.W., Walls, J.T. (2018). Optimized extraction of 

anthocyanins from Reid Fruits’ Prunus avium ‘Lapins’ cherries. Food Chemistry, 256, 

280-285. 

Bonfigli, M., Godoy, E., Reinheimer, M.A., Scenna, N.J. (2017). Comparison between 

conventional and ultrasound-assisted techniques for extraction of anthocyanins from 

grape pomace. Experimental results and mathematical modeling. Journal of Food 

Engineering, 207, 56–72. 

Burri, B.J. (1997). “Beta-carotene and human health: a review of current research”. 17, 547–

580. 

https://www.sciencedirect.com/journal/journal-of-archaeological-science
https://www.sciencedirect.com/journal/journal-of-archaeological-science


79 

Calderon A, Salas J, Dapello G, Gamboa E, Rosas J, Chávez J, Retuerto F, Mayta-Tovalino F. 

Assessment of Antibacterial and Antifungal Properties and In Vivo Cytotoxicity of 

Peruvian Passiflora mollisima. J Contemp Dent Pract. 2019; 20, 145-151. 

Carle, R., Schweiggert, R.M. (2016). Handbook on natural pigments in food and beverages: 

industrial applications for improving food color (1st ed.). Woodhead Publishing. 

Carocho, M., Barros, L., Calhelha, R.C., Ćirić, A., Soković, M., Santos-Buelga, C., Ferreira, 

I.C.F.R.. (2015). Melissa officinalis L. decoctions as functional beverages: a bioactive 

approach and chemical characterization. Food and Function, 6, 2240-2248.  

Castañeda-Ovando, A., Pacheco-Hernández, M. de L., Páez-Hernández M.E., Rodríguez, J.A. 

Galán-Vidal. C.A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 

113, 859–871. 

Cederberg, C. (2015). Global Food Losses and Food Waste. 

Cevallos-Casals, B.A., Cisneros-Zevallos, L. (2003). Stoichiometric and kinetic studies of 

phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato. Journal of 

Agricultural and Food Chemistry, 51, 3313–3319. 

Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, 

M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, 

techniques, combinations, protocols and applications. A review. Ultrasonics 

Sonochemistry, 34, 540–560. 

Chemat, F., Zill-e-Huma, Khan, M.K. (2011). Applications of ultrasound in food technology: 

Processing, preservation and extraction. Ultrasonics Sonochemistry. Ultrasonics 

Sonochemistry, 18, 813–835.  

Chóez-guaranda, I., Ortega, A., Miranda, M., Manzano, P. (2017). Chemical composition of 

essential oils of Passiflora edulis f. flavicarpa agroindustrial waste. Emirates Journal of 

Food and Agriculture, 29, 458-462. 

Codex Alimentarius Commission - Procedural Manual. (2018). Retrieved December 12, from 

http://www.fao.org/3/a-i3243e.pdf 

Cortez, R., Luna-vital, D.A., Margulis, D., De Mejia, E.G. (2016). Natural Pigments: 

Stabilization Methods of Anthocyanins for Food Applications. Comprehensive Reviews 

in Food Science and Food safety, 00, 1–19. 

https://pubs.acs.org/journal/jafcau
https://pubs.acs.org/journal/jafcau
https://www.sciencedirect.com/science/journal/13504177
https://www.sciencedirect.com/science/journal/13504177
http://www.fao.org/3/a-i3243e.pdf


80 

Di Khanh, N. (2015). Advances in the extraction of anthocyanin from vegetables 2 . Methods 

for Extraction of Anthocyanins from Vegetables. Journal of Food and Nutrition Sciences, 

3, 126–134. 

Djilas, S. (2009). By-products of fruits processing as a source of phytochemicals. Chemical 

Industry and Chemical Engineering Quarterly,15, 191–203. 

Downham A., Collins P. (2000). Colouring our foods in the last and next millennium. 

International Journal of Food Science and Technology, 35, 5-22. 

El-ella D.M.A., Bishayee. A. (2019). The Epigenetic Targets of Berry Anthocyanins in Cancer 

Prevention. Epigenetics of Cancer Prevention, 129-148. 

European Parliament and Council Directive 94/36/EC of (30 June 1994) on colours for use in 

foodstuffs. Official Journal of the European Communities L237, 10.9.94, 13-29. 

Eliza Mariane Rotta, Carina Alexandra Rodrigues, Isabel Cristina Sales Fontes Jardim, Liane 

Maldaner, Jesuí Vergilio Visentainer. Determination of phenolic compounds and 

antioxidant activity in passion fruit pulp (Passiflora spp.) using a modified QuEChERS 

method and UHPLCMS/MS. LWT - Food Science and Technology 100 (2019) 397–403. 

Elisabete M.G.C. do Nascimento, Antonio Mulet, José Luis Ramírez Ascheri, Carlos Wanderlei 

Piler de Carvalho, Juan A. Cárcel. Effects of high-intensity ultrasound on drying kinetics 

and antioxidant properties of passion fruit peel. Journal of Food Engineering 170 (2016) 

108-118. 

Evans, B.C., Nelson, C.E., Yu, S.S., Beavers, K.R., Kim, A.J., Li, H., Nelson, H.M., Giorgio, 

T.D., Duvall, C.L. (2013). Ex vivo red blood cell hemolysis assay for the evaluation of 

pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. 

Journal of visualized experiments, e50166.  

Fang, J. (2015), Classification of fruits based on anthocyanin types and relevance to their health 

effects. Nutrition, 31, 1301–1306. 

Fattore, M., Montesano, D., Pagano, E., Teta, R., Borrelli, F., Mangoni, A., … Albrizio, S. 

(2016). Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino 

Vesuviano” tomatoes. Journal of Food Composition and Analysis, 53, 61-68. 



81 

FDA. Food and Drug Administration, & US Department of Health and Human Services. Food 

ingredients and colours. International Food Information Council (IFIC) and US Food and 

Drug Administration. (2010) [cited 2017 June 19]. 

Fernandes, F., Pereira, E., Prieto, M.A., Calhelha, R.C., Ciric, A., Sokovic, M., Simal-Gandara, 

J., Barros,L. I.C.F.R. (2019). Optimization of the extraction process to obtain a colorant 

ingredient from leaves of Ocimum basilicum var. purpurascens. Molecules, 24, 686. 

Fiedor, J., Burda, K. (1997). Potential Role of Carotenoids as Antioxidants in Human Health 

and Disease. Nutrients, 6, 466-488. 

Figueiredo, D.A.F., Pordeus, L.C.M., Paulo, L.L., Braga, R.M., Fonsêca, D.V., Sousa, B.S., 

Costa, M.J.C., Gonçalves, M.C.R., Oliveira, K.H.D. (2016). Effects of bark flour of 

Passiflora edulis on food intake, body weight and behavioral response of rats. Revista 

Brasileira de Farmacognosia, 26, 595–600. 

Flores, F.P., Singh, R.K., & Kong, F. (2016). Anthocyanin extraction, microencapsulation, and 

release properties during in vitro digestion. Food Reviews International, 32, 46–67. 

Garcia-Alonso, M., Minihane, A.M., Rimbach, G., et al. (2009). Red wine anthocyanins are 

rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and 

antioxidant capacity of plasma. Journal of Nutritional Biochemistry, 20, 521–529 

García-Moreno, P. J., Batista, I., Pires, C., Bandarra, N. M., Espejo-Carpio, F. J., Guadix, A., 

& Guadix, E. M. (2014). Antioxidant activity of protein hydrolysates obtained from 

discarded Mediterranean fish species. Food Research International, 65(PC), 469–476. 

Guangling Jiao, Azadeh Kermanshahi pour. Extraction of anthocyanins from haskap berry pulp 

using supercritical carbon dioxide: Influence of co-solvent composition and pretreatment. 

LWT - Food Science and Technology 98 (2018) 237–244. 

Guimarães, R., Barros, L., Dueñas, M., Calhelha, R.C., Carvalho, A.M., Santos-Buelga, C., 

Queiroz, M.J.R.P., Ferreira, I.C.F.R.. (2013). Infusion and decoction of wild German 

chamomile: Bioactivity and characterization of organic acids and phenolic compounds. 

Food Chemistry, 136, 947-954.  

Gutteridge, J.M.C. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue 

damage. Clinical Chemistry, 41, 1819-1828. 



82 

Hewlings, S.J., Kalman, D.S. (2017). Curcumin: A Review of Its’ Effects on Human Health. 

Foods, 6, 92. 

Jaakola L. (2013). New insights into the regulation of anthocyanin biosynthesis in fruits. Trends 

Plant Science, 18, 477–483. 

Jabeur, I., Tobaldini, F., Martins, N., Barros, L., Martins, I., Calhelha, R. C., Henriques, M., 

Silva, S., Achour, L., Santos-Buelga, C., Ferreira, I.C.F.R. (2016). Bioactive properties 

and functional constituents of Hypericum androsaemum L.: A focus on the phenolic 

profile. Food Research International, 89, 422-431. 

Jabeur, I., Pereiraa, E., Barrosa, L., Calhelhaa, C, R., Sokovićc, M., Beatriz P, M., Oliveirab, 

P., Ferreiraa, C.F.R, I. (2017). Hibiscus sabdariffa L. as a source of nutrients, bioactive 

compounds and colouring agents. Food Research International, 100, 717–723. 

Jaffer, G.P., Moothandassery, T.S. (2012). Food Uses and Nutritional Benefits of Sweet Potato. 

Janiszewska-Turak, E., Pisarska, A., Królczyk. J.B. (2016). Natural food pigments application 

in food products. Nauka Przyroda Technologie, 10, 4-51. 

Jiménez L., C., Caleja, C., Prieto, M. A., Barreiro, M. F., Barros, L., & Ferreira, I. C. F. R. 

(2018). Optimization and comparison of heat and ultrasound assisted extraction techniques 

to obtain anthocyanin compounds from Arbutus unedo L. fruits. Food Chemistry, 264, 81–

91. 

Joshi, V.K., Preema, M. (2017). Anthocyanins: Chemistry, Extraction, Stability, Significance 

and Application as a Biocolour. International Journal of Food and Fermentation 

Technology, 7, 201–222. 

Kahkonen, M.P., Hopia, A.I., Heinonen, M. (2001). Berry phenolics and their antioxidant 

activity. Journal of Agricultural and Food Chemistry, 49, 4076–4082. 

Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, et al. (2007). Engineering of the rose flavonoid 

biosynthetic pathway successfully generated blue-hued flowers accumulating 

delphinidin. Plant Cell Physiology, 48, 1589–1600. 

Kelly, J., Baú, C., Cazarin, B., Bogusz, S. (2014). Passion fruit (Passiflora edulis) peel increases 

colonic production of short-chain fatty acids in Wistar rats. LWT - Food Science and 

Technology, 59, 2010–2015. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hewlings%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=29065496
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kalman%20DS%5BAuthor%5D&cauthor=true&cauthor_uid=29065496
http://www.ndpublisher.in/ndpjournal.php?j=IJFFT
http://www.ndpublisher.in/ndpjournal.php?j=IJFFT


83 

Khoo, H.E. (2017). Anthocyanidins and anthocyanins: colored pigments as food, 

pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 

61, 1-21. 

Kumar, M., Venkates, M.P., Kumar, T.M.P. (2017). Colourants and Additives: Existing and 

Emerging Safety Concerns. International Journal of Pharmaceutical and Clinical 

Research, 9, 525-533. 

Larissa Morais Ribeiro da Silva, Evania Altina Teixeira de Figueiredo, Nagila Maria Pontes 

Silva Ricardo, Icaro Gusmao Pinto Vieira, Raimundo Wilane de Figueiredo, Isabella 

Montenegro Brasil, Carmen L. Gomes. Quantification of bioactive compounds in pulps 

and by-products of tropical fruits from Brazil. Food Chemistry 143 (2014) 398–404 

Lakshmi, C.G. (2014). Food Coloring: The Natural Way. Research Journal of Chemical 

Sciences, 4, 2231–606. 

Lazarevic, D., Buclet, N., Brandt, N. (2010). The influence of the waste hierarchy in shaping 

European waste management: the case of plastic waste. Regional Development Dialogue, 

31, 124-148. 

Linda Kidøy, Anne Mette Nygard, Øyvind M. Andersen, Atle T. Pedersen, Dagfinn W. Aksnes, 

Bernard T. Kiremire. Anthocyanins in Fruits of Passiflora edulis and P. suberosa. 

JOURNAL OF FOOD COMPOSITION AND ANALYSIS 10, 49–54 (1997) 

Lockowandt, L., Pinela, J., Roriz, C.L., Pereira, C., Abreu, R.M.V., Calhelha, R.C., Alves, M.J., 

Barros, L., Bredol, M., Ferreira, I.C.F.R. (2019). Chemical features and bioactivities of 

cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-

edible part. Industrial Crops and Products, 128, 496-503. 

López, C.J., Caleja, C., Prieto, M.A., Barreiro, M.F., Barros, L., Ferreira, I.C.F.R. (2018). 

Optimization and comparison of heat and ultrasound assisted extraction techniques to 

obtain anthocyanin compounds from Arbutus unedo L. Fruits. Food Chemistry, 264, 81-

91. 

López, C.J., Caleja, C., Prieto, M.A., Sokovic, M., Calhelha, R.C., Barros, L., Ferreira, I.C.F.R. 

(2019). Stability of a cyanidin-3-O-glucoside extract obtained from Arbutus unedo L. and 

incorporation into wafers for colouring purposes. Food Chemistry, 275, 426-438. 



84 

López-Vargas, J.H., Fernández-López, J., Pérez-Álvarez, J.A.,Viuda-Martos, M. (2013). 

Chemical, physico-chemical, technological, antibacterial and antioxidant properties of 

dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) 

co-products. Food Research International, 51, 756–763. 

Luzia Caroline Ramos dos Reis, Elizete Maria Pesamosca Facco, Mirian Salvador, Simone 

Hickmann Flores, Alessandro de Oliveira Rios. 

Antioxidantpotentialandphysicochemicalcharacterizationof yellow, purple and orange 

passion fruit. Journal of Food Science and Technollgy (2018) 55, 2679–2691. 

Marcela Albuquerque Cavalcanti de Albuquerque, Romina Levit, Carolina Beres, Raquel 

Bedani, Alejandra de Moreno de LeBlanc, Susana Marta Isay Saada, Jean Guy LeBlanc. 

Tropical fruit by-products water extracts as sources of soluble fibres and phenolic 

compounds with potential antioxidant, anti-inflammatory, and functional properties. 

Journal of Functional Foods 52 (2019) 724–733. 

Nathália B. Mercante de Souza, José Alberto Pereira, Ricardo Malheiro, Maria de Fátima 

Lopes-da-Silva. Composição de frutos de maracujá-roxo, Passiflora edulis Sims edulis, 

ao longo da maturação. Actas Portuguesas de Horticultura nº 28 | 2ª Edição, 2016. 

Martín, J., Navas, M.J., Navas, M.J., Jiménez-moreno, A.M., Asuero, A.G. (2017). 

Anthocyanin Pigments: Importance, Sample Anthocyanin Pigments: Importance, Sample 

Preparation and Extraction Preparation and Extraction. Phenolic Compounds - Natural 

Sources, Importance and Applications, 5, 117-149. 

Martins, N., Roriz, C.L., Morales, P., Barros, L., Ferreira, I.C.F.R. (2016). Food colorants: 

Challenges, opportunities and current desires of agro-industries to ensure consumer 

expectations and regulatory practices. Trends in Food Science & Technology, 52, 1-15. 

Mazza, G., Miniati, E. (1993). Anthocyanins in fruits, vegetables and grain. Food, 38, 343-343. 

Meghwal, M., Goyal, M. (2016). Food Process Engineering: Emerging Trends in Research and 

Their Applications, 5. 

Mei, H., Feng, G., Xiang, L., Wei, Y., Long, H. (2018). Optimization of green extraction of 

anthocyanins from purple passion fruit peels by response surface methodology. Journal 

of Food Processing and Preservation, 42, 1–8. 

Mishra, A.R., Mishra, S.A., Tiwari. A.V. (2014). Solid waste management -case study. 

https://www.sciencedirect.com/science/journal/09242244


85 

International Journal of Research in Advent Technology, 2, 396-399. 

Mori, K., Goto-Yamamoto, N., Kitayama, M., et al. (2007). Loss of anthocyanins in red-wine 

grape under high temperature. Journal Experimental Botany, 58, 1935–1945. 

Montesano, D., Fallarino, F., Cossignani, L., Bosi, A., Simonetti, M. S., Puccetti, P., & 

Damiani, P. (2008). Innovative extraction procedure for obtaining high pure lycopene 

from tomato. European Food Research and Technology, 226(3), 327–335. 

Murado, M. A., & Prieto, M. A. (2013). Dose-Response Analysis in the Joint Action of Two 

Effectors. A New Approach to Simulation, Identification and Modelling of Some Basic 

Interactions. PLoS ONE, 8(4), e61391. 

Natália S. Janzantti a, Mariana S. Macoris, Deborah S. Garruti, Magali Monteiro. Influence of 

the cultivation system in the aroma of the volatile compounds and total antioxidant 

activity of passion fruit. LWT - Food Science and Technology 46 (2012) 511-518. 

Ng, T.B., Liu, F., Wang, Z. (2000). Antioxidative activity of natural compounds from 

plants. Life Sciences, 66, 709-723. 

Ongkowijoyo, P., Luna-Vital, D.A., Gonzalez de Mejia, E. (2018). Extraction techniques and 

analysis of anthocyanins from food sources by mass spectrometry: An update. Food 

Chemistry, 260, 113-126.  

Oludemi, T., Barros, L., Prieto, M. A., Heleno, S. A., Barreiro, M. F., & Ferreira, I. C. F. R. 

(2018). Extraction of triterpenoids and phenolic compounds from: Ganoderma lucidum: 

Optimization study using the response surface methodology. Food and Function, 9(1).  

Pap, N., Myllykoski, L. (2014). Waste Minimization and Utilization in the Food Industry, 

Conference: waste Minimization and Resources Use Optimization Conference. 

Patras, A., Brunton, N.P., O’Donnell, C., et al. (2010). Effect of thermal processing on 

anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food 

Science and Technology, 21, 3–11. 

Pereira, C.G., Meireles, M.A.A. (2012). Supercritical Fluid Extraction of Bioactive Compounds 

from Botanic Matrices: Experimental Data, Process Parameters and Economic Evaluation 

Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and 

Economic Perspectives. Recent Patents on Engineering, 6, 182-206. 

Pereira, E., Antonio, A.L., Barreira, J.C.M., Barros, L., Bento, A. Ferreira, I.C.F.R. (2015a). 



86 

Gamma irradiation as a practical alternative to preserve the chemical and bioactive 

wholesomeness of widely used aromatic plants. Food Research International, 67, 338-

348. 

Pereira, E., Antonio, A. L., Barreira, J. C. M., Barros, L., Bento, A., & Ferreira, I. C. F. R. 

(2015). Gamma irradiation as a practical alternative to preserve the chemical and bioactive 

wholesomeness of widely used aromatic plants. Food Research International, 67, 338–

348. https://doi.org/10.1016/j.foodres.2014.11.047 

Pinela, J., Prieto, M. A., Carvalho, A. M., Barreiro, M. F., Oliveira, M. B. P., Barros, L., & 

Ferreira, I. C. F. R. (2016). Microwave-assisted extraction of phenolic acids and flavonoids 

and production of antioxidant ingredients from tomato: A nutraceutical-oriented 

optimization study. Separation and Purification Technology, 164, 114–124. 

Pinela, J., Prieto, M. A., Pereira, E., Jabeur, I., Barreiro, M. F., Barros, L., & Ferreira, I. C. F. 

R. (2019). Optimization of heat- and ultrasound-assisted extraction of anthocyanins from 

Hibiscus sabdariffa calyces for natural food colorants. Food Chemistry. 

Petersson, E.V. (2009). Analysis of Acrylamide and Anthocyanins in Foods: Extraction 

Optimization for Challenging Analytes. 

Pisanello D. (2014). EU Regulations on Chemicals in Foods. In: Chemistry of Foods: EU Legal 

and Regulatory Approaches. 15-77. 

Prieto, M. A., & Vázquez, J. A. (2014). In vitro determination of the lipophilic and hydrophilic 

antioxidant capacity of unroasted coffee bean extracts and their synergistic and 

antagonistic effects. Food Research International, 62(10), 1183– 1196. 

Roriz, C. L., Barros, L., Prieto, M. A., Morales, P., & Ferreira, I. C. F. R. (2017). Floral parts 

of Gomphrena globosa L. as a novel alternative source of betacyanins: Optimization of the 

extraction using response surface methodology. Food Chemistry, 229, 223–234. 

Rodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. In Current Opinion in 

Food Science (Vol. 7, pp. 20–26). Elsevier Ltd. 

Ruth Martínez, Paulina Torres, Miguel A. Meneses, Jorge G. Figueroa, José A. Pérez-Álvarez, 

Manuel Viuda-Martos. Chemical, technological and in vitro antioxidant properties of 

mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chemistry 135 

(2012) 1520–1526. 



87 

Ruumpol, I. (2014). In the eye of the consumer: The influence of package shape and package 

color on perceived product healthfulness. Food Quality and Preference, 21, 930-937. 

Saini, R.K., Y. Keum. (2018). Carotenoid Extraction Methods: A Review of Recent 

Developments. Food Chemistry, 240, 90–103. 

Santana, C. M., Ferrera, Z.S., Padrón, M.E.T., Juan J., Rodríguez, S. (2009). Methodologies for 

the Extraction of Phenolic Compounds from Environmental Samples: New Approaches. 

Molecules. 14, 298–320. 

Santos, D., Vardanega, R., De Almeida, M. A. (2014). Intensification of bioactive compounds 

extraction from medicinal plants using ultrasonic irradiation. Pharmacognosy Reviews, 

8(16), 88.  

Sasikala, V., Saravana, S., Parimelazhagan, T. (2011). Evaluation of antioxidant potential of 

different parts of wild edible plant Passiflora foetida L. Journal of Applied Pharmaceutical 

Science, 1, 89–96. 

Sawasdee S.C., Stathopoulos, C.E. (2017). Extraction, isolation and utilization of bioactive 

compounds from fruit juice industry waste. 

https://rke.abertay.ac.uk/ws/portalfiles/portal/14655600/Stathopoulos_Extraction_Isolati

onAndUtilizationOfBioactiveCompounds_Author_2018.pdf 

Sharma, D. (2014). Understanding Biocolour- A Review. International Journal of Scientific and 

Technology Research, 3, 294–299. 

Simirgiotis, M.J., Schmeda-Hirschmann. G., Bórquez, J., Kennelly, E.J. (2013). The Passiflora 

tripartita (Banana Passion) fruit: A source of bioactive flavonoid C-glycosides isolated by 

HSCCC and characterized by HPLC–DAD–ESI/MS/MS. Molecules, 18, 1672–1692. 

 Soković, M., Glamoćlija, J., Marin, M.D., Brkić, D., & van Griensven, L.J.L.D. (2010). 

Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an 

in vitro model. Molecules, 15, 7532–7546.  

Soković, M., & van Griensven, L.J.L.D. (2006). Antimicrobial activity of essential oils and 

their components against the three major pathogens of the cultivated button 

mushroom, Agaricus bisporus. European Journal of Plant Pathology, 116, 211–224.  

Stevens, L.J., Burgess, J.R., Stochelski, M.A., Kuczek, T. (2013). Amounts of Artificial Food 

Colors in Commonly Consumed Beverages and Potential Behavioral Implications for 

Consumption in Children. Clinical Pediatrics, 2-8. 

https://rke.abertay.ac.uk/ws/portalfiles/portal/14655600/Stathopoulos_Extraction_IsolationAndUtilizationOfBioactiveCompounds_Author_2018.pdf
https://rke.abertay.ac.uk/ws/portalfiles/portal/14655600/Stathopoulos_Extraction_IsolationAndUtilizationOfBioactiveCompounds_Author_2018.pdf


88 

Story, E.N., Kopec, R.E., Schwartz, S.J., Harris, G.K. (2010). An Update on the Health Effects 

of Tomato Lycopene. Annual Review of Food Science and Technology, 189–212. 

Takebayashi, J., Iwahashi, N., Ishimi, Y., Tai, A.(2012). Development of a simple 96-well plate 

method for evaluation of antioxidant activity based on the oxidative haemolysis inhibition 

assay (OxHLIA). Food Chemistry, 134, 606–610. 

Taylor, P., Zanini, S., Marzotto, M., Giovinazzo, F. (2014). Digestive System Effects of Dietary 

Components on Cancer of the Digestive System. Critical reviews in food science and 

nutrition, 37–41. 

Taofiq O., Calhelha R.C., Heleno S., Barros L., Martins A., Santos-Buelga C., Queiroz 

M.J.R.P., Ferreira I.C.F.R. (2015). The contribution of phenolic acids to the anti-

inflammatory activity of mushrooms: screening in phenolic extracts, individual parent 

molecules and synthesized glucuronated and methylated derivatives. Food Research 

International, 76, 821– 827. 

Teng, H., Fang, T., Lin, Q., Song, H., Liu, B., & Chen, L. (2017). Red raspberry and its 

anthocyanins: Bioactivity beyond antioxidant capacity. Trends in Food Science & 

Technology, 66, 153–165. 

Thackston, E. (2013). The effect of packaging material properties on consumer food quality 

perception in quick- service restaurants.  

Tripathi, P. (2016). Passion fruit cultivation in India. conference The Agricultural and 

Processed Food Products Export Development Authority. 

Trouillas, P., Sancho-García, J.C., De Freitas, V. (2016). Stabilizing and modulating color by 

copigmentation: insights from theory and experiment. Chemical Reviews, 116, 4937–

4982. 

Turner, J, P., Kemp, S, A. (2010). Intolerance to food additives - does it exist, Journal of 

Paediatrics and Child Health, 48(2), 10–14. 

Van Dyk, J.S., Gama, R., Morrison, D., Swart, S., Pletschke, B.I. (2013). Food processing 

waste: Problems, current management and prospects for utilisation of the lignocellulose 

component through enzyme synergistic degradation. Renewable &Sustainable Energy 

Reviews, 26, 521–531. 

Vieira, V., Prieto, M.A., Barros, L., Coutinho, J.A.P., Ferreira, O., &Ferreira, I.C.F.R. (2017). 

https://www.annualreviews.org/journal/food
https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews
https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews


89 

Optimization and comparison of maceration and microwave extraction systems for the 

production of phenolic compounds from Juglans regia L. for the valorization of walnut 

leaves. Industrial Crops and Products, 107, 341–352. 

Wang, L., Weller, C.L. (2006). Recent advances in extraction of nutraceuticals from plants. 

Trends in Food Science and Technology, 17, 300–312.  

Wang, W., Jung, J., Tomasino, E., & Zhao, Y. (2016). Optimization of solvent andultrasound-

assisted extraction for different anthocyanin rich fruit and their effectson anthocyanin 

compositions. LWT - Food Science and Technology, 72, 229–238. 

West, M.E., Mauer, L.J. (2013). Color and chemical stability of a variety of anthocyanins and 

ascorbic acid in solution and powder forms. Journal of Agricultural and Food Chemistry, 

61, 4169–4179. 

Wrolstad, R.E., Culver, C.A. (2012). Alternatives to Those Artificial Food Colorants. Annual 

Review of Food Science and Technology, 3, 59-77. 

Wunderlich, S.M., Martinez, N.M. (2018). Conserving natural resources through food loss 

reduction: Production and consumption stages of the food supply chain. International Soil 

and Water Conservation Research6, 331-339. 

Xu, M., Du, C., Zhang, N., Shi, X., Wu, Z., & Qiao, Y. (2016). Color spaces of safflower 

(Carthamus tinctorius L.) for quality assessment. Journal of Traditional Chinese Medical 

Sciences, 3, 168–175. 

Yabuya, T., Nakamura, M., Iwashina, T., et al. (1997). Anthocyanin-flavone copigmentation in 

bluish purple flowers of Japanese garden iris (Iris ensata Thunb.). Euphytica, 98, 163–167. 

Zeraik, M., Yariwake, J. (2010). Quantification of isoorientin and total flavonoids in Passiflora 

edulis fruit pulp by HPLC-UV/DAD. Microchemical Journal, 96, 86–91. 

Zhu, Z., Wu, Q., Di, X., Li, S., Barba, F. J., Koubaa, M., et al. (2017). Multistage recovery 

process of seaweed pigments: Investigation of ultrasound assisted extraction and ultra-

filtration performances. Food and Bioproducts Processing, 104, 40–47. 

Zhu, Z., He, J., Liu, G., Barba, F. J., Koubaa, M., Ding, L., … Vorobiev, E. (2016). Recent 

insights for the green recovery of inulin from plant food materials using non-conventional 

extraction technologies: A review. Innovative Food Science and Emerging Technologies, 

33, 1–9. 

https://www.sciencedirect.com/science/article/pii/S2095633918300984#!
https://www.sciencedirect.com/science/journal/20956339
https://www.sciencedirect.com/science/journal/20956339
https://www.sciencedirect.com/science/journal/20956339/6/4


90 

Zibadi, S., Farid, R., Moriguchi, S., Lu, Y., Yeap Foo, L., Tehrani, P.M., Ulreich, J.B., Watson, 

R.R. (2007). Oral administration of purple passion fruit peel extract attenuates blood 

pressure in female spontaneously hypertensive rats and humans. Nutrition Research, 27, 

408–416. 

Žičkienė, S., Tričys, V., Kovierienė, A. (2005). Municipal Solid Waste Management: Data 

Analysis and Management Options. Environmental research, engineering and 

management, 3, 47-54. 

Zucolotto, S.M., Fagundes, C., Reginatto, F.H., Ramos, F.A., Castellanos, L., Duque, C., 

Schenkel, E.P. (2012). Analysis of C-glycosyl flavonoids from South American Passiflora 

species by HPLC-DAD and HPLC-MS. Phytochemical Analysis, 23, 232-239. 

 

https://www.researchgate.net/profile/Skaidre_Zickiene2?_sg=4FnWIn4VeHzdIfzmIKhNe1BUXWmI17NVGFslDW3Mb8SNDnpXwgzRaJy5IhPftm87kYYNDIg.IXB372u67Pt4Ca1o7ntZvkbY-hrhPUsduWoNqeGgNKIp5hsn4ekhSdncB-xpn6IGiZyUP7ZNzRHHTcYI6RnlHw
https://www.researchgate.net/profile/Vaclovas_Tricys?_sg=4FnWIn4VeHzdIfzmIKhNe1BUXWmI17NVGFslDW3Mb8SNDnpXwgzRaJy5IhPftm87kYYNDIg.IXB372u67Pt4Ca1o7ntZvkbY-hrhPUsduWoNqeGgNKIp5hsn4ekhSdncB-xpn6IGiZyUP7ZNzRHHTcYI6RnlHw
https://www.researchgate.net/profile/Ala_Kovieriene?_sg=4FnWIn4VeHzdIfzmIKhNe1BUXWmI17NVGFslDW3Mb8SNDnpXwgzRaJy5IhPftm87kYYNDIg.IXB372u67Pt4Ca1o7ntZvkbY-hrhPUsduWoNqeGgNKIp5hsn4ekhSdncB-xpn6IGiZyUP7ZNzRHHTcYI6RnlHw

	Acknowledgments
	Figures
	Tables
	Equations
	Abbreviations
	Abstract
	Resumo
	1 Introduction
	1.1 Food additives
	1.1.1 The relevance of food additives
	1.1.2 Application of colorants in the food industry
	1.1.3 Advantages of the use of natural colorant additives
	1.1.4 Anthocyanins and their natural sources

	1.2 Obtaining food colorants rich in anthocyanins
	1.2.1 Anthocyanins extraction techniques
	1.2.1.1 Maceration extraction
	1.2.1.2 Soxhlet extraction (SE)
	1.2.1.3 High hydrostatic pressure (HHP) and Pulsed electric field (PEF)
	1.2.1.4 Ultrasonic assisted extraction (UAE)

	1.2.2 Stability of natural extracts rich in anthocyanins
	1.2.2.1 Stability of the anthocyanins’ colour based on pH
	1.2.2.2 Stability of the anthocyanin’s colour based on co-pigmentation
	1.2.2.3 Stability of the anthocyanin’s colour based on temperature

	1.2.3 Application of anthocyanin colorants in food products

	1.3 The use of industrial agri-food wastes
	1.3.1 The waste problematic in the food industry
	1.3.2 The particular case of passion fruit bio-residues
	1.3.3 Chemical compounds in passion fruit epicarps with emphasizes in pigments


	2 Objectives and work plan
	3 Material and Methods
	3.1 Standards and reagents
	3.2 Sample preparation
	3.3 Determination of colour in fresh and dried passion fruit epicarp
	3.4 Determination of anthocyanin compounds in the extract of passion fruit epicarp
	3.4.1 Extraction procedure
	3.4.2 Analytical analysis
	3.4.2.1 HPLC analysis
	3.4.2.2 Mass spectrometry analysis


	3.5 Optimization of the natural colorant extraction process of passion fruit epicarps using the response surface methodology
	3.5.1 A heat assisted extraction (HAE)
	3.5.2 Preparation of extracts obtained by HAE
	3.5.3 Extraction Yield
	3.5.4 Identification and quantification of anthocyanin compounds through an HPLC-DAD-ESI/MS system
	3.5.5 Experimental Design, Modelling and Optimization
	3.5.5.1 Experimental Design (RSM)
	3.5.5.2 Response used for analytical purposes
	3.5.5.3 Mathematical Modelling
	3.5.5.4 Maximization of the Responses
	3.5.5.5 Dose-response analysis of the solid-liquid ratio
	3.5.5.6 Numerical methods, statistical analysis and graphic illustrations


	3.6 Preparation of the extract rich in anthocyanin compounds obtained under optimum conditions from the passion fruit epicarp
	3.7 Evaluation of the bioactive potential of optimal extract rich in anthocyanin compounds and the extract obtained by conventional method, from passion fruit epicarp
	3.7.1 Preparation of the hydroethanolic extract
	3.7.2 Antioxidant activity
	3.7.2.1 TBARS
	3.7.2.2 OxHLIA

	3.7.3 Antimicrobial activity
	3.7.3.1 Antibacterial activity
	3.7.3.2 Antifungal activity

	3.7.4 Evaluation of cytotoxicity in tumor cell lines
	3.7.5 Evaluation of hepatotoxicity in non-tumor cells

	3.8 Evaluation of anti-inflammatory activity
	3.9 Statistical analysis

	4 Results and Discussion
	4.1 Determination of colour in fresh and dried epicarp of passion fruit
	4.2 Determination of anthocyanin compounds in the extract obtained from the passion fruit epicarp
	4.3 Optimization of the process of obtaining a colourant extract rich in anthocyanins from the passion fruit epicarp
	4.3.1 Response criteria for RSM analysis
	4.3.2 RSM analysis, statistical verification and effect of the extraction variables on the target responses
	4.3.3 Optimum numerical conditions that maximize experimental extraction and verification of predictive models
	4.3.4 Dose-response analysis of the effect of solid-liquid ratio under optimum conditions

	4.4 Evaluation of the bioactivities in the optimal extract rich in anthocyanin compounds and the extract obtained through the conventional method, from the passion fruit epicarp
	4.4.1 Antioxidant activity
	4.4.2 Antimicrobial activity
	4.4.3 Cytotoxic, hepatotoxic and anti-inflammatory activity


	5 Conclusions
	References

