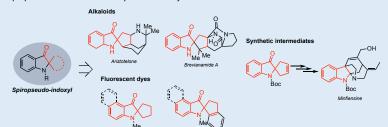


Gold-catalyzed cascade reactions of 4H-furo[3,2-b]indoles with allenamides: synthesis of indolin-3-one derivatives


Valentina Pirovano, a* Elisa Brambilla, a Giorgio Abbiati, a Elisabetta Rossia

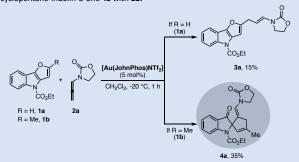
º Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milan, Italy *e-mail: valentina.pirovano@unimi.it

Introduction

2-Spirocyclopentane-1,2-dihydro-3H-indol-3-ones (namely, spiropseudo-indoxyls) represent the core component of biologically relevant alkaloids and of indole-based fluorescent dyes.¹⁻² They can also be employed as intermediate in the synthesis of *Minfiensine*.³

Reported methods of synthesis:4-6

Our Goal


Synthesis of spiropseudo-indoxyls by gold-catalyzed cascade reaction between 4H-furo[3,2-b]indoles and N-allenamides.

Planned aold-cascade seauence:

- C-2 hydroarylation of furan ring
 - Furan ring opening
- Intramolecular spirocyclization

Initial findings and screening of reaction conditions

Furoindoles 1a and 1b were chosen as model compounds for the reactions with allenamide 2a in the presence of preformed cationic complex [Au(JohnPhos)NTf2]. The reactions resulted in the isolation, in low yields, of simple hydroarylation product 3a with 1a and of 2spirocyclopentane-indolin-3-one 4a with 1b.

3a was isolated in 90% yield using [(ArO)₃PAuNTf₂] in toluene (0.05 M) at -20 °C. Ar = 2,4-di-t-butylphenyl

Optimization of reaction conditions for the synthesis of 4a

Entry	1b/2a	Catalyst (5 mol%)	Solvent	Time (h)	4a (%)ª
1	1/.2	[Au(JohnPhos)NTf ₂]	CH ₂ Cl ₂	1	35
2	1/1	[(ArO) ₃ PAuNTf ₂]	CH ₂ Cl ₂	1	32
3	1/1	[Au(IPr)NTf ₂]	CH ₂ Cl ₂	2	57
4	1/1	[Au(IPr)NTf ₂]	Toluene	2	n.r. ^b
5	1/1.2	[Au(IPr)NTf ₂]	CH ₂ Cl ₂	2	68
6	1/1.2	[Au(IPr)SbF ₆]	CH ₂ Cl ₂	2	63
7	1/1.2	HNTf ₂ (20 mol%)	CH ₂ Cl ₂	1	n.r ^c
8	1/1.5	[Rh(cod)Cl] ₂	CH ₂ Cl ₂	24	n.r ^c
9	1/1.5	PtCl ₂	CH ₂ Cl ₂	24	n.r ^c

Reaction conditions: 1a (0.2 mmol) and 2a (0.2-0.24 mmol, in the stated solvent (0.05 M) at -20 °C. a Isolated yields. ^b Complex mixture of products. ^c Unreacted starting materials were recovered. Ar = 2,4-di-t-butyl chloro[1,3-bis(2,6-diisopropylphenyl)|imidazol-2-ylidene]; JohnPhos = (2-biphenyl)-di-t-butylphosphine

Scope of the reaction [Au(IPr)NTf₂] CH2Cl2, -20 °C °CO₂Et CO₂Et 4a-m² Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), [Au(IPr)NTf2] (5 mol %) in CH2Cl2 (0.05 M), -20 °C, 1-18 h. *Isolated yields. b 1.5 equiv of 2 were used. 52.0 equiv of 2 were used. 55.0 addition.

Conclusion⁷

- Design of a novel synthesis of spiropseudo-indoxyl derivatives merging the ability of cationic gold(I) catalysts to activate unsaturated π -systems with the electrophiles driven ring-opening reactions of furans;
- Gold-catalyzed cascade furan C-2 hydroarylation/ring-opening/spirocyclization;
- 13 examples, moderate to high yields;
- Major limitation: necessity to use C-2 substituted furgindoles

References

[1] Williams, R. M.; Cox, R. J. Acc. Chem. Res. 2003, 36, 127.

Proposed mechanism

- Chen, H.; Shang, H.; Liu, Y.; Guo, R.; Lin, W. Adv. Funct. Mater. 2016, 26, 8128.
 Wu, Y.; Li, G.; Jiang, L.; Zu, L. Angew. Chem. Int. Ed. 2015, 54, 12627.
 Witkop, B.; Patrick, J. B. J. Am. Chem. Soc. 1951, 73, 2188.
- [5] Schneekloth, J. S., Jr.; Kim, J.; Sorensen, E. J. Tetrahedron 2009, 65, 3096
- [6] Guo, C.; Schedler, M.; Daniliuc, C. G.; Glorius, F. *Angew. Chem. Int. Ed.* **2014**, *53*, 10232. [7] Pirovano, V.; Brambilla, E.; Rizzato, S.; Abbiati, G.; Bozzi, M.; Rossi, E. *J. Org. Chem.* **2019**, *84*, 5150.

Acknowledgments

We thank MIUR-Italy (Ph.D. fellowships to E.B) for financial support. D. Nava and G. Celentano are acknowledged for some NMR, mass and