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Abstract

We introduce an improved semiclassical dynamics approach to quantum vibrational spectroscopy. In this

method, a harmonic-based phase space sampling is preliminarily driven toward non-harmonic quantization

by slowly switching on the actual potential. The new coordinates and momenta serve as initial conditions for

the semiclassical dynamics calculation, leading to substantial decrease in the number of chaotic trajectories

to deal with. Applications are presented for model and molecular systems of increasing dimensionality

characterized by moderate or high chaoticity. They include a bidimensional Henon-Heiles potential, water,

formaldehyde, and methane. The method improves accuracy and precision of semiclassical results and it

can be easily interfaced with all pre-existing semiclassical theories.
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I. INTRODUCTION

Chaotic systems can be found in several research fields ranging, for instance, from physics to

meteorology, from chemistry to economy. They often constitute a hindrance to the possibility of

making accurate predictions and a difficult challenge to face.

This is also the case for semiclassical (SC) dynamics, which has the peculiar feature of re-

producing quantum effects accurately starting from classical trajectory runs.[1–13] This hall-

mark and the possibility to be employed straightforwardly with any fitted or “on-the-fly” poten-

tial energy surface (PES) make SC dynamics appealing for vibrational spectroscopy of complex

molecules[14–17] as well as a reference for quantum spectroscopy of medium-large dimensional

systems.[18–27]

The state-of-art is the result of several efforts in the advance of SC dynamics. A milestone in the

development of SC vibrational spectroscopy is represented by Kaledin and Miller’s time-averaged

semiclassical initial value representation (TA SCIVR),[28, 29] which has permitted to extend ap-

plicability of the coherent state semiclassical Herman Kluk propagator[30] to small molecules

overcoming the well-known convergence issue of the Monte Carlo phase space integration.[31–

33]

Applications to much larger systems are now possible thanks to the very recent divide-and-conquer

semiclassical initial value representation technique (DC SCIVR), which is based on the projection

of the full-dimensional investigation onto a set of lower dimensional targets.[34–36] It is useful

to remark, though, that for the large systems studied by means of DC SCIVR a proper Monte

Carlo convergence cannot be achieved, due to the computational overhead that such a computa-

tion would require. Thereby, the simulation must rely on a limited number of trajectories often

evolved “on-the-fly” at some accessible ab initio level of electronic structure theory.

On this regard, pivotal work by De Leon and Heller has demonstrated that quantum eigenvalues

can be calculated exactly by means of SC dynamics even employing a single trajectory, provided

it has the correct (unknown) energy.[37] By further developing this idea, one of us has introduced

the multiple coherent states semiclassical initial value representation (MC SCIVR), whereby ac-

curate estimates for the quantum frequencies of vibration are obtained on the basis of a single or

handful of trajectories.[38–41]

These methods restrict the original TA-SCIVR phase space sampling to a smaller region or even

a single point, while the sampling is done in a harmonic fashion due to the availability of har-
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monic estimates at low computational cost even for medium-large molecular systems. However,

the harmonic approximation typically overestimates the true energy, sometimes even substantially.

Furthermore, the actual potential is not harmonic and the initial harmonic state is not a stationary

state of the molecular Hamiltonian. These aspects contribute to the numerical instability of the

ensuing trajectories and deteriorate accuracy and precision of semiclassical results.

Adiabatic switching (AS) is a technique that may help overcome these issues. It has been

developed to attain non-harmonic quantization and sample initial conditions in quasi-classical tra-

jectory (QCT) simulations. Its foundation lies in the classical adiabatic theorem which states that

action variables are constants of motion during the evolution of a trajectory lying on a phase-space

torus not only for an isolated system but also in presence of a perturbation, provided that the latter

is switched on very slowly (ideally over an infinite period of time). [42–47] AS has also been

employed to obtain Wigner distributions[48, 49] and for estimates of vibrational energies.[50, 51]

Qu and Bowman recently adopted AS to determine the zero-point energy (ZPE) and fundamen-

tal frequencies of a couple of modes of methane, showing the importance to perform adiabatic

switching in an Eckart frame to get to a narrower and more accurate energy distribution.[52] Fur-

ther improvements in precision and accuracy have been later provided by Nagy and Lendvay by

developing AS in internal coordinates to prevent any kind of ro-vibrational coupling.[53] How-

ever, differently from several quantum methods and semiclassical approaches,[54, 55] adiabatic

switching is not able to provide eigenfunctions. Furthermore, AS efficiency is expected to deteri-

orate for increasing values of the density of vibrational states, which is known to grow fast with

energy.[56, 57]

To better point out the focus of this paper, we recall that n-dimensional integrable systems are

those for which n independent integrals of motion satisfying the Poisson bracket condition can be

found and quantization is doable because the integrals of motion correspond to commuting ob-

servables. In this case trajectories lie on the surface of tori in phase space. Such trajectories are

stable, do not show any chaotic behavior and never fill up the whole phase space. Conversely,

molecular systems are in general non integrable and trajectories eventually lead to numerical in-

stability. The basic idea of this work is that adiabatic switching, starting from the separable and

easily quantizable system made of n harmonic oscillators, can provide an approximate quantiza-

tion, which, at least for the short times involved in a semiclassical spectroscopic calculation, allows

use of more stable, quasi-periodic trajectories. Consequently, the main goal of this manuscript is

to demonstrate that the AS technique allows one to sample the initial phase space conditions of
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semiclassical simulations in a more effective way, decreasing substantially the number of chaotic,

numerically unstable trajectories to deal with, and improving precision and accuracy of results.

We label this “adiabatically switched” semiclassical approach as AS SCIVR.

In Section II we report on the theoretical and computational details of the method. Section III

is dedicated to the application of AS SCIVR to a Henon-Heiles model potential and molecular

systems of increasing dimensionality from water to methane. Finally, we summarize results and

discuss possible future developments and applications of the method in Section IV.

II. THEORETICAL AND COMPUTATIONAL DETAILS

The basic semiclassical working formula we adopted for this paper is

I(E) =
1

(2π~)Nvib

∫
dp0

∫
dq0

1

2π~T

∣∣∣∣∫ T

0

dt′ ei[St′ (p0,q0)+φt′ (p0,q0)+Et′]/~〈gt′(p0,q0)|Ψ〉
∣∣∣∣2 .

(1)

In Eq. (1) I(E) is the energy-dependent density of vibrational states, whose peaks are located at

the SC frequencies of vibration;Nvib is the number of vibrational degrees of freedom; T is the total

simulation time; St′ is the instantaneous classical action calculated along the trajectory originated

from the (p0,q0) point in phase space, and 〈gt′(p0,q0)|Ψ〉 is the quantum mechanical overlap

between the coherent state basis element |gt′(p0,q0)〉 and the reference state |Ψ〉. A coherent state

with Gaussian width matrix Γ is defined as

〈q|gt′(p0,q0)〉 =

(
det(Γ)

πNvib

)1/4

exp

[
−(q− qt′)

T Γ

2
(q− qt′) +

i

~
pTt′(q− qt′)

]
, (2)

where pt′ and qt′ are the momentum and position vectors at time t′ obtained upon classical Hamil-

tonian evolution from (p0,q0). Γ is usually chosen to be a diagonal matrix with elements equal to

the harmonic frequencies of vibration. For the calculations presented here we employed reference

states |Ψ〉 made of suitable combinations of coherent states centered at equilibrium coordinates

and harmonically estimated momenta, in agreement with our previous works.[58] Finally, φt′ is

the phase of the so-called Herman-Kluk prefactor

φt′(p0,q0) = phase

[√∣∣∣∣12
(
∂qt′

∂q0

+ Γ−1
∂pt′

∂p0

Γ− i~∂qt
′

∂p0

Γ +
iΓ−1

~
∂pt′

∂q0

)∣∣∣∣
]
. (3)
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The prefactor is related to deterministic chaos through the monodromy matrix elements (∂i/∂j i =

pt′ ,qt′ ; j = p0,q0). In fact, when one or more of the monodromy matrix eigenvalues start to grow

exponentially in the chaotic regime, numerical integration of the Herman-Kluk prefactor becomes

more and more inaccurate and, eventually, an unphysical divergence is reached spoiling the entire

SC calculation. Several approaches have been employed to overcome this issue. The basic one

consists in completely discarding trajectories that reveal a chaotic behavior at some point during

the dynamics. As an alternative, it has been proposed to keep trajectories up to the instant when

numerical instability kicks in, possibly by weighing their contributions appropriately.[16, 59]

A different way to tackle the problem is by approximating or regularizing the prefactor.[60–63]

However, none of these approaches is able to provide a way to restrict the semiclassical calculation

to non-chaotic trajectories beforehand.

The other technique employed in this work is adiabatic switching. The AS procedure involves

definition of a separable vibrational Hamitonian (H0) for which quantization is known or easily

achieved, followed by introduction of the true molecular potential at slow pace until the fully-

coupled vibrational molecular Hamiltonian (H) is reached. In practice, upon calculation of the set

of harmonic frequencies of vibration {ωi}, H0 is generally chosen to be the harmonic approxima-

tion to H in mass scaled coordinates and momenta

H0 =

Nvib∑
i=1

(
p2i
2

+
ω2
i q

2
i

2

)
, (4)

and the AS Hamiltonian (HAS) is a function of time

HAS(t) = H0 + fS(t)(H −H0). (5)

fS(t) is a switching function selected in agreement with the literature[52]

fS(t) =
t

TAS
− 1

2π
sin

(
2πt

TAS

)
, (6)

which equals 0 at t = 0 and 1 at t = TAS , the total AS simulation time. For the harmonic

Hamiltonian, initial normal mode coordinates and momenta can be obtained straightforwardly

from action-angle variables, i.e. qi = [(2ni + 1)~/ωi]1/2 cos ζi; pi = −[(2ni + 1)~ωi]1/2sin ζi.

ni are integer actions, while ζi are randomly selected angles from a uniform distribution. Classical

dynamics is then performed for a time TAS under the Hamiltonian HAS(t). Clearly, during adia-

batic switching, the total energy is not conserved. It starts from the harmonic value and ends at an
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estimate of the energy of the corresponding quantized state of the actual molecular Hamiltonian.

From an ensemble of AS trajectories, one eventually gets a distribution that approximates the en-

ergy of the state, as shown for methane in Figure 1. We employed a pre-existing methane PES by

Lee, Martin and Taylor.[64] TAS was chosen equal to 1.21 ps (50000 atomic units), a time step of

0.242 fs was employed, and the dynamics, as for all other investigations presented in this paper,

was integrated by means of a 4-th order symplectic algorithm with a fixed step equal to 10-3 for

finite difference calculations.[65]

Because adiabatic switching is known to work more efficiently at low density of vibrational

states and for not strongly coupled systems,[51] we employed it to get an initial distribution in

phase space for our subsequent and more widely applicable semiclassical dynamics simulations.

In other words, the outcome of the adiabatic switching procedure served as an initial sampling for

the SCIVR spectral calculations. We evolved the dynamics in normal modes in agreement with

our past standard TA-SCIVR applications. Fig. 2 shows a comparison for methane between the

AS final energy distributions of 9000 trajectories obtained starting from harmonic ZPE sampling

by means of the approach reported in Ref. 52 and our normal-mode based one. Computational

details are the same as previously reported. Results are in strict agreement. We removed the ro-

vibrational coupling in our normal mode reference frame by not evolving the rotational degrees

of freedom, an artefact which, on the other hand, slightly perturbs the total angular momentum,

owing to the loss of reliability of normal modes out of equilibrium. This led to the very small (but

negligible for our purposes) discrepancy between the two simulations. For the Gaussian envelop

of bins a width of 7.2 cm-1 has been adopted in all simulations.

As for TA SCIVR and the semiclassical part of our AS-SCIVR simulations, to determine

whether a classical trajectory had to be discarded or not, we compared along the dynamics the

shift from unity of the monodromy matrix determinant to an arbitrary threshold σ.[28, 66] When-

ever the shift was larger than the chosen σ we eliminated the whole trajectory from the set of those

contributing to the final spectrum.

III. RESULTS

To demonstrate the performance of AS SCIVR we applied it to a set of systems, characterized

by different regimes of trajectory rejection, and compared the outcomes with the corresponding

ones obtained by using a standard TA-SCIVR procedure. Results were also tested against available
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Figure 1. Representation of the adiabatic switching procedure for methane. Panel a): Trajectories are given

the harmonic ZPE energy (violet). Panel b): The energy of 5 trajectories (different colors) is reported as

they evolve under the adiabatic switching Hamiltonian. Panel c): A final distribution of anharmonic energies

(violet) is found.

quantum mechanical benchmarks.

A. Henon-Heiles model

We start presenting an application to a low-dimensional model system characterized by moder-

ate chaos. We chose the following two-dimensional Henon-Heiles potential, which was employed

also in previous works[4, 67, 68]
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Figure 2. Final AS energy distributions for methane started with harmonic zero point energy (9842 cm-1).

Comparison is between Cartesian dynamics in Eckart frame (maroon), as described in Ref. 52, and the

normal mode dynamics employed in this work (orange).

V (q1, q2) =
1

2
ω2
1q

2
1 +

1

2
ω2
2q

2
2 + λq2(q

2
1 + ηq22) ω1 = 1.3, ω2 = 0.7, λ = −0.1, η = 0.1. (7)

Values of the parameters in Eq. (7) are given in atomic units (a.u.). This leads to a different

time scale for the dynamics with respect to the case of methane. In particular, TAS was set to

12.1 fs and T was selected equal to about 121 fs with a timestep of 0.00242 fs. A different

SC calculation for each of the first 8 eigenvalues was performed by means of both AS SCIVR

and TA SCIVR. Initial conditions were determined either by centering a Husimi distribution at the

harmonic energy of the target eigenvalue (TA-SCIVR simulations), or by starting a preliminary AS

procedure from the relevant harmonic quantization (AS-SCIVR simulations). TA SCIVR featured

a trajectory rejection rate ranging from about 36% to 79% given a threshold σ = 10−6. Under the

same strict condition, all trajectories generated for AS-SCIVR simulations were instead suitable

to be employed. Table I shows a comparison of the first 8 eigenvalues obtained by means of the

discrete variable representation method (DVR), TA SCIVR, and AS SCIVR. For the sinc-DVR

calculation[69] we employed a rectangular grid ([-5:5], [-8:8]) with 70 points per each dimension

without any energy cutoff. Both semiclassical simulations provide results in perfect agreement
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Table I. Calculated eigenvalues and full widths at half maximum (in parenthesis) for the first 8 energy

levels of a 2-dimensional Henon Heiles model. Values are in atomic units. Under the column for Level the

corresponding harmonic excitation is given in parenthesis.

Level DVR TA SCIVR AS SCIVR

0 (ZPE) 0.996 0.996 (0.002) 0.996 (0.001)

1 (ω2) 1.687 1.687 (0.003) 1.687 (0.001)

2 (ω1) 2.278 2.278 (0.003) 2.278 (0.001)

3 (2ω2) 2.375 2.375 (0.003) 2.375 (0.001)

4 (ω1 + ω2) 2.958 2.959 (0.003) 2.958 (0.002)

5 (3ω2) 3.060 3.060 (0.004) 3.060 (0.002)

6 (2ω1) 3.548 3.548 (0.005) 3.548 (0.001)

7 (2ω2 + ω1) 3.635 3.635 (0.008) 3.635 (0.001)

with the DVR benchmark, spanning overtones and combined excitations, but TA SCIVR yields

somewhat less precise estimates. This is related to the different widths of the spectral features

obtained by means of the two SC approaches. AS SCIVR indeed returns not only accurate but also

very precise results due to the small full-width at half maximum (FWHM) values of its signals.

FWHM data are definitely larger for TA SCIVR. The better quality of the AS-SCIVR signals is

also demonstrated by the fact that well-defined, narrow peaks can be obtained for all 8 eigenvalues

employing just the reference state centered at the harmonic ZPE energy. In the case of TA SCIVR

if the reference state is not tailored on the state under investigation, then extended bands with

several peaks rather than single signals are eventually found for levels 6 and 7. Figure 3 allows

to fully appreciate the increased precision of an AS-SCIVR calculation in evaluating the ZPE. In

fact, while a very well resolved signal is found for the AS-SCIVR simulation, in the case of TA

SCIVR a much larger and asymmetric peak is recovered.

B. H2O

Water is the first molecule we studied. It is characterized by 3 vibrational degrees of freedom

and the well-known Fermi resonance involving the bending overtone and the symmetric stretch. To

start with the calculations, we generated AS energy distributions for the ZPE and the energy levels
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Figure 3. Detail of the ZPE signal for the investigated Henon-Heiles system, as obtained from a standard TA-

SCIVR approach (black) and AS SCIVR (orange). Intensities have been scaled to get matching maximum

values.

corresponding to the first excitation of the three vibrational modes. Figure 4 shows the similarity

of the distributions obtained using either normal mode dynamics or Cartesian dynamics in Eckart

frame. We employed the analytical surface by Dressler and Thiel[70]. For the AS procedure we

adopted a time step of 10 a.u. for a total TAS time of about 1.2 ps.

For the semiclassical simulations the same time step and total simulation time T were em-

ployed. For each AS-SCIVR simulation a distribution of 3 000 initial conditions was obtained

upon performing adiabatic switching starting from the harmonic quantization corresponding to

the target state, while in the case of the TA-SCIVR calculation a Husimi distribution of 3 000

initial conditions centered at the harmonic ZPE was employed. First, we looked at the fraction of

trajectories to be discarded for values of σ ranging from 10-2 to 10-6. The TA-SCIVR simulation

returned percentages of rejection between 10.1% and 65.4%, while, remarkably, AS SCIVR could
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Figure 4. Comparison of adiabatic switching energy distributions for H2O obtained with Eckart frame

Cartesian dynamics (maroon) and normal mode dynamics (orange). The initial harmonic energies are equal

to ZPE in panel a); bending excitation in panel b); symmetric stretch excitation in panel c); asymmetric

stretch excitation in panel d). The width of the Gaussian envelop of bins was chosen equal to 7.2 cm-1.

rely on the entire set of trajectories independently of the σ threshold.

Moving to the frequencies of vibration, Table II compares the quantum mechanical results ob-

tained by means of a Lanczos algorithm and reported in the Supplementary Information of Ref.

54 to the outcomes of TA SCIVR and the new AS-SCIVR technique. σ was set equal to 10-2, a

typical figure we adopt in molecular calculations. Results are slightly better for the AS-SCIVR

calculation, whose signals are much more precise as clearly pointed out by the lower FWHM val-

ues. However, we notice that most of the error is due to the ZPE estimate. We will discuss more

on this point in the final Section of the paper.

Figure 5 presents the power spectra. In particular, from a comparison between the plots report-

ing the complete spectrum and based on ZPE distributions, it is clear that AS SCIVR gives more

precise estimates (this is most evident looking at the symmetric and asymmetric stretches). On the

other hand, an AS-SCIVR simulation started from harmonic ZPE quantization yields a harmonic

estimate for the overtone, which needs a tailored simulation to be detected correctly.
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Table II. ZPE and first vibrational frequencies of H2O. Frequencies associated to Levels 1-4 are obtained

by difference between the corresponding energy level and the ZPE value. Under the Level or Frequency

column the harmonic excitation label is given in parenthesis ( ωb for the bending; ωs for the symmetric

stretch; ωa for the asymmetric stretch). Under the TA SCIVR and AS SCIVR columns, FWHM values are

given in parentheses. QM indicates the quantum mechanical benchmark; label HARM is the column of

harmonic estimates; MAE stands for mean absolute error. All values are in cm-1.

Level or Frequency QM[54] TA SCIVR AS SCIVR HARM

1 (ωb) 1587 1590 (42) 1587 (24) 1650

2 (2 ωb) 3139 3147 (60) 3140 (24) 3300

3 (ωs) 3716 3711 (41) 3713 (24) 3831

4 (ωa) 3803 3804 (41) 3808 (24) 3941

ZPE 4660 4642 (34) 4637 (24) 4711

MAE - 7 6 105

4000 5000 6000 7000 8000 9000
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Figure 5. Power spectra of H2O. Panel a): TA-SCIVR simulation; Panel b): AS-SCIVR simulation from

ZPE AS distribution; Panel c) - f): AS-SCIVR simulations from bending, bending overtone, symmetric

stretch and asymmetric stretch AS distributions, respectively.
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Table III. Percentage of trajectory rejection in TA-SCIVR and AS-SCIVR simulations of H2CO (T ≈ 0.60

ps and T ≈ 1.21 ps) for several rejection thresholds.

T ≈ 0.60 ps T ≈ 1.21 ps

σ TA SCIVR AS SCIVR TA SCIVR AS SCIVR

10-2 47.6% 0.2% 83.5% 22.3%

10-3 56.7% 0.9% 87.2% 38.2%

10-4 65.9% 3.0% 90.9% 57.8%

10-5 75.3% 8.6% 94.0% 77.3%

10-6 84.2% 25.2% 97.0% 93.1%

C. H2CO

The second molecular system we studied was formaldehyde. We used a pre-existing PES by

Martin, Lee, and Taylor.[71] Similarly to the water investigation, for AS we employed a time step

of 10 a.u. and a total time TAS of about 1.2 ps. The same values were adopted for TA-SCIVR

calculations and the semiclassical part of AS-SCIVR simulations. In all instances a total of 6000

trajectories was run. We do not report AS energy distribution plots for H2CO but, once more,

there is utmost agreement between the normal mode and Cartesian approaches. The threshold for

trajectory rejection was set to 10-2. Rejection percentages are reported in Table III, and we notice

that, also in this case, AS SCIVR helps a lot in reducing substantially the fraction of discarded

trajectories.

Moving to the analysis of the frequencies of vibration, we first focus on fundamentals only.

For water and the Henon-Heiles model we performed specific AS-SCIVR calculations for each

spectral feature. In the case of H2CO we wanted to assess the accuracy of a single AS-SCIVR

simulation started from harmonic ZPE quantization in estimating the fundamental frequencies.

Table IV demonstrates that the numerical outcome is very similar to the TA-SCIVR one.

Differences can be spotted by looking at the corresponding power spectra. Figure 6 reports

them. It is clear that the AS-SCIVR procedure provides a better resolution of the spectral signals

and helps with the assignment. This is most evident for the band involving the fifth and sixth

fundamentals, which TA SCIVR is not able to identify adequately. For this reason, the TA-SCIVR

values of ω5 and ω6 in Table IV are just tentative and driven by knowledge of the quantum me-
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Table IV. Fundamental frequencies of vibration for H2CO from TA-SCIVR and AS-SCIVR simulations

based on the harmonic ZPE. Under the Frequency column, the harmonic excitation label is given. QM

indicates the quantum mechanical benchmark obtained through a variational approach; label HARM is

for the column of harmonic estimates; MAE stands for mean absolute error. FWHM values are given in

parentheses. N/A points out that a FWHM value could not be determined. All values are in cm-1.

Frequency QM[72] TA SCIVR AS SCIVR HARM

ω1 1171 1164 (52) 1165 (34) 1192

ω2 1253 1247 (46) 1247 (34) 1275

ω3 1509 1509 (48) 1507 (28) 1543

ω4 1750 1753 (45) 1760 (31) 1781

ω5 2783 2810 (N/A) 2816 (43) 2929

ω6 2842 2879 (N/A) 2865 (42) 2996

MAE - 13 13 68

chanical values. To improve the quality of results, at this point the standard TA-SCIVR procedure

requires additional runs with tailored reference states, but, if more than a single simulation is al-

lowed, then targeted AS-SCIVR simulations are able to provide more accurate and, most of all,

precise estimates, as reported in Table V. For these refined calculations we employed tailored ref-

erence states to separate ω5 and ω6 in TA-SCIVR simulations, while we performed 6 different

calculations, each one started with one quantum of harmonic excitation in one of the 6 modes, for

the AS-SCIVR case. Tailored TA SCIVR could resolve between ω5 and ω6, but at the cost of very

large peak amplitudes. For refined AS SCIVR the MAE with respect to the quantum mechanical

benchmark, computed on the first 16 frequencies, is down to 8 cm-1.

D. CH4

The final molecule we present is methane, whose PES and AS energy distribution obtained

starting from harmonic ZPE quantization have already been illustrated (see Figures 1 and 2). For

this system we decided to perform a single simulation with both AS SCIVR and TA SCIVR in-

cluding all fundamentals, an overtone, and a combined excitation. This allows us to point out the

advantages of AS SCIVR over TA SCIVR directly.
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Figure 6. Comparison between AS-SCIVR (panel a), orange) and TA-SCIVR (panel b), black) power

spectra of formaldehyde.

Table V. TA-SCIVR and AS-SCIVR estimates for the first 16 frequencies of vibration for H2CO. Under the

Frequency column, the harmonic excitation label is given. QM indicates the quantum mechanical bench-

mark; label HARM is for the column of harmonic estimates; MAE stands for mean absolute error. N/A

points out that a FWHM value could not be determined. Values are in cm-1.

Frequency QM[72] TA SCIVR AS SCIVR HARM Frequency QM[72] TA SCIVR AS SCIVR HARM

ω1 1171 1164 (52) 1158 (29) 1192 ω2 + ω3 2729 2732 (N/A) 2724 (35) 2818

ω2 1253 1247 (46) 1245 (30) 1275 ω5 2783 2813 (98) 2784 (49) 2929

ω3 1509 1509 (48) 1507 (29) 1543 ω6 2842 2861 (85) 2844 (33) 2996

ω4 1750 1753 (45) 1748 (29) 1781 ω1 + ω4 2913 2893 (N/A) 2908 (36) 2973

2ω1 2333 2313 (78) 2315 (32) 2384 ω2 + ω4 3007 3007 (56) 3009 (37) 3056

ω1 + ω2 2431 2408 (58) 2406 (30) 2467 2ω3 3016 3007 (56) 3016 (28) 3086

2ω2 2502 2492 (N/A) 2490 (30) 2550 ω3 + ω4 3250 3252 (48) 3261 (30) 3324

ω1 + ω3 2680 2667 (N/A) 2664 (33) 2735 2ω4 3480 3478 (67) 3488 (31) 3562

MAE - 10 8 64
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Figure 7. Comparison between methane power spectra obtained from AS-SCIVR (orange) and TA-SCIVR

(black/blue) calculations. Panel a): 9 000 trajectories run in both cases. Panel b): Simulations based on

similar numbers of non-discarded trajectories. Intensities have been scaled to get matching ZPEs.

Figure 7 is made of two comparisons between AS-SCIVR results obtained starting from har-

monic ZPE quantization, and standard TA-SCIVR outcomes collected from a Husimi distribution

of initial conditions centered around the harmonic ZPE. We adopted a timestep of 0.242 fs with

T = 1.21 ps, and a rejection threshold σ = 10−2. In the first case both simulations were based on

9000 trajectories. While 8876 (≈ 98.6%) of those employed in AS SCIVR were retained for the

SC calculation, only 897 trajectories started from the Husimi distribution were kept (≈ 10%). In

the second case, we increased to 90 000 the number of trajectories for the TA-SCIVR calculation.

In this way 8 516 trajectories were retained to build the TA-SCIVR spectrum, a number compara-

ble to the AS-SCIVR instance. It is clear from Figure 7 that AS SCIVR provides much narrower

and more precise signals. However, this is not only due to the higher number of trajectories re-

tained to build the AS-SCIVR spectrum, as the first panel of Figure 7 might suggest, but it is a true

hallmark of the method as confirmed by the bottom panel of the same Figure, where the number

of trajectories contributing to the spectrum is comparable.

Table VI demonstrates even further the importance of AS SCIVR compared to TA SCIVR in de-
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Table VI. Percentage of trajectory rejection in TA-SCIVR and AS-SCIVR simulations of CH4 (T ≈ 0.60

ps and T ≈ 1.21ps) for several rejection thresholds.

T = 0.60 ps T = 1.21 ps

σ TA SCIVR AS SCIVR TA SCIVR AS SCIVR

10-2 54.6% 0.0% 90.4% 1.4%

10-3 61.7% 0.0% 94.0% 5.3%

10-4 70.7% 0.0% 97.3% 16.6%

10-5 81.1% 0.1% 99.0% 42.2%

10-6 90.2% 1.1% 99.7% 79.4%

creasing the number of trajectories displaying a chaotic behavior. As expected, it is also possible

to appreciate that numerical stability is worse conserved for higher values of T. Nevertheless, we

were able to perform our AS-SCIVR simulations of methane with virtually no trajectory rejection

(1.4%). In addition to being more precise, we notice that signals coming from the AS-SCIVR

simulation are more accurate when compared to available quantum mechanical results. Table VII

points out these aspects, reporting that for AS SCIVR the mean absolute error is down to just 7

wavenumbers with respect to the quantum mechanical benchmark. The investigated methane over-

tone (level 1.1) and combination excitation (level 1.1 2.1) are basically harmonic at the quantum

mechanical level. This has permitted to get excellent AS-SCIVR estimates also for them by means

of a single simulation started from harmonic ZPE quantization.
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Table VII. Unique frequency values of methane from TA-SCIVR and AS-SCIVR simulations based on a

similar number of retained trajectories. Under the Level or Frequency column the harmonic excitation label

is given. QM indicates the quantum mechanical benchmark obtained with vibrational self-consistent field

theory and a variational approach; label HARM is for the column of harmonic estimates; MAE stands for

mean absolute error. FWHM data are reported in parentheses. N/A points out that a FWHM value could

not be determined. All values are in cm-1.

Level or Frequency QM[73] TA SCIVR AS SCIVR HARM

ω1 1313 1305 (51) 1307 (36) 1345

ω2 1535 1529 (48) 1530 (32) 1570

2ω1 2624 2594 (80) 2614 (50) 2690

ω1 + ω2 2836 2820 (61) 2839 (36) 2915

ω3 2949 2948 (N/A) 2950 (34) 3036

ω4 3053 3050 (58) 3058 (38) 3157

ZPE 9707 9696 (46) 9688 (34) 9842

MAE - 11 7 77

IV. SUMMARY AND CONCLUSIONS

We have introduced a new strategy, AS SCIVR, to perform quantum vibrational simulations.

It is made of a preliminary adiabatic switching procedure for initial conditions followed by a

semiclassical spectroscopic calculation. The two main advances introduced by the new technique

lie in the very limited number of numerically unstable semiclassical trajectories and the reduced

width of spectroscopic signals. Accuracy, which was actually already very good for TA-SCIVR

simulations, is also improved, especially when the AS evolution is initiated from the appropriate

harmonic quantization. In our AS-SCIVR simulations the mean absolute error with respect to

quantum calculations was below 10 cm-1. Furthermore, an AS-SCIVR simulation started from

the harmonic ZPE quantization is able to return very good estimates for fundamental frequencies,

while it gives a less accurate representation of overtones as it provides merely harmonic values. In

these aspects AS SCIVR resembles the MC-SCIVR approach.

While discussing results for H2O we noticed that it is the ZPE eigenvalue rather than frequency

estimates that carries most of the inaccuracy. This is due to the presence of a small amount of
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rotational angular momentum in the AS procedure, since molecules are prepared out of equilib-

rium and normal modes are no longer correctly defined for pure vibrations. We tried to remove

the angular momentum before the adiabatic switching dynamics was started obtaining indeed a

better ZPE value. For instance, the ZPE of water shifted from 4637 to 4654 cm-1, closer to the

quantum mechanical benchmark at 4660 cm-1. However, we found that spectral signals were ir-

regular in shape and much larger, and the technique lost one of its peculiar features making the

gain in ZPE accuracy not particularly appealing. Furthermore, frequency values, i.e. the data of

interest for comparison to experiments, are calculated by difference between two eigenenergies,

so the angular momentum effect cancels out and estimates are accurate. In fact, AS-SCIVR MAE

values, when restricted to fundamentals only, decrease to 3 cm-1 for H2O, and 4 cm-1for CH4. An

additional confirmation that the angular momentum component is a possible source of inaccuracy

in estimating SC eigenvalues comes from our application to the Henon-Heiles model potential. In

that case the system was defined in normal modes with no rotation allowed. Remarkably, we were

able to reproduce a set of 8 eigenenergies exactly. As for the precision of results, it is known that

the presence of rotational angular momentum may affect the width of SC signals. Nagy and Lend-

vay’s internal coordinate adiabatic switching is angular-momentum free and could be helpful, but

our approach, which interfaces straightforwardly with the SC calculations, brings in most of the

advance overperforming TA SCIVR neatly and providing very accurate and precise results.

Another important feature of AS SCIVR is that it can be readily interfaced with any pre-existing

semiclassical approach including MC SCIVR and DC SCIVR at the affordable cost (with respect

to Hessian matrix calculations) cost of just an additional dynamics. This opens up the possibility

to achieve a better resolution in simulations involving large dimensional systems, which may help

enormously in the difficult assignment of the crowded regions of the spectrum. Furthermore, the

diminished probability of trajectory rejection is encouraging, since it increases the probability

that in ab initio simulations based on a single trajectory the standard prefactor is adopted for the

entire dynamics without introduction of any approximation. In fact, rejection is virtually absent

(rejection percentage < 5%) in all our AS-SCIVR calculations, with the exception of H2CO. Even

in this case, though, only at the larger time studied and adopting a very tight threshold, the AS-

SCIVR procedure appears to be less effective. However, these conditions are way too stringent

for our ab initio on-the-fly simulations, for which we generally employ a threshold σ = 10-2 and a

dynamics about 0.6 ps long.

Finally, in addition to improve SC simulations of large dimensional systems, the AS-SCIVR
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method we have benchmarked in this paper might also serve in perspective as an innovative tool for

the semiclassical investigation of floppy systems, which constitute very complex research topics

on their own. The initial setup would require a particular care in defining normal modes and

the conversion matrix between them and Cartesian coordinates, as largely debated in Ref. 16.

Currently the semiclassical study of these systems needs adoption of particular devices mainly

consisting in the removal of energy from the large amplitude, low frequency modes.[15, 16] AS

SCIVR may help avoid this artefact yielding more accurate and precise frequency estimates.
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