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Abstract

Neural networks, as powerful tools for data mining and knowledge engineering, can learn
from data to build feature-based classifiers and nonlinear predictive models. Training neu-
ral networks involves the optimization of non-convex objective functions, and usually the
learning process is costly and infeasible for applications associated with data streams. A
possible, albeit counter-intuitive alternative is to randomly assign a subset of the networks’
weights, so that the resulting optimization task can be formulated as a linear least-squares
problem. This methodology can be applied to both feedforward and recurrent networks,
and similar techniques can be used to approximate kernel functions. Many experimental re-
sults indicate that such randomized models can reach sound performance compared to fully
adaptable ones, with a number of favourable benefits, including (i) simplicity of implemen-
tation, (ii) faster learning with less intervention from human beings, and (iii) possibility of
leveraging over all linear regression and classification algorithms (e.g., ℓ1 norm minimization
for obtaining sparse formulations). All these points make them attractive and valuable to
the data mining community, particularly for handling large scale data mining in real-time.
However, the literature in the field is extremely vast and fragmented, with many results
being reintroduced multiple times under different names. This overview aims at providing
a self-contained, uniform introduction to the different ways in which randomization can be
applied to the design of neural networks and kernel functions. A clear exposition of the
basic framework underlying all these approaches helps to clarify innovative lines of research,
open problems and, most importantly, foster the exchanges of well-known results throughout
different communities.
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INTRODUCTION

Training neural networks (NNs) is a process involving the optimization of a highly non-convex

landscape, where local minima are widespread, and for which the computation of gradients

poses fundamental challenges.1 Alternative kernel-based approaches result instead in well-

posed convex problems, one of the key reasons for their success in the last decade.2 Kernel

methods, however, struggle to scale efficiently to large datasets since, among other things,

they require the computation of pairwise kernel values over the entire dataset. In addition

to this, it is known that optimal testing accuracy achieved by recent deep generations of

NNs3 is only one among many conflicting objectives in data mining applications which,

depending on the problem at hand, might include short training time, the possibility of

hardware implementation, model complexity, stability of the software libraries, robustness

to noise, and so on.4 This is why, even in our era of deep learning and big data, it remains

essential to understand the limits and the potentialities of simpler (i.e., single-layer) neural

architectures, allowing a satisfactory level of solution within one-hundredth (or even one-

millionth) of the time required by larger, more complex models to be reached, while at the

same time possessing strong optimality guarantees in their optimization process, and which

can be customized and implemented easily.

One successful approach in this sense is the use of ‘randomization’, i.e. the stochas-

tic assignment of a subset of the NNs weights in order to derive a simpler (often linear)

optimization problem to solve. This idea has been applied countless times over the years,

and it has resulted in three broad families of NN models which we classify as follows: (i)

feedforward networks with random weights (RW-FFN),5 (ii) recurrent neural networks with

random weights (i.e. reservoir computing, RC),6 and (iii) randomized kernel approximation-

s.7 Although the literature on these three methods is generally kept separate, they all share

two fundamental ideas which contribute to their success. First, in all three cases random-

ization is used to define a (generally data independent) feature map, which transforms the

input into a highly-dimensional space where learning is supposed to be simpler. Secondly,

the resulting optimization problem is cast as a standard linear least-squares, which is by

far the simplest, most studied and scalable learning procedure to date. In a sense, many of
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these methods are direct descendants of the seminal work of Cover on the linear separability

of patterns,8 and they are elegantly summarized in the recent quote from Rahimi and Recht

that “randomization is [...] cheaper than optimization”.9

Both of the aforementioned aspects can help to explain the remarkable successes obtained

by randomized NN models in realistic data mining problems. State-of-the-art libraries for

linear regression are able to handle very large feature spaces, where the probability of finding

a hyperplane with good generalization capabilities can be extremely high. In addition to

this, drawing inspiration from the vast literature on linear regression (which goes as far back

as Gauss himself10), it is possible to customize the training procedure in a straightforward

way with a vast number of dedicated algorithms. As an example, sparsity on the adaptable

parameters can be obtained immediately by incorporating a sparse penalty and solving the

resulting linear problem in all families.11 At the same time, the literature on these topics is

vast and fragmented, so that equivalent ideas are reintroduced time and again, and it becomes

difficult to appreciate the fundamental unity (both theoretical and practical) underlying all

these methods. Going back to our previous example, sparse linear regression has been derived

independently in all three areas, sometimes more than once in each case.12–14

Our aim in this overview is to provide a concise, self-contained, and uniform introduction

to these three families of methods. Apart from providing a single entry point into a growing

(and decades-spanning) body of literature, clearly stating the basic framework underlying

them can help to clarify new lines of research and, more importantly, to foster the exchanges

of well-known results throughout different communities. Two broad themes emerge from

our treatment, which are interesting to briefly discuss here. First and foremost, there is

a clear indication that random weight assignment is not just a ‘cheap trick’ to solve an

otherwise difficult problem. On the contrary, the algorithms discussed here have continuously

achieved remarkable accuracy, sometimes comparable to deep architectures,15 in a large

number of applications, ranging from short-term forecasting to image recognition, biomedical

classification, and many others. This apparently counter-intuitive insight warrants more

attention, as its reasons can point to a deeper understanding of the working behavior of

NNs themselves. As discussed in the work of Saxe et al.,16 for example, it appears that “a

sizeable component of a system’s performance can come from the intrinsic properties of the
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architecture”, so that a good architecture with a subset of weights assigned randomly can

easily outperform a poorer architecture with finely-tuned weights. This also explains why

research in this field, far from withering away, has continued to grow relentlessly as available

computational power increased.

The second important aspect highlighted here is that randomized methods can lead the

way to some intriguing theoretical analyses on their behavior, in terms of accuracy, dynamics

and memory. As an example, RW-FFNs are shown to have error bounds comparable to that

of networks with completely adaptable parameters. One additional aim of our overview is to

summarize some of the most fundamental properties evidenced by these studies, along with

the open problems and challenges that need to be resolved.

Structure of this overview

Following our categorization of randomized NN models, this overview is organized in three

parts. The first section, ‘Feedforward networks with random weights ’, introduces the simplest

randomized NN model, the RW-FFN. The content of this section is the foundation for the

remaining of the paper: in fact, all training methods and most approximation properties

that we describe are common to all families in the overview. The following sections describe

the two remaining families of models, namely random features for kernel methods and the

RC framework. In both cases, we first show how the learning problem is equivalent to that

of RW-FNN, before focusing on some aspects that are specific to each model, such as the

theoretical analysis of the reservoir in RC networks. Finally, the last section draws some

general conclusions from our overview.

Feedforward networks with random weights

Network architecture

The basic model is defined for a generic input x ∈ R
d as the linear combination of B nonlinear

transformations (see Fig. 1):

f(x) =
B∑

m=1

βmhm(x;wm) = βTh(x;w1, . . . ,wB) , (1)
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Figure 1: A RW-FNN architecture with two inputs, three hidden functions, and one output.

Fixed connections are shown as dashed lines, whilst trainable connections as fixed lines.

where themth transformation is parameterized by the vector wm. In (1), the weights wm are

drawn randomly from a predefined probability distribution, while the linear coefficients β are

adapted based on some training data. Although the model is derived for a single output only,

everything that follows can be extended straightforwardly to the case of multiple outputs.

For readability, in the following we drop the dependence of hm with respect to wm.

There are two basic families of methods falling under this scheme, depending on the

type of hidden functions hm(·). In the additive case, each function applies a predefined

nonlinearity on a random linear combination of its input vector:

hm(x) = g(aT
mx+ bm), (2)

with wm =
[
aT
m bm

]T
. A typical choice for g(·) in this case is the sigmoid function:

hm(x) =
1

1 + exp {− (aT
mx+ bm)}

. (3)

If we stack row-wise all vectors am and scalars bm into a matrix A and vector b, respectively,

the first layer can be written compactly as g(Ax+b), where g(·) now operates elementwise.

The linear projection Ax is loosely connected to the well-known method of random projec-

tions (RP),17,18 a fact that might engender confusion. In RP, the matrix A is also randomly

generated, but the aim is to reduce the dimensionality of the data while at the same time

approximately preserving the Euclidean distances among the projected points. Since the

aims are different, there are two broad differences with respect to the RW-FNN that have to

be kept in mind: (i) in order to have sufficiently expressive power, in our case B is typically

much larger than the number of input dimensions (even by one order of magnitude) and,
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(ii) the linear transformation A is not required to preserve distances.17 In fact, it is stan-

dard practice to randomly sample its values from a predefined distribution (e.g., the uniform

distribution in [−1,+1]), which might not respect the theory of RP.

In the second family of methods, each function is chosen instead as a radial basis function

(RBF), typically of Gaussian shape:

hm(x) = exp
{
−αm ‖x− cm‖22

}
, (4)

with wm =
[
cTm αm

]T
, and ‖·‖2 is the standard Euclidean norm. In this case, the network

can be seen as an RBF network with randomly chosen centers cm and scaling factors αm,

corresponding to a superposition of B Gaussian distributions centered at random places in

the input space.19 Alternative, less common choices for g(·) are also possible, including mul-

tiplicative univariate functions,20 convolutive filters with random weights (for 2D inputs),21

and others. Random features for approximating kernels, discussed in the next section, also

fit the basic model in (1). However, they derive from an intermediate kernel representation,

and for this reason we discuss them separately.

Training the network

Given a model as in (1), we need efficient algorithms to adapt its parameters. Again, we

stress that the content of this section apply directly to the training of all models considered

in the next sections. Suppose we are provided with a set of N samples of the desired function

to be approximated, that is S = {xi, yi}, i = 1, 2, . . . , N . Denoted by H the hidden matrix:

H =




h1(x1) · · · hB(x1)
...

. . .
...

h1(xN ) · · · hB(xN)


 , (5)

Choosing the optimal β can obviously be formulated as a standard regularized least-squares

problem:

β∗ = argmin
β∈RB

{
1

2
‖Hβ − y‖22 +

λ

2
‖β‖22

}
, (6)

where y is a column vector containing all the desired outputs and the user-defined scalar λ

weights the regularization term. The problem in (6) is strictly convex, so its solution can be
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found by setting its gradient to 0, that is:

β∗ =
(
HTH+ λI

)
−1

HTy , (7)

where I is the identity matrix of suitable dimensionality. The fact that the training of the

model (more generally, of all the models described in this overview) can be performed in a

single analytical step that is implemented efficiently in most linear algebra libraries is the

major advantage of these methods. The computational complexity of least-squares in this

case is mostly influenced by the B × B matrix inversion in (7). In cases where N ≪ B,

standard algebra also allows for an alternative formulation, where the matrix to be inverted

is reduced to dimensionality N ×N :

β∗ = HT
(
HHT + λI

)
−1

y . (8)

For large-scale problems, parallel versions of (6) exist in most parallel computing frame-

works. For example, matrix-matrix and matrix-vector products in (6) can be computed

in sub-groups using a MapReduce environment,22 and summed up before inversion in a

reducer node. A streaming parallel implementation is also available on the popular A-

pache Spark library,1 and matrix decompositions for computing the Moore-Penrose inverse
(
HTH+ λI

)
−1

HT can be parallelized using GPU or hybrid CPU/GPU clusters.23

Additionally, the problem can be addressed using convex optimization routines such as the

conjugate gradient,5 or primal-dual strategies,24 which in the case of quadratic problems such

as (6) possess very fast convergence guarantees. The problem can also be solved efficiently in

the case of streaming data (with possibly time-varying characteristics) by the use of the well-

known recursive least-squares algorithm.25 For binary classification problems (i.e., when the

output can only take binary values), the simplest approach is to combine the least-squares

criterion in (6) with subsequent binarization of the RW-FNN outputs. More efficient loss

functions (e.g. hinge loss) are possible, but do not admit a closed-form solution anymore; a

review on recent progress for large-scale linear classification is given by Yuan et al.26

While this is enough to implement a working RW-FNN in most situations, it only scratch-

es the surface of all possible modifications for its training algorithm, which can leverage in a

1http://spark.apache.org/docs/latest/mllib-linear-methods.html#regression
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straightforward fashion over all available literature on linear regression/classification. Some

of these have also been explicitly considered in the case of RW-FNN. As a representative

example, ℓ1 minimization can be used to achieve sparse output layers:12

β∗ = argmin
β∈RB

{
1

2
‖Hβ − y‖22 + λ ‖β‖1

}
, (9)

where ‖β‖1 =
∑B

m=1 |βm|. This is the much celebrated LASSO problem, for which extremely

efficient optimization procedures are available.11 Other possible variations are the absolute

penalization of errors for the robust handling of noise and outliers,27, ensembling for in-

creasing accuracy and lowering variance,28 and so on. A complete overview of least-squares

theory goes outside the scope of this paper, however, and we refer the reader to standard

textbooks on the topic.29

Historical overview on RW-FNN models

The basic idea represented by (1) is simple, yet it provides a very efficient nonlinear model.

For this reason, similar ideas have been proposed many times, in different forms, over the last

several decades. Here, we provide a brief historical overview of some representative works.

The perceptron

An historical predecessor to RW-FNNs can be found in the perceptron, one of the first

adaptable connectionist models explored by Frank Rosenblatt from 1957 onwards.30 In the

perceptron, a sparse, random layer of weights connects the sensory perceptions to an adapt-

able threshold layer (see for example Fig. 13 in Widrow and Lehr31). This architecture

was designed to work only for binary/ternary activations and, most importantly, its origi-

nal training rule does not converge in the case of patterns which are not linearly separable:

“While it will eventually visit an optimal set of weights, it will not converge to any set of

weights. Even worse, the algorithm can go from an optimal set of weights to a worst-possible

set in one iteration, regardless of how many iterations have been taken previously.”32 This

aspect was at the base of the fundamental historical controversy surrounding this model.33

Later modifications to the perceptron came closer to the RW-FNN as described previous-
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ly, most notably the variation of the ‘pocket algorithm’ proposed by Gallant and Smith in

1987.32 However, they failed to gain additional popularity at the time.

Random vector functional-link networks

In the 1990s, RW-FNNs were introduced in their current form by a research group led

by Y.-H. Pao, under the name random vector functional-link (RVFL) networks.5,34,35 The

only difference with respect to our treatment is the straightforward inclusion of direct links

from the input to the output layer, which does not change the successive mathematical

derivation. Apart from proving their universal approximation property (see next section),

they showed their usefulness on a number of real-world problems, including in particular

handwritten script recognition.36 To this end, they also investigated how RVFL networks

can be customized to offer a practical tool for density estimation.37 RVFL networks have

gained increasing popularity in the last few years, and numerous additional applications

were explored, which are briefly summarized in Section 1 of Mart́ınez-Villena et al.38 An

extensive evaluation of different RVFL variants is given instead in Zhang and Suganthan,39

showing, in particular, significant improvements by the inclusion of the input/output links.

RVFL networks have also been explored in semi-supervised scenarios, wherein only a part

of the training data is labeled,40 and more recently in a multi-layered configuration using a

variation of the autoencoder network.41

RBF networks with random centers

In their RBF form (4), RW-FNNs were already envisioned in the seminal work of Lowe and

Broomhead on RBF networks,19 in which the random sampling of centers from the training

data is a good alternative to more sophisticated clustering procedures. Lowe and Broomhead,

in a footnote, hinted at the possibility of choosing RBF centers that do not correspond to any

of the training points. This strategy was followed by a few authors, including Looney,42 but

never became mainstream because of the possibility that random centers might not represent

the actual distribution of points in the training dataset at hand.
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Additional considerations

In a 1992 conference publication, Schmidt et al. presented a network which closely resembled

the additive version of the RW-FNN.43 The network, however, had a completely different

significance. Far from being a practical learning algorithm, it was used as a paradoxical

criterion to explore some bizarre aspects of NNs, namely the possibility of obtaining high

accuracies even when the number of parameters far exceeded the available training data,

a result which goes against intuitions from learning theory. In this sense, their conclusion

that “the parameters found in the hidden layer do not add very much functionality to the

classifier” was not a justification for randomization, but must be read in a wider line of

skepticism toward NNs themselves, whose application is sometimes viewed as a black-box

approach without a ‘real’ understanding of the problem.44 The significance of the work

of Pao and colleagues can be found exactly in their acceptance that the RW-FNN is not

only efficient but also practical, and this is clear insofar as the RVFL is presented as a

“computational approach compatible with our goal of devising a general-purpose artificial

neural-net computer”.34 This comment is echoed in a discussion by Widrow,45 who replied

to some general criticisms after having introduced an algorithm very similar to the RW-

FNN termed “NoProp algorithm”46: “we [...] have independently discovered that it is not

necessary to train the hidden layers of a multi-layer neural network. Training the output layer

will be sufficient for many applications.” It should be pointed out that some statements on

the full-rank property of the hidden output matrix in this work are not entirely justified,

and some further research is to be expected.

Before concluding this section, we remark that some interesting work has also been done

to justify the RW-FNN approach from a biological perspective, as shown in the following

quote by Tapson and van Schaik: “we are starting to see some evidence from neurophysi-

ology that structures embodying the [random weights] principle may exist in the brain. For

example, recent work [...] shows that complex rule-based tasks require both sensory stimuli

and internal representation of states; and that a significant number of random connection-

s placed between input sources and a hidden interlayer, and random recurrent connections

between interlayer neurons, are necessary for optimal performance. [...] these interlayer
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neurons [are] equivalent to increasing the dimensionality of the state representation.”47 We

will return on this point later on.

Universal approximation properties

The basic theoretical result on RW-FNNs was proved in 1995 by Igelnik and Pao,35 with lat-

er corrections made by Li and Chow.48 They showed that, for sufficiently smooth functions,

and under a proper choice of hm(·) and the range from which parameters are extracted, the

network possesses a universal approximation capability. Particularly, the order of approxi-

mation error is O(C/
√
B), where the constant C is independent of B. Thus, a desired level of

accuracy can, in principle, be reached by increasing the number of hidden nodes. The result

is extremely significant because this error bound is, in fact, comparable to that of a network

with fully adaptable connections. It also goes against the worst-case bound O(d−1/B1/d) p-

resented in the seminal work by Barron for a generic linear combination of fixed functions.49

This apparent discrepancy is explored by Gorban et al.,50 who underline the probabilistic

nature of the result by Igelnik and Pao: “[...] there is always a non-zero probability of an un-

lucky draw from the probability distribution which will require re-initialization at some stage

of approximation. Furthermore, [...] this rapid convergence of order 1/
√
B is assured only up

to a given and fixed tolerance.” From this, they draw the following warning: “These features

of randomized approximators should thus be considered with special care in applications.” In

this sense, how to properly choose a range of parameters and a sampling distribution remains

an open problem in the literature, so that the advantages given by RW-FNN approaches are

paid by the possibility of sampling a network with extremely poor accuracy. Similar state-

ments are made in a recent overview by Principe and Chen51: “[random-weights models] still

suffer from design choices, translated in free parameters, which are difficult to set optimally

with the current mathematical framework, so practically they involve many trials and cross

validation to find a good projection space, on top of the selection of the number of hidden

[processing elements] and the nonlinear functions.”. It should be pointed out that the the-

oretical work established by Igelnik and Pao35 does not address the learning algorithm or

implementation issues. From algorithmic perspective, Li and Wang52 investigated the uni-

versal approximation property for RVFL networks and reported a result on the infeasibility
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of such a learner model, if it is built incrementally with random input weights and biases

extracted from a fixed scope, and its convergence rate satisfies some certain condition. These

limitations should always be kept in mind.

Recently, more refined theoretical bounds have been obtained by a number of authors

in the kernel approximation literature, most notably Rahimi and Recht in 2008-2009 (who

ironically referred to the model as ‘sums of random kitchen sinks’),9,53 and Rudi et al. in

2016.54 The latter work also puts forth the idea that randomization can serve as a form of

‘computational regularization’ during the training process. The theory behind these works

is the subject of the next section.

Random features for kernel approximation

Network architecture

The second family of methods that we investigate is a special case of the model in (1), but

its understanding is built on the notion of kernel functions. Due to this, we first provide

a brief introduction to kernel methods, before analyzing their drawbacks as motivation for

introducing random features for their approximation.

A brief primer on kernel methods

A common alternative to the stochastic assignment of weights in (1) is to consider a deter-

ministic B-dimensional feature mapping h(·), e.g. by the use of polynomial functions of the

input. In some cases, however, this strategy requires the use of an intractable number of

bases that can grow cubically or exponentially in the number of inputs. Kernel functions, as

a way to circumvent this problem, were popularized by Cortes and Vapnik,55 and became

the foundation for a wide array of algorithms in machine learning.2 Informally, it can be

shown that for a large number of mappings h(·), there exists a function K : Rd × R
d → R

such that:

K(x1,x2) = h(x1)
Th(x2) . (10)
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The function K(·, ·) is called a kernel, and it allows for an efficient evaluation of the dot

product in the transformed space without the need for computing the mapping itself. One

basic result, called the representer’s theorem, shows that the solution to a large number of

regularized supervised learning problems when using kernels can be expressed as:

f ∗(x) =

N∑

i=1

αiK(x,xi) (11)

so that an optimization over a possibly infinite-dimensional space of functions is reduced to

a finite-dimensional problem over the coefficients {αi}Ni=1. Similarly, most problems in this

case need to work with the so-called kernel matrix K ∈ R
N×N defined as:

Kij := K(xi,xj) . (12)

As an example, the optimal solution α∗ = [α1, . . . , αN ]
T to the kernel-based version of (6)

(called kernel ridge regression) is written as:

α∗ = (K+ λI)−1
y . (13)

Drawbacks of kernel methods for large-scale problems

The previous discussion, albeit short, already clarifies most of the drawbacks encountered

during the application of any kernel method to a large-scale application:

1. First and foremost, the computation of K scales quadratically with N , which might be

prohibitive both in time and in memory, even when using sophisticated linear algebra

libraries.

2. Secondly, the computational complexity of solving the optimization problems involved

in computing the optimal weight vector α∗ are between quadratic and cubic in N , even

for methods which are provably sparse in α∗ (such as support vector machines).

3. A third, less visible problem appears in online applications, wherein the number of

terms in (11) grows unbounded. This problem is particularly daunting in adaptive

filtering applications that exhibit stringent real-time requirements.56

4. Finally, (11) is defined in terms of the original data, thus being problematic also for

applications with privacy concerns, which are common in big data scenarios.57
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Kernel approximation techniques

Over the past years, a large number of approximation techniques have been developed to

overcome the previously mentioned drawbacks, in order to make kernel methods affordable

even in large-scale situations. These methods use randomization to approximate several as-

pects of the training process, for example by appropriately sampling elements of the kernel

matrix,58 computing a low-rank approximation of K,59 or designing a stochastic approxima-

tion to the kernel function K(·, ·) itself.7

The most well-known example of the second class is the Nyström method, originally

proposed by Williams and Seeger,60 and refined by Drineas and Mahoney.59 The Nyström

method is a two-step process, which can be simplified as follows: (i) we first build a matrix G

by randomly sampling M ≪ N columns of K according to a predefined strategy, and scaling

them appropriately; (ii) then, we compute a low-rank approximation of K by K̂ = GK+
k G

T ,

where K+
k is the best k-rank approximation of the square part of K corresponding to the

indexes sampled in the step before (also scaled appropriately, see Drineas and Mahoney59

for more details). While the Nyström method makes use of a randomization step, it does

not result in a proper linear problem, and for this reason we do not discuss it further here

(although we will use it for comparison later on).

The third class of algorithms, instead, is interested in finding a good, low-dimensional

approximation of the kernel function, so as to obtain a feature mapping in the form (1) which

is cheap to compute in real-time. The idea was originally introduced by Rahimi and Recht

for a particular class of kernels called shift-invariant,7 and later generalized by a number of

authors for other classes, including group-invariant kernels,61 γ-homogeneous kernels,62 and

dot-product kernels,63 among others. The idea can be described in a general form as follows.

Denote by v a random variable with probability density P (v), and suppose the kernel can

be expressed as an expectation form:

K(x1,x2) = Ev∼P (v) [φv(x1)φv(x2)] , (14)

where φv(·) : Rd → R are a family of functions indexed by the random variable v, and v ∼
P (v) denotes that the expectation is taken with respect to P (v). Then, we can construct a

low-dimensional approximation K̃ of K with a Monte Carlo approach, by randomly sampling
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B values {v1, . . . , vB} from P (v) to approximate (14):

K̃(x1,x2) =
1

B

B∑

m=1

φvm(x1)φvm(x2) . (15)

The feature mapping φ̃(·) = [φv1(·), . . . , φvB(·)] can now be computed directly. Due to this,

all training methods described in the previous section can be applied for optimizing these

models, and their universal approximation properties can be analyzed in a similar fashion.

In other words, we can apply linear models to approximate nonlinear models that use the

original kernel K(·, ·), which in turn indirectly define a nonlinear mapping over a possibly

infinite-dimensional space h(·). Standard arguments from probability theory guarantee an

exponentially fast decrease of the error of (15) with respect to (14) as B increases.7 It is

important not to mistake the fixed feature mapping h(·), which uniquely identifies the kernel

function, with the randomized space φ̃(·), which depends on the sampled vectors v1, . . . ,vB.

This relation is schematically shown in Fig. 2.

T

1 2 1 2)h(x ) h  (x(x ,x )=1 2 1 2,x )1 2 1 2(x1 2 11 2 11 2 11 2 11 2 11 2 1

1x

2x
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Input space
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Randomized space

Figure 2: Schematic representation of the kernel approximation process. The original, fixed

feature mapping is shown in light green, while the randomized space to approximate the

kernel evaluation is shown in light blue.

A concrete example: random Fourier features

Random Fourier features (RFF), as originally introduced by Rahimi and Recht,7 are the

most common implementation of random features for kernel approximation. Here, we briefly

introduce them and their extensions. RFFs are defined for any shift-invariant kernel, i.e. a
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kernel which depends on its inputs x1 and x2 only by their difference x1−x2. In this case, it

can be shown that the kernel admits a representation similar to (14) in a Fourier basis with

complex functions:

K(x1 − x2) = Ev∼P (v)

[
ejv

T
x1e−jvT

x2

]
, (16)

where j is the imaginary number, and the existence of P (v),v ∈ R
d in closed form is

guaranteed by Bochner’s theorem from armonic theory. Substituting the exponential with

sines and cosines allows to obtain real-valued features, so that the final feature vector for

RFFs is written as:

φ̃(x) =
1√
B

[
cos(vT

1 x), sin(v
T
1 x), . . . , cos(v

T
Bx), sin(v

T
Bx)

]
. (17)

As a concrete example, consider the well-known Gaussian kernel, which is by far one of the

most widely used kernels in practice thanks to its approximation properties. The Gaussian

kernel is defined for a parameter γ ∈ R similarly to αm in (4):

K(x1,x2) = exp

{
− 1

γ2
‖x1 − x2‖22

}
. (18)

In this case, the probability density P (v) is simply a Gaussian with mean 0 and covariance

inversely proportional to γ given by γ−1I. RFFs have been studied extensively and have

also given rise to a large number of approximation results which can be translated to the

RW-FNN case, as reported in the previous section. Of the methods we review here, they

are the only one possessing robust, stable software implementations, such as the one in the

Python’s scikit-learn library,2 and they have been applied successfully to problems outside

supervised learning, such as clustering.64

Before concluding this section, we review some of the most recent, promising lines of

research devoted to random features:

• Vedaldi and Zisserman62 investigated how RFF techniques can be extended to ‘gen-

eralized’ Gaussian kernels, wherein the ℓ2 norm in (18) is substituted with a generic

distance metric D(x1,x2). If the distance metric has an additive form, i.e. it can be

decomposed feature-wise, an efficient random approximation to the generalized kernel

2http://scikit-learn.org/stable/modules/kernel_approximation.html
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can be obtained by combining random features for D(·, ·) (using the algorithm present-

ed by the authors) with RFFs features over the kernel. This allows extremely good

results to be obtained, particularly in computer vision problems.

• In order to further speedup computations, Le et al.65 presented the fastfood algorithm,

which allows RFFs for the Gaussian kernel to be computed in O(B log(d)) time instead

of O(Bd), by the use of specially designed matrices. Their work is generalized in the

framework presented by Yang et al.66 Along the same lines, a state-of-the-art solver

for kernel methods on large-scale scenarios is presented in Dai et al.,67 by combining

RFFs with a stochastic evaluation of the overall gradient.

• Instead of first choosing a kernel and then deriving an approximation, recently Sinha

and Duchi showed that we can work with a generic random feature representation to

learn a suitable kernel function for a given task.68

• Finally, RFFs have also been studied for solving the last two classes of problems previ-

ously detailed, namely the unbounded growth of terms in the kernel expansion,69 and

the possible concerns in privacy-critical settings.70 Refined error bounds in the former

case have been obtained by Lin et al.71

Drawbacks and research directions

Just like RW-FNNs, the basic problem of random features for kernel approximation is that

their sampling strategy does not incorporate information from the training set. Yang et al.72

summarize the problem as follows: “[...] the basis functions used by random Fourier features

are sampled from a Gaussian distribution that is independent from the training examples.

In contrast, the basis functions used by the Nyström method are sampled from the training

examples and are therefore data dependent.” Basically, the results in terms of classification

accuracy in this case will depend on the eigenstructure of the kernel matrix: “In the case of

large eigengap, i.e., the first few eigenvalues of the full kernel matrix are much larger than

the remaining eigenvalues, the classification performance is mostly determined by the top

eigenvectors. Since the Nyström method uses a data dependent sampling method, it is able
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to discover the subspace spanned by the top eigenvectors using a small number of samples.

In contrast, since random Fourier features are drawn from a distribution independent from

training data, it may require a large number of samples before it can discover this subspace.”

One possibility to counter this problem is to draw a large number B of samples, and

then linearly down-project the resulting feature mapping to a low-dimensional space via the

use of a random projection.73 The error bound in this case is investigated by Hamid et al.73

Another, more principled line of research is to make the sampling strategy dependent on the

training data, or less subject to variance. Yang et al.72 introduced “a rejection procedure that

rejects the sample Fourier components when they do not align well with the top eigenfunctions

estimated from the sampled data” as a possible future line of research. Similar approaches

can be found in the later work by the same authors,66 or in the use of quasi Monte Carlo

procedures for choosing the sequence of points.74

It is also worth mentioning here the work on sparse spectra in the Gaussian Processes

(GPs) literature,75 which exploits the idea of approximating the harmonic representation of

the covariance function (the GP equivalent of the kernel function) inside a fully Bayesian

framework. Due to this, the optimal frequencies can be chosen according to a data-dependent

maximization, at the cost of the standard increase in computational burden requested by

the Bayesian inference procedure.

Recurrent networks with random weights

Network architecture for reservoir computing

All the algorithms we investigated up to this point are designed for static data, in the

sense that the order of presentation of patterns to the network does not influence its behav-

ior. However, many real-world problems require the analysis of temporal data that exhibits

strong temporal dependencies among subsequent patterns. One possibility to handle them

is to input a feedforward network, such as the RW-FNN previously discussed, with a time-

delayed embedding of the temporal series, so that a memory of the previous instants is

artificially forced by providing them as inputs. However, results in terms of accuracy might
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be suboptimal and, more importantly, there is no principled way of choosing an embed-

ding dimension of the input. An alternative, more powerful choice is to consider recurrent

neural networks (RNNs), wherein connections between internal neurons create a temporal

processing, making the network a highly nonlinear, flexible dynamic system. RNNs have

also achieved remarkable breakthroughs in the last few years with the use of multilayered

architectures, gated neuronal units,76 efficient second-order optimization routines,77 and so

on. Still, the training of fully adaptable RNNs requires the flow of error’s gradient infor-

mation throughout temporal instants, increasing the likelihood of vanishing or exploding

gradients, and leading to possibly unstable network behaviors. Even with the diffusion of

powerful software libraries allowing automatic differentiation of a cost function over time,

the adaptation of RNNs remains a challenging and demanding problem.

For tasks that do not require an extremely long memory of its inputs, an alternative to

a fully adaptable RNN is obtained by extending the RW-FNN idea, allowing for a recurrent

layer of fixed, randomly generated nonlinearities, followed by an adaptable linear layer in

the output. This idea, schematically shown in Fig. 3, is known in the literature as reservoir

computing (RC),6 and the two layers are denoted as ‘reservoir’ and ‘readout’ respectively.

There are many flavors of algorithms in the RC field, which are briefly summarized in the

next section. Here, we follow the notation and formalism of the so-called echo state network

(ESN), which is common in the machine learning literature.

x1

xd

...

h1 h2

hB

y

Figure 3: Depiction of an RC architecture with one output. Fixed connections are shown

as dashed lines, whilst trainable connections are shown as undashed lines. The reservoir is

highlighted with a light blue background.
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Denote by x[n] ∈ R
d the d-dimensional input of the ESN at the nth time instant, where

now we use the square brackets to highlight the time dependency. Similar to before, the

input is fed to a B-dimensional reservoir, whose internal state h[n − 1] ∈ R
B is updated

according to the state equation:

h[n] = h(Wr
ix[n] +Wr

rh[n− 1] +wr
oy[n− 1]) , (19)

where Wr
i ∈ R

B×d, Wr
r ∈ R

B×B and wr
o ∈ R

B are randomly generated matrices and vectors,

h(·) is a suitably defined non-linear function (e.g. a sigmoid), and y[n−1] ∈ R is the previous

scalar output of the network. To increase stability, it is possible to add a small uniform noise

term to the state update before computing the non-linear transformation h(·).78 In the second

step, the current output is updated according to:

y[n] = (wo
i )

T
x[n] + (wo

r)
T
h[n] , (20)

where wo
i ∈ R

Ni ,wo
r ∈ R

Nr are adapted based on the training data. An alternative update

equation with respect to (19) is to have a reservoir that performs a leaky integration of its

state (corresponding in this case to a moving average) for a given parameter α ∈ [0, 1]:

h[n] = αh[n− 1] + (1− α)h(Wr
ix[n] +Wr

rh[n− 1] +wr
oy[n− 1]) . (21)

The update in (21) is the most common variation of leaky ESNs, as it only introduces one

additional parameter to be tuned, but other choices (e.g., by inserting the leak factor inside

the state update) are possible.79

ESN, and RC architectures in general, have achieved remarkable success in many applica-

tions, particularly when the problem at hand does not require very long memory processing.

Representative examples include short-term load forecasting,14 grammatical inference,80 s-

tock price prediction,81 speech recognition,82 robotic control,83 and acoustic modeling,84

among others. Lukoševičius and Jaeger6 provide a complete overview of the field up to 2009.

A more recent overview of the current trends in RC (some of which are detailed below) is

instead provided by Goudarzi and Teuscher.85
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Training RC networks

Due to the separation between reservoir and readout, during the training phase the internal

states of the ESN can be computed for each element of the training sequence by using the

desired output in (19) in place of the ESN output, a process known as ‘state harvesting’.

Once this is done, the training is again reduced to a standard linear regression over the

concatenation of current input and internal states, allowing for an extremely fast training of a

recurrent network architecture as an alternative to a full adaptation. Due to this, all training

methods introduced for RW-FNN can be immediately applied also here, including training

the network with sparse penalties86, the hinge loss87, and semi-supervised formulations.88

Historical overview of reservoir computing classes

The ESN as described in the previous section was formally introduced in 2001 in a technical

report by Herbert Jaeger,89 and it was designed explicitly to provide a simple, fast alternative

to full adaptation of a RNN for machine learning and signal processing tasks. In this sense,

the neurons in the reservoir act as dynamic (random) feature extractors that create several

‘echoes’ of the input sequence to be used for classification/regression purposes. For this

reason, most of the literature on ESNs (a selection of which is reviewed in the next sections)

has focused on creating features which are as useful as possible from a classification point of

view. Along this line, some intriguing notions connecting the reservoir (seen as a randomized

feature extractor), to infinite neural networks and kernels methods are explored by Hermans

and Schrauwen.90

A very similar algorithm was derived a few years later by Steil,91,92 under the name

Backpropagation-Decorrelation (BPDC). While the BPDC is slightly more complex than

the ESN described previously, it provides an interesting theoretical motivation for having

a fixed reservoir. The BPDC algorithm was derived by analyzing the run-time behavior

of a (at that time) state-of-the-art algorithm for RNN training, known as Atiya-Parlos.93

The analysis, made by Schiller and Steil,94 revealed how the algorithm results in a rapidly

adapting output layer for the network, and a slowly adapting recurrent layer which, in some

cases, also presents strong couplings. Based on this observation, it makes sense to directly

21



avoid the adaptation of the latter, resulting in a simplified linear problem and in the BPDC

algorithm itself.

A similar idea to ESNs was proposed in 2002 by Maass et al. under the name liquid

state machine (LSM)95 from a completely different point of view, namely as a model for

computational neuroscience. LSMs were put forth as a mathematical tool for analyzing

the properties of neural microcircuits, showing that layers of neurons can learn to ‘act’ for

different tasks on the information coming from a large (fixed) reservoir of neurons, exploiting

the high dimensionality of the feature mapping, and thereby providing “a computational

model that does not require convergence to stable internal states or attractors” of the recurrent

neural part,95 in contrast to the previous literature. The study of LSMs provide a direct link

between artificial neural networks as used in machine learning, and neuroscience, in particular

with respect to the study of random populations of neurons and their biological plausibility

(e.g., by providing a connection to the decades-long investigation of P.F. Dominey and

colleagues96). In the last decade, LSMs have been a fundamental tool for the understanding

of specific neural models and their computational properties.97,98

Distinguished from ESNs, LSMs are designed in order to be biologically plausible, and for

this reason they employ more sophisticated spiking models of neurons and, more importantly,

the connectivity of the reservoir (called the ‘liquid’ in the LSM) follows biological principles of

organization. Nonetheless, all the models discussed here are fundamentally equivalent, and in

2007, they were unified in the RC framework by the work of Verstraeten et al.99 Recently, an

evolution of the idea of ESNs with spiking neurons was proposed under the name NeuCube,

in which temporal information for multiple time series is mapped to different parts of a 3D

reservoir, based on their spatiotemporal properties.100,101

More generally, the idea of randomly selecting weights in RNNs was first explored by

Schmidhuber and Hochreiter in a 1996 report,102 where they showed how complete guessing

was outperforming current state-of-the-art training methods in many simple problems. We

briefly mention here also the ‘random neural network’ model, analyzed by Gelenbe in a

number of works during the nineties.103,104 In this network, randomness in introduced in

the rate of firing among neurons, and the weights representing these rates are adapted by

repeatedly solving two sets of linear and nonlinear equations for each input/output pair
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presented to the network. Due to this, the model does not fall in the unified presentation

given in this overview, although several of its idea could be exploited in connection to RC

networks. A survey on the applications of these models is given by Bakırcıoğlu and Koçak105

Theoretical properties of RC networks

The reservoir is the central component of RC networks, and its presence is the major dif-

ference with respect to feedforward models. Although its parameters are not adapted in a

supervised fashion, analyzing its dynamic behavior is essential to understanding the capabil-

ities of RC networks. Intuitively, if we are able to avoid ‘unstable’ reservoirs, the universal

approximation properties of RW-FNNs apply immediately: this is the topic of the first part

of this section. In the rest of the section, we investigate some additional aspects related to

the reservoir in terms of topology, computational power, and memory.

The echo state property

In RW-FNNs, connections in the first layer are generally extracted from a fixed probability

distribution, typically a uniform distribution in [−1,+1] although (as we have seen) this is

not enough to guarantee its accuracy for any possible initialization. However, this approach is

not sufficient for ESNs: reservoirs with random weights can result in dynamic systems which

oscillate or, even worse, present chaotic behaviors. Clearly, the features extracted by these

reservoirs would be of limited use in terms of discriminatory power. Basically, we should

be able to guarantee that the effects of any given input and state vanish in a finite number

of time-instants, without persisting indefinitely or becoming amplified exponentially. This

property of reservoirs was called the echo state property (ESP) by Jaeger,89 while a similar

property is called the ‘input separation property’ in the LSM literature. It can be shown

that, under these conditions, ESNs can approximate any time series with fading memory

to the desired level of accuracy (whereas it cannot be used for tasks requiring unbounded

memory).95

In practice, the ESP can be guaranteed almost always by rescaling the matrix Wr
r so

that its spectral radius ρ(Wr
r) (defined as the maximum eigenvalue in absolute terms) is less
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than 1. This rule originates from the work of Jaeger, which also proposed to have sparse

connectivity in Wr
r so as to create heterogeneous clusters of features.89 Together, these two

rules represent the most common way of initializing the ESN architecture.

Nonetheless, this criterion is only heuristic and does not exactly guarantee the ESP.

Jaeger89 showed that, necessarily, the ESP is violated if ρ(Wr
r) > 1 for networks with tanh

nonlinearities and if the input space contains the zero sequence, but the criterion does not

relate to ESNs driven by a specific input sequence, and the ESP might be lost (theoretically)

even for ρ(Wr
r) ≤ 1. A sufficient condition in terms of the largest singular value was also

obtained by Jaeger, but it is too restrictive to be useful in practice. Two equivalent (tighter)

sufficient conditions were obtained by Buehner and Young in 2006 and by Yildiz et al. in

2012.106,107 Taking into account the random initialization of the reservoir, Zhang et al.108

instead exploited tools from random matrix theory to analyze the behavior of the network,

showing that (asymptotically) the empirical criterion ρ(Wr
r) ≤ 1 is in fact justified. Some

important results relating the ESP to the nature of the input signal were obtained in 2013

by Manjunath and Jaeger.109

We emphasize that the ESP property is not the only possibility to design stable reservoirs

in a principled way. Ozturk et al.110 proposed a metric based on information-theoretic

arguments by analyzing the linearized dynamic of the reservoir. To date, this remains

the most common alternative to the a priori selection of a desired spectral radius. In

practice, both the input matrix and the feedback matrix have great impact on the prediction

performance. Note that the criterion ρ(Wr
r) ≤ 1 can be regarded as a constraint on the

distribution of the random weights of the feedback matrix, which can be characterised in

the sense of ℓ1 norm by the scope of random weights. Thus, a proper estimate on the

scope setting for both the input and feedback matrices is critical to guarantee a success of

time-series modelling (a typical data mining task).

Design of the reservoir

Since the training of the readout is formulated as a linear problem, most of the relevant

literature can be applied also for this class of networks. As an example, ℓ1 minimization to

achieve sparse readouts was investigated independently in the context of ESNs by Ceperic
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and Baric13 and Bianchi et al.,14 with some similar results obtained in a previous study by

Butcher et al.86 Additionally, it is possible to consider advanced optimization strategies,111,112

support vector algorithms,87 and many other variations (see Section 7 of Lukoševičius and

Jaeger for an overview6).

In a more general sense, however, the isolation of the recurrent part of the network allows

for a lot of freedom in its design, both by varying its initialization strategy (in terms of

connectivity), and by adding unsupervised strategies for its optimization.113,114 In the latter

case, two state-of-the-art unsupervised strategies with a biological inspiration are submodular

reservoirs with lateral inhibition113 and intrinsic plasticity (IP).114 Lateral inhibition is a

biological mechanism in which the activity of a neuron might inhibit the response of another

connected neuron. A way to realize this in ESNs is to have multiple (smaller) reservoirs,

with pairwise negative connections to inhibit their neighbors.113 As an example, consider two

reservoirs described by matrices W1,W2 ∈ R
B

2
×

B

2 , where each reservoir is now constituted

by B
2
neurons. An overall reservoir with lateral inhibition can be constructed as:

W =



 W1 −PI

−PI W2



 (22)

where P is an operator that predicts the new subreservoir states in the absence of lateral

inhibition, and we suppose that both inhibitory connections have the same strength.113

Despite its simplicity, this scheme can have a significant impact on the prediction accuracy.113

More in general, clustered architectures for the reservoir have been studied extensively, as

they can also provide improvements on the overall stability of the system.115

IP, proposed by Steil116 in 2007 and extended by Schrauwen et al.,114 is another biologically-

inspired rule which can be implemented easily. Practically, it allows for an increase in accu-

racy and a possible decrease in variance due to the random initialization. Suppose that the

original reservoir’s nonlinearity h(s) is parameterized with two free adaptable values a, b ∈ R

as hip = h(as + b). The IP rule allows the fine-tuning of these two parameters in an online

fashion, so that the distribution of the reservoirs’ states approaches a predefined distribution,

e.g. Gaussian. Simple update rules can be found in closed form for most nonlinearities used

in practice.114,116

Another possibility for improving performance is to consider layered architectures in
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which the outputs of one layer are provided as inputs to a subsequent layer. Triefenbach

et al.84 investigated this idea for acoustic modeling, in which every layer of the network is

trained to distinguish between acoustic entities of increasing temporal duration. Alternative

approaches, comprising multiple reservoirs connected to a single readout and/or between

them are explored in two recent papers by Malik et al.117 and Galicchio and Micheli.118

Despite the good results obtained, multilayered models are uncommon in ESNs, and in fact

they represent one of the most interesting open questions, as they might be able to process

events at different time resolutions. An alternative line of research has focused on the

construction of simpler, deterministic reservoirs. Specifically, Rodan and Tiňo119,120 showed

that cyclic reservoirs with possibly highly constrained weights can perform almost as well as

large, random reservoirs. Similar insights are obtained by Strauss et al.121 Together, these

results raise some important questions, namely: are the random ‘echoes’ produced by ESNs

actually helpful, or can we discard randomness and focus on the algebraic properties of the

matrices? Furthermore, in this case, is this true for any possible class of problems?

Recently, Appeltant et al.122 showed good performance of a ‘virtual’ reservoir composed

of a single node receiving time-delayed versions of its input. This scheme is particularly

interesting as the algorithm admits a very fast electronic implementation. Later, fully op-

toelectronic implementations of ESN schemes were independently presented in Paquot et

al.123 and Larger et al.,124 paving the way to ultra-fast implementations of RC using non-

conventional computing technologies.

Computational power and memory in RC architectures

Apart from the initialization strategy of the reservoir and its spectral radius, another funda-

mental parameter in the design of ESNs is the range in which the input connections Wr
i are

drawn. Basically, larger connections drive the reservoir in more nonlinear regions for com-

monly used nonlinear functions. Together, these parameters determine the computational

regime in which the ESN is operating, both in terms of computational power and memory

capacity.125,126 One important aspect that we briefly mention here is the concept of ‘edge

of instability’ (or ‘edge of chaos’): namely, a large body of literature suggests that ESNs,

like other recurrent architectures and even cortical circuits, have the highest computational
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power when they operate near an instable regime.127,128 This notion is of paramount impor-

tance, as it provides a link between RC, neuroscience and the theory of complex systems.

Open questions abound, particularly in order to determine when such processing power is

required and, in this case, how we can detect the onset of criticality in order to achieve this

aim.129–131

CONCLUSIONS

Randomly assigning a subset of parameters in a learner model is an efficient approach for

training neural networks, which provides an effective solution for large scale data mining

problems. Methods exploiting random mappings, such as RVFL, Random Kitchen Sinks

and FastFood, commonly share a two step process, that is, random mapping using some

weights (must be carefully scoped indeed for the universal approximation property) followed

by resolving a linear model. Due to the formulation of optimization problems in the parame-

ter space, all solutions can be obtained by leveraging over algebra routines and well-developed

techniques for linear regression and classification. Throughout this overview, we have seen

how this idea can be applied to feedforward neural networks, recurrent neural networks, and

for approximating kernel methods defined over possibly infinite-dimensional feature spaces.

A wealth of algorithms can be cast under a rather general framework, providing good trade-

offs in terms of accuracy, training time, extensibility, and so on. Nonetheless, advancement

in these models has been penalized by a fragmentation of the literature over different fields.

In this paper, we provided a comprehensive overview of all of them, showing their histo-

ry, strengths, weaknesses and, most importantly, open problems. As we have seen, many

fundamental questions remain to be further explored, in order to bridge an existing gap be-

tween purely randomized architectures and fully adaptable networks. A particular daunting

problem is to develop some practical methods for the design of sampling distributions in a

data-dependent fashion, which will play a key role in dealing with streaming data mining

problems.

There are some interesting and primary questions on the randomized approaches, for

instance, is randomness beneficial to general data mining problems, or is there a way of con-
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structing informative, functional and cheap feature spaces without randomization techniques

which can perform favorably?119,120 Additional insights might be obtained by connecting the

theory presented here to the broad field of randomness and stability in learning theory,132

which investigates how randomness in an algorithm affects the resulting error bounds. In the

end, we hope that this overview will attract more researchers to pay attention on the use of

randomness in the field of machine learning and data mining, fostering innovative methods

and the exchange of key results among communities.

FURTHER READING

For readers interested in the field of randomization for neural networks and kernel function-

s, we recommend the recent special issue on the topic published in Information Sciences.

Specifically, the special issue contains an informative editorial by Wang133 and a survey pa-

per by Zhang and Suganthan.134 Apart from the algorithms detailed here, the survey covers

additional methods that go outside the definition of randomization we considered, such as

probabilistic neural networks,135 ensemble methods,136 dropout regularization,137 and oth-

ers. As such, it provides an excellent alternative entry point into the growing literature of

the field.
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